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We introduce a rejection-free, flat histogram, cluster algorithm to determine the density of states of hard-
core lattice gases. We show that the algorithm is able to efficiently sample low entropy states that are usually
difficult to access, even when the excluded volume per particle is large. The algorithm is based on simultaneously
evaporating all the particles in a strip and reoccupying these sites with a new appropriately chosen configuration.
We implement the algorithm for the particular case of the hard-core lattice gas in which the first k next-nearest
neighbors of a particle are excluded from being occupied. It is shown that the algorithm is able to reproduce
the known results for k = 1, 2, 3 both on the square and cubic lattices. We also show that, in comparison, the
corresponding flat histogram algorithms with either local moves or unbiased cluster moves are less accurate and
do not converge as the system size increases.

DOI: 10.1103/PhysRevE.104.045310

I. INTRODUCTION

Lattice gas models of particles that interact only through
excluded volume interactions, also known as hard-core lattice
gases (HCLGs), are among the simplest systems that undergo
phase transitions [1]. Since the interaction energy is either
infinity or zero, depending on whether particles overlap or not,
temperature plays no role in causing phase transitions. Any
phase transition induced by changing density is driven by a
gain in entropy and thus HCLGs are the minimal models for
studying entropy-driven transitions. HCLGs are also closely
related to the freezing transition [2,3], self assembly [4,5],
adsorption on surfaces [6,7], directed and undirected lattice
animals [8–10], and the Yang-Lee edge singularity [11]. Sys-
tems of many differently shaped particles have been studied.
Examples include rods [12–16], tetrominoes [17,18], triangles
[19], Y-shaped particles [20–22], hexagons [23], cubes [24],
rectangles [25,26], discretized spheres [27–30], etc.

Despite its wide applicability and long history dating back
to the 1950s [12,31–35], basic issues like predicting the
phases and their order of appearance, given the shape of the
particles, are not satisfactorily resolved. Exact solutions are
limited to the case of hard hexagons [23]. Given the analytical
intractability, the main tool in studying these systems is Monte
Carlo simulations. Conventional Monte Carlo simulations that
use local evaporation, deposition, and diffusion moves work
well for only low densities. At higher densities or when
the excluded volume becomes larger, it becomes difficult to
equilibrate the system because the system gets trapped in
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long-lived metastable states. This difficulty has been over-
come by a recently introduced cluster algorithm [14,28,36,37]
which has been efficient in equilibration even at full packing
[37], resulting in obtaining the accurate phase diagram of
different systems, both in two and three dimensions. We will
refer to this algorithm as the strip cluster update algorithm.
The basic move in this algorithm is the evaporation of all
the particles in a randomly chosen strip of lattice sites, and
reoccupying the strip with a new configuration. The probabil-
ities of the allowed new configurations are determined from
transfer matrix calculations. In this paper, we modify this
grand canonical strip update algorithm to obtain the density
of states of hard-core lattice gases.

An important development in Monte Carlo simulations is
the use of flat histogram algorithms to obtain directly the
density of states. Such methods have a great advantage over
conventional Monte Carlo simulations where, for each set of
couplings (like temperature, fugacity, field strengths, etc.),
the simulation has to be separately done. In flat histogram
methods, the density of states can be used to generate data
for any value of the coupling. Some of the early methods
used to generate density of states are multicanonical ensemble
method [38], entropic sampling [39], broad histogram method
[40], and flat histogram method [41]. The Wang-Landau (WL)
algorithm [42,43] is a very popular flat histogram method in
which the density of states evolves continuously during the
simulations, resulting in fast convergence of the density of
states to its final values. The WL algorithm also overcomes
critical slowing down and long relaxation times [44]. A review
of the algorithm and its applications can be found in Ref. [45].
Several variants of the WL method, such as adaptive windows
[46], 1/t algorithm [47,48], tomographic sampling [49], etc.,
have also been proposed.

In this paper, we propose a rejection-free strip cluster
Wang-Landau (SCWL) update algorithm, combining both
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the strip cluster update algorithm and the WL algorithm, to
determine the density of states of HCLGs. In the evaporation-
deposition part of the algorithm, all particles in a strip are
removed and reoccupied with a new configuration. Even
though we have updated only a single row (strip of width
one) at a time for all the models considered in this paper,
in general the choice of width of the strip depends on the
model being considered. For example, in mixtures of 2×2
squares and dimers at full packing, the minimal width is a
strip of width two [37]. The new configurations are chosen in
proportion to their weights, which in turn are determined by
the current density of states, making the algorithm rejection
free. By comparing the performance of SCWL with corre-
sponding algorithms with either single site updates or where
new configurations are chosen independent of their weight, we
show that both the cluster move as well as the rejection-free
choice of new configurations are important to obtain an accu-
rate estimate of the density of states for HCLGs. As a concrete
example, we apply the algorithm to the k-NN exclusion model
in which a particle excludes all sites up to the kth nearest
neighbors from being occupied. We show that we are able
to reproduce the known results for the critical behavior of
this model for k = 1, 2, 3, both on square and cubic lattices.
For the first order transitions, we show that the nonconvexity
of the measured entropy can be utilized to obtain accurate
estimates of both the critical chemical potential as well as
the coexistence densities. In the case of the 3-NN model in
two dimensions and the 2-NN model in three dimensions,
we obtain improved estimates for critical chemical potential,
coexistence densities, and critical pressure. The improved es-
timates of critical chemical potential are 3.6766(5) for the
3-NN model in two dimensions and 0.5326(4) for the 2-NN
model in three dimensions. The coexistence densities range
from 0.8055(3) to 0.9570(3) for the 3-NN model in two di-
mensions and 0.4136(1) to 0.5197(2) for the 2-NN model in
three dimensions. The critical pressure is 0.74147(6) for the
3-NN model in two dimensions and 0.2542(1) for the 2-NN
model in three dimensions.

The remainder of the paper is organized as follows. In
Sec. II, we define the k-NN model. In Sec. III, we describe
the SCWL algorithm as well as variants of the algorithm with
either local moves or unbiased evaporation-deposition moves.
Section IV contains a detailed comparison of the performance
of the different variants of the flat histogram algorithms in
obtaining the density of states for the 1-NN and 2-NN models
in two dimensions. In Sec. V, the algorithm is applied to the
k-NN model in two and three dimensions for k = 1, 2, 3. The
critical behavior of each of these models is obtained. Finally,
we summarize and discuss the relevance of our results in
Sec. VI.

II. k-NN HARD-CORE LATTICE GAS

We consider a L×L square lattice or a L×L×L cubic
lattice with periodic boundary conditions. A lattice site may
be empty or occupied by utmost one particle. In the k-NN
exclusion model, a particle excludes all the sites up to the kth
nearest neighbors from being occupied by another particle.
Figure 1 shows the first, second, and third nearest neighbors
on a square lattice. In the limit of large k, the model becomes
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FIG. 1. First, second, and third nearest neighbors on a square
lattice of the central site (in black) are denoted by 1, 2, and 3,
respectively. In the k-NN exclusion model, a particle excludes the
sites up to the kth nearest neighbor from being occupied by another
particle.

equivalent to the problem of hard spheres in the continuum.
In this paper, we study the 1-NN, 2-NN, and 3-NN models in
two and three dimensions. These six models combined show
a wide range of behavior: continuous transitions, first order
transitions, multiple phase transitions, and columnar phase
with sliding instability. Their phase diagram and nature of
phase transitions are discussed in Sec. V.

For the application of the strip cluster update algorithm,
certain lattice directions are preferred over the others (see
Ref. [28] for a more detailed discussion of this point). For
all the models considered in this paper, except for the 3-NN
model in two dimensions, the preferred directions are the
principal lattice directions. For the 3-NN model in two dimen-
sions, the preferred directions are along the π/4 and −π/4
diagonals [28]. We refer to these preferred directions as rows.
An important point is that, for all the models, along the rows,
the minimum number of vacant sites between two particles is
one.

We define the density ρ to be ρ = η/ηmax, where η is
the number density and ηmax is the number density of the
fully packed phase. Thus the fully packed phase will always
have ρ = 1. The number of particles at full packing Nmax =
ηmaxLd , where d is the dimension. ηmax as well as the phase at
fully packing for the different models studied in this paper are
given in Table I.

III. REJECTION-FREE CLUSTER
WANG-LANDAU ALGORITHM

In this section, we describe our main algorithm which we
name as strip cluster Wang-Landau (SCWL) algorithm. Two
main features of the algorithm are that it is based on clus-
ter moves and that new configurations are weighted by their
density of states. In order to establish the necessity of these
two features for determining the density of states for generic
HCLGs, we define two other algorithms for comparison:
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TABLE I. Number density at full packing, ηmax, and the phase at
full packing for the different models studied in the paper. d denotes
the dimension.

Model ηmax Phase at full packing

1-NN(2d) 1/2 Sublattice
2-NN(2d) 1/4 Columnar
3-NN(2d) 1/5 Sublattice
1-NN(3d) 1/2 Sublattice
2-NN(3d) 1/4 Sublattice
3-NN(3d) 1/8 Columnar

single site Wang-Landau (SSWL) algorithm based on sin-
gle site moves and unbiased strip cluster Wang-Landau
(USCWL) algorithm in which cluster moves are present but
the new configurations that are generated are not weighted
by their probabilities. These algorithms are described in
Secs. III A (SSWL), III B (SCWL), and III C (USCWL).

First, we outline the WL protocol. In the WL algorithm
[42,43], a configuration with N particles is weighted inversely
proportional to g(N ), the number of configurations with N
particles. g(N ) changes continuously during the simulations
and is expected to converge to its true value with increasing
time. It is convenient to define the entropy

S(N ) = ln g(N ). (1)

Initially S(N ) = 0 for all N . The system is evolved using
an evaporation-deposition algorithm that alters the number
of particles consistent with their weights. A histogram H (N )
maintains the number of times configurations with N parti-
cles are visited. After each evaporation-deposition move, the
entropy and histogram are updated as S(N ) → S(N ) + f and
H (N ) → H (N ) + 1. The system is evolved till the histogram
becomes flat [min H (N ) � c max H (N )], after which f →
f /2, and H (N ) = 0, and a new iteration is started. Here, c
is the predetermined constant that thresholds the ratio of the
minimum to the maximum value of H (N ) for the flatness
criterion to end an iteration. The iterations continue till f
reaches a predetermined small value. Initially f = 1; the value
of f is halved after each iteration. In our simulations, we
choose c = 0.85 and perform 22 iterations so that the final
value of f is 2−22, unless otherwise specified.

We now define three algorithms based on different
evaporation-deposition moves.

A. Single site Wang Landau (SSWL)

In SSWL implementation, the evaporation-deposition
moves consist of updating single sites. Consider a configu-
ration with nold particles. Pick a site at random. If occupied,
remove the particle to obtain a new configuration with nnew

particles where nnew = nold − 1. If the site is empty, it is occu-
pied with a particle, provided it does not violate the hard-core
constraint. Then nnew = nold + 1 or nnew = nold depending on
whether a particle is added or not. The new configuration is
accepted with probability min[1,

g(nold )
g(nnew ) ].

After each step, the entropy and histogram are updated. Ld

updates correspond to one Monte Carlo time step.

B. Strip cluster Wang Landau (SCWL)

In one time step of SCWL, multiple particles are evapo-
rated and deposited. The new configurations will be chosen
proportional to their weights, making the implementation re-
jection free. The basic steps are described below.

First, choose a row at random. As mentioned in Sec. II, a
row refers to any of the principal directions for all the models
except the 3-NN model in two dimensions, for which a row
refers to diagonals in the ±π/4 directions. Imagine that all
the particles in this row are removed. The row now breaks up
into segments consisting of continuous empty sites separated
by sites that are excluded from being occupied due to particles
in neighboring rows. Note that there is the possibility of a
segment being a ring due to periodic boundary conditions.

Choose one of these segments at random and remove all
the particles in it and reoccupy this segment with a new
configuration that is chosen as follows. Let this segment have
� sites and let there be N0 particles remaining in the system
after removing particles from this segment. It is possible to
occupy 0, 1, . . . , n′ particles, where n′ = [(� + 1)/2] for a
segment with open boundary conditions and n′ = [�/2] for a
segment with periodic boundary conditions. The refilling is
done in two steps: first we determine the number of particles
n that should be deposited and second we choose a random
configuration from all possible ways of placing n particles in
� sites. The procedure is repeated till all segments are updated.
The histogram and entropy are updated once all the segments
in a row are updated.

Two aspects need to be quantified: how to determine n and
how to choose a random configuration (given n).

We define Co(�, n) as the number of ways n particles can
be placed on a segment of length � with open boundary con-
ditions. Likewise, Cp(�, n) is the number of ways when the
boundary conditions are periodic. We also define Probo(�, n)
and Probp(�, n) as the probabilities of choosing n particles for
open and periodic boundary conditions, respectively. Then,

Probo(�, n) = Co(�, n)/g(N0 + n)∑n′
i=0 Co(�, i)/g(N0 + i)

, (2)

Probp(�, n) = Cp(�, n)/g(N0 + n)∑n′
i=0 Cp(�, i)/g(N0 + i)

. (3)

The combinatorial factors Co(�, n) and Cp(�, n) for the 1-NN
model are given by (see the Appendix for derivation)

Co(�, n) = (� − n + 1)!

(� − 2n + 1)!n!
, n = 0, 1, . . . ,

[
� + 1

2

]
, (4)

Cp(�, n) = �(� − n − 1)!

(� − 2n)!n!
, n = 0, 1, . . . ,

[
�

2

]
. (5)

Equations (2)–(5) allow us to determine n.
Once n is fixed, we need to specify how a random config-

uration with n particles is chosen. Consider an open segment.
We start filling it from left to right. Consider the first site. The
probability po(�, n) of it being empty is

po(�, n) = Co(� − 1, n)

Co(�, n)
= � − 2n + 1

� − n + 1
. (6)
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If the first site is empty, we move to the next site, � → � − 1,
n remains the same, and the procedure is repeated. If the first
site is occupied, we move to the next-nearest site, � → � − 2,
n → n − 1 and the procedure is repeated.

For a ring, let pp(�, n) be the probability of the first site
(any randomly chosen site) being empty. It is given by

pp(�, n) = Co(� − 1, n)

Cp(�, n)
= � − n

�
. (7)

If the first site is empty, we move to the next site, and the prob-
lem of occupation reduces to a problem of an open segment of
length � − 1 and n particles. If the first site is occupied, then
it reduces to the problem of an open segment of length � − 3
and n − 1 particles.

Note that the factors Co(�, n), Cp(�, n), po(�, n), and
pp(�, n) do not depend on g(n) and can be stored in the
beginning of the program to save computing time.

A Monte Carlo time step corresponds to 2L row updates in
two dimensions and 3L2 row updates in three dimensions.

C. Unbiased strip cluster Wang Landau (USCWL)

In USCWL implementation, a row is updated segment by
segment, like in SCWL. The difference with SCWL is that,
in USCWL, we choose a configuration with equal probability
from all possible configurations, while in SCWL these config-
urations are weighted differently according to the current g(n).
The implementation of the evaporation-deposition moves for
USCWL is as follows. Choose a row at random and break it up
into independent segments as defined previously in Sec. III B.
Let the segment be of length �. To generate a new configu-
ration for the segment, first evaporate all the particles in the
segment (nold). The probability Probo(�, nnew) of choosing a
new configuration with nnew particles is

Probo(�, nnew) = Co(�, nnew)∑n′
i=0 Co(�, i)

, (8)

where Co(�, i), is the number of ways of occupying � sites with
i particles, as given in Eq. (4). Once nnew is decided, a random
configuration consisting of nnew particles is determined by
following the procedure described in the paragraph following
Eq. (5). The new configuration is accepted with probability
min[1,

g(nold )
g(nnew ) ]. For a segment with periodic boundary condi-

tions, the procedure is similar.
The entropy and histogram are updated after all of the seg-

ments in the row are refilled. One Monte Carlo move consists
of updating 2L rows in two dimensions and 3L2 rows in three
dimensions.

IV. COMPARING THE ALGORITHMS

In this section, we compare the efficiency and effectiveness
of the three algorithms—SCWL, SSWL, USCWL—defined
in Sec. II. We compare their performance for the 1-NN and
2-NN models in two dimensions. The entropy as well as the
phase of the high density states differ in these models. For
the 1-NN model, there are only two fully packed configura-
tions and the phase has sublattice order, while, in the 2-NN
model, the number of fully packed configurations increases
exponentially with system size and the phase has columnar

0
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USCWL
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Exact

FIG. 2. Entropy S of the 1-NN model in two dimensions for
system size L = 8, obtained from the algorithms SSWL, USCWL,
and SCWL at the end of 22 iterations. The exact enumeration results
are from Ref. [46].

order. Sections IV A and IV B contain the analysis for the
1-NN model and the 2-NN models, respectively.

A. 1-NN model in two dimensions

We first benchmark our simulations by comparing the re-
sults for entropy S(N ) for L = 8 obtained from the different
algorithms with results from the exact enumeration. The arbi-
trariness in the zero of S(N ) is removed by setting S(0) = 0.
S(N ) for the different algorithms matches well with results
from exact enumeration [46], as shown in Fig. 2. We con-
clude that the three different algorithms SSWL, USCWL, and
SCWL sample the states correctly.

The error in the numerically estimated entropy is quantified
by the error function ε [47,50]:

ε = 1

Nmax − 1

Nmax∑
N=1

∣∣∣∣1 − S(N )

Sex(N )

∣∣∣∣, (9)

where Nmax = L2/2 is the maximal occupancy and Sex(N ) is
the exact entropy.

The time dependence of ε for the three algorithms for
L = 8 is shown in Fig. 3. For both USCWL and SSWL, the
error first increases significantly before decreasing to a time
independent value. On the other hand, the error for SCWL is
constant for initial times and then decreases to its final value.
At all intermediate and large times, SCWL has a lower error,
showing faster convergence. In addition, the saturation error
is minimum for SCWL, showing better accuracy.

For larger system sizes, we do not know Sex and hence
ε cannot be used as a measure for accuracy. In addition,
ε does not tell us about how accurately the low-entropy
states are accessed. In Table II, we compare the entropy
of the states N = 1, 2, Nmax − 1, Nmax obtained using the
three algorithms. g(N ) is easy to calculate exactly for these
states. g(1) = L2, g(2) = L2(L2 − 5)/2, g(Nmax − 1) = L2,
and g(Nmax) = 2. For these values of N , the entropies are
obtained for system sizes up to L = 36. By examining the
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FIG. 3. Variation of the error function ε [see Eq. (9)] with time t
for the 1-NN model in two dimensions for system size L = 8. For all
three algorithms, the data have been averaged over 100 realizations.

entropies for N = Nmax and N = Nmax − 1, it is clear that
USCWL fails to estimate these entropies accurately. Also, the
errors are the largest for USCWL. To compare convergence
for larger L, we abort the routine if the time spent in any it-
eration exceeds 106 Monte Carlo steps. Within this definition,
USCWL fails to converge for L � 24. Both SCWL and SSWL
give accurate estimates for entropies up to L = 24. However,
for L = 36, SSWL fails to converge while SCWL continues
to be accurate. We have checked that SSWL fails to converge
even if we increase the cutoff for flattening of histogram to 107

TABLE II. Comparison of the entropy S(N ) for low entropy
states obtained from SCWL, SSWL, and USCWL algorithms with
the exact entropies. The data are for the 1-NN model in two di-
mensions and have been averaged over 10 realizations and after 20
iterations. A blank space in any entry refers to cases where the time
spent in an iteration exceeds 106 Monte Carlo steps without flattening
the histogram. Nmax = L2/2 is the maximal occupancy.

Algorithms S(1) S(2) S(Nmax − 1) S(Nmax)

L = 8
SCWL 4.160(8) 7.546(8) 4.14(2) 0.68(2)
SSWL 4.158(7) 7.546(6) 4.16(2) 0.69(2)
USCWL 4.16(2) 7.57(2) 4.20(2) 0.73(2)
Exact 4.159 7.543 4.159 0.693

L = 16
SCWL 5.549(3) 10.376(6) 5.52(2) 0.68(2)
SSWL 5.549(5) 10.382(6) 5.56(4) 0.69(4)
USCWL 5.66(9) 10.58(9) 5.8(1) 1.0(1)
Exact 5.545 10.378 5.545 0.693

L = 24
SCWL 6.357(5) 12.011(6) 6.33(2) 0.67(2)
SSWL 6.364(7) 12.02(1) 6.33(6) 0.64(6)
USCWL
Exact 6.356 12.010 6.356 0.693

L = 36
SCWL 7.168(4) 13.638(4) 7.20(1) 0.72(1)
SSWL
USCWL
Exact 7.167 13.637 7.167 0.693

102
103
104
105
106
107 (a)

τ

SSWL
USCWL

SCWL

102
103
104
105
106
107

0 5 10 15 20 25 30

(b)

τ
iteration number

SSWL
USCWL

SCWL

FIG. 4. Variation of τ , the mean time taken for the histogram to
flatten for a particular iteration, with iteration number for SSWL,
USCWL, and SCWL algorithms for the 1-NN model in two dimen-
sions. The data are for (a) L = 8 and (b) L = 16. The data have
been averaged for 100 realizations for L = 8 and 10 realizations for
L = 16.

Monte Carlo steps. Also, we have checked that SCWL gives
accurate results for these low entropy states even for L = 140.

A measure of the rate of convergence is the time it takes
to flatten the histogram in an iteration. We denote this time
interval by τ . Figure 4 shows the dependence of τ on iteration
number for L = 8, 16 for the three algorithms. τ increases
with iteration number and then saturates. It is clear that
USCWL has a poor convergence rate compared to SSWL and
SCWL. For the initial iterations, τ is much smaller for SCWL
while, as the iteration number increases, SCWL and SSWL
behave similarly.

We conclude, based on the data for L = 8, 16, 24, and
36 for the 1-NN model in two dimensions, that SCWL has
the least error and fastest convergence. In addition, it is the
only algorithm that is able to obtain results for L � 36 in
reasonable computational time. We find that USCWL has
poor performance compared to SCWL and SSWL on all pa-
rameters. We, therefore, do not use USCWL anymore. We
make more detailed comparison between SCWL and SSWL
in Sec. IV B for the 2-NN model in two dimensions.

B. 2-NN model in two dimensions

In this section, we further compare the performance of
two algorithms, SSWL and SCWL, by using them to ob-
tain the entropy for the 2-NN model in two dimensions.
Unlike the 1-NN model, the degeneracy of the fully packed
state in the 2-NN model increases exponentially with system
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FIG. 5. Entropy S at different iterations of the SSWL and SCWL
algorithms for the 2-NN model in two dimensions. The data are
for L = 16. The different panels correspond to (a) 5th iteration
for SSWL and SCWL, (b) 5th, 10th, 20th iteration for SSWL,
(c) 5th, 10th, 20th iteration for SCWL, and (d) 20th iteration for
SSWL and SCWL.

size. As a result, the sampling of the states near full packing
becomes more challenging.

In Fig. 5, the entropy S(N ) at the 5th, 10th, and 20th
iterations of the SSWL and SCWL algorithms is shown
for L = 16. S(N ) at the 5th iteration obtained from the
SSWL algorithm is significantly different from the final value
[see Fig. 5(b)]. In this case as well as the 10th iteration, the
entropy is negative for states close to full packing, showing
a slow convergence. On the other hand, for the SCWL algo-
rithm, the entropy at the 5th and 10th iterations are already
close to the final result [see Fig. 5(c)]. The final entropies
obtained from both algorithms are not distinguishable visually
[see Fig. 5(d)].

To determine how well the algorithms sample the states
near full packing, we compare the results from both algo-
rithms with the exact entropy of the fully packed state. The
latter can be computed to be S(Nmax) = ln[4(2L/2 − 1)]. The
percentage error in the numerically estimated entropy for L =
16 is 9.52% for the SSWL algorithm and 0.41% for the SCWL
algorithm. Clearly, the cluster moves employed in the SCWL
algorithm considerably improve the accessibility of states near
full packing, in addition to faster convergence.

For larger system sizes (L = 24), we find that in the SSWL
algorithm the histogram does not flatten within 107 Monte
Carlo steps. On the other hand, as we show in Sec. V B, we
are able to obtain the density of states for L up to 200 using
the SCWL algorithm.

We quantify the computational time by measuring τ , the
time it takes to flatten the histogram in an iteration. Figure 6
shows the dependence of τ on iteration number for L = 8, 16
for both the algorithms. For both L, τ for each iteration is
larger for SSWL. The difference is enhanced with increasing
L with τ being nearly 1000 times larger for SSWL for initial
iterations for L = 16. Also, SCWL takes much fewer itera-

102
103
104
105
106
107 (a)

τ

SSWL
SCWL

102
103
104
105
106
107

0 5 10 15 20

(b)

τ
iteration number

SSWL
SCWL

FIG. 6. Variation of τ , the mean time taken for the histogram to
flatten in a particular iteration, with iteration number for SSWL and
SCWL algorithms for the 2-NN model in two dimensions. The data
are for (a) L = 8 and (b) L = 16. The data have been averaged for
100 realizations for L = 8 and 10 realizations for L = 16.

tions to reach the good estimate of S(N ), making it feasible to
sample the density of states of much larger systems.

We conclude, after comparing the performance of the al-
gorithms for the 1-NN and 2-NN models in two dimensions,
that both cluster moves as well as choosing new configurations
proportional to their weights are essential to determine the
density of states accurately.

V. APPLICATIONS

In this section, we show that the SCWL algorithm is effi-
cient enough to accurately determine the critical behavior of
the k-NN model for k = 1, 2, 3 in two and three dimensions.
Knowing the density of states, we can calculate the average of
any observable Ok,d :

〈Ok,d〉 =
∑Nmax

N=0 O(N )eμN g(N )∑Nmax

N=0 eμN g(N )
, (10)

where Nmax is maximum occupancy for the k-NN model and
μ is the chemical potential in units where kBT = 1, with kB

being the Boltzmann constant and T being the temperature.
The subscripts k and d denote the range of exclusion and
spatial dimension, respectively.

It is convenient to fix the notation for all the models in one
place. We will denote the (intensive) order parameter by qk,d .
The definition of qk,d will depend on the symmetries of the
model. The other thermodynamic quantities that we will be
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interested in are the compressibility κk,d , susceptibility χk,d ,
and pressure Pk,d (μ), which are defined as

κk,d = Ld
(〈
ρ2

k,d

〉 − 〈ρk,d〉2), (11)

χk,d = Ld
(〈

q2
k,d

〉 − 〈qk,d〉2), (12)

Pk,d (μ) = L−d ln
Nmax∑
n=0

eμng(n). (13)

We can also measure pressure in the canonical ensemble, P̃k,d :

P̃k,d (ρ) =
∫ ρ

0
[1 − φ(ρ)]

∂

∂ρ

[
ρ

1 − φ(ρ)

]
dρ, (14)

where φ(ρ) is the mean fraction of sites that are blocked
from further occupation at density ρ [51,52]. φ(ρ) is directly
measured in the flat histogram algorithm, allowing P̃ to be
calculated. Finally, we will denote the density by ρk,d or by
just ρ if there is no cause for confusion.

Phase transitions are characterized by the nonanalytic be-
havior of the thermodynamic quantities, which is captured by
the critical exponents [53]. In finite systems, the behavior gets
rounded off, but can be captured through finite size scaling
[54–56]. Near a continuous transition, the finite size scaling
of the different quantities are

κk,d ≈ Lα/ν fκ (εL1/ν ),

〈qk,d〉 ≈ L−β/ν fq(εL1/ν ),

χk,d ≈ Lγ /ν fχ (εL1/ν ),

(15)

where α, β, γ , and ν are critical exponents, ε = μ − μc is the
deviation from the critical point, and f are scaling functions.
At a first order transition, similar scaling behavior is seen with
ν = 1/d and α/ν = β/ν = γ /ν = d .

For the numerical analysis, it is useful to define an associ-
ated quantity, which we will denote by t :

tk,d = ∂ ln〈qk,d〉
∂μ

. (16)

From Eq. (15), we obtain

tk,d ≈ L1/ν ft (εL1/ν ). (17)

The advantage of using tk,d is that the maxima scale as L1/ν ,
allowing for a single parameter determination of ν.

To determine the critical parameters at the continuous tran-
sitions, we determine exponents one at a time. 1/ν, γ /ν, and
α/ν are determined from the scaling of t , χ , and κ , respec-
tively, with L. μc(L) is identified with the position of the peak
of χ . −β/ν is obtained by the scaling of q(μc(L)) with L.
These power-law scalings are summarized as

χmax
k,d ∼ Lγ /ν,

tmax
k,d ∼ L1/ν,

κmax
k,d ∼ Lα/ν,

〈qk,d〉(μc) ∼ L−β/ν. (18)

Let μc and ρc denote the critical chemical potential and
critical density in the thermodynamic limit. The system size

10 1 0
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1 1

010101

0 0 111

1 0 1 0 1 0

0

0

0 1

FIG. 7. For the 1-NN model in two dimensions, the square lattice
is divided into two sublattices labeled by 0 and 1.

dependent critical chemical potential and density are extrapo-
lated to the infinite system size limit using

μc(L) − μc ∼ L−1/ν, (19)

ρc(L) − ρc ∼ L−1/ν . (20)

To estimate critical exponents accurately, the relevant ther-
modynamic quantities were estimated with a step size of
�μ = 10−5. Errors in each data point are standard error
obtained from 16 independent simulations using different se-
quences of random numbers. Errors in the final estimate of
critical parameters are fitting errors.

A. 1-NN model in two dimensions

In the 1-NN model, the four nearest neighbors of a particle
are excluded from being occupied. As density is increased,
the system is known to undergo a continuous transition from
a disordered fluid phase to an ordered sublattice phase (see
[27,57] and references within for the large body of work on
this model). The transition is expected to belong to the Ising
universality class: γ /ν = 7/4, β/ν = 1/8, α/ν = 0, and ν =
1 [27,49]. The best known numerical estimates of the critical
chemical potential and critical density, obtained from transfer
matrix calculations, are μc,1,2d = 1.33401510027774(1) and
ρc,1,2d = 0.7354859980820(6) [58] (note that the density ρ is
two times the number density).

To define the order parameter, we divide the square lattices
into two sublattices as shown in Fig. 7. At full packing, only
one of the sublattices is occupied. The order parameter is
defined as

〈q1,2d〉 = |ρ1 − ρ0|, (21)

where ρi is the density of particles in sublattice i. In the fluid
phase 〈q1,2d〉 is zero and in the sublattice phase 〈q1,2d〉 is
nonzero.

We determine the density of states for system sizes up to
L = 140. We determine the critical exponents using Eq. (18).
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FIG. 8. Power-law fits for the scaling of (a) tmax
1,2d , (b) χmax

1,2d , and
(c) 〈q1,2d 〉(μc ) with system size L for the 1-NN model in two dimen-
sions. The axes are scaled logarithmically.

The power-law scaling and the best fits are shown in Fig. 8 for
tmax
1,2d , χmax

1,2d , and q1,2d (μc(L)). We obtain ν = 1.00(1), γ /ν =
1.75(1), and β/ν = 0.125(4). We have also shown the data
for L = 200 in Fig. 8, which falls on the same line as obtained
by data fit for sizes up to L = 140. Extrapolating μc(L) and
ρc(L) using Eqs. (19) and (20), we obtain μc,1,2d = 1.3345(6)
and ρc,1,2d = 0.7332(6). The estimate for μc,1,2d is consistent
with known estimates (see above). The critical density ρc,1,2d

differs from the best known estimate by 0.3%. The data for the
thermodynamic quantities for different system sizes collapse
onto one curve when scaled as in Eq. (15) with the numerically
obtained critical parameters (see Fig. 9).

B. 2-NN model in two dimensions

In the 2-NN model in two dimensions, a particle excludes
eight sites from being occupied by another particle. It is
known that the system undergoes a continuous phase transi-
tion from a low density disordered phase to a high density
columnar phase. In the columnar phase, particles preferen-
tially occupy either even or odd rows with no preference
for the parity of columns or even or odd columns with no
preference for parity of rows.
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FIG. 9. Data for the 1-NN model in two dimensions for different
system sizes collapse onto one curve for (a) t1,2d , (b) 〈q1,2d 〉, and
(c) χ1,2d , when scaled as in Eq. (15) with exponents ν = 1.00(1),
β/ν = 0.125(4), γ /ν = 1.75(1), and μc,1,2d = 1.3345(6).

The disordered-columnar transition belongs to the Ashkin-
Teller universality class [37]. The Ashkin-Teller model has
a line of critical points. Along this line γ /ν and β/ν are
constant and equal γ /ν = 7/4 and β/ν = 1/8. The criti-
cal line is parametrized by the exponent ν. For the 2-NN
model, it has proved difficult to obtain precise estimates of
ν. More recent estimates have been ν = 0.92(3) [37] from
transfer matrix based Monte Carlo simulations, ν = 0.86(2)
[59] from exchange Monte Carlo method, ν = 0.94(3) [60]
from Monte Carlo simulation, and ν = 1.0 [27] from Monte
Carlo simulations. The known estimates for critical chemi-
cal potentials are μc,2,2d = 4.58(4) [37] from transfer matrix
based Monte Carlo simulations, μc,2,2d = 4.56(2) [59] from
exchange Monte Carlo method, μc,2,2d = 4.584(2) [60] from
Monte Carlo simulation, and μc,2,2d = 4.578 [27] from Monte
Carlo simulations. The corresponding estimates for critical
density are ρc,2,2d = 0.96 [61], 0.932 [27], and 0.930(1) [59].
The intractability of the model has resulted in many attempts
to obtain the critical density and chemical potential using
systematic expansions and approximate methods. These in-
clude high activity expansions [33,62,63], estimates of surface
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2,2d ,
and (c) 〈q2,2d 〉(μc ) with system size L for the 2-NN model in two
dimensions. The axes are scaled logarithmically.

tension between ordered phases [64–66], and limits of Husimi
tree [57].

The order parameter is defined as

q2,2d =
√

(ρoc − ρec)2 + (ρor − ρer )2, (22)

where the subscripts o, e, r, c denote odd, even, row, and
column, respectively. ρoc is the density of particles in odd
columns and so on. q2,2d becomes nonzero when the odd-even
parity is broken.

We determine the density of states for system sizes up
to L = 200. From the scaling of χmax

2,2d and q2,2d (μc(L)) [see
Figs. 10(b) and 10(c)], we obtain γ /ν = 1.75(1) and β/ν =
0.123(3). Both these estimates are consistent with the Ashkin-
Teller values γ /ν = 1.75 and β/ν = 0.125. From the scaling
of tmax

2,2d [see Fig. 10(a)], we obtain ν = 0.95(2). This estimate
is consistent with recent estimates of ν (see second paragraph
of this subsection). We note that these estimates are with using
system sizes only up to L = 200. By using more sophisticated
methods like flat histogram with windows, etc., it would be
possible to study much larger system sizes. This in turn should
result in even better estimates of ν.

To find critical parameters we extrapolate μc(L) and ρc(L)
to infinite system size using Eqs. (19) and (20). We obtain
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FIG. 11. Data for the 2-NN model in two dimensions for differ-
ent system sizes collapse for (a) t2,2d , (b) 〈q2,2d 〉, and (c) χ2,2d , when
scaled as in Eq. (15) with exponents ν = 0.95(2), β/ν = 0.123(3),
γ /ν = 1.75(1), and μc,2,2d = 4.580(4).

μc,2,2d = 4.580(4). This value agrees very well with best
earlier estimate 4.58(4). We also obtain ρc,2,2d = 0.9307(3),
again consistent with earlier estimates. The data for the ther-
modynamics quantities for different system sizes collapse
onto one curve when scaled as in Eq. (15) with the numerically
obtained critical parameters and exponents (see Fig. 11).

C. 3-NN model in two dimensions

In the 3-NN model in two dimensions, a particle excludes
12 sites from being occupied by another particle. It is known
that the system undergoes a discontinuous phase transition
from a low density disordered fluid phase to a high density
sublattice ordered phase. The known estimates for critical
chemical potential are μc,3,2d = 3.6758(8) [67] and 3.6762(1)
[68]. At the first order transition, the known estimates for the
coexistence densities ρ f and ρs, where f and s denote fluid
and solid, are ρ f = 0.80 and ρs = 0.95 [33,68–72] (note that
the density ρ is five times the number density). The value of
critical pressure has been estimated to be 0.74124(2) from the
matrix method [68] and 0.74147(2) from high density series
expansion [68].
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FIG. 12. For the 3-NN model in two dimensions, the square
lattice is divided into two sublattices labeled by 0–4. Two divisions
are possible, which are denoted as (a) type A and (b) type B.

To define the order parameter, we divide the lattice sites
into five sublattices as shown in Fig. 12. This division can be
done in two ways, which we call type-A and type-B sublat-
tices. At full packing, one of the sublattices of either type A or
type B are fully occupied, and in the disordered phase all five
sublattices of both types are equally occupied on an average.
Let

qp =
∣∣∣∣∣

4∑
i=0

ρ
p
i exp

[
j
2π i

5

]∣∣∣∣∣, p = A, B, (23)

where ρ
p
i is the number density of particles in sublattice i of

type p. qp is nonzero when a particular sublattice of type p is
preferred. We define the order parameter to be

〈q3,2d〉 = |qA − qB|. (24)

We determine the density of states for system sizes up
to L = 120. The first order nature of the transition can be
established by studying the pressure and entropy. Figure 13
shows the variation of pressure with density, computed both
in the grand canonical ensemble (P) as well as the canonical
ensemble (P̃). P̃ is nonmonotonic, while P is nearly a constant
in the coexistence regime. The loops in P̃ are possibly due to
a finite size effect caused by the interface between a bubble
of minority phase and the surrounding majority phase [73].
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FIG. 13. Variation of the grand canonical pressure P computed
from Eq. (13) and the canonical pressure P̃ computed from Eq. (14),
with density for the 3-NN model in two dimensions. The data are for
the two largest system sizes studied.
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FIG. 14. Nonconvex nature of entropy of the 3-NN model in two
dimensions. The solid straight line is a convex envelope with points
on this line having higher entropy than the measured value. The data
are for L = 20. Inset shows full range of entropy and position of the
convex envelope.

The curve for P is similar to the usual Maxwell construction
for a nonmonotonic P̃. The pressure loop in P̃ would imply
nonconvexity in the entropy. The nonconvexity of the entropy
is demonstrated in Fig. 14. As can be seen, entropy is convex
everywhere except in a small interval covered by the convex
envelope (straight line in Fig. 14) where the measured entropy
is lower than the entropy of a phase separated system. This
feature persists for all system sizes that we have studied.

From the convex envelope construction, the critical param-
eters can be accurately measured. We identify the end points
of the convex envelope with the coexistence densities ρ f (L)
and ρs(L). The critical chemical potential is given by

μc(L) = −S(ρs) − S(ρ f )

Ns − Nf
. (25)

ρ f (L), ρs(L), and μc(L), obtained from both convex envelope
as well as the peak of susceptibility, are tabulated in Table III
for different system sizes. The estimates for μc(L) obtained
from both methods are very close to each other.

TABLE III. Critical parameters obtained from nonconvexity
(NC) of entropy for the 3-NN model in two dimensions. The data
are extrapolated to infinite system size using linear regression with
L−2.

L ρ f (L) ρs(L) μc,3,2d (L) μc,3,2d (L)
from NC from χmax

3,2d

60 0.801(1) 0.959(1) 3.6549(1) 3.6544(1)
70 0.802(1) 0.958(1) 3.6615(1) 3.6613(1)
80 0.8024(8) 0.9581(8) 3.6648(1) 3.6647(1)
90 0.8032(6) 0.9580(6) 3.6672(1) 3.6671(1)
100 0.8035(5) 0.9577(5) 3.6688(1) 3.6688(1)
110 0.8040(4) 0.9576(4) 3.6700(1) 3.6700(1)
120 0.8042(4) 0.9575(4) 3.6712(1) 3.6712(1)
∞ 0.8055(3) 0.9570(3) 3.6766(5) 3.6764(6)
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FIG. 15. Extrapolation of critical chemical potential μc,3,2d (L) to
infinite system size for the 3-NN model in two dimensions.

We extrapolate the critical parameters to infinite system
size using Eqs. (19) and (20) with ν = 1/2. As an ex-
ample, we show the extrapolation for μc(L) in Fig. 15.
We obtain μc,3,2d = 3.6766(5) from the nonconvex analysis
and μc,3,2d = 3.6764(6) from the analysis of susceptibil-
ity. These values are close to earlier estimates of 3.6758(8)
[67] and 3.6762(1) [68]. For the coexistence densities, we
obtain ρ f ,3,2d = 0.8055(3) and ρs,3,2d = 0.9570(3). This im-
proves the earlier estimates of ρ f = 0.80 and ρs = 0.95
[33,68–72]. To obtain the system size dependent critical pres-
sure, we determine the pressure at μc(L). Extrapolating to
infinite system size, we obtain the critical pressure to be
Pc,3,2d = 0.74147(6). This equals earlier estimates from high
density series expansion [68].

Finally, we show that the data for susceptibility and com-
pressibility for different system sizes collapse onto one curve
when scaled as in Eq. (15) with the numerically obtained crit-
ical parameters and the exponents for a first order transition
(see Fig. 16).

D. 1-NN model in three dimensions

In the 1-NN model in three dimensions, a particle excludes
six nearest neighbor sites from being occupied by another
particle. The system undergoes a single continuous phase tran-
sition from a low density disordered phase to a high density
sublattice phase when density is increased [46,74,75]. From
symmetry considerations, the transition is expected to be-
long to the three dimensional Ising universality class. Earlier
estimates of the critical value of the chemical potential are
μc,1,3d = 0.05443(7) [74], 0.0503(100) [75], and 0.0552(7)
[46], while that of the critical density is ρc,1,3d = 0.42164(10)
[46]. The known estimates of the critical exponents are β/ν =
0.477(7) and γ /ν = 2.056(6) [46]. The current estimates of
the critical exponents of the three dimensional Ising model are
ν = 0.629971, γ /ν = 1.96370, and β/ν = 0.518149 [56].

To define the order parameter, we divide the lattice into two
sublattices as shown in Fig. 17. Each site of a certain sublattice
is surrounded by six sites belonging to other sublattices. We
define the order parameter q1,3d as

q1,3d = |ρ0 − ρ1|, (26)
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FIG. 16. Data for different system sizes collapse for (a) κ3,2d and
(b) χ3,2d , when scaled as in Eq. (15) with μc,3,2d = 3.6764(6) and
ν = 1/d (for first order transition). The data are for the 3-NN model
in two dimensions.

where ρi denotes the densities of particles on sublattice i. In
the disordered phase q1,3d is zero, while in the sublattice phase
q1,3d is nonzero.

We determine the density of states for system sizes up to
L = 40. We determine the critical exponents using Eq. (18).
The power-law scaling and the best fits are shown in Fig. 18
for tmax

1,3d , χmax
1,3d , and q1,3d (μc(L)). We obtain ν = 0.624(5),

β/ν = 0.478(9), and γ /ν = 2.050(13). Extrapolating μc(L)
and ηc(L) using Eqs. (19) and (20), we obtain μc,1,3d =
0.0558(6) and ρc,1,3d = 0.4220(2). These estimates are con-
sistent with known estimates (see above) for the critical
parameters. The data for the thermodynamics quantities for
different system sizes collapse onto one curve when scaled as
in Eq. (15) with the numerically obtained critical parameters
(see Fig. 19).

E. 2-NN model in three dimensions

In the 2-NN model in three dimensions, a particle ex-
cludes 18 sites from being occupied by another particle. As

0 1

1 0

1 0

0 1
even-xz plane odd-xz plane

x

z
10 0 1

1 0 1 0

0 1 0 1

1 0 1 0

x

z
1 0 1 0

0 1 0 1

0 1 0 1

1 0 1 0

FIG. 17. For the 1-NN model in three dimensions, the cubic
lattice is divided into two sublattices labeled by 0 and 1.
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FIG. 18. Power-law fits for the scaling of (a) tmax
1,3d , (b) χmax

1,3d , and
(c) 〈q1,3d 〉(μc ) with system size L for the 1-NN model in three
dimensions. The axes are scaled logarithmically.

density is increased, the system undergoes a discontinuous
phase transition from a low density disordered fluid phase to
a high density ordered sublattice phase with bcc structure at
full packing [75]. The estimates for the critical parameters are
μc,2,3d = 0.53(1), with fluid and sublattice phases coexisting
between ρ f = 0.415(8) and ρs = 0.515(8) [75] (to convert
from the notation in Ref. [75] to our notation, βμ = ln σ 3 +
μc,2,3d and σ = √

3).
To define the order parameter, we divide the lattice into

four sublattices as shown in Fig. 20. The order parameter is
defined as

q2,3d =
∣∣∣∣∣

3∑
j=0

ρ j exp

[
j
2π i

4

]∣∣∣∣∣, (27)

where ρ j is the density of particles in sublattice j. When one
of the sublattices is preferentially occupied, q2,3d becomes
nonzero.

We determine the density of states for system sizes up
to L = 44. We follow the same analysis as was done for
the 3-NN model in two dimensions (see Sec. V C). The first
order nature of the transition can be seen from studying pres-
sure. Figure 21 shows the variation of pressure with density,
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dL
-1

/ν

L=16
L=20
L=24
L=30
L=40

0.40
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1.60
(b)

〈q
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ν
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(c)

χ 1
,3

d
L-γ

/ν

(μ-μc,1,3d)L1/ν

L=16
L=20
L=24
L=30
L=40

FIG. 19. Data for the 1-NN model in three dimensions for differ-
ent system sizes collapse onto one curve for (a) t1,3d , (b) 〈q1,3d〉, and
(c) χ1,3d when scaled as in Eq. (15) with exponents ν = 0.624(5),
β/ν = 0.478(9), γ /ν = 2.050(13), and μc,1,3d = 0.0558(6).

computed both in the grand canonical ensemble (P) as well
as the canonical ensemble (P̃). P̃ is nonmonotonic, while P is
nearly a constant in the coexistence regime. The curve for P is
similar to the usual Maxwell construction for a nonmonotonic
P̃.

From the nonconvexity of the entropy, we estimated the co-
existence densities ρ f (L) and ρs(L) from the end points of the
convex envelope and critical chemical potential μc(L) using

FIG. 20. For the 2-NN model in three dimensions, the cubic lat-
tice is divided into four sublattices labeled by 0 to 3. The diagonally
opposite sites of each cube belong to the same sublattice.
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FIG. 21. Variation of the grand canonical pressure P computed
from Eq. (13) and the canonical pressure P̃ computed from Eq. (14),
with density for the 2-NN model in three dimensions. The data are
for the two largest system sizes studied.

Eq. (25). The critical parameters thus obtained are tabulated
in Table IV.

We extrapolate the critical parameters to infinite system
size using Eqs. (19) and (20) with ν = 1/3. The extrapolation
for μc(L) is shown in Fig. 22. We obtain μc,2,3d = 0.5326(4)
from the nonconvex analysis and μc,2,3d = 0.5326(3) from
the analysis of susceptibility. Similarly, we obtain the coex-
istence densities in the thermodynamic limit to be ρ f ,2,3d =
0.4136(1) and ρs,2,3d = 0.5197(2). We also obtain the critical
pressure to be Pc,2,3d = 0.2542(1). These values should be
compared with earlier estimates of μc,2,3d = 0.53(1), ρ f =
0.415(8), and ρs = 0.515(8) [75]. There is no earlier estimate
of critical pressure.

Finally, we show that the data for susceptibility and com-
pressibility for different system sizes collapse onto one curve
when scaled as in Eq. (15) with the numerically obtained crit-
ical parameters and the exponents for a first order transition
(see Fig. 23). We note that the data collapse for susceptibility
has finite size corrections.

F. 3-NN model in three dimensions

In the 3-NN model in three dimensions, a particle excludes
26 sites from being occupied by another particle. The model
is equivalent to the model of 2×2×2 hard cubes. The rich
phase diagram of this model has been obtained recently based
on extensive grand canonical Monte Carlo simulations with a

TABLE IV. Critical parameters obtained from nonconvexity of
entropy for the 2-NN model in three dimensions. The data are ex-
trapolated to infinite system size using linear regression with L−3.

L ρ f ρs μc,2,2d

20 0.41203(5) 0.5238(1) 0.53065(2)
24 0.41243(3) 0.5228(1) 0.53150(2)
28 0.41273(2) 0.5222(1) 0.53188(3)
32 0.41306(3) 0.5212(1) 0.53211(2)
36 0.41312(3) 0.52068(6) 0.53232(2)
40 0.41338(2) 0.52050(6) 0.53237(1)
44 0.41350(3) 0.5203(1) 0.53246(2)
∞ 0.4136(1) 0.5197(2) 0.5326(4)

0.526
0.527
0.528
0.529
0.530
0.531
0.532
0.533

  2×10-5   4×10-5   6×10-5   8×10-5

μ c
,2

,3
d

L-3

from NC
0.5326-16.01 L-3

from χmax

0.5326-44.97 L-3

FIG. 22. Extrapolation of critical chemical potential μc,2,3d (L) to
infinite system size for the 2-NN model in three dimensions.

transfer matrix based strip update algorithm [24]. The system
undergoes three entropy driven phase transitions with increas-
ing density: first from a disordered to a layered phase, second
from the layered to a sublattice phase, and third from the
sublattice to a columnar phase. Using finite-size scaling, it
was shown that the disordered-layered phase transition is con-
tinuous, while the layered-sublattice and sublattice-columnar
transitions are discontinuous [24].

To study the phase transitions, we define three order pa-
rameters q1

3,3d , q2
3,3d , and q3

3,3d . We also define the density field
η(x, y, z) to be 1 if the site (x, y, z) is occupied by a particle
and 0 otherwise. The Fourier transform of the density field
η̃(kx, ky, kz ) may be written as

η̃(kx, ky, kz ) = 8

L3

∑
x,y,z

η(x, y, z)ei(kxx+kyy+kzz). (28)
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FIG. 23. Data for different system sizes collapse for (a) κ2,3d and
(b) χ2,3d , when scaled as in Eq. (15) with μc,2,3d = 0.5326(4) and
ν = 1/d (for first order transition). The data are for the 2-NN model
in three dimensions.
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FIG. 24. For the 3-NN model in three dimensions, the cubic
lattice is divided into eight sublattices labeled by 0 to 7.

The vector order parameter L for the layered phase may be
written as [24]

L = (Lx, Ly, Lz ), (29)

where Lx = η̃(π, 0, 0), Ly = η̃(0, π, 0), and Lz = η̃(0, 0, π ).
Nonzero Lx, Ly, or Lz implies that there is a translational order
of period two in the x, y, or z directions, respectively. The
order parameters are then defined as

q1
3,3d =

√
L2

x + L2
y + L2

z , (30)

q2
3,3d =

√
|η̃(π, π, 0)|2 + |η̃(0, π, π )|2 + |η̃(π, 0, π )|2, (31)

q3
3,3d = |η̃(π, π, π )|. (32)

For a translationally invariant system, q1
3,3d , q2

3,3d , and q3
3,3d

are all zero. q1
3,3d is nonzero if there is a translational order in

at least one of the three directions. q2
3,3d is nonzero if there

is translational order in at least two of the three directions,
while q3

3,3d is nonzero if there is translational order in all three
directions. We divide the whole lattice into eight sublattices
as shown in Fig. 24 and calculate the occupation densities
of each type of sublattice. The order parameters defined in
Eqs. (30)–(32) can be expressed in terms of eight sublattice
densities.

We find that it becomes difficult to flatten the histogram for
this model, especially for larger system sizes. For this reason,
for L = 50, we stop after 17 iterations. The variation of the
three order parameters q1

3,3d , q2
3,3d , and q3

3,3d with ρ is shown
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FIG. 25. Comparison of the order parameters q1
3,3d , q2

3,3d , and
q3

3,3d obtained from the flat histogram algorithm (lines) with those
obtained from grand canonical Monte Carlo simulations [24] (data
points). The data are for the 3-NN model in three dimensions.

in Fig. 25 for system size L = 50. The results are compared
with results obtained from fixed chemical potential grand
canonical simulations in Ref. [24]. The data match very well
for densities less than 0.92. Beyond this density, all three order
parameters show some discrepancy. In particular, we find that,
in the flat histogram simulations, we obtain a layered phase
at high densities, while it should be columnar. The reason
for this is that it is difficult to equilibrate the system at high
densities. For example, in the grand canonical simulation, the
equilibration time is order 107 Monte Carlo steps [24]. In
the flat histogram algorithm, this is roughly the total time
spent in an iteration, hence the difficulty with equilibration.
However, we point out that the flat histogram algorithm is able
to identify three phase transitions.

VI. SUMMARY AND CONCLUSIONS

In this paper, we implemented a flat histogram algo-
rithm for hard-core lattice gases combining an efficient grand
canonical transfer matrix based strip algorithm with the flat
histogram Wang-Landau algorithm. We showed its efficacy
by reproducing known results for the k-NN model for k =
1, 2, 3 on the square and cubic lattices. These models cov-
ered a large number of scenarios: continuous phase transition,
first order phase transitions, exponentially diverging entropy
at full packing, and multiple phase transitions. Though the
implementation is specific to these models, it can be easily
generalized to hard-core lattice models of other shapes.

The implementation involves cluster moves that are rejec-
tion free. The current density of states are incorporated into
the probabilities of choosing new configurations. This results
in the low entropy state being accessed efficiently. In contrast,
if a similar cluster move is applied but without biasing with
the current density of states, then the algorithm fails to flatten
the histogram, leading to significant errors. Thus the bias
induced by including the density of states in the probability
is crucial. Also, the implementation with the local single site
evaporation-deposition moves fails to give results for larger
k or larger L, emphasizing the necessity of cluster moves.
In addition, for the system sizes and values of k for which
all three algorithms give results, we showed that the error is
minimum and the convergence is fastest for the strip update
algorithm (SCWL).

We were able to estimate critical exponents of all continu-
ous transitions with reasonable accuracy using SCWL. Also,
for systems with large degeneracy in the ground state, SCWL
is very efficient as shown for the 2-NN model (Sec. V B). For
the first order transitions in the 3-NN model in two dimensions
(Sec. V C) and the 2-NN model in three dimensions (Sec. V E)
we could obtain improved estimates for the critical chemical
potential and coexistence densities. More recently, the SCWL
algorithm has been used to obtain the detailed phase diagram
of the lattice gas with third nearest neighbor exclusion on a
triangular lattice [76].

While the flat histogram implementation was able to get
accurate results for all the models studied, it may not be
sufficient to obtain accurate results at high densities. For the
model of hard cubes in three dimensions, which undergoes
three phase transitions, the flat histogram appears to indicate
a layered phase at densities close to full packing. However,
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the actual phase, obtained from fixed fugacity grand canonical
simulations, has columnar nature. In the fixed fugacity simu-
lations, at these densities, it takes an order of 107 Monte Carlo
steps to equilibrate the system. In the flat histogram imple-
mentation, during the random walk in configuration space, the
system spends less time at a particular density. This is prob-
ably the reason for getting the phase wrong at high density
for cubes. However, the flat histogram result does indicate a
phase transition at the correct densities and one may have to
supplement the result with fixed fugacity simulations to obtain
more details.

We showed that the entropy is nonconvex in the coexis-
tence regime. The construction of the convex envelope gives
excellent estimates for critical chemical potential as well as
the coexistence densities for the 3-NN model in two dimen-
sions and the 2-NN model in three dimensions.

A promising area for future study is binary gases. Here,
exploring multidimensional phase space using fixed fugacity
simulations is very time consuming. Flat histogram methods
have a significant advantage in being able to access the full
phase space in one sweep of the configuration space. The
simplest model to study will be the mixture of 1-NN and
0-NN particles which shows a nontrivial phase diagram with a
tricritical point [77–83]. Estimating the critical parameters for
the model from the flat histogram method would be a starting
point. It would also be interesting to implement the SCWL
algorithm for spin systems with local interactions. Unlike the
hard-core lattice gas system, this is a thermal system where
the same methodology could be used in evaluating the density
of states.

There are variants of the flat histogram method, for exam-
ple, WL1/t, tomographic sampling, adaptive windows, etc.
The implementation presented in this paper, which depends
only on how the evaporation and deposition are implemented,
will work for these variants also. Comparing the efficiency of
the strip update algorithm for these flat histogram protocols
would be interesting to study.
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APPENDIX: DERIVATION OF Co(�, n) AND Cp(�, n)

In this Appendix, we outline the derivation of Co(�, n) and
Cp(�, n), the number of ways of filling a one dimensional lat-
tice of � sites with n particles with nearest neighbor exclusion
with open and periodic boundary condition, respectively. Con-
sider first Co(�, n). The set of configurations can be broken
into configurations where the last site is empty [denote these
by Eo(�, n)] and those configurations where the last site is
filled. The latter corresponds to configurations where the last
but one site is empty. Thus

Co(�, n) = Eo(�, n) + Eo(� − 1, n − 1). (A1)

The enumeration of Eo(�, n) is equivalent to the arrangement
of n dimers and � − 2n holes, and hence

Eo(�, n) = (� − n)!

(� − 2n)!n!
. (A2)

Using Eqs. (A1) and (A2), we immediately obtain

Co(�, n) = (� − n + 1)!

(� − 2n + 1)!n!
. (A3)

Now consider Cp(�, n) for a periodic ring. Choose a site at
random. This site could be either filled or empty, both cases
reducing to the problem of a segment with open boundary
conditions:

Cp(�, n) = Co(� − 1, n) + Co(� − 3, n − 1). (A4)

Using Eqs. (A3) and (A4), we obtain

Cp(�, n) = �(� − n − 1)!

(� − 2n)!n!
. (A5)
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