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Abstract

Groups are one of the most fundamental objects in Mathematics and have been

generalised in many fashions. This thesis focuses on two generalisations.

Within the study of groups by geometric and combinatorial group theorists, instead

of thinking about groups as an algebraic object they choose to study them through

their Cayley graph. This has paved the way to many simplified proofs of properties

about groups. Cayley graphs are vertex transitive graphs with a regular action by a

group. However, not all vertex transitive graphs have a regular action and so cannot

be Cayley graphs. This is reflected in the comparable levels of knowledge about

them. The first chapter in this thesis generalises the concept of a group presentation

and their associated Cayley graph. We hope this will open the door for techniques

from combinatorial and geometric group theory to be applied to the study of vertex

transitive groups.

The second is the study of groups in higher categories. Cayley pointed out that the

study of groups is really just the study of symmetries. When we categorify groups

into the setting of 2-categories, we study the symmetries between the symmetries

given by a classical group. That is we allow the group axioms to hold only up to

natural isomorphism. From this point of view we study 2-groups in the same way

people studied classical groups, namely through their actions on vectors spaces. In

this setting the 2-Vector spaces. The work provides an explicit formula for their

characters.
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Chapter 1

Introduction

This thesis combines three projects in two genres. Each genre has its own introduc-

tion. However, here we provide an overview of what is included in the thesis. The

thesis focuses on generalisations of groups and Cayley graphs.

First, we generalise the concept of group presentations and the associated Cayley

graph, so that the definition can generate all vertex transitive graphs. We call these

split presentations and split graphs, and show that this generalisation does indeed

capture all vertex transitive graphs.

Theorem 2.3.12 Every connected vertex transitive graph has a split presentation.

To do this we prove a result within vertex transitive graphs. This can be read by

itself, so we include it in the appendix to this chapter.

Theorem 2.7.1 Every infinite, connected, vertex transitive graph has a perfect

matching.

Lastly, we use these ideas to solve an open problem of Watkins [53], and Grimmett

and Li [20].

Theorem 2.5.1 There exists a cubic 2-ended vertex transitive graph which is not

a Cayley graph.

In the third chapter we look at the generalisation of groups to higher categories,

namely 2-groups. However, these generalisations can be done in a number of ways.

The first result of this chapter is a new way to get from a skeletal 2-group to a

2-group given by a crossed module.
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Theorem 3.2.3 A skeletal 2-group given by (G,H,α) is equivalent to a crossed

module K = (A
∂−→ B) given by:

• group B = G×MorSet(G,H)/H where (X, [θ1])⊗ (Y, [θ2]) = (XY, [θ]) with

θ(z) = α(X,Y, z) + Xθ2(z) + θ1(Y z),

• group A = MorSet(G,H)/H ×H where ([θ1], a)⊗ ([θ2], b) = ([θ1 + θ2], a+ b),

• where ∂ : A→ B being ∂([Φ], h) = (1G, [Φ]), and

• with the group action B ↪→ A given by (X, [θ]) : ([Φ], h) 7→ ([XΦ(X−1−)],Xh).

We study 2-groups, just like in classical group theory, by their representations.

Associated to these are characters. We show that the space of 2-representations is

the same as a certain Burnside ring and that these characters are a specific mark

homomorphism.

Theorem 3.3.5 Let K = (A
∂−→ B) be a crossed module, P be the subgroup of

π1(K) generated by ā and b̄. Let α := X(b,a, h) considered as a group homomorphism

2-Rep1(KP )→ K×. If the order of π1(K) is finite and invertible in the field K, then

X(b,a, h) = fαP .

We then use this understanding to write down a formula for the character in the

case of the 2-group being a finite group.

Theorem 3.3.8 Let a,b ∈ B be commuting elements, Θ a degree one 2-representation

of B, µ ∈ Z2(B,K×) a cocycle such that [µ] = {Θ}. Then

X(b,a)(〈Θ, B〉) = µ(b,a−1)µ(a−1,b)−1.

Which we then use to rederive the formula originally given by Orsorno.

Theorem 3.3.11 ([45, Theorem 1]) Let Θ be a 2-representation of B that corre-

sponds to a B-set X and a cohomology class [θ] for some cochain θ ∈ Z2(B, (K×)X).

Then

XΘ(b,a) =
∑

x∈X, x=a·x=b·x

θx(b,a−1)

θx(a−1,b)
=

∑
x∈X, x=a·x=b·x

θx(b,a−1)θx(a,ba−1)

θx(a,a−1)θx(1, 1)

for any commuting a,b ∈ B.

What follows is some introductory material which will be used throughout all the

projects. We also set our notation that we use in the following work.
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1.1 Preliminaries

In this section, we review some commonly known material for use in the later sections.

We start by fixing our notation for some basic concepts.

1.1.1 Groups

When groups are referred to in this thesis they will in general use the notation G, H,

N , A and B with appropriate super- and sub-scripts. We use the short hand H ≤ G
to denote that H is a subgroup of G, and we use H/G to say it is a normal subgroup.

We define the centraliser of a subgroup H ≤ G by CG(H) = {g ∈ G|gh = hg for all

h ∈ H}. If a group G is acting on a set X then we use Gx := {g ∈ G|gx = x} to

denote the point stabiliser of x ∈ X. Similarly, we define GY := {g ∈ G|gY = Y }
setwise stabiliser for Y ⊂ X. We define the orbit of x ∈ X as Gx = {y ∈ X|y = gx

for some g ∈ G} and similarly for sets with the set of orbits to be OrbX(G).

A group action is regular if it acts transitively and with trivial point stabilisers. It is

semi-regular if it acts only with trivial point stabilisers.

Given a set S we use FS to denote the free group generated by S. Given some

words R ⊂ FS we use 〈R〉 ≤ FS to denote the subgroup generated by R. We use

〈〈R〉〉FS / FS to denote the normal closure of R in FS , the subscript will be dropped

if the secondary group is clear from context. Some groups will be given by group

presentations G = 〈S|R〉 where R ⊂ FS which is the group G = FS/〈〈R〉〉. Some

standard groups we use through out are the cyclic group of order n Z/nZ and the

dihedral group of order 2n D2n.

1.1.2 Graphs

Graphs are refered to by the notation Γ, ∆ and Λ with appropriate decoration. For

the majority of the thesis we use the structure of graphs as in [50], that is a graph is:

• a set V (Γ) (vertices),

• a set
−→
E (Γ) (directed edges),

• a fixed point free involution −1 :
−→
E (Γ) →

−→
E (Γ) (mapping edges to their

‘opposite edge’), and

• a map τ :
−→
E (Γ)→ V (Γ) (terminus map).

Sometimes elements of
−→
E (Γ) are expressed as directed pairs (v, w) with v, w ∈ V (Γ),

in which case we mean that τ((v, w)) = w and (v, w)−1 = (w, v). We define the set

3



of undirected edges E(Γ) =
−→
E (Γ)/e ∼ e−1. An undirected edge uses notation [e] or

[(u, v)] if we use the notation as above.

Note that although we are talking about ‘directed edges’, we are not talking about

‘directed graphs’ in the sense of [8]. Our edges can be thought of as undirected pairs

of vertices, but our formalism allows us to distinguish between two orientations for

each of them. Moreover, our formalism allows for multiple edges between the same

pair of vertices, and multiple loops at a single vertex. Thus the pair (V (Γ), E(Γ)) is

a multigraph in the sense of [8].

A path in a graph is an ordered set of directed edges e1, e2, . . . , en such that τ(ei) =

τ(e−1
i+1), we would say this path has length n. A path is a loop if τ(en) = τ(e−1

1 ).

An infinite ray is an ordered set of directed edges e1, e2, . . . indexed by N such that

τ(ei) = τ(e−1
i+1). A bi-infinite ray is an ordered set of directed edges . . . , e−1, e0, e1, . . .

indexed by Z such that τ(ei) = τ(e−1
i+1).

The neighbourhood of a vertex v ∈ V (Γ) is the subset of the vertices Nb(v) =

{x ∈ V (Γ)|(v, x) ∈
−→
E (Γ)}. This comes with a similar notion the star of a vertex

St(v) = {e ∈
−→
E (Γ)|τ(e−1) = v}. A directed edge e ∈

−→
E (Γ) is a loop if τ(e) = τ(e−1).

The degree d(v) of a vertex v ∈ V (Γ) is the cardinality of |St(v)|. Our graphs can

contain loops and double edges, normally when dealing with them topologically. A

graph is called n-regular (or just regular if we don’t want to specify n) if for all

v ∈ V (Γ) we have d(v) = n. We call 3-regular graphs cubic. A graph is locally finite

if each vertex has finite degree.

A map of graphs f : Γ → ∆ consists of two maps fV : V (Γ) → V (∆) and

fE :
−→
E (Γ) →

−→
E (∆) such that fV ◦ τ = τ ◦ fE and fE ◦ −1 = −1 ◦ fE . Maps

of graphs are considered to be rigid, therefore no collapsing of edges or mapping

edges to paths. Define Aut(Γ) = {f |fV and fE are bijections} to be the group of

automorphisms of a graph Γ.

We say that Γ is vertex transitive if Aut(Γ) acts transitively on V (Γ), and edge

transitive if Aut(Γ) acts transitively on E(Γ). We say that Γ is arc-transitive, or

symmetric, if Aut(Γ) acts transitively on
−→
E (Γ). We say Γ is semi-symmetric if it is

edge transitive and regular but not vertex transitive.

For a graph Γ we say that it has a vertex (edge or directed edge) colouring by some

set X if there is a mapping c : V (Γ) → X (c : E(Γ) → X or c :
−→
E (Γ) → X). An

orientation of Γ is a subset O ⊂
−→
E (Γ) such that |O ∩ {e, e−1}| = 1 for all e ∈

−→
E (Γ).
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We say that Γ is a directed graph if it comes with an orientation O. We say that

φ ∈ Aut(Γ) is colour preserving if c = c ◦ φ and direction preserving if φ(O) = O.

Some standard graphs used throughout will be the cyclic graph on n vertices Cn, the

complete graph on n vertices Kn and the rose on S RoS . The rose RoS is the one

vertex graph with a loop for every element in the set S which comes with a colouring

by S and an orientation.

Given a graph Γ, its line graph L(Γ) is the graph where V (L(Γ)) = E(Γ) with an

edge between any two edges that share a end vertex
−→
E (L(Γ)) = {([e1], [e2])|e1, e2 ∈−→

E (Γ) and τ(e1) = τ(e2)}.

Sometimes it is useful to pick out certain subgraphs, throughout we will use induced

subgraphs. Given a subset of the edges X ⊂ E(Γ), the induced graph ΓX is defined

by V (ΓX) = {τ(e) ∈ V (Γ)|e ∈ x ∈ X} and
−→
E (ΓX) = {e|e ∈ x ∈ X}. Any subset of

the edges M ⊂ E(Γ) such that ΓM has maximum degree 1 is called a matching. Any

matching M such that V (ΓM ) = V (Γ) is a perfect matching. A subset of the edges

H ⊂ E(Γ) is called a Hamiltonian cycle if the induced graph is 2-regular connected

with V (ΓH) = V (Γ). A graph is called Hamiltonian if it contains a Hamiltonian

cycle.

1.1.3 Group presentations and Cayley graphs

For an in detail look at these definitions please see [32]. To a group G with a subset

S we can associate a directed edge coloured graph Γ := Cay(G,S) called its Cayley

graph. The vertex set V (Γ) = G are the elements of the group G and we connected

(g, gs) ∈
−→
E (Γ) by a directed edge coloured with s ∈ S.

We have a natural left G-action on Γ by mapping h · g 7→ hg which is a colour and

direction preserving automorphism.

For ease of notation we may refer to these as Cay(G) if the set S is clear or Cay〈S|R〉
for a group given by a presentation with the generating set being S. Unless otherwise

stated, we are not assuming that S generates G. This implies that the Cayley graphs

in this thesis are not all connected. In Figure 1.1 is some examples of such graphs.

In Figure 1.1 we have contracted involutions to a single edge, however formally this

is not correct. This will be further explained in Chapter 2.
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1

a a2

a3

b

ab a2b

a3b

...

...

Cay〈a, b|a4, b2, (ab)2〉 Cay〈a, b|b2, (ab)2〉

. . .. . .

. . .

. .
.

. .
.

. . .

Cay〈a, b, c|a2, b2, c2, (ab)3, (ac)4, (bc)4〉

Figure 1.1: Examples of Cayley Graphs

1.1.4 Topology

For an in detail look at these definition, please see [23]. A 0-dimensional simplicial

complex is a set of points with the discrete topology. A simplicial complex of dimen-

sion n will be a simplical complex of dimension n − 1 called C, a set of n-discs S
and a (attaching) map from the boundary of each n-disc to the space a : ∂S→ C

which defines a topological space by (C
⋃
S)/x ∼ a(x).

Given a graph Γ with vertex set V , and any orientation on its edges O ⊂
−→
E (Γ), we

define a topological space as follows. Associate a point to each vertex, and a closed

interval Ie = [0, 1] to each edge e ∈ O. Then define the quotient Ie(0) ∼ τ(e−1) and

Te(1) ∼ τ(e) to obtain the topological space

Γ = (V ∪
⋃
e∈O

Ie)/ ∼ .

It is not hard to see that when Γ is connected this topological space is path-connected,

locally path-connected and semilocally simply-connected (every point has a neigh-

bourhood which is simply connected). Moreover, different choices of O define

homeomorphic topological spaces. Lastly as all closed intervals Ie have a metric

given by the subspace topology, we can take the path metric of Γ.
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A path in a topological space X is a continuous mapping p : [0, 1] → X with end

points p(0) and p(1). If p1 and p2 are paths in x such that p1(1) = p2(0) we can

concatenate the two paths to get path p3 := p1◦p2 : [0, 1]→ X so that p3(x) = p1(2x)

for x ∈ [0, 1/2] and p3(1/2 + x) = p2(2x) for x ∈ (0, 1/2]. A homotopy between

paths p1 and p2 is a continuous map h : [0, 1]× [0, 1]→ X such that h(0, x) = p1(x)

and h(1, x) = p2(x). A homotopy is end point preserving if p(x, 0) = p(y, 0) and

p(x, 1) = p(y, 1) for all x, y ∈ [0, 1]. A path is a loop if p(0) = p(1). The fundamental

group π1(X,x) is the set of loops with end point x up to end point preserving homo-

topy, this forms a group under the operation of concatenation. In a simplical complex

(or graph) every element in the fundamental group has a representative whose

image lies in the 0/1-cells (1-skeleton) of the simplical complex. In graphs it is com-

mon to think of elements of the fundamental group as loops in the graph theory sense.

A covering space (or cover) of a topological space X is a topological space C endowed

with a continuous surjective map ψ : C → X such that for every x ∈ X, there exists

an open neighbourhood U of x such that ψ−1(U) is the union of disjoint open sets

in C, each of which is mapped homeomorphically onto U by ψ.

Given a map of spaces φ : Y → X, and a point y ∈ Y such that φ(y) = x, we obtain

an induced map on the level of fundamental groups φ∗ : π1(Y, y) → π1(X,x) by

composition. For a covering map φ Hatcher shows that φ∗ is injective [23, Proposition

1.31]. If Y is arc-connected, and π1(Y, y) = 1, that Y is simply connected, we call Y

the universal cover.

Given a cover ψ : C → X and a map φ : Y → X (with Y path connected, and locally

path connected) we obtain a lift φ̃ : Y → C (where φ = ψ ◦ φ̃) of φ if and only

if φ∗(π1(Y, y)) ⊂ ψ∗(π1(C, c)) [23, Proposition 1.33]. Moreover, for any preimage

c ∈ ψ−1(x) we can choose φ̃(y) = c.

Lastly we recall the classification of covering spaces:

Theorem 1.1.1. (Hatcher [23, Theorem 1.38]) Let X be a path-connected, locally

path-connected, and semilocally simply-connected topological space. Then there is a

bijection between the set of isomorphisms classes of path-connected covering spaces

ψ : C → X and the set of subgroups (up to conjugation) of π1(X), obtained by

associating the subgroup ψ∗(π1(C)) to the covering space C.
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1.1.5 Geometric group theory

Let X be a topological space, and suppose that

K1 ⊆ K2 ⊆ K3 ⊆ . . .

is an ascending sequence of compact subsets of X whose interiors cover X. Then X

has one end for every sequence,

U1 ⊇ U2 ⊇ U3 ⊇ . . .

where each Un is a connected component of X\Kn. Then number of ends doesn’t

depend on the specific sequence Ki.

A map f : X → Y of two metric spaces (X, dX) and (Y, dY ) is called a quasi-

isometry if there exists constants A ≥ 1, B ≥ 0 and C ≥ 0 such that the following

two conditions hold:

• for all points x, x′ ∈ X

1

A
dX(x, x′)−B ≤ dY (f(x), f(x′)) ≤ AdX(x, x′) +B,

• and for every y ∈ Y there exists x ∈ X such that

d(y, f(x)) ≤ C.

We say that two spaces are quasi-isometric if there exists a quasi-isometry between

them. This forms an equivalence relations. Moreover, when we say something is

quasi-isometric to a group, we mean to a Cayley graph of that group.

It was shown by Brick [5] that if two locally finite graphs are quasi-isometric then

they have the same number of ends. Another useful result of geometric group theory

is the Šarc-Milnor lemma as stated below.

Theorem 1.1.2. (Milnor [41]) If a group G acts on a length space X properly

discontinuously and cocompactly then G is quasi-isometric to X.

We note that for this thesis graphs are length spaces with the path metric. An action

of G on X is cocompact if the quotient of X by G is compact. An action of G on X

is properly discontinuous if for all compact sets K ⊂ X the set {g ∈ G|K ∩g ·K 6= ∅}
is finite.
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Chapter 2

Split Presentations

Every Cayley graph is (vertex-)transitive but the converse is not true, with the Pe-

tersen graph being a well-known example. A lot of research focuses on understanding

how much larger the class of transitive graphs is or, what is essentially the same,

on extending results from Cayley graphs to transitive graphs. Since the algebraic

machinery is helpful in studying Cayley graphs, some of this work concentrates on al-

gebraic descriptions of transitive graphs [42]. This thesis offers a new algebraic way of

defining graphs, which we will prove to have the power to present all transitive graphs.

The idea is to still define our graphs by means of generators and relators similarly to

Cayley graphs defined via group presentations, but we now allow different vertices

to obey different sets of relators. The fewer ‘types’ of vertices we have the closer our

graph is to being a Cayley graph. This is perhaps best explained with an example:

in Figure 2.1 we have directed and labelled the Petersen graph with two letters r

and b, represented by red and blue edges respectively, that make it look almost like

a Cayley graph. But a closer look shows that if we start at any exterior vertex v

and follow a sequence of edges labelled brbrr then we return to v, while this is not

true if v is one of the interior vertices. In that case, brrbr is an example of a word

that gives rise to a cycle.

This example motivates our definition of a split presentation, which prescribes a

number of types of vertices, and a set of relators for each type. Moreover, it entails

a set of generators, and for each generator s it prescribes the type of end-vertex of

an edge labelled s for each type of starting vertex. The precise definition of split

presentations in the case where there are only two types of vertices, which we call

special split presentations, is given in Section 2.1. The case with more classes is

more involved, and it is given in Section 2.3.

We show how each split presentation defines a regular graph, by imitating the stan-
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Figure 2.1: The Petersen graph P (5, 2). The relation rbrrb is highlighted for the top
square vertex.

dard definitions of a Cayley graph via a group presentation: either as a quotient of a

free group by the normal subgroup generated by the relators (Definition 2.1.2), or as

the 1-skeleton of the universal cover of the presentation complex (Definition 2.1.7).

The resulting split graph is always regular, with vertex-degree determined by the

generating set, and it admits a group of automorphisms acting on it semi-regularly

and with as many orbits as the number of types of vertices prescribed by its pre-

sentation (Proposition 2.3.13). In particular, special split presentations always give

rise to bi-Cayley graphs. We prove this, as well as a converse statement, in Section 2.2.

Our first main result says that our formalism of split graphs is general enough to

describe all vertex transitive graph:

Theorem 2.3.12 Every connected vertex transitive graph has a split presentation.

In general, for the proof of this we allow for the vertex types to be in bijection

with the vertex set of the graph in question. It would be interesting to study

how much the number of vertex types can be reduced, see Section 2.6. In this

spirit, we show, in Section 2.4, that every line graph of a Cayley graph Γ admits a

split presentation with at most as many vertex types as the number of generators of Γ.

The proof of Theorem 2.3.12 involves decomposing the edge-set into cycles. This

decomposition is not obvious though, and it is related to a conjecture of Leighton [28]

disproved by Marušič [33]; see Section 2.3.2 for more. To find such decomposition we

had to generalise a result of [19, Theorem 3.5.1], saying that every connected finite

vertex transitive graph has a matching that misses at most one vertex, to infinite

vertex transitive graphs, which might be of independent interest:

Theorem 2.7.1 Let Γ be a connected infinite vertex transitive graph which is

locally finite. Then Γ has a perfect matching.

10



This is proved in the appendix, which can be read independently.

Incidentally, we find a cubic 2-ended vertex transitive graph which is not a Cayley

graph, answering a question of Watkins [53], recently revived by Grimmett and Li

[20]. Although this construction does not explicitly use the theory developed in this

thesis, our study of split presentations helped us understand where to look for such

examples.

Theorem 2.5.1 There exists a cubic 2-ended vertex transitive graph which is not

a Cayley graph.

This is proved in section 2.5, which can again be read independently.

2.1 Special Split presentations

2.1.1 Algebraic definition

Let G be a group. A presentation 〈S|R〉 of G consists of a generating set S ⊂ G

and a relator set R ⊂ FS , where FS denotes the free group with free generating set

S, such that G = FS/〈〈R〉〉. For a group presentation 〈S|R〉, we can construct the

Cayley graph Cay〈S|R〉 in the following manner. Let TS be the 2|S|-regular tree

defined by

V (TS) := FS , and
−→
E (TS) := {(w,ws)|w ∈ FS , s ∈ S ∪ S−1}.

We endow TS with a colouring c :
−→
E (TS) → S ∪ S−1 defined by c(w,ws) = s

and c(ws,w) = s−1. Let R := 〈〈R〉〉 be the normal closure of R in FS . Define

an equivalence relation ∼ on V (TS) = FS by letting v ∼ w whenever v−1w ∈ R.

Extend ∼ to
−→
E (TS) by demanding e ∼ d whenever c(e) = c(d) and τ(e) ∼ τ(d)

and τ(e−1) ∼ τ(d−1). Then Cay〈S|R〉 can be defined as the quotient TS/ ∼. The

corresponding covering map is denoted by η : TS → Cay〈S|R〉. Note that as ∼
preserves c, we obtain a unique colouring c′ :

−→
E (Cay〈S|R〉) → S ∪ S−1 satisfying

c = c′ ◦ η.

This definition of the Cayley graph is standard. All Cayley graphs defined this way

have an even degree: involutions in S give rise to pairs of ‘parallel’ edges with the

same endvertices. However, in certain contexts it is desirable to replace such pairs

of parallel edges by single edges. To accommodate for this modification —which is

important for us later as we want to capture odd-degree graphs such as the Petersen

11



graph with our presentations— we now introduce modified presentations and modified

Cayley graphs.

Let 〈S|R〉 be a group presentation such that S−1 = S (we allow repeats of elements

but these elements should have distinct inverses in S). Define a bijective map
-1 : S → S such that -1 ◦ -1 is the identity and s-1 = s−1. Define the modified

presentation P = 〈S, -1|R〉, note S divides into two sets I := {s = s-1 ∈ S} and

U := S\I. Define the modified free group for such a pair (S, -1) to be FMod
S,-1 =

〈S|ss-1, s ∈ S〉 =: FMod
P . (Thus FMod

P is a free product of infinite cyclic groups,

half of one for each s ∈ U , and cyclic groups of order 2, one for each s ∈ I.) Let

φ : FS → FMod
P be the unique homomorphism extending the identity on FS , as

provided by the universal property of free groups. Define the |S ∪ S−1|-regular tree

TP by

V (TP ) := FMod
P

−→
E (TP ) := {(w,ws)|w ∈ FP , s ∈ S ∪ S−1}.

We proceed as above to define the colouring c and the relation ∼, and obtain the

modified Cayley graph as the quotient TP / ∼.

We now modify the above construction of the Cayley graph, to obtain our split graphs.

The basic idea is to partition the vertex set into two (and later more than two)

classes V0, V1, obeying different sets of relators R0,R1. This bipartition creates the

need to partition our generators too into two classes S1,S2, the former corresponding

to edges staying in the same partition class, and the latter corresponding to edges

incident with both classes V0, V1.

We will formally define a special split presentation as a 4-tuple P = 〈S1,S2|R0,R1〉,
and explain how this data is used to define a split graph, in analogy with the

above definition of a Cayley graph Cay〈S|R〉 corresponding to a group presentation

P = 〈S|R〉. The set S1 is an arbitrary set of ‘generators’. The set S2 is partitioned

into two disjoint sets S2 = U ∪ I, so that S1,U , I are pairwise disjoint. Their union

S := S1 ∪ S−1
1 ∪ U ∪ U−1 ∪ I will be our set of generators. Define -1(s) = s−1 for

s ∈ S1 ∪ U and -1(s) = s for s ∈ I. The necessity of distinguishing S2 into U , I is to

allow for some involutions, namely the elements of I, to give rise to single edges in

our graphs, just like in the above definition of modified Cayley graph. This can’t be

done to S1 for the same reason the topological Cayley graph can’t have odd degree,

this will become apparent later.
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Just as in our definition of modified Cayley graph, we let FMod
P := FMod

S,-1 . Let | · |S2

be the unique homomorphism from FMod
P to Z/2Z extending

|s|S2 =

0 if s ∈ S1

1 if s ∈ S2

.

We have that K := Ker(| · |S2) is an index-two subgroup of FMod
P , and so its cosets

Ṽ0 := K and Ṽ1 := S2K bipartition FMod
P .

Definition 2.1.1. For any two sets R0,R1 ⊂ K, called relator sets, we call the

tuple 〈S1,S2|R0,R1〉 a special split presentation.

(The restriction Ri ⊂ K does not have an analogue in the definition of Cayley graph;

the intuition is that relators should start and finish at the same side of the bipartition

V0, V1 because they are supposed to yield cycles in the graph.)

Given a special split presentation P = 〈S1,U , I|R0,R1〉, define the (|S∪S−1|-regular)

tree TP by

V (TP ) := FMod
P

−→
E (TP ) := {(w,ws)|w ∈ FMod

P , s ∈ S ∪ S−1}.

We have a natural colouring c :
−→
E (TP )→ S ∪ S−1 defined by c(w,ws) = s. Define

the subgroups

R0 to be the normal closure of R0 ∪ {srs−1 : r ∈ R1, s ∈ S2} in K, and

R1 to be the normal closure of R1 ∪ {srs−1 : r ∈ R0, s ∈ S2} in K.

Here Ri ≤ K ≤ FMod
P is the analogue of the normal subgroup R of FMod

P in the

definition of Cay(P ), but now having two versions corresponding to our two classes

of elements of FMod
P , namely {Ṽ0, Ṽ1} := {K,S2K}. In analogy with the relation ∼

above, we now write v ∼ w whenever v−1w ∈ Ri for v, w ∈ Ṽi. We extend ∼ to the

edges of TP via e ∼ d if c(e) = c(d), τ(e) ∼ τ(d), and τ(e−1) ∼ τ(d−1).

Definition 2.1.2. The special split graph Spl〈S1,S2|R1,R2〉 = Spl(P ) =: Γ is the

quotient TP / ∼.

The edge set of Γ can thus be written as
−→
E (Γ) =

−→
E (TP )/ ∼.

As before, we have a natural colouring c :
−→
E (TP )→ S ∪S−1 defined by c(w,ws) = s,

and as ∼ preserves c, the latter factors into c′ :
−→
E (Γ)→ S∪S−1, i.e. the unique colour-
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ing satisfying c = c′◦η where again η denotes the projection map corresponding to ∼.

Note that this is a generalisation of the modified Cayley graph. When I = ∅ we

have a generalisation of the standard Cayley graph.

Borrowing terminology from groupoids [34], we define the vertex groups of our split

presentation to be Gi := K/Ri for i ∈ {0, 1}.

The condition Ri ⊂ K implies that if v ∼ w then v and w belong to the same

coset Ṽ0 or Ṽ1 of K in FMod
P by the definitions. Thus factoring by ∼ projects the

bipartition {Ṽ0, Ṽ1} of FMod
P into a bipartition {V0, V1} of V (Γ), with Vi := Ṽi/ ∼.

It follows from these definitions that Gi is in canonical bijection with Vi.

As in the case of Cayley graphs, relators in the presentation yield closed walks in Γ,

but now we need to start reading our relators at the right side of the bipartition for

this to be true: for every i ∈ {0, 1} and each r ∈ Ri and v ∈ Vi, if we start at v and

follow the directed edges of Γ with colours dictated by r one-by-one, we finish our

walk at v.

We now explain how the Petersen graph can be obtained as a special split graph:

Example 2.1.3. Theorem 2.1.14 below asserts that the Petersen graph P (5, 2) is

isomorphic to Spl(〈S1 = {a}, U = ∅, I = {b} | R0 = {a5, aba2b, b2}, R1 = {a5}〉) =

Spl〈 {a}, ∅, {b} | {a5, aba2b}, {a5} 〉. For this presentation we have

• FMod
P = 〈a, b|b2〉, so that TP is the 3-regular tree;

• K = 〈a, bab〉 ≤ FMod
P ,

• R0 = 〈〈a5, aba2b, ba5b〉〉K , and

• R1 = 〈〈ba5b, baba2, a5〉〉K .

The vertex groups Gi = K/Ri are generated by any generating set of K, in particular

by {a, bab}. They abide by the relations that generate Ri so in the case of R0 these

are a5, aba2b = a(bab)2 and ba5b = (bab)5 (when we write them in terms of the

generators of K). So we have

G0 =〈a, bab|a5, a(bab)2, (bab)5〉

=〈bab|(bab)−10, (bab)5〉 as a = (bab)−2

=Z/5Z = 〈bab〉
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and similarly

G1 =〈a, bab|(bab)5, (bab)a2, a5〉

=〈a|a−10, a5〉 as (bab) = a−2

=Z/5Z = 〈a〉.

The fact that G0 is isomorphic to G1 is not a coincidence as we remark at the end of

this section.

Figure 2.2: The Petersen graph P (5, 2) is isomorphic to Spl〈{a}, ∅, {b}|{a5, aba2b}, {a5}〉.
The square vertices are in V0 = Ṽ0/ ∼ and circles are in V1 = Ṽ1/ ∼. The relation aba2b is
highlighted for the top square vertex.

Note that we have made S a subset of the group FMod
P , and so each s ∈ S has an

inverse s−1 in FMod
P . With these inverses in mind we define S−1 := {s−1 : s ∈ S}.

Note that s = s−1 exactly when s ∈ I. Moreover, as S1 ⊂ K and Gi = K/Ri, we

can think of S1 as a subset of Gi in the following proposition:

Proposition 2.1.4. For every special split presentation P = 〈S1,U , I|R0,R1〉, the

subgraph of Γ := Spl(P ) with edges coloured by S1 ∪S−1
1 is isomorphic to the disjoint

union of Cay(G0,S1) and Cay(G1,S1).

Proof. Let Ti be the subgraph of TP induced by the vertices of Ṽi, and Γi be the sub-

graph of Γ induced by Vi = Ṽi/ ∼. We will show that Γi is isomorphic to Cay(Gi,S1).

To begin with, recall that Ṽ0 = K and G0 = K/R0, and so V0 is canonically identified

with G0. Thus to show that Γ0 is isomorphic to Cay(G0,S1), we need to check that

(v, w) is a directed edge of Γ0 coloured s whenever w = vs. The latter holds whenever

v′s ∈ η−1(w) for every v′ ∈ η−1(v), which is exactly when (v′, v′s) is a directed edge

of TP coloured s. This in turn is equivalent to (v, w) being a directed edge of Γ0

coloured s because c = c′ ◦ η.

This proves that Γ0 is isomorphic to Cay(G0,S1). To prove that Γ1 is isomorphic to

Cay(G1,S1) we repeat the same argument multiplying on the left with a fixed element
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of S2 throughout. Since V (Γ) is the disjoint union of V0 and V1, our statement

follows.

Proposition 2.1.5. For every special split presentation P = 〈S1,U , I|R0,R1〉, the

graph Γ := Spl(P ) is |S ∪ S−1|-regular.

Proof. By Proposition 2.1.4, the subgraph with edges coloured by S1 ∪ S−1
1 is 2|S1|-

regular. It therefore suffices to prove that every vertex in Γ has a unique outgoing

edge coloured s for every s ∈ S2 ∪ S−1
2 . Existence is easy by the definition of TP . To

prove uniqueness, suppose in TP we have two edges (v0, u0), (v1, u1) ∈
−→
E (TP ) where

c(v0, u0) = s = c(v1, u1) and v0 ∼ v1. So by definition ui = vis and v−1
0 v1 ∈ Ri for

i ∈ {0, 1}. Note that

u−1
0 u1 = s−1v−1

0 v1s = s−1(v−1
0 v1)s ∈ s−1Ris ⊂ Ri+1,

which means that u0 ∼ u1 and hence (v0, u0) ∼ (v1, u1) proving our uniqueness

statement.

Corollary 2.1.6. For a special split presentation P = Spl〈S1,S2|R1,R2〉 the uni-

versal cover of Γ := Spl(P ) is TP . Moreover, every edge with a colour in S1 connects

two vertices in Vi for some i ∈ {0, 1}, and every edge with a colour in S2 connects a

vertex in Vi to a vertex in Vi+1.

Proof. Recall that ∼ defines a map of graphs η : TP → Spl(P ), by η(x) = [x]. As

both TP and TP / ∼ are |S ∪ S−1|-regular by Proposition 2.1.5, and η is locally

injective, η is a cover. As the fundamental group of a tree is trivial we deduce that η

is in fact the universal cover.

By Proposition 2.1.4, edges labelled S1 connect vertices in Gi to vertices in Gi, which

are exactly the vertices in Vi. Moreover, in TP edges labelled S2 connect vertices

in Ṽi to Ṽi+1. Therefore, edges labelled S2 in Γ connect vertices in Ṽi/ ∼ = Vi to

vertices in Ṽi+1/ ∼ = Vi+1.

2.1.2 Topological definition

We now give an alternative definition of Γ = Spl(P ) following the standard topologi-

cal approach of defining a Cayley graph.

Let X be a set. Define the rose RoX to be a graph with a single vertex v and edge

set E(RoX) = X, where each x ∈ X = E(RoX) signifies a loop at v. To be more

precise, we let X−1 denote an abstract set disjoint from X and in bijection (denoted
−1) with X, and let X ∪X−1 be the set of directed edges of RoX . The terminus
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map τ of RoX maps all edges to v. We colour this rose by c :
−→
E (RoX)→ X ∪X−1

by an arbitrary choice of orientation; in other words, c is a bijection from
−→
E (RoX)

to X ∪X−1 satisfying c(e−1) = c(e)−1 for every e ∈ X.

For a presentation P = 〈S|R〉 of a group one often alternatively defines the Cayley

graph in the following more topological way. We start by constructing the presen-

tation complex C(P ) as follows. The 1-skeleton of C(P ) is RoS with vertex v. For

each relator r ∈ R, we introduce a 2-cell Dr and identify its boundary with the

closed walk of RoS dictated by r (see Definition 2.1.7 below). This completes the

definition of C(P ). The Cayley graph Cay〈S|R〉 is the 1-skeleton of the universal

cover of C(P ).

We now generalise this construction to the context of our special split presentations.

We remark that it is not so easy to obtain the modified Cayley graphs using this

construction because RoS has even degree, so any cover will also have even degree.

But treating I appropriately we will in fact be able to obtain graphs of odd degree.

Definition 2.1.7. Let P = 〈S1,U , I|R0,R1〉 be a special split presentation. We

construct the presentation complex C(P ) of P as follows. Start with two copies of

RoS1 , with vertices v0 and v1 respectively, and connect v0 and v1 with an edge for

each element of S2 ∪ S−1
2 ⊂ FMod

P . We will refer to this 1-complex C(P ) as the

presentation graph of P . We can extend the colouring of the two copies of RoS1 to a

colouring c :
−→
E (C(P ))→ S ∪ S−1 where c(e)−1 = c(e−1).

To define the 2-cells of C(P ), for each relator r = s1s2 . . . sn ∈ Ri, we start a walk pr

at vi and extend this walk inductively with the edge labelled si, i = 1, . . . , n. The

path pr starts and ends at vi as Ri ⊂ K. Attach a 2-cell along each such closed

walk pr to obtain C(P ) from C(P ). Finally, we define the special split complex to

be the universal cover of C(P ), and we define the (topological) special split graph

Spl′〈S1,U , I|R0,R1〉 to be its 1-skeleton.

Our next result, Theorem 2.1.11, says that this gives rise to the same graph as in

Definition 2.1.2. To prove it, we will use the theory of covering spaces (Section 1.1.4).

For this we need to turn our graphs into topological spaces, and we now recall the

standard way to do so.

Given a graph Γ with vertex set V , and any orientation on its edges O ⊂
−→
E (Γ), we

define a topological space as follows. Associate a point to each vertex, and a closed

interval Ie = [0, 1] to each edge e ∈ O. Then define the quotient Ie(0) ∼ τ(e−1) and
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Te(1) ∼ τ(e) to obtain the topological space

Γ = (V ∪
⋃
e∈O

Ie)/ ∼ .

It is not hard to see that when Γ is connected this topological space is path-connected,

locally path-connected and semilocally simply-connected. Moreover, different choices

of O define homeomorphic topological spaces.

Next, we define a type of colouring that will be useful to establish that certain maps

of graphs are covers.

Definition 2.1.8. Let Γ be a graph with a colouring c :
−→
E (Γ)→ X. We say that c

is Cayley-like if

1. Γ is |X|-regular,

2. for all e, e′ ∈
−→
E (Γ), if c(e) = c(e′) and τ(e) = τ(e′) then e = e′, and

3. there is an involution -1 : X → X such that c(e)-1 = c(e−1).

Suppose we have two graphs Γ and ∆ with Cayley-like colourings cΓ :
−→
E (Γ)→ X

and c∆ :
−→
E (∆)→ X. Then any surjective map of graphs φ : Γ→ ∆ which respects

these colourings, that is, cΓ = c∆ ◦ φ, is a covering map of the associated topological

spaces. Indeed, φ can’t map any two edges that share an end vertex to the same

edge, as this cannot respect the colourings.

Let Pv(Γ) be the set of walks in Γ starting at a vertex v, and define the modified

group FX,-1 =: FX by the presentation 〈X|{xx-1 : x ∈ X}〉. Then any Cayley-like

colouring c :
−→
E (Γ) → X defines a map Wv : Pv(Γ) → FX by p = ve1v1 . . . envn 7→

c(e1)c(e2) . . . c(en). Note that there is a well defined inverse W−1
v : FX → Pv(Γ) as

at every vertex v′ ∈ V (Γ) there is a unique edge e ∈
−→
E (Γ) with colour c(e) and

τ(e−1) = v′. Moreover, W−1
v is a double sided inverse to Wv, so both these maps

are bijections.

Definition 2.1.9. For any g ∈ FX , we say that W−1
v (g) is the walk (in Γ) dictated

by the word g starting at v.

This is a natural definition since we can express g as a word s1 . . . sn with si ∈ X∪X−1,

and obtain W−1
v (g) by starting at v and following the directed edges with colours

c(s1) . . . c(sn); this is well-defined when c is Cayley-like.

It is straightforward to check that if p is homotopic to p′, then Wv(p) = Wv(p
′).

Thus by restricting to the closed walks we can think of Wv as a map from π1(Γ, v)

to FX , and so the above remarks imply that
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Proposition 2.1.10. Wv is a group isomorphism from π1(Γ, v) to a subgroup of

FX .

Suppose we have a covering map of graphs ψ : ∆→ Γ both of which have Cayley-like

colourings c∆ :
−→
E (∆) → X and cΓ :

−→
E (Γ) → X such that c∆ = cΓ ◦ ψ. For a

path p : [0, 1] → Γ with p(0), p(1) ∈ V (Γ) and a lift p̃ : [0, 1] → ∆ of p by ψ, it is

straightforward to check that

Wp(0)(p) =Wp̃(0)(p̃) (2.1)

where with a slight abuse, we interpreted p as a walk in Γ in the obvious way.

Theorem 2.1.11. For every special split presentation P = 〈S1,U , I|R0,R1〉, the

special split graphs Γ = Spl(P ) and ∆ = Spl ′(P ) are isomorphic.

Proof. Our presentation graph C = C(P ) is |S ∪ S−1|-regular by definition. There-

fore, the universal cover of C is the |S∪S−1|-regular tree T , and we can let θ : T → C

be the corresponding covering map. Let cC :
−→
E (C) → S ∪ S−1 be the colouring

of C as above. This lifts to a colouring cT :
−→
E (T ) → S ∪ S−1 of T , by letting

cT (e) := cC(θ(e)). This colouring allows us to identify T with TP .

Let p ∈ π1(C, vi). As cC is a Cayley-like colouring of C, we can considerWvi(p) ∈ FP
by Definition 2.1.8 and the discussion thereafter. Any closed walk representing p

must use an even number of edges coloured S2 ∪ S−1
2 by the definition of C, so

Wvi(p) ∈ K ⊂ FMod
P . Moreover, each k ∈ K gives rise to a closed walk W−1

vi (k)

representing some element of π1(C, vi). Thus by Proposition 2.1.10,

Wvi is an isomorphism from π1(C, vi) onto K. (2.2)

Recall that we can identify T with TP . If in doing so we identify the identity

1
FMod
P

∈ V (TP ) of FMod
P with some vertex in θ−1(v0) (which we easily can) then

(2.2) implies

θ(Ṽi) = vi, (2.3)

because Ṽ0 = K and Ṽ1 = S2K.

Let η : TP → Γ be the covering map found in Corollary 2.1.6. Let cΓ :
−→
E (Γ)→ S∪S−1

be the colouring of Γ as in its definition. Now define a map ν : Γ → C by letting

ν(v) = vi whenever v ∈ Vi = η(Ṽi). If cΓ(e) = s for some e ∈
−→
E (Γ) then ν maps e

to the unique edge e′ ∈
−→
E (C) with cC(e′) = s and τ(e′) = ν(τ(e)). Since for every

v ∈ Ṽi we have η(v) ∈ Vi, we have ν(η(v)) = vi and hence θ = ν ◦ η by (2.3).
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Figure 2.3: Maps used in Proposition 2.1.11

Let ε̂ : ∆̂ → C be the universal cover of C := C(P ). We know that ∆ and C are

the 1-skeletons of ∆̂ and C respectively, so we obtain the inclusion maps i : ∆→ ∆̂

and i : C → C. Furthermore, by restricting ε̂ to the 1-skeleton we obtain a covering

map ε : ∆→ C. As θ : TP → C is the universal cover of C, it can be lifted through

ε : ∆→ C to a map Φ : TP → ∆ so that ε ◦ Φ = θ by the definition of a universal

cover. This gives us a map Φ̂ : TP → ∆̂ defined by Φ̂ := i ◦ Φ. Note that all these

maps respect the colourings of the edges as θ and ε̂ do.

By Theorem 1.1.1, to show Γ ∼= ∆ it suffices to show that ν∗(π1(Γ)) = ε∗(π1(∆)), or

equivalently Wvi(ν∗(π1(Γ))) = Wvi(ε∗(π1(∆))) as Wvi is a bijection. To do so, we

will prove that the latter groups are both equal to Ri, where Ri is as defined after

Definition 2.1.1.

To show that Wvi(ν∗(π1(Γ))) = Ri, let p be a closed walk representing some element

of π1(Γ, v) with v ∈ Vi. Choose a lift of p to a walk p̃ : [0, 1]→ TP (so η ◦ p̃ = p). We

know that η(p̃(0)) = η(p̃(1)) = v, so p̃(0), p̃(1) ∈ η−1(v) implying p̃(0)−1p̃(1) ∈ Ri.
So Wvi(ν∗(p)) =Wvi(θ(p̃)) ∈ Ri, which proves that Wvi(ν∗(π1(Γ))) ⊆ Ri.

We would like to use Proposition 2.1.10 to deduce Wvi(ν∗(π1(Γ))) = Ri, and for this

it now only remains to prove that the former is surjective onto Ri. To show this,

pick any r ∈ Ri. As Ri ⊂ K ∼= Wvi(π1(C, vi)) by (2.2), there is a representative q

of an element of π1(C, vi) such that Wvi(q) = r. Choose a lift q̃ : [0, 1] → TP of q

through ν ◦ η = θ, such that η(q̃(0)) = v (and so ν ◦ η ◦ q̃ = θ ◦ q̃ = q). Then as

Wv(q̃) =Wv0(q) = r ∈ Ri we have q̃(0)−1q̃(1) ∈ Ri, and so q̃(0) ∼ q̃(1), with ∼ as

in the definition of Γ as a quotient of TP . This means that η(q̃(1)) = η(q̃(0)) = v,

and so η ◦ q̃ is a loop representing an element of π1(Γ, v). Since ν∗(η ◦ q̃) = θ ◦ q̃ = q

represents an element of ν∗(π1(Γ)) we deduce that r =Wvi(q) ∈ Wvi(ν∗(π1(Γ, v))),

proving that Wvi(ν∗(π1(Γ, v))) surjects onto Ri as desired.

Next, we prove Wv(ε∗(π1(∆, v))) ⊆ Ri for every v ∈ V (∆) with ε(v) = vi. It is well-
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known [23, Proposition 1.26] that the inclusion of the one skeleton into a 2-simplex in-

duces a surjection on the level of fundamental groups, and the kernel is exactly the nor-

mal closure of the words bounding the 2-cells. Thus i∗ : π1(C, vi)→ π1(C, vi) is a sur-

jection. Combining these remarks with (2.2), it follows that i∗ ◦W−1
vi : K → π1(C, vi)

is a surjection, with kernel Ri, since Ri is the normal closure in K of the words

onto which W−1
vi maps the closed walks bounding 2-cells of C by the definition

of C. Thus π1(C, vi) = K/Ri = Gi. Now pick v ∈ V (∆) with ε(v) = vi. As

i ◦ ε = ε̂ ◦ i and π1(∆̂) = 1, we have (i∗ ◦ ε∗)(π1(∆, v)) = (ε̂∗ ◦ i∗)(π1(∆, v)) = 1, and

so Wv(ε∗(π1(∆, v))) ≤ ker(i∗) = Ri as desired.

Finally, we claim that Ri ⊂ Wv(ε∗(π1(∆, v))) for every v ∈ V (∆) with ε(v) = vi.

For this, pick r ∈ Ri, and note that as Ri ⊂ K and K ∼= Wvi(π1(C, vi)) by (2.2),

there is a representative t of an element of π1(C, vi) such that Wvi(t) = r. We can

write Wvi(t) = r =
∏n
j=1wjrjw

−1
j ∈ FMod

P for wj ∈ K and rj ∈ Ri ∪ sRi+1s
−1

with s ∈ S2 ∪ S−1
2 by the definition of Ri. Choose a lift t′ : [0, 1]→ ∆ of t through ε

so that t′(0) = v. By (2.1) we have Wvi(t) = Wv(t
′). Note that W−1

v (wjrjw
−1
j ) is

a loop of ∆ as W−1(rj) is contractable in ∆̂, and so it represents some element of

π1(∆, v). Applying this to each factor of our above expression r =
∏n
j=1wjrjw

−1
j

implies that t′ represents some element of π1(∆, v). Thus Wvi(ε∗(t
′)) =Wvi(t) = r,

which means that Ri ⊂ Wv(ε∗(π1(∆, v))) as claimed.

To summarize, we have proved thatWvi(ν∗(π1(Γ))) = Ri =Wvi(ε∗(π1(∆))), implying

that Γ ∼= ∆. Moreover, it is straightforward to check that as all the maps above

respect the edge colourings, so does this isomorphisms of graphs.

From now on we just use the notation Spl(P ) for the special split graph obtained in

either Definition 2.1.2 or 2.1.7.

As a corollary of the above proof, we deduce that the covers ν, ε are equal, and so

Vi = ν−1(vi) = ε−1(vi) (2.4)

and similarly Vi = η(Ṽi) = Φ(Ṽi), so Vi is well defined for either the topological or

graph definition, as in the notation of Figure 2.3. From now on we will only use ε to

denote this covering map.

The following corollary gathers some further facts that we obtained in the proof of

Theorem 2.1.11 for future reference.

Corollary 2.1.12. Let P = 〈S1,U , I|R0,R1〉 be a special split presentation with

split graph Γ := Spl(P ). For all i = 0, 1, We have
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1. π1(C(P ), vi) is isomorphic to Gi;

2. Wvi is an isomorphism from π1(C(P ), vi) onto K;

3. Wvi is an isomorphism from π1(Γ, v) onto Ri for every v ∈ Vi; and

4. the sequence 0→ π1(Γ, v)
ε∗−→ π1(C(P ), vi)

i∗−→ π1(C(P ), vi)→ 0 is exact, where

ε : Γ → C(P ) is the cover in Definition 2.1.7, and i : C(P ) → C(P ) the

inclusion.

Note that from the definition of Ri we have R0 = sR1s
−1 for any s ∈ S2. Therefore,

we deduce that Gi := Ri\K ∼= Ri+1\K, where an isomorphism φs,i : Gi → Gi+1 is

given by conjugation by any s ∈ S2. This follows also from the fact that π1(C(P ))

is base point invariant, and W−1
vi (s) is a path from vi to vi+1. This property isn’t

enough to guarantee vertex transitivity of Γ, with a counter example given by P (4, 2),

which will be shown to have a split presentation in Theorem 2.1.14. This invites the

following question.

Question 2.1.13. For which special split presentations P is Spl(P ) vertex transitive?

The generalised Petersen graph is denoted by P (n, k) and defined as follows. Let

V (P (n, k)) := {xi, yi | i ∈ Z/nZ}, and

E(P (n, k)) := {(xi, xi+1), (xi, yi), (yi, yi+k) | i ∈ Z/nZ}.

The classical example is the Petersen graph, P (5, 2), the smallest non-Cayley vertex

transitive graph.

Theorem 2.1.14. The generalised Petersen graph P (n, k) is isomorphic to

Γ := Spl〈{a}, ∅, {b}|{an, abakb}, {an}〉.

Proof. Let C(P ) =: C be the presentation graph of P := 〈{a}, ∅, {b}|{an, abakb}, {an}〉.
Define map η : P (n, k)→ C by

η :

(xi, xi+1) a−1(v1, v1)

(xi, yi) 7→ b(v1, v0)

(yi, yi+1) a(v0, v0)

.

The relations an starting at v0 and v1 hold in P (n, k) as we have closed cycles yi

yi+k yi+2k . . . yi+nk and xi xi−1 xi−2 . . . xi−n with the subscripts taken in Z/nZ.

Next examine the relation abakb starting at v0. This pulls up to the walk yi yi+k

xi+k xi+(k−1) xi+(k−2) . . . xi yi which is clearly closed.
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Therefore we have covers η : P (n, k) → C and ε : Γ → C such that ε lifts to a

cover ε̂ : Γ→ P (n, k). However look at the vertex group G1 which acts regularly on

ε−1(v1) = V1. We have

G1 = 〈a, bab|an, (bab)ak, (bab)n〉

= 〈a|an, a−nk〉 as bab = a−k

= 〈a|an〉 ∼= Cn

This gives |G1| = n, so |η−1(v1)| = n = |G1| = |ε−1(v1)|, making ε̂ a graph

isomorphism.

2.2 Relationships to Bi-Cayley and Haar graphs

We recall that an action on a graph Γ is semi-regular (or free) if g · x = h · x implies

g = h for every g, h ∈ G and x ∈ V (Γ). A vertex transitive graph Γ is said to be

n-Cayley over G if G is a semi-regular subgroup of Aut(Γ) with n orbits of vertices.

If n = 2 we say that Γ is bi-Cayley.

Suppose Γ is bi-Cayley over G. Pick two vertices e0, e1 ∈ V (Γ) from different orbits

of G. As G has exactly two orbits in V (Γ), and it acts regularly on each of them,

for any x ∈ V (Γ) there exists a unique i ∈ {0, 1} and g ∈ G such that g · ei = x,

so we define x =: (g)i. Each of the two orbits Oi := {(g)i : g ∈ G} forms a (pos-

sibly disconnected) Cayley graph of G with respect to the sets R = R−1 = {g ∈
G|[(e0, (g)0)] ∈ E(Γ)} and L = L−1 = {g ∈ G|[(e1, (g)1)] ∈ E(Γ)}, respectively. To

capture the set E01 of edges of the form [((g)0, (h)1)] ∈ E(Γ), we introduce the set

S = {g ∈ G|(e0, (g)1) ∈
−→
E (Γ)}, and note that S uniquely determines E01 as any

e ∈ E01 coincides with [((g)0, (h)1)] = g · [(e0, (g
−1h)1)] for some g−1h ∈ S and g ∈ G.

To summarize, we can represent any bi-Cayley graph Γ over G as BiCay(G,R,L, S)

where R,L, S ⊂ G with R = R−1 and L = L−1. Then the set of directed edges of

Γ =: BiCay(G,R,L, S) is

−→
E (Γ) = {((g)0, (gr)0)|g ∈ G, r ∈ R} ∪ {((g)1, (gl)1)|g ∈ G, l ∈ L}∪

{((g)0, (gs)1)|g ∈ G, s ∈ S} ∪ {((g)1, (gs
−1)0)|g ∈ G, s ∈ S}.

This representation isn’t unique: if we choose different vertices for e0, e1 or a

different action of G we potentially obtain different sets R, S and L. Note that

BiCay(G,R,L, S) is a regular graph if and only if |R| = |L|.

Example 2.2.1. Consider again the Petersen graph Γ = P (5, 2) as in Example 2.1.3

23



(Figure 2.4). This has a natural action of G := Z/5Z =< a > where

aj :
xi

yi
7→

xi+j

yi+j
.

To represent this as a bi-Cayley graph with above notation, we could choose (a0)0 :=

x0 and (a0)1 := y0. Then we obtain R = {a, a4}, L = {a2, a3} and S = {a0}.
If instead we chose (a0)1 := y1 we would obtain R = {a, a4}, L = {a2, a3} and

S = {a4}.

x2 x3

x4

x0

x1

y2 y3

y4

y0

y1

Figure 2.4: The labelling of the Petersen graph used in Example 2.2.1.

Recall that we have endowed Γ := Spl〈S1,S2|R1,R2〉 with a colouring c :
−→
E (Γ)→

S ∪ S−1. We want to talk about automorphisms that preserve this colouring. The

following definition distinguishes between preserving these colours globally or locally.

Definition 2.2.2. Let Γ be a graph with a colouring c :
−→
E (Γ)→ X. We define the

following two subgroups of Aut(Γ):

Autc(Γ) ={φ ∈ Aut(Γ)|c(e) = c(φ(e)) for every e ∈
−→
E (Γ)}, and

Autc−loc(Γ) ={φ ∈ Aut(Γ)|c(x, y) = c(y, z)⇔ c(φ(x, y)) = c(φ(y, z))

for all (x, y), (y, z) ∈
−→
E (Γ)}.

Example 2.2.3. Recall the split presentation P = 〈{a}, ∅, {b}|{a5, aba2b}, {a5}〉 of

P (5, 2) as in Example 2.1.3. The corresponding colouring c :
−→
E (P (5, 2))→ {a, a−1, b}

is given by (Figure 2.5)

c :

(xi, xi+1)

(xi, yi)

(yi, yi+2)

7→
a−1

b

a

and c :

(xi, xi−1)

(yi, xi)

(yi, yi−2)

7→
a

b

a−1

.

To describe Autc(P (5, 2)) and Autc−loc(P (5, 2)) we look at edges coloured b. As b

edges are self inverses, both Autc(P (5, 2)) and Autc−loc(P (5, 2)) can be represented
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x2 x3

x4

x0

x1

y2 y3

y4

y0

y1

Figure 2.5: Our colouring of the Petersen graph corresponding to the split presentation
P = 〈{a}, ∅, {b}|{a5, aba2b}, {a5}〉 of P (5, 2).

as permutations of the set of b edges

B = {(xi, yi)|i ∈ Z/5Z} = Z/5Z.

Note Autc(P (5, 2)) and Autc−loc(P (5, 2)) faithfully sit inside Sym(B) as no non-

trivial automorphisms fixes the edges inB setwise giving Autc(P (5, 2)),Autc−loc(P (5, 2)) ≤
Sym(B). One can show Autc(P (5, 2)) = 〈(0, 1, 2, 3, 4)〉 = C5 and Autc−loc(P (5, 2)) =

〈(0, 1, 2, 3, 4), (1, 2, 4, 3)〉 = G(1, 5) = 〈a, b | a5, b4, bab−1a−2〉. We have that Autc−loc

is larger as it is allowed to invert the directions of the a cycles. Note that

Autc(P (5, 2)) < Autc−loc(P (5, 2)) < Aut(P (5, 2)), so it is useful in some contexts to

look at different colour preserving groups.

The action of Autc(P (5, 2)) makes P (5, 2) a bi-Cayley graph. In fact for any special

split presentation P there is always a subgroup of Autc(Spl(P )) where c is the

colouring coming from P that makes Spl(P ) a bi-Cayley graph.

We remark that for any special split presentation P , there is a subgroup of Autc(Spl(P ))

witnessing that Spl(P ) is a bi-Cayley graph:

Proposition 2.2.4. For every special split presentation P = 〈S1,U , I|R0,R1〉 the

vertex group Gi is a subgroup of Autc(Spl(P )). Moreover Gi acts regularly on Vi

(and on Vi+1) for i ∈ Z/2Z, and so Spl(P ) is bi-Cayley over G0
∼= G1.

Proof. Recall that for a covering map ε : X → Y , the group of automorphisms

f : X → X such that ε ◦ f = ε is called the deck group of ε and is denoted by

Aut(ε). It is known that if ε is a universal cover Aut(ε) = π1(Y ), and if X is con-

nected and locally path connected then Aut(ε) acts freely on ε−1(y) for any y ∈ Y [23].

Let Γ := Spl(P ) and let ε̂ : Γ̂ → C be the universal cover of the presentation

complex C(P ) of P . Thus Aut(ε̂) ∼= π1(C(P )) ∼= Gi by the above remark and

Corrolary 2.1.12 (1). As Γ is the 1-skeleton of Γ̂ by Definition 2.1.7, we can think of
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Aut(ε̂) ∼= Gi as a subgroup of Aut(Γ). Moreover as elements of Aut(ε̂) ∼= Gi preserve

the cover, they preserve the colouring c :
−→
E (Γ)→ S ∪ S−1 obtained by lifting our

colouring of C(P ) via ε̂, and so we have realised Gi as a subgroup of Autc(Γ). As

C(P ) is a connected 2-complex it is locally path connected, therefore Gi acts freely

on ε̂−1(vi) = Vi by the above remarks.

Proposition 2.2.5. Every regular connected bi-Cayley graph BiCay(G,R,L, S)

where R ∩ R−1 = L ∩ L−1 = ∅ and |R| = |L| can be constructed as a special

split presentation.

Proof. Let Γ := BiCay(G,R,L, S) be a a bi-Cayley graph, and recall our represen-

tation of its vertex set as V (Γ) = {(g)i|g ∈ G, i ∈ {0, 1}}. Choose S1 ⊂ R such

that S1 ∩ S−1
1 = ∅ and yet S1 ∪ S−1

1 = R. Choose a bijection f : L→ R such that

f(s−1) = f(s)−1. We use f to define the colouring c :
−→
E (Γ) → S1 ∪ S−1

1 ∪ S as

follows:

c :

((g)0, (rg)0)

((g)1, (lg)1)

((g)0, (sg)1)±1

7→
r

f(l)

s

for

r ∈ R
l ∈ L
s ∈ S.

Note that this colouring is Cayley-like, as there is a unique edge of each colour

incident with each vertex. Let I := S, and set R0 := W(e)0
(π1(Γ, (e)0)). We have

thus constructed a special split presentation P := 〈S1, ∅, I|R0, ∅〉. We claim that

Γ ∼= Spl(P ).

To see this, let as usual C(P ) =: C be the presentation complex and C(P ) =: C the pre-

sentation graph with vertices vi, i ∈ {0, 1} and edges
−→
E (C) = {r(vi, vi), s(vi, vi+1)|r ∈

S1∪S−1
1 , s ∈ S = I} where cC(x(vi, vj)) = x. We will prove Γ ∼= Spl(P ) by applying

Theorem 1.1.1 to a cover ε : Γ→ C defined by ε : (g)i 7→ vi, and

ε :

((g)0, (rg)0)

((g)1, (lg)1)

((g)0, (sg)1)±1

7→
r(v0, v0)

f(l)(v1, v1)

(s(v0, v1))±1

for

r ∈ R
l ∈ L
s ∈ S

.

As ε is a map of graphs with Cayley-like colourings, and ε respects these colourings

by definition, it is indeed a cover. We have Wv0(ε∗(π1(Γ, (e)0))) = R0 by the choice

of R0. Let ε : Spl(P )→ C represent the cover given in definition 2.1.7 of Spl(P ) (as

in Figure 2.3). By Corollary 2.1.12 (3) we have that Wv0(ε∗(π1(Spl(P )), v)) = R0 :=

〈〈R0〉〉K for some v ∈ V (Spl(P )) such that ε(v) = v0. Note that for any k ∈ K the

path W−1
(e)0

(k) connects (e)0 to (g)0 for some g ∈ G because it uses an even number

of edges with their colour in S. This implies

W−1
(e)0

(k)π1(Γ, (g)0)W−1
(e)0

(k)−1 = π1(Γ, (e)0). (2.5)
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As there exists a colour preserving automorphism of Γ mapping (e)0 to (g)0 namely

g. Moreover, we have

W(g)0
(π1(Γ, (g)0)) =W(e)0

(π1(Γ, (e)0)). (2.6)

Therefore 〈〈R0〉〉K = R0 by (2.5), (2.6) and the definition of R0. Using this we have

Wv0(ε∗(π1(Spl(P ), v))) = R0. Moreover, we have Wv0(ε∗(π1(Γ, (e)0))) = R0 by the

definition of R0 and (2.1). Therefore Wv0(ε∗(π1(Spl(P ), v))) =Wv0(ε∗(π1(Γ, (e)0))),

and so by Theorem 1.1.1 we have Γ ∼= Spl(P ).

A Haar graph is a bi-Cayley graph of the form BiCay(G, ∅, ∅, S). The following is

an immediate consequence of the last two propositions.

Corollary 2.2.6. Any Haar graph can be represented by a special split presentation

and any special split graph with S1 = U = ∅ is a Haar graph.

Most of our motivation for introducing split presentations came from studying vertex

transitive graphs. Our next proposition gives a sufficient condition for Spl(P ) to

be vertex transitive in terms of the ‘symmetry’ of C(P ). Given two CW complexes

Ci for i ∈ {0, 1}, recall that a simplicial map φ : C0 → C1 is a continuous map that

maps each n-simplex to an n-simplex for every n. For a CW complex C, the group

of bijective simplicial maps from C to itself is denoted by Aut(C).

Proposition 2.2.7. Let P be a special split presentation. As above, the two vertices

of the presentation complex C are denoted by v0 and v1. If there exists a simplicial

map φ : C → C such that φ(v0) = v1, then Spl(P ) is vertex transitive.

Proof. Set Γ := Spl(P ). Lemma 2.2.4 says that Gi acts transitively on Vj for

j ∈ {0, 1}. Thus it only remains to find an automorphism which maps a vertex in V0

to a vertex in V1. We have a covering map ε : Γ̂→ C, where Γ̂ is the universal cover

of C with 1-skeleton Γ. By the lifting property φ ◦ ε : Γ̂→ C lifts to an automorphism

φ̂ ∈ Aut(Γ̂) such that φ ◦ ε = ε ◦ φ̂. For any v ∈ Vi we have ε(v) = vi by (2.4). So for

v ∈ V0 we have ε ◦ φ̂(v) = φ ◦ ε(v) = φ(v0) = v1 giving that φ̂(v) ∈ V1. Thus when

restricting φ̂ to the 1-skeleton, Γ, we obtain the required automorphism.

We remark that this sufficient condition is not necessary for Spl(P ) to be vertex

transitive. For example, there is never such an automorphism for the split presenta-

tions 〈{a}, {}, {b}|{an, abakb}, {an}〉 of Theorem 2.1.14 unless k = ±1. However, we

know that P (n, k) is transitive for many other choices of n and k (such as the case

of the Petersen graph n = 5, k = 2), see [15].
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2.3 General Split Presentations

2.3.1 Definition of General Split Presentations

In this section we generalise our notion of split presentation by allowing for more

than two classes of vertices Vi. This will allow us to describe vertex transitive graphs

such as the Coxeter graph or the triangulated Petersen graph TriP (5, 2) cannot be

expressed as a bi-Cayley graph.

In Definition 2.1.1 of a special split presentation we did not explicitly talk about

the two vertex classes, but they were implicit in that definition: we had two sets

of relators R0,R1, and the definition of K implicitly distinguished our generators

into those staying in the same vertex, namely S1, from those swapping between the

two vertex classes, namely S2. The two vertex classes Vi were defined a-posteriori,

and Corollary 2.1.6 confirms that the generators gave rise to edges of the split graph

behaving this way.

The following definition is a direct generalisation of Definition 2.1.1, although it is

formulated a bit differently. We now make the vertex classes more explicit. The main

complication arises from the fact that we have to specify, for each generator s, which

vertex class any edge coloured by s will lead to if it starts at a given vertex class. This

information is encoded as a permutation φ(s) of the set of vertex classes. As before,

we distinguish our generators into two subsets U and I to allow for ‘involutions’ that

make split graphs with odd degrees possible.

We now give the formal definition:

Definition 2.3.1. A split presentation 〈X|U|I|φ|R〉 consists of the following data:

1. a set of vertex classes X;

2. two generator sets U and I; define S := U ∪ U−1 ∪ I and -1 : S → S by

s-1 = s−1 for s ∈ U and s-1 = s for s ∈ I, then FMod
P := FMod

S,-1 (a free

product of cyclic groups each of order 2 or ∞);

3. a map φ : S → SymX from the generator set to the group SymX of permutations

of X;

We remark that any such map defines a right action of s1 . . . sn ∈ FMod
P on

x ∈ X via x · s1 . . . sn := φ(sn) ◦ . . . ◦ φ(s1)(x), where si ∈ S ∪ S−1, and

φ(s−1) := φ(s)−1. We require that

(a) this action of FMod
P on X is transitive, and

(b) for all s ∈ I the permutation φ(s) is fixed point free of order 2;
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4. a relator set Rx ⊂ Stab(FMod
P , x) for each x ∈ X, where Stab(FMod

P , x)

denotes the stabiliser of x with respect to the aforementioned action of FMod
P .

(This is a natural condition, as we want to return to our starting vertex when

following a walk labelled by a relator, and in particular we want to return to

the same vertex class.)

The set {Rx : x ∈ X} of these relator sets is denoted by R.

We now use such a presentation P = 〈X|U|I|φ|R〉 to define the split graph Spl(P ),

in analogy with Definition 2.1.7. We start by defining the presentation graph C(P ).

This has vertex set X, and directed edge set {(x, φ(s)(x))| for all x ∈ X and

s ∈ U ∪ (U)−1 ∪ I} where φ(s−1) = φ(s)−1. We colour it by c :
−→
E (C(P ))→ S ∪S−1

defined by c(x, φ(s)x) := s, and note that this is a Cayley-like colouring as in Defi-

nition 2.1.8.

The split presentation complex C(P ) is the 2-complex obtained from C(P ) as follows.

For each x ∈ X and each r ∈ Rx, we introducing a 2-cell and glue its boundary

along the walk of C(P ) starting at x and dictated by r (as in Definition 2.1.9). It is

straightforward to check that this is a closed walk using (4).

Note that C(P ) is connected by condition (3a). Finally,

Definition 2.3.2. We define the split graph Spl(P ) = Spl〈X|U|I|φ|R〉 to be the

1-skeleton of the universal cover of C(P ).

Letting ε : Spl(P )→ C(P ) be the covering map, we can lift c to the edge-colouring

c̃ = c ◦ ε of Spl(P ).

Note that if X is a singleton, then we recover the usual group presentations and Cayley

graphs by the above definitions. Our special split presentations 〈S1,U ′, I ′|R0,R1〉
of Section 2.1 are tantamount to split presentations as in Definition 2.3.1 with

X = {0, 1}, where φ(s1) = (0)(1) for s1 ∈ S1 and φ(s2) = (0, 1) for s2 ∈ S2 := U ′∪I ′,
with U = S1 ∪ U ′ and I = I ′. Then π1(C(P ), x) = Stab(FMod

P , x) using the colour-

ing c, therefore Rx ⊂ Stab(FMod
P , x) = π1(C(P ), x).

As in Section 2.1, we can alternatively define Spl(P ) as a graph quotient, following

the lines of Definition 2.1.2, as follows:

1. Let S := U∪I and define the group FMod
P by the presentation 〈S|{s2 : s ∈ I}〉;

this is a free product of infinite cyclic groups, one for each s ∈ U , and cyclic
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groups of order 2, one for each s ∈ I. Define the tree TP by

V (TP ) := FMod
P , and

−→
E (TP ) := {(w,ws)|w ∈ FMod

P , s ∈ S ∪ S−1}.

This is a (2|U|+ |I|)-regular tree, and it comes with a colouring c :
−→
E (TP )→

S ∪ S−1 by c(w,ws) = s.

2. We can extend the map φ of (3) from S to a right action of FMod
P by com-

position: we let x · s1 . . . sn := φ(sn) ◦ . . . ◦ φ(s1)(x) for all x ∈ X and si ∈ S.

Let Wx,y = {w ∈ FMod
P |x ·w = y} for x, y ∈ X. Fixing any ‘base’ vertex class

b ∈ X leads to a partition of V (TP ) = FMod
P , namely Ṽx = Wb,x. Note that two

vertices in u, v ∈ Ṽx ⊂ FMod
P differ by a word u−1v ∈Wx,x = Stab(FMod

P , x).

3. Let Rx = 〈wrw−1|r ∈ Ry, w ∈ Wx,y, y ∈ X〉 ⊂ Wx,x. Then we say that two

vertices in u, v ∈ Ṽx are equivalent, and write u ∼ v, if u−1v ∈ Rx. Similarly,

for edges e, f ∈
−→
E (TP ) we write e ∼ f if c(e) = c(f) and τ(e) ∼ τ(f) and

τ(e−1) ∼ τ(f−1).

4. We define Spl(P ) to be the corresponding quotient TP / ∼.

As in Corollary 2.1.6, it is not hard to see that TP is the universal cover of

Spl(P ). Define Vx, x ∈ X as the image of Ṽx under the quotient of ∼. We have

Wx,x = π1(C(P ), x) and π1(C(P ), x) = Rx\Wx,x =: Gx, analogously to the special

split presentation case. We call Gx, x ∈ X the vertex groups.

We remark that the vertex set of Spl(P ) can be given the structure of a groupoid

GSpl(P ). Indeed, we can think of
⋃
x,y∈XWx,y as the ground set, and define the

groupoid operation Wx,y ×Wy,z →Wx,z by concatenation. Another way to think of

this groupoid is GSpl(P )
∼= π1(C(P ), X), the universal groupoid of the presentation

complex C(P ), with paths starting and ending in V (C).

The main result of this section is that every vertex transitive graph Γ is isomorphic to

Spl(P ) for some split presentation P . For the proof of this we will need to decompose

the edges of Γ into cycles. The next section discusses such decompositions.

2.3.2 Multicycle colourings

Leighton [28] asked whether vertex transitive graphs have similar colouring structures

to Cayley graphs of groups. For a Cayley graph Γ = Cay(G,S), the generators

canonically induce a colouring c : E(Γ) → S as above, so that c−1(s) is a disjoint

union of cycles of the same length for every s ∈ S. Leighton calls this a multicycle:
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Definition 2.3.3. A multicycle is a graph which is either the disjoint union of cycles

of the same length or a perfect matching. A multicycle colouring of a graph Γ is

a colouring c : E(Γ) → Ω such that the graph with vertex set V (Γ) and edge set

c−1(x) is a multicycle for each x ∈ Ω.

Thus every Cayley graph has a multicycle colouring. Leighton [28] conjectured that

all vertex transitive graphs have a multicycle colouring [28], but this was shown to be

false by Marušič [33], a counter-example being the line graph of the Petersen graph:

Example 2.3.4. Given a graph ∆ set Γ := L(∆) to be the line graph. So

V (Γ) := E(∆) and
−→
E (Γ) = {(e, e′)|τ(e±1) = τ(e′±1)}. To see there is no mul-

ticycle colouring of L(P (5, 2)), note that it has |V (L(P (5, 2)))| = |E(P (5, 2))| = 15

vertices, so any mutlicycle will have to consist of triangles or pentagons or a 15-cycle.

A 15-cycle in the line graph would correspond to a Hamiltonian cycle in the Petersen

graph. The Petersen graph is not Hamiltonian so, there are no such 15-cycle. The

only triangles in L(P (5, 2)) are formed by edges incident with a single vertex of

P (5, 2). As P (5, 2) is not bipartite, there is no way to partition the triangles into

disjoint sets that pass through all vertices. So we can only use sets of five cycles,

which correspond to sets of edge disjoint pentagons in P (5, 2). As P (5, 2) is cubic,

there is no set of pentagons that visits every edge exactly once.

Still, it is possible to express L(P (5, 2)) as a split graph:

Spl〈{1, 2, 3}|U := a 7→ (12)(3), b 7→ (1)(23)|I := ∅|{b5, a10, a2b}, {a−2b4}, {a5, b10, b2a}〉.

This is shown in Figure 2.6.

Figure 2.6: The line graph L(P (5, 2)) of the Petersen graph.

Our aim now is to weaken the notion of a multicycle colouring enough that every

vertex transitive graph will admit one, so that the weakened notion will allow us to

find split presentations. This is the essence of Theorem 2.3.7 below.

Definition 2.3.5. A graph Γ is a weak multicycle, if it is a vertex-disjoint union of

cycles and edges. A weak multicycle colouring of a graph Γ is a colouring c : E(Γ)→ Ω
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such that the graph with vertex set V (Γ) and edge set c−1(x) is a weak multicycle

for each x ∈ Ω.

We say that a weak multicycle colouring c is split-friendly if c−1(x) is regular for

all x ∈ Ω. In other words, c−1(x) is either a disjoint union of cycles or a perfect

matching for all x.

As we will see in the following section, every vertex transitive graph has a split-

friendly weak multicycle colouring. The condition of vertex transitivity cannot be

relaxed to just regularity. Indeed, let Γ be the 3-regular graph in Figure 2.7. Since

its vertex degrees are odd, one of the colours in any weak multicycle colouring must

induce a perfect matching. But Γ does not have a perfect matching M , because

removing v and the vertex matched to v by M results in at least one component

with an odd number of vertices.

v

Figure 2.7: A regular graph with no split-friendly weak multicycle colouring.

2.3.3 Multicycle colourings and split presentations

We say a split presentation P = 〈X|U|I|φ|R〉 is uniform, if for every s ∈ S, all orbits

of φ(s) have the same size. In other words, if c is a multicycle colouring on C(P ). In

light of Leighton’s aforementioned conjecture, one can ask the following:

Question 2.3.6. Let Γ be a vertex transitive graph. Does Γ have a multi-cycle

colouring if and only if it is the split graph of a uniform split presentation?

The forward direction is true: if Γ has a multicycle colouring then it has a uniform split

presentation given in the proof of Theorem 2.3.7. But the backward direction could be

false, as shown by the following example. Consider the special spit presentation P =

〈{a}, {b}, ∅|{a}, {a2}〉. This is trivially uniform, like every special split presentation.

However, Spl(P ), shown in Figure 2.8, does not have a multicycle colouring.

The following result will be used later to show that every vertex transitive graph

admits a split presentation.
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Figure 2.8: Spl〈{a}, {b}, ∅|{a}, {a2}〉

Theorem 2.3.7. A connected graph has a split-friendly weak multicycle colouring

if and only if it has a split presentation.

Proof. Recall that a graph is given by a directed edge set
−→
E (Γ), but we can also

consider the undirected edge set E(Γ) =
−→
E (Γ)/−1, so that an undirected edge is

a pair {e, d} such that e−1 = d and d−1 = e. In the following proof we have to

transition between colourings of the directed edges and colourings of the undirected

edges. Apart from this, the proof boils down to a straightforward checking of the

conditions of the corresponding definitions.

For the forward direction, suppose Γ is connected and it has a split-friendly weak

multicycle colouring c : E(Γ)→ Ω. To define the desired split presentation P , we

start with

• X = V (Γ),

• U = {ω ∈ Ω|c−1(ω) is of degree 2}, and

• I = {ω ∈ Ω|c−1(ω) is of degree 1}.

Since c is split-friendly, we have U ∪ I = Ω. We want to refine c into a colouring

c′ of the directed edges of Γ. To do this, for each ω ∈ U we choose an orientation

Oω ⊂
−→
E (Γ) of c−1(ω)} ⊂ E(Γ) (recall this means that (Oω ∪ O−1

ω )/−1 = c−1(ω)

and Oω ∩O−1
ω = ∅). Since c−1(ω) is a multicycle, we can choose Oω so that each of

its cycles is oriented, that is, for each vertex v ∈ V (Γ) there is exactly one e ∈ Oω
with τ(e) = x. Thus Oω defines a permutation φ(ω) of X = V (Γ), by letting

φ(ω)(x) be the unique y ∈ X such that (x, y) ∈ Oω. Moreover, for each ω ∈ I, let

Oω = {e ∈
−→
E (Γ)|[e] ∈ c−1(ω)}, and let φ(ω) be the involution of V (Γ) exchanging

the endvertices of each edge in c−1(ω). Thus φ satisfies (3b) of Definition 2.3.1 by

construction (we will check (3a) below).

We now define c′ by

c′(e) =

c([e]) if e ∈ Oc([e])
c([e])−1 otherwise.

This maps
−→
E (Γ) to U ∪ U−1 ∪ I, because for e ∈

−→
E (Γ) such that c([e]) ∈ I we have

e, e−1 ∈ Oc([e−1]) by definition. Easily, c′ is a Cayley-like colouring. This allows us

to define Wv on Γ as described after Definition 2.1.8. Note that as Γ is connected,

for any two x, y ∈ V (Γ) there is a path p connecting x and y. Then the path p
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corresponds to a word Wx(p) ∈ FMod
P such that φ(Wx(p))(x) = y. Therefore the

action of FMod
P on X = V (Γ) is transitive as required by (3a) of Definition 2.3.1.

To complete the definition of our split presentation P , we choose the relators

• Rv =Wv(π1(Γ, v)) ⊂ FMod
P .

We claim that Γ coincides with the presentation graph C(P ). To begin with, they

have the same vertex set V (C) = X = V (Γ). Moreover,

−→
E (C(P )) = {(x, φ(ω)(x))|x ∈ V (Γ), ω ∈ U ∪ U−1 ∪ I}

= ∪ω∈Ω{(x, y)|(x, y) ∈ Oω or (y, x) ∈ Oω}

= ∪ω∈Ω(c′)−1(ω) =
−→
E (Γ)

and so our claim is proved.

As we defined C(P ) by glueing in a 2-cell along each closed walk dictated by an

element of Rv, v ∈ V (C(P )), where we have chosen Rv = Wv(π1(Γ, v)), we have

forced π1(C(P ), v) to be trivial. Therefore, C(P ) coincides with its own universal

cover Ĉ(P ). Thus Spl(P ), defined as the 1-skeleton of Ĉ(P ), is C(P ) = Γ. Therefore

P is a split presentation for Γ.

For the converse direction, let Γ = Spl(P ) for some split presentation P . Let

ε : Γ → C(P ) be the covering map, and c′C :
−→
E (C) → U ∪ U−1 ∪ I the colouring

induced by the generators of P , as in the definition of Spl(P ). We collapse c′C into a

colouring cC of the undirected edges of C defined by

cC([e]) =

u ∈ U if c(e) ∈ {u, u−1}

i ∈ I if c(e) = i.

We can collapse c′Γ :
−→
E (Γ)→ U ∪U−1∪I similarly to obtain an undirected colouring

cΓ : E(Γ)→ U ∪ I. Note that cC is a split-friendly weak multicycle colouring, with

c−1(i) being of degree 1 for i ∈ I and c−1(u) being of degree 2 for u ∈ U , by the

definitions. As c′C ◦ ε = c′Γ, it is easy to verify that cC ◦ ε = cΓ. This implies that

c−1
Γ (x) has the same degree as c−1

C (x), and that every vertex has at least one incident

edge coloured s for each s ∈ I ∪ U . This means that cΓ is a split-friendly weak

multicycle colouring of Γ as claimed.
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2.3.4 Weak multicycle colourings of vertex transitive graphs

The aim of this section is to show that every vertex transitive graph Γ has a

split-friendly weak multicycle colouring, hence it admits a split presentation by

Theorem 2.3.7.

For this, we will use the following result of Godsil and Royle [19, Theorem 3.5.1]:

Theorem 2.3.8 (Godsil & Royle [19, Theorem 3.5.1]). Let Γ be a connected finite

vertex transitive graph. Then Γ has a matching that misses at most one vertex.

In the Appendix we generalise this to infinite vertex transitive graphs as follows

Theorem 2.7.1 Let Γ be a connected infinite vertex transitive graph which is

locally finite. Then Γ has a perfect matching.

In passing, let us mention the following still open conjectue. If true, it would imply

that all finite vertex transitive cubic graphs have a uniform split presentation.

Conjecture 2.3.9 (Lovasz [29, Problem 11]). Let Γ be a finite cubic vertex transitive

graph. Then there exists a perfect matching M in Γ such that Γ \ M consists of

either one cycle, and Γ is Hamiltonian, or of two disjoint cycles of the same length.

The following theorem of Petersen is a rather straightforward application of Hall’s

Marriage theorem [22]. Although this is well-known, we include a proof for conve-

nience.

Theorem 2.3.10 (Julius Petersen). Every regular graph of finite positive even degree

has a spanning 2-regular subgraph.

Proof. Let Γ be a 2k-regular graph. If Γ is finite then it contains an Euler tour C

(i.e. a closed walk that uses each edge exactly once) by Euler’s theorem [8]. Pick

an orientation of OC ⊂
−→
E (Γ) of C. If Γ is infinite then just choose an orientation

with equal in and out degree, which can be constructed greedily. Then construct an

auxiliary graph ∆ with

V (∆) ={v+, v−|v ∈ V (Γ)}, and

E(∆) ={(v+, u−)|(v, u) ∈ OC}.

By definition, ∆ is k-regular and bipartite, with bipartition V + = {v+|v ∈ V (Γ)} and

V − = {v−|v ∈ V (Γ)}. For any finite A ⊂ V +, as ∆ is k-regular, the neighbourhood

Nb(A) = {u−|(v+, u−) ∈ E(∆) with v+ ∈ A} of A has size at least k × |A|/k = |A|.
So by Hall’s Marriage theorem [22], ∆ contains a perfect matching M ⊂ E(∆). Then
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the spanning subgraph S ⊂ Γ given by {(v, u)|(v+, u−) ∈M} ⊂ E(Γ) is 2-regular by

construction.

Combining this with Theorem 2.3.8 and Theorem 2.7.1, we now obtain.

Lemma 2.3.11. Every vertex transitive graph which is locally finite Γ has a split-

friendly weak multicycle colouring.

Proof. As Γ is vertex transitive it is n-regular for some n ∈ N. If n is even, then we

can apply Theorem 2.3.10 recursively to decompose E(Γ) into 2-regular spanning

subgraphs, and attributing a distinct colour to the edges of each of those subgraphs

yields a split-friendly weak multicycle colouring.

If n is odd, then we first find a perfect matching M , colour its edges with the same

colour, and treat Γ\M as above to obtain a split-friendly weak multicycle colouring.

To obtain M , note that if Γ is finite, then |V (G)| is even since |E(Γ)| = n|V (G)|/2.

Therefore Γ has a perfect matching by Theorem 2.3.8 as no matching can miss

exactly 1 vertex in this case. If Γ is infinite, then Theorem 2.7.1 provides a perfect

matching.

This combined with Theorem 2.3.7 yields one of our main results:

Theorem 2.3.12. Every locally finite vertex transitive graph has a split presentation.

2.3.5 Generalised results

Here we extend some of our earlier results from special to general split presentations.

Where the same arguments apply directly the proofs will be omitted. First we

generalise Lemma 2.2.4:

Proposition 2.3.13. For a split presentation P = 〈X|U|I|φ|R〉 there is a natural

inclusion of the vertex group Gx ≤ Autc(Spl(P )) for each x ∈ X. Moreover Gx acts

regularly on Vx, and so Spl(P ) is |X|-Cayley.

The vertex groups are still isomorphic due to the fact that π1 does not depend on

the choice of a base point:

Proposition 2.3.14. For every split presentation P = 〈X|U|I|φ|R〉, and every

x, y ∈ X, the vertex groups Gx, Gy are isomorphic.

Proof. As above, let C(P ) =: C be the presentation graph of P . Let x, y ∈ X = V (C).

Recall that Gx := Rx\Wx,x is the left quotient of Wx,x by Rx, where Wx,z is the set

of paths in C from x to z up to homotopy (in particular, Wx,x = π1(C, x)), and

Rx := 〈{wW−1
z (r)w−1|r ∈ Rz, w ∈Wx,z, z ∈ X}〉

36



with W−1
z the map from words in FMod

P to paths in C defined in section 2. Let

p ∈Wx,y be a path from x to y in C. As π1 is base point preserving, we have

Wx,x = pWy,yp
−1. (2.7)

Moreover, note that

pRyp
−1 =〈{(pw)W−1

z (r)(pw)−1|r ∈ Rz, w ∈Wy,z, z ∈ X}〉

=〈{w′W−1
z (r)(w′)−1|r ∈ Rz, w′ ∈Wx,z, z ∈ X}〉

=Rx.

This defines a homomorphism φ : Gy → Gx by φ : Ryw 7→ Rxpwp
−1 for every

w ∈ Wy,y. It is surjective by (2.7) and injective as pRyp
−1 = Rx. Thus it is an

isomorphism proving our claim.

We generalise Proposition 2.2.7 to obtain a sufficient condition for vertex transitivity.

Proposition 2.3.15. Let P = 〈X|U|I|φ|R〉 be a split presentation. If the presenta-

tion complex C(P ) is vertex transitive, then so is Spl(P ).

Lastly we would like to talk about what kind of graphs we get up to quasi-isometry.

Proposition 2.3.16. Given a split presentation P with finite vertex set X. Then

Γ := Spl(P ) is quasi-isometric to Gx for every x ∈ X.

Proof. Let C := C(P ) be the presentation complex associated to P and C := C(P ) be

the presentation graph. Consider the inclusion map i : C → C. Hatcher [23, Proposi-

tion 1.26] tells us that the inclusion of the one skeleton into a 2-simplex induces a sur-

jection on the level of fundamental groups and the kernal is exactly the normal closure

of the words bounding the 2-cells inserted. So we have that i∗ : π1(C, x)→ π1(C, x)

is a surjection with kernal exactly Rx, so π1(C, x) = Rx\π1(C, x) = Rx\Wx,x = Gx.

Let Γ̂ be the universal cover of C, with covering map η̂ : Γ̂→ C. As π1(C, x) = Gx we

have an action of Gx on Γ̂ (and it’s 1-skeleton Spl(P ) =: Γ) by deck transformations.

From Hatcher [23, p 70] we know the quotient of a universal cover by the group of

deck transformations gives the space itself. So the quotient of Γ̂ by Gx is exactly

C, so similarly the quotient of Γ by Gx is exactly C. Lastly we want to show that

the action of Gx by deck transformations on Γ is properly discontinuous. Take a

compact subset K ⊂ Γ, this is bounded in the graph metric. For a fixed integer there

are only finitely many classes of paths of length less that this integer, in π1(C, x). So

|{g ∈ Gx|(g ·K)∩K 6= ∅}| is finite as any such g would have to come from a path of
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finite length.

So Gx acts on Γ in a properly discontinuous and co-compact fashion, as X is finite

giving that C is compact. By the Švarc–Milnor lemma [41] we have that Γ is

quasi-isometric to Gx, giving what is required.

2.4 Line graphs of Cayley graphs admit split presenta-

tions

In this section we show that every line graph of a Cayley graphs can be represented

as a split presentation graph. To do this we need to analyse the complete graph Kn.

By Lemma 2.3.11, we have found a split-friendly multicycle colouring c : E(Kn)→ Ω

of Kn. Next, we want to associate each colour ω ∈ Ω with a permutation πω ∈ Symn

of the vertices of Kn. To do so, for each ω ∈ Ω such that c−1(ω) is 2-regular, we pick

an orientation Oω ⊂ c−1(ω), (such that Oω ∩O−1
ω = ∅ and Oω ∪O−1

ω = c−1(ω)), and

let πω be the corresponding permutation (sending each vertex to its successor in Oω.

For each ω ∈ Ω such that c−1(ω) is 1-regular, we let πω be the permutation that

exchanges the two end vertices of each edge in c−1(ω).

Proposition 2.4.1. Let Γ = Cay〈S|R〉 be a Cayley graph. Then the line graph

L(Γ) can be represented as Spl(P ) for a split presentation P with at most |S| vertex

classes.

Proof. The split presentation P we will construct will have one vertex class for each

generator in S. Since the edges of L(Γ) are precisely the pairs of incident edges of

Γ, we will identify the generators of P with pairs of generators s, t ∈ S. Since we

need to pay attention to the directions of the edges of Γ, each such pair s, t will give

rise to four generators of P , indexed by the elements of {−1, 1}2. Similarly, each

s ∈ S will give rise to two generators of P , since there are pairs of incident edges

of Γ labelled by s, and there are two choices for their directions. The relators of P

will be of two kinds. The first kind is just obtained by rewriting the elements of R
in terms of the new generators. The second kind will correspond to closed walks in

L(Γ) contained in the star of a vertex of Γ.

We proceed with the formal definition of P . The vertex classes of P will be identified

with the generating set S of Γ. Let KS denote the complete graph with V (KS) = S.

From the above discussion we obtain a multicycle colouring M ⊂ SymS of KS where

each colour is identified with a permutation of S. The generating set of our split

presentation P comprises the formal symbols U = {e, e−1} ∪ {mi,j |m ∈ M, i, j ∈
{−1, 1} where m2 6= 1} and I = {mi,j |m ∈ M, i, j ∈ {−1, 1} where m2 = 1}. Set
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S ′ = U ∪ I, the generators of P . We need to associate a permutation φ(s) of the

vertex classes with each s ∈ S ′, and we do so by

φ :
mi

e, e−1
7→

m

1S
.

Let θ :
−→
E (KS) → M ∪M−1 be the colouring of KS by M ∪M−1. We can think

of θ as a map from S × S\{(s, s)|s ∈ S} to M ∪M−1 where θ(a, b)(a) = b. Let

S = {s, s−1|s ∈ S} be S with formal inverses. Define a map χ : S × S\{(s, s−1)|s ∈
S} → S ′ where

χ(a, b) =


e if a = b ∈ S

e−1 if a = b /∈ S

mi,j if θ(a, b) = m where ai, bj ∈ S.

Here we make the identification that (mi,j)
−1 = (m−1)−j,−i.

We now define the sets of relatorsRa, a ∈ S of P . For each relator r := a1a2 . . . ak ∈ R
we add χ(r) := χ(a1, a2)χ(a2, a3) . . . χ(ak−1, ak)χ(ak, a1) to Ra±1

1
. (These are the

relators of the first kind as explained at the beginning of the proof.) Lastly, we

add relations (of the second kind) corresponding to the star of each vertex of

Γ as follows. Let a1 . . . ak ∈ WS be any word equaling the identity in FMod
P ,

and add χ(a1, a2) . . . χ(ak, a1) to Ra±1
1

, where χ(s, s−1) is the empty word. Let

R′ := {Ra, a ∈ S}. We have now constructed our presentation P := 〈S|U|I|φ|R′〉.

Next, we prove that Spl(P ) is isomorphic to L(Γ). First label

V (L(Γ)) = {[(g, gs)]|g ∈ G, s ∈ S} and

−→
E (L(Γ)) = {(g, s1, s2)|g ∈ G, s1, s2 ∈ S ∪ S−1, s1 6= s−1

2 }

so that the edge (g, s1, s2) connects [(g, gs1)] and [(gs1, gs1s2)]. Let C := C(P ) be

the presentation graph of P . Then we can define a map ε : L(Γ) → C by letting

ε([(g, gs)]) = s and letting ε((g, s1, s2)) be the edge of colour χ(s1, s2) coming from

s±1
1 ∈ S. One can show that the relations in Rx hold in L(Γ) for all x ∈ S. It

remains to show that these relations suffice.

Intuitively we are going to argue that any closed walk p in L(Γ) is labelled by some

r ∈ 〈〈R〉〉FS interwoven with relations coming from the stars at the vertices. One can

observe this by just projecting p to a closed walk in Γ, where after some cancelations

happening within the stars of vertices, we are left with a closed walk labelled by a
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word r than can be expressed in terms of the relators in R. We proceed with this

formally.

Define a topological map Φ : L(Γ) → Γ by mapping [(g, gs)] ∈ V (L(Γ)) to the

midpoint of the edge (g, gs), and (g, s1, s2) ∈ E(L(Γ)) to the arc in the star of gs1

connecting the midpoints of [(g, gs1)] and [(gs1, gs1s2)]. Consider a closed walk p

in L(Γ). We can write p =
∏n−1
i=0 (gi, si1, s

i
2). As Φ(p) is a closed walk in Γ we know

it can be contracted to a path given by g0g1 . . . gm−1 for gi ∈ G. Now we want to

group the edges of p by the stars of vertices of Γ they lie in. For this, we subdivide

the interval {0, . . . , n− 1} into disjoint subintervals {Ij}m−1
j=0 such that Φ(gi, si1, s

i
2)

lies in the star of gj for all i ∈ Ij and 0 ≤ j ≤ m − 1 (we can assume without

loss of generality that no Ij has to be the union of an initial and a final subinter-

val of {0, . . . , n−1} by rotating p appropriately). Thus p =
∏m−1
j=0

(∏
i∈Ij (g

i, si1, s
i
2)
)

.

To each j we can also associate sj ∈ S ∪ S−1 so that gjsj = gj+1; these are the

generators that p uses in order to move from one star to the next.

We modify p into a closed walk p′ by inserting pairs of edges that have the same

endvertices and opposite directions each time that p moves from one star to the next.

More formally, we define

p′ :=
m−1∏
j=0

∏
i∈Ij

(gi, si1, s
i
2)

 (gj+1, s
−1
j , s−1

j−1)(gj−1, sj−1, sj)

 .

Notice that by contracting these pairs of opposite edges (gj+1, s
−1
j , s−1

j−1)(gj−1, sj−1, sj)

we obtain p. Moreover, the sub-walk∏
i∈Ij

(gi, si1, s
i
2)

 (gj+1, s
−1
j , s−1

j−1)

of p′ stays within the star of gj by definition, and it is a closed walk starting and

ending at [(gj−1, gj)]. Therefore, it is labelled by one of our relators of the second

kind. Easily, Φ(p) is homotopic to Φ(p′). Moreover,

Φ(p′) =
m−1∏
j=0

Φ

∏
i∈Ij

(gi, si1, s
i
2)

 (gj+1, s
−1
j , s−1

j−1)

Φ(gj−1, sj−1, sj)

=

m−1∏
j=0

Φ(gj−1, sj−1, sj)
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since a closed walk contained in a star is 0-homotopic.

Now
∏m−1
j=0 (gj−1, sj−1, sj) is a closed walk in L(Γ) no two consecutive edges of which

are contained in the star of a vertex of Γ because of the way we chose the Ij . This

implies that the word s0 . . . sm−1 labelling this walk is a relation of Γ, and so it

can be written as a product of conjugates of relators R. Recalling that each such

relator was admitted as a relator (of the first kind) in R′, we conclude that the word

labelling p can be written as products of conjugates of words in R′.

We explicate an example of this below.

Example 2.4.2. Consider D10 = 〈a, b|a5, b2, aba−1b−1〉, which has the Cayley graph

and line graph thereof shown in Figure 2.9. As K{a,b} is a single edge, we have

Figure 2.9: Cay〈a, b|a5, b2, aba−1b−1〉 and its line graph

M = {(1, 2)} =: {m} with mi,j 7→ (1, 2) for i, j ∈ {1,−1} and e, e−1 7→ (1)(2) as

generators. Define the following function

χ :

aa → e ab → m1,1 b−1a−1 → m−1,−1

a−1a−1 → e−1 ab−1 → m1,−1 ba−1 → m1,−1

bb → e a−1b → m−1,1 b−1a → m−1,1

b−1b−1 → e−1 a−1b−1 → m−1,−1 ba → m1,1.

The original relators a5, b2, aba−1b−1 are thus translated into relators in the resulting

split presentation as follows: a5 → e5 ∈ Ra, b2 → e2 ∈ Rb and aba−1b−1 →
m1,1m1,−1m−1,−1m−1,1 ∈ Ra. Lastly, we add relations of the second kind shown in

Figure 2.10, which are enough to generate the rest of the relations. The resulting

split presentation is〈
a, b

∣∣∣∣∣ I = m1,1,m1,−1,m−1,1,m−1,−1

U = e, e−1
→

(12)

(1)(2)

∣∣∣∣∣
∣∣∣∣∣ {e5,m1,1m1,−1m−1,−1m−1,1, em−1,1m−1,−1,

em−1,−1m1,−1,m1,1e
−1m1,−1,m−1,1e

−1m1,1}, {e2}

〉
.
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aaa−1bb−1a−1 → em−1,1m−1,−1 aaa−1b−1ba−1 → em−1,−1m1,−1

abb−1b−1ba−1 → m1,1e
−1m1,−1 a−1bb−1b−1ba→ m−1,1e

−1m1,1

Figure 2.10: Example of relations of the second kind

2.5 A Cubic 2-ended vertex transitive graph which is

not Cayley

In this section we construct an example of a 2-ended cubic vertex transitive graph

which is not a Cayley graph. This answers a question of Watkins [53] also appearing

in [20].

Let Γ be the graph with

V (Γ) = {vn,k|n ∈ Z, k ∈ Z/10Z}, and

E(Γ) = {[(vn,k, vn,k+1)], [(vn,2k+1, vn+1,4k+2)] | n ∈ Z, k ∈ Z/10Z}.

By construction Γ is a cubic graph. A useful way to think of this graph is as a

2-way infinite stack of layers Ln := {vn,k|k ∈ Z/10Z}. Each Ln spans a 10-cycle, and

between any two layers Ln and Ln+1 there is a Petersen graph like structure.

Claim 1. Γ is 2-ended.

Proof. We will show that Γ is quasi-isometric to ∆ := Cay(Z, {1}), hence 2-ended

[5]. Let dΓ and d∆ be the path metric in Γ and ∆ respectively. Our quasi-isometry

is the map f : Γ→ ∆ defined by f(vn,k) := n.

It is straightforward to check that dΓ(vn,0, vn+1,0) = 2 and dΓ(vn,k, vn,0) ≤ k by the

definition. Now for any two vertices vn,k, vn′,k′ ∈ V (Γ) where n ≤ n′, we have

dΓ(vn,k, vn′,k′) ≤dΓ(vn,k, vn,0)

+
∑

n≤i<n′
dΓ(vi,0, vi+1,0) + dΓ(vn′,0, vn′,k) by the triangle inequality

≤2(n− n′) + (k + k′) by the two facts above

≤2d∆(f(vn,k), f(vn′,k′)) + 20 by the definition of f.

Another straightforward consequence of the definition of Γ is that dΓ(vn,k, vn′,k′) ≥
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n− n′, which combined with the above inequality yields

dΓ(vn,k, vn′,k′)/2− 20 ≤ d∆(f(vn,k), f(vn′,k′)) = n− n′ ≤ dΓ(vn,k, vn′,k′).

As f is surjective, this means that it is a quasi-isometry. Since the number of ends

of a graph is invariant under quasi-isometry, Γ has 2-ends as Z does.

Claim 2. Γ is vertex transitive.

Proof. We introduce the following two maps σ, τ : V (Γ)→ V (Γ), which will allow

us to map any vertex of Γ to any other:

σ(vn,k) = vn+1,k and τ(vn,k) =



v−n,k+1 if n ≡ 0 (mod 4)

v−n,3−k if n ≡ 1 (mod 4)

v−n,k+9 if n ≡ 2 (mod 4)

v−n,7−k if n ≡ 3 (mod 4)

.

Intuitively σ just shifts all the layers up by 1, so Ln is mapped to Ln+1 keeping the

positions and orientations of the 10-cycles the same. Whereas τ rotates the 10-cycle

on L0 by one position, which flips the stack of layers by mapping Ln to L−n, and

inverts the orientation of the 10-cycles at odd numbered layers.

It is easy to see that τ and σ preserve edges of the form (vn,k, vn,k+1). Moreover, it

is easy to see that σ preserves edges of the form (vn,2k+1, vn+1,4k+2), we now check

that τ also preserves these edges τ : (vn,2k+1, vn+1,4k+2) 7→

(v−n,2k+2, v−(n+1),1−4k) = (v−(n+1)+1,4(−2k)+2, v−(n+1),2(−2k)+1) if n ≡ 0 (mod 4)

(v−n,2−2k, v−(n+1),4k+1) = (v−(n+1)+1,4(2k)+2, v−(n+1),2(2k)+1) if n ≡ 1 (mod 4)

(v−n,2k, v−(n+1),5−4k) = (v−(n+1)+1,4(2−2k)+2, v−(n+1),2(2−2k)+1) if n ≡ 2 (mod 4)

(v−n,6−2k, v−(n+1),4k+3) = (v−(n+1)+1,4(2k+1)+2, v−(n+1),2(2k+1)+1) if n ≡ 3 (mod 4),

where we used that 8 ≡ −2 (mod 10). By changing the order of the vertices in the

right hand side we see that these are indeed edges of Γ of the form (vn,2k+1, vn+1,4k+2).

Thus we have checked that σ, τ ∈ Aut(Γ). Let G := 〈σ, τ〉 ≤ Aut(Γ) be the group of

automorphisms of Γ generated by σ and τ . For any two vertices vn,k, vn′,k′ ∈ V (Γ),

we have

σn
′
τk
′−kσ−n(vn,k) =σn

′
τk
′−k(v0,k)

=σn
′
(v0,k′)

=vn′,k′

proving that G acts transitively on V (Γ).

43



Claim 3. G is not a regular subgroup of Aut(Γ).

Proof. Observe

τ−3στσ(v0,k) = τ−3στ(v1,k)

= τ−3σ(v−1,3−k)

= τ−3(v0,3−k)

= v0,−k.

This implies τ−3στσ(v0,0) = v0,0, yet τ−3στσ 6= 1Γ as τ−3στσ(v0,1) = v0,9. Thus

the action of G on Γ is not semi-regular.

We remind the reader the nth layer is denoted Ln = {vn,k| k ∈ Z/10Z} for n ∈ Z
and we define the partition C := {Ln | n ∈ Z} of V (Γ).

Claim 4. Let φ ∈ Aut(Γ) satisfy φ(La) = Lb. If for some χ ∈ Aut(Γ) we have

φ(x) = χ(x) for every x ∈ La, then φ = χ. Moreover, φ preserves the partition

C := {Ln | n ∈ Z}.

Proof. Observe that φ(va+1,2k) and φ(va−1,2k+1) are uniquely determined by φ(x), x ∈
La because each vertex in Lb has exactly one neighbour outside Lb. This in turn

uniquely determines φ(va+1,2k+1) and φ(va−1,2k) by a similar argument. Continuing

like this, we see that φ({va+ε,k|k ∈ Z/10Z}) = {vb±ε,k|k ∈ Z/10Z} for ε ∈ {−1, 1}.
By an inductive argument, this uniquely determines φ, and moreover φ preserves

C.

Claim 5. Any φ ∈ Aut(Γ) preserves the partition C = {Ln|n ∈ Z}.

Proof. Suppose φ does not fix C. By Claim 4 we have φ(L0) 6= La for every a ∈ Z.

Let

n := min{n′ ∈ Z|vn′,k ∈ φ(L0)}.

Thus there exist l, k ∈ Z/10Z such that

φ :

v0,l

v0,l±1

v0,l±2

v0,l±3

7→

vn,2k−1

vn,2k

vn,2k+1

vn+1,4k+2

.

Let Nb(vn,k) denote the neigbourhood of vn,k in Γ. Let vε,a ∈ Nb(v0,l±1) and
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v−ε,b ∈ Nb(v0,l±2) for ε ∈ {−1, 1}. Then

φ(vε,a) ∈ Nb(φ(v0,l±1))\{φ(v0,l), φ(v0,l±2)}

= {vn−1,a′}

φ(v−ε,b) ∈ Nb(φ(v0,l±2))\{φ(v0,l±1), φ(v0,l±3)}

= {vn,2k+2}.

Note that φ(vε,a) = vn−1,a′ and φ(v−ε,b) = vn,2k+2 lie in the same connected com-

ponent of Γ\φ(L0) by the definition of n. However, vε,a and v−ε,b lie in different

connected components of Γ\L0. This contradicts that φ is an automorphism of Γ,

and so our claim is proved.

Claim 6. Any φ ∈ Aut(Γ) is uniquely determined by φ(v0,1) and φ(v0,2).

Proof. Assume φ(v0,1) = va,b. Then by Claim 5, φ(v0,2) ∈ Nb(va,b) ∩ {va,k|k ∈
Z/10Z} = {va,b+1, va,b−1}. In either case, by Claim 5 this uniquely determines

φ(v0,k) for k ∈ Z/10Z. By Claim 4, this uniquely determines φ.

We remark that this implies StabAut(Γ)(v0,0) = 〈τ−3στσ〉 = Z/2Z. So since G =

〈τ, σ〉 acts transitively then G = Aut(Γ), in other words τ and σ generate the

automorphism group.

Claim 7. Γ is not a Cayley graph.

Proof. Let T ≤ Aut(Γ) be a transitive subgroup. Thus we can find automorphisms

σ′, τ ′ ∈ T such that σ′(v0,1) = v1,1 and τ ′(v0,1) = v0,2. By Claim 5, T preserves the

partition C. So either τ ′(v0,2) = v0,3 and τ ′ = τ or τ ′(v0,2) = v0,1 and

τ ′(vn,k) = στσ(vn,k) = τ̃(vn,k) :=



v−n,3−k if n ≡ 0 (mod 4)

v−n,k−1 if n ≡ 1 (mod 4)

v−n,7−k if n ≡ 2 (mod 4)

v−n,k+1 if n ≡ 3 (mod 4)

by Claim 6. Similarly, either σ′(v0,2) = v1,2 and σ′ = σ or σ′(v0,2) = v1,0 and

σ′(vn,k) = στ−1στσ(vn,k) = σ̃(vn,k) :=



vn+1,2−k if n ≡ 0 (mod 4)

vn+1,4−k if n ≡ 1 (mod 4)

vn+1,8−k if n ≡ 2 (mod 4)

vn+1,6−k if n ≡ 3 (mod 4)

.
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by Claim 6. By Claim 3, if {σ′, τ ′} = {σ, τ} then T is not regular. If {σ′, τ ′} = {σ̃, τ}
then

τ σ̃τ σ̃(v0,k) = τ σ̃τ(v1,2−k)

= τ σ̃(v−1,k+1)

= τ(v0,5−k)

= v0,6−k

giving τ σ̃τ σ̃(v0,3) = v0,3 yet τ σ̃τ σ̃ 6= 1Γ. Similarly, if {σ′, τ ′} = {σ, τ̃} then

τ̃στ̃σ(v0,k) = τ̃στ̃(v1,k)

= τ̃σ(v−1,k−1)

= τ̃(v0,k−1)

= v0,4−k

giving τ̃στ̃σ(v0,2) = v0,2 yet τ̃στ̃σ 6= 1Γ. Lastly, if {σ′, τ ′} = {σ̃, τ̃} then

τ̃ σ̃τ̃ σ̃(v0,k) = τ̃ σ̃τ̃(v1,2−k)

= τ̃ σ̃(v−1,1−k)

= τ̃(v0,5+k)

= v0,−2−k

giving τ̃ σ̃τ̃ σ̃(v0,9) = v0,9 yet τ̃ σ̃τ̃ σ̃ 6= 1Γ. Therefore T is never regular, and so Γ is

not a Cayley graph.

Combining the above claims we deduce the following.

Theorem 2.5.1. Γ is a cubic 2-ended vertex transitive graph which is not a Cayley

graph.

Remark. For an interested reader, note that

Aut(Γ) = 〈τ, σ|τ10, (τ−1στσ)2, σ−1τ2στ−4, (σ−2τ)2〉.

What follows is a discussion about the split presentation of the graph Γ.

Define presentation P = 〈 {0, 1} | {a} | {b} | a, b 7→ (01) | {a10, a2ba4b}, {a2ba−4b} 〉,
we will sketch that Γ = Spl(P ). Let C(P ) be the presentation complex, label the

directed edges

−→
E (C(P )) = {a(0, 1), a−1(0, 1), b(0, 1), a(1, 0), a−1(1, 0), b(1, 0)}
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where ε(i, j) is the edge coloured ε going from i to j, these indices will be taken

modulo 2. Define cover ζ : Γ→ C(P ), where

ζ :

vn,k

(vn,k, vn,k+1)

(vn,2k+1, vn+1,4k+2)

7→
k (mod 2)

a(k, k + 1)

b(1, 0)

where

ζ :
(vn,k+1, vn,k)

(vn+1,4k+2, vn,2k+1)
7→

a−1(k + 1, k)

b(0, 1)
.

Observe the relations hold as the paths

ζ :

vn,k, vn,k+1, . . . vn,k+9, vn,k

vn+1,2k, vn+1,2k+1, vn+1,2k+2, vn,6k+1, vn,6k+2, . . . vn,6k+5, vn,2k

vn,2k+1, vn,2k+2, vn,2k+3, vn+1,4k+6, vn+1,2k+5, . . . , vn+1,4k+2, vn,2k+1

7→
(a(k, k + 1)a(k + 1, k))5

a(0, 1)a(1, 0)b(0, 1)(a(1, 0)a(0, 1))2b(1, 0)

a(1, 0)a(0, 1)b(1, 0)(a−1(0, 1)a−1(1, 0))2b(0, 1)

which we leave for the interested reader to deduce that by inserting these 2-cells Γ

becomes simply connected (note here we don’t need the a2ba−4b relation). However,

there is no simplicial map φ : C(P ) → C(P ) with φ(0) = 1. However this changes

when we take the 2-fold cover of the split presentation complex C(P ) to give us split

presentation

P ′ = 〈 {0, 1, 2, 3} | {a} | {b} | a 7→ (01)(23), b 7→ (03)(12) |

|{{a10, a2ba4b}, {a2ba−4b}, {a10, a2ba4b}, {a2ba−4b}}〉.

We have cover ε : C(P ′)→ C(P ) by ε : i 7→ i (mod 2). Where the cover ζ : Γ→ C(P )

factors through ε by the map µ : Γ→ C(P ′) where µ(vn,k) = 2n′ + k′ where n′ and

k′ are n and k reduced modulo 2. Where µ maps edges similarly to ζ. The C(P ′) has

two interesting automorphisms, σ̂ : C(P ′) → C(P ′) which swaps 0 ↔ 2 and 1 ↔ 3

but preserves edge labels. The less trivial map τ̂ : C(P ′)→ C(P ′) which swaps 0↔ 1

and 2 ↔ 3 and preserves labels of edges between 0 and 1 (τ̂ : a(0, 1) 7→ a(1, 0))

though reverse labels of 2 and 3 (τ̂ : a(2, 3) 7→ a−1(3, 2)). Then one can observe τ̂ ’s

action on the 2-cells, both a10 2-cells stay fixed but between 2 and 3 the direction is
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reversed. We obtain a slightly less trivial action on the other 2-cells:

a(0, 1)a(1, 0)b(0, 3)(a(3, 2)a(2, 3))2b(3, 0)

a(1, 0)a(0, 1)b(1, 2)(a−1(2, 3)a−1(3, 2))2b(2, 1)

a(2, 3)a(3, 2)b(2, 1)(a(1, 0)a(0, 1))2b(1, 2)

a(3, 2)a(2, 3)b(3, 0)(a−1(0, 1)a−1(1, 0))b(0, 3)

7→

a(1, 0)a(0, 1)b(1, 2)(a−1(2, 3)a−1(3, 2))2b(2, 1)

a(0, 1)a(1, 0)b(0, 3)(a(3, 2)a(2, 3))2b(3, 0)

a−1(3, 2)a−1(2, 3)b(3, 0)(a(0, 1)a(1, 0))2b(0, 3)

a−1(2, 3)a−1(3, 2)b(2, 1)(a−1(1, 0)a−1(0, 1))2b(1, 2)

where a−1(3, 2) a−1(2, 3) b(3, 0) (a(0, 1)a(1, 0))2 b(0, 3) and a−1(2, 3) a−1(3, 2) b(2, 1)

(a−1(1, 0)a−1(0, 1))2 b(1, 2) are the 2-cells a(3, 2) a(2, 3) b(3, 0) (a−1(0, 1)a−1(1, 0))2

b(0, 3) and a(2, 3) a(3, 2) b(2, 1) (a(1, 0)a(0, 1))2 b(1, 2) ran in reverse. Using Propo-

sition 2.3.15 we obtain that Γ is vertex transitive. The suggestive notation being

correct, σ̂, τ̂ ∈ Aut(C(P ′)) lifting to σ, τ ∈ Aut(Γ).

2.6 Conclusion

In this thesis we showed that every vertex transitive graph admits a split presentation,

but we were not able to limit the number of vertex classes required. This suggests

Problem 2.6.1. Can every connected vertex transitive graph other than K1 and K2

be represented as a split graph so that each vertex class Vx for x ∈ X contains at

least two vertices?

From Proposition 2.3.16 and the result of Diestel-Leader [9] saying there exists a

vertex-transitive graph not quasi-isometric to any Cayley graph. We know that there

exists a vertex transitive graph that can’t be represented using a presentation P

with finite X. However this raises the following question.

Problem 2.6.2. Does a vertex transtive graph Γ have a split presentation with finite

X if and only if Γ is quasi-isometric to a Cayley graph?

Define the Cayleyness of a (vertex transitive) graph Γ as the minimum number of

vertex classes in any split presentation of Γ. Thus Γ is a Cayley graph if and only if

it has Cayleyness 1.

Problem 2.6.3. Is there a vertex transitive graph of Cayleyness at least n for every

n ∈ N?

A simple observation gives that the Cayleyness of a graph Γ divides |V (Γ)|. Therefore

this question could be answered if for every prime p ∈ N, there is a non-Cayley graph
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on pn vertices. Then its Cayleyness has to divide pn but could not be 1, as it is not

Cayley.

We say that a (vertex transitive) graph Γ is finitely presented if it has a split presen-

tation with finitely many vertex classes and finitely many relators. Is this equivalent

to π1(Γ) being generated by walks of bounded length?

When comparing knowledge about groups and vertex transitive graphs, a lot more

is known about the former. For example, it is an easy exercise in group theory to

show there are finitely many finite extensions of finitely presented groups. When it

comes to vertex transitive graphs, the analogous question is still open and has been

extensively studied in the literature by Gardiner and Praeger, and Neganova and

Trofimov amongst other authors [18, 43, 52]. Using split presentations we might be

able to develop an analogous proof.

2.7 Appendix

In this appendix we generalise Theorem 2.3.8 of Godsil and Royle [19] to infinite

graphs as follows.

Theorem 2.7.1. Let Γ be a connected infinite vertex transitive graph which is locally

finite. Then Γ has a perfect matching.

Formally a matching M ⊂ E(Γ), is a subgraph of Γ, which we say misses x ∈ V (Γ)

if x is not in the induced subgraph of M . Let d be the distance function on vertices,

where the distance between any two vertices is the minimum size path containing

both vertices, it is infinite if no such path exists. For x ∈ V (Γ) and n ∈ N define

B(x, n) = {y ∈ V (Γ)|d(x, y) ≤ n} to be the set of vertices distance at most n from

x, we will call this the ball of radius n around x.

To this end we define a metric on the space of matchings for an infinite graph Γ.

Definition 2.7.2. Let Γ be an infinite graph which is locally finite and x ∈ V (Γ)

with matching M ⊂ E(Γ). Define the miss cardinality of M at x to be the sequence

(mn)n∈N. Where mn is the number of missed vertices of M in B(x, n). For two

matchings M1 and M2 with miss cardinality at x to be (an) and (bn) respectively,

we say M1 < M2 if there exists N ∈ N such that an = bn for n < N with aN > bN .

We extend the miss cardinality to a partial order by setting M < M for any matching

M . A chain is a sequence of matchings (Mi)i∈N such that Mi < Mi+1 for all i ∈ N.

We remind the reader of Zorn’s lemma.
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Theorem 2.7.3. (Zorn’s lemma, Kuratowski [27]) Suppose a partially ordered set

P has the property that every chain in P has an upper bound in P . Then the set P

contains at least one maximal element.

We use this to prove that a maximum matching exists with respect to this partial

order.

Lemma 2.7.4. For a locally finite connected graph Γ with vertex x ∈ V (Γ) there

exists a maximal matching with respect to the miss cardinality.

Proof. Suppose we have a chain of matchings Mi, i ∈ N in Γ with respect to the miss

cardinality at x. Let Mi have miss cardinality (mi
n)n∈N, so we know mi+1

n ≤ mi
n as

this is a chain.

We will inductively define subsequences In+1 ⊂ In ⊂ N. Let I1 = N. Suppose

we have defined In, as the induced graph on B(x, n) is a finite there are finitely

many matchings on it. Therefore infinitely many i, j ∈ In have Mi ∩ B(x, n) =

Mj ∩B(x, n) =:Mn, let In+1 be such an infinite subset.

As In+1 is infinite with Mi ∩ B(x, n) = Mi′ ∩ B(x, n) for i, i′ ∈ In we obtain that

mi
n ≤ mj

n for i ∈ In+1 and j ∈ N. Let M =
⋃
i∈NMi, which is a matching as

Mi ⊂Mi+1 for each i ∈ N with Mi being a matching. Then if (mn)n∈N is the miss

cardinality of M then mn = mi
n ≤ mj

n for i ∈ In and j ∈ N by the definition of

M . If mn = mi
n for all n ∈ N, then mi

n = mi+j
n for all j ∈ N, however as this is a

chain Mi < Mi+j which can only happen if Mi = Mi+j = M still giving Mi < M .

Therefore M is an upper bound for the chain (Mi)i∈N.

By Zorn’s lemma we obtain the existence of a maximum matching.

For a matching M a path, ray, or cycle P is alternating with respect to M if

every other edge contained in P is also contained in M . The number of edges

in a path is called its length. We remind the reader of the symmetric difference

S ⊕ T = S ∪ T\S ∩ T .

Lemma 2.7.5. Let Γ be an infinite graph which is locally finite with vertex x ∈ V (Γ).

Let M1 and M2 be two maximum matchings with respect to the miss cardinality. Then

the symmetric difference M1 ⊕M2 can only contain even length cycles, bi-infinite

rays, and even length paths P . Furthermore, for any such path P if it has end vertices

u, v ∈ V (Γ) then d(u, x) = d(v, x). Every component of M1 ⊕M2 is alternating with

respect to M1 or M2.

Proof. As M1 and M2 are matchings, vertices in M1 ⊕M2 are degree 0,1 or 2. So

M1 ⊕M2 contains paths, cycles, one way infinite rays and bi-infinite rays, which are
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alternating with respect to M1 and M2. As the components are alternating with

respect to M1 all cycles must be of even length.

Suppose M1⊕M2 contains a one way infinite ray R and let y ∈ V (Γ) be its end point.

Without loss of generality M1 misses y, however M1 ⊕R does not miss y moreover

it does not miss any vertex M1 does not miss. This contradicts the maximality of

M1 as a matching. So M1 ⊕M2 doesn’t contain any one way infinite rays.

Let P be a path in M1 ⊕M2. If P has odd length then the end vertices u, v ∈ V (Γ)

are without loss of generality missed by M1. Therefore M1 ⊕ P doesn’t miss any

vertex M1 missed but in addition doesn’t miss u and v which contradicts maximality

of M1. Therefore assume P has even length.

Suppose P a path in M1 ⊕M2 connects its end vertices u, v ∈ V (Γ). Suppose that

N := d(u, x) < d(v, x). Without loss of generality let M1 miss u. Let M1 and M1⊕P
have miss cardinality with respect to x, (an)n∈N and (bn)n∈N respectively. Then for

n < N an = bn however in B(x,N) M1 misses u whereas M1⊕P doesn’t not, therefore

aN > bN . This contradicts the maximality of M1, therefore d(u, x) = d(v, x).

Lemma 2.7.6. Let Γ be an infinite connected graph which is locally finite with

vertex x ∈ V (Γ). Let u, v ∈ V (Γ) be such that no maximum matching with respect to

the miss cardinality at x misses both of them. Suppose Mu and Mv are maximum

matchings that miss u and v respectively. Then there is a path of even length in

Mu ⊕Mv with end vertices u and v.

Proof. In Mu ⊕Mv, u and v have degree 1. So u and v are the end points of paths

in Mu ⊕Mv. If they are the end points of the same path we are done. So suppose

not, and let P be the path with end points u and y 6= v which by Lemma 2.7.5

d(u, x) = d(y, x). Then Mv ⊕ P is a matching that misses u and v, moreover as

d(u, x) = d(y, x) it has the same miss cardinality as Mv. However this contradicts the

assumption that no maximum matching misses u and v. So the path must connect

u and v.

We call a vertex v ∈ V (Γ) critical if every maximum matching covers it.

Lemma 2.7.7. Let Γ be an infinite connected graph which is locally finite with vertex

x ∈ V (Γ). Let u, v ∈ V (Γ) be distinct and P a path with end points u and v. If no

vertex in V (P )\{u, v} is critical, then no maximum mathching misses both u and v.

Proof. We apply induction to the length of the path P . If P is simply an edge, then

if a matching missed u and v the addition of this edge would increase the size of the

51



matching.

Suppose |P | ≥ 2 and let y ∈ V (P )\{u, v}. As y is not critical let My be a matching

missing y. However by induction we know no matching misses both u and y as well

as no matching misses v and y. Suppose N was a matching missing both u and v.

By Lemma 2.7.6, we know that N ⊕My contains a path with end vertices u and y,

however it also contains a path with end vertices v and y. However this contradicts

u 6= v, so no such mathcing N exists.

Note that for vertex transitive graphs either all vertices are critical or none are,

therefore using Lemma 2.7.7 we can deduce the following.

Corollary 2.7.8. A connected vertex transitive graphs which is locally finite has a

maximal matching missing at most one vertex.

Next we want to improve this to show a perfect matching exists in infinite vertex

transitive graphs.

Lemma 2.7.9. Let Γ be an infinite connected graph which is locally finite with

x ∈ V (Γ). If there exists a sequence of matchings (Mi)i∈N of Γ such that Mn misses

no vertex in B(x, n), then Γ has a matching missing no vertex.

Proof. We inductively build subsequences (Mi)i∈In where In+1 ⊂ In ⊂ N are in-

finite subsets. Let I1 = N. For n ∈ N suppose we have constructed In. We

know that there are finitely many matchings in B(x, n). Therefore for a se-

quence of matchings (Mi)i∈In we know for infinitely many i ∈ In the matchings

Mi ∩B(x, n) are equal. Therefore construct infinite subsequence (Mi)i∈In+1 where

Mi ∩ B(x, n) = Mj ∩ B(x, n) =Mn for all i, j ∈ In+1. Note as only finitely many

Mi can miss a vertex in B(x, n), Mn does not miss any vertex in B(x, n).

Let M = ∪n∈NMn then as Mn ⊂ Mn+1 we have that M is a matching in Γ.

Moreover let y ∈ V (Γ), as Γ is connected, the distance between x and y is a finite, n.

However we know Mn ⊂M doesn’t miss y, therefore neither does M . So M misses

no vertex.

This solves the case were we have a matching that misses only finitely many vertices.

Corollary 2.7.10. If Γ is an infinite vertex transitive graph which is locally finite

with a matching M missing only finitely many vertices, then Γ has a matching that

misses no vertices.

Proof. Let M be a matching that misses only finitely many vertices. Let S ⊂ V (Γ) be

the set of missed vertices. Pick any vertex x ∈ S. As S is finite let m = miny∈S d(x, y).
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As Γ is an infinite vertex transitive graph there exists automorphisms φn that maps x

to a vertex y such that d(x, y) ≥ n+m. Define a sequence of matching Mn = φn(M).

Note by the triangle inequality Mn misses no vertex in B(x, n). Therefore by Lemma

2.7.9 we obtain a matching that misses no vertex in Γ.

By Corollary 2.7.8 and 2.7.10 we deduce a proof of Theorem 2.7.1.
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Chapter 3

2-Groups, Representations and

Characters

The story about how 2-groups where originally formed is very long and spans over

multiple decades. A good review of this story and a great introductory paper on the

area is presented by Baez and Lauda [1], who made the area accessible to novices.

Group theory has been a highly influential area of mathematics, however some may

argue that a group is only the tip of the algebraic iceberg. Fundamentally group

theory is the study of symmetries, as highlighted by Cayley. A 2-group hopes to

capture the idea of symmetries between symmetries, allowing for the group laws to be

weakened up to natural transformation. We give a whistle stop tour of this area in the

first section, so the reader has all the relevant definition at hand for the later sections.

The concept of a 2-representation of a 2-group was introduced and studied by

many authors, for this we mainly used Barrett and Mackaay [3]. In this work,

2-representations where taken into 2−VectK, which was introduced by Kapranov

and Voevodsky [26]. Ganter and Kapranov [16] studied 2-representations of finite

groups, who introduced the 2-character. simultaneously to Barrett [4]. In the case

of a finite group Osorno [46] developed explicit formulas for the 2-characters.

We review the Maclane strictification, and cover some work in progress of Hristova

and the author. Maclane strictification says a generic 2-group is equivalent to a strict

2-group. The first major result of this chapter is a new correspondence between a

skeletal 2-group and a crossed module.

Theorem 3.2.3 A skeletal 2-group given by (G,H,α) is equivalent to crossed

module K = (A
∂−→ B) given by:
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• group B = G×MorSet(G,H)/H where (X, [θ1])⊗ (Y, [θ2]) = (XY, [θ]) with

θ(z) = α(X,Y, z) + Xθ2(z) + θ1(Y z),

• group A = MorSet(G,H)/H ×H where ([θ1], a)⊗ ([θ2], b) = ([θ1 + θ2], a+ b),

• map ∂ : A→ B where ∂([Φ], h) = (1G, [Φ]), and

• group action B ↪→ A given by (X, [θ]) : ([Φ], h) 7→ ([XΦ(X−1−)],Xh).

Note here that if G and H are finite our crossed module uses finite groups also.

Whereas all the current known ways to do this all go via infinite free groups. We

remind the reader of this technique after the proof of Theorem 3.2.3 and relate it to

our work in Corollary 3.2.5.

The next section is comprised of the results of Rumynin and the author in [48].

However in this section we have choosen to prove the core theorems in a new way

only using the knowledge of 2-groups, without needing module categories. To get the

perspective of module categories we refer the reader to the paper [48]. In this section

we look at representations of 2-groups into 2-vector space, in the sense of Kapranov

and Voevodsky [26]. We expand on the work of Gunnells, Rose and Rumynin [21]

to relate the space of 2-representations in this sense to a certain Burnside ring. To

any representation Ganter and Kapranov [16] showed us, using 2-traces, how to

associate a 2-character. This brings us to our first major result where we associate

this 2-character to a mark homomorphism of the Burnside ring.

Theorem 3.3.5 (Rumynin Wendland [48]) Let K = (A
∂−→ B) be a crossed module,

P be the subgroup of π1(K) generated by ā and b̄. Let α := X(b,a, h) considered

as a group homomorphism 2-Rep1(KP ) → K×. If the order of π1(K) is finite and

invertible in the field K, then

X(b,a, h) = fαP .

Orsorno [46] gives explicit formulas for this 2-character in terms of the cohomological

data of the 2-representation. We take this lead to do the same for our mark

homomorphisms. To this end we first review work done in the author’s masters

thesis, which gives an explicit version of the Shapiro Isomorphism [44]. We then

work with a special class of crossed modules, of the form K = (1
∂−→ G) with G a

finite group. In this setting we derive a formula for the 2-character..

Theorem 3.3.8 (Rumynin Wendland [48]) Let a,b ∈ B be commuting elements,

Θ a degree one 2-representation of B, µ ∈ Z2(B,K×) a cocycle such that [µ] = {Θ}.
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Then

X(b,a)(〈Θ, B〉) = µ(b,a−1)µ(a−1,b)−1.

Which we then use to rederive the formula originally given by Orsorno.

Theorem 3.3.11 ([45, Theorem 1]) Let Θ be a 2-representation of B that corre-

sponds to a B-set X and a cohomology class [θ] for some cochain θ ∈ Z2(B, (K×)X).

Then

XΘ(b,a) =
∑

x∈X, x=a·x=b·x

θx(b,a−1)

θx(a−1,b)
=

∑
x∈X, x=a·x=b·x

θx(b,a−1)θx(a,ba−1)

θx(a,a−1)θx(1, 1)

for any commuting a,b ∈ B.

The chapter is organised in the following manner. In the first section we review

the definitions of a category, bicategory, group cohomology, crossed module and

2-representation. We show how a skeletal 2-group can be related to group cohomology

data, as well as show how a strict 2-group is equivalent to one coming from crossed

module.

The second section deals with the Maclane Strictification. This is a theorem that

shows how all 2-groups are equivalent to a strict 2-group including skeletal ones. To

this end we prove Theorem 3.2.3 and relate this to what is already known in the

field in Corollary 3.2.5.

The third section mainly deals with the work of Rumynin and the author [48].

We first build the correspondence between the space of 2-representations and the

Burnside ring. Then we show that a 2-character is a specific mark homomorphism of

the Burnside ring in Theorem 3.3.5. We then review the work done in the author’s

masters thesis, and prove Theorem 3.3.6 which is an explicit formula for the Shapiro

isomorphism. We use this to prove Theorem 3.3.8 and Theorem 3.3.11 which are

explicit formulas for 2-characters in terms of the cohomological data which gives the

2-representation. In the last section we discuss future possible work in this field.

3.1 Preliminaries

Throughout this section we recall a lot of definitions, we assume no knowledge of

the area for the reader. It is advised an informed reader skip sections which they are

likely to be knowledgable about.
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3.1.1 Categories

We first review some basic concepts from category theory.

Definition 3.1.1. A category C shall consist of the following data

• a collection of objects Ob(C),

• for each two objects X,Y ∈ Ob(C) a collection of morphisms Mor(X,Y ),

• a composition map ◦ : Mor(Y,Z)×Mor(X,Y )→ Mor(X,Z) for every X,Y, Z ∈
Ob(C), and

• an identity morphism 1X ∈ Mor(X,X) for each X ∈ Ob(C),

such that composition is associative c◦ (b◦a) = (c◦ b)◦a and identity morphisms are

unital 1Y ◦ a = a = a ◦ 1X for a ∈ Mor(X,Y ), b ∈ Mor(Y, Z) and c ∈ Mor(Z,W ).

Example 3.1.2. There are many natural examples of categories, we detail a couple

that will be used later in this section.

• The category Set with objects being sets, morphisms just maps of sets and

composition being composition of set maps.

• The category Grp with objects being groups, morphisms as homomorphisms

and composition being composition of homomorphism. This has a subcategory

AbGrp of abelian groups.

• Given a group G we can define a category with Ob(G) = {?} and Mor(?, ?) = G

with composition being the group operation.

• Given a field K we can define a category VectK whose objects are finite

dimensional K vector spaces and morphisms are linear maps.

When multiple categories are being considered we specify the category as a subscript.

For example if we want φ to be a set map between two groups G and H we may let

φ ∈ MorSet(G,H) whereas if we let φ ∈ MorGrp(G,H) it would be a homomorphism

of groups.

Given a category C, the opposite category Cop has Ob(Cop) = Ob(C) where MorCop(X,Y ) =

MorC(Y,X). For f ∈ MorCop(X,Y ) and g ∈ MorCop(Y,Z) we define the composition

g ◦Cop f := f ◦C g ∈ MorC(Z,X) = MorCop(X,Z).

We say a ∈ Mor(X,Y ) is an isomorphism if there exists a−1 ∈ Mor(Y,X) such that

a ◦ a−1 = 1Y and a−1 ◦ a = 1X . We say C is a skeletal category if all isomorphisms

are automorphisms.
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Definition 3.1.3. A functor F : C → D between two categories C and D contains

the following data

• a map F : Ob(C)→ Ob(D), and

• a family of maps F : Mor(X,Y )→ Mor(F(X),F(Y )),

such that F preserves composition F(b◦a) = F(b)◦F(a) and identity F(1X) = 1F(X).

A contravariant functor F : C → Dop is just a functor however will sometimes be

refered to by F : C → D.

There are many natural examples of functors, we will come on to define some of them.

Define the identity functor idC : C → C where all the maps are just the identity. Here

we exhibit one example that will be useful motivation for later.

Example 3.1.4. Given a representation ρ : G→ Gl(V ) of a group G into a K vector

space V , one can interpret ρ as a functor ρ̃ : G → VectK. This is where ρ̃(?) = V

and ρ̃(g) = ρ(g) ∈ Gl(V ) = Mor(V, V ).

One can compose functors F : C → D and G : D → E where the maps of F ◦ G are

the composition of the maps in F and G.

Definition 3.1.5. A natural transformation Φ : F ⇒ G between two functors

F ,G : C → D is a collection of maps ΦX ∈ Mor(F(X),G(X)), called its components,

such that for each a ∈ Hom(X,Y ) we have that ΦY ◦F(a) = G(a) ◦ΦX , equivalently

the following diagram commutes.

F(X)

ΦX

��

F(a) // F(Y )

ΦY

��
G(X)

G(a) // G(Y )

One can compose natural transformations Φ : F ⇒ G with Ψ : G ⇒ H by simply

composing their components for each object X ∈ C. This will be called vertical

composition. It is also possible to compose natural transformations Φ : F ⇒ G with

Ψ : H ⇒ K, where F ,G : D → E and H,K : C → D, to get natural transformation

Φ⊗Ψ : FH ⇒ GK. This is called the Godement product or horizontal composition

and is given by the following composition which can be defined in two equivalent

ways (Φ is a natural transformation and the following diagram is the coherence of Φ

for the morphisms Ψ(X) : H(X)→ K(X), therefore commutes).

FH(X)

ΦH(X)

��

F(ΨX) //

(Φ⊗Ψ)X

((

F(K(X))

ΦK(X)

��
GH(X)

G(ΨX)
// GK(X)
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A natural transformation is a natural isomorphism if each of its components are

isomorphisms. It will be convenient in future to say when two categories convey the

same information, for this we introduce the notion of equivalent categories.

Definition 3.1.6. We say a functor F : C → D is an equivalence of categories if

there exists a functor G : D → C, and natural isomorphisms Φ : G ◦ F ⇒ idC and

Ψ : F ◦ G ⇒ idD. We then say the categories C and D are equivalent.

Finding the functor G and natural transformations Φ and Ψ can be cumbersome so

the following is useful.

Proposition 3.1.7. [30, Theorem IV.4.1] A functor F : C → D is an equivalence

of categories if

• for every Y ∈ Ob(D) there exists X ∈ C with isomorphisms a ∈ Mor(F(X), Y )

(essentially surjective), and

• each F : Mor(X,Y )→ Mor(F(X),F(Y )) is a bijection (full and faithfull).

An equivalence of categories can help understanding larger categories by looking at

simplier categories which they are equivalent to.

Example 3.1.8. Let C be a category. We define an equivalence ∼ on Ob(C) where

X ∼ Y if there exists isomorphism a ∈ MorC(X,Y ). Note that if X ∼ Z and

Y ∼ W using a ∈ Mor(X,Z) and b ∈ Mor(Y,W ) respectively, then there exists

isomorphism f ∈ MorSet(MorC(Z,W ),MorC(X,Y )) where f(c) = b ◦ c ◦ a with

inverse f−1(c) = b−1 ◦ c ◦ a−1. We define the skeleton of C called CSkel as a sub-

category of C. For each class of equivalent objects choose a representative and set

Ob(CSkel) ⊂ Ob(C) to be this collection. Let Mor
CSkel(X,Y ) := MorC(X,Y ).

The equivalence of categories is then given by inclusion F : CSkel → C. Which is

essentially surjective as all objects Y ∈ Ob(C) have an isomorphic object X ∈ CSkel

and full and faithful by definition. Up to isomorphism, the skeleton category is

unique and the choice of objects does not matter.

For VectK we can make VectSkel
K have objects Kn ∈ Ob(VectSkel

K ) where n ∈ N and

Mor
VectSkel

K

(Kn,Km) are n×m matrices.

Later on it will be useful to apply more structure to our categories. For this we

define the notion of a product category. For categories Ci with i ∈ {1, . . . , n} we can

define the product category C1 × C2 × . . . × Cn with Ob(C1 × . . . × Cn) = Ob(C1) ×
Ob(C2) × . . . × Ob(Cn) and morphisms Mor((X1, X2, . . . , Xn), (Y1, Y2, . . . , Yn)) =
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MorC1(X1, Y1)×MorC2(X2, Y2)× . . .×MorCn(Xn, Yn) with composition defined com-

ponent wise and identity morphism 1(X1,X2,...,Xn) = (1X1 , 1X2 , . . . , 1Xn).

Here we use the notation − to allow for an argument, for example one could say

we have functor X × − : D → C × D for some X ∈ Ob(C). By this we mean the

functor taking (X ×−) : Y 7→ (X,Y ) for Y ∈ Ob(D) and (X ×−) : a 7→ (1X , a) for

a ∈ HomD(Y,Z) where (1X , a) ∈ MorC×D((X,Y ), (X,Z)). In Example 3.1.8 f and

f−1 would be b ◦ − ◦ a and b−1 ◦ − ◦ a−1 respectively.

Definition 3.1.9. A monoidal category is a category C with the additional data

• a functor ⊗ : C × C → C where we will write ⊗(a, b) =: a⊗ b,

• a unit object 1C ∈ C,

• a natural isomorphisms between the two functors

(−⊗−)⊗−,−⊗ (−⊗−) : C × C × C → C

Ass : (−⊗−)⊗− ⇒ −⊗ (−⊗−) with components Ass(X,Y, Z) ∈ Mor((X ⊗
Y )⊗ Z,X ⊗ (Y ⊗ Z)), therefore for maps f ∈ Mor(X,A), g ∈ Mor(Y,B) and

h ∈ Mor(Z,C) we have

Ass(A,B,C)◦((f⊗g)⊗h) = (f⊗(g⊗h))◦Ass(X,Y, Z) ∈ Mor((X⊗Y )⊗Z,A⊗(B⊗C)),

• a natural isomorphism between the two functors

1C ⊗−,− : C → C

λ : 1C ⊗− ⇒ − with component λ(X) ∈ Mor(1C ⊗X,X) called the left unitor,

and

• a natural isomorphism between the two functors

−⊗ 1C ,− : C → C

ρ : − ⊗ 1C ⇒ − with component ρ(X) ∈ Mor(X ⊗ 1C , X) called the right

unitor,

such that the data above abide by the following axioms

• The triangle axiom giving
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(X ⊗ 1)⊗ Y
ρX⊗1Y

''

AssX,1,Y // X ⊗ (1⊗ Y )

1X⊗λYww
X ⊗ Y

commutes.

• The pentagon axiom giving

(X ⊗ Y )⊗ Z)⊗W

Ass(X,Y,Z)⊗1Wtt

Ass(X⊗Y,Z,W )

**
(X ⊗ (Y ⊗ Z))⊗W

Ass(X,Y⊗Z,W )
��

(X ⊗ Y )⊗ (Z ⊗W )

Ass(X,Y,Z⊗W )
��

X ⊗ ((Y ⊗ Z)⊗W )
1X⊗Ass(Y,Z,W ) // X ⊗ (Y ⊗ (Z ⊗W ))

commutes.

Anything with a tensor product structure naturally becomes a monoidal category. For

example VectK is a monoidal category with respect to the tensor product. Here we

have non-trivial associator Ass being the formal isomorphisms between (V1⊗V2)⊗V3

and V1 ⊗ (V2 ⊗ V3), similar for the unitors.

We call a monoidal category strict if Ass, λ and ρ are identities. For a skeletal

monoidal category we say it is special if λ and ρ are identities.

One useful motivating example is how we look at groups as a monoidal category, as

we explicate below.

Example 3.1.10. Let (G, ·) be a group. Define a category CG which has Ob(CG) :=

G where

MorCG(g, h) =

{1g} if g = h

∅ otherwise

with 1g being the identity morphism which fully describes the composition map ◦.
We can make CG a monoidal category where ⊗ : CG×CG → CG is given by the group

operation so

⊗ :
g ⊗ h

1g ⊗ 1h
7→

g · h
1g·h.

This has unity object 1G and trivial maps for Ass, λ and ρ. Therefore it obeys the

triangle and pentagon axioms trivially, moreover this is a strict skeletal category.
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However there are other similar ways to represent groups as a monoidal category.

Example 3.1.11. Let (G, ·) be a group with generating set S = S−1 such that

〈S〉 = G. Let WS be bracketed strings of words in S. Formally let

WSn =


{ε} if n = 0

S if n = 1

{(w1) ∗ (w2)|w1 ∈WSa w2 ∈WSb with a, b > 0 and a+ b = n} otherwise

where notationally brackets around a single letter get dropped. Then let WS =

∪∞n=0W
S
n . Therefore if a, b, c ∈ S then a ∗ (b ∗ c) is distinct from (a ∗ b) ∗ c in WS .

There is an evaluation map φ : WS → G where you replace ∗ by the operation · and

evaluate as an element of G as S ⊂ G. Formally define it as

φ(w) =


1G if w = ε

s if w = s ∈ S

φ(w1) · φ(w2) if w = (w1) ∗ (w2)

.

Now define category C(G,S) where Ob(C(G,S)) = WS and

MorC(G,S)
(w1, w2) =

{fw1,w2} if φ(w1) = φ(w2)

∅ otherwise
.

Composition is forced, so if φ(w1) = φ(w2) = φ(w3) then ◦ : Mor(w2, w3) ×
Mor(w1, w2) → Mor(w1, w3) is given by fw2,w3 ◦ fw1,w2 = fw1,w3 making fw,w the

unit morphism in Mor(w,w). Note here that every morphism is an isomorphism as

if φ(w1) = φ(w2) then there exists fw1,w2 and fw2,w1 such that fwi,wi±1 ◦ fwi±1,wi =

fwi,wi .

We can make C(G,S) a monoidal category by defining ⊗ : C(G,S) × C(G,S) → C(G,S) as

⊗ :
w1 ⊗ w2

fw1,w2 ⊗ fw3,w4

7→
(w1) ∗ (w2)

f(w1)∗(w3),(w2)∗(w4)

.

Take a word w1 such that φ(w1) = 1G (Note that w1 could be ε however need not

be). We have non-trivial associator Ass(w1, w2, w3) = f((w1)∗(w2))∗(w3),(w1)∗((w2)∗(w3)).

Potentially non-trivial unitors λ(w) = f(w1)∗(w),(w) and ρ(w) = f(w)∗(w1),(w). A simple

check confirms the triangle and pentagon axioms hold. This is neither strict nor is it

skeletal.

We alluded to these two examples being similar, let us explain in what fashion now.
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Definition 3.1.12. Let C and D be monoidal categories. Then a monoidal functor

F consists of the following data:

• a functor of categories

F : C → D,

• an isomorphism

ε : 1D → F(1C), and

• a natural isomorphism between the following functors

F(−)⊗D F(−),F(−⊗C −) : C × C → D

called µ : F(−)⊗DF(−)⇒ F(−⊗C−) with components µ(X,Y ) ∈ Mor(F(X)⊗D
F(Y ),F(X ⊗C Y )).

Such that the following axioms hold:

• Associativity, which says

(F(X)⊗D F(Y ))⊗D F(Z)
AssD(F(X),F(Y ),F(Z)) //

µ(X,Y )⊗D1F(Z)

��

F(X)⊗D (F(Y )⊗D F(Z))

1F(X)⊗Dµ(Y,Z)

��
F(X ⊗C Y )⊗D F(Z)

µ(X⊗CY,Z)

��

F(X)⊗D F(Y ⊗C Z)

µ(X,Y⊗CZ)

��
F((X ⊗C Y )⊗C Z)

F(AssC(X,Y,Z)) // F(X ⊗C (Y ⊗C Z))

commutes.

• Unitality, which says

1D ⊗D F(X)
ε⊗D1F(X) //

λD(F(X))

��

F(1C)⊗D F(X)

µ(1C ,X)
��

F(X) F(1C ⊗C X)
F(λC(X))

oo

and

F(X)⊗D 1D
1F(X)⊗Dε //

ρD(F(X))

��

F(X)⊗D F(1C)

µ(X,1C)

��
F(X) F(X ⊗C 1C)F(ρC(X))

oo

commutes.
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Definition 3.1.13. Let C and D be monoidal categories and F ,G : C → D monoidal

functors then a monoidal natural transformation is a natural transformation Φ : C ⇒
D such that

F(X)⊗D F(Y )
Φ(X)⊗DΦ(Y ) //

µF (X,Y )

��

G(X)⊗D G(Y )

µG(X,Y )

��
F(X ⊗C Y )

Φ(X⊗CY ) // G(X ⊗C Y )

and

1D
εF

||

εG

""
F(1C)

Φ(1C) // G(1C)

commute.

Therefore we can extend the notion of equivalence of categories to equivalence of

monoidal categories by just requiring that all functors and natural transformations

are monoidal.

Example 3.1.14. Let (G, ·) be a group with generating set S. Then we want to

show CG and C(G,S), as introduced in examples 3.1.10 and 3.1.11 respectively, are

monoidally equivalent. Pick σ ∈ MorSet(G,WS) such that φ(σ(g)) = g, which exists

as S generates G. Define a functor F : CG → C(G,S) given by

F :
g

1g
7→

σ(g)

fσ(g),σ(g)

.

Note this is a functor of categories as F(1g) = fσ(g),σ(g) giving that it preserves

identities and observing

F(1g ◦CG 1g) = F(1g)

= fσ(g),σ(g)

= fσ(g),σ(g) ◦C(G,S)
fσ(g),σ(g) as fσ(g),σ(g) is a unit morphism

= F(1g) ◦C(G,S)
F(1g)

we get that it preserves composition also. Let ε = fw1,σ(1G) which exists as φ(w1) =

1G = φ(σ(1G)). Define µ(g, h) = fσ(g)∗σ(h),σ(g·h), which exists as

φ(σ(g · h)) = g · h

= φ(σ(g)) · φ(σ(h))

= φ(σ(g) ∗ σ(h)).
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This gives us that F is a monoidal functor. Note that F : MorCG(g, g)→ MorC(G,S)
(σ(g), σ(g))

is a bijection so F is full and faithful. Moreover for all w ∈WS φ(w) ∈ G therefore

fw,σ(φ(w)) is an isomorphism and so F is full, giving that F is a monoidal equivalence

of categories.

We will use monoidal categories as a simpler way to think of a higher categories, which

will be described in the next subsection. However first let us name an interesting

property monoidal categories have.

Definition 3.1.15. As ⊗ : C × C → C is a functor, we have the interchange law

which states

(b ◦ a)⊗ (d ◦ c) = ⊗ (b ◦ a, d ◦ c)

= ⊗ ((b, d) ◦ (a, c))

= ⊗ (b, d) ◦ ⊗(a, c)

= (b⊗ d) ◦ (a⊗ c).

This is a direct corollary of ⊗ preserving composition but has some interesting

applications as we will see in the further sections.

3.1.2 2-Cateogries and Bicategories

Within this section we introduce 2-categories. Here the definitions get very complex

in full generality, however we only need these definitions in specific cases which we

explicate at the end of this subsection.

Definition 3.1.16. A bicategory M consists of the following data

• a collection of objects M0,

• for each X,Y ∈ M0 a category M1(X,Y ) where for A,B ∈ Ob(M1(X,Y ))

(which we abuse notation later and sayA,B ∈M1(X,Y )) we defineM2(A,B) :=

MorM1(X,Y )(A,B),

• a unit object 1X ∈M1(X,X) for each X ∈M0,

• a family of functors known as composition

� = ♦X,Y,Z :M1(X,Y )×M1(Y,Z)→M1(X,Z)

where if the indices are clear from context we write ♦X,Y,Z(A,B) =: A �B,

• between functors

♦X,Y,Y (−, 1Y ),− :M1(X,Y )→M1(X,Y )
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we have a family of natural isomorphisms called the right unitor

RUnX,Y : ♦X,Y,Y (−, 1Y )⇒ −,

• between functors

♦X,X,Y (1X ,−),− :M1(X,Y )→M1(X,Y )

we have a family of natural isomorphisms called the left unitor

LUnX,Y : ♦X,X,Y (1X ,−)⇒ −, and

• a family of natural isomorphisms between functors♦X,Z,W ◦(♦X,Y,Z×1M1(Z,W )),

and♦X,Y,W ◦(1M1(X,Y )×♦Y,Z,W ) as mapsM1(X,Y )×M1(Y,Z)×M1(Z,W )→
M1(X,W ) called the associator

AssX,Y,Z,W : ♦X,Z,W ◦ (♦X,Y,Z × 1M1(Z,W ))⇒ ♦X,Y,W ◦ (1M1(X,Y ) ×♦Y,Z,W ).

Such that

• the pentagon axiom holds which says

((M1(X,Y ) �M1(Y, Z)) �M1(Z,W )) �M1(W,V )

AssX,Y,Z,W �1M1(W,V )

��

AssX,Z,W,V

)1
(M1(X,Y ) � (M1(Y, Z) �M1(Z,W ))) �M1(W,V )

AssX,Y,W,V

��

(M1(X,Y ) �M1(Y, Z)) � (M1(Z,W ) �M1(W,V ))

AssX,Y,Z,V

��

M1(X,Y ) � ((M1(Y, Z) �M1(Z,W )) �M1(W,V ))
1M1(X,Y )�AssY,Z,W,V

)1
M1(X,Y ) � (M1(Y, Z) � (M1(Z,W ) �M1(W,V )))

commutes, and

• the triangle axiom holds which says

(M1(X,Y ) � 1Y ) �M1(Y, Z)
RUnX,Y �1M1(Y,Z)

'/

AssX,Y,Y,Z +3M1(X,Y ) � (1Y �M1(Y,Z))
1M1(X,Y )�LUnX,Y

ow
M1(X,Y ) �M1(Y,Z)

commutes.

A bicategory is called a 2-category if Ass, RUn and LUn are all identities. Here

A ∈ M1(X,Y ) is called a 1-isomorphism if there exists A−1 ∈ M1(X,Y ) such
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that A � A−1 = 1X and A−1 � A = 1Y . There is also a weaker notion, known as 1-

equivalence. We say A ∈M1(X,Y ) is a 1-equivalence if there exists A−1 ∈M1(X,Y )

and isomorphisms φ ∈M2(A �A−1, 1X) and ψ ∈M2(A−1 �A, 1Y ).

Definition 3.1.17. A bicategory K is called a 2-group if K0 is a one element set,

all 1-morphisms are 1-equivalences and all 2-morphisms are 2-isomorphisms. It is a

strict 2-group if each 1-morphism is a 1-isomorphism.

Here one should note that we have used group notation instead of function notation.

This choice is on purpose due to the following proposition.

Proposition 3.1.18. A bicategory with a single object can be described as a monoidal

category.

Proof. Let M be a bicategory with M0 = {∗}. We will now define a monoidal

category M⊗ where

• the category M⊗ :=M1(∗, ∗),

• the tensor product ⊗ := ♦∗,∗,∗ :M1(∗, ∗)×M1(∗, ∗)→M1(∗, ∗),

• the unit object is 1M⊗ := 1∗ ∈M1(∗, ∗),

• the associator Ass := Ass∗,∗,∗,∗ where the functors

(−⊗−)⊗− = ♦∗,∗,∗◦(♦∗,∗,∗×1M1(∗,∗)) :M1(∗, ∗)×M1(∗, ∗)×M1(∗, ∗)→M1(∗, ∗)

−⊗(−⊗−) = ♦∗,∗,∗◦(1M1(∗,∗)×♦∗,∗,∗) :M1(∗, ∗)×M1(∗, ∗)×M1(∗, ∗)→M1(∗, ∗)

so the associator Ass := Ass∗,∗,∗,∗ : (−⊗−)⊗− ⇒ −⊗ (−⊗−) is a natural

isomorphism,

• the left unitor λ := LUn∗,∗ : 1M⊗ ⊗− ⇒ − is a natural isomorphisms, and

• the right unitor ρ := RUn∗,∗ : −⊗ 1M⊗ ⇒ − is also a natural isomorphism.

Here the axioms are identical when explicating them for Ass∗,∗,∗,∗, and LUn∗,∗ and

RUn∗,∗.

Therefore 2-groups can be expressed as monoidal categories, which is the approach

we shall take in this thesis. We will also use a generalisation of VectK described

below.

Example 3.1.19. Let K be a field. We describe the bicategory 2−VectK which has

• objects 2−VectK0 = N where we assume 0 ∈ N,
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• the category 2−VectK1 (m,n) is as follows

– Ob(2 − VectK1 (m,n)) is the set of n ×m-matrices (Vi,j)i,j , where Vi,j is

a finite-dimensional K-vector spaces in the i’th, j’th position, where if

m = 0 or n = 0 this is a trivial category containing one object,

– 2-morphisms Mor((Vi,j)i,j , (Wi,j)i,j) = 2−VectK2 ((Vi,j)i,j , (Wi,j)i,j) is the

set of n×m-matrices of linear maps (φi,j : Vi,j →Wi,j)i,j ,

– composition ◦ : 2−VectK2 ((Vi,j), (Wi,j))×2−VectK2 ((Ui,j)i,j , (Vi,j)i,j)→ 2−
VectK2 ((Ui,j)i,j , (Wi,j)i,j) is of matricies being coordinatewise composition

of linear maps, i.e. (φi,j)i,j ◦ (ψi,j)i,j = (φi,j ◦ ψi,j)i,j , and

– for (Vi,j)i,j ∈ 2−VectK1 (m,n) we have 1(Vi,j)i,j = (1Vi,j )i,j ∈ 2−VectK2 ((Vi,j)i,j , (Vi,j)i,j)

where 1Vi,j is the identity on Vi,j .

• composition bifunctor ♦m,n,p : 2 − VectK1 (m,n) × 2 − VectK1 (n, p) → 2 −
VectK1 (m, p) defined analogously to matrix multiplication where sum is replaced

by direct product and multiplication by tensor product, i.e.

(Vi,j)i,j � (Wi,j)i,j := (⊕nk=1Vi,k ⊗Wk,j)i,j ,

• the identity object 1n := (δni,j)i,j where

δni,j =

K if i = j

0 otherwise
,

• non-trivial associativity condition Assm,n,p,q coming from the associativities of

tensor product and direct product with

((Ui,j)i,j � (Vi,j)i,j) � (Wi,j)i,j = (⊕pl=1(⊕nk=1Ui,k ⊗ Vk,l)⊗Wl,j)i,j , and

(Ui,j)i,j � ((Vi,j)i,j � (Wi,j)i,j) = (⊕nk=1Ui,k ⊗ (⊕pl=1Vk,l ⊗Wl,j))i,j ,

making Assm,n,p,q a natural isomorphism given by reordering sums and tensor

products, and

• non-trivial unitality conditions coming from the isomorphisms K⊗ V ∼= V and

V ⊗K ∼= V where if 1n = (δni,j)i,j we have

(Vi,j)i,j � 1n = (⊕nk=1(Vi,k ⊗ δnk,j))i,j = (Vi,j ⊗K)i,j , and similiary

1n � (Vi,j)i,j = (⊕nk=1(δni,k ⊗ Vk,j))i,j = (K⊗ Vi,j)i,j .
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One might ask if there is motivation for this definition to be the extension of VectK.

This comes from the area of module categories. However for simplicity of this thesis

it will not be persued here. We refer an interested reader to Rumynin and Wendland

[48, Theorem 1.2].

We build up definitions for bicategories so we can meaningfully talk about equivalences

of bicategories and 2-representations.

Definition 3.1.20. Let M and N be two bicategories. A 2-functor F :M→ N
between bicategories consists of the following data:

• a function F0 :M0 → N0,

• a family of functors F1
X,Y :M1(X,Y )→ N1(F0(X),F0(Y )),

• a family of 2-isomorphisms F2
X : 1F0(X) ⇒ F 1

X,X(1X), and

• a family of compatibility conditions which are natural isomorphisms between

the following functors

♦F0(X),F0(Y ),F0(Z) ◦ (F 1
X,Y ◦ F 1

Y,Z),

F 1
X,Z ◦ ♦X,Y,Z

:M1(X,Y )×M1(Y, Z)→ N1(F0(X),F0(Z)),

called

F 2
X,Y,Z : ♦F0(X),F0(Y ),F0(Z) ◦ (F 1

X,Y ◦ F 1
Y,Z)⇒ F 1

X,Z ◦ ♦X,Y,Z .

Set MX,Y :=M1(X,Y ) and NX,Y := N1(X,Y ) then the following axioms hold.

• Associativity, for functors from MX,Y ×MY,Z ×MZ,W → NF0(X),F0(W ) we

have that

(NF0(X)),F0(Y ) � NF0(Y ),F0(Z)) � NF0(Z),F0(W )
AssF0(X),F0(Y ),F0(Z),F0(W )

(0
F2

X,Y,Z�1NF0(Z),F0(W )

��

NF0(X),F0(Y ) � (NF0(Y ),F0(Z) � NF0(Z),F0(W ))

1NF0(X),F0(Y )
�F2

Y,Z,W

��

F1
X,Z(MX,Y �MY,Z) � NF0(Z),F0(W )

F2
X,Z,W

��

NF0(X),F0(Y ) � F1
Y,W (MY,Z �MZ,W )

F2
X,Y,W

��

F1
X,W ((MX,Y �MY,Z) �MZ,W )

F1
X,W (AssX,Y,Z,W )

(0
F1
X,W (MX,Y � (MY,Z �MZ,W ))
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commutes.

• Unitality, for functors from MX,Y → NF0(X),F0(W ) we have that

1F0(X) � NF0(X),F0(Y )

F2
X�1NF0(X),F0(Y ) +3

LUnF0(X)),F0(Y )

��

F1
X,X(1X) � NF0(X)),F0(Y )

F2
X,X,Y

��
NF0(X),F0(Y ) F1

X,Y (1X �MX,Y )
F1

X,Y (LUnX,Y )
ks

and

NF0(X),F0(Y ) � 1F0(Y )

1NF0(X),F0(Y )
�F2

Y
+3

RUnF0(X)),F0(Y )

��

NF0(X)),F0(Y ) � F1
Y,Y (1Y )

F2
X,Y,Y

��
NF0(X),F0(Y ) F1

X,Y (MX,Y � 1Y )
F1

X,Y (RUnX,Y )
ks

commute.

Definition 3.1.21. Let M and N be two bicategories. Let F ,G :M→N be two

2-functors. Then a natural 2-transformation Φ : F ⇒ G contains the following data

• a family of 1-morphisms Φ1
X ∈ D1(F0(X),G0(X)), and

• a family of natural transformations between the functors

F1
X,Y � Φ1

Y ,Φ
1
X � G1

X,Y :M1(X,Y )→ N1(F0(X),G0(Y )),

where on morphisms F1
X,Y � Φ1

Y : A 7→ F1
X,Y (A) � 1Φ1

Y
and Φ1

X � G1
X,Y : A 7→

1Φ1
X
� G1

X,Y (A), called

Φ2
x,y : F1

X,Y � Φ1
Y ⇒ Φ1

X � G1
X,Y .

Where this data obeys the following

• a pentagon axiom which says

(F1
X,Y (A) � F1

Y,Z(B)) � Φ1
Z

(1F1
X,Y

(A)
�Φ2

Y,Z)◦AssX,Y,Z,Z(−)tt

F2
X,Y,Z(A,B)�1

Φ2
Z

**
F1
X,Y (A) � (Φ1

Y � G1
Y,Z(B))

(Φ2
X,Y �1G1

Y,Z
(B)

)◦AssX,Y,Y,Z(−)−1

��

F1
X,Z(A ◦B) � Φ1

Z

Φ2
X,Z(A◦B)

��
(Φ1

X � G1
X,Y (A)) � G1

Y,Z(B)
(1

Φ2
X
�G2

X,Y,Z(A,B))◦AssX,X,Y,Z(−)
// Φ1
X � G1

X,Z(A ◦B)
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commutes, where the arguments of the associtivity maps aren’t given however

can be read from the domain of the maps, and

• a unitary axiom which says

F1
X,X(1X) � Φ1

X

Φ2
X,X(1X)

//

F1
X�1Φ1

X
��

Φ1
X � G1

X,X(1X)

1
Φ1
X
�G1

X

��
1F0(X) � Φ1

X
LUn(Φ1

X)

&&

Φ1
X � 1G0(X)

RUn(Φ1
X)

xx
Φ1
X

commutes.

A natural 2-transformation is a natural 2-isomorphism if all Φ1
X are 1-equivalences

and all Φ2
X,Y are natural isomorphisms.

Two bicategoriesM and N are equivalent if there exists 2-functors F :M→N and

F−1 : N →M with natural 2-isomorphisms Φ : F ◦ F−1 ⇒ 1N and Φ′ : F−1 ◦ F ⇒
1M.

Although these definitions contain a lot of data, in most applications we will not use

much of it or it will be turned into data that is more human friendly.

3.1.3 Group cohomology

In this subsection we introduce group cohomology and show how we can use it to

represent special skeletal 2-groups.

Let G be a group and H a ZG-module. We write G in multiplicative notation

with identity 1G and x, y, z, w ∈ G for generic elements. Whereas, we use additive

notation for H with identity 0H and a, b, c ∈ H. When manipulating formulas we

capitalise elements that are fixed. We write the group action of x on a as xa.

Definition 3.1.22. We define chain groups

Cn(G,H) = MorSet(Gn, H),

with group operation being pointwise addition of functions. We call elements of

Cn(G,H) n-cochains. Note we take G0 to be a trivial group. We have (boundary)
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maps dn : Cn−1(G,H)→ Cn(G,H) defined by

dn(µ)(x1, . . . , xn) = x1µ(x2, . . . xn) +
n−1∑
i=1

(−1)iµ(x1, . . . , xi−1, xixi+1, xi+2, . . . , xn)

+ (−1)nµ(x1, . . . , xn−1).

For Cn(G,H) define subgroups

Zn(G,H) = ker(dn+1) and Bn =

0 if n = 0

im(dn) if n ∈ N\{0}

where we call elements n-cocyles and n-coboundaries respectively. We have that

dn+1 ◦ dn = 0 therefore we can define

Hn(G,H) := Zn(G,H)/Bn(G,H)

as the n’th cohomology group.

Cocycles are very useful to classify 2-groups and 2-representations as we will see

throughout this thesis. We start with a motivating example.

Example 3.1.23. Let α ∈ Z3(G,H) be a normalised 3-cocyle, i.e.,

xα(y, z, w)+α(x, yz, w)+α(x, y, z) = α(xy, z, w)+α(x, y, zw) with α(x, 1G, y) = 0H

for any x, y, z, w ∈ G. From this you can deduce α(1G, z, w) = α(x, y, 1G) = 0H

(take x = y = 1G or z = 1G respectively). Now define a 2-group G(G,H,α) := G
(which we represent as a monoidal category) where

• we will have Ob(G) = G,

• we set

Mor(x, y) =

H if x = y

∅ otherwise

where composition is the group operation of H. Therefore 1x, the identity

morphism on x ∈ G, is actually 0H as an element of H, we will refer to this

element as 1x throughout. Regularly we will use elements of H to refer to

morphisms notationally for a ∈ H when considering this as a morphisms in

Mor(x, x) we will refer to this as ax ∈ Mor(x, x).

• The group operation of G defines ⊗ on objects (x ⊗ y = xy). We have the

following equality for morphisms

ax ⊗ by = (a+ xb)xy ∈ Mor(xy, xy).
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• We set λ(x) = ρ(x) = 0H .

• However, we have a non-trivial associator given by Ass := α i.e. Mor(xyz, xyz) 3
α(x, y, z) : (x⊗ y)⊗ z → x⊗ (y⊗ z) (notationally we will use α(x, y, z) to refer

to the group element and the morphism as it is clear from context where it

lies). We have that α is a natural transformation of the two functors

(−⊗−)⊗− : G × G × G → G and −⊗(−⊗−) : G × G × G → G.

As H is abelian, and for a, b, c ∈ H we have that

α(x, y, z) ◦ ((ax ⊗ by)⊗ cz) = α(x, y, z) ◦ (a+ xb)xy ⊗ cz
= (α(x, y, z) + a+ xb+ xyc)xyz

= (a+ x(b+ yc) + α(x, y, z))xyz

= (ax ⊗ (by ⊗ cz)) ◦ α(x, y, z).

It is nice to note here that computationally ⊗ is associative on group elements

of H, however we still have non-trivial associator.

• The triangle axiom

(X ⊗ 1)⊗ Y
ρX⊗1Y

''

αX,1,Y // X ⊗ (1⊗ Y )

1X⊗λYww
X ⊗ Y

is equivalent to checking (1x⊗λ(y))◦α(x, 1G, y) = (ρ(x)⊗1y). Though we can

translate this into a calculation in H with 1y = 0H = 1x and as α is normalised

and from definition we have ρ(x) = λ(y) = α(x, 1G, y) = 0H . Then applying

our definition of ⊗ we get that

(1x ⊗ λ(y)) ◦ α(x, 1G, y) = ((0H)x ⊗ (0H)y)) ◦ (0H)xy

= (0H + x0H + 0H)xy

= (ρ(x)⊗ 1y).

• The pentagon axiom
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(X ⊗ Y )⊗ Z)⊗W

α(X,Y,Z)⊗1Wtt

α(X⊗Y,Z,W )

**
(X ⊗ (Y ⊗ Z))⊗W

α(X,Y⊗Z,W )

��

(X ⊗ Y )⊗ (Z ⊗W )

α(X,Y,Z⊗W )

��
X ⊗ ((Y ⊗ Z)⊗W )

1X⊗α(Y,Z,W ) // X ⊗ (Y ⊗ (Z ⊗W ))

is equivalent to checking

α(x, y, zw) ◦ α(xy, z, w) = 1x ⊗ α(y, z, w) ◦ α(x, y ⊗ z, w) ◦ α(x, y, z)⊗ 1w

which if we observe

α(x, y, zw) ◦ α(xy, z, w) = α(x, y, zw) + α(xy, z, w)

= xα(y, z, w) + α(x, yz, w) + α(x, y, z)

= ((0H)x ⊗ α(y, z, w)) ◦ α(x, yz, w) ◦ (α(x, y, z)⊗ (0H)w)

= 1x ⊗ α(y, z, w) ◦ α(x, y ⊗ z, w) ◦ α(x, y, z)⊗ 1w

we get the pentagon axiom holds.

This 2-group is skeletal as the only morphisms are automorphisms. Moreover it is

special as it has trivial unitors. In fact this is exactly how we generate all special

skeletal 2-groups.

Theorem 3.1.24. [7, Theorem 1] Let G be a special skeletal 2-group. There exists

a triple (G,H,α) with H being a ZG-module and α ∈ Z3(G,H) such that G ∼=
G(G,H,α) with the correct identifications.

Proof. Define a magma (G, ·) where G = Ob(G) and binary operation · := ⊗ where

X,Y ∈ Ob(G) we have X · Y := X ⊗ Y . Note that

• we have 1G where ρX : X ⊗ 1G → X and λX : 1G ⊗X → X are the identity

morphisms. However as we are in a skeletal category that means that 1G⊗X =

X = X ⊗ 1G . Giving that 1G = 1G is a two sided identity of (G, ·).

• as for 2-groups 1-morphisms are 1-equivalences we have that for all X ∈
Ob(G) we have a X−1 ∈ Ob(G) and isomorphisms Φ ∈ Mor(X ⊗ X−1, 1G)

and Φ′ ∈ Mor(X−1 ⊗ X, 1G). However as G is skeletal this gives us that

X ⊗X−1 = 1G = X−1 ⊗X, meaning that (G, ·) has inverses.
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• Lastly the associator Ass : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) is an isomorphism

therefore as it is skeletal we have that (X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z) making

(G, ·) associative.

Therefore (G, ·) is a group.

Now define a magma (H, ·) where H := Mor(1G , 1G) and · := ◦. Note that

• we have 0H := 11G ∈ Mor(1G , 1G) where 0H ◦ A = A = A ◦ 0H for all A ∈
Mor(1G , 1G) making 0H a two sided inverse of (H, ·).

• as ◦ is associative this makes (H, ·) associative.

• as G is a 2-group all 2-morphisms are 2-isomorphisms meaning that for all

A ∈ Mor(1G , 1G) we have A−1 ∈ Mor(1G , 1G) such that A◦A−1 = 0H = A−1◦A
giving (H, ·) inverses.

• for all A,B ∈ Mor(1G , 1G) we have that

A ◦B = (0H ⊗A) ◦ (B ⊗ 0H) as we have trivial unitors

= (B ◦A)⊗ (0H ◦ 0H) by the interchange law

= B ◦A as we have trivial unitors

giving that (H, ·) is commutative.

Therefore H is an abelian group. An interesting side fact is that ◦ and ⊗ agree when

restricted to Mor(1G , 1G),

B ◦A = (1G ⊗B) ◦ (A⊗ 1G)

= (1G ◦A)⊗ (B ◦ 1G)

= A⊗B

given that ◦ is commutative on Mor(1G , 1G) means that A ◦B = A⊗B.

It is also handy to observe at this point that as ⊗ is a functor it preserves inverses,

therefore 1X ⊗ 1Y = 1X⊗Y . For any X ∈ Ob(G) we can get a composition preserving

bijection between −⊗ 1X : Mor(1G , 1G)→ Mor(X,X). This is a bijection as it has

inverse Ass−1
1G ,X,X−1 ◦ (− ⊗ 1−1

X ) ◦ Ass1G ,X,X−1 : Mor(X,X) → Mor(1G , 1G), as we

75



observe

Ass−1
1G ,X,X−1 ◦ (−⊗ 1X−1) ◦

Ass1G ,X,X−1(−⊗ 1X(A)) = Ass−1
1G ,X,X−1 ◦ ((A⊗ 1X)⊗ 1X−1) ◦Ass1G ,X,X−1

= Ass−1
1G ,X,X−1 ◦Ass1G ,X,X−1 ◦ (A⊗ (1X ⊗ 1X−1))

= A⊗ 0H

= A

because Ass is a natural transformation. It is composition preserving as

(A ◦B)⊗ 1X = (A ◦B)⊗ (1X ◦ 1X)

= (A⊗ 1X) ◦ (B ⊗ 1X)

by the interchange law. Therefore we can use this to identify each Mor(X,X) with

H and have composition defined by ·. This identification above makes it meaningful

to talk about the associator as a map Ass : G3 → H. Moreover by the unitor axiom

(X ⊗ 1)⊗ Y
ρX⊗1Y

''

AssX,1,Y // X ⊗ (1⊗ Y )

1X⊗λYww
X ⊗ Y

and as ρX = 0H = λX (as G is special) therefore (1X⊗1Y ) = (1X⊗1Y )◦Ass(X, 1G, Y )

making Ass(X, 1G, Y ) = 0H normalised. However from the pentagon axiom

(X ⊗ Y )⊗ Z)⊗W

Ass(X,Y,Z)⊗1Wtt

Ass(X⊗Y,Z,W )

**
(X ⊗ (Y ⊗ Z))⊗W

Ass(X,Y⊗Z,W )
��

(X ⊗ Y )⊗ (Z ⊗W )

Ass(X,Y,Z⊗W )
��

X ⊗ ((Y ⊗ Z)⊗W )
1X⊗Ass(Y,Z,W ) // X ⊗ (Y ⊗ (Z ⊗W ))

we have that

(1X⊗Ass(Y,Z,W ))◦Ass(X,Y⊗Z,W )◦(Ass(X,Y, Z)⊗1W ) = Ass(X⊗Y,Z,W )◦Ass(X,Y, Z⊗W )

for any X,Y, Z,W ∈ G. From this you can deduce Ass(1G, Z,W ) = Ass(X,Y, 1G) =

0H by taking X = Y = 1G or Z = 1G respectively.

Next we define the action of G on H by X : A 7→ 1X ⊗ A ⊗ 1X−1 := XA ∈
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Mor(X ⊗ 1G ⊗X−1, X ⊗ 1G ⊗X−1) = Mor(1G , 1G). Note this is a group action as

X(YA) = X(1Y ⊗A⊗ 1X−1)

= 1X ⊗ 1Y ⊗A⊗ 1Y −1 ⊗ 1X−1

= 1XY ⊗A⊗ 1(XY )−1

= XYA.

For these checks we choose not to bracket anything, as the introduction and remove

of any associator will be trivial as Ass(1G, X, Y ) = Ass(X, 1G, Y ) = Ass(X,Y, 1G) =

0H = 1XY . Furthermore note that for any A ∈ Mor(X,X) and B ∈ Mor(Y, Y ) we

have that

A⊗B = (A⊗ 1X)⊗ (B ⊗ 1Y )

= A⊗ ((1X ⊗B)⊗ 1X−1)⊗ (1X ⊗ 1Y )

= (A ◦ XB)⊗ 1XY

as ◦ and ⊗ agree on Mor(1G , 1G).

Therefore it remains to check that Ass ∈ Z3(G,H) however this follows now directly

from the pentagon axiom

(1X⊗Ass(Y,Z,W ))◦Ass(X,Y⊗Z,W )◦(Ass(X,Y, Z)⊗1W ) = Ass(X⊗Y,Z,W )◦Ass(X,Y, Z⊗W )

from which when using the definition above we get

XAss(Y,Z,W ) + Ass(X,Y Z,W ) + Ass(X,Y, Z) = Ass(XY,Z,W ) + Ass(X,Y, ZW ).

So set α := Ass ∈ Z3(G,H).

Remark. If we have two special skeletal categories G = (G,H,α) and H = (G,H, β)

where α and β differ by a 2-boundary, i.e., α = β + δ(τ) for τ ∈ C2(G,H) so

α(x, y, z) =β(x, y, z) + d(τ)(x, y, z)

=β(x, y, z) + x1τ(y, z)− τ(xy, z) + τ(x, yz)− τ(x, y)

Then G is equivalent to H. To define this equivalence, let the functor F on the

categories be given by the identity when we associate objects to elements of G and

morphisms to H. Let the identity isomorphism ε : 1G → 1G be the identity, 1H .

Then the natural isomorphism µ : F(−) ⊗H F(−) ⇒ F(− ⊗G −) has components
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τ(−,−). Then the unitary axiom holds trivially and the associativity axiom holds as

α(x, y, z) + τ(xy, z) + τ(x, y) = τ(x, yz) + xτ(y, z) + β(x, y, z).

3.1.4 Crossed modules

In this subsection we introduce crossed modules and show how we can use these to

represent strict 2-groups.

Definition 3.1.25. A crossed module contains the following data

• groups A and B,

• an action of B on A written as f ∈ B acts on γ ∈ A by f : γ 7→ fγ, and

• a group homomorphism ∂ : A→ B.

Such that the following axioms hold

(CM1) ∂(γ)δ = γδγ−1, for all γ, δ ∈ A, and

(CM2) ∂(fγ) = f∂(γ)f−1, for all γ ∈ A, f ∈ B.

This shall be written as K = (A
∂−→ B).

Notationally we will use γ, δ, ε ∈ A and f, g, h, k ∈ B both with multiplicative

notation with units 1A and 1B respectively. We define its fundamental groups as

π2(K) := ker(∂) and π1(K) := coker(∂) = B/Im(∂).

Example 3.1.26. Let G be any group then we have a crossed module given by Inn :

G→ Aut(G) where Inn(x) : y 7→ xyx−1 maps elements of G to their corresponding

inner automorphism. The action of Aut(G) on G is given by the automorphism.

Here (CM1) holds from definition and (CM2) follows as

φ∂(x)φ−1(y) = φ∂(x)(φ−1(y))

= φ(xφ−1(y)x−1)

= φ(x)yφ(x)−1

= Inn(φ(x))(y).

We get that π1(K) = Out(G) the outer automorphisms and π2(K) = Z(G) the centre

of the group.

Example 3.1.27. For a more concrete example let B = 〈x, y|x4, y2, yxy−1 = x−1〉 =

D8 be the dihedral group of order 8 and A = 〈x|x4〉 = C4 the cyclic group of order

4. Let ∂ : A → B be the inclusion x 7→ x and let B act on A by conjugation, so
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yx = x−1 and xx = x. Then both (CM1) and (CM2) hold by definition. We have

π1(K) = 〈y|y2〉 = C2 being the cyclic group of order 2 and π2(K) = 1 being trivial.

Note this works more generally for any normal subgroup N ≤ G.

Definition 3.1.28. Given two crossed modules K = (A
∂−→ B) and K′ = (A′

∂′−→ B′)

a homomorphisms φ : K → K′ of crossed modules consists of group homomorphisms

φA : A→ A′ and φB : B → B′, such that these commute with the crossed mappings

∂′ ◦ φA = φB ◦ ∂ and the group action φA( ba) = φB(b)φA(a).

Example 3.1.29. To any crossed module K = (A
∂−→ B), we have the crossed

module K = (1
∂−→ π1(K)) with trivial group action and image. There exists the

quotient homomorphism

φ : K → K, φB : b 7→ b∂(A), and φA : a 7→ 1.

Then as φA is trivial and ∂|1 is trivial we have that ∂ ◦ φA = φB ◦ ∂ and φA( ba) =
φB(b)φA(a).

Definition 3.1.30. A map of crossed modules φ : K → K′ is an equivalence of

crossed modules if

• φA induces an isomorphisms of kernels, i.e., φA|Ker(∂) : Ker(∂)→ Ker(∂′) is

a well defined isomorphism.

• φB induces an isomorphism of cokernels, i.e., φ̂B : Im(∂)\B → Im(∂′)\B′

defined by Im(∂)b 7→ Im(∂′)φB(b) (which is well defined as ∂′ ◦ φA = φB ◦ ∂)

is an isomorphism.

When two crossed modules are equivalent we get the following exact sequences.

A
∂ //

φA

��

B

&&
φB

��

0 // π2(K) = π2(K′)

&&

88

π1(K) = π1(K′) // 0

A′
∂′ // B′

88

Example 3.1.31. Take any crossed module K = (A
∂−→ B) and group H with

automorphisms φ ∈ Aut(H). Then you can define a crossed module K′ = (A×H ∂×φ−−−→
B×H). We have that K is equivalent to K′ via the projection maps, i.e., φA(a) = (a, 1)

and φB(b) = (b, 1).

Remark. For each crossed module K = (A
∂−→ B) we can associate an element of

H3(π1(K), π2(K)). In fact this classifies equivalent crossed modules first proven by
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Holt and Mac Lane [24]. A sketch of the construction is included in Brown [6] and

reviewed by Thomas [51].

Definition 3.1.32. Given a crossed module K = (A
∂−→ B), we define a sub-crossed

module K′ = (A′
∂−→ B′) as subgroups A′ ≤ A, B′ ≤ B such that ∂(A′) ≤ B′.

Crossed modules give rise to strict 2-groups, which it is convenient to keep in

bicategory notation. This follows from the construction given by Forrester-Barker

[13].

Example 3.1.33. Let K = (A
∂−→ B) be a crossed module. We now construct

2-group K̃ where

• the objects K̃0 = {?} is a one point set,

• the objects of the category K̃1(?, ?) = B,

• for 1-morphisms f, g ∈ B the 2-morphisms in the category K̃1(?, ?) are

K̃2(f, g) := {f γ
=⇒ g} = { ?

g

��

f

CC?γ

KS

| γ ∈ A, g = ∂(γ)f},

with composition defined by the product in γ

[g
δ

=⇒ h] ◦ [f
γ

=⇒ g] = ?

h

��
g //

f

CC?
γ

KS

δ

KS

= ?

h

��

f

CC?δγ

KS

and

making the identity morphisms of K̃2(f, f) be given by 1A,

• the composition bifunctor defined as

[f
γ

=⇒ g] � [h
δ

=⇒ k] = ?

g

��

f

CC?

k

��

h

CCγ

KS

?δ

KS

= ?

gk

��

fh

CC?γf δ

KS

,

• with identity 1? = 1B, and

• trivial unitors and associators as this is a strict 2-group.

80



Note that composition works as

∂(γfδ)fh = ∂(γ)∂(fδ)fh

= ∂(γ)f∂(δ)f−1fh

= gk.

Lemma 3.1.34. An equivalence of the crossed modules induces an equivalence of

there corresponding 2-groups.

Proof. Let two crossed modules K = (A
∂−→ B) and K′ = (A

∂′−→ B) where φ : K → K′

is an equivalence. Construct equivalence Φ : K̃ → K̃′ by

• the only 0-object Φ(∗) = ∗.

• for b ∈ K̃1(∗, ∗) map Φ(b) = φB(b) ∈ K̃′1(∗, ∗).

• let f, g ∈ B be 1-morphisms with 2-morphism γ : f ⇒ g so g = ∂(γ)f . Map

Φ(γ) := φA(γ) : φB(f)⇒ φB(g) where φB(g) = φB(∂(γ)f) = ∂′(φA(γ))φB(f).

• with trivial compatibility conditions, as both bicategories have trivial associa-

tors and unitors.

Note that Φ preserves composition as φA and φB are homomorphisms, so Φ(δ ◦ γ) =

φA(δγ) = φA(δ)φA(γ) = Φ(δ) ◦ Φ(γ) similarly for Φ(f ◦ g) = Φ(f) ◦ Φ(g). Similarly

for composition we have

Φ(γ � δ) = φA(γfδ)

= φA(γ)φB(f)φA(δ)

= Φ(γ) � Φ(δ).

Note this proves that a homomorphisms of crossed modules induces a homomor-

phisms of strict 2-groups.

If we consider Φ as a functor of monoidal categories, it suffices to show Φ is essentially

surjective, full and faithfull. This is equivalent to showing

1. for every g′ ∈ K̃′(∗, ∗) there exists g ∈ K̃(∗, ∗) with isomorphism γ ∈ K̃′2(Φ(g), g′).

2. each Φ : K̃(g, h)→ K̃′(Φ(g),Φ(h)) is a bijection.

Recall that as φ̂B : Im(∂)\B → Im(∂′)\B′ is an isomorphism. For b′ ∈ B′ there

exists b ∈ B such that Im(∂′)φB(b) = Im(∂′)b′ so there exists a′ ∈ A′ such that

φB(b) = ∂′(a′)b′. As all 2-morphisms are 2-isomorphisms we get an isomorphism
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a′ ∈ K̃′(Φ(b), b′) giving property (1).

Let g, h ∈ B and a′ ∈ A′ such that φB(g) = ∂′(a′)φB(f). So gf−1Im(∂) ∈ Ker(φ̂B),

but as φ̂B is an isomorphism we have that gf−1 = ∂(a) ∈ Im(∂). Therefore g = ∂(a)f

and φB(g) = φB(∂(a))φB(f) = ∂′(φA(a))φB(f). So we have ∂′(a′φA(a)−1) = 1B′ giv-

ing a′ = φA(a)k with k ∈ Ker(∂′). However as φA|Ker(∂) : Ker(∂) → Ker(∂′)

is an isomorphism there exists a unique a′′ ∈ Ker(∂) such that k = φA(a′′)

giving that a′ = φA(aa′′) with g = ∂(a)h = ∂(a)∂(a′′)h = ∂(aa′′)h. Therefore

Φ : K̃(g, h)→ K̃′(Φ(g),Φ(h)) is surjective.

Let g, h ∈ B and a′ ∈ A′ such that φB(g) = ∂′(a′)φB(f), with a1, a2 ∈ A such

that φA(a1) = φA(a2) = a′ and g = ∂(a1)f = ∂(a2)f . Then ∂(a1a
−1
2 ) = 1B so

a1a
−1
2 ∈ Ker(∂). Observe that φA(a1a

−1
2 ) = φA(a1)φA(a2)−1 = (a′)(a′)−1 = 1A′

however as φA|ker(∂) is an isomorphism this gives us a1 = a2. Therefore Φ : K̃(g, h)→
K̃′(Φ(g),Φ(h)) is injective. Giving us that Φ is an equivalence.

As with the special skeletal cases, the strict case must arise in such a fashion. In [7,

Chapter 1] a method of going from a strict 2-group to a crossed module is described.

We first remind the reader of this technique for later use. Here it is convenient to

switch back to monoidal category notation.

Proposition 3.1.35. ([7]) Let G be a strict 2-group. There exists crossed module

K = (A
∂−→ B) such that G ∼= K̃ as 2-groups.

Proof. Suppose we have a strict 2-group G. Let ◦ : Mor(Y, Z) × Mor(X,Y ) →
Mor(X,Z) be composition and ⊗ : G × G → G be the tensor product. Let 1X ∈
Mor(X,X) be the identity with respect to ◦ so that a ◦ 1X = a = 1Y ◦ a for all

a ∈ Mor(X,Y ). Let −1 : G → G be the inverse with respect to ⊗. We abuse notation

here and let

X−1 ⊗X = 1G ∈ Ob(G)

for X ∈ Ob(G) and

(a⊗ a−1) = 11G =: 1G ∈ Mor(1G , 1G)

for all a ∈ Mor(X,Y ) with a−1 ∈ Mor(X−1, Y −1). Note 1G ⊗ a = a ⊗ 1G = a ∈
Mor(X,Y ). As G is strict ⊗ is associative and unital on objects and morphisms.
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Given a ∈ Mor(Y,Z) and b ∈ Mor(X,Y ) then we get

a ◦ b =(1Y ⊗ (1−1
Y ⊗ a)) ◦ (b⊗ 1G)

=(1Y ◦ b)⊗ ((1−1
Y ⊗ a) ◦ 1G) by the exhange law

=b⊗ (1−1
Y ⊗ a)

which similarly we get

a ◦ b =(a⊗ 1G) ◦ (1Y ⊗ (1−1
Y ⊗ b))

=(a ◦ 1Y )⊗ (1G ◦ (1−1
Y ⊗ b)) by the exhange law

=a⊗ (1−1
Y ⊗ b).

So for a ∈ Mor(Y, Z) and b ∈ Mor(X,Y ) we have that

b⊗ (1−1
Y ⊗ a) = a⊗ (1−1

Y ⊗ b) = a ◦ b. (3.1)

Note the following two interesting facts:

• If Y = 1G then we have 1−1
G = 1G ∈ Mor(1G , 1G) and

a⊗ b = b⊗ a for a ∈ Mor(1G , Z) and b ∈ Mor(X, 1G). (3.2)

• For any a ∈ Mor(X,Y ) we have that 1X ⊗ a−1⊗ 1Y ∈ Mor(Y,X) is a’s inverse

under composition. This is due to the following

(1X ⊗ a−1 ⊗ 1Y ) ◦ a =(1X ⊗ a−1 ⊗ 1Y )⊗ (1−1
Y ⊗ a)

=1X

and similarly as 1X ⊗ a−1 ⊗ 1Y ∈ Mor(Y,X) we have

a ◦ (1X ⊗ a−1 ⊗ 1Y ) =a⊗ (1−1
X ⊗ (1X ⊗ a−1 ⊗ 1Y ))

=1Y .

Let B := Ob(G) and A :=
∏
X∈Ob(G) Mor(1G , X) which both get a group structure

from ⊗. Define homomorphisms ∂ : A→ B by a ∈ Mor(1G , X) 7→ X =: ∂(a), and

group action of B on A by Y : a 7→ 1Y ⊗ a ⊗ 1−1
Y =: Y a. From the definition for

a ∈ Mor(1G , X) we get that

∂(Y a) = ∂(1Y ⊗ a⊗ 1−1
Y ) = Y XY −1 = Y ∂(a)Y −1.

To deduce ∂(a)b = aba−1, take a, b ∈ A with a ∈ Mor(1G , X). Then 1−1
X ⊗ a ∈
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Mor(X−1, 1G) therefore from 3.2 we have b⊗ (1−1
X ⊗ a) = (1−1

X ⊗ a)⊗ b, rearranging

this gives the first equality of

aba−1 = 1Xb1
−1
X = Xb = ∂(a)b

the second of which come from the definition of the action, B on A, and ∂ respectively.

Therefore K = (A
∂−→ B) gives rise to a crossed module, which induces the strict

2-group K̃.

If we interpret K̃ as a monoidal category we construct a monoidal functor F : K̃ → G.

Which is defined on objects by setting F(X) = X as Ob(K̃) = B = Ob(G). To define

it on morphisms note

MorK̃(X,Y ) = {a ∈ MorG(1G , X
′)| Y = ∂(a)X}

= {a ∈ MorG(1G , X
′)| Y = X ′X}

= MorG(1G , X
′) where X ′X = Y.

To make it explicitly clear where the objects live we write (a)X,Y ∈ MorK̃(X,Y ) for

a ∈ MorG(1G , Y X
−1). So F : (a)X,Y 7→ a⊗ 1X ∈ MorG(X,X ′X) = MorG(X,Y ).

So let us show this is a functor of categories note that 1X ∈ MorK̃(X,X) is given by

11G ∈ MorG(1G , 1G) therefore

F(1X) = F((11G )X,X)

= 11G ⊗ 1X

= 1X .

Note that

F((b)Y,Z ◦K̃ (a)X,Y ) = F((b ·A a)X,Z)

= F((b⊗G a)X,Z)

= b⊗G a⊗G 1X

= b⊗G 1Y ⊗G 1−1
Y ⊗G a⊗G 1X

= (b⊗G 1Y ) ◦G (a⊗G 1X) by 3.1

= F((b)Y,Z) ◦G F((a)X,Y )

where b⊗G a ∈ Mor(1G , (ZY
−1)(Y X−1)) = Mor(1G , ZX

−1), therefore F is a functor

84



of categories. Also note that

F((a)X,Y ⊗K̃ (b)W,Z) = F((a ·A Xb)XW,Y Z)

= a⊗G 1X ⊗G b⊗G 1−1
X ⊗G 1XW

= a⊗G 1X ⊗G b⊗G 1W

= F((a)X,Y )⊗G F((b)W,Z)

where a ·A Xb ∈ Mor(1G , (Y X
−1)X(WZ−1)X−1) = Mor(1G , (YW )(XZ)−1), giving

that F preserves ⊗ exactly, therefore µF can be trivial. Also note that F(1G) = 1G

giving εF is also trivial. Meaning that associativity and unitality hold trivially.

We have that F is surjective on objects so essentially surjective. As the map

− ⊗ 1X : G → G has inverse − ⊗ 1−1
X : G → G we have that F is full and faithful.

Giving F is an equivalence of monoidal categories.

Someone who has read the original source might note that we made a slightly different

choice for our group A. This is just to make the functor F have a more canonical

form given our set up.

3.1.5 2-Representations

We remind the reader a group G can be turned into a category where Ob(G) = {∗}
and MorG(∗, ∗) = G with composition being defined by the group operation of G.

Then a linear representation θ of G can be thought of as a functor θ : G→ VectK.

Similarly we define a 2-representation.

Definition 3.1.36. A 2-representation of a 2-group G is a 2-functor Θ : G →
2−VectK.

A map of linear representations θ1 and θ2 of G is simply a natural transformation of

these two functors. Similarly we define a map of 2-representations.

Definition 3.1.37. A map of 2-representations Θ1,Θ2 : G → 2 − VectK, is a

2-natural transformation Φ : Θ1 ⇒ Θ2.

So for a given 2-group, G, we can form the category of 2-representations, 2−Rep(G)

with each object being a 2-representation and morphisms between two objects being

maps of 2-representations.

Remark. Here we have made some choices with our generalisation. These are by

no means the only legitimate choices. We have chosen to map into an analogue of

finite dimensional vector spaces. However other authors have chosen to generalise

projective representations [14, 17, 47], or map into infinite dimensional vector spaces
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[2]. We have chosen to study 2-groups, which we will make some assumption about.

However influential work was done by Mazorchuk-Miemietz [35, 36, 37, 38, 39, 40]

on finitary 2-categories and their 2-representations. The role of the field K will not

be discussed much, other than mild assumptions on its characteristic, however some

authors [49, 54] study these over particular fields.

For a 2-group given by a crossed module K = (A
∂−→ B) we summarise the information

a 2-representation R : K̃ → 2−VectK entails.

1. A number n = Θ0(∗). We call this number the degree of Θ.

2. A 1-morphism Θ1(b) = Θ1
∗,∗(b) = (Vi,j) : n → n for every b ∈ B. The

dimensions of these vector spaces form a matrix dim(Θ1(b)) ∈ Nn×n.

3. 2-Isomorphisms Θ1(b, a) = Θ1
∗,∗(b

a
=⇒ ∂(a)b) = (ϕi,j) : Θ1(b) ⇒ Θ1(∂(a)b)

for all a ∈ A and b ∈ B that are subject to vertical multiplicativity rule

Θ1(∂(a1)b, a2)Θ1(b, a1) = Θ1(b, a2a1).

4. A 2-isomorphism Θ2
∗ = (θi,j) : 1n ⇒ Θ(1B).

5. 2-Isomorphisms Θ2(b1, b2) = Θ2
∗,∗,∗(b1, b2) = (ψi,j) : Θ1(b1) �Θ1(b2)⇒ Θ1(b1b2)

for every pair b1, b2 ∈ B.

Such that the following axioms hold.

1. The pentagon axiom: Θ2(b1b2, b3) ◦ (Θ2(b1, b2) � IdΘ2(b3)) = Θ2(b1, b2b3) ◦
(IdΘ2(b1) �Θ2(b2, b3)) ◦Ass(Θ1(b1),Θ1(b2),Θ1(b3)) as maps (Θ1(b1) �Θ1(b2)) �
Θ1(b3)⇒ Θ1(b1b2b3).

2. The left triangle axiom: Θ2(b, 1B) = LUn(Θ1(b)) ◦ (IdΘ1(b) � (Θ2
∗)
−1) as maps

Θ1(b) �Θ1(1B)⇒ Θ1(b).

3. The right triangle axiom: Θ2(1B, b) = RUn(Θ1(b))◦ ((Θ2
∗)
−1 � IdΘ1(b)) as maps

Θ1(1B) �Θ1(b)⇒ Θ1(b).

4. The naturality condition: Θ2(∂(a1)b1, ∂(a2)b2) ◦ (Θ1(b1, a1) � Θ1(b2, a2)) =

Θ1(b1b2, a1
b1a2) ◦Θ2(b1, b2) as maps Θ1(b1) ◦Θ1(b2)⇒ Θ1(∂(a1)b1∂(a2)b2).

We call the 2-representation Θ unital if Θ2
∗ is an identity and strict if all Θ2(b1, b2)

and Θ2
∗ are identities.

As Θ1(b1) � Θ1(b2) is 2-isomorphic to Θ1(b1b2), we get a map dim ◦ Θ1 to be

a group homomorphism from B to Sn. Moreover, as we have 2-isomorphisms

Θ1(b, a) : Θ1(b)⇒ Θ1(δ(a)b) we get a permutation action of π1(K) = B/∂(A) on the

finite set {1, 2, . . . n}.
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Definition 3.1.38. A homomorphism of 2-representations ψ : Θ→ Θ′ is a natural

2-transformation of 2-functors. An equivalence of 2-representations is a natural

2-isomorphism of 2-functors.

Definition 3.1.39. Let 2-Repn(G) be the class of equivalence classes of 2-representations

of 2-group G of degree n.

For a 2-group K̃ coming from a crossed module K we write 2-Repn(K) for 2-Repn(K̃).

To understand these sets better, it is useful to be able to break down representations

into simpler forms.

Definition 3.1.40. For two 2-representations Θ1,Θ2 : G → 2−VectK we define the

direct product Θ1 � Θ2 : G → 2−VectK similarly to classical representations.

• If Θ1(∗) = [n] and Θ2(∗) = [m] then Θ1 � Θ2(∗) = [n+m].

• Where Θ1 � Θ2(∗ b−→ ∗) is the block sum of Θ1(∗ b−→ ∗) and Θ2(∗ b−→ ∗).

• With Θ1 � Θ2(b1
a

=⇒ b2) is the block sum of Θ1(b1
a

=⇒ b2) and Θ2(b1
a

=⇒ b2).

Then a 2-representation Θ is irreducible if it is not equivalent to a direct product

of 2 other representations. For a 2-representation given by a crossed module K
being irreducible is equivalent to the action of π1(K) = B/∂(A) on {1, 2, . . . , n}
being transitive. This is because of our choice of set up, you can see we have

effectively assumed a strong version of the Artin–Wedderburn theorem where our

representations must break down into ‘matrix’ rings.

Remark. In this setting we only require equivalence to a direct product, instead of

an isomorphism. This is because of the rigidity of our set up, and can differ in other

set ups.

Definition/Lemma 3.1.41. For two 2-representations Θ1,Θ2 : G → 2−VectK we

define the 2-tensor product Θ1 � Θ2 : G → 2−VectK.

• If Θ1(∗) = [n] and Θ2(∗) = [m] then Θ1 � Θ2(∗) = [nm]. For convenience we

set the coordinates to {(a, b)|1 ≤ a ≤ n, 1 ≤ b ≤ m}.

• Where

Θ1 � Θ2(∗ b−→ ∗)(i,j),(i′,j′) = Θ1(∗ b−→ ∗)i,i′ ⊗Θ2(∗ b−→ ∗)j,j′ .

• With

Θ1 � Θ2(b1
a

=⇒ b2)(i,j),(i′,j′) = Θ1(b1
a

=⇒ b2)i,i′ ⊗Θ2(b1
a

=⇒ b2)j,j′
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This construction satisfies the universality properties you would expect.

For a 2-group G we define a sub 2-group to be a subcategory H ≤ G where the

monoidal structure is closed, h1⊗h2 ∈ H, and the monoidal identity is in H, 1G ∈ H.

Therefore for sub-2-groups we get 2-representations ofH via restriction. So restriction

is a functor Res : 2−Rep(G)→ 2−Rep(H). However, we can also go in the other

direction with induction. We will give the restricted form of induction for 2-groups

arising from crossed modules as presented in [48], however a more general form can

be found in a paper of Rumynin and Young [49]. Rumynin and Young show that

this form of induction is a biadjoint to restriction under certain assumptions however

conjecture it in generality [49, Proposition 3.5].

Definition 3.1.42. Let K′ = (A′
∂−→ B′) be a sub-crossed module of K = (A

∂−→ B)

such that A′ = A and m := |B′ : B| <∞. Then for a 2-representation Θ of K′ we

define the induced 2-representation Θ ↑KK′=: Φ where,

• If Θ0(∗) = n then Φ0(∗) = nm. For convenience later pick a transversal

T = {t1, t2, . . . , tm} then define a bijection {1, 2, . . . , nm} → {(i, t)|1 ≤ i ≤
n, t ∈ T} and use (i, t) as the coordinates of the matrices.

• Then set

Φ1(b) := V(i,t),(i′,t′) =

(Θ1(b′))i,i′ if bt = t′b′ with b′ ∈ B′

1 otherwise
.

• Similarly define

Φ1(b, a) := ψ(i,t),(i′,t′) =

(Θ1(b′, (t′)−1
a))i,i′ if bt = t′b′ with b′ ∈ B′

1 otherwise
.

Note that for a1, a2 ∈ A and b ∈ B we have that if bt = t′b′ with b′ ∈ B′ then

∂(a1)bt = ∂(a1)t′b′ = t′((t′)−1∂(a1)t′)b′ = t′∂((t′)−1
a1)b′.

So the vertical multiplicative rule Φ1(δ(a1)b, a2)Φ1(b, a1) = Φ1(b, a2a1) is re-

solved by the multiplicative rule for Θ mainly that Θ1(δ((t′)−1
a1)b′, (t′)−1

a2)Θ1(b′, (t′)−1
a1)

= Θ1(b′, (t′)−1
(a2a1)).

• With 2-isomorphism

Φ2
∗ := θ(i,t),(i′,t′) =

(Θ2
∗)i,i′ if t = t′

id1 otherwise
.
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• With 2-isomorphisms

Φ2(b1, b2) := ψ(i,t),(i′,t′) =

(Θ2(b′2, b
′
1))i,i′ if b2b1t = b2t̃b

′
1 = t′b′2b

′
1

id1 otherwise
.

Which allows us to understand the irreducible representations of a 2-group arising

from a crossed module as induced 1-dimensional representations of sub-crossed

modules.

Theorem 3.1.43. (Rumynin and Wendland, [48]) Let K = (A
∂−→ B) be a crossed

module.

1. If Θ is a 2-representation of K̃, then there exist irreducible 2-representations

Θ1, . . . ,Θn such that Θ ∼= Θ1 ⊕ . . .⊕Θn.

2. The 2-representations Θ1, . . . ,Θn of K̃ are unique up to permutation and

equivalence.

3. If Φ is an irreducible 2-representation of K̃, then there exists a subgroup of

finite index B′ such that ∂(A) ⊂ B′ ⊂ B and a degree one 2-representation Θ

of K̃′ where K′ = (A
∂−→ B′) is a crossed submodule such that Φ ∼= Θ ↑K̃K̃′.

4. The pair (B′,Θ) is unique up to conjugation by an element of B.

This is proven using module categories, which we do not explore in this thesis.

However, intuitively you can find the irreducible representations by dividing the set

{1, . . . , n} into orbits under the action of π1(K) = B/∂(A). Then as these actions

are transitive we know they come from coset actions. Note that Theorem 3.1.43

is a generalisation of the decomposition results in 1-representation theory without

any restrictions on the field and only assuming π1(G) is finite. Equally it provides a

strong version of the induction theory’s in 1-representation theory where this applies

to representations rather than characters.

3.2 Maclane Strictification

MacLane Strictification gives us a way to go from any 2-group to an equivalent strict

2-group. Here we pay particular attention to the method of proof (we follow [12,

Theorem 1.8.5] for the proof), as we will explicate this later, on our skeletal 2-groups.

Theorem 3.2.1. [30] Any monoidal category C is equivalent to a strict monoidal

category.

Proof. [12, Theorem 1.8.5] Given a monoidal category C we describe RE(C). Where

the objects of RE(C) are functors F of the underlying category C (note: not monoidal
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functors) with functorial isomorphisms ζ(X,Y ) : F (X)⊗Y ∼−→ F (X⊗Y ) (this is the

map cX,Y in the notes we are following). Such that the following diagram commutes.

(F (X)⊗ Y )⊗ Z

ζ(X,Y )⊗IdZuu

Ass(F (X),Y,Z)

))
F (X ⊗ Y )⊗ Z

ζ(XY,Z)

��

F (X)⊗ (Y ⊗ Z)

ζ(X,Y Z)

��
F ((X ⊗ Y )⊗ Z)

F (Ass(X,Y,Z)) // F (X ⊗ (Y ⊗ Z))

Given two objects (F 1, ζ1) and (F 2, ζ2) we have morphisms between the two given

by natural transformations Φ : F ⇒ F ′ such that the follow diagram holds.

F 1(X)⊗ Y
ζ1(X,Y )//

Φ(X)⊗IdY
��

F 1(X ⊗ Y )

Φ(X⊗Y )
��

F 2(X)⊗ Y
ζ2(X,Y )// F 2(X ⊗ Y )

Where composition of morphisms is just vertical composition of natural transforma-

tions. This becomes a monoidal category where the tensor product of two objects is

given by (F 1, ζ1)⊗(F 2, ζ2) = (F 1F 2, ζ) where ζ is given by the following composition

F 1F 2(X)⊗ Y
ζ1(F 2(X),Y ) // F 1(F 2(X)⊗ Y )

F 1(ζ2(X,Y )) // F 1F 2(X ⊗ Y ).

The tensor product of morphisms is horizontal composition of natural transformations

or the Godement product. Which we remind the reader, for Φ1 : F 1 ⇒ G1 and

Φ2 : F 2 ⇒ G2 is given by the following composition, which can be defined in two

equivalent ways.

F 1F 2(X)

Φ1(F 2(X))
��

F 1(Φ2(X)) //

(Φ1⊗Φ2)(X)

))

F 1(G2(X))

Φ1(G2(X))
��

G1F 2(X)
G1(Φ2(X))

// G1G2(X)

Let

(F 1F 2, ζ̃) := (F 1, ζ1)⊗ (F 2, ζ2), (F 1F 2F 3,
˜̃
ζ) := (F 1F 2, ζ̃)⊗ (F 3, ζ3),

(F 2F 3, ζ̂) := (F 2, ζ2)⊗ (F 3, ζ3), and (F 1F 2F 3,
ˆ̂
ζ) := (F 1, c1)⊗ (F 2F 3, ζ̂)
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then

ˆ̂
ζ(X,Y ) = F 1(ζ̂(X,Y )) ◦ ζ1(F 2F 3(X), Y )

= F 1(F 2(ζ3(X,Y )) ◦ ζ2(F 3(X), Y )) ◦ ζ1(F 2F 3(X), Y )

= F 1F 2(ζ3(X,Y )) ◦ (F 1(ζ2(F 3(X), Y )) ◦ ζ1(F 2F 3(X), Y ))

= F 1F 2(ζ3(X,Y )) ◦ ζ̃(F 3(X), Y )

=
˜̃
ζ(X,Y )

giving

((F 1, ζ1)⊗ (F 2, ζ2))⊗ (F 3, ζ3) = (F 1, ζ1)⊗ ((F 2, ζ2)⊗ (F 3, ζ3)).

To make RE(C) strict we set the associativity and identity morphisms to be trivial.

This means that the pentagon and triangle axioms hold trivially.

Then map F : C → RE(C) is defined by the following: on X ∈ Ob(C) we have

F : X 7→ (X⊗ , 1X⊗ , assX, , ) where ass is the associator, and on f ∈ Mor(X,Y )

we map F : f 7→ f⊗ by which we mean the natural transformation Φ(Z) = f⊗1Z ∈
Mor(X⊗Z, Y ⊗Z). This becomes a monoidal functor where FX,Y : F(X)⊗F(Y )→
F(X ⊗ Y ) is given by the natural transformation assX,Y, .

Next we use this proof to go from a skeletal 2-group to a strict 2-group.

Example 3.2.2. Suppose we have a special skeletal coherent 2-group G given by

(G,H,α). Then take an object in RE(G) which is a functor F : G → G and a set of

maps ζ(x, y) : F (x)⊗ y ∼−→ F (x⊗ y). Note that as G is skeletal the existence of such

ζ(y, z) tells us that F (y)⊗z = F (y⊗z) therefore FG := F (1G) ∈ G. This full dictates

what F does to objects in G as F (x) = F (1Gx) = F (1G⊗x) = F (1G)⊗x = FGx. We

know F also permutes morphisms such that it preserves the identity and composition,

so for each x ∈ G we get an automorphism Fx ∈ AutGrp(H), where ax ∈ MorG(x, x)

gets mapped to (Fx(a))FGx ∈ MorG(F (x), F (x)). Lastly ζ : G × G → H satisfies

Fxyz(α(x, y, z))+ζ(xy, z)+ζ(x, y) = α(FGx, y, z)+ζ(x, yz) as the following diagram

commutes.

((FG ⊗ x)⊗ y)⊗ z

ζ(x,y)⊗1zuu

α(FGx,y,z)

))
(FG ⊗ (x⊗ y))⊗ z

ζ(xy,z)

��

(FG ⊗ x)⊗ (y ⊗ z)

ζ(x,yz)

��
FG ⊗ ((x⊗ y)⊗ z)

Fxyz(α(x,y,z)) // FG ⊗ (x⊗ (y ⊗ z))

91



Suppose we have Φ ∈ MorRE(G)((F
1, ζ1), (F 2, ζ2)), so Φ : F 1 ⇒ F 2. We know Φ

consists of morphisms Φ(x) : F 1(x)
∼−→ F 2(x), so we think of Φ ∈ MorSet(G,H). For

such a Φ(x) to exists we need that F 1(1G)x = F 2(1G)x giving F 1
G = F 2

G. We also

need that the following diagram commutes for each a ∈ H and x ∈ G

F 1(x)
F 1(ax)//

Φ(x)
��

F 1(x)

Φ(x)
��

F 2(x)
F 2(ax)// F 2(x)

which gives us that Φ(x) + F 1
x (a) = F 2

x (a) + Φ(x) however as we are in H which is

an abelian group we have that F 1
x = F 2

x therefore F 1 = F 2 =: F .

For Φ to be a morphism in RE(G) we need the following diagram to commute

(FGx)y
ζ1
x,y //

Φ(x)⊗1Y
��

FG(xy)

Φ(xy)

��
(FGx)y

ζ2
x,y // FG(xy)

which gives us the condition Φ(xy) + ζ1(x, y) = ζ2(x, y) + Φ(x).

Now consider F : G → RE(G) the embedding of G into RE(G). Then let X ∈ G
and set F(X) =: (FX , ζX) to be an object in RE(G). From definition FX(y) =

X ⊗ y = Xy and FX(ay) = 1X ⊗ ay = (Xa)Xy giving FXG = X and FXy (a) = Xa.

Then ζX(y, z) = α(X, y, z) and

Xα(y, z, w) + ζX(yz, w) + ζX(y, z) = α(Xy, z, w) + ζX(y, wz)

holds as it is just the cocycle condition

Xα(y, z, w) + α(X, yz, w) + α(X, y, z) = α(Xy, z, w) + α(X, y, zw).

With F(AX) =: ΦAX we get ΦAX (y) = AX ⊗ 1y = (A)Xy for all y ∈ G.

This is an equivalence of categories, all objects are isomorphic to something in

the image. So for a generic element (F, ζ) there exists an X ∈ G such that θ ∈
MorRE(C)((F

X , α(X,−,−)), (F, ζ)) giving FX = F and ζ(y, z) = α(X, y, z)+θ(yz)−
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θ(y). Note that for any a ∈ H we have that θ̃(y) = θ(y) + a gives the same ζ.

Ob(RE(C)) = {(FX , ζ) | ∃ θ ∈ MorSet(G,H) with ζ(y, z) = α(X, y, z) + θ(yz)− θ(y)}

= G× (MorSet(G,H)/(θ ∼ θ + a| a ∈ H))

= G×MorSet(G,H)/H.

Note that any θ ∈ MorSet(G,H) gives rise to a ζ obeying

Xα(y, z, w) + ζ(yz, w) + ζ(y, z) = α(Xy, z, w) + ζ(y, zw)

as

α(Xy, z, w) + ζ(y, zw) = α(Xy, z, w) + α(X, y, zw)− θ(y) + θ(yzw)

= Xα(y, z, w) + α(X, yz, w) + α(X, y, z)− θ(y) + θ(yzw)

= Xα(y, z, w) + α(X, yz, w)− θ(yz) + θ(yzw)

+ α(X, y, z)− θ(y) + θ(yz)

= Xα(y, z, w) + ζ(yz, w) + ζ(y, z).

Let (X, [θ1])⊗ (Y, [θ2]) =: (XY, [θ]). Then let ζ1, ζ2, ζ : G×G→ H be the functions

θ1, θ2 and θ represent. Then composition above gives

ζ(z, w) = Xζ2(z, w) + ζ1(Y z,w)

= Xα(Y, z, w) + α(X,Y z,w) + Xθ2(zw)

+ θ1(Y zw)− Xθ2(z)− θ1(Y z)

= α(XY, z, w) + α(X,Y, zw) + Xθ2(zw) by the cocycle condition

+ θ1(Y zw)− α(X,Y, z)− Xθ2(z)− θ1(Y z)

making

θ(z) = α(X,Y, z) + Xθ2(z) + θ1(Y z).

Let Mor((X, [θ1]), (X, [θ2])) 3 Φ : G → H, with ζ1, ζ2 : G × G → H being the

functions θ1 and θ2 represent. Choose representatives θ1(1G) = θ2(1G) = 0H . Then

we know

Φ(yz)− Φ(y) = ζ2(y, z)− ζ1(y, z)

= θ2(yz) + θ1(y)− θ1(yz)− θ2(y)

which when substituting y = 1G we get Φ(z)−Φ(1G) = θ2(z)− θ1(z) (which without

the choice of representative could be summerised as Φ(z) = Φ(1G)+(θ2(z)−θ2(1G))−
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(θ1(z)− θ1(1G))) which up to choice of Φ(1G) ∈ H uniquely determines Φ. This gives

Mor((X, θ1), (X, θ2)) = {Φa : G→ H| Φa(z) = a+ (θ2(z)− θ2(1G))

− (θ1(z)− θ1(1G)) for z ∈ G}

= H.

Given Φa ∈ Mor((X, [θ1]), (X, [θ2])) and Φb ∈ Mor((g, [θ2]), (g, [θ3])) then

Φa ◦ Φb(X) =a+ (θ2(X)− θ2(1G))− (θ1(X)− θ1(1G))

+ b+ (θ3(X)− θ3(1G))− (θ2(X)− θ2(1G))

=(a+ b) + (θ3(X)− θ3(1G))− (θ1(X)− θ1(1G))

meaning that Φa ◦ Φb = Φa+b ∈ Mor((g, [θ1]), (g, [θ3])).

Note that for Φa ∈ Mor((X, [θ1]), (X, [θ2])) and Φb ∈ Mor((Y, [θ∗]), (Y, [θ∗∗])) define

Φa ⊗ Φb =: Φc ∈ Mor((XY, [θ′]), (XY, [θ′′])). For clarity of calculations pick all

representatives so that 1G is mapped to 0H . So we have that

Φc(z) = c+ θ′′(z)− θ′(z)

= c+ α(X,Y, z) + Xθ∗∗(z) + θ2(Y z)

− α(X,Y, z)− Xθ∗(z)− θ1(Y z)

= c+ Xθ∗∗(z) + θ2(Y z)− Xθ∗(z)− θ1(Y z).

By examining the Godement product we have that

Φa ⊗ Φb(z) = XΦb(z) + Φa(Y z)

= Xb+ Xθ∗∗(z)− Xθ∗(z) + a+ θ2(Y z)− θ1(Y z)

= (a+ Xb) + Xθ∗∗(z) + θ2(Y z)− Xθ∗(z)− θ1(Y z),

making c = a+ Xb.

We have in summary the following data.

• The objects in C are the following

Ob(C) = G×MorSet(G,H)/H.

• Tensor products on objects are defined by (X, [θ1])⊗ (Y, [θ2]) = (XY, [θ]) where

θ(z) = α(X,Y, z) + Xθ2(z) + θ1(Y z).
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• The morphisms are

Mor((X, [θ1]), (X, [θ2])) =

{
Φa : G→ H

∣∣∣∣ Φa(y) =
a+ (θ2(y)− θ2(1G))

−(θ1(y)− θ1(1G))

}
= H.

• Given Φb ∈ Mor((X, [θ1]), (X, [θ2])) and Φa ∈ Mor((X, [θ2]), (X, [θ3])) then

Φa ◦ Φb = Φa+b ∈ Mor((X, [θ1]), (X, [θ3])).

• Where if Φa ∈ Mor((X, [θ1]), (X, [θ2])) and Φb ∈ Mor((Y, [θ′]), (Y, [θ′′])) then

Φa ⊗ Φb = Φa+Xb.

Note if we let

(XY, [θ∗]) := (X, [θ1])⊗ (Y, [θ2]), (XY Z, [θ∗∗]) := (XY, [θ∗])⊗ (Z, [θ3]),

(Y Z, [θ4]) := (Y, [θ2])⊗ (Z, [θ3]), and (XY Z, [θ44]) := (X, [θ1])⊗ (Y Z, [θ4])

then

θ∗∗(w) = α(XY,Z,w) + XY θ3(w) + θ∗(Zw)

= α(XY,Z,w) + XY θ3(w) + α(X,Y, Zw) + Xθ2(Zw) + θ1(Y Zw)

= α(X,Y, Z) + α(X,Y Z,w) + Xα(Y,Z,w) + XY θ3(w) + Xθ2(Zw) + θ1(Y Zw)

= α(X,Y, Z) + α(X,Y Z,w) + Xθ4(w) + θ1(Y Zw)

= α(X,Y, Z) + θ44(w)

which gives [θ∗∗] = [α(X,Y, Z) + θ44] = [θ44] making Ob(C) associative under the

⊗ operation. Further more if we let θconst(g) = 0H be the constant function then set

(X, [θ1]) := (1G, [θ
const])⊗ (X, [θ]) and (X, [θ2]) := (X, [θ])⊗ (1G, [θ

const])

then

θ1(y) = α(1G, X, y) + 1Gθ(y) + θconst(Xy)

= θ(y)

θ2(y) = α(X, 1G, y) + Xθconst(y) + θ(1Gy)

= θ(y)

giving [θ1] = [θ2] = [θ] making (1G, [θ
const]) an identity element under ⊗. Lastly for

any (X, [θ]) ∈ Ob(RE(C)) set

−θ̄(z) = X−1
(α(X,X−1, z) + θ(X−1z))
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then if

(1G, [θ
1]) := (X, [θ])⊗ (X−1, [θ̄]) and (1G, [θ

2]) := (X−1, [θ̄])⊗ (X, [θ])

we have

θ1(z) = α(X,X−1, z) + X θ̄(z) + θ(X−1z)

= α(X,X−1, z)− (α(X,X−1, z) + θ(X−1z)) + θ(X−1z)

= 0H

θ2(z) = α(X−1, X, z) + X−1
θ(z) + θ̄(Xz)

= α(X−1, X, z) + X−1
θ(z)− X−1

(α(X,X−1, Xz) + θ(X−1Xz))

= α(X−1, X,X−1(Xz))− X−1
α(X,X−1, Xz)

= α(1G, X
−1, Xz)− α(X−1, 1G, Xz)− α(X−1, X,X−1)

= − α(X−1, X,X−1)

giving that [θ2] = [θconst − α(X−1, X,X−1)] = [θconst] = [θ1] making (X−1, [θ̄]) =

(X, [θ])−1. Therefore Ob(RE(C)) is a group under the operation of ⊗.

Combining this with the proof of Proposition 3.1.35 we get the following.

Theorem 3.2.3. A skeletal 2-group given by (G,H,α) is equivalent to crossed module

K = (A
∂−→ B) given by:

• group B = G×MorSet(G,H)/H where (X, [θ1])⊗ (Y, [θ2]) = (XY, [θ]) with

θ(z) = α(X,Y, z) + Xθ2(z) + θ1(Y z),

• group A = MorSet(G,H)/H ×H where ([θ1], a)⊗ ([θ2], b) = ([θ1 + θ2], a+ b),

• map ∂ : A→ B where ∂([Φ], h) = (1G, [Φ]), and

• group action B ↪→ A given by (X, [θ]) : ([Φ], h) 7→ ([XΦ(X−1−)],Xh).

Proof. Following on from the proof of Proposition 3.1.35 and Example 3.2.2, let

C be the category constructed from (G,H,α). We have that B := Ob(C) = G ×
MorSet(G,H)/H where (X, [θ1])⊗ (Y, [θ2]) = (XY, [θ]) with

θ(z) = α(X,Y, z) + Xθ2(z) + θ1(Y z)

which we have shown forms a group above.
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We have that

A :=
∏

(x,[θ])∈B

Mor((1G, [θ
const]), (x, [θ]))

=
∏

[θ]∈MorSet(G,H)/H

Mor((1G, [θ
const]), (1G, [θ]))

=MorSet(G,H)/H ×H

Let (1G, [θ1])⊗ (1G, [θ2]) =: (1G, [θ]), then

θ(X) = α(1G, 1G, X) + 1Gθ2(X) + θ1(1GX) = θ1(X) + θ2(X).

Let Φa ∈ Mor((1G, [θ
const]), (1G, [θ1])), and Φb ∈ Mor((1G, [θ

const]), (1G, [θ2])) then

Φa ⊗ Φb = Φa+1Gb = Φa+b. Giving ([θ1], a)⊗ ([θ2], b) = ([θ1 + θ2], a+ b).

With the map ∂ : A→ B being ∂([Φ], h) = (1G, [Φ]).

The group action ∗ : B ↪→ A is given by

(X, [θ]) : ([Φ], h) 7→ 1(X,[θ]) ⊗ ([Φ], h)⊗ 1−1
(X,[θ])

= 1(X,[θ]) ⊗ ([Φ], h)⊗ 1(X−1,[θ̄])

:= ([Φ′],Φ0H ⊗ Φh ⊗ Φ0H )

Then to calculate Φ′ is equivalent to calculating (X, [θ])⊗ (1G, [Φ])⊗ (X−1, [θ̄]) =:

(1G, [Φ
′]). So from the calculations of associativity of A we get that

Φ′(y) = α(X1G, X
−1, y) + X1G θ̄(y) + α(X, 1G, X

−1y) + XΦ(X−1y) + θ(1GX
−1y)

= α(X,X−1, y) + X θ̄(y) + XΦ(X−1y) + θ(X−1y)

= α(X,X−1, y)− (α(X,X−1, y) + θ(X−1y)) + XΦ(X−1y) + θ(X−1y)

= XΦ(X−1y)

so we have that (X, [θ]) : ([Φ], h) 7→ ([XΦ(X−1−)],Xh). Note this is a group action

as

(X, [θ1]) · ((Y, [θ2]) · ([Φ], h)) = (X, [θ1]) · ([Y Φ(Y −1−)], Y h)

= ([XY Φ(Y −1X−1−)],XY h)

= (XY, [θ]) · ([Φ], h).
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Note here we recover, π1(A,B, ∂, ?) = coker(∂) = G and π2(A,B, ∂, ?) = ker(∂) = H

as we would expect.

MacLane then later Joyal and Street describe how to obtain a crossed module KG
from the data (G,H,α) [25, 31]. However these methods leave the data as infinite

free groups. We recall the procedure below following Joyal and Street [25].

Example 3.2.4. Let F := FG\{1G} be the free group on the set G \ {1G} and

R := F(G\{1G})2 be the free group on the set G×G \ {(1G, x), (x, 1G) | x ∈ G}. For

any elements x, y ∈ G \ {1G} write {x} and {x, y} for their corresponding words in

F and R respectively. Let σ : G→ F and τ : G2 → R be the inclusion functions (of

sets) satisfying

σ(x) =

1F if x = 1G

{x} otherwise
and τ(x, y) =

1R if x = 1G or y = 1G

{x, y} otherwise

for all x, y ∈ G. We use σ and τ when we want to refer to the basis elements of F

and R respectively but we are unsure if the argument of the function is the identity.

The universal property of free groups gives rise to a surjective group homomorphism

ϕ : F → G, having the property ϕ({x}) = x, for all x ∈ G \ {1G} (so ϕ ◦ σ is the

identity). Again by the universal property of free groups we obtain a homomorphism

ψ : R→ F, such that ψ({x, y}) = {x}{y}σ(xy)−1, for all x, y ∈ G \ {1G}.

Thus, we have a short exact sequence:

1→ R
ψ−→ F

ϕ−→ G→ 1. (3.3)

Recall H is the ZG-module which is part of the data of the special 2-group G. Let

π : H → H × R be the projection onto the first coordinate, i.e., π : a 7→ (a, 1R),

and let ∂ : H × R → R be the map on H × R induced by ψ, i.e., ∂ : (a, {x, y}) →
ψ({x, y}) = {x}{y}σ(xy)−1. Then the short exact sequence above induces an exact

sequence of the form:

1→ H
π−→ H ×R ∂−→ F

ϕ−→ G→ 1. (3.4)

For every X ∈ G we may define an endomorphism ηX : H ×R→ H ×R, given by

ηX((a, {y, z})) = (Xa+ α(X, y, z), τ(X, y)τ(Xy, z)τ(X, yz)−1).
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Note the following

ηXηY (a, {z, w}) =ηX(Y a+ α(Y, z, w), τ(Y, z)τ(Y z,w)τ(Y, zw)−1)

=(XY · a+ Xα(Y, z, w) + α(X,Y, z) + α(X,Y z,w)− α(X,Y, zw),

τ(X,Y )τ(XY, z)τ(X,Y z)−1τ(X,Y z)τ(XY z,w)

τ(X,Y zw)−1τ(X,Y zw)τ(XY, zw)−1τ(X,Y )−1)

=(XY · a+ α(XY, z, w), τ(X,Y )τ(XY, z)τ(XY z,w)

τ(XY, zw)−1τ(X,Y )−1)

=(0A, τ(X,Y ))ηXY (a, {z, w})(0A, τ(X,Y )−1)

since α is a 3-cocycle. So we have that

ηxηy = c(0A, τ(x, y))ηxy, for all x, y ∈ G, (3.5)

where c(k) denotes the conjugation by k in H ×R. Equation (3.5) implies that ηx is

not only an endomorphism, but in fact an automorphism of H ×R [10, 9.4]. Thus,

we obtain a group homomorphism

η : F → Aut(H ×R), η : {x} 7→ ηx.

In particular, we have an action ? : F × (H ×R)→ H ×R. Write {x}k := {x} ? k =

ηx(k), k ∈ H ×R. Note the following

∂((a,{x,y}))(b, {z, w}) ={x}{y}σ(xy)−1
(b, {z, w})

=ηxηyη
−1
xy (b, {z, w})

=c({x, y})(b, {z, w}) from (3.5)

=(a, {x, y})(a′, {z, w})(a, {x, y})−1 as A is abelian

and

∂({x}(a, {y, z})) =∂(x · a+ α(x, y, z), τ(x, y)τ(xy, z)τ(x, yz)−1)

={x}{y}σ(xy)−1σ(xy){z}σ(xyz)−1σ(xyz)σ(yz)−1{x}−1

={x}{y}{z}σ(yz)−1{x}−1

={x}∂({y, z}){x}−1

Therefore this action satisfies conditions (CM1) and (CM2) as in Definition 3.1.25

and thus KG = (H×R,F, ∂, ?) is a crossed module. This gives rise to a strict 2-group

Ĝ.
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We say that Ĝ is the strictification of G. In summary

• KH = (∂ : H × F(G\{1})×(G\{1}) → FG\{1}), where

• ∂(a, {x, y}) = {x}{y}σ(xy)−1, with

• {x}(a, {y, z}) = (xh+ α(x, y, z), {x, y}τ(xy, z)τ(x, yz)−1),

where σ({x}) = {x} for all x ∈ G\{1} and σ({1}) = 1, similarly τ({x, y}) = {x, y}
for all x, y ∈ G\{1} otherwise τ({1, x}) = τ({x, 1}) = τ({1, 1}) = 1. Note that

π2(KG) = Ker(∂)

= {(a, {x, y}) ∈ H × F(G\{1})×(G\{1}) | {x}{y}σ(xy)−1 = 1}

= {(a, {1, 1}) ∈ H × F(G\{1})×(G\{1})}
∼= H

and

π1(KG) = Coker(∂)

= FG\{1}/〈{x}{y}σ(xy)−1〉

= 〈x ∈ G\{1}|{x}{y} = {xy} for all y ∈ G〉
∼= G.

Corollary 3.2.5. The two crossed modules introduced in Theorem 3.2.3 and Example

3.2.4 are equivalent.

3.3 Representations of Strict 2-groups

This section will review the results of Rumynin and the author [48]. Establishing how

2-representations are given by elements in the Burnside ring. Lastly some formulae

will be presented for the 2-character.

3.3.1 The Burnside Ring

Let us consider a crossed module K = (A
∂−→ B) such that π1(K) = B/∂(A) is a

finite group. Let S(K) be the category of subgroups of π1(K) [21]. Objects of S(K)

are subgroups of π1(K). The morphisms S(P,Q) are conjugations γx : P → Q,

γx(a) = xax−1, x ∈ π1(K) whenever xPx−1 ⊆ Q. If y−1x 6= 1G is in the centraliser

of P , then γx and γy are the same conjugations, but we treat them as different

morphisms in S(P,Q). In this respect we are different from the setup, studied by

Gunnells, Rose and Rumynin [21], where these are the same morphism. The setups
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are not drastically different, so we can still use their results exercising a certain care.

A subgroup P ≤ π1(K) has an inverse image P̄ := (B → π1(K))−1(P ). It gives a

restricted sub-crossed module KP := (A
∂−→ P̄ ) with π1(KP ) ∼= P .

Let Φ be the functor “2-representations of degree one”. It is a contravariant functor

from S(K) to the category of abelian groups. On objects, Φ(P ) := 2-Rep1(K̃P ). Let

us look at a morphism γx : P → Q. By picking a lifting ẋ ∈ B, i.e., an element with

ẋ∂(A) = x, we get a conjugation morphism of crossed modules

γẋ : KP → KQ, P 3 g 7→ ẋgẋ−1, A 3 a 7→ ẋa

and the corresponding homomorphism of 2-groups

γẋ : K̃P → K̃Q, P 3 g 7→ ẋgẋ−1, ?

g2

��

g1

CC?a

KS

7→ ?

ẋg2ẋ−1

��

ẋg1ẋ−1

CC?ẋa

KS

.

An element a ∈ A gives another lifting ∂(a)ẋ ∈ G of x and a new 2-morphism

γ∂(a)ẋ : K̃P → K̃Q. In essence, they differ by an inner 2-isomorphism determined by

a.

Lemma 3.3.1. (Rumynin Wendland [48, Lemma 4.1]) Let Θ be a 2-representation

of K̃Q. Then the 2-representations Θ ◦ γẋ and Θ ◦ γ∂(a)ẋ of K̃P are equivalent.

Lemma 3.3.1 applies to 2-representations, hence, γẋ and γ∂(a)ẋ determine the same

pull-back homomorphism that allows us to define the functor Φ on morphisms:

Φ(γx) := [γẋ] = [γ∂(a)ẋ] : Φ(Q) = 2-Rep1(KQ)→ 2-Rep1(KP ) = Φ(P ).

In general, if the conjugations γx and γy are the same, these pull-backs can be

different: Θ ◦ γẋ and Θ ◦ γẏ are not necessarily equivalent because the actions of

2-objects of K̃Q could be different. This necessitates our version of the category S(K)

[21].

Example 3.3.2. Take any abelian group A, and any non-trivial abelian subgroup

B ≤ Aut(A), e.g., A = Cn × Cn = 〈a〉 × 〈b〉 with B = C2 = 〈φ〉 such that φ(a) = b

and φ(b) = a. Then we have crossed module K = (A
∂−→ B) with ∂(x) = 1 for all

x ∈ A. This satisfies (CM1) and (CM2), as A is abelian and ∂ is trivial. Then as

B = π1(K) is abelian we have for any two x, y ∈ B that xy−1 lies in the centraliser

of any subgroup, however they can clearly have different actions.
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Despite this slight difference, the functor Φ still leads to the generalised Burnside

ring BA(K) := BΦ
K(π1(K)) with coefficients in a commutative ring K [21]. The K-basis

of BA(K) consists of pairs 〈Θ, P 〉 where P is a subgroup of π1(K), Θ is a degree one

2-representation of K̃P . In each π1(K)-conjugacy class of such pairs we choose one

representative because

〈Θ, P 〉 = 〈Φ(γx)(Θ),x−1Px〉

for all x ∈ π1(K). We can also write a pair 〈Θ, P 〉 with an arbitrary 2-representation

Θ of K̃P but they can be rewritten as linear combinations of pairs with degree one

2-representations by the formulas

〈Θ1 � Θ2, P 〉 = 〈Θ1, P 〉+ 〈Θ2, P 〉 and 〈Θ ↑K̃P

K̃Q
, P 〉 = 〈Θ, Q〉.

The multiplication in BA(K) is K-bilinear, defined on the basis by the formula

〈Θ, P 〉 · 〈Ω, Q〉 =
∑

PxQ∈P\π1(K)/Q

〈
Φ(γ1 : P ∩ xQx−1 → P )(Θ)�

Φ(γx−1 : P ∩ xQx−1 → Q)(Ω)
, P ∩ xQx−1

〉
.

Intuitively this formula is exactly that of the tensor product of two representations as

we will see in the proof of Proposition 3.3.4. The Burnside ring BA(K) is isomorphic

to the space of 2-representations with coefficients in K for a 2-group coming from a

crossed module K [48, Proposition 4.2]. Here multiplication takes the role of the ten-

sor product of representations and irreducible representations map [Θ ↑K̃
K̃P

] 7→ 〈Θ, P 〉.

One can understand the formula for multiplication by looking at the action of

π1(K) = B/∂(A) on [n] × [m]. Two irreducible representations [Θ ↑K̃
K̃P

] and

[Ω ↑K̃
K̃Q

] give rise to two transitive actions of π1(K) on [n] and [m] which are

equivalent to coset actions of π1(K)/P and π1(K)/Q. When π1(K) acts diagonally on

{(xP,yQ)|x,y ∈ π1(K)} we get orbits which can be represented by pairs [(P,xQ)]

with x ∈ π1(K). Where [(P,xQ)] = [(pP,xqQ)] = [(P, p−1xqQ)] so x is uniquely

determined up to the double coset PxQ.

Let us introduce a mark homomorphism [21, Lemma 1.2]. We need to assume that

the order |π1(K)| is invertible in K. Let α : Φ(P )→ K× be a group homomorphism.

The corresponding mark is an K-algebra homomorphism fαP : BA(K)→ K given by

the formula

fαP (〈Θ, Q〉) =
1

|Q|
∑
g∈X

α(Φ(γg : P → Q)(Θ))

where X = {g ∈ π1(K) | gPg−1 ⊆ Q}. The marks work magnificently for the ring

BA(K) if all the groups Φ(P ) are finite.
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Proposition 3.3.3. (Gunnels, Rose, and Rumynin [21, Corollary 1.3]) Suppose all

Φ(P ) are finite. Let N be the least common multiple of all the orders of elements

in various Φ(P ). If K is a field, containing a primitive N -th root of unity, then the

mark homomorphisms define an isomorphism of K-algebras

BA(K)
∼=−→ ⊕K = Kk

where k is the number of B-orbits on the disjoint unions ∪̇PΦ(P ).

If ϕ : K′ → K is a homomorphism of crossed modules, the pull-back of 2-representations

(θ 7→ θϕ where θϕ(−) = θ(ϕ(−))) gives a homomorphism of Burnside rings ϕ∗ :

BA(K)→ BA(K′). Consider the quotient homomorphism of crossed modules

ϕ : K → K̄ := (1→ π1(K)), B 3 b 7→ b∂(A), A 3 a 7→ 1.

The Burnside ring BA(K̄) is precisely the generalised Burnside ring of π1(K) studied

by Gunnells, Rose and Rumynin [21], because there are no non-trivial 2-objects in ˜̄K.

All the groups Φ(P ) = H2(P,K×) are finite. Proposition 3.3.3 tells us that if K is a

field, containing a primitive N -th root of unity, then the corresponding pull-back

algebra homomorphism ϕ∗ : BA(K̄) = Kk → BA(K) is injective. Its image can be

thought of as the 2-representations “trivial” on H.

3.3.2 Ganter-Kapranov 2-character

Let us recall the notion of a 2-categorical trace [16]. Let C be a bicategory, and

x ∈ C0 one of its 0-object. The 2-categorical trace of a 1-morphism u ∈ C1(x, x) is the

set Trx(u) := C2(ix, u). It is instructive to observe that in the bicategory of 2-vector

spaces 2−VectK a 1-morphism u = (Ui,j) is an n× n-matrix of vector spaces, while

its trace is the vector space

Trn(u) =
⊕
i

MorK(K, Ui,i)⊕
⊕
i 6=j

MorK(0, Ui,j) ∼=
⊕
i

Ui,i .

Let Θ be a 2-representation of degree n of the 2-group K̃, where K is a crossed

module. To define the 2-character of Θ we consider two elements a,b ∈ B such that

their images in the fundamental group commute: āb̄ = b̄ā ∈ π1(K) and h ∈ A such

that ∂(h)aba−1 = b. This data gives a linear operator XΘ(b,a, h) : Trn(Θ1(b))→
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Trn(Θ1(b))

XΘ(b,a, h)
(
n

Θ(b)

&&

in

88 n

KS
v

)
= n

Θ(a)

&&

Θ(a)

88

KS

Id

Θ(b)

��

in

AAn

Θ(b)

&&

in

88

KS
v

KS

[a,b,a−1,h]

KS

[a,1,a−1,1]−1

n

Θ(a−1)

&&

Θ(a−1)

88

KS

Id n

where Θ(b) = Θ1
?,?(b) and [a,b,a−1, h] is a composition of the natural morphism

Θ(a) �Θ(b) �Θ(a−1)→ Θ(aba−1) and the action h · : Θ(aba−1)→ Θ(b). Let us

write a matrix of vector spaces Θ1
?,?(a) = (Ui,j(a)). Its dimension is the permutation

matrix of some permutation σa, e.g., Ui,j(a) 6= 0 if and only if j = σa(i). Now the

natural map in → Θ(a)�Θ(a−1) is given by a collection of elements xi(a) ∈ Ui,σa(i)(a),

yi(a) ∈ Uσa(i),i(a
−1) in a way that

K = (in)i,i 3 1i 7→ xi(a)⊗ yi(a) ∈ Ui,σa(i)(a)⊗ Uσa(i),i(a
−1).

Now we can write the key map in an elementary way:

XΘ(b,a, h)(
∑

i bi) = h · (
∑

i xi(a)⊗ bσa(i) ⊗ yi(a))

where
∑

i bi ∈ Trn(Θ1
?.?(b)) = ⊕iUi,i(b).

(3.6)

The 2-character value XΘ(a,b, h) is the trace of this linear map:

XΘ(b,a, h) := Tr(XΘ(b,a, h)).

Let G be the set of all triples (a,b, h) ∈ B × B × A such that ∂(h)ab = ba. The

group B acts on the set G by conjugation.

Proposition 3.3.4. (Rumynin Wendland [48]) For any 2-representation Θ the

function XΘ : G→ K is constant on B-orbits. If Ψ is another 2-representation, then

XΨ�Θ(b,a, h) = XΨ(b,a, h) · XΘ(b,a, h).

Proof. Let us prove the first statement, i.e., that XΘ( gb, ga, gh) = XΘ(b,a, h) for all

g ∈ B. We have a natural “conjugation” linear map Γg : Trn(Θ1(b))→ Trn(Θ1( gb))
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given by the formula

Γg

(
n

Θ1(b)

&&

in

88 n

KS
v

)
= n

Θ1(g)

&&

Θ1(g)

88

KS

Id

Θ1(gbg−1)

��

in

AAn

Θ1(b)

&&

in

88

KS
v

KS

[g,b,g−1,1]

KS

[g,1,g−1,1]−1

n

Θ1(g−1)

&&

Θ1(g−1)

88

KS

Id n

where Θ(b) = Θ1
?,?(b) and [g,b,g−1, 1] is a composition of the natural morphism

Θ(g) �Θ(b) �Θ(g−1)→ Θ(gbg−1). So Γg is a change of basis matrix, therefore we

get the following equality

XΘ( gb, ga, gh) = ΓgXΘ(b,a, h)Γ−1
g .

To show this, we remind the reader of what these maps do in terms of 3.6,

Γg(
∑
i

bi) =
∑
i

xi(g)⊗ bσg(i) ⊗ yi(g),

XΘ(b,a, h)(
∑
i

bi) = h · (
∑
i

xi(a)⊗ bσa(i) ⊗ yi(a)), and

Γ−1
g (
∑
i

bi) =
∑
i

xi(g
−1)⊗ bσg−1 (i) ⊗ yi(g−1).

Before calculating the formulas above note that if (xi(a))i,σa(i)⊗(yi(a))σa(i),i 7→ (1)i,i,

and (xi(b))i,σb(i) ⊗ (yi(b))σb(i),i 7→ (1)i,i, then

(xi(a))i,σa(i) ⊗ (xσa(i)(b))σa(i),σbσa(i) ⊗ (yσa(i)(b))σbσa(i),σa(i) ⊗ (yi(a))σa(i),i 7→ (1)i,i,

which gives that xi(a) ⊗ xσa(i)(b) = xi(ab) and yσa(i)(b) ⊗ yi(a) = yi(ab), so
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continuing with our calculation we have

ΓgXΘ(b,a, h)Γ−1
g (
∑
i

bi) = ΓgXΘ(b,a, h)(
∑
i

xi(g
−1)⊗ bσg−1 (i) ⊗ yi(g−1))

= Γg(h · (
∑
i

xi(a)⊗ xσa(i)(g
−1)⊗ bσg−1σa(i)

⊗ yσa(i)(g
−1)⊗ yi(a)))

= Γg(h · (
∑
i

xi(ag−1)⊗ bσag−1 (i) ⊗ yi(ag−1))

=
∑
i

xi(g)⊗ h · (xσg(i)(ag−1)⊗ bσag−1σg(i)

⊗ yσg(i)(ag−1))⊗ yi(g)

= gh · (
∑
i

xi(g)⊗ (xσg(i)(ag−1)⊗ bσag−1σg(i)

⊗ yσg(i)(ag−1)⊗ yi(g))

= gh · (
∑
i

xi(gag−1)⊗ bσgag−1 (i) ⊗ yi(gag−1)

= XΘ( gb, ga, gh)(
∑
i

bi)

hence, the linear maps XΘ( gb, ga, gh) and XΘ(b,a, h) have the same trace. Let us

prove the second statement now. Writing matrices of vector spaces as Θ1
?,?(b) =

(Ui,j(b)) and Ψ1
?,?(b) = (Vi,j(b)), we observe that Trnm(Θ�Ψ)1

?,?(b) ∼=
∑

i,t Ui,i(b)⊗
Vt,t(b) ∼= (

∑
i Ui,i(b)) ⊗ (

∑
t Vt,t(b)) ∼= TrnΘ1

?,?(b) ⊗ TrmΨ1
?,?(b). Identifying the

2-traces under these maps, we can observe that XΘ�Ψ(b,a, h) = XΘ(b,a, h) ⊗
XΨ(b,a, h) that implies the second statement.

A character table of a finite group has rows and columns. Usually one thinks of

columns as characters, yet it is often instructive to think of rows as characters.

Applying this way of thinking to the 2-characters we can use Proposition 3.3.4 to

conclude that a G-conjugacy class of triples (a,b, h) with ∂(h)ab = ba determines

a ring homomorphism

X(b,a, h) : BZ(K)→ K, [Θ] 7→ XΘ(b,a, h).

It can be extended by K-linearity to a K-algebra homomorphism X(b,a, h) : BK(K)→
K. Both versions of X should be called a Ganter-Kapranov 2-character. In the finite

case (i.e., under assumptions of Proposition 3.3.3) the Ganter-Kapranov 2-character

must be one of the marks. Which one?

Theorem 3.3.5. (Rumynin Wendland [48]) In the notations above, let P be the

subgroup of π1(K) generated by ā and b̄. Let α := X(b,a, h) considered as a group
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homomorphism 2-Rep1(KP )→ K×. If the order of π1(K) is finite and invertible in

the field K, then

X(b,a, h) = fαP .

Proof. It suffices to check this equality on irreducible 2-representations. So let

us consider 〈Θ, Q〉 ∈ BA(K), which corresponds to 2-representations Θ ↑KKQ
. Let

T = {t1, . . . , tm} be a traversal of Q ≤ π1(K). Note that

(Θ ↑KKQ
)1(b)t,t′ =

Θ1(b′) if bt = t′b′ with b′ ∈ Q

1 otherwise

so for a component of (Θ ↑KKQ
)1(b) to contribute to Trn(Θ ↑KKQ

)1(b) we need bt = tb′

with b′ ∈ Q, i.e., t−1bt ∈ Q. Moreover if we let σ(t) = t′, where at = t′a′ with

a′ ∈ Q, represent a’s action on the set of cosets. Then we know that

XΘ↑KKQ

(b,a, h)(
∑
i

bi) = h · (
∑
i

xi(a)⊗ bσ(i) ⊗ yi(a))

therefore for the transversal t to contribute to

XΘ↑KKQ

(b,a, h) := Tr(XΘ↑KKQ

(b,a, h)).

We need that σ(t) = t, i.e. t−1at ∈ Q.

So take t ∈ T and a,b ∈ π1(K) such that t−1
a, t

−1
b ∈ Q and h ∈ A such that

∂(h)ab = ba. Now consider t’s components of Θ ↑KKQ
,

(Θ ↑KKQ
)1(b)t,t = Θ1( t

−1
b),

(Θ ↑KKQ
)1(a)t,t = Θ1( t

−1
a),

(Θ ↑KKQ
)2(x, y)t,t = Θ2( t

−1
x, t

−1
y), for x, y ∈ {a,a−1,b,b−1, 1} and

(Θ ↑KKQ
)2(aba−1, h)t,t = Θ2( t

−1
(aba−1), t

−1
h)t,t,

giving the composition of XΘ↑KKQ

(b,a, h) in the t component is exactly that of

XΘ( t
−1

b, t
−1

a, t
−1
h). So we have that

XΘ↑KKQ

(b,a, h)(〈Θ, Q〉) =
∑

t∈T, t−1a, t−1b∈Q

XΘ( t
−1

b, t
−1

a, t
−1
h)

=
1

|Q|
∑

g∈π1(K),g−1Pg⊂Q

XΘ( g
−1

b, g
−1

a, g
−1
h) where P = 〈a,b〉

=
1

|Q|
∑

g∈π1(K),gPg−1⊂Q

XΘ( gb, ga, gh).

107



Next examine fαP with α := X(b,a, h) : 2-Rep1(KP )→ K× being a group homomor-

phism,

fαP (〈Θ, Q〉) =
1

|Q|
∑

g∈π1(K),gPg−1⊂Q

α(Φ(γg : P → Q)(Θ))

=
1

|Q|
∑

g∈π1(K),gPg−1⊂Q

α(θg) where θg(x) = θ( gx)

=
1

|Q|
∑

g∈π1(K),gPg−1⊂Q

XΘ( gb, ga, gh),

giving us the required equality.

3.3.3 Shapiro isomorphism

Let G be a group, H ≤ G its subgroup, M a ZH-module. Shapiro’s lemma [44]

asserts isomorphisms in homology and cohomology:

H∗(G,CoindGH(M)) ∼= H∗(H,M), H∗(G, IndGH(M)) ∼= H∗(H,M).

The standard proof goes via a quasiisomorphism of the corresponding complexes. It

does not give an explicit formula that we require for cohomology. Hence, we supply

an explicit chain homotopy

ψ : Cn(H,M)→ Cn(G,CoindGH(M)).

Choose a right transversal T = {t1, t2 . . .}j to H in G such that t1 = 1G. The

coinduced module CoindGH(M) is the set of all H-equivariant functions f : G→M .

Such a function is uniquely determined by its values on T . The right transversal

allows us to identify the coinduced module CoindGH(M) with the set of all functions

f : T → M . The cochains Cn(H,M) are also functions µ : Hn → M . Given

elements g1, . . . ,gn ∈ G and t ∈ T , there exist elements h1, . . . ,hn ∈ H and

s0 = t, s1, . . . , sn ∈ T uniquely determined by the following equations:

s0g1 · · ·gn = h1s1g2 · · ·gn = . . . = h1 · · ·hkskgk+1 · · ·gn = . . .

= h1 · · ·hn−1sn−1gn = h1 · · ·hnsn.

We use these elements to define ψ on a cochain µ ∈ Cn(H,M):

ψ(µ)(g1, . . . ,gn)(t) := µ(h1, . . . ,hn).
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In the opposite direction we define a map for arbitrary elements h1, . . . ,hn ∈ H:

φ : Cn(G,CoindGH(M))→ Cn(H,M), φ(θ)(h1, . . . ,hn) = θ(h1, . . . ,hn)(1G).

We are ready for the main result of this section.

Theorem 3.3.6. (Rumynin Wendland [48]) Let H ≤ G be groups, M a ZH-module.

The above defined maps φ and ψ are isomorphisms of the cochain complexes C∗(H,M)

and C∗(G,CoindGH(M)) in the homotopic category.

Proof. Observe that for g1, . . . ,gn ∈ H and t = 1 we get hj = gj . Hence,

φ(ψ(µ))(g1, . . . ,gn) = ψ(µ)(g1, . . . ,gn)(1G) = µ(g1, . . . ,gn)

proving that φ ◦ ψ is equal to the identity. In the opposite direction, ψ ◦ φ is only

homotopic to the identity:

· · · // Cn−1(P,CoindGH(M))
dn−1

//

ww

φ◦ψ




1
��

Cn(P,CoindGH(M))
dn //

$n−1

ss
φ◦ψ




1
��

Cn+1(P,CoindGH(M)) //

$n

ss
φ◦ψ




1
��

. . .

ww
· · · // Cn−1(P,CoindGH(M))

dn−1
// Cn(P,CoindGH(M))

dn // Cn+1(P,CoindGH(M)) // · · ·

where the homotopy $ is define by

$n(θ)(g1, . . . ,gn)(t) =
n∑
j=0

(−1)j+1θ(h1, . . . ,hj , sj ,gj+1, . . . ,gn)(1).

Let us verify that ψ ◦ φ− 1 = $n ◦ dn + dn−1 ◦$n−1. Let us first examine the left

hand side of this equality:

(ψ ◦ φ− 1)(θ)(g1, . . . ,gn)(t) = ψ ◦ φ(θ)(g1, . . . ,gn)(t)− θ(g1, . . . ,gn)(t)

= θ(h1, . . . ,hn)(1)− θ(g1, . . . ,gn)(t).

Now we scrutinise the first term of the right hand side. It is useful to pay attention

which sj appears in terms of the final expression because it tells you from which

term of the second expression it originates. We label the lines to help observe the
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cancellations:

$n(dn(θ))(g1, . . . ,gn)(t) =
n∑
j=0

(−1)j+1dn(θ)(h1, . . . ,hj , sj ,gj+1, . . . ,gn)(1) =

− θ(g1, . . . ,gn)(s0) (3.7)

+
n∑
j=1

(−1)j+1θ(h2, . . . ,hj , sj ,gj+1, . . . ,gn)(h1) + (3.8)

+

n∑
j=2

j−1∑
k=1

(−1)j+k+1θ

(
. . .hk−1,hkhk+1,hk+2, . . .

. . . ,hj , sj ,gj . . .

)
(1)

(3.9)

−
n∑
j=1

θ(h1, . . . ,hj−1,hjsj ,gj+1, . . . ,gn)(1) (3.10)

+
n−1∑
j=0

θ(h1, . . . ,hj−1, sjgj+1,gj+1, . . . ,gn)(1) (3.11)

+

n−2∑
j=0

n−1∑
k=j+1

(−1)j+kθ

(
. . .hj , sj ,gj+1, . . .

. . . ,gk−1,gkgk+1,gk+2 . . .

)
(1)

(3.12)

+
n−1∑
j=0

(−1)j+nθ(h1, . . . ,hj , sj ,gj+1, . . . ,gn−1)(1) (3.13)

+ θ(h1, . . . ,hn)(1). (3.14)

Lines (3.7) and (3.14) contribute to the left hand side. Lines (3.10) and (3.11) cancel

because sjgj+1 = hj+1sj+1. The remaining lines cancel with the second term (line
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labels correspond to their cancelling counterparts):

dn−1($n−1(θ))(g1, . . . ,gn)(t) =

$n−1(θ)(g2, . . . ,gn)(h1s1) +

n−1∑
k=1

(−1)k$n−1(θ)(g1, . . . ,gkgk+1 . . .)(t)

+ (−1)n$n−1(θ)(g1, . . . ,gn−1)(t)

=

n∑
j=1

(−1)jθ(h2, . . . ,hj , sj ,gj+1, . . . ,gn)(h1) (3.8)

+

n−1∑
k=1

k−1∑
j=0

(−1)k+j+1θ

(
. . .hj , sj ,gj+1, . . .

. . . ,gk−1,gkgk+1,gk+2 . . .

)
(1)

(3.12)

+

n−1∑
k=1

n−1∑
j=k+1

(−1)k+jθ

 . . .hk−1,hkhk+1,hk+2, . . .

. . . ,hj , sj ,gj+1, . . .

. . . ,gn

 (1)

(3.9)

+

n−1∑
j=0

(−1)n+j+1θ(h1, . . . ,hj , sj ,gj+1, . . . ,gn−1)(1).

(3.13)

3.3.4 Osorno Formula

In this section we investigate the special case of trivial A. Thus B = π1(K) is a finite

group. We will write B for K where appropriate, e.g., 2-Rep(B) = 2-Rep(K) etc.

The degree one 2-representations of B are in bijection with elements of the Schur

multiplier over K:

Proposition 3.3.7. (Elgueta [11, 5.3]) The group of degree one 2-representations

(2-Rep1(B),�) is isomorphic to H2(B,K×) where the multiplicative group K× is a

trivial ZG-module.

Proof. Let Θ ∈ 2-Rep1(B), this tells us Θ0(∗) = 1, and Θ1(b) : (K) → (K) for all

b ∈ B. Moreover as A = 1, Θ1(b, a) is predetermined as Θ1(b, 1)Θ1(b, 1) = Θ1(b, 1)

giving Θ1(b, 1) = 1K ∈ K. From the triangle axiom we have that Θ2(b, 1B)−1 =

Θ2
∗ = Θ2(1B, b)

−1 for all b ∈ B. So Θ is uniquely determined by its maps Θ2(b1, b2) :

(K) ◦ (K) = (K)⇒ (K), which can be thought of as a map Θ2 = µΘ : B ×B → K×.
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As Θ abides by the pentagon axiom we have that

Θ2(b1b2, b3) ◦ (Θ2(b1, b2) � IdΘ2(b3)) =
Θ2(b1, b2b3) ◦ (IdΘ2(b1) �Θ2(b2, b3))

◦α(Θ1(b1),Θ1(b2),Θ1(b3))

giving that

µΘ(b2, b3)µΘ(b1b2, b3)−1µΘ(b1, b2b3)µΘ(b1, b2)−1 = 1K.

So we get a well defined map φ : 2-Rep1(G)→ H2(G,K×) by Θ 7→ [µΘ]. The defini-

tion of tensor product of representations gives us µΘ�Φ(b1, b2) = µΘ(b1, b2)µΦ(b1, b2).

This is surjective as for any class [µ] ∈ H2(G,K×), we have from above µ gives rise

to a 2-representation.

Suppose we have Θ,Φ ∈ 2-Rep1(G) such that there exists a map C1(B,K×) 3 ν :

B → K× such that

µΦ(b1, b2)ν(b2)ν(b1b2)−1ν(b1) = µΘ(b1, b2).

Then ν defines a natural transformation between Θ,Φ : B̃ → VectK where the

components have values ν(b). The condition µΦ(b1, b2)ν(b2)ν(b1) = ν(b1b2)µΘ(b1, b2)

gives us the compatibility condition

Θ1(b1) �Θ1(b2)
νb1�νb2 +3

Θ2(b1,b2)
��

Φ1(b1) � Φ1(b2)

Φ2(b1,b2)
��

Θ1(b1b2)
νb1b2 +3 Φ1(b1b2)

so Θ and Φ are equivalent as 2-representations making φ injective, thus bijective.

Since A is trivial we drop h from the notation for the Ganter-Kapranov 2-character:

X(b,a) := X(b,a, 1). Let us compute its value on a degree one 2-representation:

Theorem 3.3.8. (Rumynin Wendland [48]) Let a,b ∈ B be commuting elements,

Θ a degree one 2-representation of B, µ ∈ Z2(B,K×) a cocycle such that [µ] = {Θ}.
Then

X(b,a)(〈Θ, B〉) = µ(b,a−1)µ(a−1,b)−1.
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Proof. We remind the reader of the definition of the 2-character.

XΘ(b,a, h)
(
n

Θ(b)

&&

in

88 n

KS
v

)
= n

Θ(a)

&&

Θ(a)

88

KS

Id

Θ(b)

��

in

AAn

Θ(b)

&&

in

88

KS
v

KS

[a,b,a−1,h]

KS

[a,1,a−1,1]−1

n

Θ(a−1)

&&

Θ(a−1)

88

KS

Id n

where Θ(b) = Θ1
?,?(b) and [a,b,a−1, h] is a composition of the natural morphism

Θ(a) �Θ(b) �Θ(a−1)→ Θ(aba−1) and the action h · : Θ(aba−1)→ Θ(b). In our

case h = 1 ∈ A is always trivial so as in the notation of Proposition 3.3.7, we have

that the map [a,b,a−1, h] = µ(a,b)µ(ab,a−1) = µ(a,ba−1)µ(b,a−1). For the final

computation note the following two interesting applications of the cocycle condition

µ(b2,b3)µ(b1b2,b3)−1µ(b1,b2b3)µ(b1,b2)−1 = 1

1 =µ(1,b)µ(a,b)−1µ(a,b)µ(a, 1)−1 = µ(1,b)µ(a, 1)−1 with b1 = a,b2 = 1,b3 = b

(3.15)

1 =µ(a−1,b)µ(1,b)−1µ(a,a−1b)µ(a,a−1)−1 with b1 = a,b2 = a−1,b3 = b.

(3.16)

So we have that

X(b,a)(〈Θ, B〉) = [a,b,a−1, 1] ◦ [a, 1,a−1, 1]

= (µ(a,ba−1)µ(b,a−1))(µ(a,a−1)−1µ(a, 1)−1)

= µ(b,a−1)(µ(1,b)−1µ(a,a−1b)µ(a,a−1)−1) as ab = ba and (3.15)

= µ(b,a−1)µ(a−1,b)−1 by (3.16).

Occasionally in the literature different choices are made in the definition of X, then

the formula for X(b,a)(〈Θ, G〉) in Theorem 3.3.8 changes to its reciprocal. Choices

leading to the reciprocal are using right representations instead of left ones or using

a−1ba in the definition of Ganter-Kapranov 2-character. We are ready to derive a

formula for an irreducible 2-representation:

Corollary 3.3.9. (Rumynin Wendland [48]) Let Θ be a degree one 2-representation

of a subgroup P ≤ B, µ ∈ Z2(P,K×) a cocycle such that {Θ} = [µ]. Let T be a right
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transversal to P in B. If ta := tat−1 then

X(b,a)(〈Θ, P 〉) =
∑

t∈T, ta, tb∈P

µ( tb, ( ta)−1)

µ(( ta)−1, tb)

=
∑

t∈T, ta, tb∈P

µ( tb, ( ta)−1)µ( ta, ( tb)( ta)−1)

µ( ta, ( ta)−1)µ(1, 1)
.

Proof. If g and h commute, then similarly to (3.15) and (3.16) we get the following

identity

µ(g,hg−1) = µ(g,g−1h) = µ(g−1,h)−1µ(g,g−1)µ(1,h) = µ(g−1,h)−1µ(g,g−1)µ(1, 1).

Using Theorem 3.3.8, Theorem 3.3.5 and the definition of the mark homomorphism

we compute the character:

X(b,a)(Θ, P ) =
1

|P |
∑

g∈G, gb, ga∈P
µ( gb, ( ga)−1)µ(( ga)−1, gb)−1

=
∑

t∈T, tb, ta∈P

µ( tb, ( ta)−1)µ(( ta)−1, tb)−1

=
∑

t∈T, ta, tb∈P

µ( tb, ( ta)−1)µ( ta, ( tb)( ta)−1)

µ( ta, ( ta)−1)µ(1, 1)
.

Corollary 3.3.9 allows us to compute the value of the Ganter-Kapranov 2-character

on any 2-representation in terms of its decorated B-set [21], i.e. a finite B-set X,

decorated with a cocycle µx ∈ Z2(Bx,K×) at every point x ∈ X. An alternative data

describing a representation is a cocycle on a permutation module [45, Proposition

1]. To describe we need a notation (K×)X for the permutation ZB-module of

all the functions f : X → K×. Such a function f is given by a collection of its

values (f(x)) = (αx)x∈X , i.e., non-zero field elements αx ∈ K×. The action is left:

b · (αx) = (αb·x). On the level functions it is given by [b · f ](x) = f(b−1 · x).

Proposition 3.3.10. ([45, Prop. 1] and [11, 5.4]) There is a one-to-one correspon-

dence between equivalence classes of 2-representations of B over K and pairs (X,

[θ]) where X is a finite B-set and [θ] ∈ H2(B, (K×)X).

Proof. Theorem 3.1.43 associates to a 2-representation Θ a unique (up to conjugacy

and an isomorphism) a collection (Pi,Φi) of pairs a subgroup Pi and a degree one

2-representation Φi of Pi so that

Θ ∼= �iΦi ↑BPi
.

114



Proposition 3.3.7 gives cohomology classes {Φi} ∈ H2(Pi,K×). The permutation

module (K×)B/Pi is naturally isomorphic to the coinduced module CoindBPi
(K×),

thus, we can use Shapiro isomorphism (see Theorem 3.3.6) to get unique cohomology

classes ψ({Φi}) ∈ H2(B, (K×)B/Pi). We have associated the set and the cohomology

class

X :=
∐
i

B/Pi, [θ] :=
⊕
i

ψ({Φi}) ∈
⊕
i

H2(B, (K×)B/Pi) ∼= H2(B, (K×)X)

to Θ. All these steps are reversible.

Given a finite B-set X, x ∈ X and a cochain θ ∈ C2(B, (K×)X), we write θx ∈
C2(B,K×) for the component cochains. We have θ(g,h)(x) = θx(g,h) on the level

of functions X → K×. We are ready to give our proof of Osorno Formula:

Theorem 3.3.11. ([45, Theorem 1]) Let Θ be a 2-representation of B that corre-

sponds to a B-set X and a cohomology class [θ] for some cochain θ ∈ Z2(B, (K×)X).

Then

XΘ(b,a) =
∑

x∈X, x=a·x=b·x

θx(b,a−1)

θx(a−1,b)
=

∑
x∈X, x=a·x=b·x

θx(b,a−1)θx(a,ba−1)

θx(a,a−1)θx(1, 1)

for any commuting a,b ∈ B.

Proof. The component θx is not a cocycle, in general. Yet for the terms in the

formula it works as a cocycle: the restriction θx |<a,b> is a cocycle on < a,b > since

x = a · x = b · x. Thus, the second and the third expressions are equal.

Since XΘ�Ψ(b,a) = XΘ(b,a) + XΨ(b,a) and the second expression is additive on

B-orbits. It suffices to prove the theorem under an assumption that Θ is irreducible.

Without loss of generality Θ = Ψ ↑BP for a degree one 2-representation of some

subgroup P and X = B/P . Let µ ∈ Z2(P,K×) a cocycle such that {Ψ} = [µ].

A right transversal T (with t0 = 1) to P in B is in natural bijection with X via

t 7→ t−1P . We use T and µ to decorate X with cocycles:

µt−1P ∈ Z2(t−1P t,K×), µt−1P (g,h) := µ( tg, th).

By Corollary 3.3.9,

XΘ(b,a) =
∑

t∈T, ta, tb∈P

µ( tb, ( ta)−1)

µ(( ta)−1, tb)
=

∑
t∈T, at−1P=bt−1P=t−1P

µt−1P (b,a−1)

µt−1P (a−1,b)
.

The cohomology classes of the cocycles µt−1P and θ are related via Shapiro iso-

morphisms with different subgroups: [µt−1P ] = φ t−1P t([θ]). Each term of the
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last sum depends only on cohomology class [µt−1P ]. Hence, we may assume that

µt−1P = φ t−1P t(θ) without loss of generality. The condition a,b ∈ t−1P t ensures

that

µt−1P (a,b) = φ t−1P t(θ)(a,b) = θ(a,b)(t−1) = θ t−1P (a,b)

facilitating the last in the proof:

XΘ(b,a) =
∑

t∈T, at−1P=bt−1P=t−1P

θt
−1P (b,a−1)

θt−1P (a−1,b)
=

∑
x∈X, a·x=b·x=x

θx(b,a−1)

θx(a−1,b)
.

3.4 Conclusion

The author anticipates two main areas of further study here. First we would like to

use Theorem 3.2.3 to translate the work of Ganter and Usher [17] from the language

of skeletal 2-groups into that of crossed modules. This work is currently being

pursued by Hristova and the author. Secondly the author would like to see a nice

method to summarise the data for a 2-representation of a crossed module. Then

one could use this data to write an explicit formula for the 2-character, as done

by Osorno [46]. The trouble lies in correctly defining the relationship between the

cohomological data of π1(K) and the action of H.

116



Bibliography

[1] J. C. Baez and A. D. Lauda. Higher-dimensional algebra. V. 2-groups. Theory

Appl. Categ., 12:423–491, 2004.

[2] J. C. Baez, A. Baratin, L. Freidel, and D. K. Wise. Infinite-dimensional repre-

sentations of 2-groups. Mem. Amer. Math. Soc., 219(1032):vi+120, 2012. ISSN

0065-9266. doi: 10.1090/S0065-9266-2012-00652-6. URL https://0-doi-org.

pugwash.lib.warwick.ac.uk/10.1090/S0065-9266-2012-00652-6.

[3] J. W. Barrett and M. Mackaay. Categorical representations of categorical groups.

Theory Appl. Categ., 16:No. 20, 529–557, 2006.

[4] B. Bartlett. The geometry of unitary 2-representations of finite groups and their

2-characters. Appl. Categ. Structures, 19(1):175–232, 2011. ISSN 0927-2852. doi:

10.1007/s10485-009-9189-0. URL https://0-doi-org.pugwash.lib.warwick.

ac.uk/10.1007/s10485-009-9189-0.

[5] S. G. Brick. Quasi-isometries and ends of groups. J. Pure Appl. Algebra, 86(1):23–

33, 1993. ISSN 0022-4049. doi: 10.1016/0022-4049(93)90150-R. URL https://

0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/0022-4049(93)90150-R.

[6] Kenneth S. Brown. Cohomology of groups, volume 87 of Graduate Texts in

Mathematics. Springer-Verlag, New York, 1994. ISBN 0-387-90688-6. Corrected

reprint of the 1982 original.

[7] R. Brown and C. B. Spencer. G-groupoids, crossed modules and the fundamental

groupoid of a topological group. Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag.

Math., 38(4):296–302, 1976.

[8] R. Diestel. Graph Theory (3rd edition). Springer-Verlag, 2005.

Electronic edition available at:

http://www.math.uni-hamburg.de/home/diestel/books/graph.theory.

[9] R. Diestel and I. Leader. A conjecture concerning a limit of non-Cayley graphs.

J. Algebraic Combin., 14(1):17–25, 2001. ISSN 0925-9899. doi: 10.1023/A:

117

https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1090/S0065-9266-2012-00652-6
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1090/S0065-9266-2012-00652-6
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1007/s10485-009-9189-0
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1007/s10485-009-9189-0
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/0022-4049(93)90150-R
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/0022-4049(93)90150-R


1011257718029. URL https://0-doi-org.pugwash.lib.warwick.ac.uk/10.

1023/A:1011257718029.

[10] S. Eilenberg and S. MacLane. Cohomology theory in abstract groups. II. Group

extensions with a non-Abelian kernel. Ann. of Math. (2), 48:326–341, 1947.

ISSN 0003-486X. doi: 10.2307/1969174. URL https://0-doi-org.pugwash.

lib.warwick.ac.uk/10.2307/1969174.

[11] J. Elgueta. Representation theory of 2-groups on Kapranov and Voevodsky’s

2-vector spaces. Adv. Math., 213(1):53–92, 2007. ISSN 0001-8708. doi: 10.1016/

j.aim.2006.11.010. URL https://0-doi-org.pugwash.lib.warwick.ac.uk/

10.1016/j.aim.2006.11.010.

[12] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor categories, volume

205 of Mathematical Surveys and Monographs. American Mathematical Society,

Providence, RI, 2015. ISBN 978-1-4704-2024-6. doi: 10.1090/surv/205. URL

https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1090/surv/205.

[13] M. Forrester-Barker. Group objects and internal categories, 2002.

[14] E. Frenkel and X. Zhu. Gerbal representations of double loop groups.

Int. Math. Res. Not. IMRN, (17):3929–4013, 2012. ISSN 1073-7928. doi:

10.1093/imrn/rnr159. URL https://0-doi-org.pugwash.lib.warwick.ac.

uk/10.1093/imrn/rnr159.

[15] R. Frucht, J. E. Graver, and M. E. Watkins. The groups of the generalized

Petersen graphs. Proc. Cambridge Philos. Soc., 70:211–218, 1971.

[16] N. Ganter and M. Kapranov. Representation and character theory in 2-categories.

Adv. Math., 217(5):2268–2300, 2008. ISSN 0001-8708. doi: 10.1016/j.aim.2007.

10.004. URL https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/j.

aim.2007.10.004.

[17] N. Ganter and R. Usher. Representation and character theory of finite categorical

groups. Theory Appl. Categ., 31:Paper No. 21, 542–570, 2016. ISSN 1201-561X.

[18] A. Gardiner and C. E. Praeger. A geometrical approach to imprimitive graphs.

Proc. London Math. Soc. (3), 71(3):524–546, 1995. ISSN 0024-6115. doi:

10.1112/plms/s3-71.3.524. URL https://0-doi-org.pugwash.lib.warwick.

ac.uk/10.1112/plms/s3-71.3.524.

[19] C. Godsil and G. Royle. Algebraic Graph Theory, volume 207 of Graduate Texts

in Mathematics. volume 207 of Graduate Texts in Mathematics. Springer, 2001.

118

https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1023/A:1011257718029
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1023/A:1011257718029
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.2307/1969174
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.2307/1969174
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/j.aim.2006.11.010
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/j.aim.2006.11.010
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1090/surv/205
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1093/imrn/rnr159
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1093/imrn/rnr159
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/j.aim.2007.10.004
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/j.aim.2007.10.004
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1112/plms/s3-71.3.524
https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1112/plms/s3-71.3.524


[20] G. R. Grimmett and Z. Li. Cubic graphs and the golden mean. Dis-

crete Math., 343(1):111638, 2020. ISSN 0012-365X. doi: 10.1016/j.disc.2019.

111638. URL https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/j.

disc.2019.111638.

[21] P. E. Gunnells, A. Rose, and D. Rumynin. Generalised Burnside rings, G-

categories and module categories. J. Algebra, 358:33–50, 2012. ISSN 0021-8693.

doi: 10.1016/j.jalgebra.2012.02.016. URL https://0-doi-org.pugwash.lib.

warwick.ac.uk/10.1016/j.jalgebra.2012.02.016.

[22] P. Hall. On representatives of subsets. J. London Math. Soc., 10:26–30, 1935.

ISSN 0008-414X.

[23] A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

ISBN 0-521-79160-X; 0-521-79540-0.

[24] D. F. Holt. An interpretation of the cohomology groups Hn(G, M). J. Al-

gebra, 60(2):307–320, 1979. ISSN 0021-8693. doi: 10.1016/0021-8693(79)

90084-X. URL https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/

0021-8693(79)90084-X.

[25] A. Joyal and R. Street. Braided tensor categories. Adv. Math., 102(1):20–78,

1993. ISSN 0001-8708. doi: 10.1006/aima.1993.1055. URL https://0-doi-org.

pugwash.lib.warwick.ac.uk/10.1006/aima.1993.1055.

[26] M. M. Kapranov and V. A. Voevodsky. 2-categories and Zamolodchikov tetra-

hedra equations. In Algebraic groups and their generalizations: quantum and

infinite-dimensional methods (University Park, PA, 1991), volume 56 of Proc.

Sympos. Pure Math., pages 177–259. Amer. Math. Soc., Providence, RI, 1994.
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