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The micro-world of cographs*

Bogdan Alecu� Vadim Lozin� Dominique de Werra§

Abstract

Cographs constitute a small point in the atlas of graph classes. However, by zooming
in on this point, we discover a complex world, where many parameters jump from
finiteness to infinity. In the present paper, we identify several milestones in the world
of cographs and create a hierarchy of graph parameters grounded on these milestones.

Keywords: cographs; graph parameters; well-quasi-ordering

1 Introduction

Large things are seen from a distance, but to examine small things, one needs to look
up-close. Cographs constitute a small class. In particular, it has zero entropy [5], i.e.

lim
n→∞

log2Xn(
n
2

) = 0,

where Xn is the number of n-vertex labelled graphs in this class. Also, cographs are
simple structurally. In particular, the clique-width of any cograph is at most 2, implying
polynomial-time solutions for a variety of NP-hard problems, when restricted to cographs.
In other words, in the continuum of hereditary classes the cographs constitute a tiny point.
In the present paper, we analyse this point with a “magnifying glass”, trying to spot the
details. With a closer look at this class we discover a complex world and observe that
many important parameters can be arbitrarily large within cographs. This is the case,
for instance, for chromatic number, co-chromatic number, matching number, tree-width,
linear clique-width and many others. Interestingly, these parameters jump to infinity on
specific subclasses of cographs. The existence of such “critical points” is due to the fact
that the class of cographs is well-quasi-ordered under the induced subgraph relation [19].
This implies, as we show in the paper, that for every parameter κ which is unbounded in the
class of cographs, there exists a finite collection M(κ) of inclusion-wise minimal hereditary
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subclasses of cographs, where κ can be arbitrarily large. This observation suggests a simple
way of comparing two parameters: a parameter κ1 is stronger than a parameter κ2 if for
every class X ∈ M(κ1) there exists a class Y ∈ M(κ2) such that Y ⊆ X. In other words,
κ1 is stronger than κ2 if the family of classes where κ1 is bounded contains the family of
classes where κ2 is bounded.

For some parameters, identifying minimal classes is an easy task. For instance, since
cographs are perfect, the chromatic number is bounded if and only if the clique number is
bounded and hence the class of complete graphs is the only minimal hereditary subclass
of cographs where the chromatic number is unbounded. However, in general, identifying
minimal classes is far from being trivial, as the example of linear clique-width shows. The
authors of [14] develop a sophisticated approach to show that there exist precisely two
minimal hereditary subclasses of cographs where linear clique-width is unbounded: the
class of (P4, C4)-free graphs, also known as the quasi-threshold [47] or trivially perfect [32]
graphs, and the class of their complements.

In the present paper, we characterize a variety of other graphs parameters in terms of
minimal hereditary subclasses of cographs where these parameters are unbounded, which
is the content of Section 3. In Section 2 we introduce basic terminology and notation used
throughout the paper. In particular, in Section 2.1 we describe a collection of subclasses
of cographs that play a critical role in our study, and Section 2.2 is devoted to well-quasi-
ordering and related notions. Finally, Section 4 concludes the paper with a number of open
problems.

2 Preliminaries

All graphs in this paper are simple, i.e., finite, undirected, without loops and without
multiple edges. The vertex set and the edge set of a graph G are denoted by V (G) and
E(G), respectively. Two sets A,B ⊆ V (G) are said to be complete to each other if every
possible edge between them appears in G, and anticomplete to each other if they are no
vertex of A is adjacent to a vertex on B.

As usual, Pn, Cn,Kn denote a chordless path, a chordless cycle and a complete graph
with n vertices, respectively. Also, Kn,m is a complete bipartite graphs with parts of size
n and m.

A clique in a graph is a subset of pairwise adjacent vertices and an independent set
is a subset of pairwise non-adjacent vertices. The Ramsey number R(p, q) is the smallest
natural number such that any graph with R(a, b) vertices contains a clique of size a or an
independent set of size b.

The complement of a graph G is denoted by G. Given two graphs G and H, we denote
by

� G ∪ H the disjoint union of G and H. The disjoint union of p copies of G will be
denoted by pG.

� G×H the join of G and H, i.e., the graph obtained from G∪H by adding all possible
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edges between G and H. In other words, G×H = G ∪H.

We say that a graph G is H-free if G does not contain a copy of H as an induced subgraph.
A class of graphs is hereditary if it is closed under taking induced subgraphs. It is

well-known (and not difficult to see) that a class is hereditary if and only if it can be
characterized in terms of minimal forbidden induced subgraphs.

For a parameter κ, a class X is said to be κ-bounded if there exists a constant C such
that for any G ∈ X,κ(G) ≤ C, and κ-unbounded otherwise.

2.1 Cographs

A graph G is a cograph if every induced subgraph of G with at least two vertices is either
disconnected or the complement of a disconnected graph. Alternatively, G is a cograph if it
can be obtained from one-vertex graphs by recursively applying the operations of disjoint
union and join. It is clear from the definition that cographs constitute a hereditary class,
and that it is self-complementary in the sense that the complement of a cograph is again a
cograph.

Cographs have been introduced independently by many researchers, but perhaps the
first comprehensive study of this class was reported in [16]. That paper presents various
characterisations of the class of cographs, one of which states that it is precisely the class
of P4-free graphs.

Since the discovery of cographs, this class has attracted the attention of thousands of
researchers both within mathematics and beyond (see, e.g., [34]). Cographs are closely
related to some other mathematical structures, such as separable permutations [1] or read-
once Boolean functions [33], and they inspired the introduction of several related notions
and classes of graphs, such as bi-cographs [30] or graphs with few P4s [10].

Cographs constitute a subclass of several important graph classes, such as permutation
graphs and perfect graphs. On the other hand, they also contain a number of important
classes as subclasses, such as threshold graphs [39] and quasi-threshold graphs [47]. We will
use special notation for these and some other subclasses of cographs as follows:

Q the class of quasi-threshold graphs, i.e., (P4, C4)-free graphs,

T the class of threshold graphs. This is the class of (P4, C4, 2K2)-free graphs, i.e., the
intersection of Q and Q.

U the class of P3-free graphs, i.e., graphs every connected component of which is a clique.

K the class of complete graphs.

F the class of star forests, i.e., graphs every connected component of which is a star.
This is the class of (P4, C4,K3)-free graphs, i.e., the class of bipartite graphs in Q.

M the class of graphs of vertex degree at most 1. This is the class of (P3,K3)-free graphs,
i.e., the class of bipartite graphs in U .
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B the class of complete bipartite graphs (an edgeless graph is counted as complete
bipartite with one part being empty). This is the class of (P 3,K3)-free graphs, i.e.,
the class of bipartite graphs in U .

S the class of stars, i.e., graphs of the form K1,n and their induced subgraphs.

Since the complement of a cograph is again a cograph, with every subclass X of cographs
we associate the subclass X of complements of graphs in X .

As we mentioned earlier, cographs enjoy many nice properties. For the purpose of the
present paper, the most important one is well-quasi-orderability, which we define in the
next section.

2.2 Well-quasi-orderings and beyond

A binary relation ≤ on a set W is a quasi-order (also known as preorder) if it is reflexive
and transitive. Two elements x, y ∈ W are said to be comparable with respect to ≤ if
either x ≤ y or y ≤ x. Otherwise, x and y are incomparable. A set of pairwise comparable
elements is called a chain and a set of pairwise incomparable elements an antichain. If
x ≤ y and y ̸≤ x, we write x < y. A chain x1 > x2 > . . . is called strictly decreasing. A
quasi-order (W,≤) is a well-quasi-ordering (“wqo”, for short) if it contains neither infinite
strictly decreasing chains nor infinite antichains.

The celebrated result of Robertson and Seymour [44] states that the set of all simple
graphs is well-quasi-ordered with respect to the minor relation. However, the induced
subgraph relation is not a wqo, as the cycles create an infinite antichain with respect to
this relation. On the other hand, with some restrictions, it may become a wqo, which is
the case, for instance, for cographs [19].

A dive in the literature reveals that, in fact, cographs enjoy the stronger property
of better-quasi-ordering (“bqo”, for short) under the induced subgraph relation. The full
definition of bqo is technical, and outside of the scope of this paper (see, e.g., [6] for a short
introduction). The fact that cographs are bqo can be derived as follows.

A map f : (X,≤) → (Y,⪯) is called a quasi-embedding if, for all a, b ∈ X, f(a) ⪯
f(b) =⇒ a ≤ b. It is immediate from the definitions that, if there exists a quasi-
embedding X → Y , and Y is wqo, then X is wqo. This remains true when replacing “wqo”
with “bqo” (see, e.g., [6], Lemma 5.3). In [19], Damaschke proves that cographs are wqo
by producing a quasi-embedding to the set of finite trees labelled using 4 labels, ordered
by tree embedding. The fact that finite labelled trees are wqo is the statement of Kruskal’s
famous tree theorem. Nash-Williams proved in [40] that infinite (in addition to finite) trees
are bqo, and this was later strengthened by Laver (in [36], Theorem 2.2) to labelled infinite
trees, provided the set of labels is bqo (which is the case for any finite set).

The additional strength of bqo (as opposed to just wqo) can appear subtle at first, but
it is in fact very effective, and allows us to derive concrete results about cographs. Let
(X,≤) be a quasi-order. A subset L ⊆ X is a lower closed set if for all a ∈ L and b ∈ X,
b ≤ a implies b ∈ L. We denote by L(X) the set of lower closed sets of X. The strength of
bqo can be summarised with the following proposition (see, e.g., [6]).
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Proposition 1. Suppose (X,≤) is bqo. Then (X,≤) is wqo, and (L(X),⊆) is bqo.

As an immediate consequence, we draw the following conclusion.

Corollary 1. The set of hereditary subclasses of cographs is wqo by inclusion.

This implies, in particular, that for every parameter κ which is unbounded in the class
of cographs, there is a finite collectionM(κ) of inclusion-wise minimal hereditary subclasses
of cographs where this parameter is unbounded. Moreover, every subclass of cographs in
which κ is unbounded contains one of the minimal classes.

Now let κ1 and κ2 be two graph parameters. We will say that κ1 is stronger than κ2 if
the family of κ1-bounded hereditary classes contains the family of κ2-bounded hereditary
classes. We can naturally adapt this definition when restricting ourselves to a class X
of graphs by saying κ1 is stronger than κ2 in X if the family of κ1-bounded hereditary
subclasses of X contains the family of κ2-bounded hereditary subclasses of X . For the
remainder of the paper, when talking about the strength of parameters, we will mean
“strength in the class of cographs” unless otherwise specified.

By analogy with graph classes characterised by minimal forbidden induced subgraphs,
we can compare two parameters from their sets M(κ) as follows.

Lemma 1. Parameter κ1 is stronger than κ2 if and only if for every minimal hereditary
class F1 ∈M(κ1), there is a minimal hereditary class F2 ∈M(κ2) such that F2 ⊆ F1.

Proof. To prove the “if” direction, assume that for every minimal hereditary class F1 where
κ1 is unbounded, there is a minimal hereditary class F2 where κ2 is unbounded such that
F2 ⊆ F1. Now let X be a κ2-bounded hereditary class. Since any minimal class where
κ1 is unbounded contains a class where κ2 is unbounded, it follows X cannot contain any
minimal class where κ1 is unbounded, and so by Corollary 1, X is κ1-bounded, showing κ1
is stronger than κ2.

Conversely, suppose κ1 is stronger than κ2, and let F1 be a minimal hereditary class
where κ1 is unbounded. Since κ1 is stronger, κ2 is also unbounded in F1, and by Corollary 1,
F1 contains a minimal class F2 where κ2 is unbounded, as required.

One consequence of this result is that the strength relation defined on the set of param-
eters is a quasi-order in the class of cographs. Moreover, from better-quasi-orderability of
cographs we derive that this relation is a well-quasi-order.

Corollary 2. The set of graph parameters is wqo by their strength in the class of cographs.

Proof. Note that the set of classes where a parameter is bounded is downwards closed under
inclusion. The claim then follows immediately from Proposition 1.

3 Graph parameters

We start by reporting some known results or results that readily follows from known results.
In particular, directly from Ramsey’s Theorem we derive the following conclusion.
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Proposition 2. The class K of complete graphs and the class of S of stars are the only
two minimal hereditary classes of graphs of unbounded maximum vertex degree.

To report more results, we denote by

α(G) the independence number of G, i.e., the size of a maximum independent set in G,

ω(G) the clique number of G, i.e., the size of a maximum clique in G,

χ(G) the chromatic number of G, i.e., the minimum number of subsets in a partition of
V (G) such that each subset is an independent set,

y(G) the clique partition (also known as clique cover) number, i.e., the minimum number
of subsets in a partition of V (G) such that each subset is a clique.

Clearly, the class K of complete graphs is the only minimal hereditary class of unbounded
clique number, i.e., by forbidding a complete graph we obtain a class of bounded clique
number. Also, it is not difficult to see that K is a minimal hereditary class of unbounded
chromatic number. However, it is not the only minimal hereditary class of unbounded
chromatic number, i.e., forbidding a complete graph does not guarantee a bound on the
chromatic number. Moreover, as shown by Erdős [22] chromatic number is unbounded
even in the class of (C3, C4, . . . , Ck)-free graphs for any value of k, which means that in
the universe of hereditary classes chromatic number cannot be characterized by means of
minimal classes where this parameter is unbounded. On the other hand, when we restrict
ourselves to cographs such a characterization is possible, which is due to the fact that
cographs are perfect, and hence ω(G) = χ(G) for any cograph G. As a result, we obtain
the following conclusion.

Proposition 3. The class K of complete graphs is the only minimal hereditary subclass of
cographs of unbounded clique number and chromatic number.

The degeneracy of a graph G is the smallest value of k such that every induced subgraph
of G has a vertex of degree at most k. It is not difficult to see that the class K of complete
graphs and the class of B of complete bipartite graphs are minimal hereditary classes of
unbounded degeneracy. However, these are not the only minimal classes, because forbidding
a complete graph and a complete bipartite graph does not guarantee a bound on the
degeneracy. To explain this, we observe that the degeneracy of G is bounded from below
by χ(G)− 1 and from above by the tree-width of G. Therefore, degeneracy and tree-width
are unbounded in the class of (C3, C4, . . . , Ck)-free graphs for any value of k, and for k ≥ 4
the set of forbidden induced subgraphs include both a complete graph C3 and a complete
bipartite graph C4. This discussion shows that, similarly to chromatic number, in the
universe of all hereditary classes neither degeneracy nor tree-width admit a characterization
in terms of minimal classes where these parameters are unbounded. On the other hand,
again similarly to chromatic number, such a characterization is possible when restricting to
cographs, and it is presented in the next claim.
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Proposition 4. The class K of complete graphs and the class of B of complete bipartite
graphs are the only two minimal hereditary subclasses of cographs of unbounded degeneracy
and tree-width.

Proof. To prove the claim, it suffices to show that for any s and p, the tree-width of
(P4,Ks,Kp,p)-free graphs is bounded by a constant. For this, we refer the reader to the
following result from [8]: for every t, p, s, there exists a z = z(t, p, s) such that every graph
with a (not necessarily induced) path of length at least z contains either an induced Pt or
an induced Kp,p or a clique of size s. From this result it follows that (P4,Ks,Kp,p)-free
graphs do not contain (not necessarily induced) paths of length z(4, p, s). It is well known
(see, e.g., [25]) that graphs of bounded path number (the length of a longest path) have
bounded tree-width.

The matching number of a graph G is the size of a maximum matching in G. The
following result was proved in [18].

Lemma 2. For any natural numbers s, t and p, there is a number N(s, t, p) such that every
graph with a matching of size at least N(s, t, p) contains either a clique Ks or an induced
bi-clique Kt,t or an induced matching pK2.

A natural corollary from this result is the following characterization of the matching
number in terms of minimal hereditary classes where this parameter is unbounded.

Theorem 1. M, B and K are the only three minimal hereditary classes of graphs of
unbounded matching number.

The vertex cover number of a graph G is the size of a minimum vertex cover in G. It is
well known that the vertex cover number is never smaller than the matching number and
never larger than twice the matching number. Therefore, the characterization of matching
number given in Theorem 1 applies to the vertex cover number as well.

Theorem 2. M, B and K are the only three minimal hereditary classes of graphs of
unbounded vertex cover number number.

The neighbourhood diversity of a graph was introduced in [35] and can be defined as
follows.

Definition 1. Let us say that two vertices x and y are similar if there is no vertex z
distinguishing them (i.e., if there is no vertex z adjacent to exactly one of x and y). Vertex
similarity is an equivalence relation. We denote by nd(G) the number of similarity classes
in G and call it the neighbourhood diversity of G.

Neighbourhood diversity was characterized in [38] by means of nine minimal hereditary
classes of graphs where this parameter is unbounded. Six of these minimal classes contain
a P4. Therefore, when restricted to cographs, neighbourhood diversity can be characterized
by three minimal classes as follows.

Theorem 3. M, M, and T are the only three minimal hereditary subclasses of cographs
of unbounded neighbourhood diversity.
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3.1 Co-chromatic number

The co-chromatic number of G, denoted z(G), is the minimum number of subsets in a
partition of V (G) such that each subset is either a clique or an independent set [23]. It is
not difficult to see that the co-chromatic number can be arbitrarily large in the class of P3-
free graphs, where each graph is a disjoint union of cliques. Therefore, it is also unbounded
in the complements of P3-free graphs, also known as complete multipartite graphs. In what
follows, we show that these are the only two minimal subclasses of cographs of unbounded
co-chromatic number.

Lemma 3. Let n,m, t be positive integers with t ≥ 2. If G is a (nKt,mKt)-free cograph,
then z(G) ≤ 2m+n−1(t− 1).

Proof. Call a partition of V (G) good if it contains at least t−1 cliques and t−1 independent
sets (empty sets in the partition may count as either). We prove by induction on m + n
that G admits a good partition into 2m+n−1(t − 1) sets, each of which is a clique or an
independent set.

If m + n = 2 (n = m = 1), then G is Kt-free. Hence χ(G) = ω(G) ≤ t − 1; we add
empty sets to the partition until we reach 2(t − 1) sets in total. This makes the partition
good, and we have proved the basis for the induction. In general, put G′ := G. We are in
one of the following three cases:

(a) G′ = G1 ∪G2, and both G1 and G2 are Kt-free, OR G′ = G1 ×G2, and both G1 and
G2 are Kt-free.

(b) G′ = G1 ∪ G2, and both G1 and G2 contain a Kt, OR G′ = G1 × G2, and both G1

and G2 contain a Kt.

(c) G′ = G1 ∪G2, G1 contains a Kt and G2 is Kt-free, OR G′ = G1 ×G2, G1 contains a
Kt and G2 is Kt-free.

As long as we are in case (c), iteratively put G′ := G1. We end up with a graph G′ in
either case (a) or (b). Note first that any good partition of G′ extends to a good partition
of G without increasing the number of sets. Indeed, at each step, G2 was either Kt-free
and anticomplete to the rest of the graph or Kt-free and complete to the rest of the graph.
The disjoint union of all Kt-free G2s is again Kt-free and hence can be partitioned into at
most t − 1 independent sets, and we take the union of each of these sets with one of the
independent sets in the good partition of G′ injectively. Similarly, the join of the Kt-free
G2s can be partitioned into at most t−1 cliques, each of which we join to one of the cliques
in the good partition of G′ injectively.

Now, if G′ is in case (a), then G′ is Kt-free or Kt-free and we act like in the base case to
obtain a good partition of G′ (and therefore of G) in 2(t− 1) sets. If G′ is in case (c), then
G1 and G2 are both either (n − 1)Kt-free or (m− 1)Kt-free. In either case, the inductive
hypothesis applies, and we have a good partition of G′ of size at most

2m+n−2(t− 1) + 2m+n−2(t− 1) = 2m+n−1(t− 1).

Like before, this extends to a partition of G, concluding the proof.
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Lemma 3 naturally leads to the following conclusion.

Theorem 4. The class U of P3-free graphs and the class U of P 3-free graphs are the only
two minimal hereditary subclasses of cographs of unbounded co-chromatic number.

3.2 Lettericity

The notion of letter graphs was introduced in [41]. Recently, an intriguing connection
between letter graphs and geometric grid classes of permutations [2] has been identified in
[4]. We define the notion of letter graphs and the related parameter, known as lettericity,
as follows.

Let A be a finite alphabet, D ⊆ A2 and w = w1w2 . . . wn a word over A (repetitions
allowed). The letter graph G(D,w) associated to w has {1, 2, . . . , n} as its vertex set, and
two vertices i < j are adjacent if and only if the ordered pair (wi, wj) belongs to D. A
graph G is said to be a letter graph if there exist an alphabet A, a subset D ⊆ A2 and a
word w = w1w2 . . . wn over A such that G is isomorphic to G(D,w).

The role of D is to decode (transform) a word into a graph and therefore we refer to D
as a decoder. Every graph G is trivially a letter graph over the alphabet A = V (G) with
the decoder D = {(v, w), (w, v) : {v, w} ∈ E(G)}. The lettericity of G, denoted ℓ(G), is the
minimum k such that G is representable as a letter graph over an alphabet of k letters.

To give a less trivial example, consider the alphabet A = {a, b} and the decoder D =
{(a, a), (a, b)}. Then the word ababababab describes the graph represented in Figure 1.
This graph can be constructed from a single vertex by means of two operations: adding a
dominating vertex (corresponds to adding letter a as a prefix) or adding an isolated vertex
(corresponds to adding letter b as a prefix). The class of all graphs that can be constructed
by means of these two operations coincides with the class of threshold graphs defined in
Section 2 as (2K2, C4, P4)-free graphs [39]. The above discussion shows that a graph is
threshold if and only if it is a letter graph over the alphabet A = {a, b} with the decoder
D = {(a, a), (a, b)}.

t t t t t

a1 a2 a3 a4 a5
�� ��

b1 b2 b3 b4 b5

t t t t t
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Figure 1: The letter graph of the word ababababab (the oval represents a clique). We use
indices to indicate in which order the a-letters and the b-letters appear in the word.

Lemma 4. ℓ(nK2) = n.

Proof. First, it is not difficult to see that ℓ(nK2) ≤ n, since n letters suffice (one letter per
edge). Assume ℓ(nK2) < n, then there must exist a letter a representing at least 3 vertices
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of the graph. Clearly, (a, a) ̸∈ S, since otherwise a triangle arises. Then the neighbour of
the middle a is different from a, say b. If this neighbour appears before the middle a, it
must also be adjacent to the last a. If it appears after the middle a, it must also be adjacent
to the first a. In both case, b has at least two neighbours. Therefore, ℓ(nK2) ≥ n.

The above theorem shows that the lettericity is unbounded in the class M of graphs of
vertex degree at most 1. Therefore, it is also unbounded in the class M, since ℓ(G) = ℓ(G).

Theorem 5. M and M are the only two minimal hereditary subclasses of cographs of
unbounded lettericity.

Proof. To prove the theorem, we will show that for any natural numbers p, t ≥ 2, the let-
tericity of a (P4, pK2, tK2)-free graph G is at most 2p+t−3. This will be shown by induction
on p + t. Moreover, we will show that G can be represented with a decoder D containing
a source letter, i.e., a letter a such that (a, b) ∈ D for any letter b, and a sink letter, i.e., a
letter b such that (b, a) ̸∈ D for any letter a.

If p = t = 2, then G is a threshold graph and its lettericity is at most 2, because any
threshold graph can be represented over the decoder D = {(a, a), (a, b)}. In this decoder,
a is a source letter and b is a sink letter.

Assume that every (P4, pK2, tK2)-free graph with p + t ≤ k can be represented as a
letter graph over an alphabet of at most 2p+t−3 letters with a decoder containing a source
vertex a and a sink vertex b. Consider now a (P4, pK2, tK2)-free graph G with p+t = k+1.

The presence of source and sink letters in the decoder allows us to assume that G has
neither dominating nor isolated vertices. Indeed, if v is dominating, then a word for G
can be constructed from a word for G − v by adding a source letter as a prefix, and if v
is isolated, then a word for G can be constructed from a word for G − v by adding a sink
letter as a prefix. Therefore, in the rest of the proof we assume that G has neither isolated
nor dominating vertices.

Case 1: G is disconnected. Denote by G1 a connected component of G and by G2 the
rest of the graph. Observe that each of G1 and G2 contains a K2, since otherwise G has
an isolated vertex. Therefore, each of G1 and G2 is (p− 1)K2-free and hence we can apply
induction to each of G1 and G2. In other words, G1 can be represented by a word ω1 over
an alphabet A1 of size at most 2p+t−4 with a decoder containing a source vertex a1 and
a sink vertex b1, and G1 can be represented by a word ω2 over an alphabet A2 of size at
most 2p+t−4 with a decoder containing a source vertex a2 and a sink vertex b2 (we assume
that A1 and A2 are disjoint). Then the word ω = ω1ω2 represents G over the alphabet
A1 ∪ A2 of size at most 2p+t−3 with the decoder D = D1 ∪D2. In this decoder, vertex b2
is a sink vertex. To guarantee the presence of a source vertex, we add to D the pair (a2, c)
for every vertex c ∈ A1. This extension transforms a2 into a source vertex and does not
change the graph represented by the word ω, since every letter from A1 appears in ω before
any appearance of a2.

Case 2: G is connected. In this case, G is disconnected and (P4, tK2, pK2)-free. A
similar argument as above gives a representation for G with at most 2p+t−3 letters, and
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complementing the corresponding decoder produces one for G (note that when doing that,
sink letters become source letters and vice-versa).

3.3 Boxicity

The notion of boxicity was introduced in [43] and has become the subject of research in
a vast literature (see e.g. [24, 45]). The boxicity box(G) of a graph G is the minimum
dimension in which G can be represented as an intersection graph of hyper-rectangles.
Equivalently, it is the smallest number of interval graphs on the same set of vertices whose
intersection is G. The next lemma was shown in [43]; we give here a proof for the sake of
completeness.

Lemma 5. box(nK2) = n.

Proof. To see that box(nK2) ≤ n, note that K2n without an edge is an interval graph,
and nK2 is the intersection of n such graphs. Conversely, note that two different matched
non-edges in nK2 cannot belong to the same interval graph (since the corresponding four
vertices would induce a C4, which is not an interval graph). Hence we need at least n
interval graphs to obtain nK2 as an intersection.

Lemma 6. Let G1 and G2 be two graphs. Then

box(G1 ∪G2) ≤ max(box(G1), box(G2)) and box(G1 ×G2) ≤ box(G1) + box(G2).

Moreover, if G2 is a clique, then box(G1 ×G2) = box(G1).

Proof. Suppose G1 =
s⋂

i=1
Ai and G2 =

t⋂
i=1

Bi where the Ai and Bi are interval graphs,

and assume without loss of generality that s ≥ t. Put Ci = Ai ∪ Bi for 1 ≤ i ≤ t and
Ci = Ai ∪K|G2| for t < i ≤ s. Put Di = Ai ×K|G2| for 1 ≤ i ≤ s and Di = K|G1| × Bi−s

for s < i ≤ s+ t.
The Ci and Di are interval graphs, and with the obvious labellings of Ci and Di, we

have G1 ∪G2 =
s⋂

i=1
Ci and G1 ×G2 =

s+t⋂
i=1

Di.

For the final claim, if G2 = K|G2| is a clique, then G1 ×G2 =
s⋂

i=1
(Ai ×K|G2|), and each

of those is an interval graph.

Theorem 6. M is the only minimal hereditary subclass of cographs of unbounded boxicity.

Proof. Let n ≥ 2. We prove by induction on n that (P4, nK2)-free graphs have boxicity at
most 2n−2. The result is true for n = 2, since (P4, C4)-free graphs are known to be interval
graphs (see, e.g., [13]).

For the induction step, suppose the result is true for some n ≥ 2, and let G be a cograph
that is (n+ 1)K2-free. By Lemma 6, we may assume that G is connected, and in particular
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that G = G1 × G2 where neither of the cographs G1 or G2 is a clique. But then G1 and
G2 each have a K2, and so they are both nK2-free. The induction hypothesis applies, and
another application of Lemma 6 gives us that box(G) ≤ box(G1)+box(G2) ≤ 2n−2+2n−2 =
2n−1 as required.

3.4 H-index

The H-index h(G) of a graph G is the largest k ≥ 0 such that G has k vertices of degree at
least k. This parameter is important in the study of dynamic algorithms [21]. Clearly, H-
index is unbounded for cographs, since it is unbounded for complete graphs. To characterize
this parameter in terms of minimal subclasses of cographs with unbounded H-index, we
start with a helpful lemma.

Lemma 7. Let G1, . . . , Gt be graphs. Then

h(
t⋃

i=1

Gi) ≤
t∑

i=1

h(Gi), and h(G1 ×G2) ≤ min(h(G1) + |V (G2)|, h(G2) + |V (G1)|).

Proof. For the first bound, note that for any j, 1 +
∑

i h(Gi) > h(Gj). In particular, by
definition of the H-index, each Gj has at most h(Gj) vertices of degree 1 +

∑
i h(Gi) or

more, and so
⋃

j Gj has at most
∑

j h(Gj) vertices of degree at least 1 +
∑

i h(Gi), from
which the claim follows.

For the other bound, note that G1 × G2 has at most |V (G2)| vertices of degree at
least h(G1) + |V (G2)| + 1 coming from G2, and at most h(G1) coming from G1, since

1

degG1×G2
(v) = degG1

(v) + |V (G2)| for any v ∈ G1, and G1 does not have more than h(G1)
vertices of degree h(G1) + 1. By definition of the H-index, we obtain that h(G1 × G2) ≤
h(G1) + |V (G2)|, and the claim follows by symmetry.

Theorem 7. K, B and the class F of star forests are the only minimal hereditary subclasses
of cographs of unbounded H-index.

Proof. One can check that those are, indeed, minimal hereditary classes of unbounded H-
index. To see they are the only ones, let p, q, r, s ≥ 1. We will show by induction on p+ r
that if G avoids Kp, Kq,q and rK1,s, then the H-index of G is bounded by a constant
H(p, q, r, s). For the base case, note that if p = 1, this is trivial, and if r = 1, then G is
(Kp,K1,s)-free and therefore the maximum vertex degree in G is bounded by R(p, s). This
in turn implies that h(G) ≤ R(p, s). We may thus assume p, r ≥ 2.

If G = G1 × G2 is a join of non-empty graphs, then not both G1 and G2 have more
than R(p, q) vertices. Indeed, if both do, then either one of them contains a clique of size p,
which is forbidden, or they both have independent sets of size q, which again cannot happen
since Kq,q is forbidden. Without loss of generality, we may assume that |V (G2)| ≤ R(p, q).
In this case, by Lemma 7, h(G) ≤ h(G1) +R(p, q). Since |V (G2)| ≥ 1, G1 is Kp−1-free, so
by the induction hypothesis, h(G1) is bounded by H(p− 1, q, r, s).

1When a vertex v appears in more than one graph, we write degG(v) for the degree of v in graph G.
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If G =
t⋃

i=1
Gi is a union of connected graphs, we may write G = G1 ∪ . . . Gl ∪G′, where

G1, . . . , Gl each have a K1,s, and G
′ is K1,s-free (we may have l = 0). Since Kp and K1,s

are forbidden for G′, the maximum vertex degree, and hence the H-index of G′, is bounded
by R(p, s). Moreover, if l ≥ 2 and so two of the components of G do have a K1,s, then
we may write G as the union of two graphs that are (r − 1)K1,s-free, and by Lemma 7,
h(G) ≤ 2H(p, q, r − 1, s). Finally, if only one component has a K1,s, then that component
is a join of non-empty graphs and we obtain, again by Lemma 7 and from the previous
paragraph, h(G) ≤ H(p− 1, q, r, s) +R(p, q) +R(p, s).

Combining the above, we obtain

H(p, q, r, s) ≤ max(H(p− 1, q, r, s) +R(p, q) +R(p, s), 2H(p, q, r − 1, s)).

3.5 Achromatic number

A complete k-colouring is a partition of G into k independent sets (the “colour classes”)
such that any two independent sets in the partition have at least one edge between them.
The achromatic number ψ(G) of a graph G is the maximum number k such that G admits
a complete k-colouring. Computing this parameter is a difficult task even for cographs and
interval graphs [12].

Note that the class K of complete graphs and the class M of matchings have unbounded
achromatic number. Indeed, this is clear for complete graphs, and we note that

(
n
2

)
K2

admits a complete n-colouring where each edge of the matching joins two of the colour
classes. We claim that among cographs, those are the only minimal classes of unbounded
achromatic number. To show this, we start with a short lemma.

Lemma 8. Let r, s ∈ N. The class of (Kr, sK2, P4)-free graphs has bounded neighbourhood
diversity.

Proof. From Theorem 3, the only minimal subclasses of cographs where neighbourhood
diversity is unbounded are M, M and T . Kr belongs to both M and T , while sK2 belongs
to M.

We are now ready to prove the main result of this section.

Theorem 8. K and M are the only minimal hereditary subclasses of cographs of unbounded
achromatic number.

Proof. It suffices to show that for any r, s ∈ N, the class of (Kr, sK2, P4)-free graphs has
bounded achromatic number. Let G be a graph in this class. By Lemma 8, the class has
bounded neighbourhood diversity. In other words, there is a constant k (independent of G)
such that the vertex set of G can be partitioned into k similarity classes, each similarity
class being a clique or an independent set. Moreover, since the size of cliques is bounded by
r, we may further assume that each of these similarity classes is an independent set. Let G′
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be the quotient of G by this partition, i.e., the graph whose vertices are the independents
sets, with two vertices being adjacent if and only if the corresponding sets are complete to
each other.

Now consider a t-colouring of G, and interpret the colours as vertices of the complete
graph Kt. From each edge e of G′, we obtain a complete bipartite subgraph of Kt as follows:
if the edge e in G′ joins independent sets A1 and A2, then the two sets are complete to
each other, so the sets of colours I1, I2 ⊆ V (Kt) appearing in A1 and A2 respectively are
disjoint. The complete bipartite graph Be corresponding to e has I1 and I2 as its parts.
With this set-up, the t-colouring is complete if any only if the edges of the graphs Be

e∈E(G′)

cover the edges of Kt. From [26], we need at least ⌈log2(t)⌉ complete bipartite graphs to

cover Kt. It follows that t ≤ 2|E(G′)| ≤ 2(
k
2), as required.

3.6 Contiguity

The notion of contiguity was introduced in [31] and was motivated by the need of compact
representations of graphs in computer memory. One approach to achieving this goal is
finding a linear order of the vertices in which the neighbourhood of each vertex forms
an interval. Not every graph admits such an ordering, in which case one can relax this
requirement by looking for an ordering in which the neighbourhood of each vertex can be
split into at mots k intervals. The minimum value of k which allows a graph G to be
represented in this way is the contiguity of G, denoted cont(G).

In [17], it was shown that contiguity of n-vertex cographs is Θ(log n), implying that this
parameter is unbounded in the class of cographs. In what follows, we identify two minimal
hereditary subclasses of cographs of unbounded contiguity.

Lemma 9. Contiguity is unbounded in the class Q of (P4, C4)-free graphs and in the class
of their complements.

Proof. Let G be a graph and v a vertex of G. In a linear order of V (G), the number of inter-
vals representing the neighbourhood of v differs from the number of intervals representing
the non-neighbourhood of G by at most 1. Therefore, the contiguity is bounded in a class
X of graphs if and only if it is bounded in the class of complements of graphs in X. Thus,
it suffices to prove the lemma only for (P4, C4)-free graphs, also known as quasi-threshold
graphs.

Every quasi-threshold graph can be recursively constructed from one-vertex graphs by
applying one of the following two operations: disjoint union of two quasi-threshold graphs
G and H, denoted G∪H, and addition of a dominating vertex v to a quasi-threshold graph
G, denoted v ×G.

Let G be a quasi-threshold graph of contiguity k. In particular, for any linear order L
of V (G), there exists a vertex u whose neighbourhood consists of at least k intervals in L.
To prove the lemma, we will show that the contiguity of the graph H = v× (G∪G∪G) is
strictly greater than k.
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Let L be an arbitrary linear order of V (H), and consider the order Lv that we obtain
by restricting L to H − v, as well as the orders L1, L2 and L3 that we obtain by further
restricting Lv to the vertices of each of the three copies of G. Find vertices u1, u2, u3 ∈ V (H)
belonging to each of the copies of G such that in its respective copy, the neighbourhood of
ui consists of at least k intervals in Li. Since Li is a restriction of Lv, the neighbourhood
of ui in H − v still consists of at least k intervals in Lv (the number of intervals cannot
increase when removing vertices).

Now, the neighbourhood of ui in H consists of those at least k intervals in Lv, together
with v. Note that v can only be adjacent to (or inside) at most one of these intervals.
Moreover, since the ui have disjoint neighbourhoods in H − v, v cannot be adjacent to
intervals coming from all three neighbourhoods. In other words, there is an i ∈ {1, 2, 3}
such that ui has a neighbourhood consisting of at least k + 1 intervals in L (one of which
consists only of v). Since L was arbitrary, this shows the contiguity of H is at least k + 1,
as required.

Lemma 10. For any pair of graphs H ∈ Free(P4, C4) and K ∈ Free(P4, 2K2), there is a
constant c(H,K) such that the contiguity of (P4, H,K)-free graphs is at most c(H,K).

Proof. We prove the lemma by induction on |V (H)|+|V (K)|. For the basis of the induction
we observe that if one of H and K consists of two vertices, then the statement is obvious.

Now assume that both H and K contain more than two vertices and let G be a
(P4, H,K)-free graph. Below we analyse various cases depending on the structure of H
and K. Our analysis is based on the following observations (the first one can be derived
by restricting orders like in the previous lemma, and the second immediately follows by a
double complementation argument):

(a) if G is disconnected and G1, . . . , Gp are the components of G, then cont(G) =
maxi cont(Gi);

(b) if G is connected and G1, . . . , Gp are the co-components (components of the comple-
ment) of G, then cont(G) ≤ maxi cont(Gi) + 2.

Assume first that H contains a dominating vertex v and let H ′ = H − v. By the
inductive assumption, there is a constant c(H ′,K) bounding the contiguity of (P4, H

′,K)-
free graphs. If G is connected, then each co-component of G is H ′-free and hence by
(b), cont(G) ≤ c(H ′,K) + 2. If G is disconnected, then as in the previous sentence, the
contiguity of each component of G is at most c(H ′,K)+ 2 and hence by (a), the contiguity
of G is at most c(H ′,K) + 2.

If K contains an isolated vertex, then the arguments are similar. Therefore, in the rest
of the proof we assume that H is disconnected and K is the complement of a disconnected
graph. We represent H as H ′ ∪H ′′, where H ′ is a component of H and H ′′ is the rest of
the graph. Similarly, we represent K = K ′ × K ′′, where K ′ is a co-component of K and
K ′′ is the rest of the graph.

15



Assume without loss of generality that G is disconnected. If each of the components of
G′

0 := G is H ′-free, then by the inductive assumption the contiguity of each component,
and hence of G′

0, is at most c(H ′,K). Suppose now that one of the components of G′
0

contains H ′ as an induced subgraph. Denote that component by G′
1, and the rest of the

graph by G1. Note that each of the components of G1 is H ′′-free, and hence, by (a), G1

has contiguity at most c(H ′′,K). Applying similar arguments to G′
1, we see that either

all of its co-components are K ′-free, or it can be expressed as the join of two graphs G′
2

and G2 such that G′
2 is disconnected and contains K ′ as an induced subgraph, and G2 has

contiguity bounded by a constant depending on H and one of K ′,K ′′.
Continue in this way for as long as possible. We produce two sequences Gi and G

′
i such

that G′
i = G′

i+1 ⋆ Gi+1, where ⋆ stands for ∪ when i is even and × when i is odd, G′
i is

connected and contains H ′ when i is odd/disconnected and contains K ′ when i is even, and
all Gi have contiguity uniformly bounded by some constant depending only on H and K.
Since |G′

i| strictly decreases as i increases, there exists a k such that every component or
co-component of G′

k (according to whether k is even or odd respectively) is H ′, respectively
K ′-free. Put Gk+1 := G′

k.
Assuming without loss of generality that k is even, we have, by construction, that

G = G1 ∪ (G2 × (G3 ∪ . . . (Gk × Gk+1))), and each Gi has contiguity bounded by, e.g.,
c′(H,K) := max(c(H,K ′), c(H,K ′′), c(H ′,K), c(H ′′,K)) + 2.

Let Li, 1 ≤ i ≤ k+1, be a linear order on the vertices of Gi that witnesses a contiguity
of at most c′(H,K), and consider the linear order on V (G) given by the concatenation
L := L1L3 . . . Lk+1Lk . . . L4L2. We claim that this order witnesses a contiguity of at most
c′(H,K) + 2 for G. Indeed, the neighbourhood in G of any vertex v ∈ Gi consists of its
neighbours in Gi, together with some of the Gj , as follows:

� If i is even, the neighbourhood outside of Gi of v consists of
⋃
j>i

V (Gj)∪
⋃
j<i

j even

V (Gj).

� If i is odd, the neighbourhood outside of Gi of v consists of
⋃
j<i

j even

V (Gj).

Note that each of the indexed unions above corresponds to an interval in L. Thus the
neighbourhood of v consists of at most c(H,K) := c′(H,K) + 2 intervals in L, as required.

Combining the two lemmas above we obtain the main result of this section as follows.

Theorem 9. The class Q of quasi-threshold graphs and the class of their complements are
the only two minimal hereditary subclasses of cographs of unbounded contiguity.

4 Concluding remarks and open problems

Let us bring together the different pieces of our analysis and draw a hierarchy of the
parameters studied in this paper. Each parameter κ is presented in Figure 2 together with
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its collection M(κ) of minimal hereditary subclasses of cographs where κ is unbounded,
and the parameters are compared by their strength.

matching number
(M, B, K)

achromatic number
(M, K)

neighbourhood diversity
(M, M, T )

lettericity
(M, M)

boxicity
(M)

vertex degree
(S, K)

H-index
(F , B, K)

tree-width, degeneracy
(B, K)

chromatic number
(K)

co-chromatic number
(U , U)

linear clique-width, contiguity
(Q, Q)

Figure 2: A Hasse diagram of graph parameters within the universe of cographs. For
each parameter, the minimal hereditary subclasses of cographs where the parameter is
unbounded are listed in parentheses.

There are many other interesting parameters that are unbounded in the class of cographs,
such as Dilworth number [29], distinguishing number [9], shrub-depth [28], rank [15], metric
dimension [46], etc. However, surprisingly, there are not so many “interesting” subclasses
of cographs that appear in the characterisation of those parameters. For instance, Dilworth
number, distinguishing number and shrub-depth can be characterised without extending
the (already small) set of classes studied in this paper. What makes those classes special?

It is not difficult to show that any class X appearing in the setM(κ) for some parameter
κ is atomic, in the sense that it cannot be written as the union of two proper subclasses.
This property is equivalent to the joint embedding property, whereby if X contains G and H,
then it must contain a graph containing both G and H as induced subgraphs (Fräıssé [27]
studied these notions, albeit in a more general setting). Conversely, for any atomic class
X , one can cook up a parameter κX with M(κX ) = {X}. However, even when restricting
our search to atomic classes, only a select few seem to occur when studying “natural”
parameters. Understanding this phenomenon is a challenging research problem.

One more challenging research direction deals with algorithmic problems. As we men-
tioned earlier, computing the achromatic number is an NP-complete problem for cographs.
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The same is true for the related problem of computing harmonious colouring [7]. Two
more problems that remain NP-complete for cographs are k-path partition [7] and in-
duced subgraph isomorphism [11]. Moreover, each of these problems has been shown to be
NP-complete in the class of quasi-threshold graphs. Is that the minimal class where the
problems are NP-complete?

For the problem of computing the achromatic number, the answer to the above question
is ‘no’. Indeed, in the proof of the NP-completeness of this problem given in [12], 3-
partition reduces to an instance of achromatic number on a cograph consisting of
several connected components, each of which is a star, except for one component consisting
of two cliques sharing a vertex. Clearly, this is a quasi-threshold graph, but this graph avoids
many other quasi-threshold graphs as induced subgraphs, for instance 3K3. Therefore, the
problem remains NP-complete for 3K3-free quasi-threshold graph. Is this class minimal?
The answer again is ‘no’, as the reader can easily find more quasi-threshold graphs that are
not contained in the described graph. On the other hand, due to well-quasi-orderability
of cographs, there must exist a minimal class where the problem is NP-complete, and
the number of such classes must be finite. Identifying minimal classes for this and other
problems that are NP-complete for cographs is an attractive and ambitious topic for future
research.

Finally, another series of questions stems from our observation in Section 2.2 that
cographs are bqo. There is a rich and beautiful theory behind this notion, originally in-
troduced by Nash-Williams [40]. However, it seems that bqo properties under the induced
subgraph relation have not yet been studied in depth. In particular, as far as the authors are
aware, many fundamental questions in this area remain unanswered, the most immediate
being: is every wqo class of graphs in fact bqo?

Note that this is not the case for quasi-orders in general. For instance, the so-called
Rado structure [42] is a wqo, but its power set is not wqo under inclusion. In fact, this
structure is in a certain sense universal with this property [37], so a first step towards
answering the question would be to determine whether there exists a Rado structure of
graphs under induced subgraphs. We also note that bqo of graphs under the minor relation
is an open problem (see, e.g., [20]).
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of permutations. Trans. Amer. Math. Soc. 365 (2013), 5859–5881.

[3] B. Alecu, V. Lozin, D. de Werra, The micro-world of cographs, Lecture Notes in
Computer Science, 12126 (2020) 30–42.

18



[4] B. Alecu, V. Lozin, D. de Werra, V. Zamaraev, Letter graphs and geometric grid
classes of permutations: characterization and recognition. Discrete Appl. Math. 283
(2020), 482–494.

[5] V.E. Alekseev, Range of values of entropy of hereditary classes of graphs. (Russian)
Diskret. Mat. 4 (1992), no. 2, 148–157; translation in Discrete Math. Appl. 3 (1993),
no. 2, 191–199.

[6] M. Aschenbrenner, R. Hemmecke, Finiteness theorems in stochastic integer program-
ming. Found. Comput. Math. 7 (2007), 183–227.

[7] K. Asdre, S.D. Nikolopoulos, NP-completeness results for some problems on subclasses
of bipartite and chordal graphs. Theoret. Comput. Sci. 381 (2007), no. 1–3, 248–259.

[8] A. Atminas, V.V. Lozin, I. Razgon, Linear time algorithm for computing a small
biclique in graphs without long induced paths. Lecture Notes in Computer Science
7357 (2012), 142–152.

[9] A. Atminas, R. Brignall, Well-quasi-ordering and finite distinguishing number. J.
Graph Theory, 95 (2020), 5–26.

[10] L. Babel, S. Olariu, On the structure of graphs with few P4s. Discrete Appl. Math. 84
(1998), no. 1–3, 1–13.

[11] R. Belmonte, P. Heggernes, P. van ’t Hof, Edge contractions in subclasses of chordal
graphs. Discrete Appl. Math. 160 (2012), no. 7–8, 999–1010.

[12] H.L. Bodlaender, Achromatic number is NP-complete for cographs and interval graphs.
Information Processing Letters, 31 (1989), 135–138.
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