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Abstract 
 

Cytokinesis in many eukaryotes requires the formation and 
contraction of an actomyosin ring. This process has been well 
studied in Schizosaccharomyces pombe, where three myosins are 
involved: type II myosins Myo2 and Myp2 and type V myosin Myo51. 
Previous work defined precise role for each of these myosins in 
cytokinesis, recognizing Myo2 as mainly involved in actomyosin ring 
assembly, supported by Myo51, and Myp2 largely contributing to 
actomyosin ring contraction.  
 In this work, by using the mis-sense mutant myo2-E1 and 
deletion mutants of myp2 and myo51, we investigated the 
contribution of each myosin to actomyosin ring formation and 
contraction. Our results proved that Myo2 is the major myosin 
contributing to each cytokinetic phase whereas Myo51, and more 
importantly Mpy2, were play secondary roles in actomyosin ring 
formation and contraction, respectively.  
 We also provided insight into the function and structure of type 
II myosin Myo2 through the characterization of several myosin's 
mutations. Initially we identified the molecular basis of the cytokinetic 
defects present in myo2-E1 through the characterization of myo2-E1-
Sup2, a suppressor capable to restore actomyosin ring contraction in 
myo2-E1. Next, we studied two additional mutations of myosin II, 
myo2-S1 and myo2-S2, both able to suppress cytokinetic defects in 
the temperature sensitive mutant of profilin cdc3-124. 
 Finally, we optimized genetic code expansion in the lab in 
order to understand how multiple components act together at the cell 
division site, spatially and temporally, to ensure the proper 
contraction of the actomyosin ring at the end of cell cycle. In this 
work we applied this technique to initially map the interaction region 
between tropomyosin and actin at the level of amino acids.  

Additionally, we used this technology as an alternative method 
to fluorescently label a protein of interest without influencing its 
function. 
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1 - INTRODUCTION 
 

1.1 - Cell division and cytokinesis 
 

All living organisms are made up of cells that need to grow 

and undergo cell division, a process by which one cell is divided into 

two. There are two types of cell division, depending of the type of cell 

involved: mitosis characterises the division of the mother cell into two 

genetically identical daughter cells, whereas meiosis generates two 

haploid daughter cells, containing half of the mother cell genetic 

materials. Cell division consists of a series of individual events, which 

need to be tightly controlled and regulated in order to ensure the 

correct functioning of the process. Cell division doesn't follow the 

exact same mechanisms in every organism, but different species 

adopt separate processes to achieve cell division. Nevertheless, 

some fundamental similarities can be found, as some processes are 

shared across the different organisms [1-6].  

When considering mitotic division, the first important event 

consists of the replication of the mother cell DNA, which will be 

successively segregate in order to be equally distributed to the two 

daughter cells. Cytokinesis is the ultimate event that completes cell 

division, this allows the physical separation of the two daughter cells 

[1-5]. In many eukaryotic cells cytokinesis involves the formation of a 

divisional contractile apparatus, which needs to be correctly 

positioned as it is crucial for the viability of the cell. The time of action 

of this contractile apparatus needs to be coordinated with the 

deposition of new membrane or cell wall material, depending on the 

considered organism, to drive the physical separation of the two 

daughter cells. Failure during cytokinesis can lead to severe 

problems, such as the formation of tetraploid cells that can lead to 

tumorigenesis in cells [7-11]. Therefore, it is crucial to fully 

understand the mechanisms that regulate cytokinesis.  
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The study of proteins and mechanisms that regulate 

cytokinesis have been explored through the use of several model 

organisms, as some of the components driving cell division are 

conserved from fungi to animals. Nevertheless, the specific proteins 

forming the contractile apparatus and the mechanisms of action 

present some differences among the different domains of life [3, 5]. 

 

 

1.2 - Cytokinesis across Kingdoms 
 

In bacteria cell division is dependent on the localization, to the 

middle of the cell, of the bacterial tubulin homolog FtsZ, which 

assemble into 120-200 nm long protofilaments ring structure called Z 

ring [12]. The Z ring interacts with the membrane proteins, FtsA and 

ZipA, to be properly anchored to the cell membrane. The proper 

recruitment of the Z ring at the division site is crucial as it drives the 

recruitment of over a dozen of other proteins organized in the so 

called “divisome”, necessary for the correct division of the cell. In 

fact, the divisome enable the coordination between the constriction of 

the Z ring and the assembly of the division septum, to ensure correct 

cytokinesis [5, 12-14]. How this Z ring is able to constrict remains 

poorly understood, as molecular motors have not been identified, but 

some mechanism are proposed to drive constriction [15]. One 

possibility relies on FtsZ protein itself, as in vitro reconstituted Z ring 

were able to constricted liposome without the intervention of any 

other proteins. The force driving contraction seems to be generated 

by conformational changes within the assembled FtsZ protofilaments 

that, when bound to GDP, are found in a bent conformation that can 

generate enough force to promote the constriction process [16, 17]. 

Computational modelling predicts another model, where the force to 

drive contraction can be generated by the condensation of FtsZ 

protofilaments, therefore the transition to a high-density state of FtsZ 

during cell division can induce the contraction of the Z ring [18]. 
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 Another hypothesis relies on the cell wall synthesis, which can 

generate constriction force by its inward growth. In this scenario the 

cell wall appears to grow in a position of the cell defined by the FtsZ 

ring, which seems to be a scaffold for the definition of septum 

location rather than the principle force generator for cell division [19, 

20]. The exact mechanism of how contraction is achieved in bacteria 

is still under investigation and it has been proposed that a 

combination of all this processes working together may drive 

contraction [15].  

In eukaryotes cell division relies on the formation of a 

contractile ring, shared in amoebas, fungi and animal cells, where 

this contractile apparatus for cytokinesis depends on actin and type II 

myosin, which form the so called actomyosin ring (figure 1.1A) [1, 3]. 

The process of cytokinesis takes place in four steps: initially the cell 

needs to define the site where the cleavage furrow will be positioned, 

based on the position of the nucleus. Once the cleavage plane is set 

the contractile ring can be assembled, usually formed by motor 

proteins, actin filaments and other proteins that guarantee the 

anchoring of the ring to the plasma membrane. As soon as the ring is 

properly assembled in the correct position, it undergoes contraction 

coupled with membrane reorganization in order to physically 

separate the two daughter cells [3]. Actin and myosin II are only 

some component of the contractile ring, as many other proteins take 

part in the formation of the ring, such as actin nucleators, actin 

severing proteins, actin capping proteins, actin crosslinkers, 

membrane anchoring proteins and various phosphatases and 

kinases that regulate the function of all of these proteins.  

The formation of a contractile ring to drive cell division is not 

present in all eukaryotes, because it evolved more recently than the 

membrane fusion machinery. Plants, for example, even if part of the 

eukaryotic domain of life, lack the elements to assemble a contractile 

ring and cytokinesis is driven by membrane fusion, which is 
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A 

  

Figure 1.1: Cytokinesis across kingdoms. 
 

A) Different strategies for cytokinesis present in plants, fission 
yeast and animals cells (adapted from [3]). 
 

 

responsible for the division of the two daughter cells (figure 1.1A) [3]. 

Even if plants contain some fundamental proteins for cytokinesis, 

such as tubulin and actin, they lack type II myosins [21], therefore 

cell division works in a different manner. The specification of the 

division plane is still defined by the position of the nucleus, followed 

by the formation of a phragmoplast, a structure made of microtubules 

that works as a track to direct the trafficking of vesicles from the 

Golgi to the middle of the cell [22, 23]. The accumulation and fusion 

of these vesicles results in the growth of new cell wall that, when 

merging with the plasma membrane, will divide the mother cell into 

two daughter cells.   

Additional similarities and differences of cytokinesis across 

different species are illustrated in table 1.1 [2-5, 24].  
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Table 1.1: Mechanisms of cytokinesis across species 
  

 Bacteria Plants Fungi Mammals 

Specification of cell division plane 

Division site history 
(division planes of 
consecutive cell division 
cycles are perpendicular 
to each other) 

 

The position of 
the nucleus 
determines the 
position of a 
preprophase 
band of 
microtubules 

Division site 
history (S. 
cerevisiae) or 
the position of 
the nucleus ( 
S. pombe) 
determine the 
localization of 
cytokinetic 
apparatus 
 
Close mitosis 
(division of 
chromosomes 
within an 
intact cell 
nucleus) 
 

The spindle 
and astral 
microtubules 
determine the 
position of 
the 
contractile 
ring 
 
 
 
Open mitosis 
(the nuclear 
envelope 
breaks down) 

Assembly of a contractile ring 

Formation of Z-ring, 
made by protofilaments 
of FtsZ (tubulin 
homolog) 

Absent 
formation of 
contractile ring 
 

Formation of a contractile 
actomyosin ring 
 

Separation of daughter cells 

Combination of 
protofilamnents 
contraction and cell wall 
synthesis 

Membrane 
fusion, driven 
by 
phragmoplast: 
microtubules 
that transport 
vescicles to 
form new 
plasma 
membrane 

Ring 
contraction 
and new cell 
wall synthesis 
(septum) 

Ring 
contraction, 
midbody 
formation and 
abscission 
with 
membrane 
fusion 

 

 

 It is also possible to find in certain tissue an incomplete 

cytokinesis. This process occurs mainly in germline cells with the 

arrest of the cleavage furrows that originates stable intercellular 

bridges, leading to cells that are interconnected [25]. These stable 

intercellular bridges can be found in germline cells in mammalian [26, 

27], and insects [28, 29]. The formation of intercellular bridges in 

gametes is important to form clusters of germ cells interconnected, 
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generated by an arrest of actomyosin ring contraction and inhibition 

of abscission that allow the formation of these stable intercellular 

bridges [25]. 

 Moreover some examples of incomplete cytokinesis in somatic 

cells have been found in plants [30], fungi and neurons in mammals 

[28]. Even if the precise function of the somatic intercellular bridges 

remain unknown, this process might facilitate the synchronization of 

cell migration and differentiation due to intercellular exchange of 

cytoplasm [25, 28]. 

 
 

1.3 - Fission yeast as a model organism 
 

Schizosaccharomyces pombe (fission yeast) is a common 

model organism especially for studies of the cell cycle [31]. The 

whole genome of S. pombe has been fully sequenced and 67% of 

the genes are conserved in humans [31, 32], therefore lessons 

learned about cytokinesis on this model organism should apply to 

animals as well [3]. Fission yeast is an attractive model organism to 

study cytokinesis. It can be genetically manipulated and the 

production of mutant strains, either with deletion or conditional 

mutations of many genes, is relatively easy to obtain due to the fact 

that fission yeast can be either haploid or diploid [33]. Usually fission 

yeast lives in a haploid state, which facilitate the isolation of mutant 

cells and the analysis of the phenotype deriving from a certain 

mutation. Moreover, the possibility to have diploid strain allows the 

study of genes otherwise deleterious for a haploid cell. Molecular 

genetics studies are also convenient in fission yeast due to an active 

homologous recombination mechanism, which facilitate either 

deletion, addition or tagging of the interested genes. Otherwise it is 

possible to insert additional plasmids in S. pombe, to reversibly 

introduce genetic material in cell. This model organism has a high 

growth rate, which allows to speed up the generation of new strains 

and, as a consequence, the rate of possible experiments. Moreover, 
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since it is a unicellular organism, it is relatively easy to work with a 

large number of cells, facilitating the collection of large amounts of 

data. Fission yeast is also ideal for fluorescence microscopy-based 

analysis, as many proteins can be easily fluorescently labelled and, 

due to its size, shape and the fact that these cells are non-motile it is 

relatively simple to image these cells.  

Initially S. pombe was used as a model organism to study the 

mechanisms that regulate the cell cycle, followed by intensive works 

on cytokinesis as many basic components are conserved from yeast 

to humans [2, 3]. Nevertheless, some differences are present as 

there is one billions years divergence since their common ancestor, 

such as the presence of a cell wall in fission yeast cells, which is 

absent in animal cells [34] . This rigid structure is essential for the 

viability of S. pombe, because it regulates both the internal turgor 

pressure, preventing the bursting of the cells, and cytokinesis. In fact, 

the constriction of the actomyosin ring depends of the cell wall 

synthesis in the form of an invaginating septum that, if inhibited, 

leads to the formation of multinucleated cells [35]. Another difference 

is that, as for most fungi, fission yeast undergoes a close mitosis with 

the formation of the mitotic spindle inside the nucleus, as the nuclear 

envelope doesn’t break down [33]. 

Fission yeast is a rod-shaped unicellular eukaryote and cells 

look cylindrical in shape with hemispherical ends. It grows exclusively 

through the cell tips as its diameter (~ 3.5 µm) remains constant 

during the whole cell cycle, making this characteristic useful for the 

determination of the “age” of the cell, which can be approximately 

determined by measuring the length of the cell. In fact, fission yeast 

divides by medial fission when the cell reach a length of ~ 15 µm, 

resulting in the generation of two daughter cells of equal size (~ 7 

µm). After cell division, the new born cells continue to growth at the 

cell tip where division just happened (referred as old end) and, only 

when the cell reaches G2 phases, growth starts again to take place 

at both end tips, stopping only at mitosis. Fission yeast can also have 

a sexual cycle, which facilitate the generation of mutant strains with 
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combined characteristics. In fact, two haploid heterothallic strains of 

opposite mating type (h+ and h-) can mate in response to nutrient 

starvation and low nitrogen, with the generation of four spores with 

recombined genome [33]. 

Fission yeast has become one of the most used model 

organism to investigate the mechanisms of cytokinesis, as it had 

produced one of the best inventory of cytokinetic genes [3, 36]. 

 

 

1.4 - Fission yeast cytokinesis 
 

Cytokinesis in fission yeast depends on the formation of an 

actomyosin ring and on proper positioning in the middle of the cell; 

it's contraction results in the formation of an invaginating septum that 

leads to the division of the cell [3, 31, 37-39]. The actomyosin ring is 

a transient structure, because it needs to be built at the beginning of 

every cell cycle and disassembled at the end of cell division [1]. 

Therefore, the life cycle of this contractile ring can be divided in 

phases, starting with the specification of the division site, followed by 

actomyosin ring assembly, maturation, contraction and disassembly 

(figure 1.2A).  

 

 

1.4.1 - Specification of the division site 
 

The actomyosin ring is formed from cortical precursor nodes, 

which are discrete structural units containing different proteins and 

condense into a cytokinetic ring. The position of this puncta 

structures, in the middle of the cell, will specify the location where the 

actomyosin ring will form [40]. The precursor nodes are divided into 

two populations, type 1 and type 2 nodes [1, 40]. Type 1 nodes 

appear early in interphase and are composed by the anillin-related 

protein Mid1 and kinases Cdr1 and Cdr2. These proteins form a  
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Figure 1.2: Time course of cytokinesis in fission yeast. 
 

A) Diagram of the life cycle of S. pombe actomyosin ring, 
composed by ring assembly, maturation, contraction and 
disassembly (adapted from [3]).  
 

  

broad band around the nucleus and rapidly recruit type 2 nodes 

composed by Blt1 (node protein), Gef2 (GTP exchange factor) and 

kinesin Klp8 leading to the successively recruitment of several 

proteins at the equator of the cell that will condense into a contractile 

ring structure [40]. The assembly of actomyosin ring from these 

precursor nodes is regulated by cell cycle signalling coupled with cell 

growth, which assure the division of fission yeast when cells reach a 

certain length (~14 µm) [41]. Mitotic entry is triggered by the cyclin-

dependent kinase Cdk1, upregulated by kinases Wee1 that 

phosphorylates Cdk1 during G2 to prevent premature mitosis [42, 
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43]. The balance between Wee1 and Cdc25, the counteracting 

phosphatases that promote Cdk1 activity, determine the mitotic entry. 

While the concentration of Cdc25 increases during G2 [44], Wee1 

concentration is constant, therefore there should be an alternative 

mechanism to regulate its activity. The two SAD-kinases, Cdr1 and 

Cdr2 present in type 1 nodes, had been identify as Wee1 inhibitors in  

a cell size-dependent manner [45], which in turn are regulated by the 

tyrosine-phosphorylation-regulated kinase Pom1. The gradient 

distribution of Pom1 that emanates from the cell tips allows the 

inhibition of Cdr1 and Cdr2 only at the cell tips, whereas the absence 

of Pom1 in the middle of the cell allows Cdr1 and Cdr2 to be active 

[46, 47]. Wee1 had been found to localize in nodes in transient 

bursts, therefore it will be inhibited at the middle of the cell, where 

Cdr1 and Cdr2 are active [45]. Both kinases participate in the 

inhibition of Wee1, in separate but coordinated manner. Cdr2 

phosphorylates the N-terminal of Wee1, potentially trapping Wee1 to 

the nodes, where successively Cdr1 can phosphorylates the C-

terminal domain of Wee1, which results in the inhibition of this protein 

[48-50]. This size-dependent regulation, driven by Pom1, ensure the 

formation of cytokinetic nodes only in the middle of the cell.  

As discussed earlier, other than kinases Cdr1 and Cdr2 

another important protein is present in the nodes, the anillin-related 

protein Mid1, which is involved in division site specification for the 

correct positioning of the actomyosin ring, and as a scaffold for the 

recruitment of the other ring proteins [51]. While one population of 

Mid1 is directly present in the nodes together with kinases Cdr1 and 

Cdr2, another population localizes to the nucleus. At G2-M transition, 

Plo1 (polo kinase) phosphorylation mediates the release of Mid1, 

which then begins to move from the nucleus to the precursor nodes 

at the cell equator [52, 53]. Its localization, inhibited at the cell tips, is 

related to the position of the nucleus held in the middle of the cell by 

the microtubules network. In fact, centrifugation experiments that 

displaced the nucleus, showed the misposition of actomyosin ring 

according to the new localization of the nucleus, which therefore acts 
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as a marker for the positioning of the contractile apparatus [54]. Mid1 

is therefore important for the specification of the division site and 

contractile ring formation, nevertheless it had been shown that rings 

can form in the absence of Mid1 with a delayed kinetics, through the 

activation of the SIN pathway [55].  

Therefore there is also a Mid1-independent mechanism to 

prevent improper septum formation at the tip of the cell, which 

involved a tip complex formed by Tea1, Tea4 and Pom1 [56]. Pom1 

kinase seems to directly phosphorylate F-BAR protein Cdc15, 

preventing the formation of the septum at the cell tips [57]. Multiple 

signals contribute for the specification of the division site in fission 

yeast, such as positive Mid1-dependend signal, influenced by the 

position of the nucleus, coupled with negative clues coming from the 

tip complex.  

 

 

1.4.2 - Actomyosin ring assembly 
 

Interphase nodes gradually mature into cytokinetic nodes after the 

arrival of Mid1. This protein has a double function, as it can bind to 

the plasma membrane through its C-terminus domain, whereas the 

N-terminus serves as a scaffold for the recruitment of several key 

proteins that ultimately will assemble the cytokinetic ring [58, 59]. At 

the beginning Mid1 recruits Cdc4 (myosin-II essential light chain) and 

IQ domain-containing GTPase activating protein (IQGAP) Rng2, 

which are involved in the recruitment of Myo2 (myosin-II heavy chain) 

and Rlc1 (myosin-II regulatory light chain). Mid1 is also necessary to 

recruit the F-BAR protein Cdc15, which is an FCH (Fer and CIP4 

Homology) and BAR (Bin1/ Amphiphysin/Rvs domain) protein, before 

the arrival of formin Cdc12 to the nodes, necessary to complete node 

maturation phase. In fact, the recruitment of Cdc12 depends on 

Mid1-Rng2 complex and Cdc15 [58, 60]. At this stage the nodes that 

are formed around the nucleus contain the key proteins needed to  
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Figure 1.3: Mechanisms of actomyosin ring assembly in fission 
yeast. 
 

A) Diagram of the model for cytokinesis node assembly and 
architecture, illustrating the recruitment of proteins in the 
nodes (adapted from [58]). 

 

 

assemble the contractile ring. Node condensation into a ring is 

believed to occur through the search, capture, pull, and release 

(SCPR) mechanism [38, 39, 61]. This model assumes that actin 

filaments are nucleated from the nodes in random directions by 

formin Cdc12, which nucleates actin filaments from free actin 

monomers that are successively elongated with the cooperation of 

Cdc3 (profilin) and Cdc8 (tropomyosin), which help to stabilise the 

filaments and regulate the rate of elongation. If actin filaments are 

relatively close to another node, Myo2 within this second node is able 

to capture these filaments and to walk along them towards the 

barbed end of the first actin filament. This process will allows for the 

nodes to move towards each other, therefore the repetition of this 

event all over the cell will lead to the formation of an actomyosin ring 

[62]. This model is supported by the three dimensional structure of 

the nodes proteins, which predict Myo2 tails to be anchored to the 

core of the nodes whereas Myo2 heads are protruding toward the 

cytoplasm, where they can interact with actin filaments originating 

from nearby nodes (figure 1.3A) [58, 63, 64]. Another important 

protein in the SCPR model is ADF/cofilin Adf1, a protein that 

stochastically severs actin filaments, allowing for the nucleation of 

new filaments. This is another crucial component of the ring 
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formation, without this protein the nodes will aggregate into clumps 

rather than forming a uniform ring [1, 65, 66]. In fact, the activity of 

Adf1, which periodically severs these connections, allows new 

connections to be originate, to ensure the formation of a uniform ring 

rather than a few node aggregates/clumps. These events occur in 

each node, resulting in the formation of a ring where Myo2 is the 

major motor to drive actomyosin ring formation, as it is the first 

myosin recruited by Mid1 in the precursor nodes. Additionally, type-V 

myosin Myo51 is also involved in ring assembly, helping to compact 

actin filaments into the ring [67]. In addition to the de-novo formation 

of actin filament from the nodes, it had been found a population of 

filaments, nucleated at non-medial location in the cell by formin, 

which can be transported and recruited in the contractile ring by 

myosin II and myosin V activity. This additional mechanism seems to 

contribute in the formation of a compact ring [68]. All these proteins 

that join the nodes for the formation of the actomyosin ring are 

essential genes in fission yeast, as the deletion of any of them has 

deleterious effect in the cells [69].    

 

 

1.4.3 - Actomyosin ring maturation 
 

Between the formation of the actomyosin ring and its 

contraction, which starts at the end of anaphase, the ring undergoes 

a maturation phase [60]. During this time the actomyosin ring does 

not change in shape or size but there is turnover of many proteins 

that are exchanged with the cytoplasmic pool [3]. In the maturation 

phase the contractile ring acquires other proteins such as Myp2, an 

unconventional myosin II that will help the conventional type II 

myosin Myo2 during the contraction phase of the actomyosin ring, 

and the F-BAR domain-containing protein Imp2 [60]. Structural 

integrity of the ring is also provided by the recruitment of paxillin-

related protein Pxl1 and Fic1 (C2 domain containing protein), which 
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add stability to the ring by linking the proteins to the SH3 domain of 

both F-BAR proteins Cdc15 and Imp2 [70, 71].  

During the maturation phases proteins are added to the ring, 

but some of them are also lost, like Mid1. Without this protein, the 

contractile ring is anchored at the plasma membrane through Cdc15, 

which takes over Mid1 role [72]. After the fully formation of the 

contractile ring, at the division site there is the recruitment of septins 

by Mid2, another anillin-like protein. Septins are filament-formin 

proteins that generate a double ring close to the contractile ring, 

remaining until contraction takes place as they are involved in cell-

cell separation at late stages of cytokinesis [73-75].  

 

 

1.4.4 - Actomyosin ring contraction 
 

The fully formed ring is maintained in the middle of the cell 

until completion of anaphase, then the contraction of the actomyosin 

ring can take place driven by the activity of myosin II motor proteins 

that drive the sliding of actin filaments [3, 76, 77]. The initiation of 

contraction is coordinated by the septation initiation network (SIN), 

necessary as fission yeast needs to build new cell wall between the 

daughter cells (refer as septation) in order to complete cytokinesis.  

 The SIN is a signalling pathway mediated by a cascade of 

protein kinase, which activates actomyosin ring contraction and 

septum formation [78]. The formation of the septum occurs 

simultaneously with the contraction of the actomyosin ring. Initially a 

primary septum is formed, followed by the synthesis of a secondary 

septum that will constitute the new cell wall after the digestion of the 

primary septum [75, 79]. 

All the SIN proteins are associated with the SPB (spindle pole 

body, S. pombe analogue of the kinetochore) and are assembled on 

a scaffold formed of Cdc11 and Sid4, which subsequently recruits 



15 
 

other components of this pathway, such as GTPase Spg1 and Cdc16 

[80-82].  

The SIN signalling pathway is initiated and regulated by Plo1 

kinase, that determines the activation of the Spg1, leading to the 

recruitment of other kinase proteins, like Cdc7 [82]. Recently it has 

been demonstrated that the formation of the septum start during 

anaphase at a slow rate, progressively increasing during telophase 

[82]. 

The SIN is an important signalling pathway in the cell, in fact if 

the septum formation is blocked the ring contraction is inhibited as 

well [35] resulting in failure of cytokinesis. On the other side, the 

over-induction of SIN activity results in an uncoupling of cytokinesis 

from the normal cell cycle, leading to the assembly and contraction of 

the ring [83]. Therefore, proper cytokinesis in fission yeast results by 

the presence of both ring contraction and septation.  

The division of the two daughter cells is also regulated by the 

endosomal sorting complex required for transport (ESCRT) complex, 

which regulates cell separation and membrane trafficking in S. 
pombe [84]. This complex assemble in a step-wise manner, starting 

from ESCRT-I (Vps23 / 28 and 37 in S. pombe) which binds to the 

target membrane and recuits successively ESCRT-II (Vps22 / 25 and 

36 in S. pombe), followed by ESCRT-III (Vps2 / 24 / 32 and 20 in S. 
pombe) [84]. These last proteins assemble into filamentous 

polymers, successively remodelled by the ATPase Vps4 in order to 

allow the remodelling and  scission of the membrane [84-86]. 

Nevertheless, even if the ESCRT complex is involved in fission yeast 

cell division, it seems not to be essential for this process, while 

recent studies demonstrated its role in the division of the nuclear 

membrane [86]. The recruitment of the ESCRT complex to the 

nuclear membrane is driven by Lem2, an inner nuclear membrane 

protein [86], necessary for the division of the nuclear envelope. 
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1.4.5 - Actomyosin ring disassembly  
 

Simultaneously with the contraction of the actomyosin ring, the 

ring needs to disassemble by progressively losing actin-filaments and 

actin-binding proteins [3], a process that is still not completely 

understood. Proposed mechanisms for the removal of actin include 

the breakage of the filaments possibly mediated by Adf1, a probable 

candidate due to the fact that it is the principal severing protein in 

fission yeast [87]. Nevertheless this protein seems to have a major 

role during the assembly of actomyosin ring rather than for its 

disassembly [65]. Another candidate is type II myosin that can 

presumably mediated actin filaments buckling and breakage, as 

suggested by in vitro reconstitution experiments [88, 89].  Additional 

mechanisms to disassemble the ring might involve the loss of entire 

filaments, as it had been observed the expulsion of bundles form the 

ring containing both actin and several other proteins [90]. This 

process seems to happen mainly in region of high curvature of the 

ring, suggesting a disassembly mechanism occurring during the later 

stage of ring contraction.  

Therefore, all these proposed processes might be couple 

together to drive actomyosin ring disassembly but further work will be 

necessary to identify the actual mechanism.  

  

 

1.5 - Major components of the actomyosin ring 
 

1.5.1 - Actin structures, nucleators and crosslinkers 
 

Actin has key roles in fission yeast, not only being essential for 

actomyosin ring formation but it has important roles throughout the 

whole life cycles of the cell. In S. pombe a single actin gene, act1, 

can be present in three different structures: in interphase cells actin 

is organized either as actin patches or actin cable, while during cell 
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division there is the formation of the third structure, the actomyosin 

ring [91].  

Actin patches are involved in endocytosis and assists the 

polarized growth of the cell, by accumulating at the cell tips during 

interphase and at the middle of the cell during cytokinesis. During the 

cell cycle the localization of actin patches vary: right after cell division 

localize to the cell tip, marking the old end of the newly formed cell, 

while with the progression of the cell cycle they localize to both cell 

tips. Finally during mitosis they concentrate around the division site 

[92]. Actin nucleation is regulated by the Arp2/3 complex that created 

short and branched filaments network, while the presence of fimbrin 

Fim1 and ADF/cofilin Adf1 in the patches assures the high 

dynamicity of these structures. Fim1 and Adf1 prevent tropomyosin 

binding to actin patches, leading to high motility and turnover [93, 

94].  

Another type of actin structure is constituted by actin cables, 

formed by the association of multiple parallel actin filaments that are 

assembled by formin For3, located at the tip of the cell as part of the 

polarisome recruited by the Tea1-Tea4 tip complex 

[91]. In the cell these structures provide a track for vesicles and 

organelles delivery, mediated by type V myosins, towards the 

expanding cell tips. 

 The third actin structure is represented by the contractile ring, 

the structure responsible for cytokinesis, where several actin 

filaments are nucleated and assemble together for the formation of 

the ring. Several proteins participated in the formation and 

stabilization of actin filaments. 

 

 

1.5.2 - Actin filaments: nucleators, crosslinkers and 
severing proteins 
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Actin filaments are nucleated from cytokinetic nodes at the 

end of G2 phases by formin Cdc12 [95]. This protein works as a 

dimer and contains two actin assembly formin homology (FH) 

domains, FH1 and FH2, which drives actin filaments elongation by 

interacting with profilin Cdc3 in a coordinate manner. Profilin is an 

actin-binding protein necessary to deliver monomeric actin to formin 

[96]. It is proposed that the profilin-actin complex at first interacts with 

FH1 domain, being successively transferred to FH2 domain, which is 

associate with actin-filament barbed end resulting in the elongation of 

the filaments [96, 97].  

Stability of the actin filaments in the ring is assured by actin 

crosslinking proteins, such as α -actinin Ain1 and tropomyosin [94, 

98]. In the actomyosin ring Ain1 appears to be the major actin 

filaments crosslinkers [99], facilitating both ring assembly and 

contraction and, at the same time, allowing tropomyosin association 

by competing with Fim1 in the actin filaments [94]. Another important 

crosslinker proteins in the actin filaments is tropomyosin [100], a α -

helical coiled-coil protein that stabilizes actin filaments by the 

formation of a dimer along the length of the filaments, preventing 

their disassembly and protecting them from severing induced by 

cofilin [101]. In fission yeast it is encoded by cdc8 [102], an essential 

gene as when absent, or inactive, actin filaments are not able to be 

assembled [69]. The binding of Cdc8 to actin filaments has recently 

being shown to be influenced by phosphorylation, as Cdc8 bearing 

this post-translational modification has a reduce affinity for actin 

filaments, resulting in an increased instability of the filaments [103]. 

Moreover, Cdc8 is important in regulating the binding of other 

proteins to actin filaments like myosin motor proteins [104, 105]. 

During actomyosin ring formation it is plausible that myosins have a 

role as actin crosslinking proteins [63, 106], as it has being discover 

a motor-independent activity of Myo2 that can promote actomyosin 

ring assembly, an additional function to the motor-dependent activity 

necessary for ring contraction [107].  
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Severing proteins are necessary for proper assembly and 

maintenance of the actomyosin, which in fission yeast are 

represented by the ADF/cofilin protein Adf1 [87]. This severing 

activity is important for the formation of the actomyosin ring as, 

without a random severing activity of actin filaments, cytokinetic 

nodes will form aggregates instead of forming a proper ring. [38, 39, 

61, 65, 87, 108]. Adf1 is important as well for the maintenance of the 

actomyosin ring during cytokinesis for its function of promoting actin 

turnover within the ring, to maintain proper contractility [66, 108]. 

Adf1 has the ability to bind to actin filaments, causing the bending 

and twisting of these structures that could promote severing of the 

filaments [109-111].  

 

  

1.5.3 - Membrane anchors 
 

The actomyosin ring needs to be properly anchored at the 

plasma membrane throughout the whole cell division, to both 

maintain the proper position in the middle of the cell during its 

formation and to drive plasma membrane invagination during the last 

stage of cytokinesis. We mention the role of Mid1 to position the ring 

during its assembly, thanks to the C-terminal domain of the anillin-

like proteins [112], but other membrane anchoring proteins are 

necessary when Mid1 leaves the ring.  

During actomyosin ring contraction, the F-BAR protein Cdc15 

seems to take over the anchoring role, contributing to the 

maintenance of the ring in late mitosis [72, 113]. Cdc15 has an F-

BAR domain at its N-terminal and a SH3 domain at its C-terminal, 

providing a double function for this protein: the F-BAR domain 

promotes oligomers formation, which can bind to the membrane 

[114], while the SH3 domain is responsible for the interaction with the 

proteins forming the actomyosin ring [113]. This conformation results 

in the stabilization of the ring to the membrane. This process is cell 
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cycle regulated by the state of phosphorylation of Cdc15 [72, 113, 

115, 116]. The interaction of binding partners is possible when Cdc15 

is present in a hypophosphorylated state, which allows this protein to 

be in an open conformation leading to membrane binding and 

interaction with the proteins in the actomyosin ring. On the other site, 

when Cdc15 is being phosphorylated its conformation change to a 

close state, in which the interaction with its binding partners is not 

permitted [115]. This post-translational modifications are cell cycle 

regulated, in fact before ring formation Cdc15 is found in a 

hyperphosphorylated state, while as mitosis progresses this protein 

is found in a hypophosphorylated state. The open state, presents 

before ring contraction, allows Cdc15 to interact with its binding 

partners through the SH3 domains. The dephosphorylation of Cdc15 

is partially dependent on Clp1, a phosphatase belonging to the SIN 

pathway [72, 117] and partially dependent on calcineurin, another 

phosphatase recruited to the actomyosin ring by Pxl1 [118]. 

Therefore this can explained the regulation of Cdc15 

phosphorylation/de-phosphorylation state depending on the 

progression of the cell cycle.  

 Other important components of the actomyosin ring are the 

motor proteins, represented by different myosins that will be explain 

in the following paragraph.  

 

 

1.6 - Myosin motor proteins 
 

In fission yeast 5 different myosin heavy chains are present, 

divided in 3 classes: Myo1 belong to class I, class II included Myo2 

and Myp2 while the last two myosins (Myo51 and Myo52) belong to 

class V (figure 1.4A) [3, 119]. These are evolutionary conserved 

motor proteins that take part in different biological processes inside a 

cell, depending on their structure. Myosins are categorised in these 

different classes according to their overall sequences that, upon  
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Figure 1.4: Myosin’s classification in fission yeast. 
 

A) Diagram representing the different subdomains belonging to 
each class of myosin in S. pombe (adapted from [119]). 
 

  

alignment, presented differences in the N and C-terminal domains, 

acquiring their respective functions and localization inside the cell. 

Overall, myosins can be divided into three regions: motor 

domain, neck region and tail domain [119, 120]. The N-terminal of 

the protein (also known as head) is the motor domain, which allows 

the association of myosin to actin in an ATPase dependent manner. 

Movements of the head, due to conformational changes, depend on 

ATP hydrolysis and result in the generation of force against actin.  

When the N-terminal region of each class of myosins is compared, 

the resulting differences are likely to mark a spectrum of motor 

activities, such as a variation of speed and the ability to take multiple 

steps on actin.  

A 

A 
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The neck region is directly connected to the head, typically 

formed by a variable number of IQ domains where light chains can 

associate in a Ca2+-dependent manner. This association, important 

for the regulation of myosins activities, has two major roles: it 

increases the stiffness of the neck region and it prevents the folding 

of the C-terminal, assuring that the motor activity won’t be inhibited. 

In fission yeast calmodulin is the light chain associated to class I and 

V of myosins, whereas class II myosin associate with one essential 

and one regulatory light chain, represented by Cdc4 (essential light 

chain) and Rlc1 (regulatory light chain).  

Following the neck region the C-terminal domain is known as 

the tail. This region, very different between myosins, confers the 

ability to engage in non-motor function, such as dimerization, binding 

to cargoes or association with membranes [120, 121]. 

 

 

1.6.1- Myosin class I: Myo1 
 

Only one myosin, from class I, is present in fission yeast: 

Myo1 [119, 122]. This monomeric myosin has a catalytic domain, 

followed by two IQ domains and a long tail region that determines its 

function. In this tail is a TH1 (tail homology domain) required for 

Myo1 associations with lipid regions, whereas the acidic C-terminal 

part plays an important role in stimulating Arp2/3 complex-dependent 

actin polymerization working together with Wsp1 (fission yeast 

homologue of WASP proteins, Wiskott-Aldrich syndrome). For Myo1 

the tail is important to specify its function, as it permits lipids 

association that can lead to the deformation of cellular membranes 

during endocytosis as well as membrane reorganisation during 

septum formation, the late step of cytokinesis [119]. Calmodulin 

Cam1 associates with myo1 but not much is known regarding this 

interaction, but cam1 seems to be required for proper localization. 

Myo1 is found localized to cortical patches present at the tips of 

A 
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growing cells and it relocate during cell division to the equator [119, 

121, 122].  

 

 

1.6.2- Myosin class II: Myo2 and Myp2 
 

This class of myosins provides contractile force in muscle 

tissue and, in fission yeast, there are two representatives of this 

class, that are the conventional Myo2 and the unconventional Myp2 

[119, 123-127]. The activity of these myosins is regulated by the 

association of light chains and phosphorylation. Both Myo2 and Myp2 

share the same light chains, which are Cdc4 (essential light chain) 

[128] and Rlc1 (regulatory light chain) [129]. The interaction between 

these elements take place in the neck region of myosin, more 

specifically Cdc4 binds the first IQ motif while Rlc1 binds the seconds 

IQ motif. Some differences can be observed in the structure of the α-

helical coiled-coil tail, where there is a different distribution of proline 

residues, an amino acid that may disrupt the secondary structure of 

the C-terminus of the proteins. In fact, whereas proline is dispersed 

throughout the tail of Myo2, allowing the formation of the 

conventional two-headed homodimer, in Myp2 they accumulate at 

the centre. The presence of many proline localized in one region 

results in the division of Myp2 tail into two subdomains, that seems to 

fold back generating an anti-parallel coiled coil tail, originating an 

unconventional single head myosin [120, 121].  

Myo2 is the only essential myosin in fission yeast, as cells 

lacking this myosin are not viable [124], whereas the deletion of 

Myp2 in cells displays only subtle cytokinetic defects [127, 130]. They 

both localize to the cell equator of fission yeast cell during mitosis, 

even if they are recruited independently and at different time. Myo2 is 

the most important myosin, necessary to assemble and contract the 

actomyosin ring that forms at the cell equator at the onset of mitosis; 

moreover, this myosin firstly appears in cytokinetic nodes that 
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originate around the nucleus of the cell driven by anillin-like protein 

Mid1. Successively Myo2 interacts with the other components of the 

cytokinetic nodes (such as proline, formin and tropomyosin) taking 

part in the recruitment of all the other proteins involved in the 

formation of a completed actomyosin ring. Myo2 remains in the 

actomyosin ring throughout the whole cytokinesis giving the fact that 

it is necessary to drive the constriction of the contractile ring to 

ultimate cell division. What is known regarding the regulation of Myo2 

activity involved the phosphorylation of Rlc1, that in vivo increases 

the motility of this myosin, and the phosphorylation of the heavy 

chain’s tail that regulates the timing of Myo2 incorporation into the 

actomyosin ring and its successive contraction [119, 121]. 

Regarding Myp2, this myosin is not essential for viability, as 

cell can survive with some mild defect upon deletion of this myosin 

[130], but it is recruited to the actomyosin ring at later step of 

cytokinesis. In fact Myp2 contributes to the maintenance of the 

actomyosin ring and it participates to its contraction [119, 121]. 

 

 

1.6.3- Myosin class V: Myo51 and Myo52 
 

This class of myosin have the ability to walk along actin cables 

to deliver cargoes [119, 131, 132]. Adjacent to the motor domain, the 

neck region presents up to 6 IQ motifs where Calmodulin can bind 

and terminates with a long tail. The C- terminus of this class of 

myosins present a coiled-coil domain and terminate in a globular 

domain that directs the binding of a cargo or adapter proteins [119, 

121]. 

In fission yeast two class V myosins are present, Myo51 and 

Myo52 that, even if they belong to the same class, they have 

different function and they localize to separate compartment [119]. 

Myo51 is a non-essential component of the actomyosin ring 

contributing, nevertheless, to the assembly of the cytokinetic ring 



25 
 

during cell division. This myosin, unlike others of the class V, is 

single head and its localizations and functions are dictated by two 

additional proteins, Rng8 and Rng9, which bind to a region in the tail 

of Myo51: the deletion of either Rng8 or Rng9 abolished Myo51 

localization to the actomyosin ring. This Myo51-Rng8-Rng9 complex 

seems to be able to bind with its tail to actin-tropomyosin cables 

providing both cross-link and sliding of actin-tropomyosin cables 

relative to one another, contributing to an efficient actomyosin ring 

compaction [67, 119, 121, 133]. Even if part of class V myosin, 

Myo51 role is independent of the C-terminal cargo-binding motifs, 

opposite scenario from the second class V myosin present in fission 

yeast, Myo52. 

Myo52 is involved in delivery cargo in different cell 

compartments, localising at regions of cell growth and cell wall 

deposition where it contributes to the transport of vesicles containing 

beta-glucan synthase Bgs1 [134]. 

 

  

1.6.4 - Essential elements of myosin motor domain  
 

From high-resolution myosin V structure is was possible to 

identify the composition of the motor domain of myosin (figure 1.5A 

and B). This domain is made up of four subdomains: lower 50 kDa,  

upper 50 kDa, N-terminal and converter, whit loops among them. The 

actin binding site is located between the lower and upper 50 kDa 

subdomains, where four actin-binding loops are present. The outer 

region of the cleft is also involved in the binding of actin filaments, 

while the inner region participated to nucleotide binding. When the 

myosin head binds ATP, the nucleotide is located in a region 

between the upper 50 kDa and the N-terminal subdomains of the 

motor domain. Moreover, the γ-phosphate of ATP is situated close to 

the inner cleft region and the switch II connector, a very important 

region as it allows the release of the hydrolysed phosphate through  
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Figure 1.5: Essential elements of the myosin motor domain. 
 

A,B) Schematic diagram (A) and ribbon diagram (B) of the 
myosin V motor domain illustrate the positions of the 
four subdomains and connectors of the myosin motor 
domain (adapted from [120]). 

 

 

the opening of a back door at the beginning of the powerstroke. The 

nucleotide-binding site is located between the upper 50 kDa and the 

N-terminal subdomain, where two loops are important for the 

regulation of the binding: the P-loop (part of the N-terminal 

subdomain) and the switch I (part of the upper 50 kDa subdomain) 

that together hold the Mg2+ and the ADP. The release of ADP from 

myosin motor domain is regulated by the transducer region, a seven-

stranded β-sheet region located at the centre of the head that trigger 

B  

 A 
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the closure of the cleft during the powerstroke, affecting also the 

position of P-loop and switch I leading to the release of ADP from the 

active site. Following the nucleotide release, the motor domain 

undergoes rearrangements that are transmitted to the lever arm by 

the last subdomain, the converter. This region is connected to the 

head via two flexible connectors, the relay and the SH1 helix [120]. 

 

 

1.6.5 - Actomyosin ATPase cycle 
 

The force necessary for actomyosin ring contraction is generated by 

a cyclic interaction between myosin and actin, driven by ATP binding 

and hydrolysis that provide the energy necessary to complete this 

action (figure 1.6A) [120]. If there was no ATP, myosin would be in a 

constant state of rigor, defined by a nucleotide-free myosin head 

strongly bound to actin filament. The dissociation from actin is 

possible due to the presence of ATP, which can rapidly interact with 

the nucleotide-binding pocket located in myosin head, leading to 

release from actin. This new ATP-bounded state is known as post-

rigor, immediately followed by the recovery stroke that, by repriming 

the lever arm of myosin head, prepared myosin to the 

prepowerstroke state. At this point myosin is still not able to bind 

actin therefore, to make it possible, ATP needs to be hydrolyse: only 

when ADP and inorganic phosphate (Pi) are present in the myosin 

head the interaction with actin can occur. Initially myosin-actin affinity 

is weak but it will increase upon release of the inorganic phosphate: 

straight after hydrolysis, Pi is trapped in myosin head through the 

partial closure of the inner part of the cleft; the following movement of 

the switch II leads a conformational change inside the myosin head, 

determining the opening of a back door, located in the inner cleft, 

where the Pi can be release. At this stage ADP-myosin is strongly 

bound to actin and the powerstroke is triggered by the swing of the 

lever arm. Following the powerstroke, ADP will dissociate from the  
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Figure 1.6: Actomyosin ATPase cycle. 
 

A) Diagram of a general kinetic scheme for all myosin family 
members, largely derived from experiments with myosin V 
(adapted from [120]). 

 

 

head, leaving myosin strongly bounded to actin in the rigor state. 

Only upon interaction with ATP the dissociation can be possible and 

myosin can bind to actin for another cycle. [120]. 

This general actomyosin ATPase cycle was largely derived 

from studies on myosin V, but it is shared among all myosin family 

members. The major difference presents among different myosins is 

A 

A 
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in the rate of phosphate and ADP release, kinetics that define the 

different duty ratios among myosins [120]. 

 

 

1.6.6 – Three myosins are involved in cytokinesis 
 

 In fission yeast cytokinesis is controlled by three myosins: 

Myo2, Myp2 and Myo51 [127]. Only Myo2 is essential for cell 

viability, being responsible of the assembly and contraction of the 

actomyosin ring [36, 124, 126, 127] as it is considered to be a motor 

generating tension [124, 125, 130, 135-137]. Consistently, mutations 

of Myo2 affected the activity of this myosin, resulting in abnormal or 

missing formation of the actomyosin ring that leads cells to 

cytokinesis failure [36, 107]. This essential myosin is recruited to 

cytokinetic nodes by Mid1 (figure 1.7A), which interacts with the C-

terminal tail of Myo2 [58, 138] potentially leading the myosin head to 

point outwards of the nodes in a bouquet-like conformation [63, 64]. 

This presumed arrangement allows Myo2 to capture actin filaments 

from nearby nodes, accordingly with the search, capture, pull, and 

release (SCPR) mechanism [38, 39, 61], explaining Myo2 

contribution to actomyosin ring assembly [58, 63, 64]. 

 After Myo2, the next myosin recruited to the actomyosin ring is 

Myo51 (figure 1.7A) [127, 133]. This is a non-essential myosin 

believed to be involved in actomyosin ring assembly and stability, as 

Myo51 is considered to interact with actin filaments helping to 

transport them into the contractile ring [67, 133]. Even if Myo51 is 

present in the actomyosin ring during the contraction phase [127] it is 

not believed to play a role in the last stage of cytokinesis, as the 

deletion of this myosin results only in a delay of ring assembly, but 

with no major effects on the ring contraction time [127, 133].  

The last myosin recruited in the actomyosin ring is Myp2 

(figure 1.7A), which is non-essential and seems to be involved only in 

ring contraction at lower temperatures [60, 125, 130], even though its  
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Figure 1.7: Recruitment of three myosins to the actomyosin 
ring. 
 

A) Diagram illustrating the times at which the various myosin 
species localise to the actomyosin ring throughout cytokinesis 
(adapted from [127]). 

 

 

exact role is not clear. Myp2 is recruited to the actomyosin ring just 

before ring contraction [127] and its localization depends on the 

presence of actin filament [106]. More works will be necessary to 

define the contribution of each of these three myosin to cytokinesis in 

S. pombe. 

 

   

1.7 - Aim of this thesis 
 

In fission yeast cytokinesis requires the assembly and 

contraction of an actomyosin ring, which involves three myosins: 

Myo2, Myp2 and Myp51 [1, 3]. The conventional class II myosin 

A 
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Myo2 is important from assembly to contraction of the actomyosin 

ring, whereas less is known regarding the other two myosins.  

A recent work from Laplante et al. [127] investigated the role 

of each myosin in fission yeast cytokinesis, through the use of 

deletion mutants of myp2 and myo51 and a mis-sense mutant of 

myo2 (myo2-E1) together with a combination of these deletions. 

Their analysis identified specific and unique roles of each myosin: 

Myo2 was the important myosin driving ring assembly, Myp2 had a 

prominent role during ring contraction while the presence of Myo51 

was necessary to improve the action of the other two myosins, as it 

contributed to both ring assembly and contraction.  

We were also investigating the role of each fission yeast 

myosin in cytokinesis, obtaining contrasting results comparing with 

the work from Laplante et al. [127]. Therefore in this study we 

decided to investigate further the contribution of Myo2, Myp2 and 

Myo51 to actomyosin ring assembly and contraction (documented in 

paragraph 3.1 and [139]). We generated the same mutant strains 

used in Laplante et al. [127] and quantify the time taken to complete 

the different phases of actomyosin ring dynamics, in order to identify 

the function of each myosins in cytokinesis. Our results identified 

Myo2 as the major motor driving actomyosin ring contraction, while 

Myp2 seemed to contribute to this phase only at lower temperature, 

consistent with previous work [121].  

These studies were conducted with myo2-E1 [36], a 

temperature-sensitive mutant of Myo2 as the deletion of this myosin 

lead to cytokinesis failure in fission yeast [36, 107]. The 

characterization of myo2-E1 allowed to investigate the function of 

Myo2 in cytokinesis but the molecular basis of the defects in myo2-

E1 is not known. Therefore we continued our studies with the 

characterization of myo2-E1-Sup2, an intragenic suppressor of Myo2 

that was able to revert the defects of actomyosin ring contraction 

present in myo2-E1 (documented in paragraph 3.2 and [140]). 

Through a combination of experiments involving classical genetics, 

imaging and structural analysis we identify in myo2-E1-Sup2 the 
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presence of a mutation that was able to relieve the steric clash 

identified in the motor domain of myo2-E1.  

This work was important to better understand the defects in 

myo2-E1, and provided a way to study Myo2’s mutations through the 

generation of suppressor strains. Further studies of more myosin II 

mutations were necessary to achieve a deeper understanding of the 

structure and function of Myo2 in cytokinesis. For this reason we 

proceeded with the characterization of two additional myosin II 

mutations, myo2-S1 and myo2-S2 [141] (described in paragraph 

3.3), which were both able to revert cytokinetic defects of cdc3-124 at 

the non-permissive temperature.  

Overall the results of this work should help to decipher the 

contribution of each myosin in cytokinesis, and provided evidences to 

improve our understanding of the function and structure of Myo2.  

 As an additional project we aimed to establish genetic code 

expansion in the lab (described in chapter 4), a useful technique that 

we used to understand how proteins act together at the cell division 

site spatially and temporally, to ensure the proper formation and 

contraction of the actomyosin ring during cytokinesis.  

In the work presented in this thesis, further explained in paragraph 

4.7 and described in chapter 5, we initially used genetic code 

expansion to investigate the interaction between cytokinetic proteins 

tropomyosin and actin, as we could map at the amino acid level the 

precise binding regions between these interacting partners 

(described in paragraph 5.3). Moreover genetic code expansion was 

a useful and alternative method to fluorescently label cytokinetic 

proteins of interest without interfering with their function, as described 

in paragraph 5.5.  
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2 - MATERIALS AND METHODS 
 

2.1 - Fission yeast genetics and cell biology 
 

2.1.1 - Fission yeast medium 
 

 Fission yeast cells were cultured in yeast extract with adenine, 

YEA (5 g/l yeast extract, 30 g/l glucose, and 225 mg/l adenine). 

Yeast cells, stored at -80°C, were plated in YEA agarose plates and 

grown at 24 °C for a couple of days before proceeding with 

experiments.  Edinburgh minimal medium (EMM) containing 225 mg/l 

of appropriate supplements (adenine, leucine, lysine, histidine or 

uracil) was used to select transformed plasmid when necessary, 

while extremely low nitrogen (ELN) plates where used for genetic 

crosses. 

 All strains were stored at -80 °C in YEA medium containing 

15% glycerol. 

 

 

2.1.2 - Genetic crosses 
 

 Classic S. pombe genetic techniques were performed as 

described [142], when it was necessary to create a strain containing 

a combination of pre-existing genetic modifications. To cross two 

haploid strains, the mating was done between two heterothallic 

strains, which are h+ and h-. A pin-head of approximately the same 

amount of cells, coming from the two opposite mating type, was 

mixed into 10 µl of sterile double distilled water (ddH2O) and spotted 

onto ELN plates. These plates offers a nutrient starvation 

environment to the cells, which can mate and generate 4 spores. 

After an incubation of a couple of days at 24°C it was possible to 
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isolate the desired spores, either through tetrad dissection or free 

spore analysis.  .  

 Tetrad dissection is a method that provides the precise 

isolation of the four spores generated from a single tetrad. A small 

amount of sporulated cells were taken from ELN plate, spread on 

one side of a YEA plate and incubated at 36°C for 1 hour. After 

drying the plate in a sterile hood for about 20 minutes, it was possible 

to proceed with the tetrad dissection using a Singer Micromanipulator 

(MSM-series 300, SINGER INSTRUMENT CO.LTD). This machine 

allows at first to visualize the four spores deriving from a single 

tetrad, and successively to place them individually at specific 

positions of a pre-defined square grid on the YEA plate. Once all the 

selected spores were placed in the grid, the YEA plate was incubated 

at 24°C and growing colonies started to appear after about a week. 

Using tetrad dissection it is easy to follow the segregation of genetic 

markers in the desired crosses, and isolate the mutant strains using 

selective agarose plates. 

 In case of crosses were the original strains possessed 

different markers, it was possible to generate mutant strains by free 

spore analysis. After mating, sporulated cells were collected from 

ELN plates and mixed properly with 6 µl of Glusulase (PerkinElmer) 

in a final volume of 600 µl of ddH2O, necessary to induce the 

digestion of the outer layer or the tetrad, and incubated overnight 

(O.N.) on a rotor. Next day the spores were spun down, with 3 

minutes centrifuge at 3200 rpm, and the pellet was washed 2 times 

with PBS (phosphate buffered saline) before being plated on YEA 

plates in serial dilutions (from 50x to 2000x). YEA agarose plates 

were kept at 24°C for 4-5 days, until colonies started to germinate 

from single spores, then the growing colonies were replicated onto 

selective plates to select the desired markers. 
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2.1.3 - Strain construction through fission yeast 
transformation 
 

 To prepare yeast competent cells, a 50 ml of YEA medium 

was inoculated with the desired strain and grown overnight at 24°C. 

Next day, 50 ml of mid-log phase yeast cells (O.D. between 0.4 to 

0.6) were spun down and washed 2 times with ddH2O. The resulting 

pellet was then resuspended in 500 µl of 1x LiAcTE (1xTE, 0.1 M 

lithium acetate in sterile water). 100 µl of these competent cells were 

used for each transformation in a reaction mixture containing 5 µl 

carrier herring sperm DNA (Sigma Aldrich), 240 µl PEG-LiAcTE (40% 

PEG 3350, 1x TE, 0.1 M lithium acetate in sterile water) and 

approximately 100 ng of linear DNA. The reaction mixture was 

vortexed to be properly mixed and incubated at 30 °C on a shaker. 

After 1 hour the sample was heat shock at 42 °C for 20 minutes, then 

gently pelleted down and resuspended in 1x TE, ready to be plate on 

YEA agarose plates. After 4-5 days, the colonies that appeared were 

replicated into selective plates for marker selection.  

 When the competent fission yeast cells were obtained from a 

temperature sensitive strain, all the incubation steps were carried out 

at 24 °C and the heat shock was done for only 5 minutes. 

 

 

2.1.4 - Extraction of yeast genomic DNA 
 

 5 ml of fresh growing cells were collected in a 50 ml falcon 

tube, after overnight culturing at 24 °C, and washed with E-buffer (50 

mM sodium citrate, 100 mM Sodium phosphate). The pellet was then 

resuspended in 5 ml of a solution containing 1.2 M Sorbitol and 4 

mg/ml of lysing enzyme (Sigma) in E-buffer, and the falcon was 

placed horizontally in a 36 °C incubator at 80 rpm for 1.5 hours. In 

order to generate spheroplasts, 20 µl of zymolase (G-Biosciences, 

1.5 units/ µl) were added to the solution and let it incubate at 36 °C, 
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80 rpm, for another 1.5 hours. 1% of β-mercaptoethanol was then 

added and after 30 minutes the solution was spin down, 450 rcf for 3 

minutes. The resulting pellet was resuspended in 0.5 ml of a solution 

containing 1X TE, 1% SDS, 10 µl of 20 mg/ml proteinase K 

(Invitrogen) and incubated in a 65 °C shaker for 30 minutes. Before 

proceeding with the following step, the sample needed to be kept on 

ice for 10 minutes. After cooling down, 200 µl of 5 M potassium 

acetate was added and the sample was incubated on ice for 30 

minutes. Following a 30 minutes centrifugation done at 4 °C, 15000 

rpm, the supernatant was recovered and the genomic DNA was 

precipitated by the addition of equal amount of isopropanol. The 

pellet, spun down at 15000 rpm for 10 minutes, was then washed two 

times with 70% ethanol and let to dry in air. The pelletted DNA was 

resuspended in 50 µl of ddH2O and stored at -20 °C. 

 

 

2.1.5 - Sporulation of a diploid strain 
  

 Diploid strains, taken from -80°C, were plated in YEA plate 

and kept overnight at 24°C. Next day cells were transferred in EMM 

plates without adenine, to maintain them in a diploid state as they 

were generated by crossing strains with ade6-210 and ade6-216 

markers. MBY11002, used for figure 2.1A, carried Myo2 deletion 

obtained from the replacement of the targeted gene with uracil 

cassette, these cells needed to be grown in EMM plates lacking both 

adenine and uracil. After letting them grown for 3 days, cells were 

collected from the plate, resuspended properly in 600 µl of ddH2O 

and incubated overnight on a rotor in the presence of 6 µl of 

Glusulase. Next day cells were washed 2 times with ddH2O and kept 

in 200 µl of ddH2O at 4°C until the day of the experiments. To image 

sporulation of these cells, 10 µl of spores were inoculated in YEA 

medium and incubated overnight at 24°C. Next morning it was 

possible to image the sporulation of these cells. 
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2.1.6 - PFA fixation and permeabilization of fission 
yeast cells 
 

 Mid-log cells culture was washed once with PBS and then 

fixed in a 4% paraformaldehyde (PFA) solution for 12 minutes at RT. 

After 2 washes with PBS, cells were resuspended in 100 µl of PBS 

and permeabilized by the addition of 100 µ of 1% Triton X-100 (in 

PBS), for 15 minutes at RT. After 2 more washed with PBS cells 

were resuspended in 10µl PBS and incubated with the desired dye. 

  

 

2.1.7 - Cells staining 
 

 DAPI (4′,6-diamidino-2-phenylindole, from Life Technologies) 

was used to stain the nucleus of the cells, by mixing 1 µl of dye (2 

µg/ml) with 10 µl of permeabilized fixed cells. The primary septa were 

stained with Calcofluor-white (CW, from Sigma-Aldrich) by the 

addition of 2 µl of CW (500x dilution) to 10 µl of cells, which were 

only fixed, not permeabilized. 2 µl of phalloidin CF-633 (Biotium) was 

used to label actin in 10 µl of permeabilized fixed cells. After few 

minutes of incubation with the desired dye, yeast cells were imaged 

with fluorescent microscopy by placing 1 µl of suspension directly on 

a microscope slide, covered by a coverslip. Laser lines at a 

wavelength of 401nm was used to detect DAPI and CW staining, 

while laser line at 561 nm was used for phalloidin CF-633. 

  

 

2.1.8 - Drug treatment 
 

 Jasplakinolide (Enzo Life Sciences) was used at the final 

concentration of 20 µM to stabilize actin filaments in isolated 

actomyosin rings (figure 3.11).  
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2.1.9 - Spot test 
 

 A pin-head of yeast cells were inoculated in fresh YEA 

medium and grown overnight at 24 °C. Next day 10-fold serial 

dilutions in PBS were prepared for each strain, starting from OD600 = 

1, and 5 µl of each dilution was spotted in YEA plate. After 4 days 

incubation at the desired temperatures, plates were scanned and 

images processed with Fiji software. 

 

 

2.1.10 - In vitro isolation of actomyosin ring 
 

 In vitro Isolation of cell ghosts was performed as described 

[76, 143].  

After culturing the desired yeast strain O.N. in YEA medium at 24 °C, 

cells were spun down and resuspended in 0.5% low glucose minima 

medium (0.5 % glucose, 0.5 % salt, 1x Vitamins, 225 mg/l histidine, 

225 mg/l adenine, 225 mg/l uracil, 225 mg/l leucine and 225 mg/l 

lysine in EMM medium) letting them grow for 24 hours at 24 °C. Next 

morning cells were washed once with E-Buffer before resuspending 

them in 10 ml of E-buffer 2 (1.2 M sorbitol and 2.5 mg/ml lysing 

enzyme (Sigma) in E-buffer). From this step on, cells were kept in a 

50 ml falcon tube that was lay down on the shaker at 80 rpm, 24 °C. 

After 1.5 hours 20 µl of Zymolase (G-Biosciences, 1.5 Units/µl) was 

added to the cell suspension and incubated for another 40 minutes at 

80 rpm. When protoplast started to form, the sample was spun down 

at 450 rcf for 2 minutes and washed once with 0.6 M sorbitol in E-

buffer. Successively cells were incubated in 10 ml of culturing 

medium (0.8 M sorbitol, 225 mg/l histidine, 225 mg/l adenine, 225 

mg/l uracil, 225 mg/l leucine and 225 mg/l lysine in minimal medium) 

for 3-4 hours, until > 30% of the protoplast formed a full actomyosin 

ring (that was monitored by the visualization of a ring marker under a 

fluorescent microscope). Depending on the analysed fission yeast 
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strain, the formation of the actomyosin ring could require longer 

incubation time, therefore a constant checking under the microscope 

was necessary. At the end of this incubation it was possible to 

proceed with the ring isolation, which was carry out at 4 °C. 

Spheroplasts were spun down at 450 rcf for 2 minutes and very 

gently washed with 1ml of wash buffer (0.8 M sorbitol, 2 mM EGTA, 5 

mM MgCl2 and 20 mM PIPES–NaOH, at pH 7.0). The solution was 

then transferred to a 2 ml test tube and the pellet was resuspended 

in 1.5 ml of Isolation Buffer (0.16 M sucrose, 50 mM EGTA, 5 mM 

MgCl2, 50 mM potassium acetate, 50 mM PIPES–NaOH, at pH 7.0, 

0.5% NP-40, 10 μg/ml leupeptin (Sigma-Aldrich), 10 μg/ml aprotinin 

(Sigma-Aldrich), 10 μg/ml benzamidine (Sigma-Aldrich), 0.5 mM 

phenylmethylsulphonyl fluoride (PMSF, Sigma-Aldrich) and 1 mM 

dithiothreitol (DTT, ROCHE), then gently transferred to a glass 

homogenizer. Cells were homogenize for 10 times, avoiding bubbles 

formation, then washed twice with 1 ml of reactivation buffer (0.16M 

sucrose, 5 mM MgCl2 , 50 mM potassium acetate, 20 mM MOPS–

NaOH, at pH 7.0, 10 μg/ml leupeptin, 10 μg/ml aprotinin, 10 μg/ml 

benzamidine, 0.5 mM PMSF  and 1mM DTT). After this step the 

sample was ready to be use and actomyosin ring contractility was 

tested with the addition of 0.5 mM of ATP (Adenosine 5′-triphosphate 

disodium salt hydrate, from Sigma-Aldrich). 

 

 

2.2 - Microscopy and data analysis 
 

2.2.1 - Live-cell imaging 
 

 For time-lapse imaging of live-cell, mid-log phase cells were 

grown at 24 °C and, when necessary, shifted at the desired 

restrictive temperature for 3-4 hours before imaging. The movies 

were acquired either with agarose pad (figures 3.1A, 3.3A, 3.3B and 
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3.3C) or with a CellASIC microfluidic (figures 3.5B, 3.6A, 3.9A, 

3.10A, 3.11A and 3.11B) 

 For the agarose pad images acquisition [68], a microscope 

glass slide was prepared by placing a thin layer or YEA + 2% 

agarose solution, in order to generate an agarose pad where 1 µl of 

cells could be placed. A cover glass was put on the top and edges 

were sealed using VALAP (equal weight mixture of vaseline, lanolin 

and paraffin, heated together on a hot plate and then mixed properly 

before aliquoting the mixture) to be ready for imaging. 

 As an alternative, the cellASIC microfluidic system (Merck 

Millipore) is constituted by a special plate combined with microfluidic 

pumps, which provide a mechanism to keep cells stationary during 

imaging while ensuring a constant flow of fresh medium in the 

chamber. In this way cells can be imaged for long amount of time 

while remaining healthy. For our experiments we used yeast plate 

(size Y04C or Y04D from Merck Millipore), where at first a 

suspension of yeast cells was flowed into the imaging chamber 

followed by a constant media flow during the time-lapse imaging 

acquisition.  

 The movies were acquired using a spinning disk confocal 

microscope: Andor Revolution XD imaging system equipped with a 

100x oil immersion 1.45NA Nikon Plan Apo lambda objective, a 

confocal Yokogawa CSU-X1 unit, an Andor iXON EMCCD detector 

and Andor IQ acquisition software. 15 z-stacks of 0.5 µm thicknesses 

were taken at 1 minute interval for each channel (488 nm for 3GFP 

and 561 nm for mCherry) for 3-4 hours. During imaging acquisition, 

the temperature was controlled and maintained by a full enclosure 

incubation chamber. 

 To acquire still images of actin (figures 5.6D and 5.6F) it was 

used a wide-field fluorescent microscope: Andor Revolution wide-

field imaging system equipped with a 100x oil immersion 1.49NA 

Nikon TIRF Apo objective, an Andor sCMOS ZYLA detector and 

Andor iQ software.  
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2.2.2 - Image processing 
 

 The acquired images were processed using Fiji software. For 

time-lapse montages, maximum-intensity projected images of the two 

acquired channels (for GFP and mCherry) were at first separated to 

assign false colours using the lookup table (LUT). Successively, after 

background subtraction, the two channels were merged back 

together and the area of interest, containing the desired cell, was 

cropped in order to generate a montage, using the command 

"montage".  

 To generate images for DAPI, phalloidin and CW staining, 

maximum-intensity projected images of each channel were 

generated, grey false colour was assigned using the LUT and, after 

background subtraction, the region of interest was cropped. 

 To generate the face-on views of the septa stained with CW 

(figure 3.8C) the command "reslice" was used with an output spacing 

of 0.15 µm and the resulting image was maximum-intensity projected 

to produce a single image.  

  

 

2.2.3 - Measuring the timing of actomyosin ring 
dynamics  
 

 To quantify the dynamics of the imaged actomyosin ring we 

recorded the time necessary for the ring to complete three phases, 

which are ring formation, coalescence and contraction by following 

the dynamics of two fluorescent markers present in each fission 

yeast strain. Atb2 (tubulin alpha 2, tagged with mCherry) was used 

as a marker for the cell cycle, as the presence of a short spindle (~1 

µm) in the middle of the cell served to define the zero time point of 

cytokinesis (t=0). The second marker, Rlc1 (myosin-II regulatory light 

chain 1, tagged with 3GFP) was necessary to follow the formation 

and contraction of the actomyosin ring. Starting from time zero, we 
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counted the minutes necessary for each examined cell to complete 

the three phases of the actomyosin ring dynamics: we defined the 

"coalescence time" as the time necessary for the cytokinetic nodes to 

assemble into a condensed ring; "dwelling time" as the period 

required for the maturation of the ring, measured from the end of ring 

assembly and the initiation of ring contraction; lastly we defined the 

"contraction time" as the time necessary for the completed ring to 

contract into a single dot. More than 15 cells were quantified for each 

strain in order to calculate the mean time (and standard deviation, 

S.D.) necessary to complete each phase. Where necessary, 

statistical significance was determined using Student’s t-test 

(****p<0.0001) using PRISM 6.0 software (GraphPad) for the 

quantifications. 

 
 

2.2.4 - Ring contraction rate measurement (for 
experiments performed by Anton Kamnev) 
 

 The rate of ring contraction was measured similarly as 

described [127]. First, kymographs of contracting cytokinetic ring (15 

z-stacks of 0.5 μm thickness taken for 7 μm at 1-minute intervals) 

were constructed from maximum intensity projection of original time 

series along the z-axis. Next, ring contraction velocity was measured 

as a slope formed by migrating ring edge to the time-axis. On 

average we measured 20~30 rings per group. 

 

 

2.3 - Molecular cloning  
 

2.3.1 - PCR 
 

 To generate DNA fragments for standard cloning, Phusion 

DNA Polymerase (Phusion High-Fidelity PCR Kit, New England 
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Biolabs - NEB) was used in a 50 µl reaction accordingly to the 

protocol provided. The reaction was carried out in a BIO-RAD 

Thermocycler with the following program: 98 °C 30 seconds, 98 °C 

10 seconds, 55 °C 1 minute, 72 °C 1 minute per 1Kbp, 72 °C 10 

minutes; steps 2 to 4 were repeated 35 times. To control that the 

DNA fragments had been correctly amplified, 2 µl of PCR products 

were mixed with 1x diluted Gel Loading Dye Purple (6X) (NEB) and 

isolated in an agarose gel (see paragraph 2.3.3) and positive 

samples were successively purified with QIAquick PCR Purification 

Kit (Qiagen). 

 To insert point mutations in a desired gene, an inverse PCR 

was performed. The forward primer was designed by selecting 5 

amino acids before and after the codon that needed to be mutated 

and, by reversing-complementing this, the second primer was 

obtained. Phusion DNA Polymerase (Phusion® High-Fidelity PCR 

Kit, New England Biolabs) was used in a 50 µl reaction as before, 

with a different program: 98 °C 30 seconds, 98 °C 10 seconds, 55 °C 

1 minute, 68 °C 14 minutes; steps 2 to 4 were repeated 20 times. 

 

 

2.3.2 - Fission yeast colony PCR 
  

 A pin-head of yeast was resuspended in 100 µl of Extraction 

buffer (0.2 M lithium acetate, 1% SDS) and heated at 70 °C for 5 

minutes. After the addition of 300 µl of 100% ethanol, the sample 

was spin down at 15000 rpm for 3 min and the pellet was washed 

twice with 70% ethanol. The pellet was successively air dried to 

remove completely the ethanol, then resuspended in 100 µl of 

ddH2O. The sample was spun down 15000rpm for 3 min and 1 µl of 

the supernatant was used as template for the colony PCR; the 

reaction mixture was prepared with 3.2 µl of forward and revers 

primers (10 µM), 5 µl of Buffer 2 (500 mM Tris-HCl pH 9.2, 160 mM 

(NH4)2SO4, 22.5 mM MgCl2), 1.5 µl dNTPs, 0.6 µl of Taq/Vent 
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(prepared by mixing NEB Taq DNA polymerase with Invitrogen Vent 

DNA polymerase in a ratio 1:2) up to a final volume of 50 µl. A 

standard colony PCR programme, performed on a BIO-RAD 

Thermocycler,  was: 94 °C 2min, 94 °C 20 seconds, 50 °C 30 

seconds, 68 °C 2 min per 1Kbp, 68 °C 7 minutes; step 2 to 4 were 

repeated 30 times. 

 

 

2.3.3 - Agarose gel electrophoresis 
 

 DNA fragments were isolated on an homemade agarose gel, 

prepared at concentrations from 0.8% to 1.5% (w/v) in 1x Tris 

Acetate EDTA buffer (TEA) based on the size of the DNA fragments 

that needed to be isolated. SYBR Safe-DNA Gel Stain (Thermo 

Fisher Scientific) was added into the melted agarose solution at 

1:10000 dilution, to allow for the visualization of DNA fragment under 

UV light.  

 

 

2.3.4 - Restriction digestion 
 

 25 µl of the PCR purified plasmid were mix with 2 µl of the 

desired restriction enzymes (from New England Biolabs), in a final 30 

µl reaction and incubated 4 hours at 36°C. The digested product was 

isolated in an agarose gel and the resulting band was cut out and gel 

extract using QIAquick Gel Extraction Kit (Qiagen). 

 

 

2.3.5 - Ligation 
 

 0.5 µl of T4 DNA ligase (NEB) was used in a final 10 µl 

reaction, together with 5 µl of purified insert and 0.5 µl of purified 
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vector mixed with the recommended buffer. The reaction was 

incubated for 1.5 hours at RT. 

 

 

2.3.6 - Bacteria transformation 
  

 Homemade chemically competent E.coli DH5-α cells were 

used for plasmid transformation. 10 µl of ligation product, or 

nanograms of plasmid, were gently mixed with 100 µl competent 

cells and incubated on ice for 20 minutes. After a heat shock of 90 

seconds at 42 °C, cells were incubated 20 more minutes on ice. If the 

transformant plasmid was carrying ampicillin resistance, cells were 

plated directly on pre-warmed LB plates containing ampicillin; 

otherwise a recovery step was necessary before plating the cells, 

consisting in the addition of 1 ml of LB medium to the cells followed 

by 1 hour incubation in a 36 °C shaker.  

Positive colonies were formed after O.N. incubation at 36 °C. 

 

 

2.3.7 - Plasmid extraction 
 

 To purify plasmid DNA from E. coli, a single colony of cell was 

inoculated in 2 ml LB medium and grown overnight at 36 °C shaker. 

Next day plasmid extraction was done using GeneJET Plasmid 

Miniprep Kit (Thermo Scientific). 

 

 

2.4 - Protein expression and purification  
 

2.4.1 - Protein expression 
 

 Home-made chemically competent E.coli BL21-DE3 cells 

were transformed with nanograms of plasmid, following the 
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previously explained protocol (see paragraph 2.3.5). A single colony 

was inoculated in LB medium, containing the appropriate antibiotics, 

and protein expression was induced with 0.5 mM IPTG (Isopropyl β-

d-1-thiogalactopyranoside, VWR Chemicals) when the couture 

reached OD600 = 0.6/0.8. Cells were incubated at 30 °C for 4 hours 

before being pelleted and stored at -20 °C until proceeding with 

protein purification.  

  

 

2.4.2 - SDS-PAGE and western blot  
 

 Sodium dodecyl sulfate (SDS) polyacrylamide gels were 

prepared homemade at the desired concentration from 10% to 15%, 

accordingly to the molecular size of the proteins to be detected. As 

an example, a 10% polyacrylamide separating gel was prepared by 

mixing 1.7 ml of 30% Acrylamide/Bis Solution 29:1(BIO-RAD), 1.25 

ml of Tris-HCl ph. 8.8, 25 μl of 10% ammonium persulfate (APS), 50 

μl of 10% SDS, 2.5 μl of tetramethylethylenediamine (TEMED) and 2 

ml of ddH2O. 4% stacking gel was prepared by mixing 335 μl of 30% 

Acrylamide/Bis Solution 29:1, 625 μl of Tris-HCl ph. 6.8, 12 μl of 10% 

APS, 25 μl of 10% SDS, 2.5 μl of TEMED and 1.5 ml of ddH2O. 

Protein samples that needed to be loaded on SDS polyacrylamide 

gel were mixed with 1x sample buffer (stock of 4x sample buffer was 

prepared by mixing 0.2 M Tris-HCl ph 6.8, 8% SDS, 40% glycerol, 

4% β-mercaptoethanol, 50 mM EDTA and 0.08% bromophenol blue 

in ddH2O) followed by 10 minutes incubation at 98°C. Protein 

samples were successively loaded SDS polyacrylamide gel, together 

with 4 μl of precision plus protein dual color standards marker (BIO-

RAD) and run in a Mini-PROTEAN Tetra Vertical Electrophoresis Cell 

(BIO-RAD) at 25 mA until protein bands were resolved. Detection of 

the proteins was done incubating the gel overnight with Coomassie 

brilliant blue (InstantBLUE, Expedeon) solution to stain the proteins, 

whereas distaining was done with several washes with ddH2O.  
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 For western blot analysis, semi-dry transfer was performed 

using Trans-Blot Turbo system (BIO-RAD) with nitrocellulose 

membranes and transfer buffer provided in the Trans-Blot Turbo RTA 

Mini Nitrocellulose Transfer Kit (BIO-RAD). After incubation of the 

membrane with antibodies HRP-conjugated, the detection of the 

proteins was performed with a ChemiDoc MP Imaging System (BIO-

RAD), after incubating the membrane with Clarity ECL Western 

Blotting Substrates solutions (BIO-RAD). 

 

 

2.4.3 - His-tag protein purification 
 

 All these steps were performed at 4°C and ice-cold buffer 

were prepared on the day of the protein purification.  

Cells pellet was resuspended in sonication buffer (50 mM 

sodium phosphate buffer -NaPi, 300 mM NaCl, 10 mM imidazole ph 

7.4, 0.1 mM MgCl2, 5 mM benzamidine, 1 mM PMSF, cOmplete 

EDTA-free Protease Inhibitor Cocktail, Tablets (Sigma-Aldrich) and 

incubated on ice for 30 minutes after the addition of 150 μl of 

lysozyme (1 mg/ml). The solution was successively sonicated on ice 

until about 90% of the cells were lysed, followed by 30 minutes 

incubation in the presence of 0.5% Triton X-100. Cells debris were 

pelleted with 30 minutes centrifuge at 15000 rpm and the 

supernatant was collected and incubated with pre-equilibrated HisPur 

Ni-NTA Resin (ThermoFisher scientific) for 2 hours with a gently 

rotation at 4°C. Next beads were washed 10 times with washing 

buffer (50 mM NaPi, 500 mM NaCl and 30 mM imidazole ph 7.0) 

before proceeding with the elution of the protein of interest. Elution 

buffer was prepared from imidazole powder (Sigma-Aldrich), which 

was dissolved in 50 mM NaPi and 500 mM NaCl to a final 

concentration of 50 mM and, successively, the ph of the solution was 

equilibrated to 7.6. Protein elution was done in a step-wise manner 

by gently resuspending the resin in 200 µl of elution buffer followed 

http://www.bio-rad.com/evportal/destination/commerce/product_detail?catID=LGOQBW15
https://www.nzytech.com/products-services/molecular-biology/agaroses-buffers/ready-to-use-buffers/mb271/
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by a 2 minutes incubation on ice. At the end of the incubation, the 

resin was pelleted at 2000 rpm for a couple of minutes and the eluted 

protein were collected in the supernatant. This step was repeated 

several times, until we could detect proteins being eluted, which was 

monitored by mixing 10 µl of eluted solution to 90 µl of Bradford 

solution (Quick Start™ Bradford, BIO-RAD). 10 µl of each elution 

was loaded on SDS-PAGE and proteins were detected with 

Coomassie brilliant blue. Successively protein concentration was 

determined by comparison with a BSA standard.  

For some experiments the detection of the His-tagged fusion 

proteins was done using 1:2000 dilution of anti-His antibody (His-

probe (H-3) Monoclonal Antibody HRP (sc-8036-HRP), 200ug/ml, 

from Santa Cruz Biotechnology) in western blot.  

 

 

2.4.4 - GST-tag protein purification 
 

 All the steps were performed at 4°C and ice-cold buffer were 

prepared on the day of the protein purification.  

Cells pellet was resuspended in resuspension buffer (5 mM 

benzamidine, 1 mM PMSF, 1 mM EDA, 1 mM DTT and cOmplete 

EDTA-free Protease Inhibitor Cocktail prepared in ice-cold PBS) and 

kept 20 minutes on ice after the addition of 150 µl of lysozyme (1 

mg/ml). After lysing the cells using a sonicator, the sample was 

incubated in the presence of 1% Triton X-100, with a gentle rotation 

at 4°C for 30 minutes. After this incubation, soluble proteins were 

separated from cell debris with a 30 minutes centrifugation at 15000 

rpm and the supernatant was successively incubated with pre-

equilibrated glutathione sepharose High Performance resin (GE 

healthcare Life Science), previously washed 3 times with PBS 

containing 1% Triton X-100. Soluble proteins were incubated with the 

resin for 2 hours with a gentle rotation at 4°C, before proceeding with 

the washing of the resin, done 10 times with PBS containing 0.1% 
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Triton X-100. The elution of the proteins was done as described 

previously (see paragraph 2.4.3) using GST-elution buffer, prepared 

dissolving L-Glutathione reduced (Merck) to a final concentration of 

10 mM in 50 mM Tris-HCl ph 8. 5 µl of each elution was loaded on 

SDS-PAGE and proteins were detected with Coomassie brilliant blue 

staining. Successively protein concentration was determined by 

comparison with a BSA standard.  

When necessary, the detection of the GST-tagged fusion 

proteins was done using 1:2000 dilution of anti-GST antibody (GST 

(B-14), Monoclonal Antibody, HRP (sc-138-HRP) from Santa Cruz 

Biotechnology) in western blot.  

 

 

2.4.5 - Tropomyosin purification 
 

 Cells pellet, generated from 50 ml of induced culture, was 

resuspended in 3 ml of resuspension buffer ( 50 mM Tris-HCl ph 7.5, 

300 mM KCl, 10 mM Imidazole ph 6.8, 1 mM DTT, 5 mM EDTA, 5 

mM MgCl2, 1 mM PMSF, 5 mM benzamidine, cOmplete EDTA-free 

Protease Inhibitor Cocktail and sonicated on ice until about 90% of 

the cells were lysed. 0.25 % Triton X-100 was then added to the 

sample, incubated for 10 minutes on ice and the centrifuged for 20 

minutes at 15000 rpm. 600 mM KCl were added to the recovered 

supernatant and the sample was boiled at 95 °C for 15 minutes. The 

unwanted denatured proteins were spun down at 15000rpm for 20 

minutes, while tropomyosin was recovered from the supernatant by 

bringing the solution to ph 4.55 though drop-wise addition of 1 M HCl. 

This is tropomyosin isoelectric point, therefore when reached the 

desired protein will start to precipitate. A quick spin was then 

sufficient to pellet tropomyosin. After removing the excess solution, 

the pellet was resuspended in 5 mM Tris-HCL ph 7.0 and proteins 

were solubilised by equilibrating the solution to ph 7.5. To eliminate 

the high salt of the solution, the initial protein buffer was exchanged 
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to a new one (50 mM KCl, 0.5 mM MgCl2, 10 mM Tris-HCl ph 7.0, 

0.5 mM DTT in dH2O) using PD MiniTrap G-10 or PD MidiTrap G-10 

(GE Healthcare Life Science). As for the other protein purifications, 5 

µl of each elution was loaded on SDS-PAGE and proteins were 

detected with Coomassie brilliant blue staining. Successively protein 

concentration was determined by comparison with a BSA standard.  

When necessary, the detection of tropomyosin was done 

using a homemade primary anti-tropomyosin antibody (rabbit) in 

western blot at 1:5000 dilution, and visualized through a secondary 

anti-rabbit antibody (Anti-rabbit IgG, HRP-linked Antibody from Cell 

Signaling Technology). 

 

 

2.4.6 - Rabbit actin purification 
 
 G-actin was isolated from rabbit muscle acetone powder 

(Sigma-Aldrich). Buffer A (2 mM Tris-HCl pH 8, 0.2 mM ATP pH 7.0, 

0.5 mM DTT, 0.1 mM CaCl2, 1 mM NaN3) was used to rehydrate the 

powder by stirring it in the cold room for 30 minutes. A two steps 

process was used to clear the supernatant: at first the solution was 

squeezed through several cheese-cloths to remove big aggregates of 

the powder solution. Secondly the recovered solution was 

ultracentrifuge at 27000 g, 4 °C for 20 minutes. The solubilized actin, 

collect in the supernatant, could now be polymerized by drop-wise 

addition of KCl to reach a final concentration of 50 mM, followed by 

drop-wise addition of MgCl2 to a final concentration of 2 mM. The 

solution was then kept in cold room for 1 hour with gently stirring, 

followed by another 30 minutes incubation upon addition of solid KCl 

to a final concentration of 800 mM. Filamentous actin was pelleted by 

a 2 hours centrifugation at 400000 g; after the removal of the 

supernatant, the pellet was gently rinsed with 1 ml of Buffer A and 

successively transferred to a homogenizer, where it was 

homogenized 10 times in a final volume of 7 ml of Buffer A. The final 
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solution was dialyzed against Buffer A for 48 hours in the cold room, 

changing the buffer four times throughout the incubation time. Once 

the dialysis finished, G-actin was recovered in the supernatant after 

the centrifugation of the sample at 250000 rcf for 1.5 hours. Part of 

the purified actin had been successively labelled, while the remaining 

was stored in aliquots at – 80 °C in 10% sucrose. Protein 

concentration was determined measuring the absorbance of actin at 

290 nm at a NanoDrop Spectrophotometers. As the concentration of 

actin is 38.5 µM per absorbance unit at 290 nm (at 10 mm 

pathlength) [144], the measured absorbance was multiplied by 38.5 

to determine actin concentration.  

 

 

2.4.7 - Labelling of Rabbit Actin 
 

 G-actin was diluted to 1 mg/ml in Buffer B (2 mM Tris-HCl pH 

8.0, 0.2 mM ATP pH 7.0, 0.25 mM CaCl2, 0.05 mM EDTA and 0.05% 

NaN3) and dialyzed in the same buffer for 2 hours, replacing the 

buffer two times. As described previously, actin was polymerized by 

drop-wise addition of MgCl2 to a final concentration of 2 mM, and KCl 

to a final concentration of 100 mM, while the solution was gently 

stirring in the cold room. After 1 hour incubation, Alexa Fluor 488 

maleimide (Thermo Fisher Scientific), dissolved in DMSO to a final 

concentration of 3 mM, was added in a drop-wise manner to the 

solution for a 10-fold molar excess over actin. The solution was then 

covered with foil and let it gently stirred for 1 hour, before quenching 

the reaction with the addition of DTT, to a final concentration of 10 

mM. The solution was centrifuged at 4°C for 5 minutes at 2000 rpm, 

in order to remove the precipitated Alexa Fluor 488 maleimide, then 

polymerized actin was pelleted at 45000 rcf for 1 hour at 4°C. After 

removing the supernatant, the pellet was gently rinsed with Buffer B 

and later resuspended in Buffer B in order to be homogenized. The 

final solution was dialyzed overnight against Buffer B, then the buffer 
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was exchanged two times in for a total of 3 overnight dialyses. Once 

the dialysis finished, labelled G-actin was recovered in the 

supernatant after 75000 rcf centrifugation for 30 minutes at 4°C and 

stored in aliquots at - 80°C in 10% sucrose. The labelling efficiency 

was determined measuring absorbance of the sample at 290 nm and 

494 nm. One value was necessary to determine the concentration of 

Alexa Fluor 488 labelled actin, calculated dividing the absorbance at 

290 nm by the extinction coefficient of Alexa Fluor 488 (that is 71000 

M-1 cm-1). To calculate the total concentration of actin present in the 

solution, we used the formula:  

[OD290 - (0.138 x OD495)] x 38.5 µM = concentration (µM) of actin 

where 0.138 was the correction factor for Alexa Fluor 488 

absorbance at 290 nm [145], and 38.5 µM was the concentration of 

actin per absorbance unit at 290 nm (at 10 mm pathlength) [144]. 

The ratio between the concentration of Alexa Fluor 488 labelled actin 

and the total concentration of actin present in the solution set the 

percentage of labelled actin in the solution. 

 

 

2.4.8 - Fission yeast Myo2 expression and purification 
 

 In order to purify from fission yeast cells Myo2 together with its 

two light chains, Cdc4 an Rlc1, we followed the protocol developed 

by Lord and Pollard [146]. Wild-type myosin Myo2 (MBY 11049), 

overexpressing Myo2 from a thiamine controlled expression system 

under control of 41nmt1 promoter, was co-transformed (following the 

protocol in paragraph 2.1.3) with GST-tagged light chains from the 

plasmids pGST-cdc4 and pGST-rlc1. Positive mutants were isolated 

on EMM plates lacking leucine and uracil (EMM leu¯  ura¯ ), containing 

5 µg/ml of thiamine hydrochloride (Scientific laboratory supplies), to 

prevent the overexpression of the transformed plasmids. A single 

colony was inoculated in liquid EMM leu¯  ura¯ , containing 5 µg/ml of 
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thiamine hydrochloride, and grown to saturation at 24°C. Cells were 

then harvested and, after three washes with EMM leu¯  ura¯ , the 

culture was diluted to OD600 of 0.05 in the same medium, which 

allowed the overexpression of both Myo2 and the two GST-tagged 

light chains. After 30 hours incubation at 28°C, by which time the OD 

of the culture had reached 3, cells were pelleted and washed once in 

ddH2O and once in ice-cold lysis buffer (750 mM KCl, 25 mM Tris-

HCl ph 7.4, 4 mM MgCl2, 5 mM benzamidine, 2 mM EGTA and 0.1% 

Triton X-100 in ddH2O).  

 To purify myosin, the pellet was resuspended in ice-cold lysis 

buffer with additives (1 mM DTT, 4 mM ATP ph 7.0, 2 mM PMSF, 

cOmplete EDTA-free Protease Inhibitor Cocktail and in ddH2O) and 

cells were lysed with a pressure cell homogenizer (Stansted). From 

this step on, all the work was performed at 4°C and samples were 

stored on ice. Cells debris were removed by 2 hours centrifugation at 

50000 rcf and supernatant was successively incubated in pre-

equilibrated glutathione sepharose resin, at 4°C with a gentle 

rotation. After 2 hours incubation, the resin was washed 10 times 

with a total volume of 100 ml of ice-cold lysis buffer with additives 

and eluted in lysis buffer with additives containing 10 mM of 

glutathione. The eluted sample, containing GST-Cdc4 and GST-Rlc1 

enriched with co-purified Myo2, needed to be cleaved in order to 

remove the GST-tag from the two light chains, therefore the eluted 

protein sample was incubated in the presence of Thrombin protease 

(GE Healthcare Life science) and dialyzed overnight in A15 buffer 

(500 mM KCl, 10 mM Imidazole ph 7.0, 10 mM EDTA, 1 mM DTT 

and 0.3 mM NaN3). Next day the recovered sample was 

concentrated using Amicon Ultra 0.5 ml centrifugal filters MWCO 10 

kDa (Merck-Millipore), and either used for experiments or stored in -

80°C in the presence of 50% glycerol.  
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 2.4.9 - Actin-tropomyosin co-sedimentation assay 
 

 Rabbit actin was mixed with polymerized buffer (2 mM MgCl2, 

100 mM KCl, 5 mM EGTA, 0.2 mM ATP ph 7.0 and 0.5 mM DTT in 

Buffer A (see paragraph 2.4.6) to a final concentration of 10 µM and 

incubated 1 hour at 24°C to induce polymerization. Two more 

solutions needed to be prepared fresh, that are the 10x assay buffer 

(500 mM KCl, 100 mM imidazole ph. 7.4, 50 mM MgCl2, 5 mM DTT, 

2 mM ATP ph. 7.0 in ddH2O) and tropomyosin buffer (50 mM KCl 10 

mM Tris-HCl ph. 7.5, 0.5 mM DTT and 0.5 mM MgCl2 in ddH2O). 

Before performing the assay each purified Cdc8 mutant proteins was 

centrifuged 15 minutes at 15000 rpm, to pellet down possible 

aggregates. When actin was polymerized 100 µl of the reaction 

mixture was prepared, by mixing 30 µl of polymerized actin, 10 µl of 

10x assay buffer, 20 µl of ddH2O and 40 µl of the desired 

concentration of Cdc8 proteins. In fact, as actin-tropomyosin co-

sedimentation was tested at different concentrations of Cdc8 (0 µM, 

0.4 µM and 0.8 µM), each tropomyosin proteins had been diluted to 

the desired concentration in tropomyosin buffer to a final volume of 

40 ml, which was successively added to the reaction mixture and 

gently mix together. After 1 hour incubation at 24°C, the reaction 

mixture was ultracentrifuged in an Airfuge (Beckman Coulter) at 25 

psi, at room temperature for 15 min. Pellet and supernatant fractions 

were collected in the following amount: 30 µl of supernatant were 

mixed with 10 µl of 4x sample buffer, while the pellet was 

resuspended in 50 µl of 4x sample buffer. After 10 minute incubation 

at 95°C, 10 µl of each pellet and supernatant solutions were 

separated in SDS-PAGE and visualized through simplyblue 

SafeStain (Invitrogen, ThermoFisher Scientific). 
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2.4.10 – Mass spectrometry analysis 
 

 Proteins that needed to be analysed through mass 

spectrometry were initially separated in SDS-PAGE and stained with 

Coomassie blue (simplyblue SafeStain, Invitrogen) overnight. The 

following day the gel was destained with ddH2O and the desired 

protein bands were isolated from the gel and cut in 1 mm3 pieces, in 

order to proceed with in-gel protein digestion protocol [147]. Diced 

gel pieces were destained by an incubation with washing buffer (50% 

ethanol and 50 mM ammonium bicarbonate) at 55°C in gently 

shaking. After 20 minutes the solution was removed and two or more 

washes were done with the washing buffer, until the diced gel pieces 

were completely destained. The sample was dehydrate using 100% 

ethanol, which needed to be incubated for 5 minutes at room 

temperature. Successively the diced gel pieces were incubated with 

a reducing solution containing 10 mM TCEP (tris-2-carboxyethyl 

phosphine) and 40 mM CAA (chloroacetamide), and incubated at 

70°C in gentle rotation. After 5 minutes three washes of the sample 

were done using washing buffer, leaving every time the solution for 

20 minute with a gentle shaking of the sample. 100% ethanol was 

added to dehydrate the sample and, after 5 minutes incubation, the 

sample was hydrated back with a solution containing trypsin at 2.5 

ng/µl. If necessary more ammonium bicarbonate (50 mM) was added 

to the sample, a volume enough to cover completely the diced gel 

pieces, followed by overnight incubation at 37°C to facilitate trypsin 

digestion. Next day it was possible to proceed with peptide extraction 

from the diced gel pieces. Extraction solution (25% acetonitrile and 

5% formic acid) was added to the sample and sonicate for 10 

minutes. After the incubation, the solution was collected from the 

sample and two more extraction were done as explained before with 

extraction solution. The total collected supernatant, containing the 

eluted peptides, needed to be concentrated using speed-Vac 

centrifuge. Once the whole solution was removed, the pellet was 
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resuspended in 50 µl of resuspension buffer (2% Acetonitrile and 

0.1% trifluoroacetic acid). 

The eluted peptides were successively handled and analysed 

by the Proteomics Facility RTP at the School of Life Sciences in the 

University of Warwick. 

 

 

2.4.11 - Structures analysis (for analysis performed 
either by Gayathri Pananghat or Shekhar Jadhav) 
  

The myosin structures (figure 3.7) and GST structure (figure 

5.3) were downloaded from PDB (Protein Data Bank). Structural 

analysis and illustrations were carried out using PyMOL 

(Schrodinger). Mutations of the relevant amino acids were carried out 

in PyMOL, and one of the rotamers was chosen for the illustrations. 

Structural superpositions were performed for observing relative 

domain/helices movements. 

 

 

2.5 - Genetic code expansion protocols 
 

2.5.1 - Expression of proteins containing unnatural 
amino acid  
 

 The expression of proteins containing unnatural amino acids 

was performed as described [148].100 µl of homemade chemically 

competent E. coli BL21-ai cells were gently mixed with two plasmids 

(the plasmid of the protein of interest and the desired tRNA/tRNA 

synthetase plasmid) and electroporated (MicroPulser Electroporator, 

BIO-RAD). 1 ml of SOC (Super Optimal Broth) medium was then 

added and the sample was incubated for 1.5 hours at 36 °C, before 

plating the cells on LB plates with appropriated antibiotics. A single 

colony was inoculated in ZY non-inducing media and grown O.N. at 
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36 °C. Next morning, 500 µl of saturated cultured were added to 50 

ml of ZY inducing media, containing  0.05% arabinose (L-Arabinose 

BioUltra, Sigma-Aldrich)  and 1 mM IPTG to induce protein 

expression, supplemented with 1 mM of the desired unnatural amino 

acid and grown at 36 °C. Cells were harvested after 30 hours 

induction. 

 

 

2.5.2 - Media solutions for BL21-ai protein expression 
 

50× 5052 solution = 125 g glycerol, 12.5 g glucose, 50 g -lactose, 

365 mL dH2O.  

1M MgSO4 = 60.18 g MgSO4, 500 mL dH2O. 

40% Glucose (w/w) = 20 g D-(+)-glucose, 30 mL dH2O.  

20% Arabinose (w/w) = 2 g L-arabinose, 8 mL dH2O. 

25× M = 44.36 g Na2HPO4, 42.55 g KH2PO4, 33.45 g NH4Cl, 8.9 g 

Na2SO4, 500 mL dH2O. 

ZY media = 5 g N-Z-amine AS (bovine casein enzymatic hydro- 

lysate), 2.5 g yeast extract, 500 mL dH2O. 

5000× trace metals = Individual stock solutions of metals should be 

made in 30 mL aliquots weighing  the following amounts: 8.82 g of 

CaCl2 2H20, 5.93 g of MnCl2 4H2O, 8.62 g of ZnSO4 7H2O, 1.32 g 

CoCl2 6H2O, 0.807 g CuCl2, 0.777 g NiCl2, 1.45 g Na2MoO4 2 H2O, 

1.03 g Na2SeO3, 0.371 g H3BO3, 0.486 g FeCl3. Once each solution 

was made, the final 500x trace metals buffer could be prepared, by 

mixing 25 ml of FeCl3 with 0.5 ml of all the other metals in a final 

volume of 50 ml with dH2O. 

8M NaOH = 320 g NaOH in 1 L of dH2O. 

ZY non-inducing media = 2 mM MgSO4, 1X M, 1X trace metals, 0.5 

% glucose in ZY media. 

ZY inducing media = 2 mM MgSO4, 1X M, 1X trace metals, 1X 5052 

in ZY media.  
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Both ZY non-inducing and inducing media were prepared in advance 

and stored at 4°C.  

 
  

2.5.3 - Unnatural amino acid preparation 
 

 Azido-phenylalanine (Bachem) was dissolved to a final 

concentration of 100 mM in 0.1 N of HCl. Benzoyl-phenylalanine 

(Bachem) was dissolved to a final concentration of 500 mM in 0.5 N 

of KOH. Both unnatural amino acids were added to the inducing 

culturing medium to a final concentration of 1mM and, if necessary, 

the ph of the culturing medium was adjusted to ph 7.0. 

 

 

2.5.4 - Protein-protein crosslinking 
 

 Tested interacting proteins were mixed in PBS and incubated 

30 minutes at 4°C. Successively the samples was placed in a 95-

wells plated, kept on ice, and exposed to 365 nm light in a UV 

crosslinker (Vilber) for the desired amount of minutes. Once the 

incubation ended, protein samples were collected and the presence 

of crosslinking products was detected separating the protein samples 

in SDS-PAGE.  

 For the crosslinking experiments of Cdc8 mutants with 

labelled F-actin, the detection of crosslinking products was performed 

directly on the polyacrylamide gel. The gel was washed once in 

ddH2O and successively placed in a ChemiDoc MP Imaging System 

(BIO-RAD), capable to detect the presence of Alexa-488 labelled 

proteins. 
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2.5.5 - Azide-alkyne cycloaddition reaction 
 

 The alkyne compounds, used to fluorescently labelled a 

protein of interest containing AzF, were purchase from ThermoFisher 

Scientific, that are Click-iT Alexa Fluor 488 sDIBO Alkyne, Click-iT 

Alexa Fluor 555 sDIBO Alkyne and Click-iT Alexa Fluor 647 sDIBO 

Alkyne. Each of them was dissolved in ddH2O at a final concentration 

of 5 mM and stored in aliquots in -20°C. The azide-alkyne 

cycloaddition reaction was performed by mixing the desired protein 

with a 20 time molar excess of the desired alkyne compound, and 

incubating the resulting solution overnight at 16°C with a gentle 

shaking. Next day the labelled protein was ready to be used, either 

for other experiments or resolved in SDS-PAGE, followed by 

detection of the fluorescence in a ChemiDoc MP Imaging System 

(BIO-RAD). 

  

 

2.6 - Fission yeast strains  
 
Fission yeast strains used in this thesis are listed in Table 2.1. 

 
Table 2.1: Fission yeast strains used in this thesis 
 
Strain (MBY) Genotype Source 

53 myo2-S1 ade6-21 ura4-D18 leu1-32 h- Lab 
collection 

54 myo2-S2 ade6-21 ura4-D18 leu1-32 h- Lab 
collection 

110 cdc8-110 ade6-210 ura4-D18 leu1-32 h+ Lab 
collection 

151 myo2-E1 ura4-D18 leu1-32 his3-d ade6-21x h- Lab 
collection 

310 cdc12-112 ura4-D18 leu1-32 ade6-210 h+ K. Gould 

6970 cdc3-124 Rlc1-3GFP::KanMX6 atb2-mCherry::hph 
h+ 

Lab 
collection 

8841 mCherry-atb2::hph; Rlc1-3GFP::KanMX6; ura4-D18 
ade6-210 leu1-32 h+ 

Lab 
collection 
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10024-1 myo2-E1 mCherry-atb2::hph Rlc1-3GFP::KanMX6 
h+ 

Lab 
collection 

10075 myp2::NatMX6 mCherry-atb2::hph; Rlc1-
3GFP::KanMX6 ade6-21 

Lab 
collection 

10078 

 

myp2::natMX6 myo2-E1[G345R]-Sup2 [Y297C] 
mCherry-atb2::hph; rlc1-3GFP::KanMX6 ura4-D18 
leu1-32 ade6-21 

Lab 
collection 

10097 myo2-E1 myp2::NatMX6 mCherry-atb2::hph Rlc1-
3GFP::KanMX6 ade6-21 

Lab 
collection 

10995 myo51::ura4 myp2::NatMX6 mCherry-atb2::hph 
Rlc1-3GFP::KanMX6 

This study 

10996 myo51::ura4 mCherry-atb2::hph Rlc1-
3GFP::KanMX6 

This study 

11002 h90/h90 myo2∆/+ strain a (myo2∆::ura4) Blt1-
GFP::NatMX6 

This study 

11049 leu1-32 ura4:: KanMX6 natR:41nmt1promoter-
myo2 h- 

T. Pollard 
[146] 

11129 myo2-E1 myo51::ura4 Rlc1-3GFP::KanMX6 
mCherry-atb2::hph h+ 

This study 

11624 

 

myo2-Sup2 [Y297C] mCherry-atb2::hph; rlc1-
3GFP::KanMX6 ura4-D18 leu1-32 ade6-21X 

This study 

12728 myo2-S1 cdc3-124 ura4-D18 leu1-32 This study 

12730 myo2-S1 Rlc1-3GFP::KanMX6 mCherry-atb2::hph 
ade6-21 ura4-D18 leu1-32  h+ 

This study 

12732 myo2-S1 cdc3-124 Rlc1-3GFP::KanMX6 mCherry-
atb2::hph ade6-21 ura4-D18 leu1-32  h- 

This study 

12734 myo2-S2 cdc3-124 ade6-21 ura4-D18 leu1-32 This study 

12736 myo2-S2 Rlc1-3GFP::KanMX6  mCherry-atb2::hph 
ade6-21 ura4-D18 leu1-32 

This study 

12738 myo2-S2 cdc3-124 Rlc1-3GFP::KanMX6 mCherry-
atb2::hph ade6-21 ura4-D18 leu1-32 

This study 

12928 myo2-S1 cdc8-110 ura4-D18 leu1-32 This study 

12930 myo2-S1 cdc12-112 ura4-D18 leu1-32 This study 

12931 myo2-S2 cdc8-110 ura4-D18 leu1-32 This study 

12933 myo2-S2 cdc12-112 ura4-D18 leu1-32 This study 

12958 natR:41nmt1prom-myo2-S1 leu1-32 ura4:: KanMX6 This study 

12960 natR:41nmt1prom-myo2-S2 leu1-32 ura4:: KanMX6 This study 

12964 pDS472-URA4-Rlc1; pDS473-LEU2-Cdc4 was 
transformed in to MLP 509 (natR::41nmt1prom-
myo2) 

This study 

12965 pDS472-URA4-Rlc1; pDS473-LEU2-Cdc4 was 
transformed in to MBY 12958 (natR::41nmt1prom-
myo2-S1) 

This study 

12966 pDS472-URA4-Rlc1; pDS473-LEU2-Cdc4 was 
transformed in to MBY 12960 (natR::41nmt1prom-

This study 
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myo2-S2) 
 
 
 
2.7 - Plasmids  
 
Plasmids used in this thesis are listed in Table 2.2. 

 

Table 2.2: Plasmids used in this thesis 
 

Name Source 

pDULE2-AzF (p-aminoPhe tRNA synthetase and cognate amber 
suppressing tRNA derived from M. jannaschii Tyrosine 
synthetase/tRNA system)  

Ryan Mehl [149] 

pDULE2-BPA (benzoylPhe tRNA synthetase and cognate amber 
suppressing tRNA derived from M. jannaschii Tyrosine 
synthetase/tRNA system) 

Ryan Mehl 

pET-28a - sfGFP (Addgene plasmid – n. 85492) 

 

Ryan Mehl [148] 

pET-28a - sfGFP-150-TAG (Addgene plasmid – n. 85493) Ryan Mehl [148] 

pET-28c - GST This study 

pET-28c - GST-F52-TAG This study 

pETMCN - Cdc8 Lab collection 

pETMCN - Cdc8-K30-TAG This study 

pETMCN - Cdc8-K39-TAG This study 

pETMCN - Cdc8-Y43-TAG This study 

pETMCN - Cdc8-R48-TAG This study 

pETMCN - Cdc8-K49-TAG This study 

pETMCN - Cdc8-K65-TAG This study 

pETMCN - Cdc8-I75-TAG This study 

pETMCN - Cdc8-R86-TAG This study 

pETMCN - Cdc8-E89-TAG This study 

pETMCN - Cdc8-L91-TAG This study 

pETMCN - Cdc8-E93-TAG This study 

https://www.addgene.org/browse/pi/3153/
https://www.addgene.org/browse/pi/3153/
https://www.addgene.org/browse/pi/3153/
https://www.addgene.org/browse/pi/3153/
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pETMCN - Cdc8-E94-TAG This study 

pETMCN - Cdc8-T97-TAG This study 

pETMCN - Cdc8-N98-TAG This study 

pETMCN - Cdc8-K100-TAG This study 

pETMCN - Cdc8-R103-TAG This study 

pETMCN - Cdc8-T105-TAG This study 

pETMCN - Cdc8-E107-TAG This study 

pETMCN - Cdc8-T112-TAG This study 

pETMCN - Cdc8-V114-TAG This study 

pETMCN - Cdc8-F119-TAG This study 

pETMCN - Cdc8-R121-TAG This study 

pETMCN - Cdc8-V123-TAG This study 

pETMCN - Cdc8-L126-TAG This study 

pETMCN - Cdc8-R128-TAG This study 

pETMCN - Cdc8-K146-TAG This study 

pET- 28c - Mid1-PH domain (798-920)-R876-TAG This study 

natR:41nmt1 promoter -myo2 Lab collection 

natR:41nmt1 promoter -myo2-S1 This study 

natR:41nmt1 promoter -myo2-S2 This study 

pDS473a - URA4:3nmt1 promoter – GST- Rlc1  Lab collection 

pDS473 - LEU2:3nmt1 promoter – GST- Cdc4 Lab collection 
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3 - EXPERIMENTAL RESULTS AND 
DISCUSSION 
 

3.1 - Myo2 is the major motor involved in 
actomyosin ring contraction in fission yeast 
 

Cytokinesis in many eukaryotes involves the contraction of an 

actomyosin-based contractile ring [1]. In fission yeast, the main 

motors for cytokinesis are the type-II myosins Myo2 and Myp2, and 

the type V myosin Myo51 [124, 130]. All three myosins are present in 

the cytokinetic ring but only Myo2 is essential for viability, driving 

both assembly and contraction of the actomyosin ring. Myo51 is 

recruited at the beginning of actomyosin ring formation in order to 

help with its assembly and maturation, while Myp2 appears only for 

the contraction of the cytokinetic ring. 

Recent work from Laplante et al. [127] investigated the 

contribution of these three myosins in cytokinesis, concluding that 

each of them has distinct function during cell division: Myo2 and 

Myo51 are the major motor proteins contributing to the actomyosin 

ring assembly, while Myp2 plays the dominant role in actomyosin ring 

contraction. We were also analysing fission yeast myosins in order to 

unravel their function, however our observations contrasted 

significantly with those of Laplante et al, as we found that Myo2, 

rather than Myp2, is the main motor contributing to actomyosin ring 

contraction [139].  

 

 

3.1.1 - Investigating the effects of deletions or 
mutations of myosin’s genes in fission yeast 
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To unravel the function of each myosin we conducted our 

investigation using deletion mutants of Myp2 (myp2Δ) and Myo51 

(myo51Δ), and the temperature sensitive Myo2-E1 mutation (G345R 

substitution, in the upper 50KDa domain of Myo2 head), since this 

protein cannot be deleted. Initially, we wondered if myo2-E1 was the 

right allele to elucidate the role of this myosin in cytokinesis. Work 

from several laboratories has shown that myo2-E1 forms healthy 

colonies at 25°C (permissive temperature), while at higher 

temperatures the strain is not viable [36, 150]. Only in vitro studies 

have shown that the product of myo2-E1 neither binds actin filaments 

nor has ATPase activity at 25°C [146], but the in vitro activity and in 
vivo functions of the products of mutant alleles are not necessarily 

correlated [151]. To investigate if myo2-E1 was a proper allele to 

understand Myo2 function at 25°C, we followed the dynamics of 

actomyosin ring in germinating spores of myo2Δ. To image the 

cytokinetic ring we used Blt1-GFP, a protein that localises to 

precursor nodes and to the actomyosin ring [152]. In germinating 

myo2Δ spores we never saw the formation of a proper actomyosin 

ring, even after 4 hours of imaging, whereas germinating wild-type 

spores were perfectly able to assemble and constrict a normal 

actomyosin ring (figure 3.1A).   

As myo2-E1 cells can assemble an actomyosin ring and carry 

out cytokinesis at their permissive temperature, we concluded that 

myo2-E1 was not a severely compromised allele in comparison to 

myo2Δ, and that it might not be an appropriate mutant to fully 

understand the contribution of Myo2 in cytokinesis. Therefore, 

considering its significantly weaker phenotype compared to myo2Δ, 

myo2-E1 should be viewed as a mutant that underestimates the 

relative role of Myo2 in cytokinesis. 

Keeping this in mind, we began our experiments analysing the 

behaviour of the mutant strains myo2-E1, myp2Δ and myo51Δ, 

together with pair-wise combinations of these three mutations:  
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Figure 3.1: Viability of cells with deletions, or mutations, of the 
myosin’s genes in S. pombe. 
 

A) Time-lapse image series of mitotic cells of wild-type Blt1-GFP 
and myo2Δ Blt1-GFP germinated from spores. Images shown 
are maximum intensity projections of z-stacks. Time indicated 
in minutes. Scale bars represent 3 μm. 

B) 10-fold serial dilutions of wild-type, myo2-E1, myp2Δ myo51Δ, 
myo51Δ, myo2-E1 myp2Δ, myp2Δ and myo2-E1 myo51Δ 
were spotted onto YEA agar plates and grown for 3 days at 
25°C or at 36°C. 
 

 

myo2-E1 myp2Δ, myo2-E1 myo51Δ and myp2Δ myo51Δ, which 

were generated by genetic crosses. To ensure that myo2-E1 and the 

double mutants obtained in combination with this temperature 

sensitive allele carried only the previously described G345R mutation 

[36], the myo2-E1 gene was sequenced in each of these strains, to 

rule out the possibility of there being any additional mutations. 

We confirmed, through spot test assays, that myo2-E1 formed 

colonies at its permissive temperature, while its growth was severely 

compromised at 30°C (semi-permissive temperature) and 36°C  

(figure 3.1B). This behaviour was emphasised when other myosins 
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were deleted on top of this mutant allele, in fact the double mutants 

myo2-E1 myp2Δ and myo2-E1 myo51Δ were also severely 

compromised in their colony formation at both the semi-permissive 

and restrictive temperatures, and presenting an even slower growth 

at 25°C. By contrast, in the myp2Δ, myo51Δ and the myp2Δ myo51Δ 

mutants, normal colony formation was observed at all of the tested 

temperatures.  

 

 

3.1.2 – Quantification of actomyosin ring kinetics in 
myosin single and double mutants 
 

We performed time-lapse imaging of actomyosin ring 

assembly and contraction of all the strains, initially at 25°C, the 

permissive temperature of myo2-E1, and then at 30°C and 36°C. To 

image the dynamics of the cytokinetic ring, all the strains needed to 

carry the fluorescent markers mCherry-atb2 and Rlc1-3GFP. Atb2 

(tubulin alpha 2) was used as a marker for the cell cycle, as the 

presence of a short spindle (~1 µm) in the middle of the cell served to 

define the zero time point of cytokinesis (t=0) [60], while Rlc1 

(myosin-II regulatory light chain 1) was a marker to follow the 

formation and contraction of the actomyosin ring. Three phases were 

considered for the quantification of the dynamics of the ring: we 

defined the "coalescence time" as the time necessary for the 

cytokinetic nodes to assemble into a condensed ring; "dwelling time" 

as the period required for the maturation of the ring, measured from 

the end of ring assembly and the initiation of ring contraction; lastly 

we defined the "contraction time" as the time necessary for the 

completed ring to contract into a single dot. 

We first imaged the wild type strain in order to determine the 

standard times necessary to complete each phase of cytokinesis: the 

actomyosin ring took 19.1 ± 2.5 minutes to assemble, 15.5 ± 3.8 

minutes to mature and 35.4 ± 3.1 minutes to contract at a rate of 0.29 
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± 0.02 µm/min. We then proceeded our analysis by imaging all the 

other myosin mutants and comparing them with the standard given 

by the wild type. 

When myo2-E1 cells were imaged at 25°C (figure 3.2 A and 

B), we registered strong defects in all the aspects of cytokinesis, as 

each phase of actomyosin ring dynamics were slowed down. myo2-

E1 cells took double time to complete cytokinesis when compared 

with wild type, as they assembled their actomyosin rings in 51.0 ± 5.5 

minutes, which then contracted at a rate of 0.13 ± 0.04 µm/min, 

suggesting that this defective mutant allele of Myo2 does retain some 

activity for ring assembly and contraction, as cells with this mutation 

manage to complete cell division at the permissive temperature, only 

in a slower manner. Nevertheless, the presence of the other two 

myosins (Myp2 and Myo51) in myo2-E1 was not enough to sustain 

cytokinesis at the same rate as wild type cells, highlighting even 

more the major role played by Myo2 in cytokinesis. When we imaged 

the other single-mutant strains, we recorded a longer coalescence 

time for myo51Δ (39.5 ± 4.7 minutes), suggesting an ancillary role of 

this myosin during actomyosin ring assembly, whilst the contraction 

time (35.9 ± 3.4 minutes) was comparable to wild type. However, we 

also measured a dwelling time for myo51Δ cells that was half of that 

in wild type cells, and which we are not able to explain. On the 

contrary, myp2Δ only displayed a longer contraction time (53.9 ± 7.5 

minutes), confirming its participation exclusively during actomyosin 

ring contraction, as this protein is recruited to the ring only for the last 

stage of cytokinesis. 

Next, we investigated the double mutant strains: myp2Δ 

myo51Δ cells showed a combination of the dynamics from the two 

single mutant strains, since we registered an increased time for both 

ring assembly (40.3 ± 10.0 minutes) and contraction (53.1 ± 11.9 

minutes) phases. These results proved that Myo2, the only functional 

myosin in this strain, was able to viably carry out cytokinesis on its 

own, albeit in a slower manner when in the absence of the two other  
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Figure 3.2: Actomyosin ring kinetics in S. pombe myosin 
mutants. 
 

A,C,E) Quantification of the time taken for various steps of  
cytokinesis (coalescence of nodes into a ring, dwell 
time before contraction, and contraction) of wild-type, 
myo2-E1, myp2Δ, myo51Δ, myp2Δ myo51Δ, myo2-E1 
myp2Δ, and myo2-E1 myo51Δ imaged at 25°C (A), 
30°C (C) and 36 °C (E) respectively (graphs produced 
in collaboration with Saravanan Palani). 

B,D,F) Quantification of the ring contraction rates at 25°C (B), 
30°C    (D) and 36°C (F). In all cases, Rlc1-3GFP was 
used as a marker of cytokinetic nodes and the 
actomyosin ring. Note that improper rings that 
underwent aberrant contraction were detected in 
myo2-E1 mutants (at 30°C and 36°C), myo2-E1 myp2 
Δ mutants (at 25°C, 30°C and 36°C) and myo2-E1 
myo51 Δ mutants (at 25°C, 30°C and 36°C) 
(quantification done by Anton Kamnev, graphs 
produced in collaboration with Saravanan Palani). 

  
 
myosins. The outcome was quite different when we imaged strains 

containing only either Myo51 or Myp2: both double mutants myo2-E1 



69 
 

myp2Δ and myo2-E1 myo51Δ were severely compromised and we 

were only able to quantify these as undergoing improper cytokinesis 

for the time from short spindle formation to ring contraction, as it was 

very difficult to demarcate the different phases of actomyosin ring 

dynamics in these cells. Cytokinesis was completed in 125.45 ± 19.1 

minutes in myo2-E1 myp2Δ at a contraction rate of 0.16 ± 0.03 

µm/min, while cytokinesis in myo2-E1 myo51Δ cells took 133.7 ± 

28.9 minutes at a contraction rate of 0.23 ± 0.08 µm/min. Overall, 

these results proved that only Myo2 was able, on its own, to support 

cytokinesis in fission yeast, while the other two myosins played 

secondary roles in the process: Myo51 helps in actomyosin ring 

assembly while Myp2 contributes during actomyosin ring contraction. 

We performed time-lapse imaging experiments at 30°C (figure 

3.2C and D) and 36°C (figure 3.2E and F), to study the contribution 

of each of the myosins at the myo2-E1 semi-permissive and 

restrictive temperatures. In general, cytokinesis proceeded faster at 

higher temperatures, with wild type cells completing the process in ~ 

70 minutes at 25°C, only ~ 53 minutes at 30 °C, and ~ 40 minutes at 

36°C. Accordingly, the mean contraction rate increased from the 

initial 0.29 ± 0.02 µm/min at 25°C to 0.39 ± 0.04 µm/min at 30 °C and 

0.59 ± 0.11 µm/min at 36°C. 

After imaging myosin mutants at 30°C and 36°C, we noticed 

defective cytokinesis in myo2-E1, myo2-E1 myp2Δ and myo2-E1 

myo51Δ for both temperatures. The assembly of the actomyosin ring 

lasted for double the time when compared with wild type in each of 

these mutant strains, and this was actually the only cytokinetic phase 

that we could quantify. Cell division did not occur in these cells, as 

the cytokinetic ring, after improper assembly, simply collapsed. 

These results highlight the essential role of Myo2 in cytokinesis also 

at higher temperatures, as the presence of myo2-E1 allele was not 

enough to guarantee the viability of these cells. Regarding myo51Δ 

and myp2Δ myo51Δ cells, the coalescence time increased slightly  
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Figure 3.3: Actomyosin ring assembly, dwelling and contraction 
of S. pombe myosin mutants. 
 

A–C) Time-lapse image series of mitotic cells of wild-type, 
myo2-E1, myp2Δ, myo51Δ, myp2Δ myo51Δ, myo2-E1 
myp2Δ, myo2-E1 myo51Δ. In all cases, Rlc1-3GFP 
was used as a marker of cytokinetic nodes and the 
actomyosin ring and alpha tubulin 2 (mCherry-atb2) 
served as a cell-cycle marker (t = 0 denotes the 
elongation of the spindle ~1 μm). Time-lapse movies 
were taken at 25°C (B), 30°C (C) and 36°C (D) 
respectively. For imaging at restrictive temperatures 
cells were grown at 25°C and shifted to 36°C for 3-4 h 
before imaging. More than 15 cells were imaged and 
quantified for each strain. Images shown are maximum 
intensity projections of z-stacks. In (B), time points 
between 33 and 54 minutes were highlighted with blue 
dotted square box in the myo2-E1 myo51Δ cells. Time 
indicated in minutes. Scale bars represent 3 μm. 
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4 more minutes at 30 °C and ~ 7 more minutes at 36°C, when 

compared with wild type), confirming the role of Myo51 in actomyosin 

ring assembly.  

Interestingly we could not see any significant difference in the 

contraction time between wild type cells and all the viable strains 

(myp2Δ, myo51Δ and myp2Δ myo51Δ). These results further 

demonstrate that Myp2 is not the main motor involved in actomyosin 

ring contraction at higher temperatures, highlighting the importance 

of Myo2, with Myo51 only helping during actomyosin ring assembly 

(figure 3.3A, B and C).  

Taken together, this evidences reinforces the role of Myo2 as 

the most important myosin during all stages of cytokinesis. At 25°C 

Myo2 is the main motor involved in actomyosin ring contraction, while 

Myo51 plays an ancillary role during assembly and Myp2 contributes 

to the contraction of the actomyosin ring. At higher temperatures 

Myo2 is largely responsible for cytokinesis on its own, only marginally 

helped by Myo51 for the assembly phase, while Myp2 plays a 

minimal role during the contraction phase. Considering that previous 

work reported myp2Δ cells as cold sensitive [125, 130], this could 

suggest that this myosin has a specialised role in ring contraction at 

lower temperatures.  

 

 

3.2 - Evidence that a steric clash in the upper 50 
KDa domain of the motor Myo2 leads to 
cytokinesis defects in fission yeast 
 

Our analysis of fission yeast myosin mutants, as part of our 

continuing efforts to understand cytokinesis, led us to establish the 

importance of Myo2 during fission yeast cell division. As a 

continuation of this previous work, we wanted to investigate further 

the myosin II structure and function, to provide insight into its role in 

cytokinesis. Myosin II function is not only necessary for cell division, 
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but it is also relevant in cardiac smooth muscle: defects in this 

myosin are the causes of some cardiomyopathy [153-155]. 

Therefore, it is important to unravel the relationship between the 

structure and function of this class of myosins. 

 Many studies of Myo2 function were conducted through the 

characterization of the temperature sensitive allele myo2-E1. In the 

following work [140], in an unbiased genetic screening for 

suppressors of poor growth in myo2-E1 cells, we identified a mutant 

that reverted the myo2-E1 phenotype, supporting actomyosin ring 

contraction in vivo and in vitro. We named this myosin mutant myo2-

E1-Sup2, and its characterization will provide a molecular 

mechanism for the defects that are present in myo2-E1. The 

suppressor screening identified two intragenic mutants of myo2-E1 

that were able to be grown at 36°C: myo2-E1-Sup1 and myo2-E1-

Sup2. The first suppressor has already been described [107], while 

here we present the characterization of myo2-E1-Sup2. 

 
 

3.2.1 – myo2-E1-Sup2 reverted the lethality of myo2-E1 
at non-permissive temperatures 
 

Molecular analysis of myo2-E1 identified the substitution of a 

glycine with an arginine in position 345 (G345R), located in the upper 

50 KDa domain of Myo2 head. This replacement led to a hypothesis 

that the bulky arginine may sterically clash with a tyrosine present in 

position 297. Interestingly, nucleotide sequence determination of 

myo2-E1-Sup2 identified the presence of a second mutation in 

addition to G345R, consisting of the substitution of tyrosine 297 with 

a cysteine (Y297C).  

This result was consistent with structural analysis of myo2-E1: 

the prediction of a potential steric clash between glycine 345 and 

tyrosine 297 was hypothesized to be relieved by its substitution with 

a smaller amino acid in position 297. Intuitively, cysteine would seem  
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Figure 3.4: myo2-E1-Sup2, unlike myo2-E1, is viable and forms 
colonies at the non-permissive temperature.  
 

A) 10 fold serial dilutions of wild-type, myo2-E1, myo2-E1-Sup2, 
myp2Δ, myo2-E1 myp2Δ and myo2-E1-Sup2 myp2Δ cells 
were spotted onto YEA plates and grown for 3 days at 24°C 
and 36°C. 
 

 

to be a good candidate to overcome this steric clash, and we decided 

to proceed with our analysis of myo2-E1-Sup2 to further characterise 

this suppressor.  

 As myo2-E1-Sup2 was capable of colony formation at 24°C 

and 36°C (figure 3.4A), we investigated if its viability depended on 

Myp2 through the generation of myo2-E1-Sup2 myp2Δ strains. From 

our previous study we knew myo2-E1 myp2∆ was not viable at 36°C 

while, on the contrary, myo2-E1-Sup2 myp2Δ was perfectly able to 

grow at high temperatures. Therefore, the viability of our suppressor 

was not dependent on Myp2 but only the introduction of the Y297C 

mutation in myo2-E1 was able to guarantee its viability, considering 

also that myo2-E1-Sup2 cell resembled wild-type cells in morphology 

(figure 3.5A). 

Subsequently, we performed time-lapse imaging to quantify 

the dynamics of the actomyosin ring. We have already described 

these dynamics for wild type, myo2-E1, myp2Δ and myo2-E1 myp2Δ 

cells, where we showed the defects caused as a result of Myo2-E1, 

therefore here we presented our analysis of myo2-E1-Sup2 and  

A 
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Figure 3.5: myo2-E1-Sup2 fully restores the actomyosin ring 
assembly and contraction in the presence or absence of the 
non-essential myosin heavy chain Myp2. 
 

A) Log-phase cells were grown at 24°C and shifted for 3-4 h to 
36°C   before 4% paraformaldehyde (PFA) fixation. DAPI and 
Anillin Blue staining was used to visualize the nucleus and 
septum of wild-type, myo2-E1, myo2-E1-Sup2, myp2Δ, myo2-
E1 myp2Δ and myo2-E1-Sup2 myp2Δ cells, respectively.  

B) Time-lapse series of wild-type, myo2-E1, myo2-E1-Sup2, 
myp2Δ, myo2-E1 myp2Δ and myo2-E1-Sup2 myp2Δ cells 
expressing 3GFP-tagged myosin regulatory light chain (Rlc1-
3GFP) as a contractile ring marker and mCherry-tagged 
tubulin (Atb2-mCherry) as a cell cycle stage marker. Cells 
were grown at 24°C and shifted to 36°C for 3-4 h before 
imaging at 36°C (t=0 indicates the time Rlc1-3GFP nodes 
localize to the cell middle). More than 15 cells were imaged 
and quantified for each strain. Images shown are maximum 
intensity projections of z-stacks. Time indicated in minutes. 
Scale bars represents 3 μm.  

C) Quantification of timing of contractile ring assembly, dwelling 
and contraction in strains shown in (B). Error bars represent 
S.D (quantification and graph produced in collaboration with 
Saravanan Palani).  

D) Contraction rate determined from a graph of ring 
circumference versus time (quantification done by Anton 
Kamnev). Contraction rates of wild-type, myo2-E1-Sup2, 
myp2Δ and myo2-E1-Sup2 myp2Δ cells show in B. Statistical 
significance was calculated by Student’s t-test. Error bars 
represent S.D. 
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myo2-E1-Sup2 myp2Δ (figure 3.5B and C). Actomyosin ring 

assembly in myo2-E1-Sup2 and myo2-E1-Sup2 myp2Δ cells 

resembled the timing of wild type, as well as for actomyosin ring 

contraction rate that was comparable with wild type (figure 3.5D). 

The contraction time was slightly reduced only in myo2-E1-Sup2 

myp2Δ, as expected due to the contribution of Myp2 to actomyosin 

ring contraction [130, 139]. These results show that myo2-E1-Sup2 

was able to reverse the defective cytokinesis of myo2-E1, 

demonstrating the ability of this myosin suppressor to restore normal 

cytokinesis. Myo2-E1-Sup2 was as active as Myo2 to drive both 

assembly and contraction of the cytokinetic ring, underlining the 

marginal role of Myp2 during actomyosin ring contraction at higher 

temperatures.  

 

 

3.2.2 – Isolated actomyosin rings of myo2-E1-Sup2 
supported ATP-dependent contraction 
 
 It has been shown that in fission yeast, like other walled cells, 

actomyosin ring contraction happens in tandem with the assembly of 

a septum, which is necessary to complete cell division. The 

contraction of the actomyosin ring seems to be a necessary starting 

point for septum ingression, although once started, septation can 

continue even in the absence of the actomyosin ring [156]. 

Considering the role played by the septum during cytokinesis, we 

wanted to assess if the recorded actomyosin ring contraction time for 

myo2-E1-Sup2 could be due to the septum itself promoting cell 

division, or if it was solely due to the myosin suppressor.  

To evaluate the contribution of Myo2-E1-Sup2 in actomyosin 

ring contraction, we used an in vitro system previously developed in 

our lab [76, 143], which will allow us to determine the contribution of 

the proteins in the actomyosin ring independently from the presence 

of cell wall and, therefore, of septation. Initially fission yeast cells 
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underwent enzymatic cell wall digestion, resulting in the generation of 

the so called spheroplasts. Successively cell ghosts were produced 

through permeabilization of the spheroplasts: the creation of holes in 

the plasma membrane led cell ghosts to lose all the cytoplasmic 

proteins and structure, retaining only the actomyosin ring together 

with the most necessary proteins for its contraction. In fact, upon 

ATP addition isolated actomyosin rings were able to undergo rapid 

contraction, demonstrating that the ability to contract the ring was 

retain from the retained proteins and not by the pushing of the cell 

wall growth. Therefore this is a nice in vitro system to evaluate the 

contribution of the proteins present in the isolated ring (mostly F-

actin, myosin II and actin crosslinkers) not assisted by the growing 

septum.  

We examined if ATP dependent contraction was present in 

cell ghosts prepared from wild type, myo2-E1, myo2-E1 myp2Δ, 

myp2Δ, myo2-E1-Sup2 and myo2-E1-Sup2 myp2Δ strains (figure 

3.6A). Regarding myo2-E1 and myo2-E1 myp2Δ rings, it has already 

been shown that these were unable to contract upon the addition of 

ATP [76]. Myo2-E1 is known to have reduced ATPase activity and 

motor activity [146], which could also cause improper actomyosin 

ring contraction in these cell ghosts. In fact, upon addition of ATP, 

isolated rings from both myo2-E1 and myo2-E1 myp2Δ cells never 

contracted, but instead broke or fragmented into clusters (figure 

3.6B). The presence of functional Myo2 in myp2Δ rings mostly 

ensured the proper contraction of these rings, with only a small 

fraction of observed rings fragmenting or clustering when compared 

to wild type rings.  

Interestingly, myo2-E1-Sup2 rings displayed similar 

proportions of fully contracted or clustered and broken rings when 

compared to wild type rings: the majority of actomyosin rings 

underwent normal contraction, with only small percentages becoming 

either clustered or broken.  

Additionally, myo2-E1-Sup2 myp2Δ rings could also perform 

actomyosin ring contraction at a similar level as was recorded for  
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Figure 3.6: Actomyosin rings from myo2-E1-Sup2 and myo2-E1-
Sup2 myp2Δ cell ghosts undergo ATP-dependent contraction. 
 

A) In vitro isolated actomyosin rings were prepared from wild-
type, myo2-E1, myo2-E1-Sup2, myp2Δ, myo2-E1 myp2Δ and 
myo2-E1-Sup2 myp2Δ grown at 24°C. Ring contraction 
experiments were performed at 24°C and contraction was 
activated by addition of 0.5 mM ATP. More than 11 rings were 
imaged for each strains. Images shown are maximum intensity 
projections of z-stacks. Time indicated in seconds. Scale bars 
represents 5 μm.  

B) Percentage of contracted, clustered and broken rings of the 
fission yeast strains illustrated in (A). 
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(All figure 3.6 produced in collaboration with Saravanan Palani).  
 
 
myp2Δ rings, with a slight increase in the amount of clustered and 

broken rings.  

All together these experiments led us to conclude that the 

presence of the suppressor mutation Y297C was sufficient to restore 

completely the function of Myo2-E1. Myo2-E1-Sup2 was therefore 

able to support actomyosin ring assembly and ATP-dependent 

contraction.  

 

 

3.2.3 – Structural analysis of myo2-E1-Sup2 
 

To understand the molecular mechanism behind this 

suppression, we analysed the structure of the upper 50 KDa 

subdomain of the Myo2 motor head, to map any changes due to the 

introduction of Y297C mutation. Structural analysis was based on the 

myosin motor domain of Dictyostelium discoideum (PDB: 1VOM), 

where the Myo2-E1 mutation G345R corresponded to G355R and 

Myo2-E1-Sup2 mutation Y297C corresponded to Y306C in D. 
discoideum (figure 3.7A and B). At first we analysed the Myo2-E1 

mutation that mapped to the C-terminal end of the HL helix, where 

the introduction of an arginine residue seems to sterically clash with 

the natural tyrosine present in position 297 of the HI helix (figure 

3.7C). The clash between these two residues in the pocket 

surrounded by HL, HO and HI helices may result in a general 

instability of the myosin head, which prevents the conformational 

changes that Myo2 has to undergo during its ATPase cycle, possibly 

leading to a reduced motor activity of Myo2-E1. To resolve this 

obstacle, it was reasonable to imagine that the presence of a smaller 

amino acid, in replacement of the bulky aromatic side chain of 

tyrosine, could overcome the steric clash. The fact that we found in 
myo2-E1-Sup2 that the tyrosine 297 was mutated into a smaller  
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Figure 3.7: Structural basis of suppression by myo2-E1-Sup2 
mutant. 
 

A) Myosin motor domain highlighting the upper 50 kDa 
subdomain that contains the mutations G345R and Y297C, 
corresponding to G355 and Y306, respectively, in 
Dictyostelium discoideum myosin (PDB: 1VOM shown in the 
figure). The insets show the zoomed view of the region.  

B) G355 and Y306 in the wild type.  
C) The steric clash introduced by G355R mutation modelled 

using PyMOL.  
D) Probable removal of the steric clash by the double mutant 

G355R and Y306C.  
E) Comparison with the rigor state conformation of myosin (PDB 

5JLH, cyan) shows relative movement between helices in the 
region, highlighting the plasticity of the upper 50 kDa domain 
that may allow for a functional mutant at permissive 
temperatures. 

(All the analysis and figure 3.7 were provided by Gayathri 
Pananghat). 

 

 

cysteine seemed to suggest that this was a reasonable mechanism 

to relieve the steric clash, thereby restoring myosin head function 

and supporting our experimental results (figure 3.7D). Through 

structural analysis we found an explanation for the restoration of 

Myo2 function in this suppressor, subsequently allowing us to explain 

Myo2-E1’s deficiency as a motor. 

We know that Myo2-E1 protein is stable at 36°C [141, 157, 

158] but myo2-E1 strain is deficient at high temperatures, being 

https://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=TreeEntityQuery&t=1&n=44689
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viable only at 24°C. To find a reason for this behaviour we compared 

the movement of HL, HO and HI helices of Myo2 motor domain 

between ADP bound myosin (PDB: 1VOM) and actin-bound rigor 

state myosin (PDB: 5JLH [159]) (figure 3.7E). Between the two 

structures we noticed a movement of HI helix, a consequence of 

conformational changes during the ATPase cycle. It was therefore 

possible that the flexibility of the helices in that region easily 

accommodated the G345R mutation at 25°C, resulting in the viability 

of the strain at the permissive temperature, while affecting the growth 

at higher temperatures. 

 From this work we concluded that the isolation and 

characterization of Myo2-E1-Sup2 provided an insight into the nature 

of the cytokinetic defects presents in the myo2-E1 strain, providing 

an explanation for how the Y297C mutation could restore Myo2 

activity. It also demonstrated the importance of combine a variety of 

techniques to better understand a specific process, as we presented 

results from classical genetics, fluorescence microscope imaging, in 
vitro assays and structural analysis. However, in order to maximise 

our understanding of the structure and function of myosin II during 

cytokinesis, it would be beneficial to characterise additional mutant 

alleles of myo2, such as myo2-S1 and myo2-S2, which were 

identified in [141]. 

 

 

3.3 - Characterization of myo2-S1 and myo2-S2 
 

In fission yeast cdc3 codes for profilin, an essential cytokinetic 

protein involved in the formation of actin filaments: it interacts with 

actin monomers and delivers them to formin (cdc12), which is 

responsible for the assembly of actin filaments [97, 160]. Some 

temperature sensitive alleles are available, such as cdc3-124, which 

have helped to facilitate the study of this protein, because its deletion 

is lethal in fission yeast. In an unbiased genetic screen, designed to 
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look for suppressors of poor growth in cdc3-124 at high 

temperatures, two Myo2 mutants were discovered, named myo2-S1 

and myo2-S2 [141, 161], which we decided to characterise in this 

study. Molecular analysis identified a single mutation in myo2-S1, 

G515D, which is located in the lower 50 KDa subdomain of the 

myosin motor head, specifically in the outer cleft region that 

corresponds to the actin-binding site, whereas the mutation in myo2-

S2, E679K, is located in the neck region.  

 

 

3.3.1 – myo2-S1 and myo2-S2 restored defects of cdc3-
124 at the non-permissive temperature  
 

In order to understand the mechanisms behind the 

suppression of the profilin deficient allele, we analysed the behaviour 

of wild type, cdc3-124, myo2-S1, and myo2-S2 cells, together with 

the double mutants myo2-S1 cdc3-124 and myo2-S2 cdc3-124, 

which were generated by genetic crosses. It has already been shown 

that the growth and phenotype of cdc3-124 was similar to wild type at 

25°C, while it was not viable at higher temperatures [160, 161]. 

Interestingly the addition of either myo2-S1 or myo2-S2 was capable 

of reverting the lethality of cdc3-124. The growth of myo2-S1 cdc3-

124 and myo2-S2 cdc3-124 was slightly reduced at 25°C but at 34°C 

both strains were perfectly viable and grew at similar rates compared 

to wild type (figure 3.8A). 34°C was the maximum temperature 

tolerated by the double mutant strains, as at 36°C the growth was 

severely compromised. When the single myosin mutants were 

examined, each of them was able to form colonies at all the 

considered temperatures, but with reduced growth at 25°C, whilst 

myo2-S1 also grew slowly at 34°C and 36°C. 

These initial experiments confirmed the suppression of cdc3-

124 by myo2-S1 and myo2-S2. As profilin is one of the essential 

proteins involved in the formation of actin filaments, we examined if  
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Figure 3.8: Both myo2-S1 and myo2-S2 restore the lethality of 
cdc3-124 at 34°C.  
 

A) 10-fold serial dilutions of wild-type, cdc3-124, myo2-S1, myo2-
S1   cdc3-124, myo2-S2 and myo2-S2 cdc3-124 were spotted 
onto YEA agar plates and grown for 3 days at 25°C, 34°C and 
36°C. 

B) 10-fold serial dilutions of wild-type, cdc8-110, cdc12-112, 
myo2-S1, myo2-S1 cdc8-110, myo2-S1 cdc12-112, myo2-S2, 
myo2-S2 cdc8-110 and myo2-S2 cdc12-112 were spotted 
onto YEA agar plates and grown for 3 days at 25°C, 34°C and 
36°C. Scale bars represent 3 μm. 

C) Calcofluor white staining was used to visualize the septum of 
wild-type, cdc3-124, myo2-S1, myo2-S1 cdc3-124, myo2-S2 
and myo2-S2 cdc3-124 cells, fixed at 24°C or after 3 hours 
shift at 34°C. In the first column the front view of the septum 
was acquired, while in the second column it is possible to see 
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the face-on view of the septum, which was generated with Fiji 
software (as represented by the cartoon).  

D) Fission yeast cells were grown at 25°C and shifted for 4-5 
hours at 34°C before PFA fixation. Phalloidin and DAPI were 
used to visualize actin structures and the nucleus, 
respectively, of wild-type, cdc3-124, myo2-S1, myo2-S1 cdc3-
124, myo2-S2 and myo2-S2 cdc3-124. Scale bars represent 5 
μm. 

E) Quantification of phalloidin and DAPI staining in (D) is shown. 
It was calculated the percentage of wild-type like cells, which 
presented either 2 nuclei and no ring (2N/no ring) or 2 nuclei 
and 1 ring (2N/1 ring), and the percentage of abnormal cells, 
which presented either 2 nuclei with an abnormal ring 
(2N/abnormal ring) or multiple nuclei and rings (MN/M rings). 
 

 

myo2-S1 and myo2-S2 were able to suppress other temperature 

sensitive genes of proteins involved in F-actin formation and 

stabilization. We performed genetic crosses of the myosin mutants 

together with cdc8-110, a temperature sensitive allele of tropomyosin 

[102] and cdc12-112, a temperature sensitive allele of formin [95] 

(figure 3.8B). myo2-S2 was not able to rescue any other strains 

except cdc3-124, while myo2-S1 only managed to partially rescue 

cdc8-110 at 34°C, but not as efficiently as for cdc3-124. Therefore, it 

seemed that these two myosin mutants were able to rescue only the 

profilin defective allele. 

The lethality of cdc3-124 at high temperatures is due to the 

arrest of the cell cycle, resulting in the formation of an elongated 

dumbbell-shaped morphology and an accumulation of nuclei in the 

cells, as cell division is impaired. S. pombe divides by medial fission, 

a process involving the formation of a centrally placed division 

septum. For cdc3-124 cells, it has been shown that, although the 

synthesis of septum material was not impaired, at high temperature 

this strain was not able to form a nicely organized septum, and 

instead resulted in the dispersal of septum material in the middle of 

the cell. We then investigated the effect of myo2-S1 and myo2-S2 

mutations in septum formation, to see if the suppression of cdc3-124 

was actually restoring a functional septum in the double mutants.  
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Calcofluor-white is a fluorescent dye that we used to stain the 

primary septum in fixed cells, collected either at 25°C or after shifting 

them at 34°C for 3-4 hours (figure 3.8C). The septum appeared as a 

straight line in the middle of wild type cells, while it was present as 

disconnected patches in cdc3-124 cells collected at 34°C. For myo2-

S1 and myo2-S2 cells we visualized the formation of an abnormal 

septum that would be either very thick, bent, or formed in multiple 

layers, which nevertheless led to a functional cell division as septum 

assembly was completed. The mild cytokinetic defects of the single 

myosin mutants were enough to restore cell division in cdc3-124 

cells, as both myo2-S1 cdc3-124 and myo2-S2 cdc3-124 were able 

to form a complete septum that, even if abnormal, allowed 

cytokinesis to progress efficiently. 

With this in mind, we decided to investigate if cell division was 

affected in the myosin mutants. When we examined myo2-S1 and 

myo2-S2 cells, cytokinesis didn’t seem to be severely affected, as 

only ~15% of cells were multinucleated at 25°C, a percentage that 

only slightly increased to 20-25% at 34°C (figure 3.8E). Nevertheless, 

we noticed that the mutant myosins did have an effect on actin 

structures in the cell. By comparison with wild type cells, where the 

actomyosin ring appeared in the middle of the cell as a thin and 

compact structure, in myo2-S1 and myo2-S2 we imaged the 

formation of abnormal rings (figure 3.8D), that consisted of a very 

thick and disorganized structure, with a high concentration of actin in 

40 to 50% of the cells (figure 3.8E). Similar percentages were 

recorded at both 25°C and 34°C, so temperature didn’t seem to have 

much influence on the strength of the phenotype. In the cdc3-124 

strain, the cells behave like wild type at 25°C, whereas cell division is 

completely abolished at 34°C, resulting in the formation of 

multinucleated cells with only scattered actin patches. At high 

temperatures myo2-S1 cdc3-124 and myo2-S2 cdc3-124 resemble 

the behaviour of the single myosin mutants, as actin was present in 

the abnormal ring structures that we also observed in myo2-S1 and 

myo2-S2 cells. These experiments proved that myo2-S1 and myo2-
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S2, whilst displaying some defects in septum formation and 

cytokinetic ring formation, were able to rescue the defects of cdc3-

124 at 34°C.  

 

 

3.3.2 – Quantification of actomyosin ring kinetics  
 

Since actin staining showed some abnormalities in actin 

distribution, we investigated the dynamics of the actomyosin ring 

using Rlc1-3GFP and mCherry-Atb2 as fluorescent markers for 

myosin II and the cell cycle, respectively. We imaged wild type, cdc3-

124, myo2-S1, myo2-S1 cdc3-124, myo2-S2, and myo2-S2 cdc3-124 

cells, firstly at 25°C, then at 34°C. However, we could not quantify 

these myosin mutants with the same parameters as used in previous 

experiments, because it was difficult to always separate the phases 

of actomyosin ring assembly, maturation and contraction. Because of 

this, we defined new categories for our quantification. We divided our 

results into three groups named normal, asymmetrical, and abnormal 

cytokinesis. When not in the presence of normal cell division we 

defined asymmetrical cytokinesis as being when actomyosin ring 

contraction was directed toward one side of the cell, instead of 

proceeding uniformly inwards toward the centre. Then, abnormal 

cytokinesis was designated as being when the formation of the 

actomyosin ring was not recorded at all, although actin filaments 

were still present in a big cluster at the cell middle. 

At first we calculated the percentage of cells displaying these three 

behaviours, and we then proceeded to quantify the timing of 

actomyosin dynamics for normal and asymmetrical cytokinesis, as no 

phases were clearly detectable in the case of the abnormal 

cytokinesis. Moreover, for actomyosin rings that underwent cell 

division, we could separate and quantify only their ring assembly and 

contraction time, due to the fact that as soon as an actomyosin ring 

was formed it contracted with no detectable maturation phase. When 
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Figure 3.9: Actomyosin ring assembly, dwelling and contraction 
of S. pombe myosin mutants at 25°C. 

A) Time-lapse series of wild-type, cdc3-124, myo2-S1, myo2-S1 
cdc3-124, myo2-S2 and myo2-S2 cdc3-124 cells expressing 
3GFP-tagged myosin regulatory light chain (Rlc1-3GFP) as a 
contractile ring marker and mCherry-tagged tubulin (atb2-
mCherry) as a cell-cycle stage marker. Cells were grown and 
imaged at 25°C. More than 18 cells were imaged and 
quantified for each strain. On the site of each montage it is 
indicated the percentage of the different cytokinetic 
behaviours. Images shown are maximum-intensity projections 
of z-stacks. Time indicated in minutes. Scale bars represent 3 
μm. 

B) Quantification of normal, asymmetrical and abnormal 
cytokinesis of the strains imaged in (A).  

C) Quantification of the time necessary for actomyosin ring 
assembly and contraction of the strains imaged in (A). As the 
ring started to contract as soon as it was formed, it was not 
possible to quantify the actomyosin ring maturation phase. 
Error bars represent SD. 

 

 

cells were imaged at 25°C (figure 3.9A), more that 70% of the rings 

in wild type, cdc3-124, myo2-S1, myo2-S2 and myo2-S2 cdc3-125 

performed either normal or asymmetrical cytokinesis, with the 

exception for myo2-S1 cdc3-124 where 55% of the rings ended up 

being abnormal (figure 3.9B).  

When we quantified the timing of actomyosin ring dynamics 

for normal and asymmetrical cytokinesis (figure 3.9C), we found that 

in all the mutant strains ring assembly was completed in a similar 

time as for wild type (~30 minutes). However, some differences were 

observed for ring contraction, where in wild type cells the process 
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was completed in ~ 31 minutes, whilst for myo2-S1, myo2-S2 and 

myo2-S2 cdc3-124 cells ring contraction took from 44 to 47 minutes. 

The difference was less pronounced in myo2-S1 cdc3-124, where 

ring contraction was completed in ~ 36 minutes. 

Actomyosin ring dynamics were affected more when the 

mutants were imaged after incubating at 34°C, as the percentage of 

cells undergoing normal cytokinesis decreased to almost zero in the 

myo2-S1 cdc3-124, myo2-S2 and myo2-S2 cdc3-124 strains (figure 

3.10B). For myo2-S1, half of the cells did not assemble an 

actomyosin ring (49% of abnormal cytokinesis), with the other half of 

the population divided between 18% displaying normal cytokinesis 

and 33% displaying asymmetrical cytokinesis. In the case of myo2-

S2, 65% of actomyosin rings contracted in an asymmetrical manner, 

whilst the other 35% displayed the abnormal behaviour. The 

temperature sensitive cdc3-124 cells only produced an accumulation 

of cytokinetic nodes in the middle of the cell with no formation of actin 

filaments, defects that could be suppressed by the addition of either 

one of the myosin mutants. In myo2-S1 cdc3-124 cells 42% of 

actomyosin rings contracted in an asymmetrical manner, whereas 

the deficiency in profilin could only be rescued enough to cause 32% 

of myo2-S2 cdc3-124 cells to undergo asymmetrical cytokinesis.  

When the actomyosin ring dynamics were quantified, we 

found that the ring assembly time was more compromised in the 

mutants at 34°C than at 25 °C, as the mutant strains took double the 

time to assemble a ring when compared to wild type cells. 

Nevertheless, we could not find differences between the single or 

double mutants, as myo2-S1, myo2-S1 cdc3-124, myo2-S2 and 

myo2-S2 cdc3-124 cells assembled rings in 26 to 30 minutes. 

Instead, we found that the ring contraction time was highly affected, 

as while the wild type cells took ~ 19 minutes to complete this 

process, all of the mutant cells were noticeably slower. The 

contraction time for the two single myosin mutants was similar, at ~ 

38 minutes for myo2-S1 and ~ 35 minutes for myo2-S2, which was 

15 minutes longer than for wild type contraction. The presence of  
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Figure 3.10: Actomyosin ring assembly, dwelling and 
contraction of S. pombe myosin mutants at 34°C. 
 

A) Time-lapse series of wild-type, cdc3-124, myo2-S1, myo2-S1 
cdc3-124, myo2-S2 and myo2-S2 cdc3-124 cells expressing 
3GFP-tagged myosin regulatory light chain (Rlc1-3GFP) as a 
contractile ring marker and mCherry-tagged tubulin (atb2-
mCherry) as a cell-cycle stage marker. Cells were grown at 
25°C and shifted 3 hours at 34°C before being imaged at 
34°C. More than 20 cells were imaged and quantified for each 
strain. On the site of each montage it is indicated the 
percentage of the different cytokinetic behaviours. Images 
shown are maximum-intensity projections of z-stacks. Time 
indicated in minutes. Scale bars represent 3 μm. 

B) Quantification of normal, asymmetrical and abnormal 
cytokinesis of the strains imaged at 34°C in (A).  

C) Quantification of the time necessary for actomyosin ring 
assembly and contraction of the strains imaged at 34°C in (A). 
As the ring started to contract as soon as it was formed, it was 
not possible to quantify the actomyosin ring maturation phase. 
Error bars represent SD. 
 

 

non-functional profilin at 34°C slowed down ring contraction even 

more, as we measured myo2-S1 cdc3-124 cells taking ~ 56 minutes 

to complete ring contraction, while myo2-S2 cdc3-124 cells took ~ 51 

minutes (figure 3.10A and C).  

These results demonstrated that myo2-S1 and myo2-S2, while 

capable of successfully completing cell division, were affected in 

several ways regarding the assembly and contraction of the 

actomyosin ring, as the percentage of cells undergoing normal 

cytokinesis were always low. At 25°C only actomyosin ring 

contraction was slowed down, while defects were further accentuated 
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at 34°C, as the percentage of cells undergoing abnormal cell division 

increased. 

Nevertheless, we demonstrated that myo2-S1 and myo2-S2 

were capable of suppressing the lethality of cdc3-124 at high 

temperatures, when profilin was non-functional. The suppression was 

only partial, as only 40% of myo2-S1 cdc3-124 and myo2-S2 cdc3-
124 cells were able to form an actomyosin ring that underwent slow 

contraction, but even with these limitations cell division was still 

possible. 

 

 

3.3.3 – Isolated actomyosin rings from myo2-S1 and 
myo2-S2 do not undergo ATP-dependent contraction 
 

To characterized further the myo2-S1 and myo2-S2 mutations, 

and to understand the nature of their ability to suppress cdc3-124, we 

proceeded our study using in vitro isolated actomyosin rings to test if 

these myosin mutants were capable of ATP-dependent contraction 

without the assistance of the growing septum, which we know is only 

marginally affected in these mutants. Initially we noticed that in 

myo2-S1, myo2-S1 cdc3-124, myo2-S2 and myo2-S2 cdc3-124 cells 

the assembly of actomyosin rings was impaired during the cell ghost 

isolation process. To overcome this problem, it was necessary to use 

jasplakinolide (jasp), an actin filaments stabilizing drug [162], which 

allowed for the isolation of fully assembled actomyosin rings. At 25°C 

only wild type actomyosin rings underwent contraction upon ATP 

addition, while the majority of rings isolated from myo2-S1 and myo2-

S2 spheroplasts were either broken or clustered (figure 3.11A and 

B). Similar results were obtained when in vitro actomyosin ring 

contraction was performed at higher temperature, by shifting the 

isolated rings to 34°C for about 15 minutes before imaging. At this 

temperature actomyosin rings from both strains were stable but, 

upon ATP addition, 80 to 100% of the rings became either clustered  
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Figure 3.11: Actomyosin rings from myo2-S1 and myo2-S2 cell 
ghosts are not able to undergo ATP-dependent contraction. 
 

A) In vitro isolated actomyosin rings were prepared from wild-
type, myo2-S1, myo2-S1 cdc3-124, myo2-S2 and myo2-S2 
cdc3-124 grown at 24°C. Ring contraction experiments were 
performed at 25°C in the presence of 20 µM of jasplakinolide 
(jasp) and contraction was activated by addition of 0.5 mM 
ATP. More than 13 rings were imaged for each strains. 
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Images shown are maximum intensity projections of z-stacks. 
Time indicated in minutes. Scale bar represent 5 μm.  

B) Percentage of contracted or broken/clustered rings of the 
fission yeast strains illustrated in (A). 

C) In vitro isolated actomyosin rings were prepared from wild-
type, myo2-S1, myo2-S1 cdc3-124, myo2-S2 and myo2-S2 
cdc3-124. Each fission yeast strain was grown at 25°C and 
shifted 15 minutes at 34°C before proceeding with the imaging 
of the cells. Ring contraction experiments were performed at 
34°C and contraction was activated by addition of 0.5 mM 
ATP. More than 13 rings were imaged for each strains. 
Images shown are maximum intensity projections of z-stacks. 
Time indicated in minutes. Scale bar represent 5 μm.  

D) Percentage of contracted or broken/clustered rings of the 
fission yeast strains illustrated in (C). 
  

 

or broken. We also isolated actomyosin rings from myo2-S1 cdc3-

124 and myo2-S2 cdc3-124 spheroplasts, which behaved in the 

same way as the single myosin mutants (figure 3.11C and D).  

From these experiments it seemed that neither myo2-S1 nor 

myo2-S2 were able to sustain in vitro ATP-dependent ring 

contraction, as only few isolated actomyosin rings were capable to 

contract at both the considered temperatures. Nevertheless previous 

in vivo experiments showed that cells coming from either myo2-S1 or 

myo2-S2 were capable to assemble and contract actomyosin rings. 

Therefore contraction in vivo, even if slower comparing with wild 

type, was occurring in both strains. More experiments were therefore 

necessary to understand the molecular function of these two 

mutations, in order to ultimately elucidate how Myo2-S1 and Myo2-

S2 were able to rescue the defects in cdc3-124. 

 

 

3.3.4 – Attempting to understand the molecular 
function of myo2-S1 and myo2-S2 
 

From the in vivo and in vitro experiments it was not clear if 

these mutations were influencing either the motor activity or actin 
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binding of Myo2-S1 and Myo2-S2. One way to distinguish between 

these possibilities was to purify from S. pombe the three myosins, 

Myo2, Myo2-S1 and Myo2-S2, in order to perform actin motility 

assay.  

To purify myosin II from wild type, myo2-S1 and myo2-S2 we 

used an expression system developed by Lord and Pollard [146]. 

This approach is based on the over-expression of GST-tagged 

myosin light chains together with over-expression of the native heavy 

chain. Initially we replaced the myo2 promoter of both myo2-S1 and 

myo2-S2 with an inducible nmt1 promoter, which induced protein 

expression in the absence of thiamine. Next both GST-tagged light 

chains (GST-Rlc1 and GST-Cdc4) were co-transformed in order to 

generate new strains capable to over-express myosin light chain 

together with the two tagged light chains. This procedure was 

necessary to improve the yield of the purified myosins. Initially we 

tested this expression system through the purification of wild type 

myosin, which we achieved but at a very low yield of Myo2 that was 

insufficient for further experiments. 

Some more optimizations were therefore necessary in order to 

improve the purification of myosin, as our ultimate goal was to have a 

good yield of protein to perform actin motility assay. Unfortunately it 

was not possible to carry on with the optimization for wild type 

myosin, and not even to purify Myo2-S1 and Myo2-S2 for a lack of 

time. Future work will be necessary to collect more data to unravel 

the molecular function of these two myosin’s mutations. 

 

 

3.4 – Discussion 
 

3.4.1 - Identification of the role of each myosin in 
actomyosin ring dynamics 
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Cytokinesis in fission yeast, as well as in many eukaryotes, 

involves the formation and contraction of an actomyosin ring [1]. 

Three myosins are the main motors responsible of the contraction of 

the ring, Myo2, Myp2 and Myo51 [124, 130]. Recent studies [127], 

investigating the contribution of each of these myosin in cytokinesis, 

concluded that each of these proteins had a distinct role: Myo2 was 

mainly important in actomyosin ring assembly helped by Myo51, 

while Myp2 was the main motor driving ring contraction. We were 

also analysing the function of fission yeast myosins and, as some of 

our observations contrasted with the results of Laplante et al., we 

decided to investigate the role of each of these proteins further.  

One concern, when evaluating the function of Myo2, was to 

find the proper allele to use, as the deletion of Myo2 is deleterious for 

the cell (figure 3.1A). The mis-sense mutation myo2-E1 was used 

[36], keeping in consideration that this allele doesn’t fully represent 

the deletion of Myo2. In fact, even if in vitro experiments 

demonstrated that Myo2-E1 was not capable of binding actin 

filaments nor had ATPase activity [146], myo2-E1 was able to form 

healthy colonies at its permissive temperature, only failing 

cytokinesis at 30 and 36°C (the restrictive temperatures) (figure 

3.1B). These results indicate that myo2-E1 retained some activity 

thus, as it wasn’t as severely compromised as myo2Δ cells, we had 

to keep in mind that it was not the best allele for the investigation of 

Myo2 contribution to cytokinesis. 

 When examining the time taken to complete the three phases 

of actomyosin ring dynamics (ring assembly, maturation and 

contraction) at the permissive temperature for myo2-E1 (25°C) we 

confirmed the supporting role of Myo51 during actomyosin ring 

assembly [68, 127], as the deletion of this myosin slowed down 

actomyosin ring assembly. When we examined myo2-E1, all stages 

of actomyosin ring dynamics were slower, suggesting that the 

presence of the other two myosins, Myp2 and Myo51, was not 

enough to compensate the defects of myo2-E1 mutation. This was 

an evidence of the importance of Myo2 in every phases of 
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actomyosin ring dynamics, not only during ring assembly as it was 

concluded in Laplante and al. When the contribution of Myp2 was 

examined we confirmed an elongated time for actomyosin ring 

contraction to occur, but we did not registered severe defects in 

myp2Δ myo52Δ. This demonstrated that the only myosin present in 

this strain, Myo2, was able to support cytokinesis on its own, only in 

a slower manner comparing with wild type. More importantly, when 

comparing the time necessary to complete actomyosin ring 

contraction, we found stronger defects in myo2-E1 than myp2Δ, 

suggesting a major role of Myo2, and not Myp2, in actomyosin ring 

contraction. The additive effects registered in myo2-E1 myp2Δ and 

myo2-E1 myo51Δ supported the hypothesis that Myo2 was the only 

essential myosin. 

The time necessary to complete each phase of actomyosin 

ring dynamics were also examined at the semi-restrictive and 

restrictive temperatures for myo2-E1 (30 and 36°C). The results 

demonstrated that rings couldn’t assembly properly in myo2-E1, 

myo2-E1 myp2Δ and myo2-E1 myo51Δ confirming, once again, the 

prominent role of Myo2 at these temperatures as well. The 

supporting role of Myo51 during actomyosin ring assembly was 

present also at 30 and 36°C, while the deletion of Myp2 didn’t 

affected the contraction time.  

All together these data highlight the dominant role of Myo2 

during each phase of actomyosin dynamics, being the major motor 

driving both actomyosin ring assembly and contraction at all the 

considered temperatures. Regarding the other two myosins our 

results supported the ancillary role of Myo51 during actomyosin ring 

assembly, while Myp2 contributed to ring contraction only at 25°C. 

The contribution of Myp2 only at this temperature was supported also 

by previous works, which reported myp2Δ to be a cold sensitive 

allele [125, 130], consistent with its contribution to actomyosin ring 

contraction only at lower temperatures [139]. 
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3.4.2 - Characterization of myo2-E1-Sup2 
 

To continue our analysis of fission yeast myosins we decided 

to investigate further Myo2 structure and function, to better 

understand its role in cytokinesis. Following a previous work 

conducted in the lab [107], headed towards the identification of 

myosin suppressors capable of reverting the lethal phenotype of 

myo2-E1 at its non-permissive temperature, we characterized one of 

these suppressors: myo2-E1-Sup2. This suppressor contained the 

original myo2-E1 mutation (G345R) together with an additional 

intragenic mutation, Y297C, which allowed myo2-E1-Sup2 to form 

colonies at both the normal and restrictive temperature (figure 3.4A), 

reverting myo2-E1 deficiency.  

The quantification of actomyosin ring dynamics proved that 

the ring assembly time of myo2-E1-Sup2 was comparable with wild 

type, whereas only the ring contraction was slightly reduced (figure 

3.5B and C). These results demonstrated that this suppressor was 

nearly as active as Myo2 during each phases of actomyosin ring 

dynamics, supporting cytokinesis at a level comparable with wilt type 

cells.  

To evaluate if ATP dependent actomyosin ring contraction 

was supported in myo2-E1-Sup2, we isolated ring using an in vitro 

system [76, 143]. It has already been shown that isolated rings from 

myo2-E1 were not able to contract [76], while myo2-E1-Sup2 

underwent contraction at a similar level as wild type (figure 3.6A and 

B). 

Another way to understand the molecular mechanism behind 

myo2-E1-Sup2 suppression through the structural analysis of Myo2 

head domain (figure 3.7A and B). Initially G345R, myo2-E1 mutation, 

was introduced in the myosin motor domain of D. discoideum (PDB: 

1VOM), revealing the formation of a steric clash between the 

introduced arginine and a tyrosine present in the opposite helix 

(figure 3.7C). This could potentially lead to instability of the motor 
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head domain in myo2-E1, as suggested in previously work [163]. We 

hypothesised that this interference might produce an instability of the 

myosin head, preventing the conformational changes that myosin 

head had to undergo during the ATPase cycle, which could 

potentially explained the reduced motor activity observed in Myo2-

E1. To overcome the steric clash it was reasonable to imagine that 

the substitution of the tyrosine with a smaller amino acid could 

restore myosin function, such as the cysteine that was found in 

myo2-E1-Sup2 (Y297C) (figure 3.7D). This additional mutation 

seemed to be a proper solution to restore Myo2 function, possibly 

explaining why myo2-E1-Sup2 was able to revert the defects of 

myo2-E1 at its non-permissive temperature. A possible explanation 

of myo2-E1 viability at the permissive temperature came from the 

comparison with actin-bound rigor state of myosin head domain 

(figure 3.7E), revealing a relative flexibility of the helices in the 

domain suggesting that G345R mutation could be accommodated 

only at 25°C. 

This work provided a molecular mechanism to explain the 

cytokinetic defect of myo2-E1 through the characterization of myo2-

E1-Sup2. It also demonstrated how the combination of different 

techniques, such as yeast genetics, imaging and structural analysis 

can be combined together to answer biological questions.  

 

 

3.4.3 - Characterization of myo2-S1 and myo2-S2 
 

The characterisation of myo2-E1-Sup2 provided insight into 

the structure and function of Myo2 during cytokinesis, nevertheless 

for a deeper understanding of this protein it was necessary to 

characterise additional mutant alleles, such as myo2-S1 and myo2-

S2. These two mutants were discovered in a genetic screen 

designed to look for suppressors of poor growth in cdc3-124 at high 

temperatures [141]. Molecular analysis confirmed the presence of 
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single mutations in myosin head domain for both strains: G515D in 

myo2-S1 and E679K in myo2-S2.  

These mutations minimally affected the growth of the strains, 

as colony formation in myo2-S1 was slightly reduced at all 

temperatures while myo2-S2 grew slowly only at 24°C. Interestingly 

when combined with the temperature sensitive mutant cdc3-124 [36], 

both myo2-S1 and myo2-S2 were able to suppress its lethality at 34 

°C, at a level comparable to wild type (figure 3.8A).  

To investigate the suppression mechanism of these myosin II 

mutations we studied septum formation, as cdc3-124 presented only 

dispersed septum material in the middle of the cell at the restrictive 

temperature, failing cytokinesis. The double mutants myo2-S1 cdc3-

124 and myo2-S2 cdc3-124 were able to restore septum formation 

(figure 3.8C). The septum, even if formed thick and abnormal, led to 

cell division as the presence of multinucleated cells was only 

marginal (figure 3.8E). Some septum defects were present in the 

single mutants myo2-S1 and myo2-S2 as well, therefore these 

mutations led to some cytokinetic defects. Cell division seemed not 

to be severely influenced in the considered strains but it was evident 

an effect on actin structures. Abnormal rings were present in both 

myo2-S1 and myo2-S2 as they were assembled as a very thick and 

disorganized structure (figure 3.8D). Nevertheless, the defects in 

septum and ring formation visualized in myo2-S1 and myo2-S2 were 

not too severe and the mild defects were not preventing the rescue of 

cdc3-124.  

Abnormalities in actin distribution were detected when 

examining dynamics of the contractile ring, through the visualization 

of Rlc1-3GFP in wild type, cdc3-124, myo2-S1, myo2-S1 cdc3-124, 

myo2-S2 and myo2-S2 cdc3-124. To quantify the time taken to 

complete cytokinesis we needed to adopt different criteria than 

before, as actomyosin ring formation was not proceeding as 

examined previously. We first noticed that not all the cells assembled 

and contracted actomyosin ring in a normal manner. Some cells, 

after a normal assembly phase, contracted the actomyosin ring 



102 
 

toward one side of the cell in what we called asymmetrical 

cytokinesis, while another part of the cells was not able to assemble 

an actomyosin ring at all (referred to as abnormal cytokinesis).  

After calculating the percentage of cells belonging to each of 

these classes, we proceeded with the quantification of the time taken 

to assemble and contract actomyosin rings, when in the presence of 

normal and asymmetrical cytokinesis. Additionally, we needed to 

change some other parameters because actomyosin rings started to 

contract as soon as they were assembled, without undergoing a 

maturation phase. Therefore it was possible to quantify only the time 

taken for actomyosin rings assembly and contraction. When fission 

yeast strains were imaged at 25°C (figure 3.9A and B) the majority of 

the cells performed either normal or asymmetrical cytokinesis, with 

only the exception of myo2-S1 cdc3-124 where we recorded a high 

percentage of abnormal cytokinesis (55%).  

When we imaged actomyosin ring dynamics we found some 

differences mainly regarding ring contraction, which was generally 

slower comparing with wild type (figure 3.9C) as it took10-15 minutes 

more to be completed. Only in the case of myo2-S1 cdc3-124 ring 

contraction took just 5 minutes more than wild type, but fewer 

examples were available for the quantification as the majority of the 

cells underwent abnormal cytokinesis. More defects were recorded 

when cells were imaged at 34°C as the percentage of normal 

cytokinesis decreased to almost zero (figure 3.10A and B). For 

myo2-S1 and myo2-S2 we could quantify only actomyosin rings 

undergoing asymmetrical cytokinesis, occurring in 50 to 60% of cells, 

where both ring assembly and contraction were considerable slower 

than wild type (figure 3.10C). Nevertheless at high temperatures 

cdc3-124 cells could never assemble an actomyosin ring, but it was 

rather possible to observe only an accumulation of cytokinetic nodes 

in the middle of the cell.  

This defect could be rescued by the presence of either one or 

the other myosin mutants, as in both myo2-S1 cdc3-124 and myo2-

S2 cdc3-124 almost 40% of cells underwent asymmetrical 
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cytokinesis. The assembly time resembled the one recorded for the 

single mutants, whereas actomyosin ring contraction was much 

longer in myo2-S1 cdc3-124 and myo2-S2 cdc3-124. In fact, the 

contraction time for myo2-S1 and myo2-S2 was approximately 15 

minutes longer than wild type, in the double mutants we quantified a 

delay of more than 30 minutes. These results demonstrated that 

these mutations in myosin II were partially influencing actomyosin 

ring formation and contraction at 25°C. Nevertheless, even if the 

defects were more prominent at high temperatures, myo2-S1 and 

myo2-S2 were able to rescue the lethality of cdc3-124.  

Next, we tested if these myosin mutants were able to support 

ATP dependent actomyosin ring contraction in an in vitro system [76, 

143]. The isolation of actomyosin rings was more efficient in the 

presence of the actin stabilizing drug jasplakinolide, otherwise rings 

were not stable. When in vitro ring contraction was tested, isolated 

actomyosin ring derived from myo2-S1, myo2-S1 cdc3-124, myo2-S2 

and myo2-S1 cdc3-124 were unable to undergo proper contraction. 

Upon ATP addition, almost all the actomyosin rings either clustered 

or, if they started to slowly contract, they ultimately broke (figure 

3.11). In vitro actomyosin ring contraction seemed not to be 

supported in myo2-S1 and myo2-S2, even if the contraction in vivo 

took place.  

More experiments were therefore necessary to unravel the 

function of Myo2-S1 and Myo2-S2 and more importantly, to 

understand why they were able to rescue the defects in cdc3-124. 

One approach was to purify myosins from S. pombe in order to 

perform actin motility assay. This experiment could be very 

informative to understand first of all if these myosins were able to 

bind actin filaments, and secondly if their motor activity was 

compromised of not.  

Following a previously established expression system [146] 

we generated the appropriated myo2-S1 and myo2-S2 strains for 

myosin II expression, while testing the purification of wild type Myo2 

in this system. The first yield of Myo2 was very low, insufficient to 
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perform actin motility assay, therefore some optimizations were 

necessary before attempting to purify Myo2-S1 and Myo2-S2. 

Unfortunately due to a lack of time we could not proceed with the 

purification of myosin mutants, which is needed to be performed in 

future experiments in order to clarify the molecular mechanism 

behind Myo2-S1 and Myo2-S2.  

Together with actin motility assay, another approach to 

investigate the cause of the mild cytokinetic defects present in Myo2-

S1 and Myo2-S2 was to map these mutations in the Myo2 head 

domain and, through some structural analysis, find out the molecular 

basis of these mutations. With a similar approach adopted when 

studying Myo2-E1-Sup2 (paragraph 3.2.3), we started to map Myo2-

S1 mutation (G515D) in the myosin motor domain of D. discoideum 

(PDB: 1VOM). From preliminary analysis we could map this mutation 

close to the activation loop, a conserved region in myosin head that 

had been discovered to interact with the N-terminal region of actin 

monomer [164]. The activation loop always contained a positively 

charged residue that seems to promote actin binding, by interacting 

with the negative N-terminus of actin. Moreover this interaction was 

able to stimulate myosin’s ATPase activity, contributing to an efficient 

muscle contraction [164]. Myo2-S1 mutation localized immediately 

close to the activation loop, therefore we can hypothesise that the 

introduction of a negatively charged residue (G515D) could influence 

the binding between myosin and actin. Moreover another 

consequence of this mutation could be a weaker interaction between 

these two proteins that, as a consequence, could lead to a reduced 

actomyosin ring contraction activity. This hypothesis is if fact 

supported by the results obtained with the in vitro isolated 

actomyosin rings, which displayed failure in actomyosin ring 

contraction (figure 3.11). 

In the case of Myo2-S2, E679K mutation mapped to the neck 

region of myosin head, therefore we could hypothesise that the 

introduction of a bigger residue, such as lysine, could generated 

some effects in the mobility of the myosin head during the 
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actomyosin crossbridge cycle. Nevertheless, these hypotheses were 

based on preliminary structural analysis and will therefore will need 

to be studied further, such as with an actin motility assay, to fully 

understand the properties of Myo2-S1 and Myo2-S2. 

Myosin II has been shown to be able to break actin filaments 

in vitro due to its motor activity, by either stretching or buckling the 

filaments [88, 89]. We then wondered if this additional function of 

myosin II could explain the role of Myo2-S1 and Myo2-S2 in 

suppressing the defects of cdc3-124. Since in the double mutants 

myo2-S1 cdc3-124 and myo2-S2 cdc3-124 we could detect the 

presence of actin filaments, absent in the single mutant cdc3-124 at 

the non permissive temperature (figure 3.8D), we hypothesized that 

shorter or unstable actin filaments present in cdc3-124 might persist 

in the double mutants due to the reduced activity of both Myo2-S1 or 

Myo2-S2. These mutations seem to reduce Myo2 motor activity 

resulting not only in a slower actomyosin ring contraction in cells, but 

also in a reduced actin breakage. As a consequence, these defects 

in Myo2 could be able to preserve actin filaments for a long time in 

the double mutants, since both myo2-S1 cdc3-124 and myo2-S2 

cdc3-124 were viable and able to assemble and contract an 

actomyosin ring. To test this hypothesis we could only perform some 

preliminary experiments using latrunculin A [165], a drug that inhibits 

actin polymerization. Initial experiments at non permissive 

temperature revealed that both the double mutants myo2-S1 cdc3-

124 and myo2-S2 cdc3-124 were able to grow in the presence of 

latrunculin A, while the single mutant cdc3-124 was not viable. These 

preliminary results seemed to support the hypothesis that the motor-

activity defect present in Myo2-S1 and Myo2-S2 can suppress the 

defects in cdc3-124, by preserving actin filaments in the cells due to 

the reduced actin filaments severing by myosin II.  

Our finding needed to be properly validated with more 

experiments, such as a full study of the effects of latrunculin A 

treatment on actin structures, by staining actin filaments in order to 

visualize the persistence of actin structures in the different strains. 
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Nevertheless our work may provide evidences of a role for myosin II 

in actin filaments disassembly and turnover, which seems to be 

important for cytokinesis. 

More studies will be anyway necessary but, once again, the 

combination of different approaches resulted to be useful to 

understand the molecular mechanisms responsible of these myosin’s 

mutations. Future experiments will be necessary also to precisely 

explain the molecular mechanism behind myo2-S1 and myo2-S2 

suppression of profilin’s defects in fission yeast, which up to now we 

were not able to fully understand and explain. However the 

application of genetics, imaging, and biochemical assay combined 

with structural analysis constituted once again a very useful 

approach to understand myosin mutations, which could lead to a 

better understand of Myo2’s structure and function in cytokinesis. 
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4 - AN OVERVIEW ON GENETIC 
CODE EXPANSION 
 

4.1 - Introduction 
 

New tools are constantly being developed for the study of 

proteins, and genetic code expansion is perhaps the most versatile of 

these, as it is able to cover almost every aspect of protein studies, 

e.g. from protein-protein interactions to localization, and from post-

translation modification to conformational changes [166]. The power 

of this technique comes from the ability to site-specifically incorporate 

synthetically made non canonical amino acids (referred as unnatural 

amino acids or UNAAs) that, having a wide range of different 

characteristics, can be used in multiple different studies [167, 168]. 

Up to date, more than 200 unnatural amino acids have been 

successfully incorporated into different organisms and this large 

number is steadily increasing. Many classes of UNAAs can be 

created with unique biological, chemical and physiological properties, 

which confer to them the ability to be used in multiple experiments 

[169]. The UNAAs mainly used consist of photoreactive-groups 

(photo-crosslinkers and photo-cages), natural post-translational 

modifications, spectroscopic probes and reactive groups that can be 

used for labelling experiments. 

Genetic code expansion is a powerful tool for the study of 

proteins both in vitro and in vivo, as the incorporation of UNAAs has 

been successful in many organisms, such as bacteria (E. coli [170-

172]), mouse [173-176], zebrafish [177, 178], yeast [179, 180] and 

many cell lines [181, 182].  

When a protein is being translated inside a cell, each codon of 

the mRNA molecule is recognized by a specific tRNA anticodon, 

which is aminoacylated with the appropriate amino acid by the 

respective aminoacyl-tRNA synthetase. As the translation process 
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proceeds, a chain of amino acids is formed until a stop codon is 

encountered that, because it is not recognized by any tRNA, signals 

the end of the translation, mediated by releasing factors. The fact 

that three codons are not designated to codify for any amino acids 

inspired a number of scientists to look for a method that would allow 

the expansion of the genetic code of an organism, by making one of 

these stop codons able to codify for new non canonical amino acids. 

With the establishment of genetic code expansion, it was possible to 

incorporate into a protein of interest unnatural amino acids in 

response to a stop codon in a selected position of a protein. Since 

the stop codons don’t have a corresponding tRNA, in order to make 

them able to codify for an amino acid it is necessary to develop a 

tRNA/tRNA synthetase pair, which will allow the incorporation of 

unnatural amino acids only in response to the desired stop codon 

into the protein of interest [167, 183, 184].  

To successfully use genetic code expansion, three 

fundamental elements need to be carefully chosen: which stop codon 

to use to codify the UNAA, the UNAA to incorporate, and last, but not 

least, the appropriate tRNA/tRNA synthetase pair that will make 

possible the incorporation of the non-canonical amino acid into the 

desired protein [185].  

 

 

4.2 – Nonsense codons  
 

The genetic code is formed by 64 codons, 61 of which are 

necessary to codify for the 20 natural amino acids, while the 

remaining three are designated for the termination of protein 

translation. Genetic code expansion takes advantage of these three 

stop codons (amber – TAG, ochre – TAA and opal – TGA), by 

transforming them into codifying triplets. In the majority of the cases 

only one of them will be used for the incorporation of an UNAA, 

ensuring that a termination signal will be provided by the other two 



109 
 

stop codons. The amber codon (TAG) is the most commonly used as 

it is the least used in all eukaryotes [186] and in prokaryotes as well, 

with TAA or TGA being used as the stop codons for about 93% of E. 
coli genes [187]. Therefore the incorporation of UNAAs in response 

to the amber stop is preferred, as this should only have a minor effect 

on the totality of proteins translated by the host cells.  

Genetic code expansion initially aimed to suppress one stop 

codon, however, more recent work has attempted to incorporate 

more than one UNAA into a protein of interest. One approach aims to 

use two distinct stop codons at the same time and, therefore, two 

sets of tRNA/tRNA synthetase pairs [188-192]. Others are based 

either on a quadruplet codon suppression, together with 

appropriately evolved tRNA/tRNA synthetase pairs [193, 194], or in 

the creation of a completely recoded genome [195]. The use of more 

codons opens up many opportunities for the better understanding of 

proteins, but the limiting step is represented by the number of 

available tRNA/tRNA synthetase pairs, therefore continuous work 

and optimization is needed to increase the applications of genetic 

code expansion [166]. 

 

 

4.3 - Orthogonal tRNA/tRNA syntetase pairs  
 

The innovative approach of genetic code expansion is to use 

an aminoacyl-tRNA syntetase and tRNA specifically capable of 

inserting the desired UNAA in response to a specific codon. To 

transform a stop codon into a codifying one it is necessary to 

introduce a new tRNA/aminoacyl-tRNA synthetase pair (referred as 

tRNA/aaRS), able to insert the desired UNAA into a protein of 

interest, in response to the reassigned stop codon being present in 

the nascent mRNA. This new tRNA/aaRS pair needs to be 

orthogonal to the endogenous translational machinery and specific 

only for the UNAA, meaning that it should not cross-react with the 
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endogenous host aminoacyl-tRNA synthetases, tRNAs or natural 

amino acids. Therefore the purpose of the orthogonal tRNA/aaRS 

pair will be to exclusively handle the incorporation of the desired 

UNAA, in response to a reassigned stop codon (figure 4.1A) [169]. 

Nonsense codons are perfect candidates for genomic code 

expansion because they lack the corresponding tRNA, becoming for 

this reason the ideal starting point for codon re-assignment. This can 

be achieved by using an orthogonal tRNA/aminoacyl-tRNA 

synthetase system that does not cross react with the host 

translational machinery, but can specifically incorporate the desired 

UNAA into the protein of interest. The key idea is to transfer into the 

organism of interest a tRNA/aaRS pair from another kingdom, which 

is able to act independently from the endogenous translation 

machinery of the host cell: the suppressor tRNA should not be a 

substrate for any endogenous aminoacyl-tRNA synthetase, and the 

orthogonal aaRS should not aminoacylate any endogenous tRNA. 

Furthermore the orthogonal aminoacyl-tRNA synthetase must 

recognize only the UNAA for which it was designed, leading to the 

aminoacylation of its cognate tRNA. With this system the chances of 

a natural amino acid being recognized by the orthogonal tRNA/aaRS 

pair should be quite low, even if a small percentage of canonical 

amino acids can be incorporated as well [187]. 

To date, the majority of genetic code expansion studies focus 

on four tRNA/aaRS pair, each of them suitable for specific model 

organisms: the tyrosyl-tRNA synthetase (Mj-TyrRS) – tRNA pair of 

Methanococcus jannaschii can be used to incorporate UNAAs in E. 
coli; the pyrrolysyl-tRNA synthetase (PylRS)–tRNA pair of 

methanogenic archeabacteria, specifically Methanosarcina bakeri 
(Mb-Pyl) and Methanosarcina mazei (Mz-Pyl), works in E. coli, yeast, 

C. elegans and mammalian cell lines; the other two tRNA/aaRS pairs 

both derived from E. coli, one is the tyrosyl-tRNA synthetase 

(EcTyrRS)–tRNA pair while the other is the Leucyl-tRNA synthetase 

(EcLeuRS)–tRNACUA pair, which are both orthogonal to yeast and 

mammalian cells (figure 4.1B)  [166, 185].  
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Figure 4.1: Expanding the genetic code. 
 

A) The site-specific incorporation of unnatural amino acids using 
an orthogonal tRNA/aminoacyl-tRNA synthetase pairs 
(adapted from [169]).  

B) The organism orthogonality of the four most commonly used 
systems for codon reassignment (M. jannaschii TyrRS/tRNA, 
M. bakeri and M. mazei PylRS/tRNA and E. coli 
Tyr/LeuRS/tRNA) (adapted from [166]). 
 

 

The first orthogonal tRNA/aaRS that was identified as an 

efficient suppressor system in E. coli was the TyrRS/tRNA pair from  

the archeabacteria M. jannaschii [196]. This pair lacks a major 

anticodon binding region in the tRNA syntetase, in addition to having 
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an altered specificity of the acceptor loop, which results in 

orthogonality between M. jannaschii and E. coli. This tRNA/aaRS pair 

is largely used to incorporate unnatural amino acids containing 

reactive groups at the para-position of a phenyl ring, such as para-

aminophenylalanine [197] or benzoyl-phenylalanine [198]. Upon 

suitable mutation of the TyrRS binding pocket it is also possible to 

extend the amount of substrates that this tRNA/aaRS pair can 

incorporate, making it suitable for the incorporation of a large variety 

of derivatives including tyrosine and phenylalanine. 

The Mb/Mz pyrrolysyl-tRNA synthetase (PylRS)–tRNA pair is 

able to efficiently incorporate a variety of lysine analogues, together 

with UNAAs containing functional groups, due to the remarkably 

flexibility of substrate recognition. Post-translational modifications 

and chemical tags can also be successfully incorporated into E.coli, 
yeast, and mammalian cells. 

The E. coli tRNA/aaRS pairs are useful for the incorporation of 

UNAAs in yeast and mammalian cell lines. The tyrosyl-tRNA 

synthetase (EcTyrRS)–tRNA pair is mostly used for the incorporation 

of tyrosine-based UNAAs while the E. coli Leucyl-tRNA synthetase 

(EcLeuRS)–tRNA pair, thanks to its large active site, offers many 

benefits for the incorporation of bigger unnatural amino acids, such 

as photo-caged or fluorescent UNAAs [166]. 

Genetic code expansion is built on these orthogonal 

synthetases, but more modifications are necessary to increase the 

number of UNAAs that can be recognised and incorporated into 

proteins. Usually the structure of the non-canonical amino acids is 

larger than the natural ones, due to the added side chains, resulting 

in a multitude of UNAAs with different sizes and structures. Therefore 

it is necessary to evolve these synthetases through mutations in the 

active site, to allow the accommodation of all the different available 

UNAAs. As a consequence, many orthogonal aminoacyl-tRNA 

synthetase libraries have been created, where it is possible to find, 

after appropriate screenings, which one will be able to recognize the 

UNAA of interest. 
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The availability of all these tRNA/aminoacyl-tRNA synthetase 

pairs allow genetic code expansion to work well in many model 

organisms, enabling the incorporation of a wide range of UNAAs into 

a protein of interest. 

 

 

4.4 – Unnatural amino acids 
 

Many UNAAs are available to be incorporated into proteins, 

and many more are constantly being created, by the insertion of 

appropriate functional groups into the side chain of canonical amino 

acids. The majority of UNAAs derive from either phenylalanine or 

lysine with the addition of functional groups in the side chain, 

resulting in a larger than canonical amino acid structure. These 

modifications confer unique chemical properties to the UNAAs, which 

can be divide into several categories (figure 4.2A) [166-168, 185]. 

A widely used class of UNAAs consists of photo-activable 

UNAAs, which are photo-crosslinkers and photo-cages. Photo-

crosslinkers are UNAAs capable of rapidly forming a covalent bond 

between them and an interacting partner when they are close 

proximity to each other and exposed to UV light [198, 199]. The use 

of these amino acids allows us to capture interactions that are weak, 

transient, or even unknown between proteins, both in vitro [200] and 

in vivo [181, 201]. Alternatively, photo-caged amino acids can be 

used for time-resolved studies of a specific protein function. These 

UNAAs contain a photo-labile protecting group (the photo-cage) that 

interferes with the function of the target protein, rendering it non-

functional. This condition is completely reversible because a pulse of 

light is enough to remove the photo-cage, rapidly restoring the 

normal function of the protein and allowing it to be studied in its 

natural environment [177, 202-207].  

Another class of UNAAs consists of post-translational 

modifications, such as phosphorylation, methylation, acetylation and  
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Figure 4.2: Major uses of unnatural amino acids. 
 

A) Schematic representation of the major uses of genetically 
encoded unnatural amino acid side chains, which include 
selective reactive groups (1), spectroscopic probes (2), natural 
post-translational modifications or mimics (3) and 
photoreactive-groups (4) (such as photo-crosslinkers (a) and 
photo-caged amino acids(b)) (adapted from [166]). 

 

 

so on [208-211]. These modifications are necessary to modulate 

either protein functions or the interactions between binding partners,  

therefore it is very important to have tools to allow these types of 

studies. Genetic code expansion is an elegant solution because it 

can be very challenging to prepare a homogeneously modified 

protein sample, especially when the specific modifying enzyme is not 

available or cannot be used. Therefore the site-specific incorporation 

of UNAAs, with a post-translational modification, leads to a 

homogeneous production of the modified target protein. 
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Spectroscopic probes are another class of UNAAs that can be 

useful to study protein structure and conformation. The introduction 

of fluorophores for fluorescent spectroscopy or heavy atoms for X-ray 

crystallography can provide insights into changes in a protein’s 

chemical environment, even if the incorporation of this class of UNAA 

is frequently limited by their large size and complex structure [212, 

213]. 

The visualization of a protein of interest can be achieved by the 

incorporation of UNAAs containing selectively reactive groups, which 

can be conjugated with specific fluorescent dyes, making it possible 

to label a target protein. In comparison to a fluorescent tag such as 

GFP, the incorporated UNAA is very small, resulting in a minimal 

interference with the normal function of the protein [214].  

Many UNAAs are constantly being synthesised to 

accommodate every experimental necessity, but it is also possible to 

create customize UNAAs with unique characteristics. BPKyne is an 

example as it is a bifunctional UNAA that contains two different 

chemical moieties, enabling one UNAA to possess multiple chemical 

characteristics [215]. Another example is given by PABK 

(azidobenzyloxycarbonyl lysine) that can act as both a ligation 

handle, a photocrosslinker and a chemically-caged lysine analogue 

[216].  

 

 

4.5 - Applications of unnatural amino acids 
 

In the work that will be explained in the next chapter, we were 

interested in two topics: mapping protein-protein interactions, and 

finding an alternative way to label a protein of interest that cannot be 

tagged by conventional methods, such as through the insertion of a 

GFP. Therefore, we decided to use genetic code expansion for our 

investigations, as it has previously been demonstrated to be an 

elegant solution for overcoming these problems. 
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4.5.1 – Photo-crosslinkers  
 

The use of photo-crosslinking UNAAs offers many advantages 

in the investigation of protein-protein interactions, in comparison to 

conventional techniques such as pulldown or immunoprecipitation 

experiments. Even if these standard technologies are useful in some 

situations they have many limitations, such as being unable to 

capture weak or transient interactions between proteins, and they 

cannot be use to analyse dynamic processes [167, 168, 185, 201, 

217, 218].  

Genetic code expansion is a useful technique for the analysis 

of protein-protein interactions, providing good results for both in vivo 

and in vitro experiments. The site-specific incorporation of photo-

crosslinker UNAAs, which will covalently bind a nearby molecules in 

response to light, provide a tight temporal control of the crosslinking 

interaction [199].  

The crosslinking reaction is triggered by the exposure to UV 

light, therefore it is possible to modulate the action of these amino 

acid, by controlling the starting time and the duration of the 

irradiation. In this way it is possible to have a tight control of when the 

crosslink reaction takes place. The exposure time is short, between 1 

and 30 minutes, providing few toxic effects to the proteins or 

organisms being studied. This class of UNAAs is a powerful tool for 

mapping protein-protein interactions in vitro and, more importantly, in 
vivo, as the crosslinking experiment can be carried out both in cell 

cultures or directly within organisms, where the proteins of interest 

are in their natural environment.  

A major advantage of photo-crosslinking amino acids is the 

positional data that they provide, the site-specific incorporation of the 

UNAA allows us to map the binding sites between two proteins at the 

amino acid level. This can be achieved with the creation of a library, 

where UNAAs are systematically incorporated throughout different  
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Figure 4.3: Activation mechanism for photo crosslinking 
moieties in biological studies. 

 
A,B) Diagram representing the activation mechanism of azido-

phenylalanine (A) and benzoyl-phenylalanine (B) upon 
exposure to UV light (adapted from [217]). 

 

 

positions of the target protein. Then, UV irradiation will only trigger 

the crosslinking reaction when the interacting partner is in close 

proximity to the UNAA, creating a covalent bond between the two 

proteins. With this approach it is possible to screen many positions of 

the target protein and, distinguishing the positive from the negative 

crosslinking interactions, it is feasible to identify which amino acids 

are involved in the protein-protein bond [181, 218].  

For our studies we initially considered two photo-crosslinking 

UNAAs: para-azidophenylalanine (AzF) (Figure 4.3A) [219] and 

benzoyl-phenylalanine (BPA) (Figure 4.3B) [217, 220]. Each of these 

has been successfully incorporated in our protein of interest, purified 

after being expressed in E. coli, and used for crosslinking 

experiments. Preliminary studies shown that both of these UNAAs 

were able to induce protein-protein crosslinking, however we decided 

to mainly use benzoyl-phenylalanine to map the interactions between 

target proteins, because it is chemically stable and it can be 

manipulated under ambient lighting. This is due to the fact that the 

benzophenone chemical group present in this UNAA reacts with C-H 
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bonds of the nearby protein only upon irradiation with UV light, 

specifically from 350 to 365 nm [199]. 

The other UNAA, para-azidophenylalanine, was helpful in 

labelling a protein of interest, due to the chemical properties of the 

azido group, which can easily react with a fluorescent dye [214, 221, 

222]. 

 
 

4.5.2 – Site-selective protein labelling 
 

Genetic code expansion can be used to label proteins of 

interest with fluorescent compounds. This method is particularly 

useful in overcoming two major problems that can occur when a 

protein needs to be visualized. A commonly used approach is to fuse 

a fluorescent reporter gene, such as GFP or its derivatives, to the 

protein of interest, but this method can be inefficient in some cases 

as the addition of a tag can interfere with the function of the protein. 

This is due to the fact that these fluorescent proteins are quite big 

and bulky (~ 25 KDa), therefore the addition of them to either the N 

or C-terminal of a target gene can affect the function of the protein of 

interest.  

To minimize this interference, one solution is to introduce a 

linker region between the fluorescent tag and the protein of interest, 

to provide some flexibility to the resulting fusion molecules, but in 

other cases it is simply not possible to add anything to the protein.  

Another way to overcome this problem is to chemically label 

cysteine residues using thiol-reactive compounds, which can derive 

from haloacetyl groups, disulfide or the largely used maleimides 

[223]. These compounds, bearing fluorescent dyes, are very reactive 

in the presence of thiol-groups, which in nature are present in the 

amino acid cysteine. The labelling of this residue takes place when 

this amino acid is located on the protein surface, as it needs to be 

accessible to the dye-conjugated molecule. Cysteines are important 
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to stabilize protein structure, as they often form disulfide bridges that 

are not able to react directly with maleimides. It is therefore 

necessary to reduce the protein of interest prior to conjugation with 

these compounds. An advantage of this methods lies in the fact that 

cysteine is a relative rare amino acid throughout the proteome, 

therefore few sites are naturally present in a protein of interest to be 

labelled but, on the other hand, this can lead to some disadvantages. 

If this amino acid is not present in the target protein, it needs to be 

introduced in the surface of the molecule, whereas, if many cysteines 

are located in exposed sites, all of them will be labelled. A way to 

solve these problems is to introduce unnatural amino acids with 

specific chemical properties in their moieties, capable of binding 

fluorescent compounds in order to label a protein of interest in only 

one site [224]. 

Out of many schemes developed for the conjugation of 

chemical probes to proteins containing UNAAs [214], a commonly 

used reaction is the copper-catalyzed azide-alkyne cycloaddition, 

because it is highly specific and it occurs rapidly. Unfortunately this 

reaction is not suitable when biological samples need to be labelled, 

due to the cytotoxicity of copper. A solution to this problem is 

provided by strained-alkyne compounds that, in the presence of an 

azide group, undergo spontaneous conjugation in a copper-free 

cycloaddition reaction. Therefore, this method is more suitable for the 

labelling of biological samples, because it only requires the 

incorporation of an UNAA containing an azide functional group in the 

protein of interest, and a fluorescent strained-alkyne compound.  

Many UNAAs have been created with an azide group, such as 

the largely used azido-phenylalanine [197, 219], which can be site-

specifically incorporated into the protein of interest, providing a 

unique labelling site (figure 4.4A) [214, 221]. Since genetic code 

expansion allows the incorporation of the unnatural amino acid in any 

desired position it is easy to find a location that will not interfere with 

the normal function of the proteins, once labelled. Once the UNAAs 

have been incorporated, the labelling procedure is straightforward, as  
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Figure 4.4: Strain-promoted azide-alkyne cycloaddition. 
 

A) Schematic of the copper-free reaction for the labelling of 
proteins containing UNAAs. The unnatural amino acid needs 
to contain an azide moiety, which can react when in close 
proximity with a fluorescent strain-alkyne molecule (adapted 
from [214]). 

 

 

the protein of interest only needs to be incubated with a strained-

alkyne compounds for the cycloaddition reaction to take place [214, 

221]. 

 Many of these compounds are available nowadays (i.e. 

difluorinated cyclooctyne - DIFO, dibenzocyclooctyne - DIBO, 

azadibenzylcyclooctyne - DIBAC) that are conjugated to a wide 

selection of fluorescent molecules (one example is the Alexa Fluor 

family of dyes). Furthermore, when compared with a fluorescent 

protein, the incorporated UNAA conjugated to a fluorescent 

compound constitutes a very small tag, resulting in a minimal 

interference with the protein of interest. 

With all these available compounds, the labelling of a protein 

of interest through genetic code expansion represents an easy and 

straightforward approach, which is highly effective for site-specific 

fluorescence labelling. 

 

 

4.6 – Incorporation of unnatural amino acids 
into proteins 
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 The orthogonality of the tRNA/aminoacyl-tRNA synthetase 

pair allows the application of genetic code expansion in all common 

protein expression hosts, including bacteria, yeast and mammalian 

cells. E. coli is an organism suitable for the production of many 

proteins and it can be easily used, as well, for the incorporation of 

UNAAs in the target molecules. Many tRNA/aminoacyl-tRNA 

synthetase pairs have been developed for E. coli, allowing the 

incorporation of a large number of UNAAs, but the incorporation is 

not always successful. One explanation for this is the presence of 

endogenous release factors in the host strain, which leads to a low 

incorporation rate of the UNAA, as it is encoded by a stop codon. In 

order to improve the production of proteins containing UNAAs, some 

E. coli strains have been developed, with different characteristic that 

leads to a higher protein expression [169]. 

One of the widely used genomically recoded E. coli strains is 

C321.Δa, a strain were all the TAG stop codons have been removed 

from the genome, via an in vivo genome-editing approach [225-227], 

and replaced with TAA. Removing the amber stop codon permits the 

deletion of release factor 1 as well, as release factor 2 is enough to 

drive termination for the other two stop codons still present in the 

strain. In this way the amber codon is free to be used and reassigned 

to codify for the desired UNAA, by the site-specific introduction of 

TAG into the protein of interest, together with an appropriate 

orthogonal tRNA/aaRS pair. This approach allows a more efficient 

incorporation of UNAAs in E. coli, considering that the cells exhibit a 

normal morphology and only a slightly increased doubling time [225, 

226]. This is one example, but many E. coli strains had been made 

with deletion of release factor 1, proving to be a successful way for 

the incorporation of UNAAs [226, 228-230].  

Another E. coli strain that was developed is BL21-ai [231]. 

These cells are optimized for high-level protein expression, ideal for 

the production of proteins that might be toxic for other E. coli strains. 

In these cells two proteases have been removed (Ion and OmpT), 

leading to reduced degradation of the expressed proteins. Moreover, 
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a T7 RNA polymerase gene has been inserted into the genome of 

Bl21-ai E. coli in the araB locus, so the expression of the T7 

polymerase can be tightly regulated by the sugars L-arabinose and 

glucose, providing a better regulation of protein induction. All of these 

characteristics make E. coli BL21-ai a suitable strain for high-level 

expression of proteins containing UNAAs, from a T7-based 

expression vector [148].  

 

 

4.7 – Summary and aim of this work 
 

Genetic code expansion provides a versatile approach for the 

incorporation of UNAAs into proteins, which can be used to improve 

our understanding of many different biological processes. The 

incorporation of UNAAs is site-specific as it relies on the suppression 

of a stop codon, which can be inserted in any desired position of a 

protein of interest. The suppression is guaranteed by the introduction 

of orthogonal tRNA/aminoacyl-tRNA synthetase pairs, which can 

specifically recognize the non-canonical amino acid, driving its 

incorporation in the target protein [166-168, 182]. The orthogonality 

of the tRNA/aaRS pair allows the application of genetic code 

expansion in all common model organisms, such as bacteria, yeasts, 

mammalian cells, mice and zebrafish [182].   

The main focus of our lab is to understand the nature of the 

interactions among multiple cytokinetic proteins, acting together for 

the formation and contraction of the actomyosin ring at the end of cell 

cycle. Therefore we were interested to use genetic code expansion 

for two main goals: to investigate protein-protein interactions and as 

an alternative methods for the labelling of cytokinetic proteins.  

Initially we needed to establish this methodology in our lab, 

before being able to address some more complicated biological 

questions, therefore in the next chapter we reported the optimization 

of this techniques, using the model organism E. coli (described in 
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paragraphs 5.1 and 5.2). Among 200 available UNAAs, synthesized 

with a large variety of functional groups that confer unique chemical 

properties, we decided to incorporate two photo-crosslinking UNAAs, 

AzF and BPA, into some reporter proteins. This initial step was 

necessary to make sure the technology worked in our hands and, 

more importantly, that we were able to crosslink our candidate 

proteins through these UNAAs.  

Next we wanted to test if we could use genetic code 

expansion to investigate interactions between cytokinetic proteins, as 

this technology is very useful either to discover new protein 

interacting partners or to map at the amino acid levels the precise 

interacting region between candidate proteins. As a proof of concept, 

and to prove the efficiency of this technique, we studied two well-

known interacting proteins, tropomyosin and actin. We managed to 

capture some interactions and we collected some preliminary results, 

which will lead in future works to map fully the interacting region at 

the amino acid level (described in paragraph 5.3).  

Additionally, we used genetic code expansion as a tool to 

fluorescently label cytokinetic proteins, by the introduction of AzF in 

our target proteins. AzF is not only a photo-crosslinker UNAA, but its 

functional group is also capable to react with fluorescent alkyne 

compounds in an azido-alkyne cycloaddition reaction.  The result of 

this reaction is a fluorescently labelled protein that is perfectly 

functional. For our work, genetic code expansion was mainly useful 

to label cytokinetic proteins that displayed defects when tagged with 

GFP [60] (described in paragraph 5.5). Therefore this technology 

represented a valid alternative method to label a protein of interest 

without interfering with its normal function. 

  This work provided the basis for future experiments aimed to 

better understand, spatially and temporally, the interactions occurring 

among multiple proteins involved in cytokinesis.  
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5 - EXPERIMENTAL RESULTS AND 
DISCUSSION  
 

Genetic code expansion can be used to study various 

biological mechanisms. We use this methodology for two main 

purposes: to capture and map protein-protein interactions and as a 

tool to site-specifically label proteins of interest. Incorporation of 

unnatural amino acids into proteins can be achieved in vivo using E. 

coli cells as an expression organism. Before incorporating photo-

crosslinking unnatural amino acids in our protein of interest, we 

needed to make sure that genetic code expansion could efficiently 

work in our hands. Therefore we proceeded in a step-wise manner 

by using some reporter genes in order to optimize this methodology 

to be used for our purpose.   

 

 

5.1 - Incorporation of unAAs in sfGFP protein 
 

Site-specific incorporation of unnatural amino acids was 

achieved through amber stop codon suppression in E. coli BL21-ai 

cells, following guide lines established by Mehl and colleagues [148] 

for an efficient modified proteins production. We chose sfGFP 

(superfolder green fluorescent protein) as a reporter gene to test the 

incorporation of two photo-activable unnatural amino acids, azido-

phenylalanine (AzF) and benzoyl-phenylalanine (BPA), through 

amber codon suppression.  

The green fluorescent protein contains a TAG codon in 

replacement of a phenylalanine in position 150 (sfGFP-150-TAG 

plasmid), therefore the incorporation of the desired unnatural amino 

acid in response to this stop codon will allow the expression of the 

full-length protein, resulting in a visually detectable fluorescence. 

Amber stop codon suppression was possible with the simultaneously 
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expression of an appropriated orthogonal tRNA/aminoacyl-tRNA 

synthetase pair, able to direct the incorporation of AzF and BPA in 

the target protein. M. jannaschii tyrosine synthetase/tRNA system 

was used, with appropriated mutation to allow the incorporation of 

either azidophenylalanine (pDULE2-AzF plasmid) or benzoyl-

phenylalanine (pDULE2-BPA plasmid) in the reporter gene. 

E.coli BL21-ai cells were co-transformed with sfGFP-150-TAG 

and the desired tRNA/aaRS pair plasmid, while protein expression 

was induced by the addition of arabinose to the medium, where 

either AzF or BPA had been previously dissolved to 1mM 

concentration. To evaluate the efficiency of amber codon 

suppression, as a positive control we use the wild type gene of our 

protein on interest, while the expression of sfGFP-150-TAG served 

as negative control when the unnatural amino acid was not added to 

the medium. In fact, the lack of the substrate for the orthologue 

tRNA/aaRS pair resulted in the production of a truncated protein, 

demonstrating that only the presence of the unnatural amino acid in 

the medium of the cells induced the expression of a full-length 

protein. In 24 hours it was possible to visually detect the presence of 

fluorescent proteins, in the positive control and in cells transformed 

with sfGFP-150-TAG only when the unnatural amino acid had been 

added to the medium. Cells were successively collected and protein 

expression was analysed by SDS-PAGE, before purification. Both 

AzF and BPA has been successfully incorporated in our report gene, 

while in the absence of unnatural amino acids we could only detect a 

truncated form of GFP (figure 5.1A and B), resulting from the lack of 

amber codon suppression. To verify the correct incorporation of AzF 

and BPA at position 150 of sfGFP, we purified these proteins (figure 

5.1C) and analysed them through mass spectrometry (figure 5.6A). 

The identification of BPA was straightforward and many peptides 

were found containing the benzoyl group in phenylalanine 150. In the 

case of AzF identification we encountered some difficulties as we 

were not able to detect the azido group on phenylalanine 150. One 

way to prove the efficient incorporation of AzF into sfGFP was to  
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Figure 5.1: Incorporation of unnatural amino acids in sfGFP. 
 

A-B) Whole-cell lysates resolved by SDS-PAGE and stained 
with Coomassie brilliant blue (CBB, SimplyBlue 
Safestain) of sfGFP and sfGFP-150-TAG, expressed in 
the presence or absence of 1mM of either BPA (A) or 
AzF (B). Protein expression was induce by the addition 
of 0.05% arabinose to the inducing ZY medium. 
Molecular weight (MW) of the full length sfGFP is ~ 25 
KDa, while MW of the truncated sfGFP-150-TAG is ~ 16 
KDa. Successful incorporation of UNAAs results in the 
production of a full length protein, which runs ~ 25 KDa.  

C) SDS-PAGE of purified His-tagged sfGFP-150-TAG 
proteins, expressed in the presence of 1 mM BPA. 

 

 

perform azido-alkyne cycloaddition reaction, a methods that will be 

explained in paragraph 5.4 that could alternatively detect the 

presence of AzF in the tested protein. Later, during the analysis of 

another reporter gene (GST, described in paragraph 5.2) we realized 

that, during sample preparation for mass spectrometry analysis, the 

azido group present in AzF was almost completely reduced to amino 

group. Therefore with mass spectrometry analysis we should had 

looked for the presence of amino-phenylalanine, instead of azido-

phenylalanine.  

To summarize these experiments, we genetically encoded two 

different unnatural amino acids in sfGFP, validating the site-specific 

incorporation of AzF and BPA through mass spectrometry analysis. 

However, we could not test the ability of unnatural amino acids to 

crosslink with binding partners, upon exposure to UV light, therefore 

we needed a different reporter gene. 
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5.2 - Incorporation of unAAs in GST protein 
 
Our main goal for genetic code expansion was to study 

protein-protein interactions, therefore we needed to verify if and how 

we could detect the formation of covalent bonds between proteins 

that bind together. For the next set of experiments, we used, as 

reporter gene, glutathione S-transferases (GST), a well-known 

protein that exist as a dimer.   

Amber codon was introduced in replacement of phenylalanine 

52 (referred as GST-F52-TAG), and the expression of protein with 

unnatural amino acid was carried out as explained previously. We 

successfully incorporated both AzF and BPA into GST (figure 5.2A 

and B) and verified these results through mass spectrometry analysis 

(figure 5.6B and C). As reported previously, the detection of peptides 

containing BPA in position F52 was straightforward, while to validate 

the presence of AzF in the protein we needed to look for peptides 

containing amino-phenylalanine modification. Mass spectrometry 

analysis confirmed the correct incorporation of both unnatural amino 

acids, therefore we moved forward and tested the formation of 

crosslinked GST dimers.  

AzF and BPA are photo-activable unnatural amino acids, 

hence purified proteins (figure 5.2C) needed to be exposed to UV 

light (via a 365 nm lamp), in order to trigger the covalent bond 

formation between the two molecules of GST dimer. Crosslinked 

samples were resolved with SDS-PAGE and immunoblotted with 

GST-antibody. Distinct bands, corresponding to GST dimer 

formation, could be detected only in the presence of the unnatural 

amino acids in the reporter protein, as just a single band at 25 KDa 

was found for the wild type GST, even after UV light exposure (figure 

5.2D and E). An exposure to UV light of 1 minute was enough for 

crosslinking bands to be detected, but a longer incubation time 

increased the amount of visualized GST dimers, as the majority of 

the monomers were able to crosslink. These experiments also  
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Figure 5.2: Incorporation of unnatural amino acids in GST. 
 
 

A-B) Whole-cell lysates resolved by SDS-PAGE and stained 
with Coomassie brilliant blue (CBB) of GST and GST-
F52-TAG, expressed in the presence or absence of 
1mM of either BPA (A) or AzF (B). Protein expression 
was induce by the addition of 0.05% arabinose to the 
inducing ZY medium. MW of the full length GST is ~ 25 
KDa while, as the MW of the truncated GST-F52-TAG is 
~ 5 KDa, it was not possible the detection of the 
truncated protein. Successful incorporation of UNAAs 
results in the production of a full length protein, which 
runs ~ 25 KDa.  

C) SDS-PAGE of purified GST-tagged GST-F52-TAG 
proteins, expressed in the presence of either 1 mM AzF 
or 1 mM BPA. 

D-E) Western blots of crosslinked GST proteins were 
resolved by SDS-PAGE and detected by anti-GST 
antibody. GST and GST-F52-TAG proteins, expressed 
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in the presence of either BPA (D) or AzF (E), were 
exposed to 365 nm light for different amount of time to 
produce crosslinked GST dimers. The presence of 
crosslinked proteins are indicated by the red arrows. 

 

 

proved the temporal control of unnatural amino acids action, as the 

crosslinking reaction was activated exclusively by UV light exposure. 

Proteins encoding unnatural amino acids did not crosslink without UV 

light irradiation, demonstrating a tight control of the activation of the 

crosslink reaction.  

GST-F52-TAG was expressed in the presence of either AzF or 

BPA, enabling a successful crosslinked dimer formation for both 

cases. Nevertheless, as AzF can be a less stable unnatural amino 

acid, giving the fact that the azido functional group may be reduced 

into amino, we decided to use the chemically stable BPA for all our 

future crosslink experiments. However, we could use AzF as a 

protein labelling tool as its reactive chemical group can be covalently 

linked to fluorescent compounds. This application of genetic code 

expansion will be explained in a following section (paragraph 5.4).  

The visualization of dimers in GST proteins encoding 

unnatural amino acids was evidence proving that this technology 

started to work in our hands. One major advantage offered by this 

method is the ability to provide positional information of the protein-

protein interactions. In fact, genetic code expansion allows to decide 

where a desired unnatural amino acid will be incorporated in the 

protein of interest with a site-specific precision. With a successively 

screening, discriminating between positive and negative crosslinking 

interactions, it is possible to determine which residues are involved in 

the interaction, mapping the site in direct contact with a partner 

protein. In our experiments, as we visualized dimer formation when 

GST encoded an unnatural amino acid in position F52, we can 

confirm that this residue is located in close proximity with the second 

molecule of GST.  
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By the introduction of unnatural amino acids in several 

positions of a protein of interest, it is possible to discriminate between 

the residues directly involved in the interaction with a partner 

molecule and the ones located too far from the binding partner. On 

the other hand, the identification of the residues in the binding protein 

involved in the interaction with unnatural amino acids constitutes a 

big challenge. We tried to resolve this problem through an approach 

based on mass spectrometric analysis.  

GST proteins, containing the unnatural amino acid BPA, were 

exposed to UV light and resolved with SDS-PAGE. Only the band 

belonging to the crosslinked dimer was excised from the gel, in order 

to be examined through mass spectrometric analysis. As we were 

looking for the specific dipeptide, created by the covalent interaction 

between the unnatural amino acid and its binding partner, we needed 

to analyse the data through StavroX, a suitable software for the 

identification of crosslinking peptides. This analysis was able to 

generate some promising results because it identified the nature of 

the dipeptide, which was formed by an interaction between BPA in 

position 52 of one molecule of GST, and methionine 94 present in 

the second molecule (figure 5.7A). This result seemed very 

promising but, considering the nature of our sample, required more 

investigation. As we were in the presence of only one protein 

containing BPA, we wanted to be sure that the crosslinked dimer was 

due to a covalent bond between two GST molecules, to avoid the 

possibility that, instead, it was the result of an interaction within the 

same protein. To determine if the covalent bond between amino 

acids 52 and 94 could take place inside a single GST molecule, we 

inspected the crystal structure of Glutathione S-transferases (PDB: 

1UA5) and measured the distance between these two residues, 

which resulted to be ~ 25 Å (figure 5.3A). Previous studies have 

shown that BPA can react with amino acids located at a distance 

between 3 to 10 Å [232, 233], therefore it is not possible for BPA to 

crosslink in the same molecule of GST, but two proteins need to be  
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Figure 5.3: Identification of the crosslinked GST dimer.  
 

A) Relative position of Phe52 and Met94 in S. japonicum GST 
(PDB: 1UA5 shown in the figure). The calculated distance 
between the two residues is ~24.9 Å.  

B) GST dimer formation was modelled using PyMOL and the site 
of dimer interaction, marked by a red box, is been enlarged in 
(C). 

C) Zoomed view of the dimer formation region in the two GST 
molecules. The calculated distance between Phe52 and 
Met94, present in two different GST monomer, is ~ 6 Å while 
the distance between Phe52 and Leu95 is ~ 6.6 Å. 

D) The incorporation of BPA was modelled at position 52 in one 
of the GST monomer, using PyMOL, and the calculated 
distance between the introduced UNAA and Met94 is ~ 5.6 Å, 
while the distance between BPA and Leu95 was calculated to 
be ~ 2.8 Å. 

(All the analysis presented in figure 5.3 was performed by Shekhar 
Jadhav)  
 

 

involved in the interaction. With some more structural analysis we 

were able to reconstruct the structure of GST dimer, hypothesizing 

which amino acids should be involved in the dimerization. Our 
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findings matched the mass spectrometry results since, from the 

crystal structure of GST dimer, it was evident that phenylalanine 52 

of one molecule is in close proximity with methionine 94 of the 

second GST protein (figure 5.3B and C). The calculated distance 

between these two residues was approximately 6 Å, reasonable 

considering the distance restraints of BPA, therefore this was a 

confirmation that we could capture, using photo-crosslinkers 

unnatural amino acids, the interaction between two GST molecules. 

From the dimer model structure we also noticed that phenylalanine 

52 was in close proximity with leucine 95, at a distance of ~ 6.6 Å, 

suggesting that we could expected, apart from M94, also L95 to be a 

possible crosslinking site. Mass spectrometry analysis identified the 

formation of dimers between serine 93 and leucine 95, but these 

positions crosslinked at a very low frequency comparing with M95. 

These two other residues can be potentially involved in the dimer 

formation, but taking into consideration the mass spectrometry 

results, we are more likely to consider methionine 94 as our 

candidate. Furthermore, previous works indicated that benzoyl-

phenylalanine reacts preferentially with methionine [234, 235], 

therefore M94 seems to be the site of the interaction in a GST dimer.  

Another advantage offered by structural analysis is the 

possibility to insert BPA into the desired position of the protein of 

interest. With this approach we could examine two important issues: 

firstly, we verified that the GST structure was not affected by the 

incorporation of the unnatural amino acid (figure 5.3D). Secondly, we 

measured the distance between BPA and M94, making sure the 

proximity of the two residues could support the formation of the 

covalent bond between the two amino acids. When BPA was 

modelled in position 52 of GST, the resulting protein structure was 

indeed able to interact with methionine 94. We recorded a distance 

between the two residues of ~ 5.6 Å, which fitted with BPA range of 

interaction.  

To summarize these results, first, we successfully 

incorporated different unnatural amino acids into our proteins of 
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interest in a site-specific manner; secondly a crosslinking product 

was efficiently produced, upon the exposure of proteins to UV light. 

Finally, mass spectrometry analysis proved to be a tool for the 

identification of the amino acids involved in the dipeptide resulted 

from a crosslinking interaction.  

Confirming that genetic code expansion was working in our 

lab, we took one step forward and investigate the interaction between 

two proteins, to demonstrate that we could apply this methodology to 

study and find protein-protein interaction. As a proof of concept we 

started with two well-known interacting proteins, tropomyosin and 

actin, to test and prove the efficiency of this technique. 

 

 

5.3 - Actin-tropomyosin interaction map by 
using genetic code expansion 
 

Tropomyosin is a conserved actin binding protein required to 

stabilize and maintain actin filaments (F-actin). In mammals at least 

40 isoforms of tropomyosin have been identified, generated by 

alternative splicing of four genes, which localized to muscle and non-

muscle cells. Many studies have pointed towards the understanding 

of muscle contraction, as in striated muscles tropomyosin associate 

with F-actin present in thin filaments, controlling the regulation of 

myosin II binding with the help of troponin in a calcium-sensitive 

manner. In non-muscle cells tropomyosin stabilized actin filaments 

and regulate actomyosin ring formation during cytokinesis [236].  

In fission yeast, an attractive model organism for the study of 

cytokinesis, a single tropomyosin is expressed, encoded by the cdc8 

gene. Tropomyosin regulates many cellular processes, for example it 

stabilises interphase actin filaments protecting them from severing, it 

regulates actomyosin ring formation during cytokinesis, through the 

interaction with formin nucleated actin filaments and it is involved in 

myosin – actin interaction [102, 237, 238]. Some post-translational 



135 
 

modifications had been identified as regulators of tropomyosin 

activity, such as an N-terminal acetylation that influence the binding 

affinity toward actin filaments [239], while tropomyosin 

phosphorylation is crucial to mediate actin filaments turnover and 

stability [103].  

Fission yeast tropomyosin is an α-helical coiled-coil dimer that, 

by overlapping head-to-tail, forms a continuous polymer spanning 

around four actin monomers, providing stability to the resulting actin 

filaments. The structure of how tropomyosin wind around actin was 

determined through electron micrograph reconstructions, which 

predicted how Cdc8 can be position around the actin filaments in a 

characteristic pattern [239]. However, it remains unknown which sites 

of tropomyosin are in contact with actin because, until recently, there 

was no high-resolution crystal structure of actin-tropomyosin 

complex. To overcome this problem we attempted to map the 

interaction occurring between these proteins using genetic code 

expansion, as with this methodology we should be able to map at an 

amino acid level the interaction presents between tropomyosin and 

actin filaments.  

We planned to incorporate the photo-activable unnatural 

amino acid benzoyl-phenylalanine in several positions of 

tropomyosin, to map which residue will be close enough to actin 

filaments to be covalently crosslinked upon exposure to UV light. 

Successively, through mass spectrometry analysis, we should be 

able to map these interactions on the actin filaments as well. 

 
 

5.3.1 – Incorporation of BPA in Cdc8  
 

As 80% of Cdc8 is constantly acetylated at the N-terminus, 

resulting in an increased binding affinity toward actin filament, we 

express a modified isoform of Cdc8, containing an alanine-serine 

dipeptide at the N-terminal (AS-Cdc8) to mimic the in vivo  
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Figure 5.4: Incorporation of BPA in Cdc8. 
 

A) Graphical representation of the coiled-coil heptad repeat 
organization of Cdc8. Positions "a" and "d" contain 
hydrophobic amino acids involved in the formation of the 
dimer structure, positions "b", "c", "e", "f" and "g" contain 
charged amino acids. Two positions, "e" and "g", are involved 
in the stabilization of the dimer structure while the amino acids 
in the other three position are exposed from the structure.  

B) SDS-PAGE of some purified Cdc8 mutant proteins expressed 
in the presence of 1 mM BPA. MW of the full length Cdc8 is ~ 
19 KDa, nevertheless the protein in SDS-PAGE runs between 
20 to 25 KDa. Lower bands represent truncation of 
tropomyosin were the incorporation of UNAA was not 
successful. 

C) Actin-tropomyosin co-sedimentation assay of some Cdc8 
mutants. Pellet and supernatant fractions were resolved by 
SDS-PAGE and stained with simplyblue SafeStain. MW of 
actin is ~42 KDa. 

 

 

acetylation. The positions to incorporate the unnatural amino acids 

were decided base on tropomyosin structure. This protein consists of 

a periodic repetition of heptad units, which are composed by 7 amino 

acids (referred as “a-b-c-d-e-f-g”) typical of coiled-coil proteins (figure 

5.4A).  
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 Usually positions “a” and “d” are occupied by hydrophobic 

residues, which will form the core of the tropomyosin dimer, while in 

position “e” and “g” are often present oppositely charged amino acids 

that serve to stabilize the hydrophobic core, through inter-helical salt 

bridges. Finally, positions “b”, “c” and “f” constitute exposed sites at 

the surface of tropomyosin dimer, which are available to interact with 

other proteins [240]. Cdc8 can be divided in four domains (1-42 aa, 

43-84 aa, 85-126 aa and 127-161 aa) two of whom, the first and the 

last, are involved in the dimerization of the protein, which occurs 

through the overlap between N and C-terminus in a head-to-tail 

manner. Using genetic code expansion we systematically 

incorporated benzoyl-phenylalanine manly throughout the third 

tropomyosin domain, focusing on the residues located in the exposed 

surface of tropomyosin. We choose to mutate these amino acids, 

avoiding the residues in position “a” and “d”, to not alter the structure 

and the stability of the hydrophobic core (table 5.1). 

The expression of all the protein containing unnatural amino 

acids was carried out as described previously, while the incorporation 

of BPA was validated through mass spectrometry analysis, which 

confirmed the presence of the unnatural amino acid in the correct 

position of each purified tropomyosin mutant proteins (figure 5.4B 

and figure 5.6D). 

  Before testing the ability of each Cdc8 mutant protein to 

crosslink or not with actin filaments, we performed some more 

experiments to verify that the incorporation of unnatural amino acids 

was not interfering with the structure of tropomyosin. In fact, while the 

bulky structure of BPA is similar to the aromatic amino acids, it differs 

quite a lot from the remaining ones. A way to test that the 

incorporation of unnatural amino acids was not influencing on its own 

the interaction between tropomyosin and actin, we performed an 

actin co-sedimentation assay for each tropomyosin mutant.  These 

experiments demonstrated that almost all the Cdc8 mutants were 

able to sediment together with actin filaments, proving that the 

structure of these proteins was not affected by the presence of BPA. 
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Nevertheless, when BPA was introduced to replace valine 123, the 

resulting Cdc8 mutant protein was not able to interact with actin 

filaments. A possible explanation can be due to the fact that as valine 

123 belongs to position “d” of the heptad repeat motif, involved in the 

formation of Cdc8 hydrophobic core, the introduction of an unnatural 

amino acid in this position may alter the structure and stability of the 

mutant protein. Therefore, this result suggests that valine 123 is a 

crucial residue for the stability of tropomyosin dimer (figure 5.4C).  

 

 

5.3.2 – Cdc8 residues involved in dimer formation  
 

Considering the dimeric nature of tropomyosin, before 

proceeding to test its interaction with actin, we needed to investigate 

if some of the positions were BPA has been incorporated were 

involved in the dimer formation. Therefore, each mutant protein had 

been individually exposed to UV light, resolved with SDS-PAGE and 

immunoblotted with Cdc8-antibody (figure 5.5A).  

Monomeric tropomyosin could be detected at ~ 23 KDa 

therefore, in the presence of intra-crosslinking interactions, we 

should expect to see a band at ~ 50 KDa. We could detect the 

formation of dimeric proteins for some of the mutants containing 

BPA, such as Y43, L91, N98, T105, T112, F119, V123 and L126. 

When we looked at the localization of these residues in the heptad 

repeat structure, we found two amino acids, Y43 and V123, 

belonging to position “a” and “d” respectively. As they are part of the 

hydrophobic core of the dimer, it was reasonable to detect an intra-

crosslinking interaction for both these residues. All the other six 

mutants belonged to position “g”, reserved for charged amino acids 

involved in the stabilization of the dimer core. 

All together, these auto-crosslinking experiments provided 

some insight into the structure of the tropomyosin dimer, 

demonstrating the role of some amino acids surrounding the 
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hydrophobic core in the stabilization of the dimer. None of the 

residues in position “b”, “c” or “f” were involved in the dimer formation 

therefore, as these positions were exposed on the surface of 

tropomyosin, they appeared to be more likely to be involved in the 

interaction with actin.  

 

 

5.3.3 – Cdc8 residues interacting with actin filaments 
 

 After these controls we could test the ability of tropomyosin 

mutants to crosslink with actin filaments. To facilitate the screening of 

crosslinking proteins we used actin labelled with alexa-488, which 

could be directly detected on SDS-PAGE through an imaging system 

equipped for fluorescence visualization. Each tropomyosin mutant 

expressing BPA was incubated with polymerized actin and exposed 

to UV light. Crosslinked samples were resolved with SDS-PAGE and 

fluorescent actin was directly detected.  

In the case of positive interactions between these two 

proteins, we expected to visualize a band corresponding to the 

crosslinked complex between 60 to 70 KDa, due to the sum of the 

molecular weights of actin and tropomyosin, which are ~ 42 KDa and 

~ 23 KDa respectively. Crosslinking bands could be detected only for 

some of the tropomyosin mutants, although the interpretation of the 

results was not straightforward (figure 5.5B). In some cases (K30, 

K49, R48 and R86) two bands were detected, one at ~ 75 KDa 

together with a fainter lower one, while other mutants displayed only 

one band around 65 KDa (K65, E89, E94, T97, K100, R103 and 

E107). Surprisingly three mutants (Y43, L91 and N98) that from 

previously experiments resulted involved in tropomyosin dimer 

formation, exhibited a faint band around 65 KDa.  

From these preliminary experiments we could start to map 

which amino acids of tropomyosin are directly involved in the 

interaction with actin filaments (figure 5.5C and table 5.1). When we  
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Figure 5.5: UV-induced crosslink of Cdc8 mutant proteins 
containing BPA. 
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A) Cdc8 auto-crosslinking. Each purified Cdc8 mutant containing 

BPA was exposed to 365 nm light for 30 minutes, in order to 
capture possible interactions between dimers. Crosslinked 
proteins were resolved by SDS-PAGE and detected by anti-
Cdc8 antibody. The formation of dimers is detectable by the 
presence of a band around 50 KDa. 

B) Cdc8 - actin crosslinking. F-actin, labelled with Alexa-488, was 
incubated with each Cdc8 mutant and exposed to UV-light for 
30 minutes. Protein samples were resolved by SDS-PAGE 
and fluorescent crosslinked proteins were detected directly on 
the polyacrylamide gel. The presence of crosslinked Cdc8-
actin proteins was detected by the formation of bands 
between 50 and 75 KDa.  

C) Graphical representation of Cdc8 positions tested for either 
auto-crosslinking or actin-tropomyosin crosslinking. When 
BPA was introduced in replacement of exposed residues of 
Cdc8, we could detected many interaction with actin, whereas 
dimer formation involved mainly amino acids located close to 
the core of the dimer, such as "a, "e" and "g".  

 

 

examined Cdc8 residues located either in position “e” or “g”, which 

represented amino acids involved in the stabilization of the 

hydrophobic core, the majority of the tested sites (six out of nine 

positions) displayed auto-crosslinking, as expected.  

All the inter-dimer interactions involved residues located in 

position “g”, whereas the three residues that crosslinked with actin 

filaments belonged to position “e” (E89 and R103) and only one to  

position “g” (K49). The majority of Cdc8 residues interacting with 

actin filaments localized to exposed sites of the heptad repeats. In 

fact, half of the amino acids in “b” position crosslinked with actin 

filaments, more specifically the ones located in a region between 

amino acids 65 and 107 of tropomyosin. Several other positions were 

able to interact with actin, such as R48 and T97 in “f” position and 

E94 in “c” position. Overall, most of the crosslinking interactions that 

we recorded did localize to a tropomyosin region between lysine 30 

and glutamic acid 107, whereas the following part of the protein 

(between tyrosine 112 and lysine 146) did not seem to interact with 

actin filaments. The use of fluorescent labelled actin made easy and 
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quick an initial screening designed to identify which tropomyosin 

residues are involved in the interaction with actin filaments. This 

preliminary map represented a starting point for further analysis, 

aimed to validate which amino acids in tropomyosin are essential for 

the interaction with actin. 

 

 

Table 5.1: List of Cdc8 residues where BPA had been 
introduced. 
 
For each Cdc8 residue is listed the corresponding position occupied 
in the coiled-coil heptad repeat, if it was involved in the dimer 
formation (auto-crosslinking) and if it was capable of interacting with 
F-actin (Cdc8-actin crosslinking). 
 
 

Cdc8 residues 
substituted by BPA 

Position in the coiled-
coil heptad repeat 

Auto- 
crosslinking 

Cdc8 - actin 
crosslinking 

K 30 B NO YES 
K 39 D NO NO 

Y 43 A YES NO 

R 48 F NO YES 

K 49 G NO YES 

K 65 B NO YES 

R 86 B NO YES 

E 89 E NO YES 

L 91 G YES NO 

E 93 B NO NO 

E 94 C NO YES 

T 97 F NO YES 

N 98 G YES NO 

K 100 B NO YES 

R 103 E NO YES 

T 105 G YES NO 

E 107 B NO YES 

T 112 G YES NO 

V 114 B NO NO 

F 119 G YES NO 

R 121 B NO NO 

V 123 D YES NO 

L 126 G YES NO 
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R 128 B NO NO 

K 146 F NO NO 
 

 

 

5.4 – Mass spectrometry identification of 
UNAAs  
 

 Mass spectrometry analysis is a useful method for the 

identification of proteins and amino acids modifications. This 

technology involves the digestion of the protein of interest into 

peptides, which are successively separated, fragmented, ionised and 

captured through a mass spectrometers. The identification of the 

protein is done using computational methods, which generate peaks 

belonging to each peptide fragment ion [241].  

We were interested to validate the incorporation of UNAAs 

introduced in our proteins of interest (described in chapter 5), 

therefore all the purified proteins containing either AzF or BPA were 

analysed through mass spectrometry. One representative peptide 

containing the UNAA of each analysed protein is shown in figure 5.6.  

We selected two unnatural amino acids to be incorporated into our 

proteins of interest, AzF and BPA, therefore mass spectrometry 

analysis focused on the identification of phenylalanine with additional 

modifications.  

The incorporation of AzF in a protein was detected as an 

addition of 15 Da to phenylalanine. This corresponded to the 

predicted mass of the added amino-moiety as AzF, during the 

processing of the protein sample for mass spectrometry analysis, 

was mainly converted to amino-phenylalanine. One representative 

peptide containing this UNAA is shown in figure 5.6B for GST-F52-

AzF, where we can identified F+15 peak.  

 In the case of BPA the incorporation of this UNAA was 

detected as an addition of 104 Da to phenylalanine, corresponding to  
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A     GFP-150-BPA  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B     GST-F52-AzF 
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C     GST-F52-BPA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D     Cdc8-F119-BPA 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 5.6: Identification of UNAAs through mass spectrometry.  
 

A-D) MS/MS spectra of one representative peptide, for each 
analysed proteins, containing the desired UNAA. The 
incorporation of AzF results in an addition of 15 Da to 
phenylalanine, as represented in figure (B), while the 
incorporation of BPA results in an addition of 104 Da, as 
represented in figures (A), (C) and (C). Inset shows the 
ions fragmentation table of the analysed peptide.  

(the analysis were performed by WPH Proteomics Facility RTP, 
University of Warwick). 
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A                                          GST dipeptide 

 
 
 
Figure 5.7: Identification of GST dipeptide through mass 
spectrometry.  
 

A) MS/MS spectra of the identified GST dipeptide. In the right it is 
shown the interaction between Methionine with Phenylalanine 
(where BPA has been incorporated) representing the amino 
acids crosslinked together.  

(the analysis and image in figure 5.7 were prepared by WPH 
Proteomics Facility RTP, University of Warwick). 
 

 

the predicted mass of benzoyl-moiety. One representative peptide for 

GFP-150-BPA is shown in figure 5.6A, and one example for GST-

F52-BPA is illustrated in figure 5.6C, where we can identify F + 104 

peak. The incorporation of BPA in Cdc8 had been verified for all the 

purified mutant proteins, therefore only one example is shown in 

figure 5.6D, where the presence of this UNAA is illustrated for the 

mutant protein Cdc8-F119-BPA. 
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Mass spectrometry analysis was also useful for the 

identification of the dipeptide formed between GST proteins 

containing BPA, which were crosslinked together upon exposure to 

UV light (explained in paragraph 5.2). The identification of the 

dipeptide and the specific amino acids crosslinked to BPA was 

performed using StavroX, a crosslinking mass spectrometry analysis 

software. With this additional tool it was possible to identify Met94 as 

the amino acid crosslinked with the introduced BPA in GST. The 

identified dipeptide is shown in figure 5.7A. 

 

 

5.5 – Protein labelling by using genetic code 
expansion 
 

Genetic code expansion as a tool for protein labelling offers 

many advantages. The site-specific incorporation provides a lot of 

flexibility in the choice of where to insert the unnatural amino acid, as 

any position of the protein of interest can be replaced. Therefore, 

many sites can be inspected to find which one is the best for the 

labelling of the target protein, place that should not influence the 

normal function of the molecule. In our work we chose unnatural 

amino acids containing an azide as functional group, which can react 

in a cycloaddition reaction when in close proximity with a strain-

alkyne compound. Specifically, we incorporated AzF in response to 

amber codon and incubated with fluorescent dyes containing strain-

alkyne group to trigger the labelling of the target protein.  

 

 

5.5.1 – Labelling of reporter genes  
 

To test that the labelling of a protein could properly happened, 

we incubated purified sfGFP-150-TAG containing AzF either with 

Alexa fluor 555 sDIBO alkyne or with Alexa fluor 647 sDIBO alkyne. 
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After overnight incubation at 16 ˚C, samples were resolved with SDS-

PAGE and labelled proteins were detected with an imaging system 

equipped for fluorescence visualization (figure 5.8A). Wild type 

proteins, used as a control, did not show any signal whereas only the 

presence of AzF in sfGFP-150-TAG leaded to the detection of a 

fluorescent product. Same results were obtained when GST-52-TAG 

containing AzF was incubated with alkyne-conjugated dyes. In this 

case a clear fluorescence signal could be detected only when AzF 

had been incorporated into the protein of interest (figure 5.8B).  

These results confirmed that azido-phenylalanine could be 

used to fluorescently label proteins, therefore we applied this tool 

further and, as a proof of concept, we verified that the incorporation 

of this UNAA was efficient and not interfering with the normal function 

of proteins. 

 

 

5.5.2 – Labelling of Cdc8  
 

Previously it had been shown the efficient production of 

fluorescent tropomyosin obtained with cysteine labelling [103], where 

a thiol-reactive dyes had been conjugated to a cysteine residue 

introduced to replace a native isoleucine in position 76 (I76C) of 

Cdc8. Since the presence of cysteine at this position did not affected 

the properties of Cdc8, we use genetic code expansion to introduce 

AzF in the same site (Cdc8-I76-TAG) to test the labelling efficiency 

through cycloaddition reaction with the compound Alexa fluor 647 

sDIBO alkyne (figure 5.8C). We could detect fluorescently labelled 

Cdc8 only in the presence of AzF, whereas wild type proteins had not 

been labelled. Next, we used fluorescent Cdc8 to demonstrate its 

ability to decorate actin filaments, proving that this type of labelling 

was not interfering with the function of tropomyosin. Polymerized 

actin filaments had been coated with labelled Cdc8 and their 

interaction had been examined through total internal reflection  
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Figure 5.8: Protein labelling using genetic code expansion. 
 

A) Purified sfGFP and sfGFP-150-TAG, expressed in the 
absence or presence of 1 mM AzF, were incubated with 20x 
molar excess of Click-iT Alexa Fluor 555 (or Alexa Fluor 647) 
sDIBO Alkyne. After overnight incubation at 16°C, protein 
samples were resolved in SDS-PAGE and fluorescently 
labelled proteins were detected directly in the polyacrylamide 
gel. 

B) Purified GST and GST-F52-TAG were incubated with Click-iT 
Alexa Fluor 488 (or Alexa Fluor 555) sDIBO Alkyne and 
resolved on SDS-PAGE. 

C) Purified Cdc8 and Cdc8-I76-TAG were incubated with Click-iT 
Alexa Fluor 647 sDIBO Alkyne and resolved on SDS-PAGE. 

D) Images showing the ability of fluorescently labelled Cdc8-I76-
TAG to decorate actin filaments. Left panel showed actin 
channel (labelled with Alexa-488), central panel showed 
tropomyosin labelled with Alexa-647 (Click-iT Alexa Fluor 647 
sDIBO Alkyne) and the right panel showed the two images 
merged (actin in magenta and Cdc8 in cyan). Scale bar 
represents 5 µm (experiment and images provided by Darius 
Koester). 

E) Purified Mid1-PH domain-R876-TAG were incubated with 
Click-iT Alexa Fluor 488 (or Alexa Fluor 555 or Alexa Fluor 
647) sDIBO Alkyne and resolved on SDS-PAGE. Merged 



150 
 

image of the three fluorescent channels is showed in the 
figure. 

F) Images showing the ability of fluorescently labelled Mid1-PH 
domain-R876-TAG to bind actin filaments. Left panel showed 
Mid1-PH domain-R876-TAG labelled with Alexa 555, while 
right panel showed the actin filaments (labelled with Alexa 
488) that were captured by the labelled Mid1 protein. Scale 
bar represents 5 µm (experiment and images provided by 
Darius Koester). 

 

 

fluorescence (TIRF) microscopy. Since actin filaments were 

fluorescent as well, due to cysteine labelling, we could capture the 

co-localization of Cdc8 on actin (figure 5.8D), proving the efficiency 

of using unnatural amino acid for the site-specific labelling of a 

protein.  

 

 

5.5.3 – Labelling of Mid1-PH domain  
 

The labelling of proteins using unnatural amino acids can be 

useful when the protein that we want to tag is as small (less than 25 

KDa) as the complex, resulting from the conjugation of UNAA and a 

fluorescent compound and is usually less than 2 KDa. In a 

collaborative work focused on the fission yeast anillin-like protein 

Mid1, a scaffold protein necessary for the proper anchorage of the 

contractile ring during cytokinesis, we identified the C-terminal PH 

domain as an actin binding region. This domain could then be used 

to anchor actin filament on supported lipid bilayers [242]. Due to the 

small size of the PH domain (~ 13 KDa) we wanted to use genetic 

code expansion to label this protein, verifying that the PH domain 

was still functional. According to crystal structure of the C-terminus 

domain of Mid1 [112] we introduced AzF in the exposed arginine 876 

(Mid1-PH-R876-TAG) and labelled the mutant protein with sDIBO 

alkyne compounds. We could test three different conjugated 

fluorophores, Alexa fluor 488, Alexa fluor 555 and Alexa fluor 647, 
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detecting efficient labelling for each of them (figure 5.8E). Labelled 

Mid1-PH-R876-TAG, attached to the supported lipid bilayer, was able 

to interact with fluorescent actin filaments, which we were able to 

detect (figure 5.8F). The detection of fluorescent Mid1-PH was not 

possible with our microscope as there was not an enrichment of this 

protein on actin, nevertheless the presence of an interaction with 

actin filaments was proving that Mid1-PH-R876-TAG was functional 

after the labelling through genetic code expansion. 

 

 

5.6 – Discussion 
 

This work mainly focused on the establishment of genetic 

code expansion techniques in our lab, a tool that we used for two 

main topics: to investigate interactions between proteins of interest 

and to fluorescently label desired proteins.   

 

 

5.6.1 - Protein-protein crosslinking using UNAAs 
 

After optimizing the incorporation of UNAAs in sfGFP (figure 

5.1A and B) we used GST as a reporter gene, because our goal was 

to study the interaction between proteins and GST is known to 

dimerise. The incorporation of both AzF and BPA was successful 

(figure 5.2D and E), therefore we could test if it was possible to 

capture dimer formation through crosslinking. The UNAAs that we 

used are photo-activable, therefore purified proteins could simply be 

exposed to UV-light in order to trigger the crosslinking reaction and 

covalently bind two dimers together, as we could detect in figure 

5.2D and 5.2E. The incorporation of UNAA is determined by the 

presence of a stop codon, inserted in the desired position of a 

protein, therefore it is easy to know which residues of a target protein 

are interacting with its binding partner by the detection, or not, of 
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crosslinking products. Nevertheless it doesn’t tell which residues of 

the binding partner are interacting with the UNAA. This is an 

interesting question to address and we tried to solve this problem 

analysing the crosslinked GST-BPA dipeptide using StavroX, a mass 

spectrometry software. This analysis was successful and we 

managed to identify which residue was covalently bound to the 

introduced UNAA (figure 5.7A). Knowing that BPA can crosslink only 

with residues within a distance between 3 to 10 Å [232, 233], through 

structural analysis we made sure that the interaction that we found, 

between Phe52 and Met94, could happen only between two GST 

dimers and not within one GST molecule (figure 5.3B and C). This 

result was also supported by some previous evidences, which 

identified methionine as a preferential binding site for BPA [234, 235]. 

Nevertheless we cannot exclude that other residues can interact with 

this UNAA. All together these were promising results, providing a 

way to map the interacting residues of both the studied proteins. 

Proved that the crosslinking of proteins with UNAAs was 

working in our hands, we validated this technique further using BPA 

as photo-activable crosslinker. We decided to use only this UNAA as 

it is more stable comparing with AzF, which under some condition 

can turn its azido group into amino. As a proof of concept we chose 

two well-known interacting proteins, actin and tropomyosin. The 

formation of filaments of actin is important for many cellular 

processes and the stabilization of these structures, provided by 

tropomyosin, is vital as well. Cdc8, the S. pombe tropomyosin, is a α-

helical coiled-coil dimer that forms a continuous polymer wrapped 

around actin filaments to stabilize this structures [239].  

Our objective was to map at the amino acid level the residues 

of Cdc8 directly involved in the interaction with actin, therefore we 

incorporated BPA throughout several position of the central region of 

Cdc8 and investigated which of these were directly in contact with 

actin filaments. To decide which residue to mutate we looked at 

tropomyosin structure: we focus our attention to the central region of 

Cdc8 because the N and C-terminal of the protein are involved in 
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oligomer formation, happening though a head-to-tail overlap of 

dimers. Moreover, the coiled-coil structure of Cdc8 is composed by 

the periodic repetition of heptad units (figure 5.4A) where some 

positions are important for the stabilization of the dimer (“a”, “d”, “e” 

and ”g”) while other positions (“b”, “c” and “f”) are exposed at the 

surface of the protein. We tested several residues scattered around 

the 7 different positions in the central region of Cdc8, as we were 

interested to capture both the interactions necessary at the dimer 

formation and the ones involved in actin binding. Actin-Cdc8 

sedimentation assay allowed us to verify that the incorporation of 

BPA was not influencing Cdc8 function (figure 5.4C), as almost all 

the tested BPA-containing proteins were able to bind actin in a 

comparable manner to wild-type. Cdc8-V123-BPA was an exception 

as it was not able to bind to actin, suggesting the importance of this 

residue in Cdc8-actin interaction. Next we could perform crosslinking 

experiments to investigate the position of Cdc8 involved in dimer 

formation and actin binding. 

Initially we crosslinked each Cdc8 mutants on its own, in order 

to detect which positions were interacting within Cdc8 dimer. The 

formation of dimer (auto-crosslinking) was mainly detected when 

BPA had been incorporated either in positions “a”, “d” or “g” (figure 

5.5A). These results were reasonable as usually residues in positions 

“a” and “d” are supposed to be responsible of dimer formations while 

residues in positions “e” and “g” are mainly involved in electrostatic 

interaction necessary, as well, for the stabilization of the dimer 

structure. Few of these positions were not involved in the dimer 

formation, but it could depend of the conformation of the tropomyosin 

dimer. 

When each Cdc8 mutant was exposed to UV light in the 

presence of actin filaments, we could detect the presence of 

crosslinking products mainly when BPA was incorporated in the 

exposed position of the heptad (figure 5.5B). In fact 8 out of 13 

residues either in position “b”, “c” or “f” were interacting with actin, 

demonstrating that these exposed amino acids were involved in actin 
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binding. Two other residues, belonging to position “e” and “g”, were 

also close enough to crosslink with actin, providing more insight in 

the nature of the interaction between the two proteins. Overall the 

majority of interactions were recorded in exposed residues of Cdc8, 

in a portion of the protein between amino acids 30 and 107, whereas 

crosslinking was not happening in the following region (figure 5.5C). 

These results provided more details regarding the interaction 

between these proteins as they highlighted the region of Cdc8 mainly 

in contact with actin filaments.  

More studies needed to follow this work, which for now was 

focused in the establishment of genetic code expansion and in the 

optimization of the investigation of protein-protein interaction using 

photo-activable unnatural amino acids. Nevertheless we can 

conclude that the use of photo-activable UNAA is useful to capture 

protein-protein interaction as it allows to map the precise binding 

regions of candidate proteins in a natural environment.  

 

 

5.6.2 - Labelling proteins using UNAAs 
 

Another useful application of genetic code expansion is the 

possibility to label proteins by the incorporation of UNAAs containing 

an azido group, which can easily react to any compound containing 

an alkyne group in a cycloaddition reaction. In our work we decided 

to incorporate AzF into our candidate proteins, which could be 

successively fluorescently labelled. This approach is especially 

useful when the protein of interest cannot be tagged with a fusion 

protein, such as GFP, because the introduction of an additional tag 

compromises the normal function of the protein. This was reported 

for some cytokinetic proteins such as Cdc8, Cdc3 and Myo2 [60]. 

Therefore genetic code expansion can be a solution when we wanted 

to visualize these proteins by the incorporation of appropriate 

UNAAs. This is a versatile technique, as the desired UNAA can be 
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insert in any position of the protein, therefore many sites can be 

tested to find the ones that are not influencing the normal function of 

the protein.   

We labelled Cdc8 proving that the resulting proteins could 

bind efficiently actin (figure 5.8D), demonstrating that the introduction 

of the UNAA coupled with the fluorescent molecules was not 

interfering with the function of this protein. Another efficient way to 

label Cdc8 had already been performed through cysteine labelling 

[103], therefore genetic code expansion is not the only alternative 

way to label a protein of interest, but it constitutes an easy way of 

tagging a protein. The azido-alkyne reaction can happen after only 

few hours of incubation, whereas the cysteine labelling required 

much longer incubation. Moreover to achieve an efficient cysteine 

labelling the candidate protein needed to be maintained in a reduced 

state to prevent the oxidation of the thiol groups, otherwise the 

labelling reaction could not work [223]. So additional manipulation of 

the protein of interest are necessary in order to perform this type of 

labelling, work that is not necessary using genetic code expansion. 

The cycloaddition reaction is spontaneous and doesn’t require 

anything else apart from the two molecules, containing respectively 

an azido and an alkyne group, therefore this can be a straightforward 

approach to label proteins. 

Another situation where genetic code expansion is useful is 

when a small protein (less than 20 KDa) needed to be tag. In this 

situation the introduction of a fluorescent fusion protein can influence 

a lot our candidate protein, as the size of the tag (25 KDa for GFP) 

resulted to be bigger than the protein itself. Genetic code expansion 

can be a nice solution, considering that the size of the introduced 

UNAA conjugated with an alkyne compound is very small (less than 

2 KDa). We tested the labelling of the C-terminal PH domain of Mid1, 

which had been studied in the lab for its ability to bind actin, 

capturing the filaments when Mid1-PH was anchored to a supported 

lipid bilayer (data not published). We introduced AzF in order to label 

this protein (~ 13 KDa) and verified that the presence of the 
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fluorescent conjugated UNAA was not interfering with its normal 

function. We couldn’t see directly Mid1-PH with our microscope, as 

this protein didn’t make clusters and the visualization of single 

molecules required higher resolution, nevertheless we could 

appreciate that the actin binding activity was not inhibited by the 

presence of the labelled UNAA. This was another evidence to prove 

the efficiency of UNAA as a labelling tool, considering that it doesn’t 

impair the normal function of the protein that we are labelling, 

confirming the advantage in protein labelling. 
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6 – CONCLUSIONS AND FUTURE 
DIRECTIONS 
 

In the first part of this thesis we identified the function of each 

myosin during actomyosin ring dynamics in cytokinesis, followed by 

the characterization of some type II myosin mutants in order to 

explore Myo2 function during cytokinesis in fission yeast.  

Our studies identified Myo2 as the major motor involved in 

actomyosin ring assembly and contraction, while the other two 

myosins were playing secondary roles to support this process: 

Myo51 assisted ring assembly while Myp2 contributed to ring 

contraction (figure 6.1A). Nevertheless the allele that we use to 

investigate the contribution of Myo2, myo2-E1, should be considered 

to underestimate Myo2’s function since this allele is not as severely 

compromise as myo2Δ. The identification of new fast-acting 

conditional mutant alleles of Myo2 will be necessary to determine 

more accurately the precise role of Myo2 in actomyosin ring 

dynamics.  

The study of myo2-E1-Sup2 mutation proved how the 

combination of different approaches was useful for the 

characterization of this myosin II suppressor, enabling us to identify 

the molecular mechanism behind the defects present in myo2-E1. 

This work provided new clue regarding the structure and function of 

Myo2 in cytokinesis, which we try to study further through the 

characterization of two additional mutations, myo2-S1 and myo2-S2. 

 Unfortunately, for a lack of time, we could not complete this 

characterization, which needs to be continued with biochemical 

analysis in order to understand how these mutations affected Myo2 

function and the mechanism behind their rescue of cdc3-124. Motility 

assay of purified Myo2-S1 and Myo2-S2 will be necessary to 

understand first of all if these myosin mutations are influencing the 

binding with actin filaments. Secondly, if the interaction with actin will 
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happen, this assay will demonstrate if actin filaments can be moved 

by Myo2-S1 and Myo2-S2, helping to understand if these mutations 

are influencing the binding to actin or the activity of myosin's motor 

domain.  

 Nevertheless, from preliminary studies, we could hypothesise 

a role of Myo2 in actin filaments disassembly. Previous works had 

shown that myosin II motor activity was able to break actin filaments 

by either stretching or buckling the filaments in vitro [88, 89], 

therefore our preliminary results may provide more evidence for a 

role of Myo2 in actin filaments disassembly and turnover. Preliminary 

structural analysis of Myo2-S1 and Myo2-S2 mutations suggested a 

reduced motor activity of these mutants. Additionally, initial 

experiments treating myo2-S1 and myo2-S2 cells with the actin 

depolymerising drug latrunculin A, revealed a persistence of actin 

filaments in these mutants and, more importantly, in myo2-S1 cdc3-

124 and myo2-S2 cdc3-124. All together, these preliminary evidence 

are indeed supporting our hypothesis of a role of Myo2 in actin 

filaments disassembly and turnover (figure 6.1B), considering that a 

reduced motor activity of myosin II allowed a persistence of actin 

filaments in the presence of a non-functional profilin (cdc3-124).  

 However at the moment these are only initial hypothesis, 

which will need to be confirmed with further experiments and in-depth 

analysis in order to unravel the molecular mechanism behind these 

myosin mutations, as it will be fascinating to understand how 

mutations in Myo2 are able to suppress a deficiency of profilin.  

All these experiments helped to understand the function of the 

different myosins involved in fission yeast cytokinesis, and provided 

insight in to the structure and function of Myo2. Moreover we 

demonstrated that fission yeast can be a useful model organism to 

study and characterise myosin II mutations, therefore future 

experiments could head towards the characterisation of myosin’s 

mutations found in human. In fact many cardiomyopathies are 

caused by mutations in myosin II, identified both in the heavy and 

light chains [153, 243], therefore it could be possible to introduce the  
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Figure 6.1: Graphical abstract of the roles of Myo2 in 
cytokinesis. 
 

A) Illustration of the contribution of each myosin to cytokinesis in 
S. pombe.  

B) During cytokinesis Myo2 is involved in actomyosin ring (AMR) 
contraction and, presumably, to actin filaments disassembly 
and turnover. 
 

 

equivalent mutation in fission yeast myosin in order to characterise 

the nature of these mutations 

 The second part of this thesis was based initially on the 

establishment of genetic code expansion, followed by the application 

of this technique for two different studies, which are the investigation 

of protein-protein interactions and protein labelling.  
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 To prove that we were able to use this technology in order to 

precisely identify the binding regions among candidate proteins, we 

chose to investigate the interaction between fission yeast 

tropomyosin Cdc8 and actin. Therefore we introduced the photo-

crosslinking UNAA BPA throughout some positions of tropomyosin 

and investigated which of these were directly involved in the 

interaction with actin filaments. We collected some positive results as 

we manage to identify some amino acids that are in close proximity 

with actin, but more tropomyosin’s residues will need to be tested to 

obtain a complete map of the interaction between the two proteins. 

More importantly it will be worth investigating which are the regions 

of actin in contact with Cdc8, to have a complete map of the 

interaction in both proteins. This could be achieved by the analysis of 

each crosslinked Cdc8-actin dipeptide with a mass spectrometry 

software, which proved to be efficient for the identification of the 

residue involved in GST dimerization. Another advantage, while 

using genetic code expansion, is the possibility to study interactions 

among proteins in their natural environment. Many studies have been 

conducted analysing the crystal structure of proteins, which is 

extremely informative to understand the structure of a desired 

molecules, but some information can be missing as this technology 

can capture only static conformation of proteins. Therefore genetic 

code expansion offers a tool to improve the understanding of the 

molecular structure as the proteins of interest can be study in 

solution of directly in cells, which constitute their natural environment 

 To establish this methodology in the lab it was easy to start 

with the incorporation of UNAAs in proteins expressed in E. coli, as it 

has already been successful in other labs [148] but future work will 

aimed to establish genetic code expansion in S. pombe as well. Few 

labs succeeded in the incorporation of UNAAs in fission yeast [179, 

180] so future works are necessary to properly make this technique 

to work in this model organism. In fact, once this will be established, 

it will be possible to capture directly in yeast the interaction between 

proteins. This can either help to identify which regions of a protein 
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are involved in the interaction with its binding partners, or discover 

new interactions between candidate proteins. As with this technique 

we can control the time and duration of the crosslinking interaction, 

by deciding when and for how long to expose the sample to UV light, 

it will be useful to map protein-protein interaction in a cell cycle 

dependent manner, obtaining a more accurate interaction map of 

candidate proteins.  

This technology can be particularly useful to confirm or 

discovery new interactions between proteins involved in the 

formation the actomyosin ring, providing a deeper understanding of 

how these multiple components work together to ensure proper 

contraction of the ring during cytokinesis. 

 The UNAA that we mainly used in our work was BPA, which 

worked efficiently for our experiments. Nevertheless for other studies 

it could be useful to introduce other UNAAs with different properties, 

such as AbK (diazirin-lysine), which is a smaller and more flexible 

UNAA that can cause less structural perturbation to the proteins 

where it is being incorporated [244]. Therefore the optimization of 

more tRNA/tRNA synthetase pairs will be necessary to incorporate 

desired UNAAs in the chosen model organism.  

Regarding the second application of genetic code expansion, 

focused on protein labelling, we succeed to incorporate AzF into 

several proteins, which were successively fluorescently labelled. We 

proved that this type of labelling was not influencing the normal 

function of our protein of interest, therefore we can use this technique 

for many other candidates. With this technology a lot of proteins can 

be tag by introducing UNAAs, for example some of the cytokinetic 

proteins that are non-functional if tagged with a fusion fluorescent 

proteins [60], like actin, profilin Cdc3 and type II myosin Myo2. 

Labelling these proteins using UNAAs will allow their visualization 

without affecting their function, allowing the study of dynamics and 

localization in cell. 

 This type of protein labelling is not only useful for the 

fluorescent visualization of the protein of interest, but once the UNAA 
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containing an azido moiety has been incorporated it can react with an 

alkyne compound that can be conjugated with several other tag, such 

as biotin or other molecules, enabling to use this tagged version of 

the protein for further studies.  

We make genetic code expansion to work in our lab, which 

proved to be a useful tool to map interactions among proteins and an 

alternative protein labelling technique, opening up the possibility to 

use this technique directly in cells, once it will also be established 

properly in S. pombe.   
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