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Prof. Tianhua Xu, Ms. Wenxiu Hu, and Mr. Schyler Chengyao Sun for helps.

Finally, I owe a great deal to the School of Engineering, University of Warwick

who offer me the chance to pursue my PhD study here, and who cover my tuition fees,

and I sincerely appreciate China Scholarship Council to cover my living expenses.

viii



Declarations

I, Zhuangkun Wei confirm that, this thesis is submitted to the University of Warwick

in support of my application for the degree of Doctor of Philosophy in Engineering.

It has been composed by myself and has not been submitted for any degree at other

universities.

ix



List of Publications

Inclusion of Published Works During PhD

1. Z. Wei, B. Li, C. Sun, and W. Guo, ”Sampling and Inference of time-varying

network signals using Log-Koopman Nonlinear Graph Fourier Transform”, IEEE

Transactions on Signal Processing, vol. 68, pp. 6187–6197, Oct. 2020.

2. Z. Wei, W. Guo, B. Li, J. Charmet and C. Zhao, ”High-Dimensional Metric

Combining for Non-Coherent Molecular Signal Detection,” IEEE Transactions on

Communications, vol. 68, no. 3, pp. 1479-1493, Mar. 2020.

3. Z. Wei, A. Pagani, G. Fu, I. Guymer, W. Chen, J. McCann, W. Guo, ”Optimal

Sampling of Water Distribution Network Dynamics Using Graph Fourier Trans-

form,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 3, pp.

1570-1582, Sep. 2020.

4. Z. Wei, A. Pagani, B. Li and W. Guo, ”Monitoring Embedded Flow Networks

Using Graph Fourier Transform Enabled Sparse Molecular Relays,” IEEE Commu-

nications Letters, vol. 24, no. 5, pp. 986-990, May 2020.

5. Z. Wei, B. Li, W. Hu, W. Guo, C. Zhao, ”Hamming–Luby Rateless Codes for

Molecular Erasure Channels”, Nano Communication Networks, vol. 23, p. 100280,

2020.

6. Z. Wei, B. Li and W. Guo, ”Optimal Sampling for Dynamic Complex Networks

With Graph-Bandlimited Initialization,” IEEE Access, vol. 7, pp. 150294-150305,

2019.

7. Z. Wei, A. Pagani and W. Guo, ”Monitoring Networked Infrastructure with

Minimum Data via Sequential Graph Fourier Transforms,” 2019 IEEE International

Smart Cities Conference (ISC2), Casablanca, Morocco, 2019, pp. 703-708.

x



Other Publications During PhD

8. Z. Wei, B. Li, W. Guo, W. Hu and C. Zhao, ”On the Accuracy and Efficiency of

Sensing and Localization for Robotic,” IEEE Transactions on Mobile Computing,

doi: 10.1109/TMC.2020.3038146.

9. Z. Wei, B. Li, W. Guo, W. Hu and C. Zhao, ”Sequential Bayesian Detection of

Spike Activities From Fluorescence Observations,” IEEE Transactions on Molecular,

Biological and Multi-Scale Communications, vol. 5, no. 1, pp. 3-18, Oct. 2019.

10. W. Hu, Z. Wei, S. Popov, M. Leeson, M. Zhang and T. Xu, ”Non-Coherent

Detection for Ultraviolet Communications With Inter-Symbol Interference,” Journal

of Lightwave Technology, vol. 38, no. 17, pp. 4699-4707, Sep. 2020.

11. S. Liu, Z. Wei, B. Li and C. Zhao, ”Unsupervised Clustering-Based Non-

Coherent Detection for Molecular Communications,” IEEE Communications Let-

ters, vol. 24, no. 8, pp. 1687-1690, Aug. 2020.

12. W. Guo, Z. Wei and B. Li, ”Secure Internet-of-Nano Things for Targeted Drug

Delivery: Distance-based Molecular Cipher Keys,” 2020 IEEE 5th Middle East and

Africa Conference on Biomedical Engineering (MECBME), Amman, Jordan, 2020,

pp. 1-6.

xi



Abstract

Sampling and recovering the time-varying network signals via the subset of network

vertices is essential for a wide range of scientific and engineering purposes. Current

studies on sampling a single (continuous) time-series or a static network data, are

not suitable for time-varying network signals. This will be even more challenging

when there is a lack of explicit dynamic models and signal-space that indicate the

time-evolution and vertex dependency.

The work begins by bridging the time-domain sampling frequency and the

network-domain sampling vertices, via the eigenvalues of the graph Fourier trans-

form (GFT) operator composed by the combined dynamic equations and network

topology. Then, for signals with hidden governing mechanisms, we propose a data-

driven GFT sampling method using a prior signal-space. We characterize the signal

dependency (among vertices) into the graph bandlimited frequency domain, and

map such bandlimitedness into optimal sampling vertices.

Furthermore, to achieve dynamic model and signal-space independent sensor

placement, a Koopman based nonlinear GFT sampling is proposed. A novel data-

driven Log-Koopman operator is designed to extract a linearized evolution model

using small (M = O(N)) and decoupled observables defined on N original vertices.

Then, nonlinear GFT is proposed to derive sampling vertices, by exploiting the

inherent nonlinear dependence between M observables (defined on N < M vertices),

and the time-evolved information presented by Log-Koopman evolution model.

The work also informs the planned future work to formulate an easy-to-

use and explainable neural network (NN) based sampling framework, for real-world

industrial engineering and applications.
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Chapter 1

Introduction

Dynamical element (e.g., the continuous signals, or time-series) underpins a variety

of complex systems, ranging from the single and individual systems, to the complex

and high-dimensional networks (e.g., epidemic spreading [1], the social network [2],

the urban structure [3], and the engineering infrastructure [4]). Such networked

elements, coupled with each other and exhibiting complex behaviours, are required

to be monitored and controlled for a wide range of academic and industrial purposes,

including but not limited to the system modelling [5], contaminant alarming [6],

smart-grid controlling [7], and the Digital Twin informed maintenance [8,9]. Among

these, one important application is to monitor the contaminant spread in water-

distribution network (WDN), which serves as the fundamentals for the welfare of

the society (e.g., more than 350, 000 kilometers of water pipes in the UK).

Ideally, an installation of sensors on all network vertices would be a straight-

forward option to monitor the whole time-varying network signals (states). However,

when the network scale (the number of vertices) is large, this is often not possible

due to the expenses of both sensors and their high-dense deployments (e.g., £160

for pH sensor each [10], and £270 for dissolved oxygen sensor each [10]), or even

the operation difficulty with networks that are hard to be accessed (e.g., the buried

underground water-distribution network). This therefore raises the studies on the

effective sensor deployment through a small subset of network vertices.

1.1 Motivation

Optimal sensor placement for sampling (compressing) and recovering the time-

varying network signals is challenging. Here, the time-varying network signals are

the stacked time-series on all network vertices. Current compression schemes either

1



rely on the signal dependency among different network vertices (e.g., the compressed

sensing CS, and the graph spectral analysis), or exploit the dynamic time-evolution

information (e.g., the graph observability analysis). In the context of network sam-

pling for signal recovery, the challenges lie in two aspects.

• First, signal dependency analysis requires an operator that is able to uncover

the dependencies of the time-varying network signals among all vertices (e.g.,

the sparsity for CS and the bandlimitedness for graph spectral analysis). This

is of difficulty for current graph Fourier transform (GFT) operators, which in-

volve only the network topological information, thereby rendering its inability

to characterize and discover the signal dependency governed by the underlying

dynamical mechanism.

• For the graph observability analysis, an explicit linear/linearized dynamic

model serves as a prerequisite to understand and exploit the time-evolved

information for sensor placement and signal recovery. This thereby blocks its

usages for the monitoring of the nonlinear time-varying network signals, not

to mention if such dynamic governing models are unknown.

These two challenges constitute the motivations of this thesis, in which four

network sampling schemes aiming at signal recovery are proposed, for different sce-

narios. We will first construct the GFT operators via the combinations of the

dynamic mechanism and the network topology, with and without the explicit dy-

namic governing equations (models). Then, the sampling vertices can be selected

corresponding to the signal dependency among different vertices discovered by our

proposed dynamic-topology combined GFT operator. Second, if the signal depen-

dency property (e.g., the sparsity and graph bandlimitedness to a designed operator)

is hard to find, we will develop a Log-Koopman nonlinear GFT sampling framework,

where the Log-Koopman operator is designed and extracted from the experimental

data, in order to derive a linearized dynamic time-evolution model, and the nonlin-

ear GFT concept and sampling theory will determine the time-invariant sampling

vertices for complete signal recovery. The detailed introduction of the existing works

and their advantages/drawbacks are provided in the following approach outlines in

Section 1.2, followed by the approaches and contributions of this thesis in Section

1.3.
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1.2 Outline of Existing Approaches

From academic perspectives, existing network sampling and compression approaches

can be categorized by their different objectives. These include but are not limited

to the resilience analysis [11–13], the minimization of event detection-time [14–16],

the minimization of event affected area [17, 18], and the complete recovery of time-

varying network signals [19]. Each objective requires a subset of dynamic informa-

tion, which should be mapped from the sampled and compressed results for un-

derstanding. With the desired information truncated, less vertices and their signals

should be monitored, and are unable to posses compatibility with higher required ob-

jectives. This therefore blocks the rich literature of the lower objective-oriented op-

timization approaches (e.g., the mixed-integer program, the genetic algorithms [18],

and the randomized contamination matrix [14]) being used for the purpose of the

time-varying network signal recovery, which requires the highest amount of dynamic

information without truncated.

On the purpose of network sampling and complete signal recovery, the so-

lutions can be categorized into two groups: (i) vertex dependency approaches, and

(ii) time-evolution analysis.

Vertex dependency approaches characterize the whole dynamic information

(of a network with N vertices) by an operator and the signal transformation to such

operator. The compression then can be pursued on the latter if the operator is able to

uncover the dependency of signals on different vertices. Typical vertex dependency

approaches include the compressed sensing (CS) [20–26], and the graph spectral

analysis [27–38]. CS relies on a complete dictionary (a transforming matrix) to

sparsely represent a network signal (vector), so that any vector whose transformation

is r-sparse (i.e., r nonzero elements in transformed vector) can be recovered by > 2r

samples [20,23,24]. The graph spectral analysis resorts to a network topology based

graph Fourier transform (GFT) operator (typically the eigenvector space of graph

Laplacian operator, or of graph adjacent matrix [27–29, 39]). Then, any network

signal belonging to a vector subspace spanning by r < N eigenvectors (called graph

bandlimited to such GFT operator) can be sampled and recovered by r independent

vertices [29–38].

These two schemes perform well in the static network data (vector). However,

when it comes to address the sampling and recovery of the time-varying network

signals, they will result in either a time-varying sensor placement strategy, or a

large amount of time-invariant sampling points. This is due to the difficulty to find

operators that are able to characterize the vertex dependency of network signals
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for all continuous or discrete time, and different vertex dependency property on

different time will lead to the changing of sampling vertices. For example, typical

CS operators using the discrete cosine transform (DCT) [24], and the data-driven

principal component analysis (PCA) [24] are hard to transform every network signal

at different time into r-sparse representation. This is further proved by the study

in [40], which provides the average samples needed for each discrete time as (N+K−
r)× r/K if a network signal matrix has N vertices and K discrete-times with rank

as r. This is not to mention for the case of a full row-rank signal matrix, in which

all vertices have to be monitored at each discrete-time for CS framework. Similarly,

the well-studied GFT sampling is also unable to characterize time-evolved network

signals as graph bandlimited, as no underlying dynamic mechanism is involved in the

topology-based GFT operators. Further researches on joint Fourier transform (JFT)

in [41], and graph smoothness batch in [19], analyze the vertex dependency of both

graph and time-domain bandlimited signals, however, they become less attractive

for the most of the real-world complex systems where the signals are not bandlimitd,

let alone the extreme cases where the vertex dependency is not existed.

To address the vertex in-dependency cases, the alternative group is to use the

time-evolution information. The typical framework is referred to as the graph ob-

servability analysis [42–45], leveraging either the observability gramian or the linear

time-evolution analysis. Here, observability gramian is a model-relevant operator

mapping from the selected samples to a scalar-valued energy, which if been maxi-

mized, can lead to an optimal sampling subset. Linear time-evolved analysis is to

find the sampling points by checking the rank conditions of the linear time-evolved

model. Leveraging this idea, the work in [46] further combines the time-evolution

information with the vertex dependency for sampling some of the specific time-

varying network signals (e.g., the auto-regressive moving average graph process,

the wave propagation, and the signal diffusion). These graph observability analysis

methods all provide promising performances for sampling and recovering the time-

varying network signals, under the important prerequisite of an exactly known and

linear/linearized dynamic time-evolution mechanism. However, when such dynamic

equations are nonlinear or even non-existed, the schemes will lose the compass and

become malfunctioned.

Recent studies focus on a combination of Koopman linearization schemes

with the graph observability analysis [47], whereby a Koopman operator has been

designed to extract and linearize an unknown and nonlinear time-varying network

signals, which thereby paves the way for graph observability analysis using the

rich standard linear algebra theory. Whilst many of classical Koopman observables
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(e.g., the Polynomial based observables [47], and the deep learning based observables

[48]) have been designed for analyzing the invariant dynamic modes, or stability of

a nonlinear systems, they are not suitable for network sampling tasks. For one

thing, the polynomial based Koopman observables designed by [47, 49], although

capable of characterizing a linear time-evolution model for small-scale network (N <

30), suffer from size explosion, due to the multi-elemental multiplicative observable

elements of Talyor series, rendering inapplicably for large-scale network sampling.

For another, even if such size explosion can be partially alleviated by the deep

learning framework in [48], the scheme results in a group of coupled observables, each

of which involves multiple signals on different vertices. This, when combined with

the graph observability analysis, will lead to redundant sampling vertex selection,

as selecting one leading observable may require a placement of sensors on multiple

vertices. Moreover, direct usages of graph observability methods on the Koopman

linearized time-evolution model overlook the inherent nonlinear dependency among

different observable elements, as all observable elements are defined on the lower-

sized signals on original network vertices. This will also cause redundant sampling

vertex selection by mapping the samples to the super-set of observables.

1.3 Contributions of this Thesis

In this thesis, we study how to approach a time-invariant sensor placement of net-

work vertices (called sampling vertex subset) for the recovery of the time-varying

network signals. The contributions are categorized into network sampling using the

vertex dependency and the time-evolution information.

1.3.1 Sampling using Vertex Dependency

We extend the GFT sampling framework into the analysis of time-varying network

signals, and derive two GFT sampling schemes for two cases (i.e., explicit model-

driven, and data-driven when model is unavailable).

(1) In the face of an explicit dynamic governing equation (model), we develop

an equation-driven GFT sampling scheme, which is able to understand (i) how to

discretize the continuous network signals, and (ii) where to place sensors for recov-

ering the time-varying network signals. A combining dynamic equation and network

topology based GFT operator is proposed, which is able to characterize all the tran-

sient behaviours of the continuous network signals as graph B-bandlimited. Then,

leveraging such an equation-topology based GFT operator, a joint time-domain

and network-domain sampling is proposed, which maps the sampling vertex sub-
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set for sensor placement and the discretizing rate (i.e., the time-domain sampling

frequency) to the graph frequencies determined by the GFT operator. More impor-

tantly, we deduce an explicit relation between the optimal sampling locations and

the time-domain sampling frequency, leveraging the graph bandlimited property and

the governing dynamic equations. As such, this novel equation-driven GFT sam-

pling framework offers the dynamical system insight unavailable from the CS and

the previous GFT researches (that resort to the topology-based GFT operator), and

provides a time-invariant optimal sampling vertex subset for immediate recovery of

time-varying network signals.

(2) In the absence of an explicit dynamic governing model, we develop a data-

driven GFT sampling scheme, which is able to learn the hidden dynamic mechanism

from the experimental data. By exploiting the dynamic data matrix, we identify

the graph Fourier basis (i.e., the GFT operator), which enables us to determine

the optimal network vertex subset for the full recovery of the time-varying network

signals. Compared with the topology-based GFT operators (e.g., the Laplacian

operator and adjacent matrix [27–29, 39]), the proposed data-driven GFT operator

is able to characterize the network signals from all discrete-times into the graph

bandlimited region, thereby making it possible to achieve a time-invariant sampling

vertex subset for signal recovery. Compared with the CS approaches, we are able to

achieve a smaller number of sampling vertices, as the data-driven GFT operator is

able to uncover a more compact subspace (i.e., the graph bandlimited space), which

is a subset of that composed of all the r-sparse signals. As such, the data-driven

GFT sampling framework can provide a more compact and time-invariant sampling

vertex subset, used for immediate and real-time signal recovery.

1.3.2 Sampling using Time-Evolution Information

In the absence of signal dependency among network vertices, a linear/linearized

dynamic time-evolution model can provide more information for network sampling

and signal recovery. One challenge, as aforementioned, lies in the non-linearity or

even the unavailability of the explicit dynamic evolution model. To address this, we

propose two sampling schemes that can adopt or extract the hidden dynamic time-

evolution mechanism. We briefly summarize the contributions in the following.

(3) We propose a sequential data-driven GFT sampling scheme in the ab-

sence of signal dependency among vertices and the explicit dynamic time-evolution

model. At each discrete-time, we compute a GFT operator and a time-varying graph

bandwidth set via the principal component analysis (PCA) of the previous recovered

signals. Then, a sampling vertex subset is achieved using the GFT sampling theory
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and a proposed signal prediction method. When compared with the CS approaches,

our scheme provides a lower-sized sampling vertex subset, as the sequential data-

driven GFT operator is able to characterize the current dynamic into a predictable

graph bandwidth set, rather than the loose set composed of all the r-sparse signals.

(4) To further exploit the hidden time-evolution information for time-invariant

network sensor placement, we propose a novel logarithm-based Koopman opera-

tor and non-linear GFT scheme (abbreviated as Log-Koopman nonlinear GFT),

whereby the Koopman operator is to derive a linearized dynamic evolution model of

observable defined on original time-varying network signals, and the nonlinear GFT

is to exploit the nonlinear dependency of observable. In order to address the observ-

able size-explosion and dynamic coupling mentioned before, we design a logarithm

based vector-valued observable to approximate the multi-elemental multiplicative

terms of Taylor series in the manner of logarithm summation. In this view, the

size of vector-valued observable can be reduced to M = O(N), as a smaller num-

ber of logarithm terms can be used and linearly combined for a large number of

polynomial-based observables in [47] (which requires a size of M = O(N2)). Then,

leveraged on the Log-Koopman operator, we propose the concept and theory of

nonlinear GFT to exploit the nonlinear dependence between the M elements of the

logarithm vector-valued observable defined on the lower-sized N original signals.

Compared to the graph observability analysis [47, 50] that regard the M observ-

able elements independent, our proposed Log-Koopman nonlinear GFT sampling

scheme is able to derive a more compact sampling vertex subset by mapping it to

a lower-sized observable signal-space. Besides, when compared with the sampling

schemes relying on the vertex dependency, our scheme can achieve a time-invariant

sampling strategy when such vertex dependency does not exist, but at the expense

of a latency signal recovery.

1.4 Organization of the Rest of this Thesis

The rest of this thesis is organized as follows. Chapter 2 is to review and ana-

lyze the published literature in theoretical manner. Chapters 3-4 correspond to the

equation-driven and the data-driven sampling method using the vertex dependency.

In Chapter 3, the explicit dynamic equation driven GFT sampling framework is pro-

posed, whereby the sampling vertex subset and the discretizing rate for continuous

network signals are provided. In Chapter 4, we elaborate the proposed data-driven

GFT sampling scheme, in the absence of the explicit dynamic model.

The sampling schemes relying on the time-evolution information are elabo-
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rated in Chapters 5-6. In Chapter 5, in the absence of both the dynamic governing

equations, and the signal dependency among vertices, we propose the sequential

data-driven GFT sampling method, which can achieve a time-varying sensor acti-

vation strategy for network signal recovery. In Chapter 6, to further exploit the

time-evolution mechanism and to achieve a time-invariant sampling vertex subset,

we propose the Log-Koopman nonlinear GFT scheme, including the Log-Koopman

observable and operator designs, and the nonlinear GFT concept and theories for

the selection of the fixed sampling vertices.

In Chapter 7, we conclude this thesis, and describe the potential future works

on an explainable and trustworthy machine learning framework.
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Chapter 2

Review of Published Literature

2.1 Objective Oriented Optimization Approaches

Objective oriented optimization methods consider a number of single or hybrid ob-

jectives for sensor placement and network monitoring. Such objectives range from

the sensing or tracking of the dynamic events, the network accessibility, to the re-

source and complexity aspects of the cyber-physical interface [51]. We list some

of the typical aims and explain them in a real WDN contaminant monitoring and

alarming systems.

2.1.1 Minimizing Detection Time

Detection time is referred to as the time elapsed from a start of a dynamic event (an

injection of a contaminant on WDN) to its first detection by any of the deployed

sensors [14]. To reduce the detection time, the work in [14] identifies the best

sensor placement locations in a greedy manner by constructing and using travel

time matrix. Then, various heuristic frameworks in [15, 16] have been designed

to search the best monitoring locations by maximizing the sensing coverage under

the condition of time to detect. However, these sensor placement approaches, only

interested in the detection of a dynamic event (contaminant) over the network, are

unable to track or recover the full propagation of the signals from the samples.

2.1.2 Minimizing Affections

Another aspect focuses on how to place sensors for an event alarm in order to

minimize the affected populations. For example, leveraging the awareness of the

population distribution around a WDN system, the work in [17] formulates a sensor

placement strategy, with aim to minimize the expected proportion of population
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affected by a potential contaminant spread. Similar approaches include but are not

limited to the mixed-integer program (MIP), the genetic algorithms [18] formulation,

and the randomized contamination matrix [14]. However, apart from the inability for

their sensors to recover the complete time-varying network signals, these approaches

render less feasible for large-scale network (e.g., a network with a total of N > 50

vertices), especially for multiple or diverse contaminant signals in WDN (e.g., each

would require a different sensor placement solution).

2.1.3 Computational Efficiency

Computational efficiency has been regarded as another important factor when mon-

itoring a large scale network. For instance, a progressive generic algorithm (PGA)

has been designed in [52,53], to solve models for large-scale WDNs. Another group

of common schemes aiming to optimally identify sampling locations is via the for-

mulations of an optimization task by multiple objectives. This indeed provides the

guideline to compress the dimensionality of a complex network through sensitivity-

awareness analysis [54], which is also able to incorporate the uncertainties of the

network’s demands and services for Early Winning System operation [55]. These

numerical approaches cannot construct a mapping to the optimal sampling loca-

tions, given their lack of an explicit bridge between the network topology (e.g., the

adjacent matrix) and the underlying dynamical mechanisms, let alone for the pur-

pose of time-varying network signal recovery that requires in depth the dependencies

from both the network vertex domain and dynamic time-evolution.

2.2 Nyquist Sampling Rate from Time-Domain

When dealing with the sampling/discretizing of an individual dynamic element on

time-domain, Nyquist sampling and interpolation theory serves as the fundamen-

tals. By defining the cut-off angular frequency, denoted as ωcue-off, as the highest

frequency of the individual signal, Nyquist sampling can avoid the aliasing if assign-

ing the sampling frequency as ωs ≥ 2ωcut-off. As such, the time-domain single and

continuous signal x(t) (t denotes the continuous time) can be sampled as x(2πk/ωs),

and then recovered as:

x̂(t) =
∑
k∈Z

x

(
2π

ωs
· k
)
· sinc

(ωs

2π
· t− k

)
, (2.1)

where sinc(t) = sinπt/(πt) is the interpolation function.

It is noteworthy that when compared with some more sophisticated sampling
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studies, e.g., [56,57], Nyquist sampling theory may not be the optimal one, and may

result in redundant selections of discrete-time sampling. But, what we are interested

in is to compute and measure the rationality of the time-frequency domain cut-off

frequency, and how this can be extended for continuous network signals. Without

this, one cannot derive the discretized network signals (matrix) for further digital

domain signal processing. Other sophisticated theories and interpolation methods

can be adopted based on this baseline.

2.3 Sampling for Network Signal Recovery

On the purpose of understanding the sensor placement for the recovery of the time-

varying network signals, we categorize current researches into two groups. The

first one considers the sampling (compression) via the usages of signal dependencies

among vertices (e.g., the compressed sensing CS [20–26] and the graph spectral anal-

ysis [27–38]), whereby only vertices with independent signals will be selected for the

recovery of other dependent ones. The second leverages the dynamic time-evolution

models, using the time-evolved samples to recover the time-varying network signals

(e.g., the graph observability analysis [42–46, 58, 59]). We will introduce these in

details in the following.

2.3.1 Compressed Sensing Approaches: using Vertex Dependency

One sampling approach that relies on the signal dependencies among different

vertices is the compressed sensing, which is a framework to compress the (trans-

formed) sparse signals by the measurements (or samples) that are linearly indepen-

dent [20–26]. Given a network signal (vector) x ∈ RN defined on the network with

N vertices, CS uses a designed N ×N transforming operator (a reversible matrix),

denoted as D, in order to achieve a sparse representation of x, i.e., [20, 23,24]

x = D · s, (2.2)

where s of size N × 1 is r-sparse representation of x with r = ‖s‖l0 , the number

of non-zero elements in s. In Eq. (2.2), typical designs of the transforming opera-

tor D are the discrete cosine transform (DCT) [24], and the data-driven principal

component analysis (PCA) based operator [24].

Then, a sampling vertex subset C ⊂ N = {1, 2, · · · , N} is selected by satis-

fying the restricted isometric property (RIP) criteria [20, 23, 24]. In the context of

network sampling, we provide in the following the sampling theory deduced from
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the works in [25,26].

Theorem 1 Denote the network signal x ∈ RN , and the transforming matrix D

(of size N ×N) that x = D · s with r = ‖s‖l0 < N . Then the sampling vertex subset

C ⊂ N to ensure the recovery of any x that has r-sparse representation from xC is

rank (DCN ) > 2 · r, (2.3)

where DCN is the sub-matrix of D with rows’ indices selected from set C and columns’

indices selected from set N = {1, 2, · · · , N}.

Proof 1 Otherwise, if rank (DCN ) = 2r, there exists a 2r-sparse vector s(0) of size

N ×1 satisfying DCN ·s(0) = 0. This suggests two different r-sparse vectors s(1) and

s(2) of size N × 1 exist but DCN · (s(1)− s(2)) = 0. Therefore, s(1) and s(2) cannot be

recovered using the samples from sampling vertex subset C, as DCN ·s(1) = DCN ·s(2)

results in the same samples. This contradicts the statement in the Theorem that any

x ∈ RN that can be transformed by D into r-sparse representation, can be recovered

by samples from C.

After the determination of the sampling vertex subset C from Theorem 1, the recov-

ery of x, denoted as x̂, is pursued by computing the r-sparse representation ŝ via

convex optimisation or orthogonal matching pursuit (OMP), i.e., [20, 23,24]

ŝ = argmin
s∈RN

‖s‖l1 , such that xC = DCN · s,

x̂ = D · ŝ.
(2.4)

When adopting CS for sampling the time-varying network signals, one needs

to consider the compression task on a data matrix, denoted as X = [x1,x2, · · · ,xK ]

of size N ×K where N is the number of total network vertices, and K is the total

discrete-time of interest. The work in [40] proved that, given rank(X) = r, CS

framework requires at least (N+K−r)×r samples for the recovery of time-varying

network signals. This indicates for each discrete-time, the average (N+K−r)×r/K
sensors are needed.

The advantages/disadvantages of using CS for network sampling and signal

recovery are provided as follows.

• One advantage lies in that the exploitation of signal dependency guarantees

an immediate recovery of the time-varying network signals, as no further time-

evolved sample is needed. This is important for those requiring real-time and
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low-latency network monitoring (e.g., the real-time and low detection time

monitoring of contaminant spread in WDN [14–16]).

• For one drawback, the CS framework in [40] may approach time-varying sam-

pling strategy for network signals at different discrete times, which as men-

tioned before is less attractive for some of the sensor placement and network

monitoring applications, e.g., the WDN.

• For another, even if other CS approaches in [20, 23] can offer time-invariant

sensor placement for all discrete-time, the homogeneous (N + K − r) × r/K
sampling vertices are still too large.

• Moreover, either the sparse property of time-varying network signals X and/or

the desired operator D for sparse representation may not exist; if the data

matrix is full row-rank (i.e., rank(X) = N), according to [40], entire N vertices

are required to place sensors for signal recovery.

2.3.2 Graph Spectral Analysis: using Vertex Dependency

Another framework analyzing the signal dependency among different vertices is

graph spectral analysis, which has been proposed in [27], and paves the way for op-

timally sampling on a combinatorial graph or network. In [27–29], several network

topology based operators are adopted to analyze the independent graph frequency

components. Here, we list two popular topology based operators, denoted as L in

the following [27–29]:

L =


A graph weight operator,

Deg−
1
2 · (Deg −A) ·Deg−

1
2 graph Laplacian operator,

(2.5)

where A of size N×N is the adjacent matrix of a network with N vertices, of which

the element an,m represents the weight of the direct link from vertex m to vertex n,

and Deg = diag([deg1, deg2, · · · , degN ]) is the diagonal vertex degree matrix with

degn =
∑N

m=1 an,m. As such, a transforming operator, denoted as P−1, has been

derived from the eigenvectors of the topology-based operator L, i.e., [27–29]

L = P · diag([λ1, λ2, · · · , λN ]) ·P−1, (2.6)

where λ1, λ2 · · · , λN are the topology-based graph frequencies. Such an operator

in Eq. (2.6) is referred to as the graph Fourier transform (GFT) operator. Then,
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given a graph signal defined on N vertices as x ∈ RN , the GFT process from x to

its graph frequency response, and the inverse GFT process are given as [27–29]:

x̃ = P−1 · x, GFT process,

x = P · x̃, inverse GFT process,
(2.7)

where x̃ is defined as the graph frequency response to the operator P−1, and the

nth element of x̃, i.e., x̃n is the magnitude for nth graph frequency.

Leveraging these foundations, the concept and theories of graph signal pro-

cessing has been proposed and studied in [28–30,32,33,35–38,60] to understand how

to optimally select samples from a graph signal x that maps to the total graph fre-

quency response x̃, which subsequently ensures the complete recovery of the original

graph signal x by inverse GFT process.

Graph Bandlimited Signal

The concept of graph bandlimited signal is firstly proposed in [28], which introduces

a Paley-Wiener subspace of RN , and analyzes the graph frequencies of signals that

belong to such space. Then, the work in [30] generalizes the graph bandlimited

concept to any subspace of RN determined by a GFT operator (a reversible matrix

of size N ×N) P−1 of the network Laplacian operator, and following definitions are

given:

Definition 1 [30] A network signal x of size N×1 is called graph bandlimited to a

GFT operator (a reversible matrix of size N×N) P−1, if its graph frequency response

x̃ = P−1x has less than N nonzero elements. Denote the graph bandwidth set B
composed by all the indices of non-zero elements of the graph frequency response x̃.

Then, x is called graph B-bandlimited to the GFT operator P−1.

Definition 2 [30] Denote a subspace as BS(B,P−1) ⊂ RN composed of all graph

B-bandlimited signals to the GFT operator P−1.

Optimal Sensor Placement for Graph Bandlimited Signal

Based on the graph bandlimitedness definitions, the works in [30, 32, 35–37,60] fur-

ther develop theories and approaches to find the optimal vertex subset for sensor

placement onN network vertices (i.e., sampling vertex subset C ⊂ N = {1, 2, · · · , N}).
They do so, by maintaining an one-to-one mapping from the samples to the graph

bandlimited signals. Their graph sampling theory is provided in the following:
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Theorem 2 [29–38] For any x ∈ BS(B,P−1), if a subset C ⊂ N (N = {1, 2, · · · , N}
is the set of N vertex indices) satisfies

rank (PCB) = |B|, (2.8)

then x can be recovered as x̂ with free of error by the samples xC as

x̂ = PNB · (PT
CB ·PCB)−1 ·PT

CB · xC , (2.9)

where |B| represents the number of elements of the set B. PCB (PNB) denotes the

sub-matrix of P whose rows are selected by their indices/subscripts in C (N ), and

whose columns are selected by their indices/subscripts in B. xC is the samples of x

by selecting indices/subscripts in C.

As such, sensor placement for a graph bandlimited signal is suggested in Theorem 2,

which is equivalent to identify the sampling vertex subset C to ensure the full-column

rank of the sub-matrix PCB.

The advantages/disadvantages of using GFT for network sampling and signal

recovery are provided as follows.

• Similar to CS, an advantage is the immediate signal recovery, as only inde-

pendent signals on vertices are sampled and no time-evolved sample is needed.

This is important for those requiring real-time and low-latency network mon-

itoring (e.g., the real-time and low detection time monitoring of contaminant

spread in WDN [14–16]

• Compared with CS framework introduced in Section 2.3.1, the GFT framework

can achieve a more compact sampling vertex subset for sensor placement. We

illustrate this conceptually in Fig. 2.1, and explain this in the following. At

first, it is noticed that both the GFT and the CS exploit the non-zeros of a

transformed version of networked signal x. As such, by denoting the number of

non-zeros as r (i.e., |B| = r for graph B-bandlimited signals), it is noteworthy

that the set composed of all the graph B-bandlimited signals, i.e., BS(B,P−1)

from Definition 2, is actually a real subset of that composed of all r-sparse

signals (as GFT knows the indices of the non-zeros, i.e., B). See Fig. 2.1

for illustration. This indicates (also provided by Theorems 1-2) that, GFT

requires a smaller |C| than that of CS (i.e., r < 2r), as the samples from

the GFT framework is to recover the signal in BS(B,P−1), the subset of the

one the CS requires to recover. This also has another equivalent explanation.
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Figure 2.1: Comparison between GFT and CS from conceptual perspective.

Compared to the CS only knowing the sparsity of the transformation, the

GFT framework knows the positions/indices/subscripts (that constitute set

B) of the non-zero elements in the transformation of the network signal x, and

therefore the samples of its sampling vertex subset only need to map to the

whole graph B-bandlimited frequency response.

• Whilst these studies contribute a lot to the advancement on how to select

sampling vertex subset for a graph bandlimited signal, they are not suitable

for sampling the time-varying network signals over the network. This is be-

cause the topology-based operator does not involve any information from the

dynamic governing time-evolution model, thereby rendering its inability to

maintain the graph bandlimited property for all time-evolved network signals.

Recent work in [41] studies the JFT for time-varying network signals, whereby

a Fourier transform (FT) operator combining with the GFT operator are used

to characterize the graph bandlimited properties from the joint time and net-

work domains. However, the sampling vertex subset derived by [41] is not

time-invariant, rendering its less useful for sensor deployment in some real-

world network monitoring applications (e.g., the WDN buried underground is

hard to be penetrated for changing the locations of sensors with time).
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2.3.3 Graph Observability Analysis: using Time-Evolved Informa-

tion

In order to exploit in-depth the dynamic evolution model, network sampling driven

by explicit dynamic governing equations are studied (which is also called the graph

observability, i.e., to recovery every transient behaviours/states/signals from the

samples). Popular approaches range from the convex optimisation [58], the causal

modeling [59], and the observability analysis using linear evolution models [42–46].

Given the time-varying network signals xk ∈ RN at k ∈ Z+ discrete-time, and its

time-evolution model as xk+1 = L·xk (L of size N×N is the time-evolution matrix),

the graph observability analysis is equivalent to recover the initial network signal x1

from the samples, so that xk for any k ∈ Z+ can be recovered, i.e.,
x1

x2

...

xK

 =


L0

L1

...

LK−1

 · x1, (2.10)

where K is the total discrete times that represents how long the time-evolution

information is required for sampling and signal recovery.

Sampling vertex subset using 
dynamic time-evolution

𝐱1 ∈ ℝ𝑁

𝐱1
𝑇 , … , 𝐱𝐾

𝑇 𝑇
∈ ℝ𝑁×𝐾

ℝ𝑁
ℝ𝑁×𝐾

Linear 

evolution

𝐱𝑘+1 =𝐋 ∙ 𝐱𝑘

Figure 2.2: Comparison between GFT and CS from conceptual perspective.

According to Eq. (2.10), we show the selection of sampling vertex subset

illustration in Fig. 2.2, where the selection of sampling vertex subset is to construct

a reversible map from the time-evolution space to the sampling space. To achieve

this, the selection of the sampling vertex subset C ⊂ N = {1, 2, · · · , N} for sensor
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placement is equivalent to maintain the full-column rank, i.e., [42–46]

rank




L0
CN

L1
CN
...

LK−1
CN


 = N, (2.11)

where LCN is the sub-matrix of L with rows’ indices in set C and columns’ indices

in set N = {1, 2, · · · , N}. By checking the full-column rank condition of the linear

evolution model, the initial network signal x1 can be recovered by the samples,

i.e., [42–46]

x̂1 = pinv




L0
CN

L1
CN
...

LK−1
CN


 ·


xC{1}

xC{2}
...

xC{K}

 , (2.12)

where pinv(·) is the generalized inverse operator, and xC{k} denotes the samples

from sampling vertex subset C at kth discrete-time.

Further studies in [46] assume a graph B-bandlimited x1 to a GFT operator,

and further compress the sampling vertex subset by making the rank condition in

Eq. (2.11) equals |B|, i.e., the number of elements in |B|. We will go through this

in detail in Section 6.4.2.

The advantages/disadvantages of the graph observability analysis are listed

as follows.

• Given the use of time-evolved information, the graph observability analysis

can be used for the cases, where signal dependency among vertices is hard

to be uncovered or even does not exist (where the current vertex dependency

approaches are useless). This is attributed to the usages of the time-evolved

samples, which can provide more information for the recovery of time-varying

network signals.

• This also constitutes the drawback, as a high recovery latency is inevitable

when forward samples are collected and used. Such a drawback blocks its

usages for some of the network monitoring applications, where the real-time

and low-latency requirements are vital (e.g., the real-time and low detection

time monitoring of contaminant spread in WDN [14–16]).

• Another obvious disadvantage is their inability to address the nonlinear dy-

namic governing equations, as the standard linear algebra theory cannot be
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adopted to analyze the characteristics of a nonlinear evolution model, e.g.,

xk+1 = L(xk) with nonlinear L : RN → RN . This is not to mention if the

nonlinear equations are unavailable due to the complex underlying dynamic

mechanisms (e.g., the high-dimensional and highly nonlinear Navier-Stokes

dynamics with unpredictable Reynolds numbers in WDN [61]).

2.3.4 Sampling and Modeling Time-Evolution from Data

In the absence of exact dynamic models, an alternative idea is to formulate the

dynamic evolution model from experimental data, so that the time-evolution in-

formation can be used for network sampling. Popular approaches include but are

not limited to the machine learning, the sparsity-promoting optimization [5], and

the Koopman operator [47, 50, 62–64]. Compared with the machine learning and

sparsity-promoting optimization, Koopman linearization theory can derive a lin-

earized dynamic evolution model, which is more preferable, as the time-evolved

dependency can be easily analyzed using standard linear algebra theory.

Koopman operator is a linear but infinite dimensional operator that governs

the time-evolution of scalar-value observables (functions) defined on the original

signal space of a nonlinear dynamical system. To adopt the Koopman operator in

real engineering applications, one need to design appropriate Koopman observables

that can maintain the linear (quasi) time-evolution between two successive observ-

ables. This is still an open challenge, but has attracted a wide-range of researches

for different nonlinear dynamical systems. The methods can be categorized as the

dynamic mode decomposition (DMD), the extended DMD (EDMD) [47, 49], and

the deep DMD [48]. For example, the work in [47] designs the Koopman observ-

ables using M = O(N2) key polynomial terms of Taylor expansion (e.g., the multi-

elemental multiplicative terms of vertex 1 and vertex 2, x1 · x2), based on which a

promising Koopman operator is derived. Similarly, using the multiplications of the

Logistic functions defined on each vertex, the work in [49] develops a state-inclusive

vector-valued observable with proved error-bound. To further reduce the size of ob-

servables, deep-DMD is recently proposed by Yeung, Hodas, and Kundu, relying on

deep Neural networks (NN). Leveraging this idea, the work in [48] further develops

an auto-encoder and an auto-decoder for the reversible original signal-observable

and observable-signal transformations. They do so by minimizing the mean squared

errors (MSEs) of the reversible mapping between observables and original states,

and of observable and original signal predictions.

Whilst many remarkable Koopman observable designs have been proposed,

they are rarely adopted for network sampling applications. One work that combines
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the Koopman linearization and network sampling has been performed in [50], which

relies on their produced polynomial-based Koopman operator in [47]. They select a

minimum number of samples using the graph observability analysis in Eqs. (2.10)-

(2.11), by treating the M = O(N2) elements of the vector-valued observable as

independent as in RM .

However, the sampling scheme in [50] and the current Koopman observable

designs in [47–49] have three drawbacks, which block their usages in network sam-

pling applications.

• First, to guarantee the linearization accuracy, the polynomial-based and logistic-

based Koopman operator lead to a size explosion (i.e., M = O(N2)) when ad-

dressing large-scale networks, due to their multi-elemental multiplicative term

based observable design (we further analyze this in Section 6.2).

• Second, even if the deep-DMD designs in [48] can reduce the size of vector-

valued observable, the learned observable may involve coupling signals on dif-

ferent vertices. For example, one learned observable element in [48] is x2−bx2
1,

which containing the signals on both vertex 1 and vertex 2. This is however not

applicable for network sensor deployment, as a selection of leading observable

elements may require sensors located on every vertices.

• Third, directly utilizing graph observability analysis (e.g., rank analysis in

Eq. (2.11) on vector-valued observable (of size M × 1 defined on the original

signal of size N × 1) neglects the intrinsic nonlinear dependency between the

elements of the vector-value observable, which are all determined by the origi-

nally lower-sized signal-space. For example, x1, x2, x1x2, x2
1x

2
2 are all elements

of the poly-based vector-valued observable in [47], which cannot be treated as

4 independent elements, as they are determined by original signals x1 and x2.

Therefore, treating them as R4 does not make sense, and will lead to extra

redundant sampling vertices for signal recovery (we will explain this in greater

detail in Sections 6.2 and 6.5).

2.4 Conclusions & Discussions

This chapter reviews the current sampling and compression approaches, which were

categorized by relying on the signal dependency among network vertices, and the

time-evolution information. The former requires an operator to uncover and charac-

terize the dependencies of the signals on different vertices, rendering a huge difficulty

for current topology-only GFT framework. The latter regards the linear/linearized
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time-evolution dynamic model as the prerequisite for further exploration of sequen-

tial information and sampling selection, thereby making it less practical for most of

the real-world applications without explicit dynamic models. These two challenges

then motivated us to develop (i) dynamic mechanism-topology combined GFT sam-

pling, and (ii) linearized dynamic time-evolution modelling and sampling, which will

be elaborated in the following chapters.
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Chapter 3

Equation Driven Sampling

In this chapter, we elaborate the proposed dynamic equation-driven network sam-

pling that relies on the signal dependency among vertices. For this chapter, we

assume a Lyapunov stability that is maintained by the time-varying network signals

whose systems work on stable area. Leveraging this, we study how to place sen-

sor and how to discretize time for sampling and recovering the continuous network

signals.

The structure of the rest of this chapter is as follows. We first introduce

the network dynamic mechanisms governed by the explicit dynamic equations in

Section 3.1. Then, in Section 3.2, we provide the equation-driven sampling method

on both time-domain and network-domain, and give a relationship between such

two domains. Sections 3.3-3.4 provide the simulation and experimental results. We

finally conclude this chapter in Section 3.5.

3.1 System Model & Problem Formulation

Signal processing on time-varying network signals is concerned with the analysis and

processing on a dynamic signal-space, where individual signals on vertices are inter-

acted with each other with respect to both the network topology and the governing

dynamic mechanisms (shown in Fig. 3.1). Here, we denote the network topology as

G(N ,A). N = {1, 2, · · · , N} represents the index set of total N vertices in network.

A gives the adjacent matrix, in which the (n,m)th element an,m ∈ {0, 1} represents

the existence of a direct link from vertex m to vertex n (i.e., an,m = 1 means the link

from m to n exists, otherwise an,m = 0). In this view, the signal xn(t) on vertex n

with continuous time t can be expressed as a differential-type evolution with respect

to the self-dynamic function f(·) : R → R, the mutualistic coupling function with
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𝑡
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b. Time-varying 
network signals

Figure 3.1: Illustration of signals governed by differential equations: (a) individual
signal, and (b) time-varying network signals.

link (n,m), i.e., g(xn(t), xm(t)) : R2 → R, and an unknown input bn(t). We express

such differential equations in the following:

dxn(t)

dt
= f(xn(t)) +

N∑
m=1

an,m · g(xn(t), xm(t)) + bn(t). (3.1)

Here, the input is assumed to be a group of Dirac delta functions. Such an input can

be interpreted as a control signal for automation, or an information signal transmit-

ted via the dynamic channel for communications. We express the aforementioned

input as:

bn(t) =

+∞∑
i=1

bn,i · δ(t− ti), (3.2)

where δ(·) represents the Dirac delta function, and ti, i ∈ N+ is the specific time for

an input bn,i with random amplitude. We stack bi = [b1,i, b2,i, · · · , bN,i]T .

Given that the dynamic mechanism in Eq. (3.1) defined on both time-domain
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and network domain, we hereby denote the continuous network signals at time t as:

x(t) =


x1(t)

x2(t)
...

xN (t)

 , (3.3)

and the simplified dynamic governing equations of Eq. (3.1) as:

dx(t)

dt
= Ξ(x(t)) + b(t), (3.4)

where Ξ : RN → RN is the vector-valued time-evolution function, composed by

Ξ(·) = [ξ1(·), ξ2(·), · · · , ξN (·)]T , ξn(·) : RN → R, and b(t) = [b1(t), b2(t), · · · , bN (t)]T

is the vector-valued inputs. Here, different from the traditional graph studies that

consider static network signal (i.e., a fixed data on each vertex) [28–30,32–38], we in

this chapter consider the continuous network signals on both the time and network

-domains, given the knowledge of the explicit dynamic equations in Eq. (3.1).

The purpose of this chapter is to analyze how to determine the sampling

vertex subset for sensor placement from network domain and the discretizing rate

(i.e., the sampling frequency) from time-domain, so that the discretized and sampled

signals can ensure the recovery of the original time-varying network signals. In

mathematical manner, we define the sampling (angular) frequency as ωs from the

time-domain, and the time-invariant sampling vertex subset C ⊂ N from the network

domain. The aim of this chapter is then converted to compute the suitable ωs and

C. Here, it is noteworthy that the time-invariant property of sampling vertex subset

C is important; otherwise, one should change the sensor deployment with time,

which is challenging and even impractical in some real network sensing applications

(e.g., the pollutant surveillance in WDN). As such, the traditional graph sampling

Theorem 2 cannot be directly used, since the topology based GFT operator is unable

to characterize the dependency of the continuous signals on different vertices, and

thereby will lead to time-varying sampling strategy. Thus, in this chapter, we will

construct a combined dynamic-topology GFT operator, and extend the traditional

static graph signals to time-varying network signals.

3.2 Sampling for Dynamic Network Signal

In this section, we elaborate our joint time and network domains sampling methods

for the sampling and recovery of the time-varying network signals. The purpose here
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Figure 3.2: Illustration of (a) time-varying network signals; (b) the joint time and
network domain sampling and recovery; and (c) the recovered time-varying network
signals.

is to (i) identify the time-invariant sampling vertex subset C ⊂ N from the network

domain, and (ii) compute the cut-off frequency ωcut-off from the time-frequency

domain. The schematic flow of the designs are illustrated in Fig. 3.2

By doing so, one can recover the time-varying network signals as:

x̂(t) = Θ ·XC ·R. (3.5)

In Eq. (3.5), R = [sinc(ωst/(2π)), · · · , sinc(ωst/(2π)−K)]T is the Nyquist interpo-

lation matrix. Θ denotes the recovery matrix from the network domain, which will

be specified later in this chapter. XC represents the the discrete samples on vertices
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in sampling vertex subset C, read:

XC =


xn1

(
2π
ωs
· 0
)
· · · xn1

(
2π
ωs
·K
)

...
. . .

...

xn|C|

(
2π
ωs
· 0
)
· · · xn|C|

(
2π
ωs
·K
)
,

 (3.6)

with ωs ≥ 2ωcut-off the sampling angular frequency, and 2πK/ωs the total discrete-

times of interest.

3.2.1 Assumptions of Network Stability

In this work, we consider the dynamic systems that work on the stable area. To

characterize this, we assume that the system in Eq. (3.1) works on the Lyapunov

stability area of an equilibrium point xe.

Assumption 1 [65] Continuous network signals x(t) work on the Lyapunov sta-

bility area of point xe, if and only if the following condition is satisfied. For any

ε > 0, if ||x(0)− xe|| < δ for some positive δ, then

||x(t)− xe|| < ε.

By assuming the Lyapunov stability of a dynamic system, the correspond-

ing non-linear time-varying network signals can be approximated via the linearized

parts. We next discuss the linearizing approximation process and measure the caused

error.

Linearize Dynamics

Given the Lyapunov stability in Assumption 1, x(t) is converging to xe with time

t→ +∞, i.e., x(∞) = xe. For convenience, we write:

z(t) = x(t)− xe, (3.7)

and thus limt→+∞ z(t) = z(+∞) = 0. As such, the further analysis of the time-

varying network signals governed by the nonlinear differential equations in Eq. (3.1)

can be converted to the study of its linear approximations, i.e.,

dz(t)

dt
= JΞ(xe) · z(t) + o (‖z(t)‖) + b(t)

≈ JΞ(xe) · z(t) + b(t),

(3.8)
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in which o (‖z(t)‖) represents the high-order terms of z(t) that converge to zero

faster than the first-order term when t → +∞. JΞ(xe) represents the Jacobian

first-order derivative matrix valued on xe, i.e.,

JΞ(xe) ,


∂ξ1(t)
∂x1(t) · · · ∂ξ1(t)

∂xN (t)
...

. . .
...

∂ξN (t)
∂x1(t) · · · ∂ξN (t)

∂xN (t)


∣∣∣∣∣
x(t)=xe

, (3.9)

where functions Ξ(·) and ξn(·) are defined in Eq. (3.4).

For the convenience to observe and analyze the structure of JΞ(xe), we re-

write Eq, (3.9) in an intuitive form, by taking Eq. (3.1) into Eq. (3.9), i.e.,

JΞ(xe) = A ◦ Jg(xe) + diag

{
∂f

∂x1
, · · · , ∂f

∂xN

} ∣∣∣∣
xe

, (3.10)

where ◦ denotes the Hadamard product, and Jg(xe) is the Jacobian matrix of function

g(·, ·) valued on xe. From Eq. (3.10), it is observed that JΞ(xe) is composed of both

the topology of the network (as is represented by the adjacency matrix A), and

the governing dynamic equations, i.e., the coupling functions g(·, ·) and the self-

dynamics f(·) in Eq. (3.1).

Linearization Error

After the derivation of the linearized model, we measure the accuracy of such lin-

earized signals. We do so by the use of the effectiveness equation proposed in [11,12].

In essence, effectiveness equation of a dynamical system is to compress the N -

dimension signals (indexed on N vertices) into a single dimension. For example,

given the time-varying network signals as z(t), the effectiveness is computed as [11]:

dzeff(t)

dt
= βeff · zeff(t), (3.11)

where zeff(t) = 1T ·A · z(t)/(1T ·A · 1), and βeff = 1T ·A · d(in), with the nth entry

of d(in) as dn =
∑N

m=1 an,m, and 1 , [1, · · · , 1]T of size N × 1.

As such, using the single dimensional effectiveness zeff(t) as the compression

of the N -dimensional dynamic z(t), we are able to quantify the linearization error.

In mathematical manner, we denote dzl(t)/dt = JΞ(xe)zl(t). Then, the l1-norm

linearization error and its measurement via effectiveness can be expressed as follows:

err =

∫ +∞

0
‖zl(t)− z(t)‖l1dt, (3.12)
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c1 · err ≤
∫ +∞

0
|zl,eff(t)− zeff(t)|dt ≤ c2 · err, (3.13)

where c1 and c2 are some positive constants, and zl,eff(t) = 1T ·A · zl(t)/(1
T ·A · 1)

can be computed via Eq. (3.11).

The proof of Eq. (3.13) is given in the following, separated by its left-hand

side and right-hand side. We first prove the right-hand side by:

|zl,eff(t)− zeff(t)| = |1
T ·A · (zl(t)− z(t))|
|1T ·A · 1|

≤ ‖A · (zl(t)− z(t))‖l1
|1T ·A · 1|

≤ ‖A‖l1
|1T ·A · 1|

· ‖zl(t)− z(t)‖l1 .

(3.14)

Then, the left-hand side of Eq. (3.13) can be proved by evaluating the minimum of

c(t) =
|zl,eff(t)− zeff(t)|
‖zl(t)− z(t)‖l1

=
1

|1T ·A · 1|
· |1

T ·A · (zl(t)− z(t))|
‖zl(t)− z(t)‖l1

.

(3.15)

From Eq. (3.15), we notice that the minimal value of c(t) is zero if zl(t)−z(t) takes

vectors from the null-space of A, denoted as null(A). However, it is noteworthy

that zl(t) − z(t) cannot belong to null(A) for all t ∈ (0,+∞). Therefore, c(t) > 0

holds for some t > 0, and subsequently a positive c1 exists to maintain the left-hand

side of Eq. (3.13).

Given the liearization of the differential model for the time-varying network

signals, we will then analyze the Jacobian matrix JΞ(xe), and derive the optimal

sampling vertex subset C and the cut-off frequency ωcut-off for sampling and dis-

cretizing the time-varying network signals.

3.2.2 Sampling from Network Domain

In this part, we study how to determine the sampling vertex subset C from the

network domain, so that the time-varying network signals can be recovered from

the samples. We first analyze the time-varying network signals whose initialization

and inputs are graph bandlimited to a GFT operator. Then, the general cases with

arbitrary initialization and inputs are studied.

Before we start, we construct the equation-driven GFT operator, denoted as
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Q−1. To do so, we decompose JΞ(xe) by eigen-decomposition:

JΞ(xe) = Q · diag{µ1, · · · , µN} ·Q−1, (3.16)

where µi, i ∈ {1, · · · , N} is the ith eigenvalue, and Q = [q1,q2, · · · ,qN ] is the re-

versible matrix, whose columns are the corresponding eigenvectors. As such, we

assign Q−1 as the GFT operator. This is reasonable, as JΞ(xe) characterizes the

first-order evolution of the time-varying network signals, and embraces the infor-

mation from both the governing dynamic equations and the network topological

structure (see Eq. (3.10)).

Graph Bandlimited Signals

We study the case where the initial network signal z(0) and the unknown inputs si

are B ( {1, 2, · · · , N}-bandlimited with respect to the GFT operator Q−1. In fact,

this case holds for a wide range of the time-varying network signals [46], among which

we can list the auto-regressive moving average graph process, the wave propagation,

and the signal diffusion.

Recalling to the Definitions 1-2, we can construct a subspace, i.e., BS(B,Q−1),

and have z(0),bi = [b1,i, b2,i, · · · , bN,i]T ∈ BS(B,Q−1) given the B-bandlimitedness

property of the initialization z(0) and the inputs bi. Then, we provide in the follow-

ing Lemma 1 and Theorem 3 to show that the whole time-varying network signals

belong to the subspace, i.e., z(t) ∈ BS(B,Q−1).

Lemma 1 Denote d(z(t))/dt = JΞ(xe) · z(t). If z(0) ∈ BS(B,Q−1), then z(t) ∈
BS(B,Q−1).

Proof 2 At first, z(t) has a closed-form expression as:

z(t) = et·JΞ(xe) · z(0). (3.17)

Then, the graph Fourier transformation of z(t) with respect to the GFT operator
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Q−1 is:

z̃(t) =Q−1 · et·JΞ(xe) · z(0)

=Q−1 ·
∞∑
k=0

tk

k!
· JΞ(xe)

k · z(0)

=
+∞∑
k=0

tk

k!
· diag{µ1, · · · , µN}k ·Q−1 · z(0)

=
+∞∑
k=0

tk

k!
· diag{µk1, · · · , µkN} · z̃(0),

(3.18)

where z̃(0) = Q−1 · z(0) and JΞ(xe)
0 = IN×N is the identity matrix of size N ×N .

From Eq. (3.18), we can observe that the positions of the non-zero elements in z̃(t)

is consistent with those in z̃(0), suggesting that the non-zero subscripts all belong to

B. Hence, according to Definition 2, we prove that z(t) ∈ BS(B,Q−1), suggesting

that the whole time-varying network signals z(t) are B-bandlimited with respect to

the GFT operator Q−1.

Theorem 3 Denote d(z(t))/dt = JΞ(xe)z(t) + b(t). If z(0),bi = [b1,i, · · · , bN,i]T ∈
BS(B,Q−1), then z(t) ∈ BS(B,Q−1).

Proof 3 Recall from Eq. (3.2) that b(t) =
∑+∞

i=1 bi ◦δ(t− ti) with δ(t− ti) = [δ(t−
ti), · · · , δ(t−ti))]T of size N×1. The proof is equivalent to prove z(t) ∈ BS(B,Q−1)

for any t ∈ [0, t1) ∪ · · · ∪ [t+∞,+∞). According to Lemma 1, it is proved the z(t) ∈
BS(B,Q−1) for any t ∈ [0, t1). Then, we notice that z(t1) = et1·JΞ(xe) · z(0) + b1.

Thus, if b1 ∈ BS(B,Q−1), then z(t1) ∈ BS(B,Q−1). Taking z(t1) as the graph

bandlimited initialization, the proof of z(t) ∈ BS(B,Q−1) for interval t ∈ [t1, t2) is

straightforward according to Lemma 1. Similarly, we can extend this fact for all the

intervals, and therefore prove z(t) ∈ BS(B,Q−1).

As we complete the proof of the B-bandlimited property of the whole time-

varying network signals z(t), we can determine the sampling vertex subset C from the

network domain via the existing Theorem 2, i.e., rank(QCB) = |B|. To implement

this, we compute C by finding the minimum condition number of the matrix QCB,

i.e.,

C = argmin
C⊂N

cond (QCB) , (3.19)

where cond(·) denotes the condition number of a matrix. Leveraging Eq. (3.19), a

greedy algorithm can be adopted by finding and adding the row, i.e., C ← C ∪ {n},
such that n = argmini∈N\C cond(Q(C∪{i})B). Then, the recovery matrix Θ in Eq.

(3.5) can be derived as Θ = QNB ·(QT
CB ·QCB)−1 ·QT

CB, and the recovery process can
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be pursued by ẑ(t) = Θ · zC(t), with zC(t) the sampled continuous signals selected

from the vertices in C.

General Case with Arbitrary Initialization

It is noteworthy that an existence of B ( {1, 2, · · · , N} to make initialization and

inputs B-bandlimited may not be easily satisfied for some network monitoring sce-

narios. To address this, we assign a bandwidth set B and approximately regard the

initialization and inputs as B-bandlimited. Here, B is selected by the indices of the

|C| smallest magnitudes of the real parts of eigenvalues, i.e.,

B =
{
ni|i ∈ {1, 2, · · · , |C|}, |Re[µn1 ]| ≤ |Re[µn2 ]| ≤ · · · ≤ |Re[µn|C| ]|

}
, (3.20)

where |C| is pre-defined according to the limit number of sensors or accuracy indi-

cators.

We explain the reason in the following. According to Eq. (3.17), the graph

Fourier transform of z(t) for jth graph-frequency component is:

z̃j(t) = eµj ·t · z̃j(0) +
∑
ti≤t

eµj ·(t−ti) · b̃j,i, (3.21)

where z̃j(t) is the jth element in z̃(t) = Q−1 · z(t), and b̃j,i is the jth element in

b̃i = Q−1 · bi. Then, the energy measured by the integral on t is:

Ej =

∫ +∞

0
|z̃j(t)|dt =

|z̃j(0) +
∑

i b̃j,i|
|Re[µj ]|

, (3.22)

where we have Re[µj ] ≤ 0 given the Lypunov stability assumption [65]. As such,

given the non-bandlimited property of both z(0) and bi, one option for the se-

lection of the graph sampling bandwidth set B is to minimize the energies of the

un-selected graph-frequency components. This thereby make us omit the N − |S|
largest |Re[µj ]|, since |Re[µj ]| constitutes the denominator of the energy according

to Eq. (3.22). Also, an upper-bound recovery error of such approximation can be

deduced as follows:∫ +∞

0
‖ẑ(t)− z(t)‖2dt ≤

‖z(0)‖2 +
∑

i ‖bi‖2
|Re[µn|C|+1

]|
· N − |C|

N
, (3.23)

where |Re[µn|C|+1
]| represents the (|C|+1)th smallest |Re(µn)| for n ∈ {1, 2, · · · , N}.

After the derivation of an approximated B, we regard the initialization and

inputs as z(0),bi ∈ BS(B,Q−1), and further from Lemma 1 and Theorem 3, we
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have z(t) ∈ BS(B,Q−1). As such, we can select the sampling vertex subset C,
and the recovery matrix Θ, as was stated by Eq. (3.19). Such a derivation is for

the arbitrary initialization and inputs for sampling and recovering the time-varying

network signals.

Here, it is highlighted that such an equation-driven sampling method does

not rely on the time-evolved information for signal recovery. It is true that as one

derives a closed-form formula of dz(t)/dt = JΞ(xe)z(t) as z(t) = et·JΞ(xe) · z(0) in

Eq. (3.17), one can determine the sampling vertex subset such that the time-evolved

samples (e.g., zC(t), t > 0) can be used for the recovery of z(0) and then take z(0)

into Eq. (3.17) to derive the whole time-varying network signals. However, such

a case is an ideal one without the unknown input b(t), which if added, makes the

dynamic governing equation as dz(t)/dt = JΞ(xe)z(t)+b(t). When we try to address

the unknown spatial-temporal patterns of the input (i.e., the exact time of the Dirac

delta functions and the amplitudes), we have to select the sampling vertex subset

C which requires only the current-time samples for the recovery of the time-varying

network signals. The time-evolved information is no longer reliable, as we do not

know whether there is an input at next monitoring time.

In the following, we will analyze when to monitor the network from the

time-domain, i.e., the discrete time (or sampling frequency ωs) that can ensure the

discrete sampled data to recover the continuous network signals.

3.2.3 Sampling from Time Domain

After the derivation of the sampling vertex subset C, and the recovery matrix Θ,

we will elaborate how to determine the time-domain cut-off frequency ωcut-off.

Lemma 2 Denote dz(t)/dt = JΞ(xe) · z(t) satisfying Lyapunov stability, and a

threshold ε to truncate the time-domain frequency components that are less than ε.

Then, the time-domain cut-off frequency ωcut-off is:

ωcut-off = max
j∈B
|Im[µj ]|+

√
‖z(0)‖22
ε2

−min
j∈B

Re2[µj ]. (3.24)

Proof 4 With the help of Eq. (3.17), we write the signal on nth vertex, i.e., zn(t)

of z(t), as:

zn(t) =
∑
j∈B

qn,j · z̃j(0) · eµjt, (3.25)
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where qn,j is the (n, j)th entry of the matrix Q. Given that z(t) is assumed to have

Lyapunov stability, the eigenvalues of JΞ(xe) have non-positive real values [65], i.e.,

Re[µj ] ≤ 0. As such, we deduce the time-frequency Fourier transform of zn(t) as

follows:

Zn(ω) =

∫ +∞

0

∑
j∈B

qn,j · z̃j(0) · eµjt · e−iωtdt

=
∑
j∈B

qn,j · z̃j(0)

∫ +∞

0
eRe[µj ]t−i(ω−Im[µj ])tdt

=
∑
j∈B

qn,j · z̃j(0)

−Re[µj ] + i (ω − Im[µj ])
.

(3.26)

We then extract the magnitude of Zn(ω) from Eq. (3.26) as:

|Zn(ω)| =

∣∣∣∣∣∣
∑
j∈B

qn,j · z̃j(0)

−Re[µj ] + i (ω − Im[µj ])

∣∣∣∣∣∣
≤
∑
j∈B

∣∣∣∣ qn,j · z̃j(0)

−Re[µj ] + i (ω − Im[µj ])

∣∣∣∣
≤
∑
j∈B

|qn,j · z̃j(0)|√
Re2[µj ] + (ω − Im(µj))

2
.

(3.27)

It is observed from Eq. (3.27) that the imaginary parts of the eigenvalues contribute

to the left/right shift of ω. Therefore, we can deduce that, for any ω > max
j∈B
|Im[µj ]|,
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an upper-bound of the the magnitude |Zn(ω)| as:

|Zn(ω)| <
∑N

j=1 |qn,j · z̃j(0)|√
min
j∈B

Re2[µj ] +

(
ω −max

j∈B
|Im[µj ]|

)2

<

√∑N
j=1 q

2
n,j

∑N
j=1 z̃j(0)2√

min
j∈B

Re2[µj ] +

(
ω −max

j∈B
|Im[µj ]|

)2

=
‖z̃(0)‖2√

min
j∈B

Re2[µj ] +

(
ω −max

j∈B
|Im[µj ]|

)2

=
‖Q · z̃(0)‖2√

min
j∈B

Re2[µj ] +

(
ω −max

j∈B
|Im[µj ]|

)2

=
‖z(0)‖2√

min
j∈B

Re2[µj ] +

(
ω −max

j∈B
|Im[µj ]|

)2
.

(3.28)

As such, we make such upper-bound of |Zn(ω)|, i.e., the right-hand side of Eq.

(3.28), smaller than the given threshold ε, and therefore derive the cut-off frequency

ωcut-off given by Lemma 2.

Theorem 4 Denote dz(t)/dt = JΞ(xe)z(t) + b(t) satisfying the Lyapunov stability,

and a threshold ε to truncate the time-domain frequency components that are less

than ε. Then, the time-domain cut-off frequency ωcut-off is:

ωcut-off = max
j∈B
|Im[µj ]|+

√
‖z(0)‖22 +

∑
i ‖bi‖22

ε2
−min

j∈B
Re2[µj ]. (3.29)

Proof 5 With the help of Lemma 2, we compute the time-domain Fourier transform

of z(t) via the summation of Eq. (3.27) corresponding to different inputs bi. As

such, the upper-bound of the magnitude |Zn(ω)| is

|Zn(ω)| <
‖z(0)‖2 +

∑
i ‖bi‖2√

min
j∈B

Re2[µj ] +

(
ω −max

j∈B
|Im[µj ]|

)2
. (3.30)
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Then, let such upper-bound in Eq. (3.30) be less than the provided threshold ε, we

therefore prove Theorem 4.

Given the deduction of Lemma 2 and Theorem 4, the cut-off frequency ωcut-off

is determined to discretize the continuous network signals. Then, we can adopt the

Shannon sampling interpolation in Eq. (3.5) to recover the continuous signals from

the discretized ones under the cut-off frequency ωcut-off.

3.2.4 Explicit Relationship between Optimal Sampling and Graph

Dynamics

It is highlighted that a key contribution of our equation-driven GFT sampling frame-

work is the creation of an explicit relationship between the time- and network-

domain cut-off frequencies, the networked topological properties, and the governing

nonlinear modes. We discuss this from the following three perspectives.
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Figure 3.3: Illustration of the relations between graph bandwidth set B = {1, 4, 5},
and the time-domain cut-off frequency ωcut-off.

• First, we build a bridge between the dynamical governing equations (i.e., the

self-dynamic function and the mutualistic coupling equations), and the lin-

earized matrix JΞ(xe) from Eq. (3.8). The latter that combines the topologi-

cal structure and the governing equations, is able to (i) govern the first-order

(main part) time and network domain evolution of the time-varying network

signals, and (ii) give an interpretation of system stability via the real parts of

its eigenvalues (seen from Fig. 3.3(a)).

• Second, we analyze the initialization and inputs that are graph B-bandlimited

(quasi) to the GFT operator determined by the linearized matrix JΞ(xe), and

prove that the whole time-varying network signals are B-bandlimited (quasi).
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Such a set B further maps to the eigenvalues (graph frequencies) illustrated

in Fig. 3.3(a), and only the corresponding eigenvectors whose indices belong

to B have non-zero contributes. Also, the graph bandwidth set B maps to an

optimal sampling vertex subset C that ensures complete signal recovery.

• Third, this graph bandwidth set B further leads to the computation of the

time-domain cut-off frequency. It is noteworthy that, only the indices of eigen-

values of JΞ(xe) that belong to B affect the shape of the time-frequency Fourier

transform (seen from Fig. 3.3(b)). To be specific, a direct relation between

ωcut-off and B is shown in Theorem 4. In summary, as is illustrated in Fig. 3.3,

the time-domain cut-off frequency ωcut-off is related to the eigenvalues whose

indices belong to B, which in turn is related to the optimally sampled graph

structure and the underlying dynamics.

3.3 Compared with Two State-of-the-Arts

It is noteworthy that for this chapter, it is hard to pursue any performance com-

parison with the existing sampling methods. This is because most of the referenced

works (e.g., [41,46]) concentrated on discrete-time network signals, and are different

from our scope (i.e., the continuous network signals). In this view, our work in this

chapter provides them a discretization method, after which they can perform their

analysis on discretized data matrix (we will compare with these methods in following

chapters that consider the network sampling on discrete signal matrix). In addition,

most of the existing works offered the time-varying sampling vertex subsets, which

therefore are not suitable for sensor placement applications requiring fixed sampling

vertex subset for sensor deployment.

As such, we here just render the comparisons with their works by describ-

ing the major differences in conceptual manner. For the work in [41], the author

designed a joint time and network domains GFT sampling method (called JFT).

The key of their JFT method is to rely on the topological structure based Laplacian

operator, and the Discrete FT matrix. The difference therefore lies in that, they did

not consider the dynamic mechanism (i.e., the governing dynamic equations) in their

JFT framework. This leads to their inability to analyze the signal property, e.g.,

they cannot keep an B-bandlimited property for the whole time-varying network sig-

nals. As such, it is hard for them to derive a fixed sampling vertex subset for sensor

placement. For the work in [46], the authors proposed a sequential Kalman filter to

track the discrete network signals, under the assumptions of the known inputs and

a B-bandlimited initialization to a GFT operator (i.e., composed of eigenvectors of
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the linear evolution matrix). However, such scheme becomes less attractive when

addressing the unknown input challenges. This is because such unknown inputs lead

to an unavailability of their transition probability density mapping, which if lost,

will block the predict-stage of the current network signal from the previously recov-

ered ones. More importantly, they did not analyze the case when the initialization

and the inputs are not B-bandlimited (as what we do in Section 3.2.2).

3.4 Simulations & Experimental Results

In the section, we evaluate the sampling and recovery performances of our proposed

equation-driven GFT sampling method. First, we analyze the case when the un-

known initialization and inputs, i.e., z(0) and bi are graph B-bandlimited to the

GFT operator Q−1, with a known B. Then, the general cases with arbitrary initial-

ization and inputs, i.e., z(0),bi /∈ BS(B,Q−1) are tested.

In the following simulations, the impacts of both the network-domain sam-

pling vertex subset, and the time-domain sampling frequency are considered. For

the former, we use the size of the sampling vertex subset |C| to measure how dense

the sensors are deployed. For different sizes |C|, the selection of the sampling vertex

subset C follows the method in Eq. (3.19). For the time-domain sampling frequency,

we use a very small sampling interval ∆t to simulate the continuous network signals,

i.e., 2π/∆t = 8ωcut-off. Then, we provide the root mean square error (RMSE) of the

recovered time-varying network signals x̂(t), t ∈ [0,K∆t) to measure the recovery

accuracy, i.e.,

RMSE =

√√√√ 1

N ·K

K−1∑
k=0

‖x̂(k ·∆t)− x(k ·∆t)‖2l2 , (3.31)

where ‖ · ‖l2 denotes the l2-norm.

For the simulation configurations, we use two typical governing dynamic

equations [66]:

dxn(t)

dt
= −B · xn(t) +R ·

N∑
m=1

an,m · xm(t) +

+∞∑
i=1

bn,i · δ(t− ti), (3.32)

dxn(t)

dt
= F −B · xn(t) +R ·

N∑
m=1

an,m · xn(t) · xm(t) +

+∞∑
i=1

bn,i · δ(t− ti). (3.33)

Eq. (3.32) is referred to as the linear networked population density (PD) dynamics
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representing the evolution of population density, where population density on each

vertex has a self growth rate −B and is also affected by the migrated strength

R from neighbouring connected vertices. Eq. (3.33) is referred to as the non-

linear biochemical protein-protein interaction dynamics governed by the mass-action

kinetics (MAK). The detailed explanations for the governing dynamic equations are

in [66]. In Eqs. (3.32)-(3.33), we assign the number of vertices N = 500, and assign

other parameters to satisfy the Lypunov stability assumed in Assumption 1.

3.4.1 Performance with Graph Bandlimited Initialization and In-

puts

We first evaluate the performance of the proposed equation-drive GFT sampling

method, when the graph B-bandlimited property (with the known B) of the initial-

ization and inputs are assumed.

Linear Governing Dynamic Equation

Figure 3.4: PD linear dynamic model with graph bandlimited initialization and
inputs: recovery RMSE versus both the sampling frequency ωs, and the size of
sampling vertex subset |C|.

In Figs. 3.4-3.6, we provide the signal recovery performance of the proposed

equation-driven GFT sampling method for the linear dynamic model in Eq. (3.32).

Fig. 3.4 illustrates the recovery RMSE versus the joint time-domain sampling fre-

quency ωs, and the network-domain size of sampling vertex subset |C|. It is observed

that as both ωs and |C| become larger, the recovery RMSE decreases. This indicates
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that the performance of the signal recovery gets better, when more samples from

both the time- and the network- domains are used. We also demonstrate this in

Fig. 3.5 and Fig. 3.6, whereby the two tangent planes of Fig. 3.4, i.e., RMSE ver-

sus time-domain sampling frequency ωs, and RMSE versus network-domain size of

sampling vertex subset |C|, are given.

Figure 3.5: PD linear dynamic model with graph bandlimited initialization and
inputs: recovery RMSE versus sampling frequency ωs.

Fig. 3.5 illustrates the recovery RMSEs versus the time-domain sampling

frequency ωs, given different and fixed sizes of sampling vertex subsets |C|. It is seen

from Fig. 3.5 that, as ωs increases, the recovery RMSEs for all fixed |C| decrease.

This is because that, the larger the time-domain sampling frequency ωs, the more

number of samples from the time-domain, suggesting an improvement of the recovery

accuracy according to the Nyquist sampling theory. Also, we compare in Fig. 3.5

the cases whether the fixed size of sampling vertex subset |C| is larger than size of

graph bandwidth set, i.e., |C| ≷ |B|. For the case |C| > |B|, the recovery RMSE can

converge to a very low order (i.e., from 10−1 to 10−15 as ωs increases). Moreover,

in such a case, the trends of the RMSE match the benchmark whereby all the

vertices are selected and sampled (i.e., |C| = N). This is because that in such a

linear dynamic model, e.g., the PD model, the Jacobian linearized matrix JΞ(xe)

is actually the linear evolution model, and there is no linearized error described

by Eqs. (3.12)-(3.13). In this view, the perfect signal recovery from the network

domain can be achieved only if rank (QCB) = |B| is approached. Then, we consider
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the case with |C| < |B|. We can see that the recovery RMSE decreases slightly with

the increases of the time-domain sampling frequency ωs, since the perfect signal

recovery cannot be achieved if the size of sampling vertex subset is lower than that

of the graph bandwidth set.

Figure 3.6: PD linear dynamic model with graph bandlimited initialization and
inputs: recovery RMSE versus the size of sampling vertex subset |C|.

Fig. 3.6 illustrates the recovery RMSEs versus the varied sizes of sampling

vertex subsets |C|, given different and fixed time-domain sampling frequencies ωs.

Likewise, it is observed from Fig. 3.6 that the recovery RMSEs get lower as the size of

sampling vertex subset |C| increases, due to the fact that the more samples from the

network domain are involved. Then, it is seen from Fig. 3.6 that, the recovery RMSE

for the case ωs = 2ωcut-off is lower than that with ωs < 2ωcut-off. This is because

the former represents the case when time-domain sampling frequency is larger than

the cut-off frequency, and the latter accounts for the under-sampling from the time-

domain. As such, the recovery performance of the under-sampling are deteriorated

by the missing samples from the time-domain. Also, it is noteworthy that the

threshold ε for the magnitudes of the transformed frequency components in Theorem

4 matters, since the computation of the time-domain cut-off frequency ωcut-off omits

the frequency components with magnitudes smaller than ε. This therefore results in

the gap between the benchmark with larger ωs = 8ωcut-off and the recovery RMSE

with ωs = 2ωcut-off. Furthermore, it is noticed that, after the size of the sampling
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vertex subset |C| reaches the size of graph bandwidth set B i.e., |C| = |B|, the

recovery RMSEs converges to a very low bound. We explain this in the following.

In the case of the linear dynamic model, Theorem 3 holds perfectly and suggests a

sampling vertex subset C for completely signal recovery if rank (QCB) = |B|.

Nonlinear Governing Dynamic Equations

Figure 3.7: MAK nonlinear time-varying network signals with graph bandlimited
initialization and inputs: recovery RMSE versus both the sampling frequency ωs

and the size of sampling vertex subset |C|.

We next evaluate the proposed equation-driven GFT sampling in the context

of the nonlinear dynamic model, i.e., Eq (3.33). Fig. 3.7 provides the recovery RMSE

versus both the time-domain sampling frequency ωs and the network-domain size

of sampling vertex subset |C|. Likewise, it is straightforward that with both the

increases of ωs and |C|, the recovery RMSE becomes lower, due to the fact that

more samples from the both domains can help improve the accuracy of the signal

recovery.

Fig. 3.8 provides one tangent plane of Fig. 3.7, whereby the recovery RMSEs

versus the time-domain sampling frequency ωs are tested. Here, we fix the network

domain size of sampling vertex subset |C| into 3 different values. In Fig. 3.8, it is

observed that as ωs gets larger, the recovery RMSEs of all fixed |C| decrease, as the

larger the sampling frequency ωs from time-domain, the more samples can be used

for a better recovery accuracy. Moreover, we compare the cases whether the fixed

size of the sampling vertex subset |C| is larger than that of the graph bandwidth
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Figure 3.8: MAK nonlinear time-varying network signals with graph bandlimited
initialization and inputs: recovery RMSE versus the sampling frequency ωs.

set, i.e., |C| ≷ |B|. When |C| > |B|, the recovery RMSE decreases first (from 10−1 to

10−5), and then converges to a very low limitation (i.e., 10−5), as exceeding the 2

times of the Nyquist sampling frequency (i.e., ωs > 2ωcut-off). This is different from

the linear dynamic scenarios in Fig. 3.5. We explain this in the following. Given

the linearized matrix JΞ(xe) that tries to approximate the nonlinear dynamics, an

error (gap) from Eqs. (3.12)-(3.13) exists and cannot be alleviated just by increasing

the time-domain sampling frequency ωs. Such an error caused by linearization, i.e.,

10−5−10−15 in Fig. 3.8, is illustrated by the benchmark whereby all network-domain

vertices are selected for samples i.e., |C| = N . It is also noteworthy that after the

time-domain sampling frequency ωs exceeds 2 times of the cut-off frequency ωcut-off,

the recovery RMSE are still decreasing. This is because the computation of ωcut-off

in Theorem 4 omits the frequency components with magnitudes lower than the given

threshold ε. Then, we consider the case with |C| < |B|. We can see that the recovery

RMSE decreases slightly with the increases of the time-domain sampling frequency

ωs, since the perfect signal recovery cannot be achieved if the size of sampling vertex

subset is lower than that of the graph bandwidth set.

Fig. 3.9 illustrates the recovery RMSEs versus the network-domain size of

sampling vertex subset |C|, given the different and fixed time-domain sampling fre-

quencies ωs. As aforementioned, the recovery RMSEs of all time-domain sampling

frequencies decrease when |C| increases, due to the fact that more samples from the
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Figure 3.9: MAK nonlinear time-varying network signals with graph bandlimited
initialization and inputs: recovery RMSE versus the size of sampling vertex subset
|C|.

network domain gives rise to a more accurate signal recovery. Then, it is observed

that the recovery RMSE from the case where Nyquist sampling theory is approached

i.e., ωs = 2ωcut-off outperforms the one of ωs < 2ωcut-off accounting for the under-

sampling from time-domain, since the latter has less samples from the time-domain

for signal recovery. Also, similar to the linear dynamic scenarios, the threshold

for transformed time-domain frequency components in Theorem 4 matters. This

is because the computed time-domain cut-off frequency ωcut-off in Theorem 4 omits

those frequency components with lower magnitudes than the provided threshold.

This therefore leads to the gap between the benchmark with a larger ωs = 8ωcut-off

and the recovery RMSE with ωs = 2ωcut-off. In addition, we can notice that unlike

the linear dynamic shown in Fig. 3.6 that has a recovery convergence after |C| ≥ |B|,
the recovery RMSEs for nonlinear time-varying network signals are still decreas-

ing. This is because equation-driven sampling method we deduced in Theorem 3

leverages the linear system. As such, for nonlinear scenarios, the linearized error

measured by Eqs. (3.12)-(3.13) cannot be eliminated until all the vertices from the

network domain are selected for samples, i.e., |C| = N . We demonstrate this gap

via the Benchmark whose size of the sampling vertex subset is |C| = N .
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3.4.2 Performance with Arbitrary Initialization and Inputs

Figure 3.10: MAK nonlinear time-varying network signals with arbitrary initializa-
tion and inputs: recovery RMSE versus both the sampling frequency ωcut-off and
the size of sampling vertex subset |C|.

We finally evaluate our proposed equation-driven GFT sampling method

for arbitrary initialization and inputs in the context of the nonlinear time-varying

network signal model, i.e., the MAK dynamic in Eq. (3.33). The performance of

signal recovery is illustrated in Fig. 3.10, in which the recovery RMSE versus the

joint time-domain sampling frequency and network-domain size of sampling vertex

subset |C| is provided. Similar to the graph bandlimited scenarios, the recovery

RMSE decreases when ωs and |C| grow, which indicates a higher recovery accuracy

of the time-varying network signals as more samples are involved and utilised.

Fig. 3.11 illustrates the recovery RMSEs versus the time-domain sampling

frequency ωs, as different and fixed sizes of the sampling vertex subset |C| are stud-

ied. We can see from Fig. 3.11 that, when the time-domain sampling frequency

ωs increases, the recovery RMSEs of all fixed |C| get smaller, since the larger the

time-domain sampling frequency ωs, more samples from time-domain can be used

for a more accurate signal recovery. Then, we compare between different sizes of

sampling vertex subsets, i.e., |C| = 4N/5 and |C| = 2N/5. It is straightforward

that a larger |C| = 4N/5 provides a greater recovery performance as opposed to a

lower |C| = 2N/5, since a larger |C| can embrace more information from the graph

frequency domain. Furthermore, we observe the case with larger size of sampling

vertex subset, i.e., |C| = 4N/5. We can see that the recovery RMSE decreases at
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Figure 3.11: MAK nonlinear time-varying network signals with arbitrary initializa-
tion and inputs: recovery RMSE versus the sampling frequency ωs.

first (from 10−1 to 10−2), and then converges to a limit (as 10−2), which is higher

than that of the graph-bandlimited scenarios from Fig. 3.8. We categorize the rea-

son into two aspects. First, just like the graph bandlimited cases, the recovery

accuracy improves when a larger time-domain sampling frequency ωs is used, but

the aforementioned linearized error by JΞ(xe) determines its converged limitation.

Second, different from the graph bandlimited scenarios, a further error occurs as

we approximate the signals as B-bandlimited and omit parts of the components

from the graph frequency domain. This limitation (computed as 10−2 − 10−15) is

also shown by the benchmark in Fig. 3.11 whereby all vertices are used for samples

i.e.,|C| = N . We should also note that after ωs exceeds 2 times of the time-domain

cut-off frequency ωcut-off, the recovery RMSE is still lowering, due to the omission

of the smaller time-domain frequency components that are lower than the provided

threshold ε in Theorem 4.

Fig. 3.12 illustrates the recovery RMSEs versus the size of sampling vertex

subset |C|, as we examine two fixed time-domain sampling frequencies ωs. As afore-

mentioned, the recovery RMSEs of all fixed ωs become smaller as the size of sampling

vertex subset |C| increases, due to the fact that an increasing |C| can embrace more

samples from the network domain for better recovery performance. It is noteworthy

here the factors that affect the recovery RMSE are two, i.e., i) the linear approxi-
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Figure 3.12: MAK nonlinear time-varying network signals with arbitrary initializa-
tion and inputs: recovery RMSE versus the size of sampling vertex subset |C|.

mation error caused by JΞ(xe), and ii) the error caused by the approximated graph

bandlimited property using Eq. (3.20). Then, it is seen that the recovery RMSE

from the case ωs = 2ωcut-off outperforms that of the time-domain under-sampling

case i.e., ωs < 2ωcut-off. This is because the time-domain under-sampling leads to

a lack of samples for signal recovery. Also, the gap between the benchmark with a

larger ωs = 8ωcut-off and the recovery RMSE with ωs = 2ωcut-off is shown. This is

mainly because the computation of the cut-off frequency ωcut-off that omits the time-

domain frequency components with smaller magnitudes than the given threshold ε

in Theorem 4.

3.5 Conclusions & Discussions

For this chapter, the equation-driven GFT sampling framework relying on vertex

signal dependency has been proposed, capable of sampling the time-varying network

signals from the joint time (discretizing rate) and network (sampling vertices) do-

mains. We first characterized the nonlinear time-varying network signals using the

first-order Jacobian matrix of the dynamic differential equations. Leveraging the

eigenvectors of the linearzation matrix, we have constructed the dynamic-topology

combined GFT operator, which is able to uncover the dependency of the continuous

network signals on different vertices (i.e., the graph B-bandlimitedness). Then, we
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have proved the existence of the time-invariant sampling vertex subset for recovering

the continuous network signals under a graph bandlimited initialization and inputs.

Unlike the traditional compression frameworks (e.g., CS and topological

based GFT), we combine the network topology with nonlinear dynamical mecha-

nism (explicit dynamic governing equations) that has explicit causal relations among

vertices. Therefore, our sampling framework is able to indicate a direct mapping

from the network sampling vertices and time-domain discretizing rate to the net-

work structure and governing nonlinear dynamics, and reversibly the changing in the

underlying dynamics or the network topology will be able to inform the network sam-

pling processes (see Fig. 3.3). In this view, this chapter provides a straightforward

understanding on how the network topology and underlying dynamic mechanism

affect the information sampling from both the time and the network domains.

The limitation of the dynamic equation-driven GFT sampling scheme, as

its name suggests, lies in its heavily relying on the dynamic governing equations.

This therefore renders its unsuitability for many complex systems, whose explicit

governing mechanisms are unavailable, e.g., a multiplex of various network and

dynamics [13], or with dynamics in higher dimensions and higher order differential

equations [4, 6], or having non-Markovian extended-memory dynamics [1]. These

further motivate us to design new sampling framework that can learn the hidden

dynamical mechanism from the experimental data, and we will introduce our data-

driven GFT sampling in the next chapter.
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Chapter 4

Signal-Space Dependent

Data-Driven Sampling

In this chapter, we elaborate the signal-space dependent vertex selections for sensor

placement, and the signal recovery scheme. The motivation is from the real-world

water-distribution network surveillance application, where the governing dynamic

equations are not available. In such a case, the equation-driven sampling meth-

ods will lose their compasses, rendering the difficulty of constructing the topology-

equation based compress operator for sampling vertices selection and dynamic signal

recovery. To overcome this, an alternative way is to use the prior property of the

signal-space (e.g., the sparsity or bandlimitedness to a given operator). As such, we

provide in this chapter the data-driven Graph Fourier Transform operator, and how

it can be used for network sampling tasks.

The structure of this chapter is given as follows. We first formulate a data-

driven modelling of time-varying network signals and analyze the problem in Section

4.1. Then, in Section 4.2, we elaborate the detailed sampling and recovery processes.

In Section 4.3, we consider the pathway constraints for sampling vertex subset selec-

tion. In Section 4.4, we provide the theoretical error bounds of the proposed GFT

sampling scheme. In Section 4.5, we compare our scheme with other two state-of-

the-art data-driven methods. The simulation and experimental results are provided

in Section 4.6. We finally conclude this chapter in Section 4.7.
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4.1 Water Distribution Network Formulation and Prob-

lem Analysis

In this section, we describe the water-distribution network (WDN), and formulate

a data-driven modelling for an injected contaminant propagation over the WDN.

Like Chapter 3, we configure the WDN by a static graph denoted as G(N ,A).

N = {1, 2, · · · , N}, N ∈ N+ is a set of indices of the total WDN vertices. A

represents the WDN adjacent matrix, where the element an,m = 1/0 represents an

existence/nonexistence of a directed edge from vertex m to vertex n. In WDN, the

vertices can be represented as the junctions, the reservoirs, or the tanks, while links

can be the pump, the valve, and the pipe [67]. For each a WDN vertex n ∈ N , signals

such as the water demands, the head-loss, and the water-quality are time-varying

and interacted with its neighbouring vertices.

In the rest of this chapter, we are only interested in the water-quality of the

WDN, measured by the amount of contaminant propagated over the network. The

contaminant if deliberately/accidentally injected in some vertices will be spread over

the WDN and finally expelled by the water-demands (e.g., the usages and drinking)

of other vertices, which is needed for monitoring and surveillance in order to protect

the majority. As such, sensors are required to deploy in some of the vital vertices

for collecting the contaminant signals and for the recovery of those on unsampled

vertices. The aforementioned WDN topology and contaminant propagation are

illustrated via Fig. 4.1.

For the contaminant propagation over WDN, we characterize the time-varying

network signals via a discrete-time matrix of size N ×K, i.e.,

X = [x1,x2, · · · ,xK ], (4.1)

where xk represents the network signal at discrete time k. N = |N | is the number

of vertices in WDN, and K = {1, · · · ,K} is the set of total discrete times for

monitoring. We also denote C ⊂ N as the sampling vertex subset. The objective of

this chapter is to identify the appropriate sampling vertex subset C ⊂ N , such that

the samples derived from C can recover the whole time-varying network signals:

X = Θ ·XCK, (4.2)

where Θ denotes the recovery matrix. XCK represents the samples of X, whose

rows are selected with indices/subscripts in set C, and columns are selected with

indices/subscripts in set K. Here, we consider an immediate signal recovery, as any
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Figure 4.1: Illustration of the WDN topology and the contaminant time-varying
network signals. Contaminant signals in three example junctions (vertices) are pro-
vided.

latency on contaminant monitoring for WDN may cause catastrophe. As such, only

the signal dependency among different WDN vertices are used for sampling vertex

subset selection and signal recovery; we do not rely on any time-evolved information

as this will cause latency.

Different from the previous Chapter 3, the governing dynamic equations are

not available due to the complex partial differential manner for hydraulic signal

evolution. Instead, to discover the signal dependency among vertices, we assume a

prior knowledge of the contaminant signal-space, denoted as S, spanned by r < N

independent supports:

S = span{x̄1, x̄2, · · · , x̄r} ⊂ RN , (4.3)

and we have for any discrete time k, the time-varying network signals belongs to

the signal-space, i.e., xk ∈ S. We explain the derivation of the signal-space in the

following. Given a specific region, the potential sources (vertices) of the contamina-

tion are known (e.g., one can know exactly the locations of main factories and their

potential pollutant injections). As such, we can simulate the WDN, and the con-

taminant propagation flows with fixed injection vertices via EPANET engine [67],

and derive the contaminant signal-space.
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4.2 Data-Driven Sampling and Recovery Process

In this section, we elaborate our proposed data-driven network sampling and signal

recovery methods leveraging the signal dependency among the network vertices.

The idea is borrowed from traditional graph sampling theory 2 in Chapter 2. To

be specific, we first derive a data-driven GFT operator using the prior knowledge

of signal-space, to keep the whole network signals in X graph bandlimited. Then,

we select the optimal sampling vertex subset C based on the graph bandlimited

property. We finally recover the whole time-varying network signals via the samples

derived from the sampling vertices in C.
Before we start, we extend from the graph bandlimitedness concept of the

static network signal (N ×1 vector) in Definition 1, and provide the graph bandlim-

itedness definition to a joint time and network -domains matrix (of size N ×K).

Definition 3 Consider a set B ⊂ N , a GFT operator Q−1, a joint time and

network domain data matrix X of size N × K, and its graph-frequency response

X̃ = Q−1 · X. We call X graph B-bandlimited with respect to Q−1, if in X̃, only

the rows with indices in B are nonzero vectors. We call Bcut-off = B as the cut-off

graph bandwidth set of X.

Actually, the graph B-bandlimited of the time-varying network signals X character-

izes the signal dependency among vertices in X (i.e., the linear row dependency).

Given r = rank(X), the GFT operator Q−1 proceeds elementary row transforma-

tion till r independent and linearly combined rows left.

4.2.1 Data-Driven GFT Operator

Given the joint time and network domain contaminant data matrix X of size N×K,

we aim to generate a GFT operator (a reversible matrix) Q−1 to make X graph

B-bandlimited with some B whose cardinality |B| < N . By doing so, the graph

sampling theory can be adopted to identify the optimal sampling vertex subset C
satisfying |C| = |B|.

Given that the columns of X belong to the signal-space, i.e., xk ∈ S, we

compute the GFT operator Q−1 using the independent supports x̄1, x̄2, · · · , x̄r. To

be specific, the singular value decomposition (SVD) is adopted on [x̄1, x̄2, · · · , x̄r],
and we have:

[Γ,Σ,V] = svd ([x̄1, x̄2, · · · , x̄r]) . (4.4)
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As such, the data-driven GFT operator Q−1 is derived by assigning

Q−1 = Γ−1. (4.5)

After the derivation of the GFT operator Q−1, we analyze the graph ban-

dlimtiedness of X with respect to Q−1. At first, we show that [x̄1, x̄2, · · · , x̄r] is

graph B-bandlimited to Q−1, given B = {1, 2, · · · , r}. This is straightforward given

the SVD and the in-dependency of the r supports x̄1, x̄2, · · · , x̄r, i.e.,

Q−1 · [x̄1, x̄2, · · · , x̄r] = Σ ·V

=

[
diag

(
[σ1, · · · , σr]T

)
·V

0(N−r)×r ·V

]
,

(4.6)

where σ1, σ2, · · · , σr are the r non-zero singular values of [x̄1, x̄2, · · · , x̄r]. Then,

given the fact that each column of data matrix X belongs to the signal-space S =

span(x̄1, x̄2, · · · , x̄r), it is easy to show that X is also graph B-bandlimited with

respect to Q−1. We compute the graph frequency response matrix of X as follows:

X̃ =Q−1 ·X,
(a)
=Q−1 ·

[
[x̄1, x̄2, · · · , x̄r] ·Π

]
,

(b)
=

[
diag

(
[σ1, · · · , σr]T

)
·V ·Π

0(N−r)×r ·V ·Π

]
.

(4.7)

In Eq. (4.7), (a) holds for the fact that each column of X can be expressed by

the independent supports spanning for the signal-space, and therefore there exists

a matrix Π of size r ×K, such that X = [x̄1, x̄2, · · · , x̄r] ·Π. (b) shows that only

the first r rows of X̃ are non-zero vectors, suggesting the graph B = {1, 2, · · · , r}-
bandlimited property of X with respect to the GFT operator Q−1.

4.2.2 Sampling and Recovery Designs

After the derivation of the data-driven GFT operator from Eqs. (4.4)-(4.7), we here

elaborate how to determine an appropriate sampling vertex subset C. In essence, the

idea is to identify C, such that there exists an one-to-one transformation between

the whole time-varying network signals X and the sampled matrix XCK. To achieve

this, we bridge the two using the graph-frequency response X̃, and try to find the

reversible mapping between the whole time-varying network signals X and graph-

frequency response X̃, and the sampled data XCK.
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Given the graph B = {1, 2, · · · , r}-bandlimited property of X, we use B as

the graph sampling bandwidth set, selecting the graph frequency indices (rows) of

the graph frequency response matrix. As such, we have X̃BK as the sub-matrix

of the frequency response X̃ with rows (corresponding graph-frequency indices) se-

lected from B, and columns (discrete time) selected from K = {1, 2, · · · ,K}. Then,

the sampling and recovery can be therefore converted to search two reversible trans-

formations, i.e., between X and X̃BK, and between X̃BK and XCK.

For X and X̃BK, given the orthogonal property of the GFT operator (i.e.,

Q−1 = QT ), we can extract all non-zero graph-frequency responses by selecting the

rows in B of QT , i.e.,

X̃BK = QT
NB ·X, (4.8)

and reversibly derive the time-varying network signals X from X̃BK, i.e.,

X = QNB · X̃BK. (4.9)

As such, the one-to-one mapping between the whole time-varying network signals

X and the B-bandlimited graph-frequency response is established.

Then, for X̃BK and XCK, we establish the following equation. For any se-

lection C ⊂ N , XCK can be derived by selecting the rows in C of the left and right

hand sides of Eq. (4.9), i.e.,

XCK = QCB · X̃BK. (4.10)

From Eq. (4.10), we notice that rank(XCK) ≤ min{rank(QCB), rank(X̃BK)}, which

indicates that an existence of the reversible computation between X̃BK, if QCB has

full column rank, i.e.,

rank (QCB) = |B| = r. (4.11)

As such, the computation from XCK to X̃BK can be pursued using the pseudo inverse

of QCB, i.e.,

X̃BK = (QT
CB ·QCB)−1 ·QT

CB ·XCK. (4.12)

Finally, by combining Eqs. (4.8)-(4.12), we derive the one-to-one mapping

between the whole time-varying network signals X and its sample XCK, and the

recovery of X, denoted as X̂ can be computed as:

X̂ = QNB · (QT
CB ·QCB)−1 ·QT

CB ·XCK. (4.13)

After the derivation of the sampling and signal recovery process, we provide
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in the following an intuitive explanation for understanding. At first, for any graph B-

bandlimited time-varying network signals X with respect to the GFT operator Q−1,

the graph sampling bandwidth set from the graph-frequency domain should contain

all the non-zero graph-frequency responses, so that the information from the graph

frequency domain will not be lost. In other words, the reversible transformation be-

tween the whole time-varying network signals X and its truncated graph-frequency

response X̃BK exists. Then, Eq. (4.11) provides the criterion for sampling vertex

subset selection, which ensures the one-to-one transformation between the graph-

frequency response X̃BK and the sampled data XCK. In this view, we can select the

sampling vertices satisfying Eq. (4.11), and the recovery process can be pursued by

the combination of the above two mappings. For clarity, we provide the sampling

vertex subset selection algorithm and the signal recovery algorithm in the following.

Sampling Algorithm Flow

To implement Eq. (4.11), we provide the sampling process in Algorithm 1. The

input is the prior knowledge of the signal-space S, and the time-varying network

signals X that is waiting to be sampled.

Algorithm 1 Sampling Vertex Subset Selection Algorithm

Input: Prior signal-space S = span{x̄1, x̄2, · · · , x̄r}.
1: Derive the GFT operator Q−1 using Eqs. (4.4)-(4.5).
2: Initialize C = ∅.
3: while |C| < r do
4: Select vertex n = argmaxm∈N\C σmin

(
Q(C+{m})B

)
5: C = C ∪ {n}
6: end while

Output: GFT operator Q−1, and the sampling vertex subset C.

Step 1 is to compute the data-driven GFT operator using the prior knowledge

of the signal-space. Step 2 is to initialize the sampling vertex subset. Steps 3-6 are to

select the sampling vertex subset C under the condition provided by Eq. (4.11). We

can notice that various selections of C can hold the condition in Eq. (4.11). In order

to achieve the robust sampling results for signal recovery, we select C by maximizing

the minimum singular of QCB. Denoting σmin(·) as the minimum singular of a

matrix, we express the the sampling vertex subset selection process as:

Copt = argmax
C⊂N

σmin (QCB) . (4.14)

As such, a greedy algorithm is adopted to realize Eq. (4.14), and is provided by
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Steps 3-6. Finally, the output is the data-driven GFT operator Q−1, and the selected

sampling vertex subset C.

Signal Recovery using Data-Driven GFT Operator

After the determination of the sampling vertex subset C, samples can be collected

as XCK. We provide the recovery algorithm by Algorithm 2.

Algorithm 2 Data-Driven Signal Recovery Algorithm.

Input: Sampled signals XCK, the GFT operator Q−1, and sampling vertex subset
C.

1: Compute QCB by selecting the rows of QNB with indices/subscripts in C.
2: Derive the recovered time-varying network signals X̃ via Eq. (4.13).

Output: The recovered signals X̃.

In Algorithm 2, the input is the sampled signals XCK, the data-driven GFT

operator Q−1, and the sampling vertex subset C. Step 1 is to construct QCB. Step

2 is to recover the whole time-varying network signals X̂ using Eq. (4.13).

4.3 Molecular Relay Data-Driven GFT

In WDN monitoring applications, the sensors on selected vertices will transmit their

sampled data (signals) to a hub for the recovery of the whole time-varying network

signals, which has been overlooked by our previous studies. To address this, existing

works rely on either the ground penetrating technique based underground wireless

communication systems (e.g., the ultra-low frequency, underground wave-guide [68],

and the magnetic induction [69]), or the fixed line access. However, the former tends

to use a vulnerable and bulky system, due to the potential antenna damage and its

inability to embed enough to enable large-scale and continuous data gathering. The

latter may encounter damages to cables due to high underground pressure. This

therefore motivates us to design new techniques for data transmission.

Recent developments on molecular communications [70, 71] have opened up

a possibility of using messenger molecules (e.g., the encoded DNA molecule [72])

for data transmission in WDN. In terms of the molecular communication propaga-

tion channel, most of the current studies focus on the nano-scale diffusion channels,

where mass diffusion, other than the flow or advection propagation, dominates the

propagation spread and the communications [70, 73, 74]. These, unfortunately, are

not very consistent with the WDN water propagation where water-flow advection

dominates the process. To study the macro-scale molecular communications relying
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on advection propagation, the work in [75] develops a point-to-point erasure chan-

nel, characterizing the arrival probability of the messenger molecules that may be

lost due to the absorption or entrapment in porous media bio-membrane examples.

Similar to this bio-membrane cases, water-flow in the WDN provides an advection

propagation and water-demand in each junction causes the information loss due to

the industrial or domestic water usages. This therefore inspires us to design molec-

ular communication based data transmission systems using the pipes of WDN itself.

In the following, we will introduce our proposed novel molecular communication

relay data-driven (MRDD) GFT sampling system, which is able to deploy sensors

and transmit the sampled signals to the hub using the water-flow of the WDN it-

self, therefore avoiding both the complex ground penetrating methods and the extra

fixed lines for communications.

4.3.1 Molecular Relay

The sketch of the MRDD GFT sampling system is provided as follows. We select one

WDN vertex as the hub for gathering the transmissions of the sampled data, and for

recovering the whole time-varying network signals. Each deployed sensor is equipped

with one specific type of (harmless) DNA molecules [72], which aims to encode

the sampled data embedded into the molecular structure at each discrete time k.

Here, the synchronization of sensors is realized by the low-rate blind synchronization

technique in [76]. Then, the encoded DNA molecules will be transmitted to the hub

vertex via the propagation of the water-flow in WDN itself. From the above process,

one prerequisite for sampling vertex subset selection and the hub vertex selection

is to ensure the existence of paths from each selected vertex to the hub, leveraging

which the hub can receive the molecular reports from each sensor for signal recovery.

For the modelling of the molecular communication channel, we construct an

erasure channel for the following two reasons. First, given the dynamical water

flows and different water-demands in junctions (vertices) and pipes, the transmit-

ted molecules may be lost, which will subsequently lead to a low signal recovery

accuracy at the hub. Second, we measure and notice that the molecular diffusion

rate (an order of 10−9m2/s [73, 74]) is trivial when compared to the velocity of the

water flow (typically an order of 1m2/s [67]). In this view, we remain the leading

fluid parameters for arrival probability computation, and omit the weak diffusion

mechanism.

As such, the erasure channel modelling with an arrival probability matrix

can be specified as

APM = [Pi,j ], i, j ∈ N , (4.15)
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where Pi,j denotes the arrival probability for one molecule transmitted from vertex

j and received by vertex i. To compute Pi,j , we need to traverse all the paths

from vertex j to vertex i. We first define the arrival probability of one molecule

transmitted from j to i using link ai,j (if existed), i.e.,

pi,j =
Ei,j∑

n∈N En,j +Rj
, (4.16)

where Ei,j denotes the average of water-flow in pipe j to i (Ei,j = 0 of ai,j = 0),

and Rj is the average of water demands of vertex j. Then, Pi,j can be computed by

traversing all the paths from vertex j to vertex i, i.e.,

Pi,j = 1−
∏
∀l

(
1−

∏
l

pl1,j · pl2,l1 · · · · · pi,lm

)
, (4.17)

where l = (j, l1, · · · , lm, i) is one path from vertex j to vertex i.

It is noteworthy that the arrival probability matrix APM characterizes the

relationship between the network topological structure (i.e., the paths) and the

arrival probability of each vertex-pair. For further theoretical sampling vertex subset

analysis, we assume an extremely large number of molecules for report transmission

at each sensor, and the APM converges to a simplified binary matrix reflecting

the path existence, where Pi,j = 1 or 0 represents the existence/nonexistence of the

path from vertex j to vertex i. Nevertheless, for simulation part, we measure the

APM in Fig. 4.12, and further demonstrate its influence on the signal recovery

performance of the proposed scheme in Fig. 4.13.

4.3.2 Sensor Vertex Selection under Connectivity Constraint

Given the designed molecular relay mechanism, the selection scheme of the sampling

vertex subset C is required to ensure the existence of paths from each sensor vertex in

C to the hub vertex; otherwise, a non-existed path from sensor to hub will definitely

cause report loss, and subsequently deteriorate the signal recovery performance.

Based on this, a novel sampling vertex subset selection method is designed,

by adding the connectivity constraint, as follows:

(C, nhub) s.t. rank(QCB) = |B|,
∥∥∥(AL

0

)
{nhub}C

∥∥∥
l0

= |C|. (4.18)

In Eq. (4.18), we still use the proposed data-driven GFT operator Q−1 in Eqs

(4.4)-(4.5), where both Q−1 and B are derived from the geaph bandwidth set of the

prior knowledge of the signal-space. nhub accounts for the vertex of hub selected
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from the total WDN vertices. A0 = A + IN is the adjacent matrix A involving

the self-loop of each vertex, where IN represents the identity matrix of size N ×N .

Using the L-exponent of A0 (L is large), we construct the matrix AL
0 to characterize

the existence of any ≤ L -length paths between each vertex pair, whereby a nonzero

(i, j) element of AL
0 represents an existed path from vertex j to vertex i. (AL

0 ){nhub}C

is a vector of (A0)L whose row is with the index nhub and whose columns are selected

by their indices in C, where each element indicates the existence/non-existence path

status from a vertex in C to the hub vertex nhub. This combines the use of l0-

norm is to count the number of the existed paths from vertices in C to the hub

vertex nhub. ‖(AL
0 ){nhub}C‖l0 = |C| therefore ensures the existence of paths from all

sensor vertices in C to the hub nhub. As such, Eq. (4.18) is to search the pair of

sampling vertex subset C ⊂ N , to the hub vertex nhub ∈ N , i.e., (C, nhub), such

that, the successful sampling and molecular reporting to the hub can be pursued for

recovering the whole time-varying network signals.

To solve Eq. (4.18), we provide the algorithm flow in the following.

Step 1: Find all potential nhub ∈ N whose l0-norm of the nhubth row of

AL
0 is greater than |B|, i.e., ‖(AL

0 ){nhub}N ‖l0 ≥ |B|. Otherwise, if one selects the

hub vertex nhub with ‖(AL
0 ){nhub}N ‖l0 < |B|, then it violates Eq. (4.18) by provid-

ing ‖(AL
0 ){nhub}C‖l0 ≤ ‖(A

L
0 ){nhub}N ‖l0 < |B| even if |B| = |C| can be approached

deduced by rank(QCB) = |B|.
Step 2: For each potential hub vertex nhub, a revised topological and data-

driven combined GFT operator is designed, via the combination of the network

topology structure and the data-driven GFT operator Q−1. Such a revised GFT

operator reads:

Q(nhub) = diag
(
1
(
(AL

0 ){nhub}N
))
·Q, (4.19)

where diag(·) is to diagonalize a vector into diagonal matrix. 1(·) is a function to

assign the non-zeros of a vector as 1, and zeros as 0. By doing so, the rows in

such topology-data combined GFT operator Q(nhub) are zeros if their corresponding

vertices do not have paths to the hub vertex nhub. Therefore, using the topological

and data-driven GFT operator Q(nhub), instead of Q−1, is a prerequisite to satisfy

the conditions in Eq. (4.18), for the further sampling vertex subset selection and

signal recovery.

Step 3: Select the vertex as hub whose topology-data GFT operator Q
(nhub)
NB

has the minimum condition number, i.e.,

nhub = argmin
n∈Npotential

cond
(
Q

(n)
NB

)
, (4.20)
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where Npotential ⊂ N is the set composed of all potential hub vertices from Step

2, and cond(·) represents the condition number of a matrix. This step is to ensure

the signal recovery, as the lower the condition number of the operator, the more

accurate and robust the recovery result.

Step 4: For the selected hub vertex nhub, identify C ⊂ N to maintain

rank(Q
(nhub)
CB ) = |B|, so that a robust inverse matrix of Q

(nhub)
CB exists. We implement

this by minimizing the condition number of Q
(nhub)
CB , i.e.,

C = argmin
C⊂N

cond
(
Q

(nhub)
CB

)
. (4.21)

Given that Eq. (4.21) is a NP-hard problem, we hereby use a greedy algorithm,

in which we find and add the ith vertex, i.e., C ← C ∪ {i}, where such i satisfies

i = argmaxj∈N\C cond(Q
(nhub)
(C+{j})B).

4.3.3 Signal Recovery with Potential Report Loss

The recovery process of the time-varying network signals can be simply pursued by

taking Q
(nhub)
CB and C into Eq. (4.13).

It is noteworthy that in the MRDD GFT sampling system, even if we ensure

the connectivity from all sensor vertices in C to the hub vetex nhub, a report may

still be lost given the molecule erasure channel and the APM in Eq. (4.15). To

cope with this, we use the last arrival report from the corresponding sensor vertex

for current signal recovery. To be specific, supposing the report from vertex v ∈ C is

lost at k discrete-time, we use its last arrival report as a replacement for current lost

one, i.e., Xv,k = Xv,k′ , k
′ < k the last discrete-time with molecular report arrived

from vertex v.

Another idea to prevent the information loss relies on the rateless channel

coding. This includes the widely-adopted Luby-Transform (LT) code and cascaded

Hamming-LT (Raptor) code for macro-scale molecular erasure channels [75]. To be

specific, in a given time period, the LT code can be used for each sensor vertex to

encode its time-series samples and transmit via the molecules. As such, at the hub

vertex, the entire samples can be received by decoding the corresponding LT codes.

One limit is the potential decoding latency at the hub, as obtaining all samples from

one sensor vertex requires to wait completely receiving the redundant LT codes (e.g.,

with code rate lesser than 1).
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4.4 Recovery Error Analysis

In this part, we analyze the recovery error of the time-varying network signals

in mathematical manners. To be specific, we firstly give a closed-form expres-

sion of the signal recovery error. Then, given the graph cut-off bandwidth set

as Bcut-off = {1, 2, · · · , r} from the prior knowledge of the signal-space, i.e., S =

span{x̄1, x̄2, · · · , x̄r}, we consider two types of under-sampling cases, with the graph

sampling bandwidth set B as B $ Bcut-off, and B ⊃ Bcut-off but |C| < |B|, respec-

tively, where the former accounts for the graph-frequency domain under-sampling,

and the latter accounts for the network-domain under-sampling.

Theoretical Recovery Error

The recovery error of the time-varying network signals is measured by the squared

difference of two Frobenius norms, denoted as, ‖ ·‖fro. Given a sampling bandwidth

set B ⊂ {1, · · · , N} and sampling vertex subset C, the recovery error (root squared

error, RSE), denoted as rse(B, C) is computed as:

rse(B, C) =
√
‖X‖2fro − ‖X̂‖2fro

(c)
=

√
‖X‖2fro − ‖

ˆ̃XBK‖2fro

(d)
=



√
‖X‖2fro − tr

(
XCK ·XT

CK ·
(
QCB ·QT

CB
)−1
)

|C| < |B|√
‖X‖2fro − tr

(
XCK ·XT

CK ·QCB ·
(
QCB ·QT

CB
)−1 ·QT

CB

)
|C| ≥ |B|

,

(4.22)

where tr(·) is to compute the trace of a matrix, and ˆ̃XBK is the recovered graph-

frequency response from the sampled data XCK. In Eq. (4.22), (c) is because

‖X̂‖2fro = ‖QNB ˆ̃XBK‖2fro = tr( ˆ̃XT
BKQT

NBQNB
ˆ̃XBK) = ‖ ˆ̃XBK‖2fro. (d) is to divide

the equation into two cases. For |C| ≥ |B|, we have C satisfying rank(QCB) = |B|
according to Algorithm 1, and ˆ̃XBK can be easily derived using Eq. (4.12). For

|C| < |B|, we have rank(QCB) < |B|, and the recovered graph-frequency response is
ˆ̃XBK = QT

CB · (QCB ·QT
CB)−1 ·XCK, based on which ‖ ˆ̃XBK‖2fro can be computed as

provided in Eq. (4.22).
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Two Under-Sampling Cases

After providing the mathematical recovery error in Eq. (4.22), we study specifically

two types of under-sampling cases, i.e., Case I: under graph-frequency domain sam-

pling B $ Bcut-off, and Case II: under network domain sampling B ⊃ Bcut-off but

|C| < |B|.
Case I accounts for under graph-frequency domain sampling, characterizing

the information loss from the graph-frequency domain. In such a case, the sam-

pling process will definitely omit the information of some important graph-frequency

components whose indices belong to Bcut-off \ B. It is noteworthy that, when using

the GFT sampling techniques, such an omission from the graph-frequency domain

cannot be compensated by any selection of C (even if C = N ), and therefore a

lower-bound of recovery RSE can be specified as:

rse(B $ Bcut-off, C) ≥ ‖X̃Bcut-off\B K‖
2
fro

= ‖X̃Bcut-offK‖
2
fro − ‖X̃BK‖2fro.

= ‖QT
NBcut-off

·X‖2fro − ‖X̃BK‖2fro
= tr

(
XT ·QNBcut-off

·QT
NBcut-off

·X
)
− ‖X̃BK‖2fro

= ‖X‖2fro − ‖X̃BK‖2fro.

(4.23)

Eq. (4.23) provides a lower-bound of the recovery RSE caused by graph frequency

domain under-sampling. This subsequently suggests two facts. First, the graph-

frequency domain under-sampling will cause at least an error as ‖X‖2fro−‖X̃BK‖2fro,
which equals the Frobenius-norm (energy) difference between the original matrix

X, and its sampled graph-frequency response matrix X̃BK. Second, in GFT based

sampling method, the graph sampling bandwidth set B underpins the recovery per-

formance, and therefore the selection of B = Bcut-off serves as the prerequisite to

avoid the information loss in graph-frequency domain.

Case II leads to the under-sampling RSE from the network domain, as the

graph sampling bandwidth set B embraces the graph cut-off bandwidth Bcut-off, i.e.,

B = Bcut-off. In such a case, the recovery RSE is totally affected by the selec-

tion of the sampling vertex subset C. Here, we consider the under-sampling with

rank(QCB) = |C| < |B|, since Algorithm 1 is still able to identify C such that the

full row-rank property of QCB is achieved. Therefore, such network domain under-
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sampling RSE can be computed by taking B = Bcut-off into Eq. (4.22), i.e.,

rse(Bcut-off, |C| < |Bcut-off|)

=

√
‖X‖2fro − tr

(
XCK ·XT

CK ·
(
QCBcut-off

·QT
CBcut-off

)−1
)
.

(4.24)

Eq. (4.24) suggests two facts. First, an inappropriate selection of C can lead to the

under-sampling recovery error from the network domain, and maintaining C such

that rank(QCB) = |B| can avoid such under-sampling. Second, the recovery error

caused by the network domain under-sampling is smaller than that of the recovered

signals composed directly of the samples, i.e.,

rse(Bcut-off, |C| < |Bcut-off|) <
√
‖X‖2fro − ‖XCK‖2fro. (4.25)

This indicates that even if network domain under-sampling may happen, the GFT

sampling method is still workable, especially better than the direct collection of

samples as the recovered signals.

4.5 Distinguish with Two State-of-the-Arts

In this section, we compare our proposed data-driven GFT sampling method with

other two state-of-the-art compression schemes (from the conceptual manner). The

first peer method is the topology-based GFT sampling methods in Section 2.3.2

[34, 77]. The second is the data-driven compressed sensing methods revised from

the classical CS in Section 2.3.1 [24].

4.5.1 Topological based GFT Sampling Methods

Existing graphs Fourier transform sampling methods rely mostly on the topology

based GFT operators, e.g., using the graph Laplacian or adjacent matrix. For exam-

ple, one popular topological based GFT operator, denoted as P−1, is constructed via

the eigenvectors of the graph Laplacian matrix L (i.e., [34,77], or in Section 2.3.2).

The network signals they are interested in are graph bandlimited to such topological

based GFT operator P−1. Given a graph cut-off bandwidth set B ⊂ {1, 2, · · · , N},
a graph B-bandlimited signal (vector) x = [x1, x2, · · · , xN ]T with respect to the

GFT operator P−1 is defined to have non-zero coefficients in x̃ = P−1x with indices

belong to the set B. The GFT sampling theory in Theorem 2 states that any graph

B-bandlimited signal x can be sampled using the sampling vertex subset C ⊂ N ,

and a complete recover of x from xC can be achieved if rank (PCB) = |B|.
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Figure 4.2: Comparison between the proposed data-driven GFT sampling method,
the topology based GFT sampling, and the CS.

The main differences between the topological based GFT sampling and the

proposed data-driven GFT sampling are listed as follows:

• First, in the topological based GFT sampling, the selection of sampling vertex

subset C is determined solely by the topological structure of the network, since

the GFT operator P−1 contains no underlying dynamic mechanism (e.g., dy-

namic governing equations or hidden dynamic mechanism from data), but is

totally constructed by the network topological matrix (e.g., the graph Lapla-

cian matrix or the graph adjacent matrix). This can be observed via Fig.

4.2(a), in which the sampling vertex subset is selected by mapping to the

leading eigenvalues of the topology based matrix L.

• Second and more importantly, when dealing with the time-varying network

signals (e.g., the WDN contaminant propagation), the direct use of the topo-

logical based GFT operator for network sampling and signal recovery is chal-
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lenging. The topological GFT operator P−1, derived from either the Lapla-

cian matrix or the adjacent matrix, cannot ensure that the whole time-varying

network signals at different discrete time (i.e., x1,x2, · · · ,xK) are graph B-

bandlimited within a same B ( {1, 2, · · · , N}. In other words, the signal

dependency among vertices cannot be uncovered by the topology based oper-

ator P−1. As such, B = {1, · · · , N} is inevitable, which will cause C ≡ N
(we show this in Figs. 4.7-4.10). In contrast, our proposed data-driven

GFT sampling method constructs a GFT operator using the signal-space

S = {x̄1, x̄2, · · · , x̄r}. This enables to uncover the vertex signal dependency

by characterizing the time-varying network signals at all discrete time as

graph B = {1, 2, · · · , r}-bandlimited to the data-driven GFT operator Q−1.

Therefore, the time-invariant sampling vertex subset C can be derived with

|C| = r < N for sensor deployment.

4.5.2 Sampling using Compressed Sensing

CS is a framework to compress the (transformed) sparse signals by a few measure-

ments (or samples). The classical CS theorem has been provided in Section 2.3.1,

which should be revised and adjusted for the network sampling scenarios. In the

context of the WDN monitoring applications, the idea is to sparsely represent X by

an one-to-one transformation using a designed operator (matrix) D of size N ×N .

Then, samples can be selected for the complete recovery of the sparse representa-

tion of X, which subsequently can be used to reconstruct X via the inverse of the

transforming operator D−1 [20, 23].

We provide the sampling process via Fig 4.2(b). For each discrete time

k ∈ K, we denote sk as the sparse representation of xk transformed by the operator

D, i.e., [20, 23,24]

[x1,x2, · · · ,xK ] = D · [s1, s2, · · · , sK ]. (4.26)

Then, to achieve the time-invariant sampling vertex subset C ⊂ N , we revise the

restricted isometric property (RIP) criteria in [20, 23, 24], and make it hold for the

least sparse vector in [s1, s2, · · · , sK ], i.e.,

1− δ ≤
‖DCN · s‖2l2
‖s‖2l2

≤ 1 + δ, r = max
k∈K
‖sk‖l0 , (4.27)

holds for any sparse s with 2 · r nonzero elements, and some δ ∈ [0, 1]. The setting

of r = maxk∈K ‖sk‖l0 is reasonable, since otherwise if r < maxk∈K ‖sk‖l0 , then sk

with k = argmaxk∈K ‖sk‖l0 cannot be recovered in the CS framework. Eq. (4.27) is
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equivalent to select C to ensure any 2 ·r columns of DCN are independent, according

to Theorem 1. After the selection of the time-invariant sampling vertex subset C,
the samples XC{k} is derived, and the sparse representation sk can be recovered via

the convex optimization: [20,23,24]

ŝk = argmin
sk∈RN

‖sk‖l1 , such that XC{k} = DCN · sk. (4.28)

Finally, we compute via the transforming matrix D, and have x̂k = D · ŝk and

X̂ = [x̂1, x̂2, · · · , x̂K ].

We list the similarity and difference between the proposed data-driven GFT

sampling method and CS method in the following.

• Regarding the similarity, we observe from Fig. 4.2(b)-(c) that both the schemes

determine the sampling vertex subset C by analyzing the non-zeros of their

transformed signals. For the CS in Fig. 4.2(b), such non-zeros are called the

sparsity, and they transform the original signal-space into an operator D de-

termined domain that can sparsely represent the time-varying network signals

X = [x1,x2, · · · ,xK ] by [s1, · · · , sK ]. As such, the sampling vertex subset C
can be selected using the revised RIP, by mapping C to the least sparse vector

in [s1, s2, · · · , sK ]. For the proposed data-driven GFT sampling provided in

Fig. 4.2(c), the non-zeros are called the graph bandlimitedness. The scheme

transforms the signals into the GFT operator determined graph-frequency

bandlimited domain, and maps its graph cut-off bandwidth set Bcut-off to the

sampling vertex subset C by rank(QCBcut-off
) = |Bcut-off|.

• The major difference is that whether the positions of such transformed non-

zeros (sparsity and graph bandlimitedness) are known. In the proposed data-

driven GFT sampling scheme (as is illustrated in Fig. 4.2(c)), we know the

positions of the non-zeros, i.e., the graph cut-off bandwidth set Bcut-off =

{1, · · · , r}. In other words, the time-varying network signals at each discrete-

time compose a signal-space BS(B,Q−1), which is the subset of that composed

by all r = |Bcut-off| sparse signals. So, the data-driven GFT method can shrink

the size of sampling vertex subset |C| to |Bcut-off| = r, as the samples from

C only needs to map to BS(B,Q−1), rather than the one composed of all

r = |Bcut-off| sparse signals. In contrast, the CS does not know the exact

positions of the non-zeros, but only know the number of non-zeros, i.e., r. In

this view, the study in [40] provides a theoretical proof that the CS requires

at least (N + K − r)r measurements (samples) in total K discrete times for
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complete recovery of the time-varying network signals X of size N ×K with

r = rank(X). This can be used to deduce an approximation of the size of the

time-invariant sampling vertex subset as |C| = (N+K−r)r/K, by computing

|C| · K ≥ (N + K − r)r. As such, it is straightforward that such number

is larger than that of the proposed data-driven GFT sampling method, i.e.,

|C| = (N + K − r)r/K > r. The comparison between CS and the proposed

data-driven GFT are provided in Figs. 4.7-4.10.

4.6 Simulations & Experimental Results

In this section, we evaluate the proposed data-driven signal-space dependent GFT

sampling method. At first, the performance of signal recovery is tested and ana-

lyzed with respect to the changes of the joint graph sampling bandwidth B and the

sampling vertex subset C. Then, recovery performance comparisons are provided,

where the compared schemes are the topological Laplacian operator based GFT

sampling, and the compressed sensing using PCA [20,23,24]. Third, we analyze the

proposed molecular relay data-driven GFT sampling scheme, under the molecular

connectivity constraint in WDN. The recovery performance is measured by the root

mean square error (RMSE) between the recovered data matrix X̂ and the original

data matrix X, i.e.,

RMSE =

√
1

NK
· ‖X− X̂‖2fro. (4.29)

We provide the background setting of WDN and its contaminant propagation

as follows. An extended-period hydraulic and water quality simulation is performed

using the stat-of-the-art EPANET engine [67], which aims to provide the propaga-

tion of the contaminant components through the WDN over time. Here, the WDN

works within the pressurized mode and generates pressure-dependent water flows.

The topological elements of the WDN contain the pipes, junctions, reservoirs and

other hydraulic-related components. For each junction, the water-demand is prede-

fined and varies with the time to simulate different user modes and behaviours in

residential and industrial manners.

For our case-study, such a water simulation platform is used to track the

spread of a contaminant in each vertex of the WDN. We configure the WDN with

N = 102 vertices (see Fig. 4.3(a)). We simulate 100 different time-varying contam-

inant signal matrices. For each matrix, the contaminant is injected in a vertex for

a predefined amount of time, spreads over the WDN, and is finally expelled by the

water-demands on junctions. Each matrix X with an injection is simulated for 3
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hours in K = 168 discrete times.

4.6.1 Influences on Recovery Performance

We first evaluate the recovery accuracy of our proposed data-driven GFT sampling

method with respect to the changes of the graph sampling bandwidth set B, and the

sampling vertex subset C. For this experiment, we wish to show whether the recovery

RMSE approaches to zero under following two conditions: i) if the graph sampling

bandwidth set contains the graph cut-off bandwidth set, i.e., B ⊃ Bcut-off, and ii) if

the sampling vertex subset C maintains rank(QCB) = |B|. We do so by changing

the selections of B and C using Algorithm 1, and representing these changes by their

sizes, i.e., |B| and |C|. To be specific, for the size of graph sampling bandwidth set

|B|, we denote |B| ≥ |Bcut-off| = rank(X) = r to represent B ⊃ Bcut-off, and denote

|B| < |Bcut-off| to represent B $ Bcut-off. Likewise, for the size of sampling vertex

subset |C|, we use |C| ≥ |B| to represent rank(QCB) = |B|, and use |C| < |B| to

indicate rank(QCB) = |C| < |B|.

(a) (b)

Figure 4.3: Illustration of sensor selections on WDN (a), and the recovery of con-
taminant signals on 3 un-sampled vertices (b).

One illustration of the proposed data-driven GFT sampling method and its

recovery performance is shown in Fig. 4.3, where (a) is the topology of the WDN

and the selected sensor vertices, and (b) shows the recovered signals on 3 un-sampled

vertices. In this experiment, we assign i) the graph sampling bandwidth set equals

the graph cut-off bandwidth set, i.e., |B| = |Bcut-off| = r, and 2) the sampling vertex

subset satisfy rank(QCB) = |B| in Eq. (4.11), i.e., |C| = |B| = |Bcut-off|. We figure

out that the perfect recovery of the time-varying network signals is achieved.

Then, we evaluate the recovery RMSE by varying the sizes of both the graph
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Figure 4.4: Recovery RMSE of the proposed data-driven GFT, versus both the size
of sampling vertex subset |C| and the size of graph sampling bandwidth set |B|.

sampling bandwidth set |B| and the sampling vertex subset |C|. We can see from Fig.

4.4 that, the recovery RMSE decreases when |B| and |C| grow, and then converges

to a very low value (an order of 10−10) after |B| and |C| meet the conditions, i.e.,

|C| = |B| = |Bcut-off|. We explain this with the analysis of Figs. 4.5-4.6.

RMSE versus Graph Sampling Bandwidth Set

Fig. 4.5 illustrates the recovery RMSE versus the size of the graph sampling

bandwidth set |B|. We here consider 3 fixed sizes of sampling vertex subset (i.e.,

|C| = 30, 40, 54). We can firstly observe that the recovery RMSE stays lower as a

larger |C| is used. This is because a larger size of sampling vertex subset can bring

more samples for a more accurate signal recovery.

Secondly, it is seen that for all fixed |C|, the recovery RMSEs get smaller

when the sizes of graph sampling bandwidth set |B| increases from 0 to that of

the cut-off set (i.e., |Bcut-off| = 54). Then, the RMSEs keep unchanged after |B| >
|Bcut-off| = 54. We explain this in the following. When |B| < |Bcut-off|, the time-

varying network signals are under-sampled from the graph frequency domain, and

therefore cannot be completely recovered given the information loss of some non-

trivial graph frequency components. This is equivalent to the non-existence of the

reversible mapping between the original data matrix X and the graph frequency

response selected by the graph sampling bandwidth set B, i.e., X̃BK, since Eq. (4.9)

holds no more if |B| < |Bcut-off|. In such a case, even if we select more vertices for
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Figure 4.5: Recovery RMSE of the proposed data-driven GFT, versus the size of
graph sampling bandwidth set |B|.

C to ensure the sampling full-column rank condition, i.e., rank(QCB) = |B| < r,

it is still impossible to use the GFT sampling framework to recover X from the

samples XCK, given the under-sampling from the graph frequency domain. When

|B| ≥ |Bcut-off| = 54, the total information from the graph frequency domain is

included, and the reversible mapping between the original data X and the graph

frequency response X̃BK can be ensured. In such a case, the recovery accuracy is

affected only by the sampling vertex subset.

RMSE versus Sampling Vertex Subset

Fig. 4.6 illustrates the recovery RMSE versus the size of the sampling vertex sub-

set |C|, given 3 fixed graph sampling bandwidth sets (e.g., |B| = 30, 40, 54). It is

observed that the recovery RMSE with a larger fixed |B| stays lower as opposed

to those with smaller |B|. For example, the recovery RMSE of |B| = 54 is lower

than that of |B| = 40. We explain this as mentioned above that, the larger is the

size of the graph sampling bandwidth set |B|, the more graph frequency domain

information can be taken, which leads to a better signal recovery accuracy.

Moreover, the recovery RMSEs of all fixed |B| become smaller at first when |C|
grows from 0 to |Bcut-off| = 54, and then keep unchanged after |C| > |Bcut-off| = 54.

This is straightforward that, more selections of sensor vertices will enhance the
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Figure 4.6: Recovery RMSE of the proposed data-driven GFT, versus the size of
sampling vertex subset |C|.

recovery accuracy, and will further leads to the perfect recovery when and after

|C| ≥ |Bcut-off|.
It is also noteworthy that, in the cases of graph frequency domain under-

sampling (i.e., |B| < |Bcut-off|), even if the size of the sampling vertex subset |C|
exceeds the size of the graph cut-off bandwidth set, i.e., |C| > |Bcut-off|, the recovery

accuracy cannot converge to its perfectness. This is due to the fact that the GFT

sampling framework relies on the information from the graph frequency domain,

which if missed, will definitely deteriorate the recovery accuracy.

4.6.2 Performance Comparisons

In this part, we compare our proposed data-driven GFT sampling method with

other two state-of-the-art methods, i.e., the topological Laplacian operator based

GFT sampling, and the CS scheme. We illustrate the comparison in Fig. 4.7-4.10.

For the experiment illustrated in Figs. 4.7-4.8, the WDN structure is provided in Fig.

4.3(a), and the prior signal-space is derived by simulating the contaminant signals

with one specific-vertex injection. In Figs. 4.7-4.8, one data matrix X is used, whose

graph cut-off bandwidth set is measured as |Bcut-off| = 41, i.e., Bcut-off = {1, · · · , r}
with r = 41. Different data matrices are used in the experiments illustrated in Figs.

4.9-4.10.
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Figure 4.7: Comparison of responses to different operators, i.e., the data-driven
GFT operator (top-plot), the CS operator (middle-plot), and the topological based
GFT operator (bottom-plot).

In Fig. 4.7, we represent the frequency indices from different domains as

x-axis. Here, the frequency domains are from the linear transformations of our

proposed data-driven GFT operator, of topological Laplacian operator, and of the

PCA-based CS operator. The y-axis accounts for the summations of the graph

frequency responses over discrete time, i.e.,
∑K

k=1 |x̃k|. It is seen that our proposed

data-driven GFT sampling method can concentrate the graph frequency response

only within the low-frequency area (i.e., B = {1, · · · , r} with r = 41), as opposed

to those using PCA based and topological Laplacian based operators. We explain

this in the following. First, the topological Laplacian operator cannot characterize

the signal dependency (e.g., the sparsity or the graph bandlimitedness) governed by

the hidden dynamic mechanism, as it has only the network topological information.

Second, PCA-based operator is limited due to its overlook of the network topology

information. In contrast, our proposed data-driven GFT operator is derived from the

signal-space, which involves both the hidden dynamic mechanism and the network

topology, thereby capable of concentrating the network signals within the very low

graph-frequency area B = {1, · · · , r}. This graph bandlimited property with respect

to the proposed GFT operator then enables the selection of sampling vertex subset

whose size equals that of the graph cut-off bandwidth set. We will show this via

Fig. 4.8.
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Figure 4.8: Comparison of recovery RMSE among different schemes.

Fig. 4.8 illustrates recovery RMSE comparisons between the proposed data-

driven GFT sampling scheme, the topological Laplacian operator based GFT sam-

pling method, and the PCA based CS scheme. Here, the x-axis accounts for the

size of the sampling vertex subset |C|. Firstly, it is straightforward that with the

growth of |C|, the recovery RMSEs from all schemes decrease, as a larger size of

sampling vertex subset |C| can embrace more samples for more accurate signal re-

covery. Secondly, it is seen that, the recovery RMSE of the proposed data-driven

GFT method becomes smaller till |C| reaches the size of the graph cut-off band-

width set, i.e., |C| = |Bcut-off| = 41, and then goes to a convergence nearly 10−8 after

|C| > |Bcut-off| = 41. This outperforms the other two schemes that require more

sensor vertices to reach the perfect signal recovery (e.g., |C| = 100 for topological

Laplacian based GFT, and |C| = 70 for PCA based CS). The reason lies in two

aspects. First, the proposed data-driven GFT operator is capable of transforming

the data X into a more compact graph bandlimited set (see Fig. 4.7), whose size is

smaller than those from PCA CS and Laplacian GFT. Then, different from the CS

that only knows the number of non-zero elements transformed by the operator (i.e.,

the sparsity), the GFT sampling framework knows the exact elements of the graph

cut-off bandwidth set (i.e., the indices of the non-zero graph frequency response),

and thereby can map it to the sampling vertex subset C with size equaling that of

the graph cut-off bandwidth set i.e., |C| = |Bcut-off|.
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Figure 4.9: Comparison of the minimum graph sampling bandwidth set for the
proposed data-driven GFT and the network topology based GFT schemes.

Then, we demonstrate the robustness of our proposed data-driven GFT sam-

pling method. To do so, we measure the minimum graph sampling bandwidth set,

denoted as |Bmin|, and the minimum sampling vertex subset, denoted as |Cmin| to

ensure a low recovery error as RMSE< 10−8. Here, different WDN topology and

time-varying network signals are considered, and their related signal spaces and

graph cut-off bandwidth sets are also different. In Figs. 4.9-4.10, the x-axis denotes

the size of the graph cut-off bandwidth set |Bcut-off| for different data matrices, and

the y-axis represents the size of minimum graph sampling bandwidth set |Bmin| and

the size of minimum sampling vertex subset |Cmin| respectively. It is firstly seen

that, with the increase of |Bcut-off| for different data matrices, |Bmin| and |Cmin| of all

schemes increase, as more information from the graph frequency domain and the ver-

tices are required for a more complicated dynamic scenario with larger graph cut-off

bandwidth set. Then, we notice that |Bmin| and |Cmin| from the proposed data-

driven GFT sampling method stays at the minimum value (i.e., |Bmin| = |Bcut-off|,
and |Cmin| = |Bcut-off|), as opposed to those of the topological Laplacian based GFT

and the PCA based CS. This suggests the robustness of our proposed data-driven

GFT method when addressing different time-varying network signals in WDN. The

advantage of our proposed method is also attributed to the ability of the data-driven

GFT operator to transform the signals into a more compact graph bandlimited area,

when compared with the other two state-of-the-art methods. As such, the GFT sam-
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pling framework that knows exactly the graph cut-off bandwidth set Bcut-off, is able

to derive the sampling vertex subset whose size equals that of Bcut-off.

Figure 4.10: Comparison of the minimum size of sampling vertex subset among
different schemes.

Finally, we count the average number of the sensor vertices from Fig. 4.10.

Given that the minimum size of sampling vertex subset equals the size of graph cut-

off bandwidth set, i.e., |Cmin| = |Bcut-off|, the average number of sensor vertices is the

average of |Bcut-off|. When the total number of vertices in WDN is 102, this average

|Bcut-off| is nearly |Bcut-off| = 30. As such, an average of 30% network vertices are

required for the complete recovery of the network contaminant signals in WDN.

Although one may question that sensor deployment on 30% of the WDN

might still be expensive (as pipes and junctions are usually buried underground and

therefore expensive to be penetrated), we resort to our proposed data-driven GFT

sampling method as the baseline for the future sampling optimization techniques

(e.g., neural network methods to reduce the sensors by finding and exploiting the

nonlinear vertex dependency).

4.6.3 Performance of Molecular Relay Data-Driven GFT Sampling

Method

In this part, we evaluate the performance of our proposed MRDD GFT sampling

scheme. The key performance indicators contain (i) the connectivity between sensor
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vertices to hub vertex for molecular communication, and (ii) the recovery perfor-

mance measured by RMSE between the recovered signals X̂ and the original signals

X. For the simulation of molecular transmission, we simulate the erasure channel

over the WDN by computing the arrival probability matrix APM from Eqs. (4.15)-

(4.17). Then, for each sensor vertex, a total of 104 molecules is transmitted for every

report to the hub.

Molecular Communication Connectivity

We first examine whether the selection of sampling vertex subset C can link to a hub

vertex, since such a connectivity from all sensor vertices to the hub vertex underpins

the successful transmission of the samples for signal recovery. We measure such

connectivity by the ratio of sensor vertices that can link to a hub among all selected

sensor vertices, denoted as |Chub|/|C|. For the experiment in Fig. 4.11, we use the

contaminant signal matrix with a graph cut-off bandwidth set as |Bcut-off| = 41.

It is seen from Fig. 4.11 that the ratio |Chub|/|C| of our proposed MRDD GFT

sampling method keeps at 1 when the size of sampling vertex subset |C| increases

from 0 to 50. This indicates the existed connectivity from the selected sensor vertices

to a hub vertex, for selected sampling vertices satisfying rank(QCB) = |Bcut-off| that

guarantees the complete signal recovery. Compared to the previously proposed

data-driven GFT scheme in Fig. 4.11 (proposed in Section 4.2), the difference is

that the newly proposed MRDD GFT is able to ensure the connectivity for samples

transmitted to the hub vertex by the molecules via the pipes. This is attributed

to the deeper combination of the topological information (i.e., the path existence

matrix AL
0 in Eq. (4.18)) with the data-driven GFT operator in Eq. (4.19), and

the connectivity constraint used for selecting the sensor vertices in Eq. (4.21). Such

molecular connectivity thus underlies the signal recovery at the hub vertex from the

transmitted samples, which will be evaluated in the following part.

Recovery Performance of Molecular Relay Data-Driven GFT Sampling

Method

The recovery performance is measured by RMSE of the recovered data. We here

examine the cases with and without the erasure molecular channel. The results are

illustrated via Figs. 4.12-4.13, where Fig. 4.12 gives the arrival probability matrix

APM in Eq. (4.15), and Fig. 4.13 illustrates the recovery RMSE.

In Fig. 4.13, we can observe that, in the absence of the erasure model (only

pure connectivity is considered), the RMSE of the proposed MRDD GFT method
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Figure 4.11: Comparison of whether vertices in sampling vertex subset can have a
hub between the proposed MRDD GFT and previously proposed data-driven GFT.

Figure 4.12: Arrival probability matrix APM for any vertex pair

converges faster than that of the previously proposed data-driven GFT sampling

method in Section 4.2. The MRDD GFT requires only |C| = |Bcut-off| = 41 sensor
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Figure 4.13: Comparison of recovery RMSE versus the size of sampling vertex subset
among different schemes in WDN molecular erasure channels.

vertices to achieve perfect signal recovery, much smaller than that of the previously

proposed data-driven GFT method. This is because the MRDD GFT is able to

guarantee connectivity from all the sensor vertices in |C| to the hub vertex, which

serves as the prerequisites for receiving all the samples at the hub vertex for complete

signal recovery.

Then, when the molecular erasure is considered, it is seen that the MRDD

GFT sampling scheme can still use a smaller sized sampling vertex subset |C| for

complete signal recovery, as opposed to the previously proposed data-driven GFT

scheme. This is attributed to (i) the molecular connectivity guaranteed by our

proposed MRDD GFT, and (ii) the utilization of the last arrival reports from the

sensor vertices whose current reports are missing.

4.7 Conclusions & Discussions

In this chapter, the data-driven GFT sampling framework has been proposed for

the scenarios where the explicit dynamic governing equations are unknown. Here,

we choose the WDN and its contaminant propagation as the time-varying network

signals for monitoring. Using the construction of the contaminant signal-space as

a prior knowledge from the experimental data, the data-driven GFT operator is

derived, and is thereby able to characterize the dependency (i.e., the graph ban-
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dlimitedness) of the time-varying network signals on different vertices. With the

help of the data-driven GFT operator, we then identify the time-invariant sampling

vertex subset by maintaining the one-to-one mapping between the samples and the

whole graph bandlimited frequency response.

Furthermore, we address the practical challenge on how the sensors transmit

their samples to the data centre (hub vertex), for WDNs that are buried in depth

the underground and are hard to be penetrated. We have designed a molecular

relay data-driven GFT sampling scheme whereby the reports are encoded by the

biological structure of the DNA molecules, and transmitted via the pipes of the

WDNs, avoiding the penetrating techniques and extra communication networks.

For the sampling selection, we have re-determined the optimal sensor locations to

ensure the connectivity between all the selected vertices and the central hub vertex.

Compared with the state-of-the-art CS approaches, our data-driven GFT

methods show the more compact sampling vertex subsets, i.e., an average 30-40%

of the sensor vertices can ensure the complete recovery of the time-varying network

signals. The framework is useful and beyond the application of WDNs and can

be applied to a wide-range of infrastructure sensing (e.g. railways [78]) where the

dynamic governing equations are unavailable.

One limitation lies in the signal-dependency assumption of the time-varying

network signal-space. Actually, such a vertex dependency serves as the prerequisite,

if one wish to compress (sample) and recover the network signals in an immediate

manner, i.e., without using the further time-evolved information (e.g., using x2 to

infer the initial x1). Then, in the following two chapters, we will consider the sam-

pling using time-evolution information when the signal-dependency among vertices

does not exist, but one may note that such an immediate signal recovery cannot be

achieved as further time-evolved samples are required to recover the initial network

signal.

78



Chapter 5

Sequential Data-Driven GFT

for Network Sensor Activation

In previous chapters, either the exact governing dynamic equations or the prior

knowledge of the signal-space is used to analyze and exploit the signal dependency

among vertices, for network sampling and signal recovery. Such information, if

unavailable, will block their usages, thereby making them less attractive for some

of complicated real-world monitoring scenarios. In this chapter, we will introduce

our proposed principal component analysis based sequential graph Fourier trans-

form sampling (PCA GFT) method, which does not rely on the governing dynamic

equations and the prior signal-space.

Note that, this work is only a preliminary research to achieve the concept of

an equation and signal-space independent network sampling. One drawback is its

derivation of the time-varying sampling vertices selection strategy. In this view, we

categorize this work as sensor activation, and will compare the sampling and recovery

performance with other state-of-the-art time-varying sampling schemes. A mature

work of equation and signal-space independent scheme is provided in Chapter 6.

The structure of this chapter is shown as follows. In Section 5.1, we intro-

duce the model and the purpose formulations. In Section 5.2, we elaborate our pro-

posed PCA GFT sampling method. In Section 5.3, we compare the proposed PCA

GFT sampling method with other two state-of-the-art methods from the conceptual

prospective. The simulations and experimental results are provided in Section 5.4.

We finally conclude this chapter in Section 5.5.
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5.1 Model and Problem Formulation

Similar with Chapter 4, we consider the contaminant monitoring application in

water-distribution network. The topology of the WDN is configured by the static

directed graph G(N ,A), with total N vertices indexed by N = {1, 2, · · · , N}, and

the binary adjacent matrix A. The time-varying network signals of the interest

is the contaminant propagation over the WDN. We characterize it by a discrete-

time signal matrix of size N × K, i.e., X = [x1,x2, · · · ,xK ], where the n ∈ N th

row represents the discrete-time signal on vertex n, and xk, k ∈ K = {1, 2, · · · ,K}
represents the network signal at discrete-time k. We plot an illustration of the WDN

and its time-varying network signals via Fig. 5.1.

Recovery

Construct GFT 

operator 𝐐−1

Select sensors 

for report

ො𝐱𝑘

𝐐−1

(𝐱𝑘)𝒞𝑘
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𝒞𝑘 ,
ℬ𝑘

𝐐−1

Data Centre & PCA-GFTWDN & Sensors

Vertex 3

k
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k

Figure 5.1: Illustration of the WDN, and the schematic flow of the proposed PCA
GFT sampling method.

Different from Chapter 4, we here consider the sensor activation strategy for

the recovery of the time-varying network signals. To be specific, for each vertex

n ∈ N , we deploy a sensor to (i) sample the signal if such sensor is activated, and

(ii) exchange the information with the data centre. The aim of the data centre is

to (i) recover the time-varying network signals from the reported samples, and (ii)

inform the sensors whether they should be activated for sampling and reporting.

The illustration of the WDN sensor activation system is provided in Fig. 5.1.

As such, we denote Ck ⊂ N as the sensor activation set for discrete-time k.

The aim of this chapter is to determine Ck, so that the samples from Ck reported

to data centre can ensure the complete recovery of the current network signals xk.

Here, we emphasize in the first place that, different from Chapter 4, we do not
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assume and rely on a prior knowledge of the signal-space.

5.2 Principal Component Analysis based GFT Sampling

In this section, we elaborate our proposed PCA GFT sampling scheme, which is able

to sample via activated sensors and recover the time-varying network signals xk of

WDN, without the prior knowledge of the signal-space. This contains two essential

steps (as is illustrated in Fig. 5.1). First, we construct a sequential data-driven GFT

operator for every discrete-time k, which is able to characterize the current network

signal xk as graph bandlimitedness. Second, we adopt the static graph sampling

theory in Definitions 1-2 and Theorem 2 in Chapter 2, for activation sensor selection

and signal recovery.

5.2.1 Sequential PCA GFT Operator

Given the concept of static graph sampling theory in Theorem 2, a sequential GFT

operator Q−1 should ensure two aspects. First, xk should be graph Bk-bandlimited

with respect to the GFT operator Q−1 for some compact Bk ( {1, 2, · · · , N}. Sec-

ond, such a Bk (whose elements are the subscripts of the nonzero elements in the

graph frequency response x̃k = Q−1xk) should be predictable using the previous

information and recovered results. To do so, we resort to the PCA techniques, given

their ability to transform the time-varying network signals xk into sparse represen-

tations [24].

Construction of PCA GFT Operator

For each discrete-time k, we construct the PCA GFT operator Q−1 using the pre-

viously recovered signals. Denote the recovered signal at discrete-time k as x̂k.

The mean and co-variance of the previous recoveries from time k − τ to k − 1 are

computed as:

x̄ =
1

τ

τ∑
l=1

x̂k−l, (5.1)

Cov =
1

τ

τ∑
l=1

(x̂k−l − x̄) · (x̂k−l − x̄)T , (5.2)

where τ is the lag accounting for the correlations, i.e., xk = ξ(xk−1, · · · ,xk−τ ).

Such τ can be selected based on the data structure and the dynamic mechanism of

different network systems, and we provide the effect of τ for the WDN systems in

Section 5.4. With the help of Eqs. (5.1)-(5.2), we use SVD to derive the PCA GFT
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operator for discrete-time k, i.e.,

[Γ,Σ,V] = svd(Cov), (5.3)

Q−1 = Γ−1. (5.4)

Graph Bandlimited Analysis

After the design of the sequential PCA GFT operator Q−1 in Eqs. (5.1)-(5.4), we

here demonstrate that Q−1 satisfies the aforementioned two properties (i.e., the

graph B-bandlimited property of xk for some B ( {1, 2, · · · , N}, and such a B can

be predicted).

Given that the time-varying network signals are spatially and temporally

correlated, we express the current k discrete-time signal xk using its previous values,

i.e.,

xk =

τ∑
l=1

αl · x̂k−l +$k, (5.5)

where αl represents the corresponding coefficients, and $k accounts for the residual

and high-order components. By subtracting the mean x̄ on both sides, we re-write

Eq. (5.5) as follows:

xk − x̄ =

τ∑
l=1

αl · (x̂k−l − x̄) +

(
τ∑
l=1

αl − 1

)
x̄ +$k. (5.6)

Note from Eq. (5.2) that x̂k−l − x̄ can be described by linearly combining columns

in matrix Cov, we hereby characterize xk − x̄ in the following:

xk − x̄ = Cov · β + ρ · x̄ +$k, (5.7)

where β = [β1, β2, · · · , βN ]T is composed by the coefficients, and ρ =
∑τ

l=1 αl − 1.

Then, the graph frequency response of xk − x̄ with respect to the GFT operator

Q−1 is computed as:

x̃k − ˜̄x = Q−1 · (xk − x̄)

= Γ−1 ·Cov · β + ρ · Γ−1 · x̄ + Γ−1 ·$k

(a)
=

[
diag

(
[σ1, · · · , σr]T

)
·V · β

0(N−r)×r ·V · β

]
+ ρ · Γ−1 · x̄︸ ︷︷ ︸

predictable indices of nonzeros

+Γ−1 ·$k.
(5.8)
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In Eq. (5.8), we can see that the subscripts of the non-zeros in ρ · Γ−1 · x̄ can be

determined directly via the computation. Then, for the vector Γ−1 ·Cov · β, only

the first (r ≤ τ) rows are non-zeros. Here, we have r ≤ τ , i.e., (a), in Eq. (5.8)

since:

r = rank(Cov) = rank

(
τ∑
l=1

(x̂k−l − x̄) · (x̂k−l − x̄)T

)

≤
τ∑
l=1

rank
(
(x̂k−l − x̄) · (x̂k−l − x̄)T

)
= τ.

(5.9)

These two indicate that, for discrete-time k, there exists a graph bandwidth

set Bk ( {1, 2, · · · , N} such that xk is Bk-bandlimited with respect to the GFT oper-

ator Q−1. Further, we denote Bk|k−1 as the predicted version of Bk from previously

recovered signals. As according to the ”predictable indices of nonzeros” component

in Eq. (5.8), Bk|k−1 can be derived via x̂k−l− x̄, and the indices of nonzero elements

in vector Q−1 · x̄, i.e.,

Bk|k−1 =

{
n|

τ⋃
l=1

(
Q−1 · (x̂k−l − x̄)

)
n
6= 0

⋃(
Q−1 · x̄

)
n
6= 0

}
, (5.10)

where (·)n represents the nth element of vector. According to Theorem 2, we can

select the sensor for activation, denoted as Ck|k−1 that maps to the predicted graph

bandwidth set Bk|k−1, and the samples from Ck|k−1 can be used to recover the

component of xk − x̄, i.e., Covβ+ ρx̄ in Eq. (5.7). For the residual and high-order

parts, i.e., $k in Eq. (5.7), an extra set of sensors, denoted as C† will be activated

for signal sampling. In the following, we will elaborate the processes of identifying

Ck|k−1 and C†.

5.2.2 Selection of Sensor Activation Set

As from Section 5.2.1, we derive the sequential PCA GFT operator Q−1, and the

predicted graph bandwidth set Bk|k−1. Accordingly, we will design the sensor acti-

vation set C from which the samples will be used for the recovery of the time-varying

network signals xk. Given Eq. (5.8), the sensor activation set Ck should embrace

two subsets, i.e.,

Ck = Ck|k−1

⋃
C†, (5.11)

where Ck|k−1 is the predicted sensor activation set that is mapped from the predicted

graph bandwidth set Bk|k−1, and C† represents the extra sensor activation set that
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aims to collect samples for the residual high-order components $k in Eq. (5.5).

The derivation of Ck|k−1 is detailed in Theorem 2, by satisfying the following

equation:

rank(QCk|k−1Bk|k−1
) = |Bk|k−1|, (5.12)

which is conducted by finding the rows corresponding to the first |Bk|k−1| smallest

singulars of QNBk|k−1
, i.e.,

Ck|k−1 = argmax
Ck|k−1⊂N

σmin

(
QCk|k−1Bk|k−1

)
, (5.13)

with σmin(·) the minimum singular of the matrix. To implement Eq. (5.13), we adopt

a greedy algorithm by finding and adding the row with minimum singular as follows:

Ck|k−1 ← Ck|k−1 ∪ {n}, such that n = argmaxi∈N\Ck|k−1
σmin(Q(Ck|k−1∪{i})Bk|k−1

).

Then, for the extra sensor activation set C†, the aim is to collect samples for

residual $k, whose non-zero elements are equivalent to the burst of contaminant

on corresponding vertices (i.e., the vertex m with (xk−1)m = 0, but (xk)m 6= 0). To

predict such burst vertices, we rely on the topological structure of the WDN, i.e.,

G(N ,A). We estimate a rough outcome by multiplying the adjacent matrix A with

the previously recovered signals, i.e.,

C† =
{
m
∣∣∣ (A · x̂k−1)m 6= 0

⋂
(x̂k−1)m = 0,m ∈ N

}
. (5.14)

5.2.3 Signal Recovery using PCA GFT

After the derivation of the sequential PCA GFT operator Q−1 and the senor ac-

tivation set Ck in Eqs. (5.11)-(5.14), the sensors with indices belonging to Ck can

report their samples to the data centre for the recovery of the network signal xk.

We here denote the samples (vector) from Ck as (xk)Ck . The recovery process of the

data centre is described in the following. We divide the process into two parts. The

first part is to recover the signal using graph sampling Theorem 2, i.e.,

x̂k =QNBk|k−1
·
(
QT
Ck|k−1Bk|k−1

·QCk|k−1Bk|k−1

)−1

·QT
Ck|k−1Bk|k−1

·
(

(xk)Ck|k−1
− x̄Ck|k−1

)
+ x̄.

(5.15)

The second part is to replace the corresponding recovered signals with vertices in

C†, i.e.,

(x̂k)C† = (xk)C† . (5.16)
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5.3 Distinguish with Two Data-Driven Schemes

In this section, we compare our proposed PCA GFT sensor activation method with

other two state-of-the-art data-driven sampling schemes, in conceptual manner. The

first one is provided in Chapter 4, i.e., the signal-space dependent data-driven GFT

sampling scheme. The second one is the widely adopted PCA based compressed

sensing scheme in [24].

5.3.1 Data-Driven Static Graph Sampling

In Chapter 4, a data-driven GFT sampling algorithm has been proposed, leveraging

the prior knowledge of the dynamic signal-space, denoted as S = span{x̄1, x̄2, · · · , x̄r}.
We assumed (i) the real time-varying network signals xk (i.e., the columns of data

matrix X) belongs to the signal-space, i.e., xk ∈ S, and (ii) such signal-space S is

graph B = {1, 2, · · · , r}, r < N -bandlimited. In such a manner, the data-driven

GFT operator has been derived from the SVD of the r-leading vectors of S, and

therefore is able to maintain the graph B-bandlimited property of the data matrix

X. As such, the time-invariant sampling vertex subset C is derived by mapping the

samples from C to the complete graph B-bandlimited frequency response.

Compared with our previously proposed signal-space dependent data-driven

GFT sampling method, our newly proposed PCA GFT sampling does not rely on the

prior knowledge of the signal-space, i.e., S, which if not reliable, may lead to difficul-

ties for the construction of the GFT operator in Chapter 4, and subsequently result

in poor monitoring performance. Then, it is highlighted that the proposed PCA

GFT sampling method is unable to determine a time-invariant sampling vertex sub-

set for sensor placement. For computational complexity aspect, the proposed PCA

GFT sampling method has to compute the sequential GFT operator and sensor ac-

tivation set at every discrete-time, which thereby requires more energy expenditure

for computations and data storage.

5.3.2 PCA CS Sampling Method

PCA CS sampling method is proposed by the work in [24], and is to sample and

recover the time-varying network signals via smaller number of samples (measure-

ments). Here, similar to our proposed PCA GFT sampling method, PCA CS is

to derive time-varying sampling vertices (i.e., sensor activation) for network sig-

nal recovery at different discrete-time. We briefly introduce the steps of the PCA

CS as follows. First, they construct the sparse transformation matrix D by the
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eigenvectors of the co-variance matrix Cov, i.e., [24]

xk − x̄ = D · sk, with Cov = D ·Λ ·D−1, (5.17)

where sk denotes the sparse representation vector. The mean x̄ and the co-variance

matrix Cov are provided by Eqs. (5.1)-(5.2). Second, they select the sensor activa-

tion set Ck ⊂ N to satisfy the RIP, i.e., [24]

1− δ ≤
‖DCkN · s‖2l2
‖s‖2l2

≤ 1 + δ, r = ‖sk‖l0 , (5.18)

for any vector s with only 2r nonzero elements, and some δ ∈ [0, 1], where ‖ · ‖l2
represents the l2-norm, and ‖ · ‖l0 denotes the l0-norm. Third, given the samples at

discrete-time k, they recover sk via the standard convex optimization (introduced in

Chapter 2.3.1), or the orthogonal matching pursuit. Finally, we have x̂k = D· ŝk+x̄.

The main difference from the PCA CS sampling scheme in [24] is that we

are able to exploit the positions of the non-zero elements in transformations for the

selection of sensor activation set. In PCA CS, the positions of non-zeros are the

indices of the sparse elements of sk, which are unknown. In our proposed PCA

GFT, such positions of non-zeros are the indices of non-zero elements in the graph-

frequency response x̃k = Q−1 · xk, and we proved in Eq. (5.8) that such indices are

predictable from the previously recovered signals. With this prediction, our PCA

GFT sampling method is able to reduce the number of selected sensors to nearly

r (validated by the graph sampling Theorem 2). This is greatly smaller than that

of the PCA CS scheme in [24], which requires an order of O(r log(N/r)) activated

sensors. We further demonstrate this by the simulations in Section 5.4.

5.4 Simulations & Experimental Results

In this section, we evaluate the performance of our proposed PCA GFT sampling

method. The key performance indicators include the RMSE of the recovered time-

varying network signals, and the average size of the selected sensor activation set,

denoted as |C|avg. We specify the two indicators in the following, i.e.,

RMSE =

∑K
k=1 ‖x̂k − xk‖l2√

N ·K
, (5.19)

|C|avg =

∑K
k=1 |Ck|
K

, (5.20)
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where ‖ · ‖l2 denotes the l2-norm, and |Ck| denotes the number of elements in set Ck.
For this experiment, the simulation platform is the Microsoft Azure, and the

state-of-the-art EPANET2 [67] is adopted to simulate the WDN and the contami-

nant spreads. For the topology of the WDN network, N = 102 vertices are assigned

including 100 junctions and 2 reservoirs (see Fig. 5.1). Each junction has a random

and unknown water-demand. The directed edges between two vertices are pipes

with unknown pressures. We simulate 100 different contaminant data matrices over

the WDN. For each matrix X, total K = 3240 discrete-times are simulated within

3 hours.

5.4.1 One Illustration of Signal Recovery

Figure 5.2: Illustration of 4 examples of real and recovered signals of the proposed
PCA GFT method.

An illustration of recovered signals from our proposed PCA GFT sampling

method is provided in Fig. 5.2, where the comparisons between real and recovered

signals on 4 un-sampled vertices are shown. In Fig. 5.2, a perfect signal recovery is

realized by an average size of sensor activation set as |C|avg = 46 < N = 102. Note

that such size is bigger than the size of sampling vertex subset provided by Chapter

4 (nearly 30 from N = 102), however, we do not require a prior knowledge of the

signal-space for our PCA GFT sensor activation scheme.
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5.4.2 Performance Comparisons

We next compare the performances between our proposed PCA GFT sampling

method with the PCA CS scheme in [24]. Fig. 5.3 illustrates the recovery RMSE

versus the average size of sensor activation set |C|avg defined in Eq. (5.20). From

Fig. 5.3, we can observe that, as the average size of sensor activation set |C|avg

increases, the recovery RMSEs from all schemes become smaller. For example, the

RMSEs of the PCA CS and proposed PCA GFT approaches decrease from 1 to an

order of 10−14, when the average size of sensor activation set increases from 30 to

80. This is because that an increasing |C|avg leads to more samples and therefore

can ensure a more accurate signal recovery.

Figure 5.3: Comparison of recovery accuracy between proposed PCA GFT and PCA
CS.

Then, we observe from Fig. 5.3 that the lag τ in Eq. (5.5) affects the recovery

accuracy of our proposed PCA GFT sampling scheme, and a smaller τ leads to a

more accurate recovery performance. For instance, when τ = 2, the proposed PCA

GFT approach can reach a RMSE as 10−13 faster at |C|avg = 46, which is smaller

that that of τ = 10 (requiring |C|avg as 56). We explain this in the following.

In Eq. (5.5), τ accounts for how the current k discrete-time dynamic xk can be

characterized by its previous signals, i.e., xk = ξ(xk−1, · · · ,xk−τ ). As such, due to

the fact that current hydraulic contaminant signal is directly evolved from its last

signal, i.e., xk−1 → xk, we should adopt a smaller τ as τ = 2 in order to hold such
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time-evolution. Besides, such a lag τ determines the size of the predicted sensor

activation set Ck|k−1, i.e., |Ck|k−1| = Bk|k−1 = τ provided by Eq. (5.12). In such a

view, τ = 2 gives a minimum |Ck|k−1| and subsequently a minimum |C|avg as shown

in Fig. 5.3.

Finally, it is seen from Fig. 5.3 that, the proposed PCA GFT sampling

method requires less samples for the perfect recovery of the time-varying network

signals, as opposed to PCA CS scheme in [24]. The former requires approximately

the average size of the sensor activation set as |C|avg = 46 for the perfect signal

recovery, which is much smaller than that from the PCA CS scheme (an overall

|C|avg = 80 needed).

Figure 5.4: Comparison of average size of sensor activation set |C|avg.

We further demonstrate the sampling reduction advantage of our proposed

scheme via Fig. 5.4, where for each of the 100 different data matrices, we record the

corresponding minimum average sizes of the sensor activation sets |C|avg for perfect

recovery of the time-varying network signals. In Fig. 5.4, each pair of dashed line

connected points indicates the results of the two competitive schemes processing the

same data matrix. It is seen that for each data matrix, the proposed PCA GFT is

able to use a smaller size of sensor activation set as opposed to that of the PCA

CS method, which demonstrates the robustness of our proposed method. This fur-

ther indicates a smaller average |C|avg of the proposed PCA GFT scheme, which

stays lower than that of the PCA CS. The advantage of the sensor activation reduc-
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tion derived from our proposed PCA GFT method is attributed to the awareness

(predictability) of the indices of the r nonzero elements (that constitute the graph

bandwidth set) of the transformation x̃k = Q−1 ·xk, (r = ‖x̃k‖l0). As such, the GFT

sampling framework is able to construct the sensor activation set Ck by mapping the

samples from it directly to the graph bandlimited frequency response, and therefore

derives a smaller Ck with |Ck| = r, as opposed to the PCA CS that requires an order

of O(r log(N/r)) samples to satisfy the RIP criterion.

5.5 Conclusions & Discussion

To address the network sampling when signal dependency among vertices is un-

available (non-existed or unable to be characterized by an unchanged operator), we

have proposed a sequential data-driven GFT sampling approach, which is able to

achieve a time-varying sampling vertex subset to recover the whole time-varying

network signals (for sensor activation applications where sensors are deployed on all

network vertices). By analysing the principal components of the previously recov-

ered signals, a sequential data-driven PCA GFT operator has been derived, being

able to identify the vertices with independent signals at each discrete time. The

experimental simulations demonstrate an average of 40% sensors are required to be

activated to ensure the complete recovery of the time-varying network signals. Also,

the performance guarantee in this chapter enables us to further reduce the number

of activated sensors for a desirable but loosing recovery accuracy.

As a preliminary exploration for sampling without the vertex dependency,

the drawbacks of this chapter are obvious. These include the computational com-

plexity for updating the PCA GFT operator at each discrete time, and moreover,

the proposed scheme cannot achieve the time-invariant sampling locations for sensor

placement.
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Chapter 6

Model and Signal-Space

Independent Sampling

In this chapter, we will elaborate the proposed model and signal-space independent

sampling scheme for network sampling and signal recovery task. The motivation

lies in the scenarios where the explicit dynamic model and the prior information

of the signal-space (e.g., the sparsity and bandlimitedness to a given operator) is

unavailable, which dis-enables both the equation-driven and the signal-space driven

methods provided in the previous chapters.

The structure of the rest of this chapter is as follows. We first use a general

time-evolution model to characterize the task in Section 6.1. Then, the designed

logarithm observable and Koopman operator for the derivation of linear time evo-

lution model is provided in Section 6.2. In Section 6.3, we further elaborate the

nonlinear Graph Fourier Transform (nonlinear GFT) concept and sampling theory,

and how it can be implemented for network sampling and signal recovery. Section

6.4 is for the distinguishment and explanation of the proposed scheme with other

state-of-the-arts. The simulation and experimental results are illustrated in Section

6.5. We finally conclude the whole chapter in Section 6.6.

6.1 Model and Problem Formulation

6.1.1 General Dynamic Model

In the context of dynamic model and signal-space independent sampling and recov-

ery scenarios, both the explicit dynamic governing equations and the prior knowledge

of signal dependencies among vertices (i.e., sparsity or graph bandlimitedness of the

signal space) are not required. Instead, we employ a general form to describe the
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Figure 6.1: Schematic flow of the proposed Log-Koopman nonlinear GFT sampling
and recovery method: (a) sampling process; (b) Koopman linearization; (c) signal
recovery.

time-varying network signals, as follows:

xk+1 = Ξ(xk,A). (6.1)

In Eq. (6.1), xk is the network signal at discrete time k. The dynamical signal

flow is characterized by the underlying graph adjacent matrix A, and a general time

evolution function Ξ : RN → RN . Here, A of size N ×N is defined as a binary or

weighted adjacent matrix on a network (static graph) with N vertices whose indices

constitute the index set N = {1, 2, · · · , N}. The (m,n)th element am,n ∈ {0, 1} of

A represents whether a link from vertex n to vertex m exists.

The functionality of Ξ(·) is to generate the signals xk+1 = [x1,k+1, · · · , xN,k+1]T

at discrete time k + 1 (k ∈ {1, 2, · · · ,K},K ∈ N+) from xk, in accordance with the

self-dynamic and the coupling vertex interactions from the adjacent vertices given

A. At discrete time k = 1, x1 ∈ RN is regarded as the initial network signal. It

is noteworthy that for the further analysis, Ξ(·) and x1 are both unknown, falling

into the category of model and signal-space independence.

6.1.2 Challenge Formulation

Given the general dynamic time-evolution model in Eq. (6.1), the scope of this chap-

ter is to determine an optimal time-invariant sampling vertex subset for sensor place-

ment, denoted as C ⊂ N , such that the whole network signals x1,x2, · · · ,xK can

be reconstructed. Here, two challenges are inevitable for the sampling vertex subset

selection and the signal recovery design. First, the explicit dynamic time-evolution

model is unavailable, rendering the existing works that require linear/linearized evo-
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lution model (e.g., graph observability analysis) [42–46] less implementable. Second,

the dependency of signals among different vertices is unknown. That is, we no longer

know the specific graph bandlimitedness or the sparsity of the network signals to

a given operator, which thereby blocks the compression approaches using vertex

dependency [30,34,35,38,41,46,79–83]. To overcome these, this chapter aims to 1)

approximate a linear dynamic time-evolution model, and 2) identify time-invariant

vertices for sampling and recovering the time-varying network signals.

6.1.3 Sketch of Design

The schematic flow and illustration of the proposed sampling and recovery scheme

is shown in Fig. 6.1. First, the Koopman linearization theory is adopted to derive

an approximately linearized time-evolution model for time-varying network signals.

Then, a novel concept and sampling theory of nonlinear GFT is provided as a

guideline, for the algorithm designs of the sampling vertex subset selection and the

signal recovery. This is also how we organize the rest of this chapter.

6.2 Koopman Operator and Linearization

Koopman linearization theory is used to generate a linearized time-evolution model

to approximate a nonlinear dynamic system, so that the rich linear algebra theories

can be adopted for further signal analysis (e.g., the stability, and the leading and

un-scaling systematic factors). A Koopman operator specific to a dynamical system

is a linear matrix that characterizes the time evolution of the observables (functions)

defined on the original signal space. To be specific, for one system, we define the

space of all suitable observables as H = span(h1(·), h2(·), · · · , hM (·)), spanned by

the M ∈ N+ leading observables hm(·) : RN → R. As such, a stacked vector-valued

observable selected from H is h(·) = [h1(·), h2(·), · · · , hM (·)]T , and its corresponding

Koopman operator Ψ can be expressed as [47,50,62]:

Ψ · h(xk) = h (Ξ(xk)) = h(xk+1). (6.2)

As is shown in Eq. (6.2), we linearize the nonlinear time-evolution xk+1 = Ξ(xk) by

making the vector-valued observable defined on xk a linear evolution, i.e., h(xk+1) =

Ψ · h(xk). In this view, one thing required is to design appropriate observable

elements to make an existence of the linear evolution matrix Ψ. This is difficult

and is still remaining as an open challenge, given the infinite dimension of H, i.e.,

M → +∞, rendering an infinite size of the Koopman operator Ψ and therefore
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impeding its practical use in real-world applications. To cope with this, loads of

existing works [47, 50, 62] tried to approximate the infinite observable space, via

the usages of definite and independent (orthogonal) observables. In the rest of this

section, we will first introduce existing observable designs for Koopman operator,

with the explanations of why those are limited in the context of network sampling

scenarios. Then, the proposed logarithm observable is provided with the analysis of

its merits and drawbacks.

6.2.1 Existing Observable Designs for Koopman Operator

Existing observable designs are classified into 3 groups: the dynamic mode decom-

position (DMD), the extended DMD (EDMD), and the deep DMD. In the context

of network sampling and signal recovery, two challenges for Koopman linearization

are faced.

• First, the size of one vector-valued observable, i.e., the number of elements

M in h(·) = [h1(·), h2(·), · · · , hM (·)]T cannot be very large; otherwise, a size

explosion will occur and result in further computational burden for a M ×M
Koopman operator Ψ.

• Second, the observable element hm(xk) should be decoupled with the signals on

different vertices; otherwise, selecting some of the coupled observable elements

for signal recovery may result in redundant selections of sampling vertices.

Dynamic Mode Decomposition

DMD directly uses the original N time-varying network signals as the M = N

observable elements, i.e., h(xk) = xk [62]. This is suitable for a linear and quasi-

linear dynamical system, however will result in intolerant linearization error for

nonlinear dynamic systems.

Extended Dynamic Mode Decomposition

Extended DMD uses the observable elements defined on the original N time-varying

network signals [62]. Typical designs of EDMD observable elements include the

Fourier extensions, the radial basis functions, the polynomials (e.g., the Legendre

polynomials, the Hermite polynomials, and the Taylor polynomials). For lineariza-

tion accuracy, by selecting appropriate observable elements, EDMD performs better

as opposed to the DMD only. However, for the network sampling applications, the
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drawbacks lie in two aspects. First, the size explosion of the vector-valued observ-

able h(xk) will cause heavy computational burden (e.g., the inverse computation of

the Koopman operator requires an order of M3 multiplications, which will require

substantial resources when using current EDMD methods as M > O(N2) is needed.

Second, the coupling effect between original N signals on different vertices will re-

sult in redundant selections of sampling points. We will go through these in the

following.

One state-of-the-art EDMD observable design is the Taylor expansion based

polynomial observables. The work in [47] has proved a completeness of an observable

space H leveraging the polynomial terms of Taylor expansion. Then, a truncated

subspace Happrox ⊂ H can be constructed by spanning from the leading low-ordered

and independent Taylor series. Here, we provide the completeness observable space

as follows [47]:

H =

{
N∏
n=1

xpnn,k, ∀pn ∈ N

}
. (6.3)

According to Eq. (6.3), the work in [47] used a selection of h(xk) = [xpmm,k ·x
pn
n,k]

T with

∀m,n ∈ N , pm, pn ∈ {0, 1, 2} to provide the truncated observable space Happrox,

based on which an approximated Koopman operator has been proved to have good

lineaization performance for small-scale (i.e., number of vertices N < 10) time-

evolved network signals.

However, when it comes to address the large-scale networks (N > 50), the

scheme either leads to a size explosion of the vector-valued observable by selecting

the multi-elemental multiplicative polynomial Taylor terms (e.g., xpmm,k·x
pn
n,k·x

pi
i,k·x

pj
j,k),

or results in low linearization accuracy given the incompleteness of Happrox caused

by their selections of only two-elemental multiplicative terms. We explain this by

the following equation, showing why the multi-elemental multiplicative polynomial

Taylor terms at discrete time k, are important for the constitution of the existing

observable elements at the next k + 1 discrete time, i.e.,

xm,k+1 · xn,k+1 =ξm(xk) · ξn(xk)

=
∑
i,j∈N

pm,pn,pi,pj∈{0,1,2}

αi,j,m,n · xpmm,k · x
pn
n,k · x

pi
i,k · x

pj
j,k, (6.4)

where ξm(·) : RN → R is the mth time-evolution function in Ξ, and αi,j,m,n repre-

sents the coefficient. As provided in Eq. (6.4), the impact of 4-element multiplicative

terms becomes non-trivial, as their numbers increase with the larger network scale

N . In this view, in order to maintain the linearization accuracy of the Koopman
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operator, the selection of observables in h(xk) should be expanded accordingly to

cover those high-impact multi-elemental multiplicative terms. This will inevitably

result in a size explosion of the vector-valued observable, and subsequently lead to a

size of > N2 increase for the approximated Koopman operator Ψ. Such a large size

Ψ, if implemented in large-scale network (e.g., N > 50) sampling applications, will

lead to a heavy computational burden. Apart from that, multi-elemental multiplica-

tive terms also cause the coupling effect in observable elements, and subsequently

lead to the redundant selections of sampling vertex subset. For instance, a selection

of observable xm,k · xn,k for signal recovery will result in a selection on both vertex

m and vertex n.

Deep Dynamic Mode Decomposition

With the aims to find lower-sized but more accurate Koopman linearization opera-

tor, deep DMD was proposed using the deep learning neural network. Leveraging

this concept, one extraordinary work in [48] developed an auto-encoder and an

auto-decoder, of which the former is to generate observable and the latter is to

inversely map the observable to the original time-varying network signal. Their

training process is via the minimization of the errors of forward and backward ob-

servable -original signal mapping, and of observable computed by original signal and

Koopman time-evolved observable.

The scheme performs very well on operator size-reduction and linearization

accuracy. However, one miserable drawback is the existence of coupled signals on

observable elements. For example, in their work [48], one learned observable for

discrete spectrum dynamic is x2,k−b·x2
1,k, which involves the original signals on both

vertex 1 and vertex 2. This therefore becomes less attractive for sensor placement

applications, since selecting the leading observable elements may require to place

sensors on every vertices.

6.2.2 Proposed Logarithm based Observable Design

Given that most of the current observable designs suffer from either size explosion

or coupling signal effects that are not suitable for network sampling, we hereby

propose a novel observable design, which is able to transform the multi-elemental

multiplicative terms (e.g., xpmm,k · x
pn
n,k) into decoupled and lower sized summation

terms. The essence is to use the logarithm summations to approximate the polyno-

mial multiplicative Taylor series. For example, the multiplicative term of x · y can
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be approximated via the following equation:

log(1 + x) + log(1 + y) = log ((1 + x)(1 + y))

≈ x+ y + xy,
(6.5)

which holds, when x, y ∈ (0 − δ, 0 + δ) given δ → 0. In this view, if assigned

an appropriate parameter η to maintain sup{xm,k/η,m ∈ N , k ∈ N+} < δ, the

vector-valued observable based on the logarithm-form expressions can be designed

as follows:

h (xk) =

[
1,
xm,k
η

, log

(
1 +

(
xm,k
η

)pm)]T
, ∀m ∈ N , (6.6)

where pm ⊂ N+ can be selected based on specific dynamic systems. For the con-

venience of further elaborations, we use uk to describe the designed vector-valued

observable of size M × 1 in Eq. (6.6) as:

uk = h(xk), uk ∈ Ud ( RM . (6.7)

It is noteworthy that the range set of uk, i.e., Ud is a subset of RM , which if

neglected, will result in redundant selections of sampling vertices. This is because

we need more samples to build an one-to-one mapping between the sampling set to

RM , other than to its subset Ud.
After the designs of the logarithm based observable in Eq. (6.6), we demon-

strate by the following two equations that the vector-valued observable at discrete

time k+ 1, i.e., uk+1 maintains the linear time-evolution of the previous observable.

First, the observable element xm,k+1/η can be approximated in the following:

xm,k+1

η
=
ξm(xk)

η

=
1

η

(
ξm(0) + xTk · 5ξm(0) +

1

2
xTk ·Hξm(0) · xk + o3

)
=
ξm(0)

η
+
∑
i,j∈N
p,q∈N+

αi,j,p,q ·
(
xi,k
η

)p
·
(
xj,k
η

)q

≈ ξm(0)

η
+
∑
i∈N

αi ·
xi,k
η

+
∑
i∈N
p∈N+

log

(
1 +

(
xi,k
η

)p)
,

(6.8)

where ξm(·) is the mth element function of the vector-valued function Ξ(·), 5ξm(·)
represents the gradient function of ξm(·), and Hξm(·) denotes the Hessian matrix.
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αi,j,p,q and αi are coefficients that maintain constant with varied time.

Second, the observable element log(1 + (xm,k+1/η)pm) at discrete time k+ 1

can be approximated as:

log

(
1 +

(
xm,k+1

η

)pm)
≈
(
xm,k+1

η

)pm
=

(
ξm(xk)

η

)pm
=
ξm(0)pm

ηpm
+

∑
p1,··· ,pN∈N+

αp1,··· ,pN ·
∏
m∈N

(
xm,k
η

)pm
≈ξi(0)pm

ηpm
+

∑
i∈N ,p∈N+

αi,p · log

(
1 +

(
xi,k
η

)p)
,

(6.9)

where αp1,··· ,pN and αi,p are time-invariant coefficients.

Eqs. (6.8)-(6.9) indicate that all observable elements in Eq. (6.6) can have

a linear time-evolution from other previous observables. As such, by using a linear

operator, i.e., the approximated Koopman operator Ψ of size M×M , we can re-write

the linear time-evolution of the designed vector-valued observable as:

h (xk+1) = Ψ · h (xk) . (6.10)

In Eq. (6.10), the Koopman operator Ψ is trained by the simulating data of xk−1

and xk. To be specific, we generate D (e.g., D = 104) groups of simulating data,

denoted as x
(d)
1:K with d = 1, · · · , D, and separate them as two sub-groups, i.e.,

Y =
[
h(x

(1)
2:K), · · · ,h(x

(D)
2:K)

]
(6.11)

X =
[
h(x

(1)
1:K−1), · · · ,h(x

(D)
1:K−1)

]
, (6.12)

based on which the Koopman operator can be trained by following equation:

Ψ = argmin ‖Y −Ψ ·X‖2fro, ‖ · ‖fro : Frobenius norm. (6.13)

After the design of the vector-valued observable and the derivation of corre-

sponding Koopman operator, we analyze the advantages and the drawbacks of the

proposed logarithm-based Koopman operator.

• First, one important merit when compared with the polynomial based Koop-

man operator [47] is its ability to reduce the observable size and subsequently

the size of Koopman operator, which is attributed to the logarithm summation

for the approximation of the multi-elemental multiplicative polynomial terms

in observable designs. By using the logarithm based observable design, a size
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of M = O(N) observable h(·) can be derived, as opposed to the polynomial

observable that requires at least M > O(N2) polynomial terms. This is of

great significance to reduce the further computational burden when using the

corresponding Koopman operator of size M ×M for network sampling and

signal recovery.

• Second, the designed logarithm based observable is decoupled, whereby each

observable element is determined by only one vertex’s signal. This is different

from the polynomial design in [47] and the deep DMD design in [48]. Such

a property is important when dealing with sampling vertex subset selection,

given that selecting one leading observable for signal recovery requires one

sensor placing on only one vertex.

• When compared with the polynomial design [47] and the deep DMD designs,

the drawback of the proposed logarithm based observable design lies in its

less accurate linearization performance, due to the approximation of the mul-

tiplicative terms. However, in the context of network sampling scenarios, such

linearization accuracy can be further enhanced by the use of samples. For

example, we can generate a sample-awareness training data: the initialization

(k = 1) values corresponding to sensor vertices equal their initial samples, and

others remain random.

From this section, we are able to use the designed logarithm observable and

the corresponding Koopman operator to linearize an unknown and nonlinear dy-

namic system. This therefore enables the further sampling and recovery analysis

using rich linear algebra theory.

6.3 Sampling with Nonlinear Graph Fourier Transform

For this section, the aim is to introduce the proposed nonlinear Graph Fourier

Transform concept and theory, and how those can be implemented for the network

sampling and signal recovery. The purpose of this nonlinear GFT sampling is to

determine the time-invariant selection of sampling vertex subset, from which the

sampled time-evolved signals can help recover the whole time-varying network sig-

nals. Recalling that with the Koopman linearization operator for unknown and

nonlinear dynamic modelling, we can convert the recovery task into the recovery of

the initial observable û1, from which the network signals at any discrete time k can

be recovered by x̂k = h−1(Ψk−1 · û1). Such a recovery process is illustrated in Fig.

6.1(c).
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Here, we wish to emphasize why the nonlinear GFT is required in the first

place. As we mentioned in Eq. (6.7), the range set of u1 is a subset of RM , i.e.,

Ud ( RM . This makes the existing graph observability analysis [46,50] that treat the

range set as RM less attractive. In their views, the M elements in u1 are independent

with each other from R, which contradict the fact that the M observable elements

in u1 = h(x1) are determined by N < M original elements in x1. Ignoring this

will inevitably result in redundant sampling vertices selection, and this composes

the motivation of the proposed nonlinear GFT concept and theory. Compared with

those existing methods, the nonlinear GFT method takes into account the structure

of the designed logarithm observable which characterizes the M observable elements

in h(x1) by its N independent signals in x1, and aim to determine the sampling

vertex subset whose time-evolved samples can map to the N independent signals

x1.

6.3.1 Nonlinear GFT Concept

We extend the linear GFT concept to define what a generalized (nonlinear) GFT

operator is and what the graph bandlimited property to the nonlinear GFT operator

accounts for.

Definition 4 The generalized (nonlinear) Graph Fourier Transform operator is a

reversible (one-to-one) vector-valued function that transforms between sets Ur and

Ud. Here, we call Ur the set of graph-frequency response of Ud, and even a bandlim-

ited graph-frequency response if the element number of x ∈ Ur is smaller than that

of u ∈ Ud.

Seen from Definition 4, a generalized GFT operator is provided, extended

from the linear GFT operator concept [30, 34, 35, 38, 41, 46, 79–83], by replacing

the linear matrix with the reversible vector-valued function. In this view, if the

reversible vector-valued function is nonlinear, we call such operator the nonlinear

GFT operator.

Recalling from the above derivation of Koopman operator Ψ, we enlarged

the original network G(N ,A) by the defined observable in Eq. (6.6), and therefore

derived a new network withM > N vertices connected via the Koopman operator Ψ.

We illustrate the enlarged process in Fig. 6.1, and denote the newly derived network

topological structure as G(M,Ψ) withM = {1, 2, · · · ,M}. Also, the original time-

varying network signals xk over G(N ,A) are linearized by the Koopman process

as uk = h(xk) over G(M,Ψ). As such, we have the new network structure and

the dynamical signals over it. Then, according to the Definition 4, a nonlinear
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GFT operator can be assigned as the inverse of the vector-valued observable, i.e.,

h−1(·) : Ud → Ur = RN , which is able to transform the time-varying network

signals uk ∈ Ud ( RM into a lower-sized (bandlimited) graph-frequency domain,

i.e., xk ∈ RN . Here, it is noteworthy that such graph bandlimited to the nonlinear

GFT operator holds for any time-varying network signals uk ∈ Ud, and does not

assume any signal dependency among original N vertices (i.e., the elements in xk

can be independently chosen from R).

6.3.2 Sampling Theory of Nonlinear GFT

After the generalized GFT concept provided by Definition 4, we will elaborate in

the following the nonlinear GFT sampling theory. We will go through (i) what

the condition is for sampling vertex subset C, and (ii) how to recover the whole

time-varying network signals from the samples.

Theorem 5 Denote a GFT operator h−1 : Ud → Ur, any u ∈ Ud ( RM , and a

matrix F of size L ×M . Then, a sampling operator (matrix) CF of size S × L

that ensures the recovery of u from the sample CF ·F ·u should keep the one-to-one

mapping property of the operator CF · F ◦ h. The recovery of u, denoted as û is

expressed as:

û = h
(

(CF · F ◦ h)−1 (CF · F · u)
)
, (6.14)

where ◦ denotes the function composition operator.

Proof 6 We denote the graph-frequency response of u as x ∈ Ur. As such, the GFT

and the inverse GFT transformations using the nonlinear GFT operator h−1(·) are:

x = h−1(u), (6.15)

u = h(x), (6.16)

given the reversible computation of the GFT operator. Then, by multiplying the

sampling matrix CF on both sides of F · u = F · h(x), we have:

CF · F · h(x) = (CF · F ◦ h) (x) = CF · F · u. (6.17)

From Eq. (6.17), it is seen that

x = (CF · F ◦ h)−1 (CF · F · u) (6.18)

holds if and only if CF · F ◦ h has inverse operation. This is equivalent to the
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one-to-one mapping property of CF · F ◦ h stated by the Theorem. Then, by taking

Eq. (6.18) into Eq. (6.16), we derive the recovery of u as û in Eq. (6.14) of the

Theorem.

After the description of Theorem 5, we here cast it for the designed Koopman

observable for explanation and clarification. For the Koopman observable u1 with

nonlinear dependency determined by the lower-sized original network signal, u1 =

h(x1), Theorem 5 treats it as a graph bandlimited signal with nonlinear graph-

frequency response x1 to the GFT operator h−1(·) (i.e., the inverse of the designed

vector-valued observable). Then, Theorem 5 proves that the one-to-one mapping

from the samples (determined by the sampling matrix) to such graph bandlimited

response x1 can guarantee the recovery of u1.

Then, to determine the sampling matrix CF that maintains such one-to-one

mapping, we propose following Propositions.

Proposition 1 Denote a GFT operator h−1 : Ud → Ur where the dimension of Ud
and Ur is dimU . Then, one prerequisite for the recovery of any u ∈ Ud is that the

number of rows in the sampling matrix CF is no smaller than dimU .

Proof 7 Otherwise, let us assume the number of rows in the sampling matrix CF is

no greater than dimU − 1. Given from Theorem 5, CF ·F ◦h maintains one-to-one

characteristic. This infers the set of the basic functions of Ur is spanned by at most

dimU − 1 element functions of CF · F ◦ h, which contradicts the dimension of Ur,
i.e., dimU 6= dimU − 1.

Proposition 2 Denote a GFT operator h−1 : Ud → Ur where the dimension of Ud
and Ur is dimU . Then, one prerequisite for the recovery of any u ∈ Ud is that, for

sampling matrix CF , at least dimU scalar-valued functions of CF ·F◦h are linearly

independent.

Proof 8 Otherwise, let us assume any dimU scalar-valued functions of CF · F ◦ h

are linearly dependent. Then, there must have < dimU linearly independent scalar-

valued functions spanning for the set of basic functions of Ur. This suggests dimUd =

dimUr < dimU , and thereby contradicts the dimension of Ur as dimU .

As such, using Propositions 1-2, we are able to determine a sampling matrix

CF that maintains an approximated one-to-one characteristic. We next describe

how this can be combined with the Koopman linearized time-evolution information

for sampling vertex subset selection and signal recovery.
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6.3.3 Nonlinear GFT Network Sampling and Recovery

Before the use of nonlinear GFT sampling theory, we first specify the Koopman

linearized time-evolution information that will be combined with nonlinear GFT for

the selection of sampling vertex subset C and the signal recovery, i.e.,
u1

u2

...

uK

 =


Ψ0

Ψ1

...

ΨK−1

 · u1, (6.19)

where k = 1, 2, · · · ,K are discrete times. As such, the linearly evolved information

from time k = 1, 2, · · · ,K can be effectively used for the recovery of u1 as û1, and

the original network signal x̂k is derived using the Koopman operator ûk = Ψk−1 ·û1

and x̂k = h−1(ûk)

Combining the linearly time-evolved information with the nonlinear GFT

sampling theory, we assign:

F =


Ψ0

Ψ1

...

ΨK−1

 . (6.20)

The GFT operator is the aforementioned h−1(·), which maps the range set of the

observable u1 ∈ Ud ( RM to x1 ∈ RN (i.e., the original and initial network signal

with dimU = N over original network G(N ,A)). In such a manner, we convert

the aim to determine the sampling vertex subset C for the complete recovery of the

initial observable u1 ∈ Ud ( BM that is graph bandlimited to the GFT operator

h−1(·) with graph-frequency response x1 ∈ RN .

Nonlinear GFT Sampling Vertex Subset Selection

We first provide the relations from the sampling vertex subset C ⊂ N of the original

network G(N ,A), to the sampling matrix CF in Theorem 5. Such relation is:

C = [1i,ni∈C ], (6.21)

Ch =
{
m
∣∣∣hm(xk) = hm (C · xk)

}
, (6.22)

Ch =
[
1j,mj∈Ch

]
, (6.23)
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CF = Ch ⊗ [1, · · · , 1︸ ︷︷ ︸
K

]. (6.24)

In Eq. (6.21), 1i,ni∈C means only (i, ni)th element of matrix C is 1 if ni ∈ C,
and other elements are 0. In Eq. (6.23), 1j,mj∈Ch means only (j,mj)th element of

matrix Ch is 1 if mj ∈ Ch, and other elements are 0. In Eq. (6.24), ⊗ represents

the Kronecker product. To conveniently deduce further analysis and computation,

we abbreviate the above equations by:

CF = Υ (C) . (6.25)

Given the nonlinear GFT sampling Theorem 5, the optimal identification

of the sampling vertex subset C should keep the one-to-one (reversible) mapping

characteristic of the vector-valued function CF ·F◦h, which is a NP-hard challenge.

To implement this, we use the Propositions 1-2 to approach a sub-optimal solution.

In other words, we do so by identifying the dimU = N linearly independent rows of

F, i.e.,

rank(Υ(C) · F) = N. (6.26)

Here, such nonlinear GFT sampling vertex subset selection is different from the

previous full column-rank sampling criterion (in Chapter 2 Theorem 2). We will

analyze this in Section 6.4. Then, to realize Eq. (6.26), we minimize the quotient

of the 1st singular divided by the Nth singular of CF · F = Υ(C) · F, i.e.,

C = argmin
C⊂N

{
σ1 (Υ (C) · F)

σN (Υ (C) · F)

}
, (6.27)

where σi(·) denotes the ith singular of the matrix.

Eq. (6.27) is implemented in a greedy algorithm framework in Algorithm

3. The inputs are the vertex set N of original network G(N ,A), and the linearly

evolved matrix F in Eq. (6.20) that characterizes the linear mapping between initial

observable u1 and further time-evolved observables u1:K . Step 1 is to initialize

the sampling vertex subset as empty set. Steps 2-5 are to add vertex one by one

with minimum quotient between 1st and Nth singulars, till a threshold γ or the

required size of sampling vertex subset is approached. Finally, we output the selected

sampling vertex subset C, which will be used for sensing and collecting the samples

for the recovery of time-varying network signals in the following part.
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Algorithm 3 Nonlinear GFT Sampling Vertex Subset Selection

Input: N ,F
1: Initialize C = ∅.
2: while σ1(Υ(C)·F)

σN (Υ(C)·F)
> γ do

3: n = argminn∈N\C

{
σ1(Υ(C∪{n})·F)

σN (Υ(C∪{n})·F)

}
.

4: C = C ∪ {n}.
5: end while

Output: Return C.

Nonlinear GFT Signal Recovery

After the determination of the sampling vertex subset C, we can derive the sam-

ples, and subsequently transform them into observable form, denoted as y. This

is equivalent to compute the sampling matrix CF = Υ(C) from Eq. (6.21)-(6.25),

and pursue sampling on linearly time-evolved observables [u1, · · · ,uK ]. Such y is

expressed as:

y = CF ·


u1

u2

...

uK

 . (6.28)

Then, we (i) take the samples y from Eq. (6.28) into Eq. (6.19), and (ii) transform

the initial observable u1 into its graph frequency response using GFT operator

h−1(·). The result is:

y = CF · F · u1 = CF · F · h(x1). (6.29)

Noting the difficulty of the computation of (CF ·F ◦h)−1, which contains nonlinear

inverse operator, we hereby compute the recovery of x1 using the quasi-Newton

methods in following equation. The recovered x̂1 is derived by optimizing:

x̂1 = argmin
x1∈RN

{
‖y −CF · F · h(x1)‖2l2

}
, (6.30)

with gradient:

O =
(
h(x1)T · FT ·CT

F − yT
)
·CF · F ·

∂h(x1)

∂x1
, (6.31)

where ‖·‖l2 represents the l2-norm. After the recovery as x̂1, we derive the estimated

û1 = h(x̂1), and ûk = Ψk−1û1. Finally, we recover the time-varying network signals
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as x̂k = h−1(ûk). The schematic flow is illustrated via Fig. 6.1(c).

6.4 Novelty Compared with Other State-of-the-Arts

In this section, we distinguish our proposed Log-Koopman nonlinear GFT sampling

scheme, with other two state-of-the-art schemes. The first one is referred to as

the Poly-Koopman based graph observability analysis [50]. The second one is the

combined linear GFT sampling with time-evolved information [46].
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sampling vertex subset
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Using linear evolution and 
nonlinear relations in observable

(a) Log-Koopman nonlinear-GFT(proposed)
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Figure 6.2: Comparison of proposed Log-Koopman nonlinear GFT (a), Poly-
Koopman graph observability (b), and linear GFT (c).
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6.4.1 Sampling by Poly-Koopman based Graph Observability Anal-

ysis

Poly-Koopman based graph observability analysis method has been proposed in

[50], which uses the standard linear algebra directly on the poly-based Koopman

linearized time-evolution model. The work briefly contains two steps. First, they

designed polynomial-based observable elements (denoted as ζk of size M × 1 from

xk of size N × 1), and derived the corresponding Koopman operator (denoted as

Ψpoly with ζk+1 = Ψpoly · ζk). Second, they determined the sampling vertex subset

by treating the M elements in ζk independent (i.e.,ζk ∈ RM ), and therefore using

the standard linear algebra, i.e., maximizing the energy computed by Koopman

observability gramian. As such, the sampling matrix of Poly-Koopman based graph

observability analysis, denoted as Wζ of size M ×M , is computed as [50]:

Wζ = [Il×l 0] ·P−1
poly, (6.32)

by l largest eigenvalues of Ψpoly = Ppoly · diag(λ1, · · · , λM ) ·P−1
poly to maximize the

energy of the sampled observable, i.e.,

max
Wζ

K∑
k=1

ζT1 · (Ψk
poly)T ·WT

ζ ·Wζ ·Ψk
poly · ζ1

=

K∑
k=1

ζT1 · diag
(
λ2k

1 , λ
2k
2 · · · , λ2k

l , 0, · · · , 0
)
· ζ1.

(6.33)

We distinguish from two aspects between our proposed Log-Koopman non-

linear GFT sampling method with the poly-Koopman graph observability method,

as follows:

• First, the polynomial-based observable designed by [50] is only suitable and

able to provide reliable linearization performance for small-scale network (e.g.,

the total number of vertices N < 30). However, as analyzed before in Eq (6.4),

when it comes to address signal processing issues for the large-scale network

(e.g., N > 50), the scheme will inevitably lead to the size explosion, by us-

ing at least M = O(N2) polynomial terms to construct the observable. This

will subsequently give rise to a size of O(N2 × N2) Koopman operator for

further network sampling and signal recovery applications, which will cost

substantially huge computational and storaging resources and thereby make

it less impractical. In contrast, our proposed Log-Koopman nonlinear GFT

sampling method relies on the logarithm summation to reduce the number of

107



multi-elemental multiplicative terms, and can achieve an order of O(N) num-

ber of observable elements for Koopman linearization, thereby avoiding the

size explosion for further network sampling and signal recovery applications.

Further illustrations of this will be provided in Figs. 6.3-6.8 from Section 6.5.1.

• Second, the direct use of the linear algebra analysis on derived Koopman lin-

earized time-evolution model leads to an overlook of the nonlinear dependency

between elements in the vector-valued observable. This is because linear anal-

ysis, i.e., the eigenvector analysis in Eq. (6.32) views the initial observable

set equaling the linear space RM (as is shown in Fig. 6.2). This therefore

neglects the fact that the range set of the designed observable is a subset of

the linear space RM , since the designed observable (e.g., the polynomial-based

and the log-based) is fully determined by the lower-sized original network sig-

nal x1 ∈ RN . As such, the sampling vertex subset maps from RM other than

the range set itself Ud will inevitably give rise to the redundant selection of

sampling vertices for the recovery of the observable that belongs to Ud ( RM

(seen Fig. 6.2(a)-(b)). We show the comparison performance in Figs. 6.5-6.6.

6.4.2 Comparison with Linear GFT Sampling

Linear GFT sampling method is to sample and recover the time-varying network

signal xk that belongs to a known subspace (i.e., having signal dependency among

vertices, which is also referred to as the graph bandlimited domain) of RN , i.e.,

∀k ∈ N+,xk ∈ span{q1,q2, · · · ,qr} ⊂ RN . Here, the orthogonal r < N supports

q1,q2, · · · ,qr are derived either from the r-leading eigenvectors of the topology-

equation based matrix (in Chapter 3), or from the prior knowledge of the signal-

space (in Chapter 4). As such, the linear GFT operator Q−1 = QT can be assigned

as QT = [q1, · · · ,qr]T . And the GFT and inverse GFT processes are x̃k = QT · xk
and xk = Q · x̃k respectively. In such a manner, the sampling matrix CΦ to ensure

the recovery of xk from CΦ ·Φ · xk can be determined by [30,34,35,38,46]

rank (CΦ ·Φ ·Q) = r. (6.34)

Here, different from the traditional graph Theorem 2 considering static graph signals,

the matrix Φ that specifies the linear time-evolution model is added by the work

in [46], i.e., Φ = [L0, · · · ,LK−1]T , given an exact or approximated linearized time-

evolution model xk+1 = L·xk. Then, as one derives the sampling matrix CΦ and the
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samples y = CΦΦ ·xk, the recovered signal x̂k can be computed by [30,34,35,38,46]:

x̂k = Q · pinv(CΦ ·Φ ·Q) · y, (6.35)

where pinv(·) represents the pseudo-inverse operator.

We provide the two main differences between our proposed Log-Koopman

nonlinear GFT sampling method and the popular linear GFT sampling method as

follows.

• First, as compared in Fig. 6.2(a) and Fig. 6.2(c), the linear GFT sampling

method relies on the signal dependency among network vertices. As such,

the selection of sampling vertex subset under such a graph bandlimited signal

subspace, is not suitable for the signals that do not belong to the assumed

signal-space. This thereby gives rise to the signal-space dependent sensor

placement, as CΦ in Eq. (6.34) will be changed with the different assumptions

of the dynamic signal-space.

• Second, when the prior knowledge of the dynamic governing equations and

the signal-space are unavailable, the linear GFT sampling method will lose

the compass, unable to generate an equation-driven or a data-driven GFT

operator for further network sampling and signal recovery. In contrast, our

proposed Log-Koopman nonlinear GFT sampling method is able to capture the

nonlinear graph bandlimted property of the observable uk = h(xk). As such,

the selection of the sampling vertex subset is achieved, which is independent

with the signal-space, and is suitable for any vector uk ∈ Ud ( RM determined

by any network signal xk ∈ RN . Therefore, the proposed scheme leads to a

time-invariant sensor placement scheme for monitoring and recovery of the

time-varying network signals.

6.5 Simulations & Experimental Results

In this section, the performances of our proposed Log-Koopman nonlinear GFT

sampling method will be examined. The key performance indicators include the

network domain sampling rate (i.e., the quotient of the size of sampling vertex

subset divided by the total number of network vertices, |C|/N), and the normalized

root mean square error (NRMSE) of the recovered time-varying network signals,
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defined in the following:

NRMSE =

√√√√∑K
k=1(x̂k − xk)T · (x̂k − xk)∑K

k=1 xTk · xk
. (6.36)

For the experimental setting, we configure the network using the Erdös–Rényi

graph, in which the probability of any directed edge is 0.5 and is independent from

other edges. We test 1000 different groups of data, of which the network scales

(i.e., the total number of vertices N) ranges from 10 to 100, in order to evaluate

the wide-range suitability for large/small network scales. The time-varying network

signals are derived by two general differential equations with parameters (F , B, and

R) according to [66], i.e.,

dxn(t)

dt
= F −B · xn(t)−

N∑
m=1

R · xn(t) · xm(t), (6.37)

dxn(t)

dt
= −B · xn(t) +

N∑
m=1

R · xm(t)2

1 + xm(t)2
. (6.38)

Eq. (6.37) is referred to as Biochemical Dynamics of protein interactions, governed

by the mass-action kinetics. The corresponding parameters in Eq. (6.37) are set as

F = 10, B = 1 and R = 1, and the initial signal for each vertex is randomly assigned

as xi(0) ∈ (0, 1) [66, 84]. Eq. (6.38) is referred to as gene Regulatory Dynamics.

The corresponding parameters in Eq. (6.38) are set as B = 1 and R = 1, and

the initial signal at each vertex is randomly configured as xi(0) ∈ (0, 100) [66].

Here, we emphasize that although we list the governing dynamic equations in Eqs.

(6.37)-(6.38), we do not rely on those exact expressions; what we require in this

experiment is their generated data for performance evaluation. For the proposed

logarithm observable in Eq. (6.6), we assign the scaling parameter η = 500 via a

scan and selection from all η with optimal linearization accuracy.

6.5.1 Log-Koopman Linearization Performance

In this part, the linearization accuracy of our proposed log-observable based Koop-

man operator is provided in Figs. 6.3-6.4. For Fig. 6.3, we use N = 50 biochemical

network dynamic in Eq. (6.37). For Fig. 6.4, an N = 100 gene Regulatory network

Dynamic in Eq. (6.38) is adopted. To evaluate the linearization accuracy, we com-

pare the proposed Log-observable based Koopman operator with the state-of-the-art

poly-observable based Koopman operator in [47]. Here, we represent the x-axis as
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Figure 6.3: Comparison of linearization performance between different Koopman
schemes, for N = 50 biochemical time-varying network signals of protein interac-
tions.

the number of observable elements in h(·) = [h1(·), h2(·), · · · , hM (·)]T in Eq. (6.6),

i.e., M . The y-axis then presents the normalized RMSE between the time-evolved

signals using Koopman operator and the original time-varying network signals.

It is firstly seen from Fig. 6.3 that, when the number of observable elements

equals the total number of network vertices (M = N), the linearization NRMSEs

of both schemes are identical (i.e., NRMSE = 0.3 for both schemes). This is

due to that both the proposed Log-observable based Koopman and the compared

Poly-observable based Koopman degenerate to the DMD, which directly use the

original network signals as the Koopman observable, i.e., h(xk) = xk. Then, it is

observed from Fig. 6.3 that, as the number of observable elements M increases, the

linearization NRMSEs of both schemes decrease. For example, when M increases

from 50 to 200, the linearization NRMSE decreases from 0.3 to 10−3 for our proposed

Log-Koopman, and when M increases from 50 to 2000, the linearization NRMSE

gets lower from 0.3 to an order of 10−4 for Poly-Koopman. Within this trend,

it is seen that the linearization NRMSE of the proposed Log-Koopman operator

converges faster to a small value as opposed to the Poly-Koopman operator in [47].

The former uses only M = O(N) (e.g., M = 3 × N = 150 in Fig. 6.3) observable

elements, which is much smaller than that of the Poly-Koopman operator (requiring
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M = O(N2)).

Figure 6.4: Comparison of linearization performance between different Koopman
schemes, for N = 100 gene Regulatory Dynamics.

Similar results are also illustrated in Fig. 6.4, where N = 100 gene Regula-

tory network Dynamic in Eq. (6.38) is evaluated. First, an identical linearization

RMSE (e.g., 0.2) is approached for both schemes at the point the number of observ-

able elements equaling the total number of network vertices (M = N), due to the

basic DMD observable selection used for both schemes. Then, we can see from Fig.

6.4 that, with an increase of the number of observable elements M , the linearization

NRMSEs of both schemes get smaller. For example, when M increases from 102

to 103, the linearization NRMSE decreases from 0.2 to nearly 10−3 for our pro-

posed Log-Koopman, and when M grows from 103 to 104, the linearization NRMSE

decreases from 0.2 to an order of 10−3 for Poly-Koopman. Also, the linearization

NRMSE of the proposed Log-Koopman operator converges faster when compared

with the Poly-Koopman operator in [47]. The former uses only M = O(N) (e.g.,

M = 5 ×N = 500 in Fig. 6.4) observable elements, much smaller than that of the

Poly-Koopman operator (which is not able to reach the same linearization accuracy

performance even if a group of M = O(N2) = 104 observables are used).

We attribute such observable size reduction to the logarithm summation used

by our proposed scheme to approximate the multi-elemental multiplicative terms of

Taylor series in Eq. (6.3). In such a manner, only a smaller number of logarithm-
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based observable elements are needed to approximate and replace the indefinite

multiplicative Poly-based observable elements. This therefore indicates the ability

of the proposed Log-Koopman to prevent the size explosion when addressing and

linearizing the large-scale time-varying network signals (i.e., N > 50). Subsequently,

such observable size reduction from M = O(N2) to M = O(N) makes the further

processes of network sampling and signal recovery more feasible and tractable, as

the Koopman operator of size M ×M will be used.

It is noteworthy that a major disadvantage of the proposed log-observable

based Koopman operator lies in a relatively large linearization NRMSE limit (e.g.,

an order of 10−3 in Figs. 6.3-6.4), as opposed to the poly-observable based Koopman

operator. This is due to the inaccuracy of the logarithm summation approximation

for the multi-elemental multiplicative polynomial terms. However, in the context of

the network sampling application, we address this by using the sample-awareness

training data to refine the designed Log-Koopman operator. To be specific, we gen-

erate the new training data evolved by the sample-related initialization, where values

from the sensor vertices are assigned as the initial samples, and others are randomly

generated. By doing so, we will show in the following that, the sample-awareness

Log-Koopman operator combined with the nonlinear GFT sampling theory, can

provide a promising network sampling and signal recovery performances.

6.5.2 Performance of Log-Koopman Nonlinear GFT Sampling and

Recovery

The performances of the proposed nonlinear GFT sampling scheme leveraging the

Log-Koopman operator is evaluated in the following. Here, two state-of-the-art sam-

pling methods are pursued for comparisons, i.e., the Poly-Koopman graph observ-

ability analysis scheme in [50], and the network time-difference smoothness signal

recovery scheme in [19].

Recovery Accuracy

We illustrate the recovery NRMSE with respect to the network domain sampling

rate, i.e., |C|/N , in Figs. 6.5-6.6, where Fig. 6.5 accounts for the N = 100 bio-

chemical network dynamic in Eq. (6.37), and Fig. 6.6 presents the N = 100 gene

regulatory network dynamic in Eq. (6.38). In Fig. 6.5, we firstly observe that, as

the sampling rate |C|/N increases from 0 to 1, the recovery NRMSEs of all schemes

become lower (e.g., the recovery NRMSE decreases from 10−1 to an order of 10−3

for our proposed scheme). This is due to the fact that a larger |C|/N can lead to
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Figure 6.5: Comparison of recovery NRMSE versus sampling rate among different
sampling schemes, for N = 100 biochemical network dynamic of protein interactions.

more samples from the network domain and therefore a better recovery performance

can be achieved. Then, it is observed that the sampling rate |C|/N from our pro-

posed Log-Koopman nonlinear GFT sampling scheme is much smaller as opposed

to the two competitive schemes in [50] and [19]. For example, our proposed Log-

Koopman nonlinear GFT sampling scheme reaches NRMSE = 10−2 by sampling

from only 50% of total network vertices, which is much smaller than that of the

Poly-Koopman graph observability scheme in [50] (needing nearly 90% of vertices

to guarantee the same order recovery NRMSE).

Similar results can be found in Fig. 6.6, which presents the N = 100 gene

regulatory network dynamic in Eq. (6.38). In Fig. 6.6, it is observed that, as the

sampling rate |C|/N increases from 0 to 1, the recovery NRMSEs of all schemes

become lower, as a larger |C|/N can lead to more samples from the network domain

and therefore a better recovery performance can be achieved. Then, we can see that

the sampling rate |C|/N from our proposed Log-Koopman nonlinear GFT sampling

scheme is much smaller as opposed to the two competitive schemes in [50] and [19].

For example, in Fig. 6.6, our proposed Log-Koopman nonlinear GFT sampling

scheme reaches a NRMSE lower than 10−2 by sampling from only 70% of total

network vertices, much smaller than that of the Poly-Koopman graph observability

scheme in [50] (needing almost all of vertices to reach the same recovery accuracy).
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Figure 6.6: Comparison of recovery NRMSE versus sampling rate among different
sampling schemes, for N = 100 gene regulatory network dynamics.

Recovery Robustness

We further analyze the robustness of our proposed Log-Koopman nonlinear GFT

method in the context of various network scales (i.e., the total number of network

vertices from N = 10 to N = 100). Figs. 6.7-6.8 provide the average recovery

NRMSEs over various N , under the network domain sampling rates as |C|/N =

25%, 50%, 75%. Here, Fig. 6.7 presents the results for the biochemical network

dynamic in Eq. (6.37). From Fig. 6.7, we can see that, the proposed Log-Koopman

nonlinear GFT sampling scheme has smaller average recovery NRMSEs, as opposed

to the Poly-Koopman graph observability scheme in [50], and the network time-

difference smoothness recovery method in [19], under the same network domain

sampling rates. For example, it is illustrated that when using 50% of the total

network vertices for monitoring, the proposed Log-Koopman nonlinear GFT can

approach an average NRMSE as an order of 10−2, which is much smaller than that

from the Poly-Koopman graph observability analysis (i.e., NRMSE ≈ 0.3), and

that from the graph smoothness batch (i.e., NRMSE ≈ 0.8). The gaps become

even larger when 75% of network vertices are monitored (i.e., 2× 10−3 for proposed

scheme vs. 0.2 for Poly-Koopman graph analysis and 0.4 for graph smoothness

batch).

Similar results can be seen in Fig. 6.8, which gives the recovery NRMSEs at
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Figure 6.7: Comparison of recovery NRMSE versus sampling rate among different
sampling schemes, for different network scales from N = 10 to N = 100 biochemical
time-varying network signals of protein interactions.

various network scales (i.e., N = 10 to N = 100) for the gene regulatory network dy-

namic provided in Eq. (6.38). From Fig. 6.8, it is observed that, the proposed Log-

Koopman nonlinear GFT sampling scheme outperforms the Poly-Koopman graph

observability scheme in [50], and the network time-difference smoothness recovery

method in [19], by providing smaller average recovery NRMSEs under the same net-

work domain sampling rates. For example, we can see that when using 25% of the

total network vertices for monitoring, the proposed Log-Koopman nonlinear GFT

has an order of 10−1 NRMSE as opposed to that from the Poly-Koopman graph

observability analysis (i.e., NRMSE ≈ 0.7), and that from the graph smoothness

batch (i.e., NRMSE ≈ 1). Such gaps get larger when 50% and 75% of network

vertices are sampled (e.g., at |C|/N = 50%, we have 1× 10−2 for proposed scheme,

0.2 for Poly-Koopman graph analysis, and 0.8 for graph smoothness batch).

Combining the results from Figs. 6.7-6.8, we obtain that, the proposed Log-

Koopman nonlinear GFT sampling scheme is applicable to a wide range of the

network scales. Then, it is also demonstrated that, our proposed scheme requires a

sampling of 50% network vertices to ensure a relative low recovery NRMSE (i.e., an

order of 10−2), quite smaller than those of the two competitive methods in [19,50].
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Figure 6.8: Comparison of recovery NRMSE versus sampling rate among different
sampling schemes, for different network scales from N = 10 to N = 100 gene
regulatory network dynamics.

Result Explanation

We explain the advantage of the sampling vertex subset reduction from our pro-

posed Log-Koopman nonlinear GFT in the following. First, the scheme in [19], al-

though uses the network domain smoothness (graph bandlimitedness) of the signal

time-difference, overlooks the more exact time-evolution and network domain signal

dependency. As such, its performance is not comparable to our proposed scheme,

whereby an accurate Koopman time-evolution model and networked nonlinear GFT

dependency are exploited for network sampling and signal recovery. Second, when

compared with the Poly-Koopman graph observablity analysis method in [50], the

sampling vertex subset reduction of the proposed Log-Koopman nonlinear GFT

scheme is thanked to the exploration of the nonlinear dependency between designed

observable elements. As we derive the Koopman operator, the original network sig-

nal xk of size N × 1 is expanded by the dependent M > N observable elements,

i.e., uk = [h1(xk), · · · , hM (xk)]
T , and the purpose is then converted to search the

sampling vertex subset C to recover the initial observable u1. As such, the selection

of the sampling vertex subset should exploit the nonlinear dependence between the

elements of u1. In such a view, the graph observability analysis in [50] regards

the total M elements of u1 as independent, ignoring such nonlinear relations, and
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thereby results in redundant sampling vertices. In contrast, our proposed nonlinear

GFT scheme is able to transform the initial observable u1 to its graph bandlimited

set determined by the original N elements, i.e., u1 = h(x1), and therefore capable of

obtaining the smaller sized sampling vertex subset for network sampling and signal

recovery.

6.6 Conclusions & Discussions

For this chapter, we have proposed the Log-Koopman based nonlinear GFT sam-

pling framework for the scenarios where both the signal dependency among vertices

and the dynamic time-evolution model are unknown. To use the time-evolution

information for sampling vertex subset selection and network signal recovery, the

Log-Koopman operator has been designed, able to derive a linearized time-evolution

of the designed logarithm vector-valued observable defined on the original signal

space. Compared with the state-of-the-art Poly-Koopman operator that causes a

size explosion using M = O(N2) observable elements, the proposed one can reduce

the observable size to M = O(N) by the designed logarithm summation to approxi-

mate the multi-elemental multiplicative polynomial terms for poly-based observable.

This thereby enables the further compression process that relies on the linearized

time-evolution model. Then, the nonlinear GFT sampling framework has been pro-

posed with the proven sampling theory, for the purpose to analyze and exploit the

M dependent observable elements defined and determined by the N original signal.

Compared to the graph observable analysis that treat the M observable elements

independent, the proposed nonlinear GFT sampling can achieve a more compact

sampling vertex subset by mapping the samples to the more compact range set of

the designed vector-valued observable.
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Chapter 7

Summary & Future Works

Network and nonlinear dynamic mechanisms underlie the coupling and complex

functionalities of many engineering, ecological, social, biological systems. Optimally

deploying sensors for monitoring the network’s time-varying signals serves as the

fundamentals for a wide-range of engineering and scientific purposes. In this thesis,

we study how to place sensors on a subset of network vertices, to ensure the recovery

of the time-varying network signals.

7.1 Summary of this Thesis

This thesis began by reviewing the current sampling and compression approaches

categorized by relying on the signal dependency among network vertices, and the

time-evolution information. The former requires an operator to uncover and charac-

terize the dependencies of the signals on different vertices, rendering a huge difficulty

for current topology-only GFT framework. The latter regards the linear/linearized

time-evolution dynamic model as the prerequisite for further exploration of sequen-

tial information and sampling selection, thereby making it less practical for most of

the real-world applications without explicit dynamic models.

These two challenges motivated us to develop (i) dynamic mechanism-topology

combined GFT sampling, and (ii) linearized dynamic time-evolution modelling and

sampling, which have been proposed and elaborated in Chapters 3-4, and Chapters

5-6 respectively.

In Chapter 3, the GFT operator with combined dynamic equation and net-

work topology were developed in the cases with the explicit dynamic governing

equations. Such an equation-topology GFT operator is able to uncover the signal

dependency among different vertices. Then, the GFT sampling theory were revised
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to select the time-invariant sampling vertex subset, as well as determine the dis-

cretizing rate (time-domain sampling frequency), by mapping the samples to the

whole graph bandlimited frequency response. As such, the GFT framework estab-

lishes how to sample and discretize the continuous network signals under explicit

governing equations.

In Chapter 4, the data-driven GFT operators were developed in order to deal

with the cases where dynamic governing equations are unavailable. Learnt from the

prior knowledge of the signal-space, such a data-driven GFT operator is capable of

capturing the hidden dynamic mechanism from data. Then, GFT sampling theory

for matrix data were developed to identify the time-invariant sampling vertex subset,

by ensuring the one-to-one mapping between the samples and the whole graph ban-

dlimited frequency response. Also, for monitoring the water-distribution network

that is buried in-depth underground and is hard to be penetrated for data collection

and transmission, we proposed a molecular relay mechanism for each sensor vertex

to (i) encode the samples into the structure of DNA molecules, and (ii) transmit

them via the pipe itself, thereby avoiding the complex penetration techniques and

extra communication networks. In such a manner, we re-designed the sampling

vertex subset selection algorithm to ensure the connectivity between the sensor ver-

tices and the hub vertex for collecting reports and signal recovery. As such, the

data-driven GFT sampling framework that can characterize and exploit the signal

dependencies among vertex for sampling point selection has been established.

In Chapters 5-6, we considered the network sampling in the absence of the

signal dependency among vertices (i.e., both the dynamic governing equations and

the signal-space are unknown). We alternatively relied on the time-evolution infor-

mation to achieve network sampling and signal recovery with latency. In Chapter

5, we developed the sequential data-driven GFT operator, by analyzing the prin-

cipal component of the previously recovered signals. Such a sequential PCA GFT

operator is able to characterize and exploit the transient signal dependency for net-

work sampling, however, approaches the time-varying sampling vertices as the signal

dependency among different vertices changes with time.

In Chapter 6, to further exploit the hidden time-evolution information, and to

derive a time-invariant sampling strategy, we proposed the Log-Koopman nonlinear

GFT sampling framework. Here, we designed the Log-Koopman operator to derive

a linearized dynamic time-evolution model, leveraging which, the nonlinear GFT

concept and sampling theory were proposed to achieve the time-invariant sampling

vertex subset for complete signal recovery. As such, given its model and signal in-

dependency characteristics, our proposed Log-Koopman GFT sampling framework

120



is useful and can be adjusted to a wide range of network signal sampling and recovery

applications.

7.2 Future Works

The future works will be mainly focused on industrial engineering and applications.

This requires a pathway to a more straightforward, interpretable and trustworthy

approach that the industry can easily adopt. Machine learning has hitherto been

an useful and easy-to-use tool, to achieve a solution to complex and hard-to-solve

problem with little expertise. As such, a combination with machine learning is

demanding to expand the impact of our research.

The first step is to construct an auto-encoder and an auto-decoder using two

neural networks (NN), where the former is to identify which vertices will be selected

for samples, and the latter is to recover the time-varying network signals from the

samples. Compared to our proposed dynamic-topology GFT framework where only

the linear signal dependency among vertices can be considered, the encoder NN

trained by the resulting GFT sampling points has the potential to characterize

the nonlinear dependency among signals on different vertices, given the nonlinear

properties of the activation functions on each neuron. This may achieve a more

compact sampling vertex subset for signal recovery, as deeper nonlinear dependency

governed by the hidden dynamical mechanism is taken into account.

To achieve an easy-to-use as well as trustworthy sampling framework for

industrial engineering, using only NN based auto-encoder and auto-decoder are not

enough, as they typically lack the transparency and are hard to be explained, due

to the black-box nature of NN. This makes them vulnerable to malicious inputs

and may result in unreliable outputs that are not trustworthy. As such, our second

step will be spent on improving the explanability of the NN encoder and decoder.

We will use the state-of-the-art metrics and methods (e.g., neurons’ visualization

and NN symbolic representation) introduced in [85], trying to build a reliable and

explainable artificial intelligence (X-AI) framework for network sampling and signal

recovery.
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