
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/160912     
                                                                                                      
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/160912
mailto:wrap@warwick.ac.uk


Numerical simulation of a confined cavitating gas bubble
driven by ultrasound

Jacqueline Mifsud,1 Duncan A. Lockerby,1 Yongmann M. Chung,1 and Gordon Jones2
1)School of Engineering, University of Warwick, Coventry CV4 7AL,
United Kingdom
2)Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, United Kingdom

(*gordon_jones@waters.com)

(*y.m.chung@warwick.ac.uk)

(*duncan.lockerby@warwick.ac.uk)

(*Author to whom correspondence should be addressed: j.mifsud@warwick.ac.uk)

(Dated: 20 November 2021)

This work investigates the flow disturbance generated by an ultrasonically-driven gas bub-
ble confined in a narrow gap over one acoustic cycle. Here, we provide a more accurate
representation of ultrasonic cleaning by implementing a Volume-of-Fluid model in Open-
FOAM that simulates the ultrasound as a sinusoidally time-varying pressure boundary con-
dition. A modified Rayleigh-Plesset equation is solved to select an acoustic forcing that
instigates bubble collapse. Simulations reveal the interaction between the inflow from the
acoustic forcing and the flow deflected by the confining walls intensifies the strength of the
self-piercing micro-jet(s), and consequently of the unsteady boundary layer flow, compared
to the traditional collapse near a single rigid wall. Depending on the gap height and the po-
sition of bubble inception inside the gap, three distinct collapse regimes involving dual-jets
or directed-jets are identified, each resulting in a different shear-stress footprint on the con-
fining boundaries. Plots of the spatio-temporal evolution of the shear flow (that is difficult
to measure experimentally) reveal peak shear-stress magnitudes at collapse that are double
those reported for an undriven laser-induced bubble in similar geometric confinement. This
twofold increase is attributed to the ultrasonic signal driving the collapse. Surprisingly, in
our simulations we have not encountered a transferred-jet regime previously observed for
an unforced bubble collapsing in a similar configuration. This unexpected finding high-
lights the different physics involved in modelling acoustically-driven bubbles compared to
the conventional laser-induced bubbles used in experiments.

I. INTRODUCTION

Cavitation is an established topic in fluid dynamics, having been studied for more than a century.
The collapse stage is rich in phenomena including a high-speed jet flow, shock wave emission and a
strong localised shear flow as the jet spreads along the boundary, amongst others.1 Repeated bubble
collapse near the same location can have serious destructive effects on material surfaces, causing
erosion and subsequent loss of performance in turbomachinery or marine propulsion systems;2 but
it can also be exploited for beneficial purposes.3–5 In fact, although cavitation was first investigated
due to its disruptive effects,2 it is nowadays at the core of several practical applications including:
i) microfluidic (lab-on-chip) devices;6 ii) medical treatments;3,7 and iii) ultrasonic cleaning of sur-
faces.8,9 Its widespread utilization in various industries owes to its ability to concentrate massive
amounts of energy into small volumes.10 In acoustic cavitation in particular, as the bubble oscillates
it absorbs energy from the ultrasound that is transferred into the momentum of a high-speed liquid
jet during its collapse. The collapse of an acoustically-driven bubble therefore tends to be more
violent than in the absence of the ultrasound.11

Of particular interest in this study is the ultrasonic cleaning application, a process used to remove
surface contamination, manufacturing residue (e.g. particulate debris), and biofilms in various con-
texts. In a clinical setting, shape-oscillating or ‘dancing’ bubbles emanating from dental ultrasonic
scalers are used to remove bacterial biofilms on the surface of dental implants or teeth.12,13 Tech-
niques for delicate cleaning are highly desirable since damage to the surface induces roughness that
may exacerbate plaque build-up and prevent the complete removal of bacterial biofilms. Several
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studies have demonstrated that acoustic cavitation can clean intricate patterns and reach into deeper
geometries (e.g., crevices or surface roughness) that would otherwise remain uncleaned if using
other contemporary methods.13–17 Albeit being widely utilized, the ultrasonic cleaning process is
still not entirely understood. The relation between bubble-induced flow and the cleaning action
has been evidenced in multiple studies,18–21 and it is now accepted that the cleaning action is a
combination of the array of phenomena associated with cavitation bubble collapse and not the ultra-
sound itself. As a matter of fact, unforced laser-induced cavitation bubbles also have the potential
to clean surfaces.18 The flow features span across time and length scales making their experimen-
tal visualization using high-speed cameras challenging and at the limit of current state-of-the-art
capabilities.22 Besides, experimental measurements of physical quantities at such small scales is
inherently difficult. For instance, the strong shear flow along the boundary is one of the main mech-
anisms responsible for cleaning, but only a couple of experimental techniques have been successful
in measuring its strength.21,23 On the other hand, using Computational Fluid Dynamics (CFD) sim-
ulation it is possible to obtain a more comprehensive understanding of the mechanisms responsible
for cleaning since the full details of the flow-field evolution are computed and there are also no
limits on the location and number of measurements that can be made.

In many ultrasonic cleaning processes, for instance in the cleaning of silicon wafers and computer
components,1,17 the acoustically-driven cavitation activity takes place in highly confined spaces.
Boundaries are sources of bubble deformation and typically induce self-piercing jets whose strength
and direction is highly influenced by the rigidity (elasticity) of the boundary and its proximity.24,25

Recent studies for an unforced bubble collapsing in a narrow gap of variable height have found an
intensification of the jet velocity,26 suggesting that this may enhance the shear stresses on bound-
aries and therefore the cleaning action compared to the case of a single rigid wall.27 The oscillation
of a bubble in between two parallel plates has a long-standing interest in the research community.28

Theoretical descriptions of this problem date back to 1980 by Shima and Sato who had already
identified that the collapse time between two opposing walls is longer than for a bubble collapsing
near a single rigid wall and the importance of viscosity on the dynamics of the confined bubble. Ex-
perimental studies confirm these theoretical predictions and demonstrate the rich array of dynamics
(necking, splitting and jetting) associated with this configuration.30–36 Although a number of com-
putational studies have considered the behaviour of cavitation bubbles in confinement,26,37–42 only a
handful of these consider the viscosity and investigate the bubble-induced shear stress on confining
surfaces.27,43 Furthermore, none of these studies has considered the acoustically-driven collapse of
a bubble, where the shear rates observed are dependent on the strength of the driven acoustic field.

Acoustically-driven bubbles in tubular geometries have been investigated due to their relevance in
the biomedical field,44–46 where forcing frequencies are typically much higher (∼ MHz) compared
to ultrasonic cleaning (∼ kHz). Kilohertz frequencies have only been considered in computational
studies for collapse near a single rigid boundary.47–50 This is a mature problem especially for un-
forced laser-induced bubbles, i.e. starting from a small volume at high pressure (∼ 1000bar) to
capture the explosive growth51 typically observed in experiments involving optic cavitation. In
comparison, experimental and numerical investigations of an isolated acoustic cavitation bubble are
still scarce. Boyd and Becker49 have considered the acoustically-driven growth and collapse of a
gas microbubble in the vicinity of a single rigid wall. The acoustic forcing was modelled through
a moving boundary representative of the transducer face. In some cases, including an earlier study
by Boyd and Becker48, the growth stage of the bubble is ignored entirely and only the collapse
stage is modelled.52 This requires assuming a perfectly spherical bubble at maximum expansion; an
approximation that becomes increasingly inaccurate for decreasing bubble-wall separations and one
that is inconsistent with experimental observations.24,53 While the acoustic signal has been consid-
ered by Boyd and Becker49, surface tension and viscosity effects have been ignored. Consequently,
the unsteady boundary layer flow induced by the acoustic bubble oscillation cannot be captured;
making it impossible to investigate mechanisms such as shear forces that are relevant to ultrasonic
cleaning. Furthermore, the importance of viscous effects on jet formation and evolution has already
been demonstrated for laser-induced bubbles,54,55 suggesting that consideration of viscosity is also
important for acoustically-driven bubbles and can no longer be overlooked. Denner, Evrard, and
van Wachem50 have improved upon this by developing an in-house volume-of-fluid (VOF) code
that accounts for liquid compressibility as well as viscous effects, but still neglects surface tension.
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While the surface tension can often be safely neglected for micron-size bubbles and much larger
bubbles (e.g. underwater explosion bubbles56,57), its pressure contribution becomes increasingly
important for decreasing bubble sizes Rn (typically sub-micron bubble sizes) according to the (in-
verse) scaling factor 2σ/Rn in the Young Laplace equation. Meanwhile, the inclusion of viscosity
in Ref. 50 enabled the prediction of wall shear stresses, with peak magnitudes in excess of 100kPa
at bubble collapse.

In contrast, the VOF algorithm proposed in this study considers both surface tension and viscosity
effects as well as the nonlinear compressibility of the liquid, thus providing a comprehensive model
for acoustic cavitation dynamics. Our scope is to offer an efficient, stable algorithm for acoustic
cavitation simulation that is relatively easy to implement in OpenFOAM. The confined geometry
considered combined with the acoustic forcing offers a more realistic representation of practical
applications such as ultrasonic cleaning where the acoustic bubble activity is known to take place in
highly confined spaces. Additionally, the inclusion of viscosity in the proposed VOF algorithm has
enabled the quantification of the acoustic bubble-induced shear forces on the confining boundaries
to provide an estimate of the cleaning potential. The method also supports various specialized
discretization schemes that offer mesh non-orthogonality and skewness corrections, allowing for
more flexibility in the mesh configurations that can be used besides strictly rectilinear grids.

The manuscript is organized as follows: Sec. II introduces the theoretical bubble model and the
corresponding CFD methodology. In Sec. III, a verification and validation study are presented to
assess the suitability of the numerical model for acoustic cavitation simulation. The main results
of a parametric study on confined acoustic cavitation are presented in Sec. IV. The discussion in
Sec. V focusses on the induced wall shear stress due to its relevance in cleaning applications. The
conclusions and key findings of this study are summarised in Sec. VI.

II. CFD METHODOLOGY

The pressure-based interfacial flow solver compressibleInterFoam available within the open-
source framework of OpenFOAM is adopted for the simulation. It involves a compressive algebraic
VOF method; a one-fluid formulation that is computationally efficient since no geometric recon-
struction of the interface is required and fluxes are simply computed algebraically.58 In VOF, the
interface is implicitly captured on a fixed grid, appearing and disappearing naturally.59 As a result,
drastic topology changes are not an issue, with the merging and break-up of interfacial sctructures
usually dictated only by the grid resolution60 without the need for artificial manipulation of the
interface often required by boundary-fitted methods.61 This makes the algebraic-VOF technique
relatively straightforward to generalize to 3D and parallelize for use on computer clusters. Usage
of this VOF solver for bubble dynamics problems has become increasingly prevalent within the re-
search community in recent years.27,38,55,56,62–68 However, only a handful of these previous works
considered the acoustic forcing.69,70

A. Governing Equations

Equations of motion are formulated for a single-fluid having a common velocity field U(x, t),
pressure field p(x, t) and density field ρ (x, t) defined on a fixed (Eulerian) grid. In the following
equations ∇· denotes the divergence and ∇ the gradient operator. Subscripts g and l distinguish
between properties pertaining to the gas and liquid phases, respectively. The solution of the Navier-
Stokes equations is required:

∂ρ

∂ t
+∇ · (ρU) = 0 , (1)

∂ (ρU)

∂ t
+∇ · (ρUU) =−∇p+∇ ·T+ fσ , (2)
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where fσ is the surface tension force modelled according to the Continuum Surface Force (CSF)
method of Brackbill71 and T is the viscous stress tensor defined as:

T= µ

(
∇U+(∇U)T− 2

3
(∇ ·U)I

)
,

in which I is the unit tensor. In VOF, an additional transport equation introduced for the volume
fraction α:

∂αl

∂ t
+∇ · (αlU)+∇ · (Urαlαg) = αlαg

(
ψg

ρg
− ψl

ρl

)(
Dp
Dt

)
+αl∇ ·U , (3)

The fluid type is identified based on the value of the volume fraction, α , in each computational
cell:

αl =


0 , gas ,
1 , liquid ,
0 < αl < 1 , interface .

In Eq. (3), ψ is the nonlinear compressibility defined as ψi = (dρ/d p)i and can be derived from the
relevant equation of state (EoS) (see Sec. II B). Inclusion of compressibility is required to capture
weak shock waves in the liquid that can originate during the violent collapse of the cavitation bubble.
The third term on the left-hand side (LHS) of Eq. (3) is an artificial compression term that helps
counteract diffusion of the interface to preserve its sharpness.72 It only acts in the interface region
where αlαg > 0 and involves a relative velocity Ur acting normal to the interface between the two
fluids.73 The relative velocity can be interpolated to the face centers f of a computational cell with
nodal velocity Ur to obtain Ur, f as:

Ur, f = cα

|φ f |
|S f |

n̂ , (4)

where φ f , S f , cα and n̂ represent the velocity flux, the cell surface area vector, an adjustable com-
pression factor and a unit vector acting normal to the interface respectively.73–76 Here the value
of cα is set to unity for moderate compression.75 The third term on the LHS of Eq. (3) is dis-
cretized using a specialised interfaceCompression scheme. Eq. 3 is solved semi-implicitly with
the MULES77 algorithm for several sub-cycles within one time-step.78,79 Combined with compres-
sive interface-capturing, MULES guarantees the boundedness of α ∈ [0,1] and maintains interface
sharpness.80,81 The first term on the right-hand side (RHS) of Eq. (3) represents the compressibility
at the bubble-liquid interface62,64 where the pre-factor αlαg 6= 0. This term is derived from the con-
tinuity equation: (αlψl/ρl +αgψg/ρg)Dp/Dt +∇ ·U = 0 as shown in Ref. 76 and can be a source
of numerical instability. Particularly, in situations where Dp/Dt assumes large values (> 1014 Pa/s
in Koch et al.62), the liquid volume fraction αl may decrease, resulting in the non-physical forma-
tion of artificial gas-filled regions in the liquid surrounding the bubble. In the simulations presented
in this work, these issues were not encountered, but the interested reader may refer to Ref. 62 for a
visual example of this instability and a tried-and-tested circumvention.

Temporal derivatives are discretized using an implicit Euler scheme which is first-order accu-
rate but diffusive. Use of higher-order temporal schemes (e.g. backward Euler) with the current
compressibleInterFoam solver is not recommended for this kind of problem, since strong dis-
continuities (e.g. shock waves) exist which may cause numerical errors and unwanted oscillations
that compromise solution stability. The convective terms in the momentum equation (Eq. (2)) and
in the transport equation for α (Eq. (3)) are discretized using a second-order upwind scheme and a
second-order van Leer scheme, respectively. Other terms are discretized using a second-order Gauss
linear scheme (central differencing) with provisions for mesh non-orthogonality and skewness as
required. Appendix A provides a summary of the typical discretization schemes that were used to
obtain the results in the remainder of this work. The pressure-velocity coupling is handled by the
Pressure Implicit Splitting of Operators (PISO) algorithm.62,75 An adaptive time-stepping algorithm
controls the time-step size according to a maximum Courant number of 0.1. All simulation results
in this study have been obtained using OpenFOAM v5.
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B. Barotropic closure

The presented system of governing equations (Eqs. (1), (2), and (3)) is closed by the equations of
state (EoS) for the respective phases. The barotropic EoS are chosen such that the density of each
phase is only a function of the (absolute) pressure, ρi(p), in lieu of solving an energy equation.57

The pressure p and density ρl of the liquid are related through the Tait equation of state:82

ρl = ρ0,l

(
p+B
p0 +B

) 1
γl
, (5)

where ρ0,l and p0 are the density and pressure of the liquid at atmospheric conditions, respectively.
The Tait exponent γl = 7 and the Tait pressure B = 331MPa.83 Similarly, the pressure p and density
ρg of the gas are related through the polytropic equation of state:

ρg = ρ0,g

(
p
p0

) 1
γg
, (6)

where ρ0,g and p0 are the density and pressure of the gas (air) inside the bubble at atmospheric
conditions, and the exponent γg = 1.4 is the specific heat ratio for air. The thermophysical properties
are those for water as a liquid and air as gas at atmospheric conditions as summarised in Table I,
together with the corresponding values. The physical properties of the equivalent fluid can then be
averaged as follows:

ρ = αlρl +(1−αl)ρg , (7)

µ = αl µl +(1−αl)µg . (8)

All simulations in this work are conducted in axisymmetry to alleviate some of the computational
cost of the problem. Note that, an axisymmetric simulation in OpenFOAM requires the construction
of a 3D computational wedge domain, similar to that constructed in Ref. 62, for instance.

TABLE I. Summary of fluid properties used in the simulations.

Parameter Symbol Value
Surface tension [N/m] σ 0.072
Bubble (air)
Polytropic exponent γg 1.4
Dynamic viscosity [Pa·s] µg 1.84×10−5

Reference density [kg/m3] ρ0,g 1
Reference pressure [Pa] p0,g 1×105

Liquid (water)
Tait exponent γl 7
Dynamic viscosity [Pa·s] µl 1×10−3

Reference density [kg/m3] ρ0,l 1000
Reference pressure [Pa] p0,l 1×105

Tait pressure [Pa] B 331×106

C. Standard Rayleigh-Plesset Model

Model equations for a cavitation bubble can be formulated in terms of various parameters of
the surrounding liquid and the bubble contents.84 Evaporation and condensation are considered fast
processes with respect to the timescale of bubble oscillation and therefore we can assume the bubble
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contains only gas without any vapour. The mass of the microbubbles considered is too small for
buoyancy to have an observable effect at these timescales. The most commonly used nonlinear
equation of motion describing the oscillation of a spherical bubble in an infinite volume of liquid
is the Rayleigh-Plesset Equation (RPE),85 expressing the bubble radius as the dynamic parameter,
R= R(t), that varies based on the conditions of the gas and liquid. In its standard (unconfined) form,
the RPE for an equilibrium radius Rn is:

RR̈+
3
2

Ṙ2 =
1
ρl

[
pg,n

(
Rn

R

)3γg

− 2σ

R
− 4µl

R
Ṙ− p∞

]
, (9)

where Ṙ = dR/dt and R̈ = d2R/dt2. In Eq. (9) the pressure balance at equilibrium, pg,n, is defined
by the Young-Laplace law:84,86

pg,n =
2σ

Rn
+ p0, (10)

where pg,n and p0 are the equilibrium gas pressure inside the bubble and the static pressure, re-
spectively. The pressure at the far-field, p∞ = p0± p(t), consists of static, p0, and time-varying,
p(t), pressure contributions; where p(t) = ± pac sin(2π fact) varies sinusoidally with frequency
fac (Hz) and acoustic pressure amplitude pac (Pa). A numerical approximation to Eq. (9) is obtained
using an ordinary differential equation (ODE) solver in MATLAB.87 From hereon, Eq. (9) for an
unconfined bubble will be referred to as the standard RPE.

III. MODEL VERIFICATION AND VALIDATION

A. Spherical bubble oscillation: Forced Rayleigh Collapse

To assess the ability of the proposed VOF model in capturing the bubble’s expansion and collapse
in response to a time-varying pressure boundary condition (BC) imposed at the far-field, we model
the spherical collapse in an unbounded liquid, known as the Rayleigh collapse. The computed bub-
ble radius history is compared with the experimental data of Rodríguez-Rodríguez, Casado-Chacón,
and Fuster88. This case has also been numerically simulated using a Coupled Level-Set Volume-
Of-Fluid (CLSVOF) method by Chakraborty83. Therefore, this is an excellent verification exercise
because it allows for a comparison of the present model with experimental results,88 numerical so-
lution to the analytical RPE in Eq. (9), as well as the computational results from another numerical
method.83

1. Boundary and initial conditions

The bubble having equilibrium size of Rn = 180 µm is initialised in a quiescent liquid. The
corresponding bubble pressure pB = pg,n is determined from Eq. (10). The fluid parameters in this
section vary from those in Table I to match those in the experiments.88 Specifically, the gas inside
the bubble is carbon-dioxide (CO2) with the corresponding CO2-water surface tension coefficient
σ = 0.0434N/m and the polytropic constant for CO2 γg = 1.304.

At the far-field, a time-varying pressure BC in which p∞ = p0− pac sin(2π fact) is set to begin
with a drop in pressure which causes the bubble to expand first. The bubble dynamics in the original
experiments88 were found to be accurately predicted by the RPE using pac = p0 and Tac = 0.24ms
( fac ≈ 4167Hz), where Tac is the time period of the pressure signal. It was previously shown in
Sec. II B that the EoS for each phase is defined as ρi = pψi. This definition requires the abso-
lute pressure p to always be positive so as to return a positive density ρ to the solver.69,70 The
pressure-based nature of compressibleInterFoam thus prevents it from being usable for values
of pac > p0, since this will result in negative or zero values of pressure p and consequently, neg-
ative or zero values of density ρ , leading to solution divergence. For this reason, a smaller but
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comparable forcing amplitude of pac = 0.95 p0 has been applied here, while the frequency fac is
unchanged. Zero-gradient BCs are applied for α and U at the far-field. At the axis of rotational
symmetry, the symmetry-plane BC is enforced for each solution field variable. Forced bubble os-
cillation described by a similar set of boundary and initial conditions will from hereon be referred
to as the Acoustically-Driven Growth and Collapse (ADGC) cases.

2. Meshing strategy

FIG. 1. Schematic diagram (not to scale) describing the O-grid mesh construction. Colour-coding is used
to distinguish blocks belonging to different regions sharing similar mesh alignment, grading factors and cell
aspect ratio.

An O-grid topology (see Fig. 1) is used since it maintains the known spherical symmetry of
the problem to a higher degree than a standard Cartesian mesh.56,57,62 The size of the computa-
tional domain is D ≈ 16Rmax, with the maximum radius Rmax predicted from the RPE solution for
pac = 0.95p0. On the basis that the bubble is centered at the origin O in Fig. 1, the O-grid mesh
construction is assembled around a central core region meshed with uniform Cartesian grids (yel-
low block in Fig. 1). The cell alignment changes from Cartesian to radial in the ‘transition’ region
(red blocks in Fig. 1) and extends radially outwards to the far-field in the surrounding blocks. The
bubble pulsation is restricted within the blue blocks of Fig. 1, where the mesh cells have an aspect
ratio (AR) of unity for a high quality mesh along the interface. The size of the bubble pulsation
region is informed from the RPE solution to cover the oscillation cycle of the interface between
Rmin < R < Rmax. Thus, when the bubble reaches its minimum size Rmin, the interface does not
cross the transition region in the mesh. By restricting the bubble pulsation to be contained within
the radially aligned region of the mesh, the stability of the interface is maintained. Outside the
bubble pulsation region, in the gray shaded blocks of Fig. 1, the mesh is also radial but the grading
factor is increased gradually in the direction of the far-field boundary (AR 6= 1). The indepen-
dent variable nϕ in Fig. 1 defines the number of cells per 45

◦
sector. Grid convergence studies for

nϕ = 45,90,135 were conducted, with nϕ = 90 providing the optimum balance between numerical
accuracy and computational cost with a deviation of < 0.68% from the actual collapse time pre-
dicted by the RPE solution. The finest resolution (nϕ = 135) only improves this to ≈ 0.64% with
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the largest deviation of ≈ 0.8% observed on the coarse grid (nϕ = 45).

3. Radius history and bubble shape

(a) (b)

FIG. 2. (a) Comparison of the equivalent radius history of the present VOF simulation result with numerical
data83 and experimental data88. The equivalent RPE solutions using the different pac are included for reference.
(b) The far-field pressure p∞.

Fig. 2(a) compares the results obtained using the present VOF model with the experimental data88

and the CLSVOF simulation83. Note that the numerical and analytical results have been shifted by
68 µs to match the time at which the expansion wave reaches the bubble in the experiments. Initially,
the bubble is in static equilibrium with the surrounding liquid. As the pressure at the far-field drops
below atmospheric (see Fig. 2(b)), the bubble begins to grow until it reaches its maximum volume
expansion, indicated by point ‘A’ in Fig. 2(a). The pressure at the far-field increases continually
and as it progresses into the compressional half-cycle, the bubble collapses rapidly (point ‘B’ in
Fig. 2(a)) and rebounds to a fraction of the size it attained during the first cycle. In Fig. 2(a), while
the time at which the bubble collapses to minimum volume and minimum bubble radius computed
by the present model (tmin,VOF = 209.1 µs and Rmin,VOF = 45.2 µm) compare reasonably well with
the RPE prediction (tmin,RPE = 210.2 µs and Rmin,RPE = 41.6 µm), there is a substantial offset from
the experimental measurements (tmin,EXP = 226.8 µs and Rmin,EXP = 151.6 µm). Particularly, in the
experiments, the size of the bubble at collapse is much larger and the collapse time is much delayed
compared to those computed in the VOF simulations. A similar offset exists between the collapse
time predicted by the CLSVOF method of Chakraborty83 (tmin,LS = 211.4 µs and Rmin,LS = 41.9 µm)
and the experiments. This discrepancy in minimum size and collapse time can be attributed to the
fact that in the VOF simulation the bubble remains intact, while in the experiments the bubble breaks
into a cloud of bubbles upon collapse. Beyond this point (indicated by ‘B’ in Fig. 2(a)), the RPE
is no longer suitable to describe the bubble dynamics as the assumption of a single isolated bubble
no longer holds88 and the value Rmin,EXP therefore represents the equivalent-sphere radius for the
cloud. Any deductions on bubble shape from these experiments would therefore be unreasonable.

Interestingly, a difference is observed between the bubble shape computed by the CLSVOF
method83 and the VOF method of the present study. In the CLSVOF simulations of Chakraborty83,
the bubble translates downwards during collapse and assumes a toroidal shape revealing the onset of
jet formation. However, jetting has not been observed in the results obtained using the present VOF
model. Jet formation is expected in situations where a source of asymmetry exists in the flow-field;
for instance a nearby rigid wall that destroys the radial symmetry of the flow-field surrounding the
bubble, giving rise to a pressure gradient across the bubble which drives the jet. Since in the present
model, mathematically there is no such asymmetry to disrupt the surrounding pressure field, the
bubble remains perfectly spherical throughout the entire acoustic cycle, as shown in Fig. 3. Note
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that R0 and Rreb denote the initial and rebound radius attained by the bubble in the after-bounce,
respectively.

FIG. 3. Key simulation snapshots showing the bubble shape at R = R0,Rmax,Rmin,Rreb (from left to right).

B. Nonspherical bubble oscillation: Unforced collapse in a narrow gap

1. Simulation setup

Next we present a qualitative comparison of the computed bubble shape with the experimental
high-speed images of Gonzalez-Avila et al.27 for a laser-induced bubble confined between two
opposing walls. At the walls, the BCs are no-slip for the velocity, zero-gradient for the volume
fraction α and fixedFluxPressure for the pressure p. The latter adjusts the pressure gradient
such that the flux on the boundary is that specified by the velocity BC. Note that for this validation
case only, the far-field pressure BC is set to constant atmospheric pressure (p∞ = p0, p(t) = 0)
in line with the experiments, with zero-gradient conditions for the volume fraction and velocity.
In contrast with Sec. III A 1 where the initial conditions were defined by Eq. (10), here the initial
conditions are a high-pressure of pB = 1300bar in a 50 µm bubble in a stagnant liquid, initialised
250µm below the upper wall. Unforced bubble dynamics described using a similar combination of
boundary and initial conditions will from hereon be referred to as Rayleigh Growth and Collapse
(RGC) dynamics. In this section, the aim is specifically to reproduce Fig. 3 in Gonzalez-Avila
et al.27.

Recursive refinement is used to mesh the axisymmetric computational domain, having dimen-
sions of 5mm in the radial direction and 750 µm in the vertical direction. The technique involves
first meshing the domain using a coarse grid consisting of 100 cells and 15 cells in the radial and ver-
tical directions respectively; followed by the application of five levels of refinement. The coarse grid
consisting of only 1500 cells increases to∼ 0.36 million cells on the refined grid (where the original
coarse uniform grid size of 50 µm is reduced to ∼ 1.5625 µm in the bubble region), comparable to
that quoted in Ref. 27.

2. Comparison with high-speed images

The results are presented in Fig. 4 as alternate rows, where the first row shows the time-sequence
of grayscale high-speed images obtained from the experiments of Gonzalez-Avila et al.27 and the
next row shows the computed bubble shape extracted as the thresholds of αg ≥ 0.5, using the VOF
methodology of Sec. II. In each simulation snapshot, the confining walls are located at the top
and bottom extents of each frame and the numbers in the top left corner represent the time in
microseconds (µs). Note that the time interval between the frames in the time sequence is not
constant, especially during the jetting phase (third set of images in Fig. 4). Each computational
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frame shows a section-plane through the rotational geometry reflected about the axis of symmetry
to obtain a 2D representation.

FIG. 4. Alternate rows show the grayscale frames of high-speed images from the experiments of Gonzalez-
Avila et al.27 and the newly-computed bubble shape in dark blue thresholds of αg≥ 0.5 for the transferred-jet.68

In the first frame the scale bar length is 500 µm. Reproduced with permission from J. Fluid Mech 884, A23
(2019). Copyright 2019 Cambridge University Press.

Detailed descriptions of the flow-field evolution for this case can already be found in Ref. 27 and
are beyond the scope of this validation study. Instead, only a brief overview is provided here. The
time sequence in Fig. 4 starts at t = 6 µs, with the bubble is initialised closer to the upper wall. The
high internal gas pressure drives the growth, with the upper wall restricting expansion of the bubble
in that direction. In the final stages of the expansion stage, the interface in the vicinity of the nearest
wall becomes flatter as it moves closer to the wall but never touches it. Due to the confining walls,
the growth takes place mostly along the radial direction reaching maximum volume expansion in
the last frame of the first row at t ≈ 100 µs. In the second set of images (120 < t (µs) < 188),
the collapse stage is shown where the high curvature regions near the centre of the bubble begin
to shrink rapidly, forming an ‘hourglass’ shape (see t = 160 µs). Beyond this point, the bubble
begins to shrink rapidly from the top, forming a jet that impacts onto the opposite lower wall at
t ≈ 198 µs and spreads along the boundary in the subsequent frames. This type of jetting behaviour
was referred to as the ‘transferred jet’ in a later publication by the same research group,68 since the
jet impacts onto the wall opposite to that where the bubble was initialised. A detailed discussion on
the mechanisms of jet formation in confinement will be presented in Sec. IV E.

The agreement in the time-sequence of Fig. 4 is excellent, with the bubble reaching its maximum
size at t ≈ 100 µs and the jet impacting the lower boundary at t ≈ 198 µs as also found by Gonzalez-
Avila et al.27. The maximum extension of the bubble in the radial direction Rx at t = 100 µs in the
simulations is≈ 745 µm which is comparable to the 748 µm quoted in Ref. 27. Given that Gonzalez-
Avila et al.27 have also compared their experimental results with OpenFOAM calculations, such
good agreement is expected albeit not guaranteed.

The model verification and validation studies presented in this section help emphasise the dif-
ferent physics modelled in the simulations. In the ADGC case of Sec. III A, the simulations start
with a bubble at its equilibrium size, with an internal pressure comparable to the static pressure
(pB/p0 ∼ 1) in the liquid such that the bubble has zero acceleration initially. Instead, the dynamics
of growth and collapse is controlled by the fluctuations in the far-field pressure, and the violent
collapse is a consequence of the increasing far-field acoustic pressure at the boundary. In contrast,
in the RGC case of Sec. III B, the maximum acceleration of the interface occurs at t = 0 due to
the pressure of the gas inside the bubble being (often orders of magnitude) higher than the static
pressure in the liquid (pB/p0 ∼ 1000). This is generally the approach used when simulating laser-
induced (or similar energy-deposit89) bubbles in experiments, where the pressure at the far-field is
the static atmospheric pressure (p∞ = p0). While the verification study in Sec. III A demonstrates
the numerical accuracy of the solution algorithm, the validation study in the present subsection pro-
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vides confidence in the model’s ability to capture real-world physics, particularly the dynamics of
highly-confined gas bubbles.

IV. RESULTS: CONFINED ACOUSTICALLY-DRIVEN CAVITATION

A. Simulation setup

The computational setup in Fig. 5(a) shows the bubble initialised between two opposite rigid
walls. The BCs are the same as those in Sec. III B except for an oscillatory pressure field p∞ =
p0− pac sin(2π fact) imposed at the gap outlet. Since the acoustically-driven growth and collapse
(ADGC) of a bubble are being modelled, the initial gas pressure for a bubble of size R0 = Rn is
that specified by Eq. (10) such that the bubble is initially in equilibrium with the surrounding liquid
prior to excitation by the externally applied pressure field p∞.
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FIG. 5. (a) Sketch illustrating computational setup and BCs. Bubble is located between two rigid walls with
a strong low-frequency oscillatory pressure imposed at the gap outlet. (b) Schematic illustrating geometric
dimensions used to define nondimensional parameters for subsequent analysis.

Recursive mesh refinement is used to concentrate the refinement in the bubble region. The initial
coarse grid consists of 100 cells in the radial direction (Lc = 1mm) with the number of cells in the
axial direction modified according to the relevant gap height Hc = [130 µm,330 µm] to achieve a
uniform coarse grid with a size of 10 µm initially. Subsequently, the coarse grid is refined recur-
sively five times to obtain the finest resolution of ∆x ≈ 0.3125 µm in the bubble region. Further
refinement of the near-wall region down to a first-cell height of ∆y≈ 10nm is introduced to resolve
the flow in the boundary layer. The cell count varies with the gap height but is on the order of ∼ 0.5
million cells. As an indication, the execution time of an axisymmetric simulation with 0.47 million
cells computed on 112 cores with 4571MB per core is around 10 hours.

B. Modified Rayleigh-Plesset Model

A modified RPE that resembles the standard (unmodified) RPE in Eq. (9) can be derived. It
includes some additional terms to account for the geometrical confinement on the left-hand side of
the equation although it neglects viscous effects. For a bubble oscillating in between two parallel
disks, a modified RPE can be written as follows:90
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(11)
where H =Hc/2 denotes half the gap height Hc, with the other parameters having a similar meaning
as in the standard RPE of Eq. (9). The sketch in Fig. 6 illustrates the configuration described by
the modified RPE. The form of Eq. (11) extends itself well to the axisymmetric configuration in
the simulation since rotation about the axis of symmetry will result in a 3D cylindrical equivalent
similar to that in Fig. 6. The circular disk configuration will from hereon be referred to as the
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(narrow) ‘gap’, for brevity. The modified RPE shares similar assumptions with the standard RPE,
additionally assuming that the bubble is located at the centre of the gap. Regardless of the degree
of confinement, it is still assumed that the bubble remains spherical throughout its entire oscillation
cycle.

FIG. 6. Sketch illustrating the disk configuration described by the modified RPE of Leighton90. The bubble of
size R is located at the centre and is assumed to remain spherical.

The modified RPE is used to inform the simulation setup, particularly the acoustic forcing pa-
rameters pac and fac required to instigate a transient response. For Lc = 1mm and 120 µm < Hc <
330 µm considered here, pac = 95kPa and fac = 20kHz give an inertial response. Details on the
choice of the acoustic forcing frequency are found in the Appendix B. The initial radius R0, or the
bubble radius in absence of the acoustic forcing, is chosen to represent a small transient cavitation
bubble that is larger than the Blake critical radius (the lower threshold) but smaller than the Minn-
eart resonant radius (the upper threshold) as detailed in Appendix C. For the given acoustic signal,
a bubble with an initial radius R0 = 50 µm undergoes violent collapse. Fig. 7 compares the solution
to the modified RPE (Eq. (11)) for Hc = 150 µm with the unmodified (standard) RPE (Eq. (9)) for
similar acoustic forcing parameters. The graph reveals the gap confinement decreases the amplitude
of oscillation of the bubble for similar acoustic forcing, and decreases the frequency of oscillation.
The confinement therefore significantly alters the dynamics of bubble oscillation compared to the
unconfined case.
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FIG. 7. Solutions of modified RPE90 and unmodified (standard) RPE for similar acoustic forcing, here pac =
95kPa and fac = 20kHz.

C. Collapse regimes

Both the gap height Hc and the distance h between the initialisation position of the bubble centre
and the primary (lower) wall have been varied (see Fig. 5(b)), revealing three different collapse
regimes. An overview of the computed bubble shape in each regime over the entire duration of
the acoustic cycle is shown in Fig. 8, showing the expansion to maximum volume and subsequent
collapse.

Nondimensional parameters are introduced to characterize the collapse regimes in later sections
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FIG. 8. Overview of collapse regimes revealed for the ADGC of a gas bubble in a narrow gap. (a) Symmetric
splitting with dual-jet formation for h = 75 µm and Hc = 150 µm (η = 1.57 and δ = 0) , (b) asymmetric
splitting with dual-jet formation for h = 95 µm and Hc = 230 µm (η = 2.40 and δ = 0.21) , and (c) collapse
onto nearest wall with a directed jet for h = 55 µm and Hc = 310 µm (η = 3.24 and δ = 1.05) . The top and
bottom extents of each frame coincide with walls while only a fraction of the radial direction is shown.

as follows. The first is the dimensionless gap height, η , defined as:

η =
Hc

Rmax
, (12)

and the second is the normalized off-centre distance, δ , defined as:

δ =
H−h
Rmax

=
Hc/2−h

Rmax
, (13)

with the primary (lower) wall taken as the datum reference for the measurement of the height h of
the bubble centre above the wall. A value of δ = 0 therefore corresponds to the limiting case when
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the bubble is located at the centre of the gap (h = Hc/2). Setting the numerator (Hc/2−h) = d, the
definition of δ is analogous to the stand-off distance γ1 = h/Rmax for a single rigid wall but measured
relative to the gap mid-plane δ = d/Rmax. In fact, the two can be shown to be related through simple
geometrical parameters as δ = Hc/2Rmax−h/Rmax = η/2−γ1. The normalized off-centre distance
δ is therefore regarded as an indicator of the position of bubble initialisation relative to the wall
closest to the bubble, here taken as the primary (lower) wall (see Fig. 5(b)). For the given initial
radius R0 = 50 µm, the smallest h simulated is 55 µm to ensure an initially detached bubble and an
initial liquid layer of at least 5 µm thickness wetting the nearby walls. Using this information, the
smallest stand-off distance of the bubble from the primary wall considered is γ1 ≈ 0.58. Similarly,
γ2 is the stand-off distance measured with respect to the secondary (upper) wall. The maximum
spherical equivalent bubble radius in the unconfined counterpart, Rmax, is taken as the characteristic
length of the problem to define nondimensional parameters.49,55,76 The unconfined maximum radius
is chosen since this is independent of the influence of nearby boundaries. Here Rmax ≈ 96 µm as
visible from the standard (unmodified) RPE solution in Fig. 7.

1. Regime 1 – Symmetric splitting with dual-jet formation
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FIG. 9. (a) Comparison of modified RPE solution and equivalent simulation for limiting case δ = 0 and
η = 1.57 (Hc = 150 µm and h = 75 µm) . (b) One-cycle of the low-frequency acoustic forcing signal with
pac = 0.95 p0 and fac = 20kHz. In both graphs, the black dashed lines show the (a) bubble size and (b) far-
field pressure values in absence of acoustic excitation.

Naturally, the simulation results of the limiting case when the bubble is at the centre of the
gap (d = 0) are presented first to enable comparison with the modified RPE solution of Leighton
introduced in Sec. IV B. Fig. 9(a) compares the bubble size evolution predicted by the modified RPE
solution and computed bubble radius for Hc = 150 µm in response to the acoustic forcing signal
shown in Fig. 9(b). The slight deviation between the analytical and simulation results in Fig. 9(a)
can be attributed to a number of factors, including the disregard of viscous forces in the modified
RPE. The viscous forces in the computational model dampen the collapse relative to that predicted
the modified RPE, and the bubble rebounds to a smaller size. We speculate, but have not proven,
that computations using the CLSVOF method of Chakraborty83 (which is based on physics models
similar to those of this work) would reveal a similar deviation from the modified RPE. This is a
plausible conjecture considering both VOF & CLSVOF techniques have shown excellent agreement
in Fig. 2(a). The simulations also reveal that the spherical assumption is violated, with the bubble
shape becoming highly non-spherical at maximum expansion followed by subsequent splitting and
jetting events (see Fig. 8(a)). While Eq. (11) predicts the collapse times with reasonable accuracy, it
does not provide any information on the bubble shape or velocities of jets that are expected to form
during transient collapse of a confined bubble.

Detailed pressure and velocity field evolutions for the collapse stage are shown in Fig. 10. In
these 2D representations, the left-half of each frame plots the pressure field while the right-half
plots the velocity. Superimposed glyphs (arrows) in the right half of each frame indicate only the
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direction (without magnitude) of the flow. Note that the colour bar ranges vary significantly between
each frame. In Fig. 10, the initially spherical bubble begins to grow under the action of the imposed
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FIG. 10. Pressure and velocity field evolution starting from maximum volume expansion of the bubble, show-
ing splitting and jet formation for limiting case d = 0 for Hc = 150 µm (Regime 1). In (a) 26 µs, (b) 37.2 µs,
(c) 37.9 µs, (d) 38.0 µs, (e) 38.2 µs and (f) 38.3 µs, the arrows indicate the direction of the flow-field.

far-field pressure, reaching its maximum volume at t ≈ 26 µs with a spherical equivalent radius of
≈ 82 µm. At this point, the sphericity of the bubble is entirely lost, as expansion in the axial direction
is prohibited by the proximity of the nearby walls that deflect flow in the opposite direction and
towards the bubble centre, which for δ = 0 also coincides with the mid-plane of the gap. In the radial
(lateral) direction, the expansion of the bubble is counteracted by the increase in pressure at the
boundary. The reversal in direction of the glyphs in the right half of the frame at t = 26 µs indicates
the onset of the collapse stage. As the driving pressure on the boundary increases, the liquid rushes
in towards the centre of the bubble accelerating its shrinkage. When the deflected flow from the
walls meets the inflow from the pressure boundary, an annular flow-focussing mechanism is formed
that causes the bubble to neck and form an ‘hourglass’ shape at t = 37.2 µs. With the continued
increase in the driving pressure, the necking proceeds rapidly reaching a maximum curvature at
t = 37.9 µs. The thin neck breaks shortly after at t = 38 µs, separating the original bubble into two
daughter bubbles. Since the case has vertical symmetry, i.e. δ = 0, the bubbles formed are equal
in size. The splitting event is accompanied by the emission of a spherical wave (seen propagating
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outwards at t = 38 µs) as a result of the high-pressure concentration at the neck of the bubble.
Following the splitting, the previously annular inflow is converted into two opposing axial jets

each directed away from the mid-plane of the gap towards the nearest rigid wall, as visible at
t = 38.2 µs. Each of these jets propagates through the respective daughter bubble pushing the op-
posite bubble interface along with them as indicated by the protrusions in the same frame. Further
pressure wave emission is observable at t = 38.2 µs as a result of the jet impact onto the opposite
bubble interface. The complex interference pattern in Fig. 10(e) is a result of ‘shock-boundary’
interactions. The first pressure wave is emitted during the splitting event at t = 38 µs (Fig. 10(d))
where some (weak) pressure waves due to reflections at the boundary can already be observed.
This is followed by the emission of two subsequent pressure waves associated with dual-jet impact.
These are also reflected at the confining wall boundaries and overlap with earlier emissions, result-
ing in the complex interference pattern visible at t = 38.2 µs (Fig. 10(e)). As a result, the number
of pressure waves visible at t = 38.2 µs exceeds the total of three pressure waves one would expect
(splitting & dual-jet impact). During this time, the emitted pressure waves also interact with the
still increasing far-field pressure p∞ (see Fig. 9(b)). Some small satellite bubbles observed at the
axis of symmetry (38 µs onwards) are considered residues of the neck closure. After the axial jets
pierce the respective bubbles, they proceed to impact and spread along the boundary at t = 38.3 µs.
Given the symmetry of the problem about the mid-plane of the gap for δ = 0, we term this as
the ‘symmetric-splitting with dual-jet formation’, or ‘Regime 1’, and we refer to it as such in the
remainder of this study.

2. Regime 2 – Asymmetric splitting with dual-jet formation

By altering the bubble inception position, a second collapse regime is revealed for non-zero off-
centre distance (δ 6= 0). The computed bubble shape evolution is shown in Fig. 8(b) for η = 2.40
and δ = 0.21. Splitting of the original bubble is still observed, however, since the vertical symmetry
has been destroyed, the two daughter bubbles formed are unequal in size and their jetting profiles
differ significantly. Following jet impact and collapse, the lower larger bubble is sheared along the
wall surface during its rebound stage, while the upper smaller bubble is still far from the secondary
wall (see t = 37.5 µs).

The corresponding detailed pressure and velocity field evolutions for Regime 2 are shown in
Fig. 11. The non-spherical shape of the bubble at t = 25.3 µs at maximum expansion is more
rounded given the wider gap (η = 2.40), but expansion in the axial direction is still limited by the
presence of the walls. In this second regime, an annular flow-focussing mechanism is also observed
when the deflected flow from the walls meets the inflow from the imposed acoustic forcing. As this
inflow accelerates, the necking proceeds rapidly (see t = 34 µs and t = 36 µs) forming a thin neck
(t = 36.2 µs) that splits shortly after (t = 36.5 µs). However, the bubble centre no longer coincides
with the geometrical centre of the gap so the two daughter bubbles are of different size; the largest
one being that closest to the confining boundary. A high-pressure region visible at t = 36.5 µs
is responsible for the involution and jetting of the lower bubble. This larger bubble proceeds to
impact the primary wall at t = 37.2 µs with a very pronounced jet. A complex interference between
pressure (shock) waves emanating from the splitting and jet impact events can be seen at t = 36.5 µs
as they also interact with the confining boundaries.

3. Regime 3 – Collapse onto nearest wall with a directed-jet

Further widening of the gap and for a sufficiently large off-centre distance δ , the bubble is only
minimally (if at all) affected by the secondary wall. Instead, it behaves as if it were located near
a single rigid wall,50,64,89,91 revealing a third collapse regime (see Fig. 8(c)). The corresponding
detailed pressure and velocity field evolutions for Regime 3 are shown in Fig. 12. The initially
spherical bubble reaches its maximum volume at t = 24.9 µs. The distal part of the bubble remains
mostly spherical, while the proximal part is flattened out due to the presence of the nearby wall.
Upon reversal of pressure driving at the boundary, the bottom interface shrinks rapidly, while the
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FIG. 11. Pressure and velocity field evolution starting from maximum volume expansion of the bubble, show-
ing splitting and jet formation for Hc = 230 µm and h = 95 µm (Regime 2). In (a) 25.3 µs, (b) 34 µs, (c) 36 µs,
(d) 36.2 µs, (e) 36.5 µs and (f) 37.2 µs, the arrows indicate the direction of the flow-field.

distal part remains relatively spherical (t = 34 µs). As the shrinkage progresses, the curvature of
the distal part of the bubble increases (see frame t = 34.7 µs). The high-pressure region above the
distal half of the bubble forms an involution at t = 35 µs, revealing the onset of jet formation. The
jet becomes more visible at t = 35.3 µs as it propagates downwards through the bubble. The jet
proceeds to pierce the bubble and impact onto the lower wall at t = 35.4 µs.
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FIG. 12. Pressure and velocity field evolution starting from maximum volume expansion of the bubble,
showing splitting and jet formation for Hc = 310 µm and h = 55 µm (Regime 3). In (a) 24.9 µs, (b) 34 µs,
(c) 34.7,µs, (d) 35 µs, (e) 35.3 µs and (f) 35.4 µs, the arrows indicate the direction of the flow-field.

D. Regime mapping

A systematic study of various bubble inception positions h and gap heights Hc has been performed
to map the various regimes for a given combination of dimensionless gap height, η , and off-centre
distance, δ . The resulting ‘regime map’ in which δ is plotted against η is shown in Fig. 13. The
symmetric cases are obviously segregated along the horizontal line δ = 0 and correspond to the
limiting case described by the modified RPE (Eq. (11)). For η values in the range 1.25 < η .
2.20, a shift in the bubble initialisation position (increasing δ ) will not eliminate splitting and both
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FIG. 13. Regime map identifying the relevant collapse regime for given set of nondimensional parameters η

and δ for an ADGC of a bubble in a narrow gap. The dash-dot line corresponds to the closest stand-off distance
considered in this study γ1 = 0.58.

walls are exposed to (strong) shear flow due to the jet impact. However, as the gap becomes wider
2.40 . η . 3.03, there appears to be a threshold of δ beyond which the splitting can be suppressed
and a single jet is formed directed towards the nearest boundary, in this case, the primary lower
wall. As the gap width increases even further η & 3.24, the directed jet regime becomes even
more prominent. Still, for small δ values δ . 0.1, the bubble is close to the mid-plane of the gap
and therefore splitting will always be observed as the limiting case of Regime 1 (when δ = 0) is
approached. For each η value considered, the largest δ corresponds to the closest stand-off distance
of the bubble, γ1 ≈ 0.58 considered in this study.

Previous experimental and numerical studies for oscillations in a narrow gap have observed a
‘transferred-jet’ regime for η < 1.8, in which a single jet is formed that impacts onto the distant
wall.27,39,68 An example of this transferred-jet regime has been simulated as part of the validation
study in Sec. III B for an RGC-type bubble with a pressure-ratio of pB/p0 ≈ 130027 at the interface.
For the transferred-jet to form, the bubble must be initialised very close to one wall in a gap of
height Hc comparable to Rmax. This transferred-jet regime, has not been observed in the present
configuration. Instead, for η values in the same range, the collapse dynamics are solely described
by the splitting regimes of Sec. IV C 1 and IV C 2.

We hypothesise that the transferred-jet regime is only observed for RGC-type bubbles, where the
high-pressure ratio at the interface (typically pB/p0 ≈ 1000) provides the initial strong acceleration
required for the bubble to expand rapidly and fill the width of the gap, leaving an extremely thin
liquid-film (≈ 5 µm) separating the bubble from the nearest wall. As the proximal interface of
the bubble shrinks, a kink is formed (high-curvature) in the boundary layer that acts as a catalyst
for the transferred-jet formation (see frames at t = 194 µs in Fig. 4 for a visual example). The
interested reader is referred to Zeng, Gonzalez-Avila, and Ohl68 for full details on the origins of
a transferred-jet. In the present configuration for an ADGC bubble oscillating in a narrow gap,
the initial pressure-ratio at the interface is pB/p0 ≈ 1, and therefore the bubble lacks the initial
strong acceleration that is crucial for the formation of the transferred-jet in narrow gaps η < 1.8.
Furthermore, for the closest stand-off distance γ1 = 0.58 indicated by the dash-dotted line in the
regime map, the initial (t = 0) liquid-film thickness between the proximal bubble interface and the
primary wall is 5 µm (not shown), comparable to that reported for the transferred-jet.68 The absence
of this jetting regime is therefore attributed to the different physics being simulated in the ADGC
bubble of the present configuration.

E. Intensification of micro-jet velocity

Since the initial and acoustic forcing conditions are unchanged, the velocity (including direc-
tion) of any jet(s) formed in the narrow gap configuration is only a function of the geometrical
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confinement as described by η and δ . As demonstrated in Sec. IV C the collapse dynamics varies
significantly over the parameter space, making a consistent definition of ‘jet impact’ in each regime
a challenging task. Besides the strength of the jet, the width of the jet also varies considerably with
off-centre distance δ . The jet is much thinner than the size of the bubble in the radial direction and
highly unstable, such that it decays into droplets along the axial direction as it pierces the bubble.
This makes the identification of an appropriate time to measure the ‘jet impact’ velocity compli-
cated. To ensure a rigorous definition that is common to all three regimes, we take the maximum
(over time and space) liquid velocity component perpendicular to the rigid wall boundaries, Uy.
By sampling positive and negative values of this velocity component, it is possible to distinguish
between an upward and downward jet velocity, respectively. This is of particular relevance in sit-
uations where splitting is observed (i.e. Regimes 1 and 2). For all regimes, this maximum value
coincides with the velocity of the jet tip at the onset of axial jet formation. As it propagates through
the bubble, the jet will be slowed down by the presence of the gas, and therefore the velocities pro-
vided here are to be regarded as an upper bound. Despite this, the sampling technique still provides
an indication of when in the parameter space the maximum jet impact velocities are to be expected.

First we seek to understand how the confinement affects the jet velocity by studying the variation
of jet velocity for a fixed δ value over the range of η values considered in this study (1.25 <
η < 3.45). Conveniently, the dynamic behaviour described by Regime 1 for δ = 0 lends itself
well to this purpose. The graph in Fig. 14(a) plots the maximum axial jet velocity Uy,jet in the
liquid against η . Given the symmetry of the problem for the Regime 1 cases, the upward and
downward jet velocities plotted in Fig. 14(a) are equal. For highly confined bubbles, η . 1.99, the
jet velocities are ∼ 300m/s. As the gap becomes wider η & 3, the maximum jet velocity decreases
to the order of 100 m/s. This is because in wider gaps the strength of the annular flow-focussing is
reduced. By conservation of momentum, the resulting axial flow velocity is also less. In the region
1.99 . η . 2.82 , an increase in the jet velocity is observed, reaching around ∼ 400 m/s which can
be regarded as the optimum combination of acoustic forcing and confinement that maximizes jet
velocity.

Secondly, we seek to understand how the jet velocity changes with position of bubble inception.
Here, the reverse approach is taken, namely fixing η and varying δ . Given the various regimes
observed for differing η , the jet velocity is studied for three representative η values, correspond-
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FIG. 14. Jet velocity variation Uy,jet (m/s) for the various regimes. (a) Symmetric cases (Regime 1, δ = 0) ,
(b) Asymmetric cases (Regime 2, η = 1.99) , (c) Transition from asymmetric to directed jet regimes (Regime
2 to 3, η = 2.61) , and (d) Directed jet regime (Regime 3, η = 3.24).
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ing to: an entirely asymmetric jet regime; a directed-jet regime observed in wider gaps; and an η

value for which a transition from asymmetric to directed jet regime is observed (Figs. 14(b) - 14(d)).
The asymmetric regime (Regime 2) for η = 1.99 is considered first in Fig. 14(b). At δ = 0, equal
and opposing jets exist due to the vertical symmetry of Regime 1 (see Fig. 14(a)). For δ > 0, the
splitting results in two opposing jet velocities, but now unequal in magnitude because the sym-
metry about the mid-plane is destroyed. As δ increases, an increase in the downward jet velocity
(pertaining to the lower bubble, closer to the confining boundaries) is observed. Contrastingly, the
maximum upward jet velocity (pertaining to the upper bubble) occurs for the symmetric case δ = 0
and decreases monotonically with increasing off-centre distance δ . The variation in the magnitude
is not as significant as for the symmetric cases, with the largest upward and downward jet veloci-
ties being comparable in magnitude, Uy,jet = 373m/s for δ = 0 and Uy,jet =−384m/s for δ = 0.42,
respectively. Note that the equivalent upward velocity is Uy,jet = 362m/s for δ = 0.42.

Next, the maximum jet velocity for the transition regime is studied. In Fig. 14(c) the gray shaded
regions are used to distinguish between δ values for which either a dual-jet or a directed jet is
formed. For δ < 0.42 (corresponding to Regime 2 as per the regime map of Fig. 13), the variation in
maximum jet velocity is similar to that in Fig. 14(b), with the two jets acting in opposing directions
but unequal in magnitude. The upward velocity is correspondingly seen to drop sharply to zero for
δ > 0.42 since for the directed jet regime no splitting occurs, resulting in a single jet that points
downwards. The variation in downward jet velocity here is much more drastic than for η = 1.99,
with the largest downward velocity peaking at ≈ −800m/s at δ = 0.42. Beyond δ ≥ 0.42, the
downward velocity decreases monotonically with increasing δ , but still remains considerably higher
than the equivalent velocity observed for a similar collapse dynamics near a single rigid wall.

For the directed jet regime (see Fig. 14(d)), the first two δ values indicate a non-zero upward
velocity for the symmetric and asymmetric cases described therein respectively. For such small
values of δ , a degree of splitting will always be observed due to the symmetry of the problem.
Beyond δ > 0.21, splitting does not occur; the absence of an upper daughter bubble implies a zero
jet velocity in the upward direction. The characteristic peak downward velocity observed previously
in Fig. 14(c) of ∼ −800m/s is also observed here, albeit for a different δ value, and decreases
monotonically with increasing δ . However, the decreased confinement in this wider gap (η = 3.24
compared to η = 2.61) results in a much smaller downward velocity at the maximum δ .

Overall, an intensification of the jet velocity on the order of several hundred meters per second
is observed in this configuration. This is considerably higher than the jet velocities reported for
collapse near a single rigid wall, typically around 100m/s 53,64,89,91 with wall shear stresses on
the order of 100kPa.64 An exception occurs for very close stand-off distances γ1 . 0.1 for which
Lechner et al.55,76 report velocities on the order of 1000m/s for viscosity-/curvature- induced jets.
Such small stand-off distances are not considered in the present study. Lechner et al.55 attributed
this order of magnitude increase in jet velocity to a different mechanism of jet formation that had
not previously been observed. In contrast, for the stand-off distances considered in this study, the
enhancement in jet velocity is purely a consequence of the interplay between the deflected flow
from the walls and the inflow from the imposed acoustic forcing. Interestingly, Lechner et al. have
identified the modelling of the expansion stage (not just the collapse stage) and the inclusion of
viscous effects are responsible for these incredibly fast jets. Considering the above, the modelling
of viscous effects and the growth stage in numerical models of bubble dynamics can no longer be
overlooked.

F. Wall shear stress footprint

The no-slip condition at the walls gives rise to a velocity gradient perpendicular to the bound-
ary and results in a shear stress on the surface.92 Therefore, the enhanced jet velocities reported in
Sec. IV E will inevitably lead to stronger bubble-induced forces on the nearby boundaries responsi-
ble for cleaning (or eroding) the surface. The wall shear stress (WSS) on a planar wall, τ , is defined
as:

τ = µ
dUx

dy

∣∣∣∣
y=0

, (14)
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where µ is the viscosity of the fluid, Ux is the velocity in the radial direction and y is the perpendic-
ular distance from the wall, such that y = 0 lies on the boundary.93,94 Experimental measurement of
wall shear stress from acoustic cavitation bubbles is difficult, since the formation of acoustic bub-
bles is harder to control compared to the more repeatable laser-induced bubbles. In computational
simulations, the WSS can be approximated by:

τ ≈ µl
Ux(y)

y

∣∣∣∣
y≤ε

, (15)

where ε is the constant shear region in the boundary layer and µl is the viscosity of the liquid.27,64,95

The WSS is measured in the near-wall regions where the velocity gradient is relatively constant.64

Here, it is sampled at a distance of y = 10nm from each wall. This sampling location is located
within the thin liquid-film that separates the bubble from the nearby boundary and therefore the vis-
cosity of the liquid can be used to calculate the WSS. While the height of this liquid-film decreases
with decreasing stand-off distance γ1, the film persists even for the largest δ (i.e. the smallest stand-
off distance) for which h f ∼ 5 µm. In the event that the bubble comes into contact with the wall(s),
or interferes with the sampling location of the WSS, the mixture viscosity would need to be consid-
ered. In this section, the shear-stress variation for representative cases belonging to each regime is
studied to understand the influence of acoustic forcing on the WSS.

In the following sections, the WSS footprint on boundaries is studied for representative cases
from each regime. Both the instantaneous WSS distribution (during splitting and jet impact) and
the spatio-temporal distribution (over one acoustic cycle) are considered. The range of shear stress
magnitude on the boundaries varies considerably (orders of magnitude) over the growth and collapse
cycle of a bubble, from a few kPa up to several thousand kPa. To obtain a better understanding of
this complex spatio-temporal variation, we plot ‘wall-shear-stress maps’ depicting the shear stress
evolution in the bubble region before, during and after the collapse.64 These are contour plots in
which positive and negative shear stresses are colour-coded. Given the orders of magnitude differ-
ence in shear stress, τ , the logarithm of the shear stress is plotted, such that log10 τ = 6 indicates a
shear stress magnitude on the order of ∼MPa. Here, positive values of shear stress (indicating flow
directed away from the axis of symmetry at x = 0) are coloured in purple, while negative values of
shear stress (indicating flow directed towards the axis) are coloured in green. The corresponding
radius-history curve is overlayed in each map to correlate the shear stress evolution with the bubble
dynamics (e.g. peak shear stress occurring at minimum bubble volume).

1. Symmetric - Regime 1

The wall shear stress maps in Fig. 15 for η = 1.57 and δ = 0 (Hc = 150 µm and h = 75 µm)
show how the maximum WSS occurs very close to the axis of symmetry (x = 0) at the instant of
minimum volume when the jet impacts the opposite bubble interface at the end of the collapse stage.
Since the symmetric regime is considered here, Figs. 15(a) and 15(b) for the primary and secondary
walls, respectively, are identical (γ1 = γ2 = 0.78) . Some numerical instabilities begin to be observed
in the region t > 40 µs during the rebound phase due to the distorted shape of the bubble following
the violent collapse, and therefore the discussion on WSS here is focussed until shortly after the first
collapse. The positive peak shear stress is seen to move radially outwards and decrease in magnitude
(less dark shades) as the rebound phase begins. Note the maps plot only the WSS evolution in the
bubble region 0 ≤ x(µm) ≤ 100. The WSS is positive during most of the bubble expansion stage,
and the direction is only reversed as the increase in far-field acoustic pressure counteracts further
expansion of the bubble in the radial direction. During the collapse stage, this negative shear region
progressively moves further inwards towards the axis as the continued increase in p∞ accelerates
the liquid inflow. The strongest shear flow arises when the bubble collapses to its minimum volume.
The strength of this flow decreases in magnitude as it moves radially outwards. In the early rebound
stages, the shear flow is directed away from the axis of symmetry as the high-speed flow from the
liquid jet spreads along the boundary accelerating the flow in the radial direction. The positive
shear flow persists for most of the rebound stage, with a negative shear flow opposing this outward-
spreading jet flow present only further away from the axis at x≥ 80 µm.
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(a) (b)

(c)

FIG. 15. Spatio-temporal wall shear stress distribution on (a) the primary wall and (b) the secondary wall.
Radius-history curve is plotted as black solid line on each map to correlate shear-stress with bubble size evolu-
tion. (c) Instantaneous wall shear stress evolution for symmetric splitting with dual jet formation of Regime 1,
η = 1.57 and δ = 0 (Hc = 150 µm and h = 75 µm). Time in microseconds (µs).

Instantaneous WSS distributions on both walls are shown in Fig. 15(c) together with the corre-
sponding snapshots of bubble shape. At t = 37.9 µs, the pressure at the far-field boundary is still
increasing, forcing the bubble to continue shrinking before splitting. After splitting, the annular
inflow is converted into opposing dual-jets that pierce through the daughter bubbles (visible from
the protrusions at t = 38.2µs) and proceed to accelerate the flow in the thin liquid film between the
respective bubble and the walls outwards; reversing the direction of the WSS. As the jet impacts
onto the boundary at t = 38.4 µs, the shear stress reaches its maximum of τ ≈ 1000kPa on both
walls. The shear stress grows from zero directly below the bubble to some maximal value in a close
vicinity of the axis at x = 0. This peak shear stress is short-lived and decays in magnitude and
spreads radially outwards with the bubble, as shown at t = 39 µs. These key features of the shear
stress footprint are well captured in the wall shear stress maps.
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2. Asymmetric - Regime 2

Fig. 16 shows the WSS evolution for η = 2.20 and δ = 0.42 (Hc = 210 µm and h = 65 µm). The
WSS map for the primary wall shown in Fig. 16(a) is largely similar to that for Regime 1, except
that the region of positive shear stress at collapse is wider and extends to x≈ 20 µm. This is due to
the lower bubble being closer to the wall at this larger δ value (γ1 ≈ 0.68). Contrastingly, the shear
stress distribution on the secondary (upper) wall (see Fig. 16(b)) is considerably different to that in
Fig. 15(b). Since the upper bubble is now located further away from the upper wall, the strength of
the shear flow on this boundary is much weaker and no evident peak is observed. The direction of
the flow alternates in time between positive and negative regions of shear flow according to whether
the bubble is expanding or shrinking, but does not vary with radial distance.

(a) (b)

(c)

FIG. 16. Spatio-temporal wall shear stress distribution on (a) the primary wall and (b) the secondary wall.
(c) Instantaneous wall shear stress evolution for asymmetric splitting with dual jet formation of Regime 2,
η = 2.20 and δ = 0.42 (Hc = 210 µm and h = 65 µm). Time in microseconds (µs).
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The corresponding instantaneous shear stress distribution is shown in Fig. 16(c). In this asymmet-
ric regime, the location of bubble collapse is shifted downwards towards the lower wall and therefore
the stronger shear stresses are expected to occur on this boundary. The instantaneous distribution
reveals a peak shear stress of ≈ 2000kPa as the jet impacts onto the lower wall at t = 36.9 µs. An
increase in shear stress on the lower wall is expected, given the bubble is initialised closer to it, but
the doubling in magnitude compared to that observed in Fig. 15 is surprising. This increase in shear
stress is an indication of the stronger collapse of the acoustically-driven bubble. On the upper wall,
a peak shear stress is not observed. There, the WSS is only a few kilopascals in magnitude. For
similar δ , moderate shear stresses on the upper wall are expected in gaps narrower than considered
in Fig. 16 as the separation between the upper bubble and the secondary wall is reduced.

3. Directed - Regime 3

(a) (b)

(c)

FIG. 17. Spatio-temporal wall shear stress distribution on (a) the primary wall and (b) the secondary wall.
(c) Instantaneous wall shear stress evolution for collapse onto nearest wall with directed jet of Regime 3, for
η = 3.24 and δ = 0.63 (Hc = 310 µm and h = 95 µm). Time in microseconds (µs).
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The WSS distribution for a typical directed jet regime is shown in Fig. 17. For the case con-
sidered, η = 3.24 and δ = 0.63 (Hc = 310 µm and h = 95 µm) the shear stress distribution on the
primary wall is not too different from that shown in Fig. 16(a) for Regime 2 except that the greater
separation between the primary wall and the lower bubble (γ1 ≈ 1) causes the shear flow near the
axis to become negative before the collapse (see t ≈ 30 µs in Fig. 17(a)). A localised region of
strong outward shear flow on the lower wall is still observed as the bubble collapses to minimum
volume. As observed in the previously described regimes, this high shear stress region decreases in
magnitude as it propagates outwards. On the secondary wall, no such peak stress is observed, and
the direction of the shear stress alternates sharply between positive and negative regions according
to the global flow direction (see Fig. 17(b)). This contrasts with the shear-stress footprint observed
in Fig. 15(b) for which an obvious peak value was observed as the bubble collapses.

The corresponding instantaneous shear stress distribution is shown in Fig. 17(c). During the
collapse at t = 34.8 µs, the shear flow along the primary wall is negative reflecting the inflow during
the collapse. Following jet impact, as the bubble is translated towards the lower wall, the shear stress
is seen to change direction and increase in magnitude, reaching about 400kPa at t = 35.5 µs. A
further increase in the shear flow along the bottom boundary occurs at t = 35.8 µs with τ ≈ 1200kPa.
As the bubble rebounds, the amplitude of the outward shear flow decreases and fluctuations due to
the highly-distorted bubble shape are observable at t = 36.2 µs. On the secondary wall, the shear
stress is orders of magnitude lower, reaching only ∼ 1kPa.

V. DISCUSSION

The shear forces along the confining boundaries have been quantified by extracting the distri-
bution of the velocity gradient (rate of strain) close to the surface. The wall-shear-stress footprint
varies with bubble-wall separation and the degree of confinement. The peak wall shear stress is
observed during bubble collapse when the high-speed microjet impacts onto the wall and spreads
along the surface as a thin but high-speed boundary layer.96 Strong and localised shear stresses of up
to 2MPa are found for the acoustically-driven growth and collapse (ADGC) of a bubble considered
in the present study. This peak value is twice the maximum shear stress reported for a Rayleigh
Growth and Collapse (RGC) or laser-induced bubble in a similar configuration.27 The peak stress
occurs at a localised point close to the axis of rotational symmetry and is attenuated as it spreads
radially outwards. Recalling that the simulations are axisymmetric, in three dimensions the maxi-
mum shear can be visualised to occur in concentric circular zones (annular rings) whose centre is
directly beneath the bubble surface. Recent experimental measurements of wall shear stress and
corresponding 3D simulations by Reuter et al.23 for a bubble collapsing near a single rigid wall
suggest that this is indeed the case.

The introduction of a secondary opposing wall has already been shown to enhance the maxi-
mum wall shear stress on boundaries for RGC bubbles, ∼ 1000kPa27 in a narrow gap as com-
pared to ∼ 100 kPa for (single) wall-bounded collapse.50,64 The even higher shear rates found in
the present configuration (∼ 2000kPa) are attributed to the increased pressure amplitude driving the
collapse, and are expected to vary with the acoustic forcing. Specifically, the transient behaviour of
an acoustically-driven bubble has been considered in this study, in which a high-velocity re-entrant
jet impacts onto the boundary. However, weaker shear rates (steady microstreaming) are expected
for a milder forcing where the bubble oscillates stably between two parallel walls.97

The maximum shear stress computed compares well to some extent with the experimental ob-
servations by Maisonhaute et al.92 who have found shear stresses in the range 2.5− 5MPa for
acoustically-driven but hemispherical bubbles. However, the measurements, made at 40− 80nm
from the wall, were for stable oscillations and had therefore been considered a lower bound. The
maximum shear stress computed here occurs for larger off-centre distances when the detached
(spherical) bubble is initialised very close to one of the walls. To better quantify this agreement
for acoustic cavitation, simulations involving hemispherical bubbles could be the subject of future
work. An order of magnitude discrepancy is often found between experimental measurements of
the shear stress and numerical computations.27 One drawback of experimental measurements is that,
to date, these have been limited to a single point location,21,23,98 which is restrictive as opposed to
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the complete spatial and temporal distribution available in simulations. The proposed VOF model
is therefore a useful tool that complements experimental investigation and provides insight into the
mechanisms underlying bubble-cleaning. Improved agreement with experimental measurements for
validation purposes is of course desirable, but the rapidly fluctuating strong gradients generated in
the thin liquid-film between a bubble and nearby boundaries pose significant experimental chal-
lenges. Nevertheless, Reuter et al.23 have achieved comparable agreement between experimental
measurements and computational simulations in OpenFOAM for an RGC bubble collapsing near
a single rigid wall. However, the maximum shear stress reported therein was only ∼ 5kPa, which
still is orders of magnitude lower than that observed in the present configuration. It is also less
than the ∼ 25kPa computed maximal shear stress reported by Koukouvinis et al.96 who simulated
the growth and collapse of a laser-generated bubble. This discrepancy may be due to the fact that
Reuter et al.23 only compute the collapse stage of the bubble, assuming that at maximum expansion
the bubble is perfectly spherical, which is rarely the case for bubbles expanding in vicinity of a
wall.48,49 Besides, the differing bubble sizes (∼ 400 µm in Reuter et al.23 compared to ∼ 700 µm in
Koukouvinis et al.96), may also result in a different mechanical action on the surface.

VI. CONCLUSIONS

We have investigated the growth and collapse dynamics of an acoustically-driven bubble inside
a narrow gap. The acoustic forcing introduces a further complexity in the flow-field such that
the interaction of this forcing with the deflected flow from the walls plays a crucial role in the
collapse. The presence of confinement combined with the imposed time-varying boundary pressure
result in an oscillatory non-uniform pressure distribution around the bubble, causing it to assume a
non-spherical shape at maximum expansion. As a result, we have found that the bubble collapses
rapidly following one of three regimes: symmetric or asymmetric splitting with dual-jet formation
(Regimes 1 and 2, respectively), or a directed jet onto the nearest wall (Regime 3). A regime map
helps predict the direction of the resulting jet(s) for a given gap height (nondimensional η) and
axial position of the bubble inside the gap (off-centre distance δ ). Although a single bubble size
has been considered in this study, it is expected that maintaining a similar ratio of gap height Hc to
maximum volume Rmax will reveal the same three collapse regimes for larger bubbles driven below
their resonant frequency ( fac� fc as detailed in the AppendixB). Existing studies for an unforced
bubble in a narrow gap26,29,34,38 suggest this is indeed the case. In future work, we will endeavour
to investigate various combinations of initial bubble sizes and acoustic forcing frequencies.

As expected, bubbles initialised at the centre of the gap will always split and form two opposing
jets of equal strength. This contrasts with the modified RPE prediction in which it is assumed that
the bubble remains spherical at all times regardless of the degree of confinement. We have found
that the induced micro-jet velocity decreases with decreasing vertical constraint (increasing η). Off-
centering the bubble position will still result in dual-jet formation, but with unequal strengths. In
wider gaps (η ≥ 3), the dual-jet formation is suppressed for bubbles initialised close to one of the
boundaries. Instead, under this reduced vertical constraint, the bubbles exhibit behaviour analogous
to collapse near a single rigid wall. We have termed this as the directed-jet regime. We report on
the absence of a transferred-jet regime previously observed for a laser-induced bubble in similar
confinement, an unexpected finding of this study which highlights the different physics involved in
acoustic cavitation simulation (ADGC-type simulation) compared to laser-induced bubbles (RGC-
type simulation).

The imposed acoustic forcing dictates the spatio-temporal evolution of bubble-induced forces on
nearby boundaries, and its inclusion in computational models of acoustic cavitation should not be
overlooked. Through careful choice of the acoustic forcing and fluid properties, the desired dynamic
behaviour to suit the application can be achieved. Despite the presented geometry being relatively
simple, we emphasise that the findings of this work have significant implications not only in ul-
trasonic cleaning applications18,27,39,92 but also in microfluidic applications for mixing, actuation
and manipulation,6,10,33,99–101 where the number of jets correlates with the number of boundaries
confining the bubble.102 Since the wall geometries are smooth, the simulations presented in this
study are representative of configurations in which the length scale of the wall roughness is much
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smaller than the nominal bubble size. Future work will aim to consider bubble collapse in more
complex geometrical confinement such as curved boundaries103, corners104, patterned surfaces105

or a second bubble106.
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Appendix A: Discretization schemes

Table II provides a summary of the typical discretization schemes that were used to obtain the
results in this work. This choice of discretisation schemes is similar to that used in recent studies
of bubble dynamics in OpenFOAM (see for instance Refs. 56, 57, 62, 66, 67, 69 amongst others).
Note that corrections for mesh skewness and non-orthogonality are only required in situations were
the mesh is not rectilinear.

TABLE II. Discretisation schemes (fvSchemes).

Term Keyword Scheme
Time derivatives ddtSchemes Euler
Divergence terms divSchemes

∇ · (ρUU) linearUpwindV
∇ · (αl U) vanLeer
∇ · (Urαl αg) interfaceCompression

Gradient terms gradSchemes linear
skewCorrected linear

Laplacian terms laplacianSchemes linear corrected
Interpolation interpolationSchemes linear
Surface-normal gradients snGradSchemes corrected
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Appendix B: Identifying the acoustic forcing frequency

Since the transient response is sought, the acoustic forcing frequency fac must be lower than the
natural frequency of oscillation. The natural frequency:

fn = fRPE =
1

2π

√
3γg p0 +2(3γg−1)σ/Rn

ρlR2
n

, (B1)

can be derived from Eq. (9) but is strictly valid for bulk bubbles (i.e. in an unconfined volume of
liquid). Here, a quantification of the reduction in the resonant frequency in confinement is desirable.
A modified natural frequency of oscillation can be derived by linearising Eq. (11) by assuming small
radial perturbations ξ , such that R(t) = Rn +ξ (t) where Ṙ = ξ̇ and R̈ = ξ̈ . Substituting for ξ , ξ̇ and
ξ̈ in Eq. (11), multiplying by (Rn +ξ ) throughout and neglecting higher-order terms gives:

R2
nξ̈

[
1+

(Rn +ξ )

H

(
ln
[

Lc

H

]
−1
)]

=
1
ρl

[
pg,n (Rn +ξ )

(
Rn +ξ

Rn

)−3γg

− p∞ (Rn +ξ )−2σ

]
.

(B2)
The RHS can be further simplified with the help of the negative binomial expansion:

1
ρl

[
pg,n (Rn +ξ )

(
1−3γg

(
ξ

Rn

))
− p∞ (Rn +ξ )−2σ

]
.

Rearranging:

ξ̈ +
3γg pg,n−2σ/Rn

ρlR2
n [1+(Rn/H)(ln [Lc/H]−1)]

ξ =
−p(t)

ρlRn [1+(Rn/H)(ln [Lc/H]−1)]
. (B3)

The resulting linearised equation resembles the classical equation for a damped oscillator ẍ+β ẋ+
ω2

n x = F(t), where x is a generic coordinate frame, β is the damping coefficient, ωn is the natural
frequency and F(t) is the forcing function which here is an external pressure that varies sinusoidally
in time p(t).84 Therefore, the natural frequency of a bubble confined between two plates is given
by:

ωc =

√
3γg pg,n−2σ/Rn

ρlR2
n [1+(Rn/H)(ln [Lc/H]−1)]

= 2π fc , (B4)

where ωc (rad/s) refers to the natural frequency of oscillation in the confined disk configuration of
Fig. 6. The linear resonance frequency in confinement fc can be expressed as a function of the
unconfined natural frequency fn :

fc = fn

√
1

[1+(Rn/H)(ln [Lc/H]−1)]
. (B5)

The normalized frequency ratio fc/ fn can be regarded as a geometric scaling factor for a given
bubble of size Rn.

Eqs. (B4) and (B5) are used to compute the natural frequency of oscillation for Hc = [120 µm,
330 µm] as considered in the computational simulations to find that 40 kHz < fc < 60 kHz (see
Fig. 18(a)). As expected, the confinement reduces the frequency of oscillation and this range of fc
is lower than the unconfined natural frequency fRPE ≈ 65.9kHz predicted by Eq. (B1). However, as
the gap becomes wider fc becomes comparable to fn = fRPE (see Fig. 18(b)). Given the lowest fc is
≈ 40kHz, an fac = 20kHz has been chosen to guarantee a transient (inertial) response ( fac� fc).

Appendix C: The initial bubble radius

A bubble actively pulsates for a wide range of ambient radius. If the size of the bubble and the
acoustic pressure amplitude are sufficiently large, the bubble will oscillate transiently (i.e. unsta-
bly) in response to the pressure fluctuations. This condition is often termed as the Blake threshold,
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FIG. 18. (a) Confined natural frequency scaling and (b) variation of frequency ratio fc/ fn.

defining a size above which bubbles will undergo ‘explosive’ initial growth in response to a decreas-
ing fluid pressure, or tension wave, in the liquid 48,84. The equation for Blake-threshold pressure is
given as:

pBlake = p0 +
8σ

9

[
3σ

2R3
Blake (p0 +(2σ/RBlake))

]1/2

, (C1)

where pBlake is the acoustic pressure required to generate transient cavitation 84. Rearranging
Eq. (C1) to solve for RBlake gives a cubic equation:

2p0R3
Blake +4σR2

Blake−
3σ

[9(pBlake− p0)/(8σ)]2
= 0 . (C2)

Solution of Eq. (C2) gives three roots; however, two of these are complex conjugates such that RBlake
is given by the real root. For the given forcing conditions pBlake = pac = 95kPa and fac = 20kHz
with p0 = 100kPa, σ = 0.072N/m, the Blake radius is RBlake = 5.2 µm.

An expression for the Minneart radius can be calculated from Eq. (B1):

ρl(2π fac)
2R3

Minnaert−3γ pg,nRMinnaert +2σ = 0 , (C3)

which is also a cubic equation that can be solved for RMinnaert yielding two complex conjugates and
one real root. For the given acoustic forcing conditions, pac = 95kPa and fac = 20kHz, solution of
Eq. (C3) gives RMinnaert ≈ 159 µm.

The upper bound of the ambient radius for an active bubble is on the same order of magnitude
as the linear resonance radius RMinnaert, while the lower bound coincides with the Blake threshold
radius RBlake

84. The above threshold formulations are derived from Eq. (9) but are useful approxi-
mations. The initial bubble radius R0 must be larger than the lower threshold (Blake) radius RBlake
and smaller than the resonant Minnaert radius RMinnaert

48,49,84 such that:

RBlake < R0 < RMinnaert , (C4)

and therefore,

5.2 µm < R0 < 159 µm. (C5)

An initial radius of 50 µm is chosen within the above range. This also allows for a direct comparison
of the ultrasonically-driven dynamics (Sec. IV) with the validation study in Sec. III B where a similar
initial radius was shown to accurately capture the bubble dynamics in the experiments.
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45W. Wiedemair, Ž. Tuković, H. Jasak, D. Poulikakos, and V. Kurtcuoglu, “On ultrasound-induced microbubble oscillation
in a capillary blood vessel and its implications for the blood – brain barrier,” Physics in Medicine & Biology 57, 1019–
1045 (2012).

46S. Martynov, E. Kostson, N. Saffari, and E. Stride, “Forced vibrations of a bubble in a liquid-filled elastic vessel,” The
Journal of the Acoustical Society of America 130, 2700–2708 (2011).

47A. Osterman, M. Dular, and B. Širok, “Numerical Simulation of a Near-Wall Bubble Collapse in an Ultrasonic Field,”
Journal of Fluid Science and Technology 4, 210–221 (2009).

48B. Boyd and S. Becker, “Numerical modelling of an acoustically-driven bubble collapse near a solid boundary,” Fluid
Dynamics Research 50 (2018), 10.1088/1873-7005/aad58a.

49B. Boyd and S. Becker, “Numerical modeling of the acoustically driven growth and collapse of a cavitation bubble near a
wall,” Physics of Fluids 31 (2019), 10.1063/1.5084729.

50F. Denner, F. Evrard, and B. van Wachem, “Modeling Acoustic Cavitation Using a Pressure-Based Algorithm for Poly-
tropic Fluids,” Fluids 5, 69 (2020).

51The explosive initial growth is understood to be around twice (or more) the initial size of the bubble.
52T. Trummler, S. H. Bryngelson, K. Schmidmayer, S. J. Schmidt, T. Colonius, and N. A. Adams, “Near-surface dynamics

of a gas bubble collapsing above a crevice,” Journal of Fluid Mechanics 899, A16 (2020), arXiv:1912.07022.
53A. Philipp and W. Lauterborn, “Cavitation erosion by single laser- produced bubbles,” Journal of Fluid Mechanics 361,

75–116 (1998).
54S. Popinet and S. Zaleski, “Bubble collapse near a solid boundary: a numerical study of the influence of viscosity,” Journal

of Fluid Mechanics 464, 137–163 (2002).
55C. Lechner, W. Lauterborn, M. Koch, and R. Mettin, “Fast, thin jets from bubbles expanding and collapsing in extreme

vicinity to a solid boundary: A numerical study,” Physical Review Fluids 4, 1–7 (2019).
56T. Li, S. Wang, S. Li, and A. M. Zhang, “Numerical investigation of an underwater explosion bubble based on FVM and

VOF,” Applied Ocean Research 74, 49–58 (2018).
57S. T. Miller, H. Jasak, D. A. Boger, E. G. Paterson, and A. Nedungadi, “A pressure-based, compressible, two-phase flow

finite volume method for underwater explosions,” Computers and Fluids 87, 132–143 (2013).
58B. S. Mirjalili, S. S. Jain, and M. S. Dodd, “Interface-capturing methods for two-phase flows: An overview and recent

developments,” Center for Turbulence Research: Annual Research Briefs , 117–135 (2017).
59K. Schmidmayer, S. H. Bryngelson, and T. Colonius, “An assessment of multicomponent flow models and interface

capturing schemes for spherical bubble dynamics,” Journal of Computational Physics 402, 109080 (2020).
60S. Popinet and S. Zaleski, “A front-tracking algorithm for accurate representation of surface tension,” International Journal

for Numerical Methods in Fluids 30, 775–793 (1999).
61M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, “An Adaptive Level Set Approach

for Incompressible Two-Phase Flows,” Journal of Computational Physics 148, 81–124 (1999).
62M. Koch, C. Lechner, F. Reuter, K. Köhler, R. Mettin, and W. Lauterborn, “Numerical modeling of laser generated

cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM,” Computers and Fluids 126,
71–90 (2016).

63C. Lechner, M. Koch, W. Lauterborn, and R. Mettin, “Pressure and tension waves from bubble collapse near a solid
boundary: A numerical approach,” The Journal of the Acoustical Society of America 142, 3649–3659 (2017).

64Q. Zeng, S. R. Gonzalez-Avila, R. Dijkink, P. Koukovinis, M. Gavaises, and C. D. Ohl, “Wall shear stress from jetting
cavitation bubbles,” Journal of Fluid Mechanics 846, 341–355 (2018).

65B. Han, K. Köhler, K. Jungnickel, R. Mettin, W. Lauterborn, and A. Vogel, “Dynamics of laser-induced bubble pairs,”
Journal of Fluid Mechanics 771, 706–742 (2015).

66T. Li, A. M. Zhang, S. P. Wang, G. Q. Chen, and S. Li, “Nonlinear interaction and coalescence features of oscillating
bubble pairs: Experimental and numerical study,” Physics of Fluids 31, 092108 (2019).

67T. Li, A. M. Zhang, S. P. Wang, S. Li, and W. T. Liu, “Bubble interactions and bursting behaviors near a free surface,”
Physics of Fluids 31, 042104 (2019).

68Q. Zeng, S. R. Gonzalez-Avila, and C.-D. Ohl, “Splitting and jetting of cavitation bubbles in thin gaps,” Journal of Fluid
Mechanics 896, A28 (2020).

69T. Yamamoto, S.-I. Hatanaka, and S. V. Komarov, “Fragmentation of cavitation bubble in ultrasound field under small
pressure amplitude,” Ultrasonics Sonochemistry 58, 104684 (2019).

https://doi.org/10.1016/j.euromechflu.2018.05.003
https://doi.org/10.1016/j.euromechflu.2018.05.003
https://doi.org/10.1017/jfm.2011.212
https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.050
https://doi.org/10.1017/jfm.2012.526
https://doi.org/10.1063/5.0005048
https://doi.org/10.1103/PhysRevFluids.2.014301
https://doi.org/10.1103/PhysRevFluids.2.014301
https://doi.org/10.1016/j.ultras.2015.11.010
https://doi.org/10.1088/0031-9155/57/4/1019
https://doi.org/10.1088/0031-9155/57/4/1019
https://doi.org/10.1121/1.3646904
https://doi.org/10.1121/1.3646904
https://doi.org/10.1299/jfst.4.210
https://doi.org/10.1088/1873-7005/aad58a
https://doi.org/10.1088/1873-7005/aad58a
https://doi.org/10.1063/1.5084729
https://doi.org/10.3390/fluids5020069
https://doi.org/10.1017/jfm.2020.432
https://arxiv.org/abs/1912.07022
https://doi.org/10.1017/S002211200200856X
https://doi.org/10.1017/S002211200200856X
https://doi.org/10.1103/PhysRevFluids.4.021601
https://doi.org/10.1016/j.apor.2018.02.024
https://doi.org/10.1016/j.compfluid.2013.04.002
http://web.stanford.edu/{~}sjsuresh/mirjalili2017.pdf
https://doi.org/10.1016/j.jcp.2019.109080
https://doi.org/10.1002/(sici)1097-0363(19990730)30:6<775::aid-fld864>3.0.co;2-%23
https://doi.org/10.1002/(sici)1097-0363(19990730)30:6<775::aid-fld864>3.0.co;2-%23
https://doi.org/https://doi.org/10.1006/jcph.1998.6106
https://doi.org/10.1016/j.compfluid.2015.11.008
https://doi.org/10.1016/j.compfluid.2015.11.008
https://doi.org/10.1121/1.5017619
https://doi.org/10.1017/jfm.2018.286
https://doi.org/10.1017/jfm.2015.183
https://doi.org/10.1063/1.5121380
https://doi.org/10.1063/1.5088528
https://doi.org/10.1017/jfm.2020.356
https://doi.org/10.1017/jfm.2020.356
https://doi.org/10.1016/j.ultsonch.2019.104684


33

70T. Yamamoto and S. V. Komarov, “Liquid jet directionality and droplet behavior during emulsification of two liquids due
to acoustic cavitation,” Ultrasonics Sonochemistry 62, 104874 (2019).

71J. U. Brackbill, D. B. Kothe, and C. Zemach, “A Continuum Method for Modeling Surface Tension,” Journal of Compu-
tational Physics 100, 335–354 (1992).

72H. G. Weller, “A new approach to VOF-based interface capturing methods for incompressible and compressible flow,”
Tech. Rep. (OpenCFD, 2008).

73D. A. Hoang, V. van Steijn, L. M. Portela, M. T. Kreutzer, and C. R. Kleijn, “Benchmark numerical simulations of
segmented two-phase flows in microchannels using the Volume of Fluid method,” Computers and Fluids 86, 28–36 (2013).

74T. Yamamoto, Y. Okano, and S. Dost, “Validation of the S-CLSVOF method with the density-scaled balanced continuum
surface force model in multiphase systems coupled with thermocapillary flows,” International Journal for Numerical
Methods in Fluids 83, 223–244 (2017).

75K. J. Vachaparambil and K. E. Einarsrud, “Comparison of Surface Tension Models for the Volume of Fluid Method,”
Processes 7, 542 (2019).

76C. Lechner, W. Lauterborn, M. Koch, and R. Mettin, “Jet formation from bubbles near a solid boundary in a compressible
liquid: Numerical study of distance dependence,” Physical Review Fluids 5, 093604 (2020), arXiv:2005.05733.

77Multidimensional Universal Limiter for Explicit Solution.
78S. S. Deshpande, L. Anumolu, and M. F. Trujillo, “Evaluating the performance of the two-phase flow solver interFoam,”

Computational Science and Discovery 5, 014016 (2012).
79S. M. Damián, An Extended Mixture Model for the Simultaneous Treatment of Short and Long Scale Interfaces, Ph.D.

thesis, Universidad Nacional Del Litorla (2013).
80A. Georgoulas, M. Andredaki, and M. Marengo, “An Enhanced VOF Method Coupled with Heat Transfer and Phase

Change to Characterise Bubble Detachment in Saturated Pool Boiling,” Energies 10, 272 (2017).
81E. Teodori, P. Pontes, A. Moita, A. Georgoulas, M. Marengo, and A. Moreira, “Sensible Heat Transfer during Droplet

Cooling : Experimental and Numerical Analysis,” Energies 10, 790 (2017).
82J. Ross MacDonald, “Review of some experimental and analytical equations of state,” Reviews of Modern Physics 41,

316–349 (1969).
83I. Chakraborty, “Numerical modeling of the dynamics of bubble oscillations subjected to fast variations in the ambient

pressure with a coupled level set and volume of fluid method,” Physical Review E 99, 043107 (2019).
84T. G. Leighton, The Acoustic Bubble (Academic Press Limited, 1994).
85L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science 34, 94–98 (1917).
86C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, 1995).
87Mathworks, “MATLAB R2017a,”.
88J. Rodríguez-Rodríguez, A. Casado-Chacón, and D. Fuster, “Physics of Beer Tapping,” Physical Review Letters 113,

214501 (2014), arXiv:1403.2678.
89W. Lauterborn, C. Lechner, M. Koch, and R. Mettin, “Bubble models and real bubbles: Rayleigh and energy-deposit cases

in a Tait-compressible liquid,” IMA Journal of Applied Mathematics 83, 566–589 (2018).
90T. G. Leighton, “The inertial terms in equations of motion for bubbles in tubular vessels or between plates,” Journal of

Acoustical Society of America 130, 3333–3338 (2011).
91M. S. Plesset and R. B. Chapman, “Collapse of an initially spherical vapour cavity in the neighbourhood of a solid

boundary,” Journal of Fluid Mechanics 47, 283–290 (1971).
92E. Maisonhaute, C. Prado, P. C. White, and R. G. Compton, “Surface acoustic cavitation understood via nanosecond

electrochemistry. Part III: Shear stress in ultrasonic cleaning,” Ultrasonics Sonochemistry 9, 297–303 (2002).
93G. K. Batchelor, An introduction to fluid dynamics (Cambridge University Press, 1967).
94R. L. Panton, Incompressible Flow (Wiley, 1984).
95H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics (Longman Scientific & Technical,

1995).
96P. Koukouvinis, G. Strotos, Q. Zeng, S. R. Gonzalez-Avila, A. Theodorakakos, M. Gavaises, and C. D. Ohl, “Parametric

Investigations of the Induced Shear Stress by a Laser-Generated Bubble,” Langmuir 34, 6428–6442 (2018).
97B. Krasovitski and E. Kimmel, “Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall,” IEEE

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 51, 973–979 (2004).
98F. Reuter and R. Mettin, “Electrochemical wall shear rate microscopy of collapsing bubbles,” Physical Review Fluids 3,

25–31 (2018).
99R. H. Liu, J. Yang, M. Z. Pindera, M. Athavale, and P. Grodzinski, “Bubble-induced acoustic micromixing,” Lab on a

Chip 2, 151–157 (2002).
100D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped

microbubbles,” Microfluidics and Nanofluidics 7, 727–731 (2009).
101S.-W. Ohl and C.-D. Ohl, “Acoustic cavitation in a microchannel,” in Handbook of Ultrasonics and Sonochemistry

(Springer, 2016) pp. 99–135.
102E. Zwaan, S. Le Gac, K. Tsuji, and C.-D. Ohl, “Controlled Cavitation in Microfluidic Systems,” Physical Review Letters

98, 22–25 (2007).
103S. Li, A.-M. Zhang, and R. Han, “Letter : Counter-jet formation of an expanding bubble near a curved elastic boundary,”

Physics of Fluids 30, 121703 (2018).
104Q. Wang, M. Mahmud, J. Cui, W. R. Smith, and A. D. Walmsley, “Numerical investigation of bubble dynamics at a

corner,” Physics of Fluids 32, 053306 (2020).
105D. Kim and D. Kim, “Underwater bubble collapse on a ridge-patterned structure,” Physics of Fluids 32, 053312 (2020).
106B. Han, L. Liu, and N. Xiao-wu, “Investigation of the interaction dynamics of a pair of laser-induced bubbles gener-

https://doi.org/https://doi.org/ 10.1016/j.ultsonch.2019.104874
https://doi.org/10.1016/j.compfluid.2013.06.024
https://doi.org/10.1002/fld.4267
https://doi.org/10.1002/fld.4267
https://doi.org/10.3390/pr7080542
https://doi.org/10.1103/PhysRevFluids.5.093604
https://arxiv.org/abs/2005.05733
https://doi.org/10.1088/1749-4699/5/1/014016
https://doi.org/10.3390/en10030272
https://doi.org/10.3390/en10060790
https://doi.org/10.1103/RevModPhys.41.316
https://doi.org/10.1103/RevModPhys.41.316
https://doi.org/10.1103/PhysRevE.99.043107
https://doi.org/10.1080/14786440808635681
https://doi.org/10.1080/14786440808635681
https://doi.org/10.1103/PhysRevLett.113.214501
https://doi.org/10.1103/PhysRevLett.113.214501
https://arxiv.org/abs/1403.2678
https://doi.org/10.1093/imamat/hxy015
https://doi.org/10.1121/1.3638132
https://doi.org/10.1121/1.3638132
https://doi.org/10.1017/S0022112071001058
https://doi.org/10.1016/S1350-4177(02)00089-5
https://doi.org/10.1115/1.3169087
https://doi.org/10.1021/acs.langmuir.8b01274
https://doi.org/10.1109/TUFFC.2004.1324401
https://doi.org/10.1109/TUFFC.2004.1324401
https://doi.org/10.1103/PhysRevFluids.3.063601
https://doi.org/10.1103/PhysRevFluids.3.063601
https://doi.org/10.1039/b201952c
https://doi.org/10.1039/b201952c
https://doi.org/10.1007/s10404-009-0444-3
https://doi.org/10.1007/978-981-287-278-4
https://doi.org/10.1103/PhysRevLett.98.254501
https://doi.org/10.1103/PhysRevLett.98.254501
https://doi.org/10.1063/1.5081786
https://doi.org/10.1063/1.5140740
https://doi.org/10.1063/5.0006372


34

ated at the same time through double-exposure strobe method and numerical simulations,” Physics of Fluids 29 (2017),
10.1063/1.4997081.

107J. Mifsud, D. A. Lockerby, Y. M. Chung, and G. Jones, “Data for numerical simulation of a confined cavitating gas
bubble driven by ultrasound,” (2021), Warwick Research Archive Portal (WRAP), Dataset. http://wrap.warwick.
ac.uk/158721/.

https://doi.org/10.1063/1.4997081
https://doi.org/10.1063/1.4997081
http://wrap.warwick.ac.uk/158721/
http://wrap.warwick.ac.uk/158721/

	Numerical simulation of a confined cavitating gas bubble driven by ultrasound
	Abstract
	Introduction
	CFD Methodology
	Governing Equations
	Barotropic closure
	Standard Rayleigh-Plesset Model

	Model Verification and Validation
	Spherical bubble oscillation: Forced Rayleigh Collapse
	Boundary and initial conditions
	Meshing strategy
	Radius history and bubble shape

	Nonspherical bubble oscillation: Unforced collapse in a narrow gap
	Simulation setup
	Comparison with high-speed images


	Results: Confined acoustically-driven cavitation
	Simulation setup
	Modified Rayleigh-Plesset Model
	Collapse regimes
	Regime 1 – Symmetric splitting with dual-jet formation
	Regime 2 – Asymmetric splitting with dual-jet formation
	Regime 3 – Collapse onto nearest wall with a directed-jet

	Regime mapping
	Intensification of micro-jet velocity
	Wall shear stress footprint
	Symmetric - Regime 1
	Asymmetric - Regime 2
	Directed - Regime 3


	Discussion
	Conclusions
	Acknowledgments
	Author Declarations
	Data Availability
	Discretization schemes
	Identifying the acoustic forcing frequency
	 The initial bubble radius


