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Abstract: Grid-based schemes for simulating quantum dynamics, such as the multi-configuration
time-dependent Hartree (MCTDH) method, provide highly accurate predictions of the coupled
nuclear and electronic dynamics in molecular systems. Such approaches provide a multi-dimensional,
time-dependent view of the system wavefunction represented on a coordinate grid; in the case of
non-adiabatic simulations, additional information about the state populations adds a further layer of
complexity. As such, wavepacket motion on potential energy surfaces which couple many nuclear
and electronic degrees-of-freedom can be extremely challenging to analyse in order to extract physical
insight beyond the usual expectation-value picture. Here, we show that non-linear dimensionality
reduction (NLDR) methods, notably diffusion maps, can be adapted to extract information from grid-
based wavefunction dynamics simulations, providing insight into key nuclear motions which explain
the observed dynamics. This approach is demonstrated for 2-D and 9-D models of proton transfer
in salicylaldimine, as well as 8-D and full 12-D simulations of cis-trans isomerization in ethene; these
simulations demonstrate how NLDR can provide alternative views of wavefunction dynamics, and
also highlight future developments.

Keywords: quantum dynamics; MCTDH; diffusion maps

1. Introduction

Accurately simulating wavefunction evolution describing the coupled nuclear/electronic
dynamics of molecules following photo-excitation remains a frontier challenge in com-
putational chemistry; refs. [1–9] the computational expense associated with accurately
modelling excited state electronic structure, as well as that associated with representing
and propagating time-dependent wavefunctions, means that there remain opportunities
for algorithm development. Grid-based schemes in particular, where a time-dependent
wavefunction is generally represented as a series of complex values on a coordinate-grid,
broadly represent the most accurate strategy for modelling quantum molecular dynamics,
refs. [1,10–12] but pay the price of large computational expense for increasingly large system
sizes. Nevertheless, the extraordinary physical and chemical insight which can be gained
from these highly-accurate dynamics simulations, including photospectra, refs. [13–16]
relaxation rates, refs. [14,17] chemical reaction rates, refs. [18,19] reaction mechanisms and
more, refs. [20] means that they remain a highly active area of research.

The predominant grid-based time-dependent wavefunction propagation scheme for many-
dimensional systems is the multi-configuration time-dependent Hartree (MCTDH [2,6,21,22])
strategy and its multi-layer extensions [23–29]. Here, a time evolving wavefunction is rep-
resented as a sum of Hartree products of single particle functions (SPFs) which depend on
a small number (typically one or two) of nuclear degrees-of-freedom. The SPFs are them-
selves represented on an underlying discrete variable representation (DVR [1,30–33]); in other
words, the SPFs, and hence the full time evolving wavefunction, are ultimately represented on
a grid of points distributed in coordinate space. Most commonly, the coordinates describing
the system are taken to be vibrational normal mode coordinates derived from evaluation of
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the Hessian matrix at a minimum on the potential energy surface (PES), although alternative
internal coordinates have also been explored in quantum dynamics simulations [6]. Equations
governing the time evolution of the SPFs and the related expansion coefficients in the wave-
function approximation are obtained by direct application of the time-dependent variational
principle, refs. [34,35] yielding a coupled set of equations-of-motion which can be used to
propagate the multi-dimensional wavefunction. As well as modelling wavefunction evolu-
tion on a single Born-Oppenheimer electronic state, this scheme can be readily expanded to
account for non-adiabatic simulations on multiple electronic states (using either the single-set or
multi-set formulation [6]), enabling direct quantum dynamics simulations of molecular systems
following photoexcitation.

The power of MCTDH lies in the use of a time-dependent set of SPFs to represent
the terms in the overall sum of Hartree products. This time dependence, as well as the use
of the time-dependent variational principle, ensures that the SPFs are optimally adapted to
model the wavefunction dynamics, enabling smaller overall basis-set sizes when compared
to quantum dynamics methods using fixed basis-sets. However, it is worth noting two
important drawbacks of MCTDH. First is the typical requirement that the underlying
potential energy surfaces (PESs), on which the time-dependent wavefunction evolves,
be represented in a sum-of-products form; refs. [2,6,36] as shown below, the MCTDH
equations-of-motion demand that integrals over SPFs and the PES are performed in full
dimensionality, and the sum-of-products PES form ensures that these integrals can be
performed efficiently to enable propagation over significant time periods. Second, MCTDH
operates in the so-called diabatic representation, requiring that the PESs describing multiple
electronic states be diabatized before MCTDH propagation; while several schemes have
been demonstrated to achieve this diabatization, these are ultimately approximations
which should be carefully benchmarked [10,37–46].

In our own recent work, refs. [10–12,41,46–49] we have sought to address some of
the challenges of MCTDH (and other grid-based schemes). In particular, we have shown
how one can develop “on-the-fly” grid-based wavefunction propagation schemes in which
an underlying PES is automatically and iteratively generated in tandem with wavefunc-
tion evolution. Here, kernel ridge regression (KRR), refs. [50,51] in combination with
efficient sampling schemes, has been shown to be capable of automatically generating PESs
in the required sum-of-products form for MCTDH propagation, enabling so-called “direct
dynamics” simulations without the requirement of pre-fitting a PES. Subsequent work has
demonstrated how efficient many-body tensor decomposition schemes, as well as improved
additive kernel functions, can dramatically increase the computational efficiency of these
direct-dynamics strategies. Finally, we have also proposed novel diabatization strategies,
particularly focussed on commonly-used complete active-space (CAS) electronic structure
methods, which enable automated generation of diabatic states for MCTDH propagation.

However, while we have demonstrated that these direct MCTDH simulations can
be used to model (adiabatic and non-adiabatic) quantum dynamics in molecular systems
containing tens of nuclear degrees-of-freedom, we have similarly found that the challenge
of interpreting the outputs of such simulations increases with dimensionality. Most com-
monly, simple expectation values (e.g., position) for different nuclear degrees-of-freedom
are used to interpret molecular motion, as are flux-operator expectation values across differ-
ent reactive dividing surfaces; in non-adiabatic simulations, the diabatic state populations
provide a similarly visual representation of the underlying dynamics, allowing extraction of
approximate state lifetimes, for example. However, these strategies represent a first-order
view of the complex coupled nuclear/electronic dynamics, whereas the full time-dependent
wavefunction available in methods such as MCTDH provides a broader wealth of infor-
mation about interactions between, and the importance of, different degrees-of-freedom
at different stages of the emergent dynamics. As such, it is clear that alternative methods
to analyse and extract important features of wavefunction evolution are an essential, yet
often overlooked, part of general wavefunction propagation schemes.
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In this article, following previous work on analysis of trajectory-based quantum simu-
lations, ref. [52] we investigate how a non-linear dimensionality reduction (NLDR [53–57])
method, specifically diffusion maps (DMs [53,56]), can be adapted to provide insight into
the important nuclear degrees-of-freedom during grid-based wavefunction propagation.
NLDR methods such as DMs play an important role in analysing the outputs of simulations
of complex systems, often represented by large numbers of coupled degrees-of-freedom;
given a sequence of representative “snapshots” of a system’s state (for example, a sequence
of molecular structures, in the present context), NLDR schemes can be used to identify
a low-dimensional space (typically one or two coordinates) which capture the “essential”
features associated with the input configurations. As an example, in simulations of complex
protein folding processes or other biophysical organization phenomena, refs. [56,58] NLDR
methods enable identification of important reaction-coordinates which might not be im-
mediately obvious from simple time-series of individual atomic or molecular coordinates;
furthermore, the reduction from the (typically) enormous number of atomic coordinates
used in biophysical simulations to just a few key coordinates provides a further advantage
to analysis. Here, building on these previous demonstrations of the utility of NLDR in other
settings, we aim to investigate the use of NLDR in grid-based wavefunction propagation
schemes; in particular, our goal in this article is to assess the utility of DMs in extracting
important molecular motions from time-dependent wavefunctions as a route to ultimately
understanding photo-induced chemical reaction mechanisms, and we demonstrate this
approach in a series of grid-based simulations of multi-dimensional molecular systems.

The remainder of this article is organized as follows. First, we recap the important
aspects of our direct grid-based strategy for wavefunction propagation, highlighting the use
of KRR, tensor decomposition of the PES, and a novel diabatization scheme to enable
efficient multi-dimensional/multi-state molecular simulations. Second, we outline how
DMs can be adapted and applied to grid-based wavefunction simulation strategies. Third,
we demonstrate our overall simulation scheme, and the possibilities offered by DMs,
in large-scale simulations of salicylaldimine and ethene; notably, we perform the first direct,
full-dimensional (12-D, three electronic states) MCTDH simulations of ethene, and use
the DM NLDR strategy to compare our results to previous trajectory-based simulations of
the same system. Finally, we conclude by highlighting the scope for further improvements
in merging wavefunction propagation with NLDR schemes for analysis.

2. Materials and Methods

We begin by briefly outlining the direct grid-based schemes for wavefunction propaga-
tion which emerge by combining wavefunction evolution with automatic PES generation
using KRR. We then describe how diabatic states are obtained in our simulations, before fi-
nally describing how analysis using DMs can be adapted to the case of grid-based dynamics.

2.1. Grid-Based Dynamics Methods: The Standard Method

Before describing the diffusion map method, we first present brief summaries of
the grid-based dynamics methods to which this new implementation is applicable: the stan-
dard and multi-configuration time-dependent Hartree methods (SM and MCTDH respec-
tively), both of which have been described in detail previously. Ref. [6] In this section we
outline the SM, with the MCTDH being described in the next.

For a molecular system with f nuclear degrees-of-freedom (DOFs), the nuclear wave-
function is represented by a linear combination of products of time-independent basis
functions, each of which is weighted by a complex, time-dependent coefficient, Cj1,··· ,j f .
The basis functions used in this method are in the discrete variable representation (DVR),
ref. [6] which is a highly localised, orthonormal transformation of standard functions (sine,
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harmonic oscillator eigenfunctions etc.,) the products of which form a grid in configuration
space. On an electronic state, s, the evolving wavepacket has the form

Ψ(s)(q1, · · · , q f , t) =
N1

∑
j1=1
· · ·

N f

∑
j f =1

C(s)
j1,··· ,j f

(t)
f

∏
κ=1

χ
(κ)
jκ (qκ)

= ∑
J

C(s)
J (t)XJ(q),

(1)

where we introduce a compound index, J = j1, · · · , j f , to simplify notation. For a system of
Ns orthonormal electronic states, the total wavefunction is

|Ψ〉 =
Ns

∑
s=1
|Ψ(s)〉|s〉. (2)

Assuming a total Hamiltonian (describing Ns coupled electronic states) of the follow-
ing general form:

Ĥ =
Ns

∑
su
|s〉Ĥ(su)〈u|, (3)

we can then derive a set coupled equations-of-motion (EOMs), using the Dirac-Frenkel
variational principle, refs. [59,60] for the expansion coefficients:

ih̄Ċ(s)
J =

Ns

∑
u=1

∑
L
〈XJ |Ĥ(su)|XL〉C

(u)
L . (4)

Numerical integration of these EOMs, given some well-chosen initial wavefunction,
gives a solution to the coupled nuclear/electronic TDSE. With an appropriate choice
of DVR functions, and given a sufficiently large number of DVR functions, the time
evolution of the wavepacket can be made numerically exact for the given initial conditions
and Hamiltonian.

2.2. Grid-Based Dynamics Methods: MCTDH

Because of the exponential scaling of the computational effort of the SM, we are limited
in practice to studying systems of about five DOFs or fewer. To overcome this constraint,
the MCTDH method was developed. The key advance in MCTDH is the use of a sum-
of-products of time-dependent basis functions (i.e., SPFs) rather than a time-independent
basis, with each product term also having its own time-dependent coefficient. The MCTDH
wavefunction ansatz is thus:

Ψ(s)(Q1, · · · , Q f , t)

=
n1

∑
j1

· · ·
nm

∑
jm

A(s)
j1,··· ,jm(t)

m

∏
κ=1

ϕ
(s,κ)
jκ (Qκ , t)

= ∑
J

A(s)
J (t)Φ(s)

J (Q, t),

(5)

with A(s)
j1,··· ,jm(t) being the coefficients, and ϕ

(s,κ)
jκ (Qκ , t) the jκ-th SPF on the sth electronic

state which is a function of a mode which is a subset of the DOFs in question Qκ =
(qκ1 , · · · , qκp) (a single SPF describes one or a few DOFs [2,6,21]). For compactness, we
again use the compound index J = j1, · · · , jm.



Molecules 2021, 26, 7418 5 of 31

As with the SM, EOMs are derived from the MCTDH ansatz using the Dirac-Frenkel
variational principle, giving EOMs for both the coefficients and the SPFs, respectively, as
follows:

ih̄Ȧ(s)
J =

Ns

∑
u

∑
L
〈Φ(s)

J |Ĥ
(su)|Φ(u)

L 〉A
(u)
L , (6)

and

ih̄ϕ̇(s,κ) =
(

1− P̂(s,κ)
)(

ρ(s,κ)
)−1 Ns

∑
u
〈Ĥ(su)〉(κ)ϕ(u,κ). (7)

Here, we define the following: 1nκ is the unit matrix; P̂(s,κ) is a projector onto the SPF

space along mode κ; ĥ(κ,s) are the one-dimensional (1D) operators; and
(

ρ(s,κ)
)−1

is the den-
sity matrix inverse associated with κ. We can construct a Hartree product of SPFs in all
modes excluding the κth to give a function, Φ(s)

Jκ , from which we can build a set of single-

hole functions, Ψ(s,κ)
l = ∑Jκ A(s)

Jκ
l

Φ(s)
Jκ , which are then used to construct a mean-field matrix

with elements 〈Ĥ(su)〉(κ)jl =〈Ψ(s,κ)
j |Ĥ(su)|Ψ(u,κ)

l 〉.
To integrate the SPF EOMs (Equation (7)), the SPFs are expanded as sums-of-products

of DVR basis functions along each of the κp DOFs described by Qκ i.e.,

ϕ
(s,κ)
jκ (Qκ , t) =

Nκ

∑
iκ

c(s,κ,jκ)
iκ (t)X(κ)

iκ (Qκ), (8)

where X(κ)
iκ (Qκ) is the iκ-th basis function for mode Qκ ; a direct product of the DVR bases

along those DOFs.
Even though the computational effort of MCTDH ultimately scales exponentially

in the number of DOFs, the use of time-dependent SPFs allows the dimensionality of
the basis to be kept optimally small, reducing the base of the scaling exponential. As a result
a few tens of DOFs can be studied with MCTDH [6].

2.3. Procrustes Diabatization

In this article, we will consider systems evolving on multiple electronic states. As de-
scribed below, our grid-based direct-dynamics strategy constructs PES functions “on-the-
fly”, concurrent with the propagation of the nuclear wavepacket, using the output from
electronic structure codes (in our case Molpro [61]). The energies and states produced
by such codes are in the so-called adiabatic representation, where the electronic states
are ordered by increasing energy at a given nuclear configuration. However, at points
where two states, i and j, are degenerate i.e., the respective energies, VA

ii and VA
jj , are equal,

the non-adiabatic coupling terms (NACTs) between them,

Fij =
〈ψi|∇Ĥel |ψj〉

VA
jj −VA

ii
, (9)

diverge and the gradients of the states with respect to the nuclear geometry are discontinu-
ous. It is difficult to fit such surfaces (and also difficult to deal with discontinuous coupling
terms) using a small number of smooth functions, so we transform the states to the diabatic
representation (strictly, the quasi-diabatic representation as we do not have an infinite set
of states, but we will use the shorter terminology for compactness) by finding a geometry-
dependent, unitary transformation of the states which minimises the NACTs and smooths
the PESs. The result is set of crossing surfaces interacting via finite, potential-like diabatic
coupling terms, which can be efficiently fit using smooth functions.

There are many ways to diabatise electronic states, but the method we use here,
enabling diabatisation on the fly, is Procrustes diabatisation. We have described this
method in detail previously, refs. [12,46] but the general idea is to take the diabatic states,
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{|ΨD
i (q)〉} at a geometry, represented by the coordinates q, near to the one of interest,

q + ∆q, where we have the adiabatic states {|ΨA
i (q + ∆q)〉}, and overlap them to give

a matrix Sij = 〈ΨD
i (q)|ΨA

j (q + ∆q)〉. The orthogonal Procrustes method is then used
to find the orthogonal matrix, A(q + ∆q), which transforms S to be a close as possible
to the unit matrix. In this way the resulting diabatic states at geometries throughout
configuration space maintain their ’character’. The resulting matrix, A, is used to transform
the diagonal, adiabatic energy matrix to the diabatic representation:

VD(q) = AT(q)VA(q)A(q). (10)

There is a constant global phase in the transformation matrix, which means that we
can set {|ΨD

i (q0)〉} = {|ΨA
i (q0)〉} at the reference geometry, q0, (chosen to be the location

of the centre of the initial wavepacket here), and hence A(q0) = I. By moving outwards
from q0 we can diabatise states at geometries of increasing distance from the reference
point, hence we end up with diabatic energies and couplings everywhere.

2.4. Machine-Learning PESs for Grid-Based Wavefunction Propagation

In grid-based wavefunction propagation schemes, such as MCTDH, a typical re-
quirement is that the diabatic energies and coupling are fit to a set of appropriate func-
tions, giving a PES on which the nuclear wavepacket propagates. This requirement of
pre-fitting diabatic states and couplings is a well-known hurdle to achieving “on the
fly”, or direct-dynamics, simulations. In our recent work, described in detail previously,
refs. [10,11,41,47,49] we have developed a grid-based direct-dynamics scheme which uses
kernel ridge regression (KRR) as the underlying regression tool; we give a brief summary
of it here.

Given a set of M geometries represented by coordinates, {ql}, where we know the di-
abatic energies and couplings (we will say more about coordinates, and about how this set
is created, later), we define a kernel function along each DOF λ as:

k(qλ, ql
λ) = e−αλ(qλ−ql

λ)
2
. (11)

This function is centred at ql
λ, and its width is controlled by the real parameter αλ.

For low-dimensional problems ( f ≤ 3) we form a full product kernel from the 1D
kernel in Equation (11),

kFull(q, ql) =
f

∏
λ=1

k(qλ, ql
λ), (12)

and for larger systems with f > 4, an additive kernel which couples up to two DOFs,
is used,

kAdd(q, ql) =
f

∑
λ=1

k(qλ, ql
λ) +

f

∑
λ<µ

k(qλ, ql
λ)k(qµ, ql

µ). (13)

We have discussed the reasons for using the different kernels previously [49].
The subsequent calculations and reasoning hold for the kernels in Equations (12) and (13)

so we use k(q, qi) to represent both for clarity. For electronic states s and u, the diabatic energies
(s = u) and coupling (s 6= u) are represented as

VKRR
(su) (q) ≈

M

∑
l=1

w(su)
l k(q, ql), (14)

where the lth kernel has a weight w(su)
l , determined by solving (using Cholesky decomposi-

tion), the matrix equation
Kwsu = bsu. (15)



Molecules 2021, 26, 7418 7 of 31

Here, wsu is the vector containing the weights, and the elements of b are

b(su)
i = V(su)(qi). (16)

The matrix K is the covariance matrix with elements [50]

Kmn = k(qm, qn) + γ2δmn, (17)

with γ2 (set to 10−8 in our case) used to regularize the equations.
To determine which points to sample and include in the set of energies/couplings,

used to generate the PESs in Equation (14), we periodically sample a given number of
coordinates around the wavepacket centre (within three wavepacket widths along each
DOF) on each state at the current propagation time using Sobol sequences [41,62–64].
In deciding whether to add the sampled points q to the current set of energies/couplings,
the variance function, ref. [50]

σ2(q) = k(q, q) + γ2 − kTK−1k (18)

is calculated, where ki = k(q, qi). This function represents an estimate of the error in the cur-
rent PES at the selected point; if the calculated variance is greater than a pre-defined input
parameter, the selected point is added to the list of reference points for Equation (14),
and the weights are updated accordingly. If the calculated variance is less than the thresh-
old value, the current fit of the PESs at q is deemed sufficiently accurate and the point is
not considered further, without having to calculate the energies and couplings at this con-
figuration. In this way the PES is automatically sampled in regions where the wavepacket
moves, building up a database of energies and couplings as the propagation progresses,
hence improving the fit of the PESs as time moves on.

Although KRR can generate accurate PES representations for quantum dynamics,
the number of terms in the PES expansion means it can be inefficient to evaluate the MCTDH
EOMs (Equations (6) and (7)); as such, a further approximation is required. In passing, we
note that no such problem exists for the SM, so the raw KRR PESs are used in this case.
To improve efficiency of MCTDH calculations, a secondary fitting procedure decomposes
the KRR PESs into terms of one and two dimensions [49]. Briefly, to obtain the 1D terms,
the KRR PESs are simply evaluated at the locations of the DVR gridpoints along each
DOF (all other coordinates being set to 0), the value of the relevant PES at the origin being
subtracted from all but one of the DOFs to avoid double counting. The result is a set of f
vectors, {Vλ(ql

λ)}, for each diabatic state and interstate couplings.
To construct the 2D terms, which couple wavepacket motion between each pair of

DOFs, we consider each pair in turn and form a grid from the DVRs along each (all other
coordinates set to 0); at each point, we calculate the Nλ × Nµ residue matrix (where Nλ and
Nµ are the numbers of DVR points along each DOF, λ and µ):

Vλµ(ql
λ, qm

µ ) = VKRR(ql
λ, qm

µ )−Vλ(ql
λ)−Vµ(qm

µ )−VKRR(0). (19)

A singular value decomposition (SVD) is then used to reduce this matrix as

Vλµ(ql
λ, qm

µ ) =
min(Nλ ,Nµ)

∑
j=1

σj ul j wmj (20)

and thus to a sum of outer-products of vectors along each of the two DOFs

Vλµ =
min(Nλ ,Nµ)

∑
j=1

Vλµ

λ(j) ⊗Vλµ

µ(j) (21)
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where Vλµ

λ(j)(q
l
λ) =

√
σjul j and Vλµ

µ(j)(q
m
µ ) =

√
σjwmj. This PES decomposition is in the sum-

of-products form, as required for MCTDH, with many fewer terms than the original KRR
fit, hence increasing computational efficiency.

We do not necessarily include all terms from the SVD as some may be insignificant,
adding little to the accuracy of the fit whilst increasing computational effort, so by defining

||R|| =
min(Nλ ,Nµ)

∑
j=n+1

σ2
j . (22)

with the singular values in decreasing order, we only include n terms such that ||R|| is
below a pre-defined accuracy parameter (here taken to be 10−3).

2.5. Diffusion Maps for Grid-Based Dynamics

With an outline of our KRR-based direct-dynamics scheme using grid-based propa-
gation, we now turn to the new aspect studied in this article, namely the integration of
NLDR, specifically using DMs, to analyse grid-based wavefunction dynamics.

To analyse grid-based dynamics calculations using DMs, we have implemented a new
analysis program, diffmap, within the Quantics package [65] which can post-process
the results of both SM and MCTDH propagations, irrespective of whether the PESs have
been pre-fitted or constructed on-the-fly. The first requirement, of course, is the wave-
function resulting from such a calculation which may involve propagation on one or
more electronic states, and which is stored as a set of wavefunctions at T pre-determined
time-intervals i.e., {Ψ(tn), n = 1, . . . , T}.

When analysing the wavepacket with diffmap there are several parameters which
must be chosen before running the program (although defaults are provided); these will
be described as they arise in the following, but the first is the state of interest (in other
words, although the wavepacket may evolve on multiple coupled states, our DM analysis is
performed on a per state basis). We must also choose the parameters to control wavepacket
sampling, specifically which of the time-ordered set of individual wavefunctions are
sampled. Currently, diffmap provides options to: (i) skip some of the initial timesteps,
and (ii) sample from every nth timestep. Because we may expect the wavefunction to
change relatively little between consecutive timesteps, sampling every timestep adds
little insight, but increases computational effort. Finally, diffmap also requires the user
to specify how many geometries are sampled at each timestep, Nsamp. Typically, we
are only interested in sampling regions of high wavepacket density to see the general
motion of the wavepacket, so we need to know the density at the selected geometries so
as to determine whether to keep or discard sample points in DM analysis. Furthermore,
because we are performing dynamics on a DVR grid, it is only possible to calculate
the density at these gridpoints, hence we only sample geometries corresponding to DVR
gridpoints when performing DM analysis.

The first step in the DM analysis performed by diffmap is the sampling of the grid-
points populated by the wavepacket at the current chosen timestep; the same procedure
is carried out for each of the selected timesteps. For the wavefunction at time, tn, which
is a function of F active DOFs, q = (q1, . . . , qF), i.e., Ψ(q, tn), we first locate the cen-
tre and width of the wavepacket along each DOF, q f , calculating 〈q f 〉 = 〈Ψ|q̂ f |Ψ〉 and

〈δq f 〉 =
√
〈q2

f 〉 − 〈q f 〉2, respectively. The DVR gridpoint nearest to the centre is noted as

are the first gridpoints beyond 〈q f 〉 ± 3〈δq f 〉 (or the terminal gridpoint if three widths of
the wavefunction from the centre extends beyond the limit of the grid). These two outer
gridpoints then define the range in which sampling takes place; by repeating for all F DOFs,
we describe a hypercuboid encapsulating the wavefunction, in which the sampling occurs.

The first sampled gridpoint is that closest to the wavepacket centre, q0, where we
evaluate the density, ρ0 =

√
〈Ψ(q0, tn)|Ψ(q0, tn)〉. This value is used to determine which

of the subsequently sampled gridpoints are retained and which are discarded. A user-
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provided parameter, βmin, determines that gridpoints, q, where ρ =
√
〈Ψ(q, tn)|Ψ(q, tn)〉 ≥

βminρ0 are retained when sampled, while those that do not fulfil this condition are dis-
carded. In this way we sample regions of relatively high wavefunction density only.
The gridpoints sampled are chosen by using Sobol sequences along each DOF to find each
q f (and hence q). The Sobol sequence gives a quasi-random number between 0 and 1,
whilst the domain between 0 and 1 is partitioned equally into a number of segments equal
to the number of gridpoints in the sampling region along the current DOF; the number
given by the Sobol procedure is in one of these segments, hence giving the gridpoint
selected. We use this sampling scheme, rather than checking all gridpoints q, as it is quite
possible for the number of combinations of q to grow very large, potentially exceeding
the integer overflow range. The process of selecting gridpoints using a Sobol sequence,
then checking the wavepacket density to determine whether to save or discard the point,
continues until we have saved the pre-defined number of points. From a practical view-
point, we have found that it may be necessary to reduce either Nsamp or βmin to speed up
the sampling, or if there are insufficient points with large wavefunction density within
the sampling region.

Once the sampling of gridpoints has been completed for all chosen timesteps, DM
analysis proceeds by examining the eigenvectors of a diffusion operator defined as fol-
lows. First, for all sampled gridpoints (noting that all points sampled at all timesteps are
compared in a single set), we form the kernel array

kij = exp
(
−
|qi − qj|

D

)2

, (23)

where D is a user-defined parameter which moderates the correlation between distant
points. We note that Euclidean distances between the gridpoints are used; in this work
we use mass-frequency scaled normal modes as coordinates. Within the direct-dynamics
method using this coordinate system, where electronic structure calculations are performed
on-the-fly, all molecular geometries are in the same Eckart frame defined by the normal
modes at the reference geometry, hence bringing the geometries into maximum coincidence.

Next, we calculate a normalisation vector

vi =
Nsamp

∑
j=1

kij, (24)

and a re-normalisation vector

Zi =
Nsamp

∑
j=1

kij

(vivj)α
, (25)

from which we construct the diffusion operator as

a(qi, qj) =
1
Zi

kij

(vivj)α
. (26)

In these latter two equations, the user-provided parameter, α, defines the diffusion
model in use: α = 0 gives Laplacian diffusion, α = 1/2 is an approximation to the back-
ward Fokker-Planck operator, and α = 1 approximates Laplace-Beltrami heat diffusion.
Following Virshup et al. [52] we use α = 1 here, as this results in a diffusion map which is
invariant to the density of the sampled points.

Finally, the eigenvectors of the matrix a (Equation (26)) with the six lowest-value
eigenvalues are found using the implicitly-restarted Arnoldi method as implemented
in the ARPACK package [66]. The eigenvectors are Nsamp-dimensional, each component
representing the coordinate of the corresponding sampled gridpoint within the reduced
dimensionality space given by the selected eigenvector. The eigenvector with the largest
eigenvalue (of 1) with all components equal is ignored, as it simply shows that all points are
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part of a single cluster. By examining the eigenvalues of the second to sixth eigenvectors, we
look for a large step in the eigenvalues; the eigenvectors before this jump are the dominant
ones which determine the dimension of the reduced space. Using the sampled grid-points,
the wavefunction dynamics within the reduced dimensional space can then be studied,
enabling identification of important DOFs.

The above methodology, implemented in diffmap, enables DM analysis to be per-
formed for grid-based wavefunction dynamics, implemented in Quantics using SM and
MCTDH. In the following section, we illustrate the utility of this scheme by studying
the adiabatic and non-adiabatic dynamics of many-dimensional molecular systems.

3. Results

To test our implementation of the DM method for grid-based nuclear dynamics we
will focus on two representative examples: (i) the ground-state proton transfer dynamics
in salicylaldimine (using 2D and 9D models), and (ii) the excited state cis-trans isomerisation
of ethene (using 8D and 12D models).

3.1. Dynamics of Salicylaldimine

First, we analyse dynamics calculations on the ground-state proton transfer in salicy-
laldimine. We and others [67] have studied this reaction previously, and so have a good
idea of the important motions involved in the dynamics; as a result, this is an ideal system
on which to test the DM method.

We have carried out a series of dynamics calculations with an increasing number of
DOFs included in order to evaluate whether the DM analysis can sufficiently reveal the key
underlying molecular motions associated with the emergent dynamics. In all calculations
we used the VCHAM-fitted potential of Polyak et al. [67] either directly in standard
grid-based calculations or to evaluate individual energy values when performing direct-
dynamics/grid-based (DD-GB) calculations using KRR. These dynamics calculations all
used mass-frequency scaled normal modes as the coordinate system, the normal modes
having been calculated at the location of the proton transfer transition state. In Table 1 we
present the modes, along with details of the DVR bases and initial wavepacket conditions
along each mode used in all of the subsequent calculations.

Table 1. Details of the normal modes, discrete variable representation (DVR) bases and initial wavepacket conditions used
in the salicylaldimine calculations. (a) Frequencies of the normal modes calculated at the proton transfer transition state.
Ref. [67] (b) Type of underlying basis functions used to generate the DVR bases: sine denotes eigenfunctions of the 1D
particle-in-a-box and HO refers to the eigenfunctions of the harmonic oscillator problem. (c) The number of DVR gridpoints
for each mode. (d) Locations of the initial and final DVR gridpoints along each mode. Note that the sine DVR gridpoints are
evenly spaced whilst the HO points are not, being more concentrated towards the origin. (e) Coordinate of the centre of
the initial wavepacket. (f) Width of the initial wavepacket.

Mode Freq. a/cm−1 DVR b No. DVR c DVR Domain d WP Centre e WP Width f

1A’ 1512.48i sine 101 [−10,10] 0.96 0.5706
5A” 423.75 HO 21 [−5.55,5.55] 0 0.7409
7A’ 535.89 HO 21 [−5.55,5.55] 0 0.7150
9A’ 630.30 HO 21 [−5.55,5.55] 0 0.7115

10A’ 639.60 HO 21 [−5.55,5.55] 0 0.7745
11A’ 791.82 HO 21 [−5.55,5.55] 0 0.7590
13A’ 847.13 HO 21 [−5.55,5.55] 0 0.6902
32A’ 1662.73 HO 21 [−5.55,5.55] 0 0.6707
36A’ 2175.61 HO 21 [−5.55,5.55] 0.14 0.7704
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3.1.1. 2D Salicylaldimine

As a first test of the DM method we performed 2D calculations using modes 1A’ and
36A’; these modes are the imaginary frequency mode representing the motion of the proton
between the N and O atoms, and the in-plane bending mode of the same proton respectively.
This calculation was a ‘direct-dynamics’ SM propagation (DD-SM) in which KRR is used
to generate the PESs but the SM is used for wavefunction propagation. The calculations
used full kernel KRR (Equation (12)) with α = 0.02 along both modes; 300 gridpoints were
sampled every 1 fs (within three widths of the current wavepacket centre). Points were
added to the database of energies if the calculated variance (Equation (18)) was greater
than 10−6. The wavepacket was propagated for a total of 100 fs using the default short-
iterative Lanczos integrator in Quantics. The results were compared to standard grid-based
dynamics on the full PES to ensure that the sampling and kernel width reproduced the full
PES (and dynamics) accurately. In our KRR-based simulations, a total of 41 gridpoints
were ultimately used to construct the KRR database.

Subsequently, we analysed the wavepacket using the DM method. To construct
the DM, 10 gridpoints were sampled every 20 fs, with βmin = 0.2. In total, this gave a sam-
ple set of 60 gridpoints. Furthermore, we used D = 2 in Equation (23) for the DM analysis.

The largest (non-trivial) eigenvalues of the diffusion operator were 0.630, 0.364 and
0.286. Following Virshup et al. [52] we note that there is a large drop between the first
and second greatest eigenvalues, which indicates that the motion is well-described by
the first non-trivial eigenvector. As such, in Figure 1 we present plots of the normal mode
coordinates as functions of the associated diffusion coordinate (given by the elements of
the eigenvector). Figure 1a gives the plot of the mode 1A’ coordinate against the diffusion
coordinate, whilst Figure 1 shows the same plot using mode 36A’ coordinates. Note that
different symbols are used for points sampled at different times.
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Figure 1. Sampled normal mode coordinates of salicylaldimine plotted as functions of the diffusion
coordinate: (a) Mode 1A’; (b) Mode 36A’. In both cases data points are labelled according to the sample
time; gridpoints were sampled every 20 fs during the dynamics.

The main point to note is the difference in the correlation between the normal mode
and diffusion coordinates; there is strong correlation between the 1A’ normal mode and
the diffusion coordinate, whilst there is little correlation between the 36A’ mode and
the diffusion coordinate. This indicates that the dynamics is dominated by motion along
the 1A’ mode while movement along the bending mode contributes much less to the overall
motion; this is exactly what we would expect because the normal modes were calculated
at the peak of the transition barrier which separates the PES minima at the keto and enol
tautomer geometries. With the initial wavepacket starting on the enol side of the barrier
(but not at the minimum), there is tunnelling motion to the keto side along the 1A’ mode,
followed by motion back and forth, through and across the barrier. The bending mode
acts more as a bath with relatively uncorrelated motion i.e., the wavepacket spreads along
the mode during propagation rather than contributing to the overall motion.
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The motion of the wavepacket is even clearer when considering Figures S1 and S2
in the Supplementary Materials, where the data in Figure 1a,b, respectively, are represented
in a form where each sample time is allocated its own plot. In Figure S1 we see that, at 0 fs,
the wavepacket is sampled at normal mode coordinates between −0.5 and 2.5, whilst after
20 fs the sampled points are located between −0.5 and 3.0. After this time the sampled
points begin to be found with normal mode coordinates as low as−2.0 (diffusion coordinate
slightly greater than −0.3) indicating motion across the potential barrier, along mode 1A’,
as expected. Looking at Figure S2 we see that the sampled normal mode coordinates
do not change greatly over time; the diffusion coordinate changes with time but each of
those coordinates corresponds to a similar range of the normal mode coordinates, mainly
between −1 and 3 (the only outliers being found at 40 fs where the range extends to
a normal mode coordinate of −2), reflecting the lack of correlation between mode 36A’ and
the diffusion coordinate.

As a further illustration of the nature of the diffusion coordinate, we present the plots
in Figure 2, which show the overlaid geometries of salicylaldimine, sampled during
the diffusion map analysis and grouped according to their associated diffusion coordinate,
θ2 (ignoring the time-labelling of configurations). In Figure 2a, we show geometries with
−0.3 < θ2 < −0.2 and it is clear to see that all of the geometries can be characterised as keto
tautomers, with the tunnelling hydrogen bonded to the nitrogen atom (blue). Moving to
increasing values of θ2 we see from Figure 2b,e, which represent geometries with diffusion
coordinates of, respectively, −0.2 ≥ θ2 < −0.1, −0.1 ≥ θ2 < 0.0, 0.0 ≥ θ2 < 0.1 and
0.1 ≥ θ2 < 0.2, that the hydrogen atom moves across to the oxygen atom (red) to give
the imine tautomer. In all of the plots the geometries are quite tightly clustered together
which indicates that the reaction path is fairly narrow i.e., that θ2 is the dominant variable
within the dynamics. This width is associated with motion in the 36A’ bending mode,
which, as we have seen in Figure 1b is poorly correlated with the overall reaction.

(a) (b)

(c) (d)

(e)

Figure 2. Sampled geometries of salicylaldimine grouped according to their associated diffusion
coordinate, θ2: (a) −0.3 < θ2 < −0.2; (b) −0.2 ≤ θ2 < −0.1; (c) −0.1 ≤ θ2 < 0.0; (d) 0.0 ≤ θ2 < 0.1;
(e) 0.1 ≤ θ2 < 0.2.
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It may be worth saying something here about the choice of parameters in the analysis,
particularly the density threshold coefficient, βmin, (here set to 0.2) and the kernel scaling
parameter, D. First, if the density threshold, βmin is too large, then the sampling of grid-
points inevitably slows down because more points have to be checked before the required
number of points (those with sufficiently high density) are located. We have re-analysed
the wavepacket propagation using various values of βmin (keeping all other parameters as
used in the original analysis) and the results are presented in Table 2. In this case the cal-
culation took less than 1 s in all cases so the slowdown was negligible, but can become
significant for larger systems where calculation of the density at each gridpoint takes longer
(in MCTDH calculations the density is evaluated by combining the potentially numerous
SPF and wavefunction expansion coefficients).

Examining the results in Table 2 we see that the largest non-trivial eigenvalues in-
creased when the density threshold βmin is decreased. We also see that, of the values
tested, the largest proportional spectral gap was found when βmin = 0.2, meaning that
the decomposition of the dynamics into a single mode is most obvious when βmin = 0.2
because the first non-trivial eigenvector most clearly dominates.

Table 2. Effect on the largest non-trivial diffusion operator eigenvalues of increasing βmin, the density
threshold coefficient. ε2 is the largest non-trivial eigenvalue and ε3 is the second largest. The kernel
distance scaling parameter was D = 2 in all cases and the number of required gridpoint samples at
each timestep was 10.

βmin ε2 ε3 ε3/ε2

0.1 0.640975 0.535722 0.836
0.2 0.629970 0.364329 0.578
0.3 0.388341 0.341085 0.878
0.5 0.235725 0.153087 0.649
0.8 0.115689 0.083850 0.725

Next we consider the effect of changing the kernel distance parameter, D. In Table 3 we
present results for the two largest, non-trivial eigenvalues using different values of D; in all
cases, βmin = 0.2 and all other parameters are the same as for the original analysis above.
From this Table we see that the eigenvalues increase as D decreases, but the proportional
gap between them decreases (aside from small rises when D is very large). If D = 0.5 or
D = 1 then there is not a significant spectral gap between the two non-trivial eigenvalues,
indicating that the analysis has failed to find a single dominant mode to characterise
the dynamics, in contrast to those analyses using larger values of D. In both cases D = 0.5
and D = 1, there are also no significant gaps between successive eigenvalues up to ε6 at
least (only these six eigenvalues are reported), so the dimensionality reduction appears
to have failed. Furthermore, for D = 0.5 we note that the first eigenvalue, ε1, is no longer
equal to one as it is in all other cases, indicating that the diffusion operator is no longer
producing a trivial first eigenvector. Furthermore, in this case we also find that the plots
of each normal mode coordinate against the diffusion coordinate no longer resembles
those in Figure 1; the correlation between the diffusion coordinate and the 1A’ normal
mode is lost. Virshup et al. [52] noted that D should be large enough that discretisation
effects are smoothed out but small enough not to obscure large scale features. Our brief
analysis of the D parameter here supports this; D ≥ 2 seems to be reasonable in the 2D
salicylaldimine case. We should note that the PES here is fairly simple, being an asymmetric
double well in two dimensions, so using a large value of D causes no issues; the largest
eigenvalues decrease but the proportional spectral gap stays large and the correlation
between the diffusion coordinate and the 1A’ normal mode is still clear (as is the lack of
correlation with mode 36A’), even when D = 100.
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Table 3. Effect of increasing D on the largest non-trivial diffusion operator. Here, ε2 is the largest
non-trivial eigenvalue and ε3 the second largest. The density threshold coefficient, βmin, was 0.2
in all cases and the number of required gridpoint samples at each timestep was 10.

D ε2 ε3 ε3/ε2

0.5 0.987008 0.980774 0.994
1 0.923951 0.836574 0.905
2 0.629970 0.364329 0.578
3 0.351864 0.171568 0.488
5 0.134912 0.062413 0.463

10 0.033891 0.015604 0.460
20 0.008463 0.003900 0.460
50 0.001353 0.000624 0.461

100 0.000338 0.000156 0.462

3.1.2. 9D Salicylaldimine

Moving on to a more complex system, we consider 9D MCTDH calculations for
salicylaldimine. In this case we use the DVRs and initial wavefunction conditions as
outlined in Table 1, but here we use the following combinations of normal modes: {1A’};
{32A’,36A’}; {5A’,7A’}; {9A’,10A’}; {11A’,13A”}. Here the notation {mode a, mode b} indicates
that the enclosed normal modes are treated as a single combined mode i.e., they are
represented by 2D SPFs in the MCTDH equations-of-motion; for all five combined modes 6
SPFs were used. The wavepacket propagation was run for 100 fs using the default Adams-
Bashforth-Moulton (ABM) integrator in the Quantics package. To represent the PES we
used KRR, sampling energies from the Polyak potential. Every 1 fs 103 coordinates were
sampled, with energies being added to the database if the KRR variance at the sampled
point exceeded 10−3. The 2D additive kernel (Equation (13)) was used to fit the PES
using α = 0.02 along each DOF. A secondary SVD fitting was performed on the KRR
PES, with sufficient 2D terms being retained to ensure the residue ||R|| was less than 10−3

(Equation (22)).
After wavepacket propagation, time-dependent wavefunctions were analysed by DM,

using a kernel scaling parameter of D = 3 and a sampling threshold with βmin = 0.2.
20 gridpoints were sampled every 10 fs. The first three non-trivial eigenvalues were
0.476372, 0.176858 and 0.161721, giving a spectral gap ratio of 0.371 between the first and
second eigenvectors, suggesting that the 9D dynamics can be reduced to a single, dominant
mode. The eigenvector with the largest eigenvalue defines the diffusion coordinate, θ2.

In Figure 3 we plot the normal mode coordinates of the sampled points against
the diffusion coordinate θ2, with points coloured according to their sample time. From these
nine plots we see that the clear correlation of the 1A’ mode with the diffusion coordinate is
weakened; without the sampled points with mode coordinates of less than −0.5 (bottom
right of Figure 3a) this would be even less apparent. Of the other modes, the diffusion
coordinate has the clearest dependence on 10A’ with weaker dependencies on 11A’ and,
even less so, on 9A’ (see Figure 2 in Polyak et al. [67] for diagrams of the vibrational
modes), but 10A’ can be characterised as the bending of the oxygen and the carbon bonded
to the nitrogen towards one another, whilst 9A’ is a bending of the OH group towards
the ring and 11A’ is motion of the oxygen and nitrogen towards one another. The time
dependence of the diffusion map can be seen more clearly by considering Figures S3–S11
in the Supplementary Materials, which are versions of Figure 3a–i respectively, decomposed
into the individual time samples. In all of these plots we can see clear motion back and
forth along the diffusion coordinate as time progresses. Considering both the plots here
and in the Supplementary Materials we note that the spread of the sampled points along
the respective normal mode coordinates for each value of the diffusion coordinate is similar
(about 2 mass-frequency scaled normal mode units) indicating that the wavepacket is fairly
well localised during the course of the dynamics. This spread is consistent among both
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the modes which are relatively well correlated with the diffusion coordinate, and those
that are not. Considering the best correlated modes (1A’, 10A’ and 11A’) we see that
the overall total magnitude of the motion along these modes, as reflected in the range
between the maximum and minimum sampled normal mode coordinates, is largest for
these modes (5 units for mode 1A’, 6 for 10A’ and 4 for 11A’), whilst for the less correlated
modes the overall magnitude of the motion is less than or equal to 3.5 normal mode units.
The spread of the wavepacket makes up a much larger proportion of the overall motion
in the less correlated modes, indicating that these modes are less important in the dynamics,
although there is clear motion along each of them for the duration of the dynamics (as there
is along modes 1A’, 10A’ and 11A’). We thus find that although the 9D salicylaldimine
dynamics can be decomposed into a single diffusion coordinate, this is no longer simply
related to a single normal mode, but to multiple modes.

We can further see this by examining the flow of the wavepacket across the transi-
tion barrier between the keto and imine tautomers; this can be measured by evaluating
the expectation value of a flux operator [6], at every timestep, represented by a surface
perpendicular to mode 1A’ located at the peak of the transition barrier. In Figure 4 we plot
the expectation value of the flux operator as a function of propagation time for both the 2D
(Section 3.1.1) and 9D calculations on salicylaldimine.

Looking first at the flux across the proton-transfer barrier when using just two nor-
mal modes, it is clear that the wavepacket moves back and forth across the barrier for
the duration of the dynamics. This clearly matches the picture given by the diffusion map
in Figures 1 and 2; the overall dynamics is dominated by motion along the 1A’ transition
mode. Turning next to the 9D flux, we see an initial match between the flux in this case
and that in 2D, with a negative flux indicating wavepacket motion from the imine side of
the barrier to the keto. The flux approaches zero just before 10 fs and then we see motion
back towards the imine side up to 20 fs. However, after this time there is little wavepacket
flux over the transition barrier compared to that seen in the 2D case. This is indicative of
the wavepacket motion transferring into other modes, after the initial movement along 1A’,
due to inter-mode coupling. From the results of the diffusion map the coupling appears
to be strongly into mode 10A’, which is backed up by looking at the position expectation
values of the wavepacket along each mode; the largest magnitude motion is indeed along
10A’, going from an initial 〈q10〉 = 0 to a minimum of 〈q10〉 = −2.87 after 38 fs.

3.2. Dynamics of Ethene

As a more complex example of the application of DM, we consider the non-adiabatic
dynamics of ethene using the KRR-based direct-dynamics MCTDH (DD-MCTDH) method.
The geometry of ethene was optimised using the state-averaged complete active space self-
consistent field method in Molpro (version 2015.1.35), refs. [61,68,69] with the averaging
being over all three electronic states (equally weighted) represented when using an active
space comprising two electrons in two orbitals (SA(3)-CASSCF(2,2)). The 6-31G(d,p) basis
set was used in these calculations. A frequency calculation was performed at the resulting
geometry to provide the normal modes and frequencies needed to construct the coordinate
system used in the dynamics, both in an 8D subset and the full 12D case. All energies
were calculated using Molpro (versions 2015.1.35 and 2015.1.44). We discuss the 8D
dynamics first.
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Figure 3. Sampled normal mode coordinates of salicylaldimine plotted as functions of the diffusion
coordinate: (a) Mode 1A’; (b) Mode 5A’; (c) Mode 7A’; (d) Mode 9A’; (e) Mode 10A’; (f) Mode 11A’;
(g) Mode 13A”; (h) Mode 32A’; (i) Mode 36A’. In all cases data points are coloured according to
the sample time; 20 gridpoints were sampled every 10 fs during the dynamics. The key to the right of
plot (i) applies to all plots.
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Figure 4. Wavepacket flux over the hydrogen transfer transition barrier in salicylaldimine as a func-
tion of propagation time. The solid, red line is the flux seen during dynamics in 2 dimensions whilst
the dashed, blue line is that given when using the 9 normal modes listed in the text.

3.2.1. 8D Ethene

The initial 8D study of ethene used all normal modes except those which are best
described as C-H stretches of various combinations (the highest frequency modes). The sym-
metry labels (in the D2h point group) of the modes are shown in Table 4 along with their
frequencies at the level of electronic structure theory used here.

The 8D dynamics of ethene was performed using the DVR bases shown in Table 4
along the eight mass-frequency scaled normal modes on all three electronic states. The ini-
tial wavefunction was constructed as an 8D Gaussian function of width 1/

√
2, centred at

the origin of the coordinate system (the Franck-Condon geometry) and placed on the first
excited state (with B2u symmetry). The wavepacket was propagated for 100 fs using the de-
fault ABM integrator for MCTDH. Four 2D combined modes were used: {1B2u,6B1u},
{2B2g,4B3g}, {5Ag,7Ag}, {3B3u,8Au}. 9 SPFs were used for each 2D combined mode to expand
the wavefunction on the ground and second excited state (both of Ag symmetry) whilst 15
SPFs each were used on the initial state.

To construct the PES, 100 coordinates were sampled every 1 fs around the centre of
the wavefunction on each state, and energies added to the database if the KRR variance at
the selected geometry exceeded 10−3. Adiabatic energies for all three states were calculated
at the SA(3)-CASSCF(2,2)/6-31G(d,p) level before being diabatised using the Procrustes
diabatisation scheme. In addition to the KRR variance being used to determine which
points to add to the database, an energy threshold of 20 eV was also used, such that
if the calculated ground state energy exceeded this value it was rejected. In addition,
before carrying out an electronic structure calculation, the KRR predicted energy was
evaluated there and if found to be greater than 22 eV (a 10% discrepancy in the threshold
to allow for errors in the KRR extrapolation of the PES), the point was rejected before
expending time calculating the energy. The KRR fit of the diabatic energies and couplings
was achieved using the additive kernel (Equation (13)) with α = 0.01 along each mode.
A total of 493 points were retained in the database compiled over the course of the dynamics.
Finally, a secondary SVD fitting of the KRR PES was performed, with enough terms being
retained to keep ||R|| < 10−3 Eh. The number of terms in this expansion varied during
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the dynamics, depending on the number of sampled points in the KRR fit, but ranged from
an initial 827, up to a maximum of 1421 before ending at 1387.

Table 4. Details of the normal modes, DVR bases and initial wavepacket conditions used in the 8D
ethene calculations. (a) Frequencies of the normal modes calculated at the minimum energy geometry
of the electronic ground state. (b) Type of underlying basis functions used to generate the DVR
bases: sine denotes eigenfunctions of the 1D particle-in-a-box and HO refers to the eigenfunctions
of the harmonic oscillator problem. (c) Number of DVR gridpoints for each mode. (d) Locations of
the initial and final DVR gridpoints along each mode. Note that the sine DVR gridpoints are evenly
spaced whilst the HO points are not, being more concentrated towards the origin.

Mode Freq. a/cm−1 DVR b No. DVR c DVR Domain d

1B2u 884.14 HO 25 [−6.164,6.164]
2B2g 1056.60 HO 25 [−6.164,6.164]
3B3u 1144.47 HO 25 [−6.164,6.164]
4B3g 1337.21 HO 25 [−6.164,6.164]
5Ag 1439.57 sine 41 [−12.0,8.0]
6B1u 1592.97 sine 33 [−8.0,8.0]
7Ag 1777.10 sine 41 [−12.0,8.0]
8Au 2164.29 sine 101 [−25.0,25.0]

After propagation, the dynamics on the ground and initial excited states were sepa-
rately analysed by DM. We used D = 15 and βmin = 0.2. Here, 20 gridpoints were sampled
every 10 fs and for the ground state analysis, the first sampling time was 10 fs to allow time
for the wavepacket to begin transferring from the excited state.

In Figures 5 and 6 we present plots of the results of the DM analysis, showing
the correlation between the diffusion coordinates on the ground (Figure 5) and first
excited (Figure 6) electronic states and the coordinates of the associated sampled points
along the eight normal modes (mass-frequency scaled). We note that the three highest,
non-trivial eigenvalues are: for the ground state, 0.235, 0.106 and 0.0881; for the excited
state motion, 0.651, 0.370 and 0.233. Again we see a significant spectral gap between
the two largest eigenvalues indicating that the overall motion of ethene in both states,
after excitation from and subsequent non-radiative transfer back to the ground state, is
dominated by a single diffusion coordinate. Looking at the eight plots in both figures,
it is clear that the diffusion coordinate is dominated by the 8Au normal mode (i.e., it
correlates best with the diffusion coordinate) on both states; this mode is essentially
a torsion mode, with the two CH2 groups rotating in opposite directions. All other
normal modes show little or no correlation with the diffusion coordinate. Such torsional
motion is expected to dominate for ethene, the excitation corresponding to a breaking of
the ethene π-bond hence allowing free rotation around the C-C bond i.e., giving a cis-
trans isomerization motion. So, we see that the diffusion map method has successfully
extracted the most important mode from the large number of dimensions being followed
in the wavepacket dynamics.

We note that the gradient of the plots containing the 8Au normal mode and the dif-
fusion coordinate differ for both states (Figures 5h and 6h), the ground state diffusion
coordinate having positive correlation with the 8Au normal mode coordinate while the cor-
relation is negative for the excited state. This is due to the fact that the diffusion coordinate
is defined by the elements of an eigenvector of the diffusion operator matrix, but the over-
all sign of the eigenvectors of linear operators is arbitrary, hence so is the correlation of
the diffusion coordinate with the normal mode.
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To see the time-dependence of the diffusion maps more clearly, the data in
Figures 5 and 6 is presented in the Supplementary Materials with the sampled points
from each timestep having their own plot (Figures S12–S19 in the Supplementary Materials
correspond to those in Figure 5, whilst Figures S20–S27 therein represent the data from
Figure 6). Considering the eight plots in Figure 6 (as well as parts (a) of Figures S20–S27),
describing the dynamics on the excited state, we see the compactness of the initial wave-
function (the cluster of red crosses around the origin in all cases) before the wavefunction
begins to move. In all cases we see a spreading of the sampled points over time, which
begins soon after excitation. In the case of the 8Au mode this spread is in both directions
along the line of correlation between the normal mode and diffusion coordinates, whilst
for the other modes the spread of the sampled points is less uniform. For the 1B2u mode
(Figures 6 and S20) the sampled points spread along the diffusion coordinate initially
before expanding along the normal mode coordinate up to 40 fs before partially contracting
back. A similar delay in the spread of the sampled points along the normal mode is seen
for mode 6B1u (Figures 6f and S25), the first major motion being seen after 20 fs, however,
in this case we see no contraction at later times. For mode 4B3g the initial wavepacket
expansion is followed by a definite motion along the normal mode coordinate between 20
and 40 fs; a full dispersion along the diffusion coordinate is only seen after 70 fs. Consider-
ing mode 5Ag (Figures 6e and S24), the initial spread of the sampled points is dominated
that along the normal mode coordinate with the diffusion coordinate spread coming more
slowly. For the remaining modes (2B2g, 3B3u and 7Ag) the spreading of the sampled points
in the diffusion map appears to occur in both directions simultaneously. Returning to
the ground state (Figures 5 and S12–S19 in the Supplementary Materials) we see that
the distribution of points is wider to begin with because we only sampled points from
10 fs onwards where the wavepacket on the initially populated excited state had already
had time to spread. This indicates that population transfer between the diabatic states is
occurring over a wide region of space rather than at localised points. In all modes there
is a contraction of distribution of the sampled points along the diffusion coordinate up to
30 fs before a rebound to the full range of the diffusion coordinate In mode 8Au the initial
spread of the sampled points follows the line of correlation seen in Figure 5h whereas for
the other modes there is no initial correlation. Further on the subject of population transfer,
we note that there was relatively little between the diabatic states over the 100 fs course
of the dynamics, the vast majority being over the first 5 fs to the both ground and second
excited states; at most 1.5% of the wavepacket transferred to the ground state whilst up to
4.2% went to the upper state.

In addition to the plots showing the correlation of the 8Au normal mode with the diffu-
sion coordinate in ethene, in Figure 7 we show pictures of the ethene geometries, sampled
during the diffusion map analysis, grouped according to their diffusion coordinates. In all
six diagrams, (i) shows all sampled geometries, superimposed on one another, whilst,
for clarity, (ii) gives the average of those geometries. It is apparent that, as we move
across the diffusion-coordinate range from −0.18 < θ2 < −0.13 (Figure 7a) to that of
0.08 ≤ θ2 < 0.13 (Figure 7f), the angle between the two CH2 groups reduces, going
through geometries close to planar when −0.03 ≤ θ2 < 0.03 (Figure 7d) before increasing
again in the opposite orientation to that in Figure 7a. This is further confirmation that
the diffusion coordinate can mainly be characterised as a torsion mode, closely related
to normal mode 8Au. Each of the panels in Figure 7 shows many different geometries
corresponding to the motion across all normal modes except 8Au; these generate a spread
of geometries around the important rotation about the C-C bond. This range corresponds
to the uncorrelated spread of geometries sampled along all modes except 8Au, as seen
in Figure 6.
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Figure 5. Normal mode coordinates of ethene, sampled on the ground, diabatic electronic state,
plotted as functions of the diffusion coordinate: (a) Mode 1B2u; (b) Mode 2B2g; (c) Mode 3B3u;
(d) Mode 4B3g; (e) Mode 5Ag; (f) Mode 6B1u; (g) Mode 7Ag; (h) Mode 8Au. In all cases data points are
coloured according to the sample time; 20 gridpoints were sampled every 10 fs during the dynamics,
the first sampling being after 10 fs. Key within plot (h) applies to all other plots.
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Figure 6. Normal mode coordinates of ethene, sampled on the first, diabatic electronic excited
state, plotted as functions of the diffusion coordinate: (a) Mode 1B2u; (b) Mode 2B2g; (c) Mode 3B3u;
(d) Mode 4B3g; (e) Mode 5Ag; (f) Mode 6B1u; (g) Mode 7Ag; (h) Mode 8Au. In all cases data points are
coloured according to the sample time; 20 gridpoints were sampled every 10 fs during the dynamics.
Key within plot (h) applies to all other plots.
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(a)(i) (ii) (b)(i) (ii)

(c)(i) (ii) (d)(i) (ii)

(e)(i) (ii) (f)(i) (ii)

Figure 7. Geometries of salicylaldimine grouped according to their associated diffusion coordinate,
θ2: (a) −0.18 < θ2 < −0.13; (b) −0.13 ≤ θ2 < −0.08; (c) −0.08 ≤ θ2 < −0.03; (d) −0.03 ≤ θ2 < 0.03;
(e) 0.03 ≤ θ2 < 0.08; (f) 0.08 ≤ θ2 < 0.13. In each case plot (i) represents all sampled geometries
within the diffusion coordinate domain, whilst plot (ii) is the average of the sampled geometries
in the corresponding plot (i).

At this point we can compare our results to those of Virshup et al. [52] where, be-
cause they used individual trajectories rather than a grid of basis functions as we are here,
they were able to define a diffusion reaction coordinate (DRC) by integrating the Jacobian
between the diffusion coordinate and real space coordinates, and then follow selected
trajectories along the DRC over time. The previous work by Virshup et al., noted that
the pyramidalisation of one of the CH2 groups followed the initial torsion motion resulting
after electronic excitation; indeed, there is a minimum-energy conical intersection found at
such a twisted-pyramidalised geometry resulting from such a torsion-pyramidalisation
mechanism. The previously-generated DRC includes this path, and on further to hydrogen
migration. In contrast, we see no clear sign of this pyramidalisation in Figures 5 and 6,
nor in Figure 7; this is conceivably due to limitations in our coordinate system, the use
of normal modes perhaps being too restrictive to observe the pyramidalisation (let alone
the hydrogen migration). To further analyse this we can consider the calculated eigen-
vectors of the diffusion operator with lower eigenvalues i.e., θ3, θ4, θ5 and θ6. For these
eigenvectors we find that θ3 and θ6 are correlated with mode 8Au (albeit more weakly than
with θ2) whilst θ4 and θ5 are weakly correlated with modes 7Ag (C-C stretch with hydro-
gens moving in the opposite direction to their associated carbon) and 5Ag (C-C stretch
with all hydrogens moving in concert with their bonded carbons), respectively. In none of
the five considered eigenvectors do we see correlation with either mode 2B2g (out-of-plane
motion of all hydrogens in opposite directions at each end of the molecule) or 3B3u (out-of-
plane bending of all hydrogens in the same direction), which might be considered likely
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to contribute to the pyramidalisation motion. A different coordinate system may allow
such motion to be observed; this conjecture will have to await further implementation
to check. As a further check on the dynamics of ethene we also performed calculations
in the full-dimensional space of normal modes, which we consider in the next section.

3.2.2. 12D Ethene

Having noted the lack of pyramidalisation in the 8D dynamics of ethene, we finally
consider 12D dynamics (i.e., including the four hydrogen stretching modes neglected
in Section 3.2.1) in order to see whether the inclusion of these modes reveals the pyramidali-
sation.

The same level of electronic structure, and hence optimised geometry and normal
modes were used as in the 8D calculations. Information about the DVR bases and mode
frequencies are shown in Table 5. The KRR and SVD sampling and fitting during the dy-
namics were also as described in Section 3.2.1, the additional four modes being treated
in the same way as the original eight. The initial wavefunction was a Gaussian function
of width 1/

√
2 in each DOF, centred at the Franck-Condon point on the first excited state.

During the course of the dynamics 688 energies were added to the database, and there were
a total of 2854 terms in the secondary SVD fit at the end of the wavepacket propagation.
The normal modes were combined into six combined modes for the purpose of the time-
dependent (SPF) basis, these being: {1B2u,2B2g}; {3B3u,4B3g}; {5Ag,6B1u}; {7Ag,10Ag}; {8Au};
{9B1u,11B3g,12B2u}. For all combined modes, 5 SPFs were used on the first excited state,
whilst a single SPF was used for each of the other two states. A small number of SPFs
was necessary to limit memory demands on the computer hardware used, so as a result
the propagation is far from converged with respect to the time-dependent basis. It is,
however, worth illustrating, with future calculations in mind, whether we can gain use-
ful information about the important DOFs from a poorly converged, high-dimensional
calculation, as this will allow subsequent, lower-dimensional calculations to focus on
the important modes, and hence to approach convergence.

Table 5. Details of the normal modes, DVR bases and initial wavepacket conditions used in the initial
12D ethene calculation. (a) Frequencies of the normal modes calculated at the minimum energy geom-
etry of the electronic ground state. (b) Type of underlying basis functions used to generate the DVR
bases: sine denotes eigenfunctions of the 1D particle-in-a-box and HO refers to the eigenfunctions
of the harmonic oscillator problem. (c) Number of DVR gridpoints for each mode. (d) Locations of
the initial and final DVR gridpoints along each mode. Note that the sine DVR gridpoints are evenly
spaced whilst the HO points are not, being more concentrated towards the origin.

Mode Freq. a/cm−1 DVR b No. DVR c DVR Domain d

1B2u 884.14 HO 25 [−6.164,6.164]
2B2g 1056.60 HO 21 [−5.550,5.550]
3B3u 1144.47 HO 25 [−6.164,6.164]
B3g 1337.21 HO 25 [−6.164,6.164]
5Ag 1439.57 sine 41 [−12.0,8.0]
6B1u 1592.97 sine 37 [−8.0,8.0]
7Ag 1777.10 sine 43 [−12.0,9.0]
8Au 2164.29 sine 101 [−25.0,25.0]
9B1u 3301.63 HO 25 [−6.164,6.164]
10Ag 3322.07 sine 37 [−9.0,9.0]
11B3g 3383.71 HO 21 [−5.550,5.550]
12B2u 3409.48 HO 21 [−5.550,5.550]

After the dynamics propagation, the wavepacket on the ground and first excited state
was analysed using the DM method; 20 points were sampled every 10 fs (the first 10 fs
were skipped for the ground state to allow time for population transfer), and we used
D = 15 for the first excited state, D = 10 for the ground-state, and βmin = 0.2 in all cases.
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The largest five non-trivial eigenvalues of the diffusion operator were, for the ground state,
0.420, 0.232, 0.180, 0.162 and 0.152, while for the excited state they were 0.480, 0.322, 0.214,
0.204 and 0.154.

There is a clear spectral gap for the ground state, indicating that the dynamics on that
state can be well represented by a single diffusion coordinate θ2. In Figure 8a we show
the correlation between the sampled 8Au normal mode coordinates and their corresponding
diffusion coordinates. The spectral gap is less clear in the excited state case, where the θ3
eigenvector appears to play a more significant role in the dynamics. In Figure 8b we show
the plot of the relationship between the sampled 8Au normal mode coordinates and the θ2
coordinate on the excited state; again we see a very clear correlation between the two.
In Figure 8c we show the correlation between the 7Ag mode and θ3 (which is even clearer if
the points with 0.2 < θ3 < 0.3 are ignored. As noted in Section 3.2.1, 7Ag is a C-C stretching
mode, so even here we see that there is little sign of pyramidalisation. Looking further at
θ4 (mixture of 8Au and 10Ag), and θ5 and θ6 (both 8Au) on the excited state we see no clear
evidence of pyramidalisation whilst, on the ground state, the lower eigenvalue diffusion
coordinates correlate with 11B3g (θ3), 8Au/9B1u (θ4), 12B2u (θ5) and 10Ag (θ6) (i.e., all four
hydrogen stretching modes are involved along with the torsion, rather than any other
out-of-plane motion). It is clear, however, that even with a few SPFs, using all 12 normal
modes of ethene, we see the same torsion mode dominating the dynamics as with the better
converged 8D calculation; the diffusion map can thus be used to glean useful information.

As with all previous calculations we provide, in the Supplementary Materials, decon-
structed versions of the plots in Figure 8 (Figures S28–S30 corresponding to Figure 8a–c
respectively) to help clarify the time evolution of the diffusion map. In much the same way
as was seen for the 8D calculation, the sampled points on the excited state (Figure 8b,c,
and Figures S29 and S30) are initially tightly clustered around the origin, before they
spread out along the lines of correlation between the normal mode and diffusion co-
ordinates. On the ground state (Figure 8a and Figure S28) the initial set of sampled
points is already well distributed, reflecting the fact that the initial sampling was at 10 fs,
after the wavepacket had had time to evolve away from the Franck-Condon point. Of po-
tential interest are the small clusters of points locted at the top right of the plots, most
easily seen in Figure S28 at times of 20, 30, 50, 60, 80 and 90 fs, which suggests a splitting of
the wavepacket along the torsion mode, although the splitting is less clear at intermedi-
ate times.

Taking the analysis further, we performed a calculation to locate the twisted-pyramidalised
conical intersection (TPCI) between the ground and first excited states, before using the vc-
trans program in the Quantics package to transform the Cartesian coordinates of the TPCI
into the space of the mass-frequency scaled normal modes used for the dynamics. The results
of this calculation are shown in Table 6, from which it is clear that the largest magnitude
components are in the C-H stretching modes (9B1u, 10Ag, 11B3g and 12B2u), the largest distor-
tion outside these four modes being along the 8Au torsion mode, whose importance is thus
confirmed. We saw that the one of the four C-H stretching modes (10Ag) made an appear-
ance in the θ4 diffusion coordinate on the excited state, whilst all four appeared in the lower
eigenvalue diffusion coordinates on the ground state. Therefore, whilst the dominant diffusion
coordinates in the dynamics corresponded to the torsion mode, there is evidence of motion
in the C-H stretching modes, which are important to describe the pyramidalisation, in the less
significant diffusion coordinates.
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Figure 8. Sampled normal mode coordinates of ethene plotted as a function of the diffusion coor-
dinates resulting from 12D dynamics. (a) 8Au normal mode coordinates as a function of diffusion
coordinate θ2 on the ground electronic state. (b) 8Au normal mode coordinates as a function of
diffusion coordinate θ2 on the first excited electronic state. (c) 7Ag normal mode coordinates as
a function of diffusion coordinate θ3 on the first excited electronic state. In all cases data points are
coloured according to the sample time; 20 gridpoints were sampled every 10 fs during the dynamics,
the first sampling on the ground state being after 10 fs.

Table 6. Dimensionless mass-frequency scale normal mode coordinates of the twisted-pyramidalised
conical intersection. Mode frequencies given in Table 5.

Mode Coordinate Mode Coordinate

1B2u −2.58 7Ag 2.61
2B2g 0.000116 8Au 5.94
3B3u 0.000116 9B1u 9.27
4B3g −2.22 10Ag −8.99
5Ag −0.692 11B3g 6.47
6B1u 1.21 12B2u −6.75

A shortcoming of our initial dynamics calculation is also apparent by comparing
Tables 5 and 6, where we note that the TPCI coordinate is not actually included in the do-
main of the DVR grid with the grids along modes 9B3g, 11B3g and 12B2u all being too short.
As such a second DD-MCTDH calculation was performed using longer, but less dense for
reasons of computational cost, DVR grids which are given in Table 7 with the frequencies
being the same as those in Table 5. The initial conditions and KRR sampling for the calcula-
tion were as for the initial calculation, but the calculation was only run for 90 fs. 665 points
were added to the energy database whilst the number of terms in the SVD fit of the PES
was 3417 at the end.
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Table 7. Details of the normal modes, DVR bases and initial wavepacket conditions used in the sec-
ond 12D ethene calculation, which includes the coordinate of the twisted-pyramidalised conical
intersection. (a) Type of underlying basis functions used to generate the DVR bases: sine denotes
eigenfunctions of the 1D particle-in-a-box and HO refers to the eigenfunctions of the harmonic
oscillator problem. (b) Number of DVR gridpoints for each mode. (c) Locations of the initial and
final DVR gridpoints along each mode. Note that the sine DVR gridpoints are evenly spaced whilst
the HO points are not, being more concentrated towards the origin.

Mode DVR a No. DVR b DVR Domain c

1B2u HO 21 [−5.55,5.55]
2B2g HO 21 [−5.55,5.55]
3B3u HO 21 [−5.55,5.55]
B3g HO 21 [−5.55,5.55]
5Ag sine 21 [−12.0,8.0]
6B1u sine 17 [−8.0,8.0]
7Ag sine 21 [−12.0,8.0]
8Au sine 51 [−25.0,25.0]
9B1u sine 31 [−15.0,15.0]
10Ag sine 31 [−15.0,15.0]
11B3g sine 25 [−12.0,12.0]
12B2u sine 25 [−12.0,12.0]

Diffusion map analysis was carried out on the results of the second dynamics cal-
culation for the ground and first exited states using the same parameters as for the first
calculation. For the ground state the largest five, non-trivial eigenvalues of the diffusion
operator were 0.163, 0.147, 0.136, 0.131 and 0.0926, and for the excited state they were 0.157,
0.137, 0.0932, 0.0897 and 0.0693. In both cases there is no clear spectral gap in the eigenval-
ues suggesting that the motion of the molecule cannot be reduced to a single mode as was
the case for the original calculations; this may be due to the lack of convergence of the dy-
namics because of the reduction in the density of the gridpoints, such that the gap is not
observed. The diffusion map analysis was repeated with lower values of D in an attempt
to locate a spectral gap in line with the results in Table 3, but none was found, therefore
we have to consider at least the five diffusion coordinates with the largest eigenvalues as
contributing to the dynamics.

On the excited state, diffusion coordinate θ2 correlates most strongly with mode
9B1u and more weakly with 12B2u, both of which are C-H stretches, whilst torsion mode
8Au correlates with θ3. Coordinate θ4 is weakly correlated with the three modes, 8Au,
9B1u and 11B3g, and θ5 correlates with the C-C stretching mode, 7Ag. The diffusion
coordinate with lowest eigenvalue in this selection, θ5, is weakly correlated with modes
2B2g, 5Ag and 6B1u, none of which play a great role in reaching the TPCI, as is the case
with θ5 and its mode, 7Ag. However, we see that the three diffusion coordinates with
the largest eigenvalues contain contributions from the torsion mode and three of the C-
H stretch modes. The absence of 10Ag is surprising, but may be related to the poor
convergence of the dynamics.

On the ground state, θ2 is correlated with modes 2B2g, 4B3g and 8Au, whilst θ3
correlates most strongly with the torsion mode and less so with 4B3g and 11B2g. C-H
stretching mode 12B2u correlates strongly with coordinate θ4, whilst θ5 has contributions
from the three C-H stretches excluding 10Ag, and, finally, θ6 is correlated with mode
7Ag.
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From the second calculation on 12D ethene we see from the diffusion map analysis,
especially on the excited state, that the torsion mode and three of the C-H stretching modes
are important, and these modes also appear in the diffusion coordinates on the ground state;
this is indicative of some motion towards the TPCI. The picture is not clear due to the lack
of a spectral gap, but we gain useful (if incomplete, with the missing 10Ag) information
about the dynamics towards the conical intersection, even with an unconverged calculation.
Longer time propagations, in both the first and second calculations, may resolve more
clearly the modes involved.

4. Discussion

In this work we have presented an implementation of a NLDR method, specifically DM,
to study the grid-based nuclear quantum dynamics methods implemented in the Quantics
package. The method has been tested on two many-dimensional molecular systems, sali-
cylaldimine and ethene, both of which have been treated using direct-dynamics (although
the methods discussed here can also be used where pre-fitted PESs have been used).

Salicylaldimine was studied initially; this is a system we have examined in the past,
allowing us to check the results of the DM analysis compared to our previous understand-
ing of the dynamics. The initial 2D study (using DD-SM) demonstrated the dominance of
the hydrogen-transfer normal mode in the make up of the diffusion coordinate, as expected.
We were also able to analyse the parameters used in the DM model to provide some guid-
ance for future users as to their influence. Moving on to a 9D model of salicylaldimine,
using MCTDH in this case, we were again able to see the hydrogen-transfer mode con-
tributing to the dominant diffusion coordinate, but this time other normal modes played
a significant role too. This was further confirmed by considering the flux of the wavepacket
across the keto-imine barrier along the transfer mode, the magnitude of which was greatly
reduced after the first 20 fs, indicating the conversion of motion across the barrier into
that in other, orthogonal modes mediated by inter-mode coupling. The DM method thus
provides clearer insight into the dynamics of salicylaldimine than the flux analysis alone.

Because much of our work is focussed on modelling the non-adiabatic dynamics of
electronically excited molecules, the DM method has also been applied to wavepacket
motion on excited electronic states (each of which was treated individually). We have
studied two models of ethene, the initial nuclear wavepacket having been promoted to
the first electronic excited state; first, an 8D system ignoring the four hydrogen stretching
modes and, second, the full 12D system. In both of these cases, the wavepackets on the ini-
tial and ground states were analysed using DM; for both states, in both dimensionalities,
the dominant diffusion coordinate can primarily be categorised as being a torsion mode
corresponding to the 8Au normal mode. This makes sense considering that the electronic ex-
citation results in the severing of the ethene π-bond, allowing rotation about the C-C bond.
However, earlier work on ethene using DMs by Virshup et al. [52] pointed out that the ini-
tial torsion should be followed by a pyramidalisation of one of the CH2 groups, but this
was not seen here in either the 8D or first 12D cases, where the spectral gap in the diffusion
map analysis implied a single dominant torsion motion. The further calculation, which
located the TPCI, indicated that the inclusion of C-H stretching modes in the dynamics was
vital as was extension of the DVR grids used in the first 12D calculation. The diffusion map
analysis on the second 12D calculation indicated the importance of 3 of the C-H stretching
modes along with the torsion mode; a better converged dynamics calculation may have
clarified matters further. We also conjecture that the difficulty in seeing the pyramidalisa-
tion may be a limitation of our use of normal modes defined at the Franck-Condon point;
use of valence coordinates, for example, may allow further insight at geometries far from
this point (e.g., at dihedral angles around 90◦), but we have not so far implemented such
coordinates in our DD-GB methods, although we plan to do so shortly.
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5. Conclusions

In conclusion, we have presented a useful addition to the suite of analysis methods
applicable to grid-based dynamics, and we have demonstrated this approach in direct
MCTDH simulations of many-dimensional molecular systems with multiple electronic
states. Future work will include the implementation of the DM method for DD-vMCG,
where the use of Gaussian basis functions may allow the use of DRCs, as previously
implemented by Virshup et al., for AIMS. Further calculations aimed at a more thorough
analysis of ethene isomerization are also in progress, in order to consolidate the different
viewpoints given by grid-based and trajectory-based simulations of photodynamics.

The work presented here has focussed on using diffusion maps to determine the dom-
inant dynamical pathways followed by the two molecules under consideration, but it
may be true that important components of the dynamics are missed by such an approach.
Consider, for example, an oscillating wavepacket, where a small part of the wavepacket
moves over an energy barrier into a dissociative mode at some point during each oscillation;
the method as presented here would not detect this dissociation. Future work will include
modifying our method in an attempt to capture such motion by altering the sampling
method; currently points are included in the sample if the wavefunction density there is
greater than or equal to the parameter, βmin, multiplied by the density at the gridpoint
closest to the centre of the wavepacket, ρ0, but we could introduce another parameter, βmax,
so that only gridpoints where the density is in the range βminρ0 ≤ ρ ≤ βmaxρ0 are selected.
It would be interesting to see whether such an approach can capture weaker features of
the dynamics.

Supplementary Materials: The following are available online. Figure S1 shows a time-resolved
version of the data in Figure 1a in the main paper. Figure S2 shows a time-resolved version of the
data in Figure 1b. Figures S3–S11 show time-resolved versions of the data in Figure 3a–i respectively.
Figures S12–S19 show time-resolved versions of the data in Figure 5a–h respectively. Figures S20–S27
show time-resolved versions of the data in Figure 6a–h respectively. Figure S28 shows a time-resolved
version of the data in Figure 8a. Figure S29 shows a time-resolved version of the data in Figure 8b.
Figure S30 shows a time-resolved version of the data in Figure 8c.
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