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Abstract—In this paper, exponential synchronization prob-
lem is studied for a complex dynamical network (CDN) with
a class of Markovian jump structure with coupling-time delay.
The CDN under consideration has a piecewise-Markovian jump
structure with piecewise-constant transition rates (TRs). First
piecewise-homogeneous Markovian process is modeled by two
Markov chains then, the synchronization problem of the CDN is
inspected by constructing Lyapunov-Krasovskii function with
Markov dependent matrices. Ultimately, the controller gain
matrices for guaranteeing the synchronization problem in terms
of linear matrix inequalities (LMIs) are derived. A CDN with
a Chua circuit dynamic for each node is given as a numerical
example to show the effectiveness of the theoretical results.

Index Terms—Exponential synchronization, Complex dy-
namical network, Lyapunov-Krasovskii theory, Piecewise-
homogeneous Markovian parameters, Coupling delay

I. Introduction

Complex dynamical networks consist of a large number
of interconnected nodes, in which each node stands for an
individual unit with specific content and edges represent
the relation between the coupled nodes. Applications of
CDNs are abundant in various fields ranging from biology,
physic to engineering [1]. Word wide web, neural networks,
electric power grids and multi-agent systems can be
referred to complex dynamical networks in the engineering
field [2]-[4]. Synchronization problem as one of the most
considerable properties in the CDNs has attracted great
attention in recent studies [5], [6]. The synchronization
means that the trajectories of all interconnected dynamical
nodes (slaves) can track an isolated node’s trajectory
(master). Time-delay exists in real-systems due to traffic
congestion or limited speed in transmitting of information.
Time delay leads to instability, oscillation or chaos that
should be modeled to exhibit the reality of the system
much better. One of the time delay types that exists in
many real models is coupling time delay [7]. The coupling
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time delay is caused by the exchange of data among units
in a network.

On the other hand, some networks in real-world systems
may be faced to jump or switch in their structure.
Switching can occur in connection topology of a network
due to link failure or new creation such as arbitrary or
stochastic switching in an electrical power grid. If the
reason of switching is stochastic factors such as sudden
environmental changes [8], random component failure, or
link failure, then switching is stochastic process which is
usually modeled by Markov Chain. The corresponding sys-
tems are called Markovian jump systems (MJSs). Markov
chains are suitable for modeling stochastic processes which
are memoryless. The most important factor of a MJS
is the TR of the jumping process which characterizes
the behavior of the system. Numerous studies focused on
the synchronization problem of Markovian jump CDNs
(MJCDNs), however in these studies Markov structures
have been analyzed traditionally. In traditional analysis
and synthesis of MJLSs, the TRs are assumed to be
constant over time [9], [10]. Although it is very idealistic
to get the accurate and complete TR information due to
the difficulty or the costs of measuring the TRs [11]. One
of the popular solution for solving Markov process with
time varying TRs (non-homogeneous Markov process) is to
consider TRs as piecewise-constant. In other words, in this
way, the non-homogeneous Markov process can be consid-
ered as piecewise-homogeneous Markov process. Modeling
of the piecewise-homogeneous Markov structure is per-
formed through two Markov chains; (i) a Markov chain as
a low level switching signal that manages the switching
between the system dynamics or coupling topologies
with piecewise-constant time varying TRs. The piecewise-
constant time-varying TRs mean TRs are time-varying but
invariant during an interval, (ii) another Markov chain as



a high level signal that causes stochastic variations among
possible TR matrices of previous Markov process. Many
papers have investigated the synchronization problem of
CDNs with a homogeneous Markov structure (Markov
process with constant TR over time) [14]-[16]. To the
best of the authors’ knowledge, [13] and [12] are the only
references about synchronization of CDNs with piecewise-
homogeneous Markovian jump parameters. However, in
those studies one or two of the coefficient matrices are
mode-dependent and all the other parameters in [12], [13]
are considered constant at all times.

Hence contributions of this paper compared with exist-
ing literatures are as follows:

o All coefficient matrices are piecewise-homogeneous
Markovian mode-dependent. The synchronization
problem for such a MJCDN with piecewise-constant
TRs has not been investigated so far.

o The Marovian structure is assumed to be piecewise-
homogeneous that is modeled by two level Markov
signals. Such a two level Markovian structure is
appropriate for representing time varying TRs.

The aim of this paper is to address synchronization and
synchronizability criteria for the CDN and design the
mode-dependent state feedback controller for each node
of the network.

Notations. Throughout this paper, R™ denotes the n-
dimensional Euclidean space and R™ ™ is the set of
real n x m matrices. The notation X > Y (X > Y),
where X and Y are symmetric matrices, means that
X —Y is positive definite (positive semi definite). The
matrices I and O are identity and zero matrices with
compatible dimensions, respectively. The superscript ”T”
stands for the transpose and diag{.} stands for block
diagonal matrix. ||.|| represents the Euclidean norm of a
vector and its induced norm of the matrix. Pr{a} means
the occurrence probability of the event «, and Pr{«|S8}
means the occurrence probability of the event conditional
on (. E{z} (E{z|y}) represents the expectation of the
stochastic variable x (conditional on y). The kronecker
product of matrices R € R™*" and Q € RP*Y is a matrix
in R™P*"4  which is denoted as (R ® Q). Symmetric
terms in a symmetric matrix are denoted by *. Apq. () and
Amin(.) denote to be the largest and smallest eigenvalues
of a given matrix.

II. Problem formulation and preliminaries

Consider the CDN with piecewise-homogeneous Marko-
vian structure which in dynamical equation of each node,
the coupling delay and the coefficient matrices are sup-
posed to be mode-dependent:

xp(t) = A(ry)xp(t) + B(ry)f(xp(t))
N

+ 3 goa(r)T(ro)xa(t — 7) + uy(t) (1)
d=1

b=1,2,...,N,

where x5 (t) = [1p1(t), Tp2(t), ..., Tpn ()] €R™ denotes the
state vector of the b*" node at time t, f(x;(t)) and uy(t)
are a continuous nonlinear vector function and the control
input of the node b, respectively. A(r:),B(r;) € R**"
are the mode dependent matrices. T'(r:) = [Yoa(7t)]nxn
indicates inner-coupling between the elements of the
node itself, G(r¢) = [gra(rt)|nxn denotes outer-coupling
between the nodes of the whole network and represents
the topological structure of the network. If there is a
connection between node b and node d, then gyq(r:) =
gav(re) # 0, b # d, otherwise gpa(re) = gan(re) = 0,
b # d. It is assumed that the sum of each row of G(ry) is
zero, i.e. Z(]ivzl,b;éd gva(re) = —ge(re), b=1,2,... N. The
scalar T represents coupling delay. The process {r, ¢ > 0}
is a continuous-time non-homogeneous Markov process
which takes its values in the finite set W = {1,2,...,w}
that describes switching between different modes. The
probability function for the procedure {r;t > 0} with
time-varying TR matrix [17t+at = [wfj*“]wxw is defined
by
T TATAL 4 o(At), i# g,
L+ P2 At + o(At), i =7,
(2)
where At > 0, A11i:1—1>10 o(At)/At =0, and 7772 > 0 for i #
j denotes the TR from mode i at time ¢ to mode j at time
t + At in TR matrix with TR matrix 172 = [7;;]xw
with the following condition

Pr{Tt+At = j\rt = Z} = {

w
Ot+At Ot+At
s = E T s (3)
J=1,i#j

Similar to previous Markov process, the process {o¢,t >
0} is continuous-time Markov process with its value in the
finite set V = {1,2, ..., v}. This process is homogeneous and
time invariant. The probability function with TR matrix
A = [pmn]uxv 18 given by:

Pmn At + o(Al),
Pr{oitat =nlor =m} = { 1+ prm At + 0(A),

m # n,
m=n,

(4)
where At > 0, Alir_I:O o(At)/At =0, and pp, > 0 form #n
denotes the TR from mode m at time ¢ to mode n at time
t + At with the following condition

v
Pmm = — Z Pmn;s (5)
n=1,m#n
The high-level signal {oy,t > 0} determines the switch-
ing TR matrix for the low level signal {r;,t > 0} and the
low level signal {r;,t > 0} specifies the switching dynamic
or topology structure modes.
Assumption 1. The function f : R — R™ in the system
(1) has a sector-bounded property which satisfies the
following condition

[f(x) — £(y) = Ulx = y)]"[f(x) — f(y) - V(x —y)] < ?7



where x,y € R" and U ,V are known constant matrices
with appropriate dimensions.

Let define the error vector e(t) = x3(t) — s(t), where
the state trajectories of the isolated node (or uncoupled
node) s(t) is

5(t) = A(re)s(t) + B(ro)f(s(t)), (7)

where s(t) is a special solution of the system (12). The
error dynamic system can be obtained as follow:

éb(t) = A(r¢)ep(t) + B(r)g(en(t))

+ Z gva(re)T (8)

’I"t ed(th)Jrub()

b=1,2,....N,

where g(ep(t)) = f(ep(t) + s(t)) — £(s(t)). Note that the
above equation is right, while the condition ggg(r:)
— 3 sy k(i) holds for k=1,...,N.

The following feedback controllers are assumed as

up(t) = Kp(re, 00 )ep(t), b=1,.,N, (9)

where Ky (ry,00) € R"™™ is the mode-dependent feedback
gain matrix to be determined for each node in the network,
w X v gain matrices should be designed. By substituting
(9) into (8), we obtain

é(t) = A(ry)e(t)+B(r)g(e(t)+G(ry)e(t— T)+K(n,at)e§t)

where e(t) = [el(),eg(t),...,e%(t)_]T, gle(t)) =
[g"(e1(t). 8" (e2(t)),....g" (en()]", A(r)) = Iy ®
A(r ) B(ry) =1y ®B(7‘t), G(ry) = ( (ry) @ T(r¢)) and
K(Tt70t):diag{K1(7“t,Ut)7 Ky (r¢, 0¢), .. KN(TuUt)}'

(11)
Definition 1. The CDN (1) is said to be exponentially
mean square synchronized if there exist scalars o > 0 and
B > 0 as decay-rate and decay-coeflicient, respectively,
such that:

E{lle®)]*} < Be™ Sgg<0{\\e(9)ll2, 1&(9)[1*}, vt > o.

(12)
Lemma 1: (Jensen inequality). For any matrix A >
0, scalars 71, m2, (72 > m1) and a vector function ¢ :

[71,m2] — R™ such that integrations concerned are well
defined, then:

(o =m) | " o7 (0) Ap(a)da

11
2
2 /771

T 72
go(oz)da} A [ /
m
III. Main results

In this section, two theorems are presented to guarantee
the synchronization and to design the controller gains. In
order to simplify of notation in the whole paper, it is
regarded {r; =i} and {0y = m}.

] "

Theorem 1: For given matrices K; ,,, and scalars 7, a,
the complex dynamical network (1) is exponentially mean
square synchronized, if there exist symmetric positive
definite matrices P; ,,, Q, R and scalars A; ,, > 0, such
that for any ¢« € W, m € V, the following LMIs hold,

Ell 813 T(Al +_Ki,m)TR

=12
_ * 522 0 TG;TR
® = * *x  Ha3 BTR <0, (14)
* * * -R

2aP’L m + PZ mKl m + KT Pl m +

1, M

Pz A A;TPZ m )‘z mU _ —2aTR + Q +
Z n+ Z 7T"ij’ El? = P'L,mG + 6_2aTR7
ney ]EW
E13 - Pl m Al mV, ._,22 = _BQQTQ _ 6_20”-R,
H3 = 7>\z ml,
_ (IynoU) (IyeV) N Iy @ V) (Iy ® U)
= 5 5 7
v_ el +ayev)
2 )

Proof. Consider the following Lyapunov-Krasovskii func-
tional candidate for the error system (10)

V(et,rt,at) = (15)

3
Z Vk(et7 Tt O—t)ﬂ
k=1
where
Vl (et7 Tt, Jt) = ezateT(t)PTt’Ute(t)’

Va(er, ri, o) = / 20567 (5)Qe(s)ds

‘/3 etvrtaa-t *7—/ / 2(18
—7 Jt+6

Define £ weak infinitesimal generator of the Markov pro-
cess along the Lyapunov-Krasovskii functional V' (e, r¢, o¢)
as follows:

T(s)Ré(s)dsdb.

o1
[:V(etﬂ"t? Ut) = }ILIL% E{E{V(emh, Tt+h, Ut+h) |et ,

(16)
re =i,00 =m} — V(et,re =i,00 =m)}.
Then, it can be calculated that [17]
LV (et i, 00) = 20e®te T(t)Pivme(t)
+ 2%t ()P mé(t)
Zat T Z pmn in + Z Ur; P]7 (17)
ney JEW
£V2(et,7“t,at) _62(” T t) (t)
2a(t T) T( )Qe(t—T)
t
—|—/ e*sel'( menQ—F Z 77 Qle(s)ds, (18)
t—7 ney JEW



LV3(es,14,0¢) = T2e?! T( t)Re(t)

t
-7 / e?seT (s)Re(s)ds
-|-T/ / e?sel( menR—l-Zﬂ'
—7 Jt+0

ney JEW
Based on Lemma 1 the integral —TftiT e?@séT (s)Ré(s)ds
n (19) will be written as

(19)

o /t_ €205 (6(5) TR (6(s))ds

<[ tT <é<s>>ds]T | [ tT (8(6)ds

(20)

It is obvious that

/t, &(s)ds = e(t) — e(t — 7). (21)
By substituting (21) into (20), one can obtain
. /t_ €205 (6(5) YR (6(s))ds
wienl et 1"T R -R e(t)

< e )[ e(t —7) ] [ R R ] [e(t—r) ]

(22)

Also, based on the equations (3) and (5), for the integrals
n (18) and (19) we have:

ftt,.r e?@sel (s 2 P Q+ Z

ney

f ft+9 e?*® T s[> PmnRJr Z

ney JEW

mQle(s)dsdd = 0,
T Rle(s)dsdd = 0.

(23)
For any scalars X;,, > 0, (i € W,m € V), it can be

found from (6) that the (24) holds
[ e 7" { ei(t) }
)\Z’m[ g(ei(t)) ] v g(e;(t)) <0, (24)
where
u’viviu  _uTyvT
Y= [ i I2 }

The above inequality is equivalent to

ool G [0 1)ty ]

(e(t))

Then we conclude that

3
k=1
< 2ae? el ()P me(t) + 22T’ ()P, é(t)

+e2eT()[D pmnPim + Y TP mle(t)+e** e’ (t)Qel(t)

ney JEW
2a(t T) T(t Qe t _ 7_) + 7_26204t T(t)R

_62041& T —20(7—R _ —2aTR
t —7) —e 2TR 2R t —7)
2a1‘)\ |: e(
&(

o] [T Y]] <<>>]

(26)

LV et,’l"t,O't @(t)

et7’rt70.t

In other words, it can be derived that
LV (e,71,01) < 2T (H)ZE(2),
e’ (t),e"(t —7),8" (e(t))]" and

7(K
|

Based on the Schur complement, the equation (27) is
equivalent to (14). If ¢ < 0 then

T.+AD "

TG;TF
7BY

(27)

,CV(et,'f’t,O't) < 0. (28)

According to Dynkin’s formula we have
3

E{V(eo,r0,00)} = ZE {Vi(eo,0,00)}
k=1

< Amax (Pim) [ €(0)]|?
0
+ dun(@) sup @) [
—7<6<0
+ Amax(R) sup | e(d / / e dgds
—‘r<0<0 —rJ—s
< a sup [le®)*+ b sup [[e(0)],
—7<0<0 —7<0<0
. (29)
where
1— 6720(7'
- )\max P’L m) a_ )\max .
@ = Anax(Pign) - @
2 -1 —2aT1
po2or—tte 7 Amax(R).

402



Hence

2 a+b
Eflet)|”)} < 5 sup
(30)

The CDN (1) is exponential synchronized to the isolated
node (9) by Definition 1. This completes proof.

In the following theorem, the mode-dependent controller
of the form (9) has been designed.

Theorem 2: For given positive scalars «, 7 the er-
ror system (10) is exponentially stabled in the mean
square, if there exist symmetric positive definite matri-
ces Py, = diag{P;,.P? ...PN }, Q R, X, =
diag{X},,, X7, ..., XN, }, S, and scalars \;,, > 0 for
any ¢ € W, m € V, such that the following LMI hold:

Ell Elg Elg TX;I:m + TAZTPi,m
= QTPp.
@ _ * =929 '_0 TC_"r%PZ,m < 07
* * =33 TBi Pi,m
* * RI - 2P;
(31)

where éll = QOéPLm +X1m +X;I:m +P1,mAz +A?Pz7m —

AimU = e "R+Q+ Y pmnPin+ 2 7 Pjm
ney JEW
and the other parameters are the same as in Theorem 1.

Moreover, the controller gain matrices are determined by:
Kim =P, Xim. (32)
Proof. Pre- and post-multiplying both sides of (18) by

JT = diag{I,,I,I,P;,,R™'} and J, respectively, and
substituting X; ., = P; K m, obtains
S 213 TX;-Z:m—‘y-Tj_\zTPi’m

=
=11

_ * S22 0 TGZTPLm
® = * * Egg TEZTPi,m < 07
* * * —PiﬁmR_lPZ-’m
(33)

It is clear that the nonlinear term —Pi,mR_lPi’m
leading to the (33) would not to be a LMI. Regarding that
R >0 and P; ,R"'P;,,, — P; ,,R7'P;,, > 0, hence by
the Schur complement, the (34) holds

Pi,mRilPi,m _Pi,m
N RI >0, (34)
corresponding to [13], it is proved that:
7Pi,mR71Pi,m < RI - 2P1,m (35)

If (31) holds, then (33) holds. Thus, this completes the
proof.

IV. Numerical example

In this section, the following example is provided to
demonstrate the effectiveness of the drived results. The
given scalars are « = 0.2 and 7 = 0.5. The MJCDN (1)
with three identical nodes, where state dynamics of each
node is Chua’s circuit described by

—a(h(xi(t)))
f(xi(t)) = 8 ;

e sup {|le(O)lI”, [1€()]1”}.

Sa(t)

Fig. 1. The chaotic behavior of (7)

where h(x;1(t)) = —0.5(m1—mo)(|x1 () +1]| —|x1(t) —1]),
a=9,myg= =, andmlzg.

Two following matrices satisfy the sector-bounded con-
dition in (7)

000 92) 0 0
U=|000|,V=| 0 0 0],
000 0 00

Consider W = {1,2} for low-level signal {r;,t > 0},
therefore the mode-dependent coefficient matrices are
considered as

-9(2) 9 0
A= 1 ~1 1,
0  —14.28 0
-9.1(3) 9.2 0
A, = 1.1 -0.9 1.1 |,
0 —~14.286 0.1
1 00 09 0 0
B,=|[0 10|, Bo=| 0 09 0 |,
0 0 1 0 0 09

Fig. 1 represents the chaotic behavior (double scroll) of
the isolated node (7).

Moreover, inner coupling matrices for each mode {r;,t >
0} are I'y = Isx3 and I's = 0.8T'1, outer coupling matrices
are respectively as

-1 0 1 -1 1 0
Gi=|0 -1 1|,
1 1 -2 0 1 -1

The V = {1,2,3} for the high level signal {oy,t > 0}
is regarded, so the piecewise-homogeneous transition rate
matrices of low-level Markov signal {r¢,¢ > 0} for each

modes in V are given as
—4.5 45 —2.75 2.75
1_ 2 _

H_{3.75 —3.75}’1_[_{ 3 —3]’

4 4
3 _
I _{1.5 —1.5]'



Amplitude of error vectors

Time(s)

Fig. 2. Synchronization errors for the MJCDN without control input

Amplitude of error vector:

" L L L L L L L

Time(s)

Fig. 3. Synchronizing control effort for MJCDN with control input

and the transition rate matrix of the high signal is as
follows:

—4.5 2 2.5
A= 45 =75 3
1 2 -3

The state trajectories of the synchronization errors
without control input and the state trajectories of the
controlled synchronization errors are shown in Fig. 2 and
Fig.3 respectively. The initial state values for the isolated
node are assumed as s(0) = [~0.2,—0.3,0.2]7. The nodes
of the network have initial values as x1(0) = [-3,6,0]7,
x2(0) = [4,2,0]7, and x3(0) = [-7,4,0]7. The upper
bounds on the time delay for different values of the decay
rate a are listed in Table 1.

TABLE I
Upper bound of 7 for different decay rate o

Upper bound of delay = | 0.81 | 0.75 | 0.7 | 0.6
Decay rate o 0.2 0.8 1.2 | 1.8

V. Conclusion

In this paper, the exponential mean-square synchro-
nization has been studied for the piecewise-homogeneous
MJCDN 1 with coupling delay. All of the coefficient ma-
trices in our model are considered to be mode-dependent.
The piecewise-homogeneous Markovian jump structure is

suitable for modeling of the Markovian process with time-
varying TRs. By using Lyapunov-Krasovskii approach,
delay-dependent criteria have been derived to guarantee
the exponential synchronization problem. Based on the
obtained results, the synchronization controllers are then
designed in terms of LMIs. Finally one numerical example
has been proposed to demonstrate the usefulness the
proposed results.
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