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A B S T R A C T 

Doppler tomography is a method to compute the emissivity distribution within the co-rotating frames of binary stars from 

observations of their emission line profiles at multiple orbital phases. A key assumption of the method as it is usually applied 

is that all gas flow is parallel to the orbital plane of the binary. In this paper, I examine the possibility of lifting this assumption 

to allow for motion parallel to the orbital ‘ z’ axis of the binary as well. I show that the problem is best considered in Fourier 
space, and that line profiles directly constrain the 3D Fourier transform of the 3D Doppler image in velocity space, but only 

o v er the 2D surface of a double-cone centred upon the origin, and aligned with the axis reciprocal to the v z velocity axis. Hence 
the full information needed for the reco v ery of the 3D emissivity distribution is simply not available. Despite this, an inversion 

method is presented and tested on a number of simulated images. While artefacts resulting from the missing information do 

appear, the tests suggest that there could be some value in applying 3D Doppler tomography to data from real systems, although 

considerable care is needed when doing so. 

Key words: accretion, accretion discs – line: profiles – binaries: close. 
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 I N T RO D U C T I O N  

tomic lines from binary stars vary in wavelength as the binary
rbit progresses. Any component that is fixed in the frame of the
inary does not appear invariant to us, but instead it e x ecutes a
inusoid in terms of its radial velocity with time (for assumed circular
rbits). Such sinusoids were seen long ago as ‘S-waves’ in trailed
hotographic plate spectra (Kraft, Mathews & Greenstein 1962 ). If
here are many different components, each executing its own sinusoid
ith its own amplitude and phase, the blended result of o v erlapping

inusoids can be hard to interpret in terms of the pattern of emissivity
n the frame of the binary. Very often in fact, the emissivity has the
orm of a smooth distribution as opposed to a discrete set of point
ources, and a simplistic component–source association becomes
mpossible. 

It was to address this problem in the context of accreting white
warfs in binaries, which feature line emission from extended
tructures taking the form of discs and streams of material as well
s from their component stars, that the method known as Doppler
omography was developed (Marsh & Horne 1988 ). In essence,
oppler tomography seeks to find the pattern of emissivity in the

rame of the binary that matches an observed set of line profiles at
ultiple orbital phases. Doppler tomography was so named because

he relationship between the emissivity pattern in the binary and
he line profiles as a function of orbital phase is mathematically
ery similar to the relationship between structures inside the human
ody and medical X-ray images as a function of the projection angle
round the body. The analogy between the two cases is closest if
he Doppler images are considered to be a function of velocity
ince this a v oids the often uncertain and potentially multi v alued
 E-mail: t.r.marsh@warwick.ac.uk 
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Pub
nd therefore indeterminate translation between spatial position and
elocity within a binary system. Thus, it is that Doppler images
re almost invariably presented in two dimensional velocity space,
eflecting the motions parallel to the orbital plane of the binary. 

In 2D velocity coordinates, the line profiles are a collapse or pro-
ection of the Doppler image along a straight-line direction defined
y orbital phase (in contrast to the curved lines that characterize
ine profile formation from an accretion disc in spatial coordinates
or instance; Huang 1972 ; Smak 1981 ; Horne & Marsh 1986a ).
he projection integrates over the orbital-phase dependent direction

o convert the 2D image into a 1D line profile. A set of such
rojections at all angles (i.e. all orbital phases) can be inverted
o obtain the 2D velocity-space image through a process called a
adon transform (Horne & Marsh 1986b ; Marsh & Horne 1988 ;
arsh 2001 ), although practical implementations need to account

or missing phases and finite spectral and temporal resolution that do
ot feature in the Radon transform. 
Line profiles as a function of orbital phase are two dimensional

n nature, as are Doppler images, so it is perhaps no surprise
hat the inversion is usually a well-constrained problem, even in
he face of the practical details of noise, resolution and phase
o v erage. Ho we ver, some of the most striking results of Doppler
omography have come from its application to the magnetic accreting
hite dwarf systems known as ‘polars’ (and also as AM Her

tars after the prototype system; Tapia 1977 ). Doppler images of
olars hav e rev ealed the ballistic part of the mass transfer stream,
long with emission from the white dwarf’s magnetosphere once
he accreting gas has locked on to the magnetic field lines and
s it accelerates towards the white dwarf (Schwope, Mantel &
orne 1997 ; Heerlein, Horne & Schwope 1999 ; Schwope et al.
000 ). Magnetically confined accretion in polars could well involve
ignificant motion out of the orbital plane, violating a fundamental
ssumption of Doppler tomography (Marsh 2001 ). The application
© 2021 The Author(s) 
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f Doppler tomography to polars raises two obvious questions: 
hat is the effect of out-of-plane motion upon the images, and 

an it be accounted for in the process of Doppler tomogra- 
hy? 
Out of plane motion corresponds to motion in the z direction, 

arallel to the orbital axis of the binary. This implies a v z component
n addition to the usual ( v x , v y ) coordinates of Doppler tomography.
n other words, the question becomes whether it is possible to 
econstruct a fully 3D image from line profile data, and, if so, is
he reconstruction reliable? Addressing these questions is the subject 
f this paper. 
A first look at 3D reco v ery was briefly presented in the form

f a simulated image of two spots by Marsh ( 2005 ). Agafonov,
ichards & Sharova ( 2006 ) applied a method for 3D reconstruction

elated to the CLEAN technique of radio astronomy to derive 3D 

aps of the Algol system U CrB. The same authors returned to
 CrB in Agafono v, Sharo va & Richards ( 2009 ) as well as other
lgol binaries (Richards, Agafonov & Sharova 2012 ). These papers 
resent a rather bewildering variety of components interpreted in 
erms of stream and disc flows in the orbital plane, jet outflows
long the orbital axis, flows along magnetic loops and coronal mass
jections. In this paper, I will show that there are reasons to be
autious when it comes to the reality of such features. Tomography 
n 3D is found to have a fundamentally different character than the
D case, meaning that very different emissivity distributions can be 
ound that match the same set of data equally well. On the flip side,
here can also be instances of the faithful reco v ery of 3D information.

I start with a re vie w of the 2D imaging problem. Although this has
een co v ered before (Marsh & Horne 1988 ; Marsh 2001 ), it is useful
ere to summarize it in terms as closely connected as possible to the
D case that will be studied in Section 3; much of the groundwork
or the 3D analysis is contained within this summary. I look at the
ature of the de generac y intrinsic to 3D imaging in Section 4, and
resent a method for computing 3D images from line profile data 
n Section 5. I show simulated reconstructions in Section 6, before 
nishing with a discussion and conclusions. 

 LINE  F O R M AT I O N  IN  2 D  VELOCITY  SPAC E  

 point in 2D velocity space is labelled by its velocity v 2 = ( v x , v y ).
he x and y velocity components are defined relative to an x axis that
oints from star 1 to star 2 and a y axis that points in the direction
f motion of star 2. The subscript ‘2” is used to flag that this is a 2D
ector; later on, 3D vectors will appear without subscripts. 

The line profile f ( V , φ), a function of radial velocity V and orbital
hase φ (measured in terms of orbital cycles), due to image I 2 in 2D
elocity space is given by 

 ( V , φ) = 

“
d v x d v y δ( V − V R ) I 2 ( v x , v y ) , (1) 

= 

∫ 

v 2 

d 2 v 2 δ( V − V R ) I 2 ( v 2 ) , (2) 

dopting an integrand-goes-last notation to reduce later complexity, 
here the second line introduces a compact notation for the double 

ntegral, and V R is the radial velocity given by 

 R = −v x cos (2 πφ) + v y sin (2 πφ) , (3) 

= u 2 · v 2 . (4) 

ere, the vector u 2 is defined as 

 2 = ( − cos (2 πφ) , sin (2 πφ)) . (5) 
he form of the expression adopted here for the radial velocity V R 

eans that v x and v y implicitly include a sin ( i ) projection factor
long the line of sight where i is the orbital inclination. The inclusion
f the projection factor in this manner is standard practice in 2D
oppler tomography since the projection factor is usually unknown, 

nd it means that the scale of the derived map is directly connected
o the radial velocity in the line profiles. This has the consequence
hat the true velocities in the orbital plane are a factor 1/sin ( i ) higher
han they appear in 2D Doppler maps. It also means of course that
e require that i �= 0 ◦. 
Equation (2) expresses a projection operation. The delta function 

elects all points in the image that have radial velocity V R = V at
rbital phase φ. Equation (3) means that these points satisfy u 2 · v 2 =
 , and form a straight line perpendicular to u 2 in velocity coordinates.
onsidering all possible values of V , then a set of parallel straight

ines emerges along which one imagines the 2D image is collapsed to
orm the observed profile, a ‘projection’ in other words. These ideas
ere illustrated in the first two figures of Marsh & Horne ( 1988 ). 
Defining Fourier and inverse Fourier transforms by the relations 

˜ 
 ( k) = 

∫ +∞ 

−∞ 

d x e −i2 πkx f ( x) , (6) 

 ( x) = 

∫ +∞ 

−∞ 

d k e i2 πkx ˜ f ( k) , (7) 

dopting the convention that ˜ f is the Fourier transform of f , then
aking the 2D transform of the image leads to 

˜ 
 2 ( k 2 ) = 

∫ 

v 2 

d 2 v 2 e 
−i2 πk 2 ·v 2 I 2 ( v 2 ) , (8) 

 2 ( v 2 ) = 

∫ 

k 2 

d 2 k 2 e i2 πk 2 ·v 2 ˜ I 2 ( k 2 ) , (9) 

ith ˜ I 2 ( k 2 ) the 2D Fourier transform of the 2D velocity space
mage. The double integrals span all of the velocity v 2 -space, and
he reciprocal k 2 -space, although in practice there are limitations due
o size and noise which are not a concern at this point. 

Substituting for I 2 ( v 2 ) from equation (9) into equation (2) for the
ine profiles, and switching the order of integration, 

 ( V , φ) = 

∫ 

v 2 

d 2 v 2 δ( V − V R ) 
∫ 

k 2 

d 2 k 2 e i2 πv 2 ·k 2 ˜ I 2 ( k 2 ) , (10) 

= 

∫ 

k 2 

d 2 k 2 

∫ 

v 2 

d 2 v 2 δ( V − u 2 · v 2 ) e 
i2 πk 2 ·v 2 ˜ I 2 ( k 2 ) . (11) 

ubstituting for the delta function in the last line using the well-
nown relation 

( x) = 

∫ 

d s e i2 πsx , (12) 

nd swapping the order of integration once more, 

 ( V , φ) = 

∫ 

s 

d s e i2 πsV 

∫ 

k 2 

d 2 k 2 ˜ I 2 ( k 2 ) 
∫ 

v 2 

d 2 v 2 e 
i2 π( k 2 −s u 2 ) ·v 2 . (13) 

he double inte gral o v er v 2 reduces to the product of two delta
unctions, δ( k vx − su x ) and δ( k vy − su y ), which I write in compact
orm as δ2 ( k 2 − s u 2 ). (I refer to k vx and k vy rather than k x and k y ,
ince k 2 is conjugate to velocity space not position space.) Hence 

 ( V , φ) = 

∫ 

s 

d s e i2 πsV 

∫ 

k 2 

d 2 k 2 ˜ I 2 ( k 2 ) δ2 ( k 2 − s u 2 ) , (14) 

= 

∫ 

s 

d s e i2 πsV ˜ I 2 ( s u 2 ) . (15) 

inally, taking the Fourier transform over V , ∫ 

d V e −i2 πsV f ( V , φ) = 

˜ I 2 ( s u 2 ) , (16) 
MNRAS 510, 1340–1351 (2022) 
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nd so 

˜ 
 ( s, φ) = 

˜ I 2 ( s u 2 ) . (17) 

his equation shows that the Fourier transform with respect to radial
elocity of the line profile at phase φ gives us the values of the
D Fourier transform of 2D Doppler image along a line in k 2 -space
iven by k 2 = s u 2 for s = −∞ to ∞ . This is a straight line through
he origin in k 2 -space with direction u 2 . This line lies at angle 2 πφ

adians rotated anticlockwise from the k vx axis. As the binary orbit
rogresses, the angle increases, and hence we can obtain values of
he 2D Fourier transform over the entire k vx –k vy plane given a set of
ine profiles co v ering a binary orbit (or even just half a binary orbit
ndeed). The image that we are after then follows from equation (9).

To see explicitly how the inversion may be accomplished, make
he substitutions 

 vx = −s cos 2 πφ, (18) 

 vy = + s sin 2 πφ, (19) 

n the right-hand side of equation (9). This leads to a factor 2 π | s |
rom the Jacobian of the coordinate transform, and allows the Fourier
ransform of the image to be expressed in terms of the line profiles
sing equation (17). One finds 

 2 ( v x , v y ) = 2 π
∫ ∞ 

0 
ds 

∫ 1 

0 
d φ | s | ˜ f ( s , φ) e i2 πsV R , (20) 

here V R is a function of φ as given by equation (3). This can be
ewritten as 

 2 ( v x , v y ) = 2 π
∫ 0 . 5 

0 
d φ

∫ ∞ 

−∞ 

d s | s | ˜ f ( s , φ) e i2 πsV R , (21) 

hich can be broken down into two steps: first, an inverse Fourier
ransform step that returns a filtered version of the line profiles 

 ( V , φ) = 

∫ ∞ 

−∞ 

d s | s | ˜ f ( s , φ) e i2 πsV , (22) 

nd, second, an integral over orbital phase 

 2 ( v x , v y ) = 2 π
∫ 0 . 5 

0 
d φ F ( −v x cos 2 πφ + v y sin 2 πφ, φ) . (23) 

his last step is known as ‘back-projection’, because the contribution
o the image of a particular phase can be imagined as smearing the line
rofile back o v er the image in the same direction as the projection that
ormed the profile in the first place (see Marsh 2001 , for a pictorial
epresentation of the process). 

Subject to issues such as full phase co v erage, spectral and temporal
esolution and signal to noise, this is a well-defined procedure with
elatively little room for a multiplicity of different images that can
atch a given set of line profiles. The key result leading to this is

quation (17) that allows the substitution of the Fourier transform of
he image in terms of the line profile in equation (20). The 3D case
s a simple extension of the procedure leading up to equation (17),
nd it leads to a very similar looking result, but in this case the full
D transform is not obtained, and this makes a critical difference to
he computation of 3D maps. 

 L INE  F O R M AT I O N  IN  3 D  VELOCITY  SPAC E  

he extension to 3D follows very much the same lines as the previous
ection. The same quantities appear, but without the subscripts ‘2”
unadorned quantities are three dimensional. Points in 3D velocity

re labelled by v = ( v x , v y , v z ). The x - and y -axes are defined as
NRAS 510, 1340–1351 (2022) 
efore, while the additional z-axis is defined to complete a right-
anded triad, i.e. ˆ z = 

ˆ x × ˆ y , where carets denote unit vectors. Thus
efined, the z-axis is parallel to the angular momentum vector of the
inary, and therefore the orbital inclination i is the angle between the
 axis and the vector ˆ e pointing from the binary towards Earth, i.e.
os ( i) = ˆ z · ˆ e . Thus, as well as the restriction i �= 0 ◦ noted earlier, we
ust also have i �= 90 ◦, as has been remarked previously (Agafonov

t al. 2006 ). 
The line profile f ( V , φ), a function of radial velocity V and orbital

hase φ, due to image I in 3D velocity space is given by 

 ( V , φ) = 

•
d v x d v y d v z δ( V − V R ) I ( v x , v y , v z ) , (24) 

= 

∫ 

v 

d 3 v δ( V − V R ) I ( v ) , (25) 

dopting the same compact notation as before. The radial velocity
 R is now given by 

 R = −v x cos (2 πφ) + v y sin (2 πφ) − v z , (26) 

= u · v , (27) 

here the vector u is defined as 

u = ( − cos (2 πφ) , sin (2 πφ) , −1) . (28) 

s for the 2D case, v x and v y implicitly include a sin ( i ) projection
actor along the line of sight, but now the v z component implicitly
ncludes a cos ( i ) projection factor for the reasons outlined before. 

Like equation (2), equation (25) expresses a form of projection,
ut now from three dimensions to one dimension. The delta function
gain selects all points in the (now 3D) image that have radial velocity
 R = V at orbital phase φ. For a given orbital phase, the line profile
an be thought of as the result of slicing the 3D image into a series of
at, parallel slices and integrating over the two dimensions spanning
ach slice to end up with a 1D function for a given φ. The orientation
f the planes is go v erned by their perpendicular vector, u . Vector
 has unit length when projected into the ( v x , v y ) plane, and a v z 
omponent of the same length. Therefore, it makes an angle of 45 ◦

ith the v z axis and also with the ( v x , v y ) plane. Imagining it as an
rrow starting from the origin in velocity space, u sweeps out a cone
ith an opening angle of 45 ◦ around the v z axis as the binary rotates.
his geometry feeds directly through to the reciprocal Fourier space
s will soon be shown, and shows up later in the reconstructions. 

Moving to Fourier space as before, but now in 3D, 

˜ 
 ( k ) = 

∫ 

v 

d 3 v e −i2 πk ·v I ( v ) , (29) 

 ( v ) = 

∫ 

k 
d 3 k e i2 πk ·v ˜ I ( k ) , (30) 

here ˜ I ( k ) is the 3D Fourier transform of the 3D velocity space
mage. Substituting for I ( v ) using equation (30) leads as before to 

 ( V , φ) = 

∫ 

k 
d 3 k 

∫ 

v 

d 3 v δ( V − u · v ) e i2 πk ·v ˜ I ( k ) , (31) 

nd then the same substitution of the delta function and subsequent
anipulation as applied to equation (11) again leads to 

˜ 
 ( s u ) = 

˜ f ( s, φ) . (32) 

his is identical in form to its 2D equi v alent, equation (17), apart from
he loss of the subscripts on I and u . Ho we ver, because of the switch
rom 2D to 3D, its implications for inversion are very different. As
efore, the interpretation of the relation is that the Fourier transform
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Figure 1. An illustration of the double cone surface in Fourier k -space over 
which the values of the Fourier transform of a 2D velocity-space Doppler 
image are constrained by atomic line profiles at all phases of a binary star. 
The double cone has its apex at the origin k = (0 , 0 , 0), an opening angle 
of 45 ◦, and it is aligned with k vz axis. (The figure was created using the 3D 

visualization software, mayavi , Ramachandran & Varoquaux 2011 ). 
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ith respect to radial velocity of the line profile at phase φ gives us the
alues of the Fourier transform of the image that we are after, along
ines through the origin in k -space of direction u . The difference is
hat, in 2D, as the binary orbits, these lines co v er the whole of 2D
 2 -space. In the 3D case by contrast, the lines span the surface of
 double cone of opening angle 45 ◦, with its apex at the origin of
 -space and with the k vz axis as the cone’s axis. This is illustrated in
ig. 1 . In the 3D case, we can only measure the values of the Fourier

ransform on a 2D surface embedded within 3D k -space. 
Since we do not reco v er the 3D F ourier transform throughout k -

pace, we do not have the information required to deduce I ( v ) from
 3D inverse Fourier transform, and therefore no unique inversion 
long the lines of 2D Doppler tomography is possible. Hence 3D 

omography should not be viewed as a more advanced form of 2D
omography – the two cases are fundamentally different in nature. 

This result means that one can generate an infinite number of
ery different 3D images that are observationally indistinguishable 
ecause they each produce identical line profiles. Consider for 
nstance the following procedure: (i) select an image I ( v ); (ii)
ompute its Fourier transform 

˜ I ( k ); (iii) add a modifier function, 
˜ 
 ( k ) to ˜ I ( k ) subject to the restriction that it is zero on the surface

f the double cone discussed before; (iv) invert the modified Fourier 
ransform to generate a new image, I ′ ( v ). This procedure guarantees
hat the line profiles corresponding to I and I 

′ 
will be identical. 

In addition to the restriction that it is zero on the double cone,
he function ˜ M of step (iii) is subject to well-known symme- 
ry requirements to keep its inverse Fourier transform real, e.g. 
˜ 
 

∗( k vx , k vy , k vz ) = 

˜ M ( −k vx , k vy , k vz ), where the asterisk denotes
he complex conjugate; similar conditions apply to the other two 
omponents. 

It is not hard to think of functions that satisfy these conditions;
n e xplicit e xample will be shown in Section 6.1 later. There is,
o we ver, an important additional constraint that may come to our
id: positivity. As well as being real (i.e. I = I ∗), physical emissivity
istributions should satisfy the condition I ( v ) ≥ 0 for all v . If the
nitial image chosen in step (i) has large regions of zero or near-
ero flux, then the possibilities for the function ˜ M become much 
ore restricted. We may well expect that in many instances most of
he volume of 3D Doppler images is indeed rather empty, so this is
 significant point in our fa v our. It does suggest, ho we ver, that the
otential for development of artefacts in 3D images will depend upon
he nature of the image itself, and this is something that will be seen
n Section 6, where the artificial reconstructions are presented. 

.1 A return to 2D 

he 2D case can be reco v ered from the work of the preceding section
f we set the 3D image to be of the form 

 ( v ) = I 2 ( v x , v y ) δ( v z ) , (33) 

.e. we allow no motion out of the orbital plane (and for simplicity
ssume zero systemic velocity, with no loss of generality). With these
ssumptions, the Fourier transform becomes independent of k vz 

˜ 
 ( k ) = 

˜ I 2 ( k vx , k vy ) , (34) 

nd equation (32) becomes identical to its 2D equi v alent, equa-
ion (17). With no motion out of the plane allo wed, the v alues of
he Fourier transform at the two points on the double cone for a
iven pair of ( k vx , k vy ) values are the same, and they are the same
s the value at ( k vx , k vy , 0), hence we know the 2D transform in the
lane k vz = 0, which gets us back to the well-constrained 2D case. 

 C A N  W E  SAY  A N Y T H I N G  A B O U T  T H E  3 D  

MISSIVITY  DI STRI BU TI ON?  

lthough it has just been shown that an inversion along the lines
f 2D tomography is not possible, it does not mean that it is not
ossible to find an emissivity distribution in 3D corresponding to a
iven set of line profiles. In the context of accreting binary stars, the
ituation is somewhat analogous to the use of light curves in eclipse
apping (Horne 1985 ). The information provided by light curves 

uring ingress and egress is equi v alent to 2D-to-1D projections of
he accretion disc at just two angles. This corresponds to knowing
he values of the 2D Fourier transform along just two lines out of the
ntire plane of possible values, and yet eclipse mapping has pro v ed
seful in understanding the emissivity distributions of discs. Thus, 
ll is not necessarily lost as a result of equation (32), even though it is
lear that the inversion of the 3D case will have a different character
rom its 2D counterpart, and a key question becomes whether one can
educe anything of use about the 3D distribution from line profile
ata. 
Although far from complete, it is clear that some information on

he v z component is encoded in line profiles. Consider for instance a
D Gaussian blob of emission centred at v = ( V x , V y , V z ) with V z �=
. This will appear in spectra as a Gaussian emission-line profile with
 mean offset of −V Z from zero velocity, which varies sinusoidally in

elocity around the mean with amplitude 
√ 

V 

2 
x + V 

2 
y . The left-hand 

anel of Fig. 2 shows an example of line profiles from such an image,
lotted in the traditional form of a trailed spectrum with orbital phase
unning up the page. The standard 2D inversion, using the maximum
ntropy method with positivity enforced (Marsh & Horne 1988 ), is
hown in the centre panel of the figure. A volcano-like ring is formed
s the result of the substantial offset in the v z direction, a structure
iscussed by Marsh & Horne ( 1988 ) in the context of the effect of
ncorrect systemic velocities upon 2D maps. The ring allows the 
ppearance of an offset sinusoidal component matching the data, but 
t the expense of a second sinusoid and intervening emission, neither
f which are present in the data of the left-hand panel. The key point
MNRAS 510, 1340–1351 (2022) 
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Figure 2. Left: lines profiles plotted in the form of a trailed spectrum of orbital phase versus radial velocity. They correspond to a Gaussian blob of emission 
with full width at half-maximum (FWHM) of 300 km s −1 centred on ( V x , V y , V z ) = (500 , 400 , 300) km s −1 . The dashed line shows the exact path expected of 
the centre of the distribution. Centre: the image that results from applying standard 2D Doppler tomography to the profiles of the left-hand panel takes the form 

of a ring of radius V Z = 300 km s −1 centred upon ( V X , V Y ) = (500 , 400) km s −1 (marked by the plus sign). In 3D, the ring is the cross-section of a cone of 
opening angle 45 ◦ degree with apex at the centre of the Gaussian blob in 3D and axis parallel to v z with the v x –v y plane. Right: the profiles computed from the 
2D image are a very poor fit to the data. Dotted lines are used here and in other figures to mark zero velocity in the images and zero radial velocity in the data. 
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s that the data corresponding to the image (right-hand panel) are
n extremely bad fit to the input data. Thus, a 2D map cannot in
eneral simply adjust itself to fit line profiles that originate from an
ntrinsically 3D distribution, and the 3D nature of the input map is
ot entirely lost in the process of line profile formation. 
It is, ho we ver, also e vident that there are cases where, without

urther prior constraints, more than one very different distribution in
D can lead to identical sets of profiles, i.e. there is a fundamental
e generac y that reflects the loss of information represented by
quation (32). This was discussed in terms of applying modifications
n Fourier space earlier, but there is a simple explicit instance of
egenerate images which should reinforce the point. 
Consider a 2D distribution, i.e. the traditional situation with no
otion out of the plane, but restrict it to exact axi-symmetry about the

rigin. Such a distribution projects to a line profile that is independent
f orbital phase given by 

 ( V ) = 

∫ ∞ 

−∞ 

d u I 2 

(√ 

V 

2 + u 

2 
)

, (35) 

here now the 2D emissivity depends only upon the distance from
he origin. This profile is even about V = 0, but otherwise can take a
ide variety of forms depending upon I 2 ( V ). Ho we ver, no matter what

orm f ( V ) takes, it can also be generated from an entirely different
istribution of the form 

 ( v ) = f ( v z ) δ( v x ) δ( v y ) , (36) 

ecause substituting this into equation (25) and, with the help of
quation (26), carrying out the integrals first over v x and v y , and
nally o v er v z , leads to 

 ( V , φ) = 

∫ 

v 

d 3 v δ( V − V R ) δ( v x ) δ( v y ) , (37) 

= 

∫ ∞ 

−∞ 

d v z f ( v z ) δ( V + v z ) , (38) 

= f ( −V ) = f ( V ) , (39) 

sing the even nature of the profile in the last line. 
Hence in this restricted case, the same set of line profiles,

epresented by the even function f ( V ), independent of phase, can
e explained by either a 2D distribution confined to the v x –v y plane
r equally by a 1D distribution along the v z axis. This is familiar
NRAS 510, 1340–1351 (2022) 
rom real systems where it is not al w ays clear whether one is looking
t line profiles from a flat accretion disc or from symmetric jets
long the orbital axis. In practice, the form of emission, disc or jet,
s usually evident for other reasons, but treated purely in terms of
nversion into 3D, the degeneracy is clear. 

In summary, line profiles carry some information about the
missivity distribution in 3D, but at the same time there is scope
or de generac y and hence for false structures to be generated during
nversion. The significance of the degeneracy depends upon the exact
istribution of emission in 3D. Bearing this very real pitfall in mind,
 now look at a practical implementation of 3D inversion. 

 I MPLEMENTATI ON  O F  3 D  I NVERSI ON  

he 3D inversion adopted in this paper is a direct extension of the
aximum entropy method presented by Marsh & Horne ( 1988 ).
he key to that method is a routine that calculates data (i.e. the

ine profiles) corresponding to an image, an operation which can be
xpressed as a matrix operation, i.e. 

 i = A ij I j , (40) 

here I j , j = 1 to N , are the N elements of the image and d i , i =
 to M , are the M data points, and the matrix A encapsulates the
rofile formation by projection described earlier. Summation o v er
he index j is assumed. The MEMSYS algorithm (Skilling & Bryan
984 ) adopted to implement Doppler tomography requires a function
o implement equation (40) and a closely aligned function, with very
imilar looking code, to effect its transpose. 

In 2D tomography the image is represented by a square, 2D array
f typically 100 × 100 to 400 × 400 pixels. Thus, the number of
lements N typically ranges from 10 000 to 160 000. 3D tomography
erely requires the image to become three dimensional. There is

o need for the v z dimension to match the v x and v y dimension,
nd thus one may have 300 × 300 × 100 elements for instance.
ne way to think of the 3D image is as a series of 2D image

lices displaced in terms of their systemic velocity, and this is
f fecti vely ho w the calculations are implemented in practice. The
omputational time and storage requirements increase in proportion
o the v z dimension, but computer speeds and memory capacity have
dvanced enormously in the decades since Marsh & Horne ( 1988 ),
nd the process can be ef fecti vely parallelized across multiple cores,
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Figure 3. Top row: projections of the 3D model image (a Gaussian spot) 
used to generate the data of Fig. 2 . From left to right, the projections show 

the v x –v y plane, the v x –v z plane, and the v y –v z plane. Bottom row: the same 
projections of the 3D reconstructed image. The dashed lines mark the central 
velocity of the model spot. 
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o, although it can take several seconds to compute the data equi v alent
o a 3D image, the greatly increased computational burden is not a
undamental barrier. The code is wrapped in a PYTHON package and 
vailable via github . 1 Further information on its features, which 
nclude several additional advantages o v er Marsh & Horne ( 1988 )’s
riginal implementation, is left to Appendix A. 
An aspect of the maximum entropy method which is of somewhat 

econdary importance in the 2D imaging case, the ‘default image’, 
s of much greater significance in the 3D case. The default image J
nters into the computation of entropy 

 = −
N ∑ 

i= 1 

p i log 

(
p i 

q i 

)
, where p i = 

I i ∑ 

j I j 
, and q i = 

J i ∑ 

j J j 
, 

(41) 

nd allows one to control the features of the image that one wants to
ave the largest weight when computing the entropy. In the absence 
f any data constraints, the image of maximum entropy is the default
mage, i.e. I = J , so S is a measure of how far the image deviates from
he default, and the idea is to build into the default image aspects one
xpects the image to show. 

In 2D Doppler, imaging the standard default J is a Gaussian blurred 
ersion of I . This is isotropic and does not fa v our any particular
tructure or direction within the image, and it makes the entropy 
rimarily sensitive to short-scale noise in the image, with larger 
cale structure entirely determined by the data. This is useful given 
he strongly constrained nature of the 2D case. In the case of disc
clipse imaging by contrast, a more constraining azimuthal default, 
omputed from the radial profile of the image, is often applied (Horne
985 ). This partly reflects the relatively incomplete constraints set 
y the data in this case, as discussed earlier. During optimization, 
he default is taken to be constant by the MEMSYS3 code used, thus
he default always needs to be re-computed and the optimization 
e-run until the point is reached at which no significant changes take
lace. This procedure was adopted for all the computations shown 
elow. The changing nature of the default is one of the main drivers of
omputation time as it can sometimes take many iterations to achieve 
 near steady state, although it has to be said that very often there is
o noticeable change in the visual appearance of the reconstructed 
mages starting well before such a state is reached. 

 R E C OV E RY  O F  SIMULATED  IMAG ES  

n this section, artificial images are used to generate data from
hich reco v ery of the input image is attempted. A 3D version
f the Gaussian blurring was the first method adopted for default 
omputation. The blurring used for this was accomplished using an 
WHM of 200 km s −1 along all ax es. An alternativ e procedure will
e introduced in Section 6.3, when disc imaging is presented. The 
D images shown next had dimensions of (400,400,300) (i.e. 300 
lices in the v z direction), with voxels spaced by 10 km s −1 along all
 axes. 
The procedure followed was first to create an artificial model 

mage, and then generate line profile data from it, with the addition
f a small amount of pseudo-random noise. The line profiles were 
omputed at 200 phases, equally spaced around an orbit, and placed 
n a wavelength scale with 1000 pixels, each 6 km s −1 in width,
ith an assumed instrumental resolution of FWHM = 20 km s −1 . 
 ht tps://github.com/t rmrsh/tr m-doppler 

i  

c  

t  

i  
he inversions were based upon these data, starting with initially 
niform images. 
In all cases, it is good to keep in mind the bi-conical structure

iscussed for the profile formation from 3D images, because it 
s this which largely determines the structure of artefacts in the
econstructions. One way to look at this is to imagine that there is
 tendency for any given feature on an image to spread out into a
ouble cone extending up and down from it in the v z direction. This
ill be seen in some of the projections taken perpendicular to the v z 

xis, and will be seen to particular effect in the case of disc emission.
ust this was seen already in the centre panel of Fig. 2 , which is a
ross-section perpendicular to the axis of the double cone spooled 
y the v z �= 0 model spot used to create the data. 
The images chosen were selected in large part for simplicity. 

D images are best appreciated through ‘live’ dynamic movie- 
tyle rendering and when fixed into 2D form, they can become
ifficult to interpret. Thus, I have adopted a simple approach here
f showing them in projection (i.e. summed along the suppressed 
xis) or occasionally in slices because this makes direct side-by-side 
omparison much easier. As a consequence of this, I have selected
imple shapes where it is not hard to see how they should appear in
uch plots. Some of them approximately conform to structures one 
an expect to see in real systems, but I have not attempted to simulate
uch structures closely as then it becomes hard to unravel the physics
rom the issues of inversion, with the latter being the chief concern
f this paper. 

.1 Gaussian spot 

he first test was the attempted reco v ery of the Gaussian blob used
o generate the data shown in the left-hand panel of Fig. 2 , data
or which 2D tomography comes up short. The 3D reconstruction is
ompared against the original image in the form of projections along
he v z , v y , and v x axes in Fig. 3 . I do not show the reconstructed data in
he 3D case, since they are visually indistinguishable from the input
ata shown on the left of Fig. 2 . Given what has been said about the
mpossibility of a full inversion in the 3D case, the image appears
o have been recovered remarkably well, although the reconstructed 
mages are more extended in the v x –v y plane than in the v z direction
ompared to the model. The images shown are projections in which
he 3D images have been summed along the missing axis for each
mage, which can potentially be misleading as a comparison, but in
MNRAS 510, 1340–1351 (2022) 
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Figure 4. Left: a v x –v y slice through the Gaussian spot at v z = 300 km s −1 

where it is strongest, after addition of a tapered plane wave as discussed in the 
main text. Right: the corresponding line profiles, which should be compared 
to the line profiles shown in the left-hand panel of Fig. 2 . The figure is an 
e xplicit e xample of the multiplicity of 3D images that can match the same set 
of data. 
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Figure 5. Top row: projections of the 3D model image (a uniformly filled 
cube). From left to right, the projections show the v x –v y plane, the v x –v z 
plane, and the v y –v z plane. Bottom row: the same projections of the 3D 

image reconstructed from data computed from the model image. The dashed 
lines mark the central velocity of the model spot. 

Figure 6. A zoomed-in display of the centre-most 2D slice of the 3D model 
image (top) and the reconstruction (bottom) for the uniformly filled cube 
simulation. The same intensity levels have been used in each case. 
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his case individual slices also compare very well, and at the velocity
f peak flux look very similar to Fig. 3 . 
Before moving on, the elementary spot is a good chance for an

xplicit demonstration of the fact that very different images in 3D can
esult in the same line profiles. To show this, I added a harmonic plane
ave to the elementary 3D spot image with a phase ψ = 2 πk · v (in

adians), where I chose 

k = (0 . 005 , 0 . 002 , 0 . 001) km 

−1 s , (42) 

he Fourier transform of such a wave consists of two delta functions
ocated at ±k . The coefficients of k abo v e were picked to ensure
hat these points did not lie close to the double cone in k -space, i.e.
uch that 

 

2 
vx + k 2 vy �= k 2 vz . (43) 

n addition, I applied a Gaussian taper to the amplitude of the plane
ave of the form exp ( − ( v/500) 2 /2). This substantially reduces sharp

dge ringing effects, since for practical reasons, the images span
nly a finite range of velocity space. Such a taper corresponds to
onvolution by a Gaussian in k -space, and, as long as it does not
pread as far as the double cone, ensures the condition that the values
f the Fourier transform on the cone are not altered. Once the image
ad been altered in this manner, I computed line profiles from it.
he results of this are shown in Fig. 4 . As it was designed to do,

he addition of the plane wave to the image has made no visible
ifference to the line profiles which match those of the unadulterated
odel shown in the left-hand panel of Fig. 2 . This is very different

rom the 2D case. Were the single slice shown in Fig. 4 a 2D image,
he projections at phases aligned with the wave peaks and troughs
ould evidently show a high-amplitude sinusoid. It is striking how

he 3D image can be modified with a strong artefact that almost
bscures the ‘real’ spot feature, even at its strongest, and yet in the
ata, only the spot can be seen. Of course, the plane wave violates
ositivity in this case, but it is not clear that it al w ays w ould do so if
ther patterns were considered. 

.2 Uniformly filled cube 

he Gaussian spot perhaps provides a soft start for the 3D recon-
truction given the use of a Gaussian convolution to derive the
oving default images. To provide a tougher test, a test image was

onstructed with a spot in the form of a cube of dimension 300 km s −1 

n all sides centred on the same location as used for the Gaussian spot,
.e. (500 , 400 , 300) km s −1 . As before, the reconstruction employed
NRAS 510, 1340–1351 (2022) 
aussian convolution. The result, again shown with three projections
s in Fig. 3 , is shown in Fig. 5 . In this rather high signal-to-noise
imulation it pro v ed difficult to achieve a very good fit to the data as
he optimization became very slow to reduce the χ2 in the later stages.
his is at least partly a consequence of the unusual nature of the

nput image which features significant step changes in intensity, very
uch against the spirit of a Gaussian-convolved default, and one can

uess that the direction of maximum entropy is almost antiparallel
o the direction of decreasing χ2 . It is probably also indicative of the
ature of the lesser constraints in 3D compared to 2D. None the less,
he cubic shape of the model image certainly shows through in the
econstruction, and although it is noticeably imperfect, it seems to
e a reasonably useful reflection of the input model. 
In this case, the use of projections does mask some problems. Fig. 6

hows just the individual slices closest to the centres of the cubes in
heir respective directions. This shows very fine structure, much of
hich is generated as the result of the cliff-edge nature of the image,
ut in addition this is the first clear example of the bi-conical structure
entioned at the start of the section. Looking at the two panels in

he bottom right of the figure, the original square cross-section of the
ube can be dimly glimpsed, but somewhat more obvious is an outer
quare at 45 ◦ to the model square, and encompassing it. This is a
onsequence of the bi-conical smearing mentioned before. The same
ffect in the v x –v y plane blurs the outline of the square as well, but
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Figure 7. An artificial accretion disc plus bright-spot (left) and data com- 
puted from them (right). The disc is centred at (0 , −50) km s −1 ; the spot is 
centred at ( −300 , 500) km s −1 . 
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Figure 8. 3D reconstructions created from the data generated from the 2D 

map and bright-spot of Fig. 7 . They are shown as projections. In each case, 
the same χ2 per data point ( = 1.00) was achieved. Top row: reconstruction 
using a standard 3D Gaussian convolution. Centre row: reconstruction with 
a 25 per cent ‘pull’ towards a 2D image (see main text). Bottom row: 
reconstruction with a 50 per cent default pull. 
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n a different manner owing to the anisotropic nature of the double
one. 

Despite the evident artefacts, one could in this case correctly 
educe the existence of emission at the location of the cube, even if
ts details would be unreliable. 

.3 A 2D disc imaged in 3D 

he previous two simulations have involved images both of which 
ad most of their flux concentrated into one small region. Recon- 
truction in such cases has the most to gain from the positivity
ondition discussed in Section 3, a condition that is explicitly built 
nto the simplest form of the maximum entropy inversion. Positivity 
uppresses any artefacts which would cause parts of the image to be
e gativ e. Therefore, to mo v e a little a way from that, and to treat a case
hat will undoubtedly come up in practice, I now look at emission
rom a disc. A standard 2D image of a disc plus a bright-spot was
reated and data computed from it in the manner specified earlier. 
he model image and corresponding data are shown in Fig. 7 . Viewed
s a 3D distribution, this image is a delta function in the v z direction.
t can of course be reconstructed using standard 2D tomography, 
ut here the point is to see the outcome of reconstructing in 3D.
f the problem was well constrained, we would reco v er an image
hat was strongly concentrated towards v z = 0. The actual result,
sing a standard Gaussian convolution default (with an FWHM of 
00 km s −1 as used in all other cases), is shown in projection in the top
ow of Fig. 8 . Here, we are truly bitten by the missing information
roblem of 3D Doppler tomography! The fit to the data obtained 
rom the image of the top row of Fig. 8 is perfectly acceptable, with
 χ2 per data point of 1.00, identical to the fits obtained from the
mages shown in the other two rows of the figure (to be discussed
elow). The fit is not shown because it looks identical, albeit a little
moother, to the data of Fig. 7 . 

The top row of Fig. 8 is an e xplicit e xample of the disc–jet
e generac y problem discussed towards the end of Section 4. The
wo panels on the right show strong but entirely spurious spots of
mission on the v z axis, symmetrically placed abo v e and below the
 x –v y plane, which one could mistakenly interpret to be jets. These
pots show ‘diffraction spik e’-lik e cross-hairs that connect them back 
o the location of the accretion disc in the v x –v y plane. These are in
act from the usual double cone seen in projection. The Gaussian 
onvolution default tends to fa v our the development of discrete spots
ithin an image. In the 2D case, the data constraints are restrictive,

nd such spots genuine, but here it is possible for a spot on the v z -axis
o mimic a ring in the v x –v y plane, and hence a strong and worrying
rtefact arises. 
This means one should be extremely wary before claiming 
vidence of out-of-plane motion from a given set of line profiles.
enerated from data computed from an image with absolutely no 
otion out of the orbital plane, the top row of Fig. 8 is instead

ominated by emission at v z �= 0, and yet it delivers an excellent fit
o the input line profiles. 

What, if anything, can be done to address this problem? Just as
lluded to in the disc–jet discussion, we need to inject some sort
f extra ‘prior’ information because the line profiles simply do not
ontain the information to rule out the emission pattern shown at
he top of Fig. 8 . Indeed, that pattern sprang directly from applying
he inversion to the line profiles. In the case of disc mapping it was
entioned that the most axi-symmetric disc can be sought through 

he use of an azimuthal default image. A natural equi v alent in the
ase of Doppler tomography is to search for the most compact image
n the v z direction. We know that in most systems, much of the
otion is indeed in the orbital plane, so the first question we might
ant to answer on a given target is whether there is any evidence for

mission o v er a range of dif ferent v z v alues. If we try to force the
mage towards a delta function in the v z -direction, and yet it refuses
o approach that state, then we could be on to something. 

I tested this idea as follows: the default at each new set of iterations
as computed as a combination of the usual Gaussian convolution 
f the previous image, plus a ‘squeezed’ version constructed by 
eplacing the image along the v z direction at every v x –v y grid point
y a narrow Gaussian (of FWHM = 100 km s −1 in the v z direction)
entred at the flux-weighted mean v z value of the image at that grid-
oint. The squeezed version was convolved with a Gaussian in the v x 
nd v y directions. This couples neighbouring points in the v x –v y grid
nd a v oids the default becoming a set of independent columns in the
 z direction. The two components were combined with a weighting 
actor or ‘pull’ towards the squeezed image. Symbolically, the default 
as computed as 

 = (1 − p) G ( I ) + pS( I ) . (44) 
MNRAS 510, 1340–1351 (2022) 
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Figure 9. Left: Data corresponding to a model ‘polar’ consisting of two 
cylindrical structures in 3D. One which is confined largely to the v x –v y plane 
leads to the lower amplitude component. The other is tilted out of the v x –v y 
plane causing the larger amplitude and less symmetric second component. 
Right: A standard 2D map derived from the data. The map produces a poor fit 
to the data with χ2 per data point, χ2 / N = 8, set a little abo v e the minimum 

it was able to reach to a v oid corruption by noise. 
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ere, G ( I ) is the standard Gaussian-blurred default obtained from
onvolution with the 3D Gaussian of FWHM 200 km s −1 . S ( I ) is the
queezed default constructed by first collapsing the image I along the
 z dimension, and then forming a 3D image by re-expanding along
he v z direction as a Gaussian, of fixed root mean square σ , centred
pon the weighted centroid <v z > at each v x –v y position. These
teps are encapsulated by the following expression (∫ 

d ζ I ( v x , v y , ζ ) 

)
1 √ 

2 πσ
exp 

( 

−1 

2 

(
v z − 〈 v z 〉 

σ

)2 
) 

. (45) 

his image was then blurred in v x –v y to obtain the final pure squeezed
efault, S ( I ). The pull factor p is a number between 0 and 1 that
ontrols the balance between the standard isotropic Gaussian G
ersus the pure squeezed default S , with the latter promoting a
oncentration of emission at one location in the v z direction, if the
ata allow it. 
The second row of Fig. 8 shows the result of reconstructing with

 25 per cent pull given towards the squeezed image and 75 per cent
owards the regular default ( p = 0.25). This is applied o v er man y
terations, and it can be seen that it has allowed, as it was designed
o do, a much greater intensity to build up in a narrow range in v z .
his is taken even further in the lowest row where a 50:50 weighting
as used. Note that the location at v z = 0 was not built in to the

alculations, but emerged naturally as iterations proceeded. It is also
orth emphasizing once more that all three rows in Fig. 8 represent

dentically good reconstructions in terms of the fit to the input data.
hey all achieve χ2 / N = 1.00. 
For the largest 50 per cent pull factor, the v x –v y projection (bottom-

eft of Fig. 8 ) approaches the appearance of the input image (left of
ig. 7 ), whereas the v z -axis ‘jets’ are clearly visible in the other two
o ws. Here, ho we ver, the projections are a little misleading as the
 z = 0 slices of the top two rows also look similar to the input image
ig. 7 , albeit with distinctly weakened disc components compared to

he bottom row. 

.4 A ‘polar’ 

s outlined in the introduction, the need for 3D imaging is most
vident in the case of polars where there are very likely to be gas
ows away from and back towards the orbital plane, so the final
imulation is of a highly idealized ‘polar’. I base this on results of 2D
maging of polars (Schwope et al. 1997 , 2000 ; Heerlein et al. 1999 ),
hich sho w e vidence for a section of ballistic stream proceeding

rom the donor star, apparently little affected by the magnetic field,
long with a magnetically controlled structure associated with gas
o wing do wn on to the white dwarf. The jump between these sections

s quite sharp leading almost to a discontinuity in Doppler maps. It is
he magnetically controlled section where one anticipates v z �= 0. I
dopt an extremely simplistic representation of these structures with
he emphasis being on generating easily understood input models as
pposed to physically realistic ones. The latter is a challenge in any
ase, and it will be better to test these methods on real systems than
o attempt to replicate them here. 

The ‘polar’ is therefore built from two finite length cylindrical
tructures in which the emission drops off as a Gaussian with distance
rom the axis, o v er a speed scale of RMS σ = 30 km s −1 . The
missivity does not vary along the axis of the cylinder but sharply
runcates at each end. One cylinder lies in the orbital plane-parallel to
 x , and extends from ( −550 , 250 , 0) km s −1 to ( + 50 , 250 , 0) km s −1 ,
n primitive representation of the ballistic stream. The other is centred
t (0 , −800 , 0) km s −1 on the v y axis. Its axis has zero v x component
NRAS 510, 1340–1351 (2022) 
ut it is tilted at 30 ◦ to the v x –v y plane and has a total length of
00 km s −1 . This is to approximate a magnetically controlled flow in
hich the gas first heads upwards with v z > 0, reaches a maximum
eight out of the orbital plane ( v z = 0) before heading back towards
t at accelerating speed with v z < 0. Thus, this component clearly
eeds to intersect the v z = 0 plane. This component in real systems
ies in the ne gativ e v x –v y quadrant; here I force it to have zero v x 
omponent to simplify the figures. 

Following the usual procedure led to the data shown in Fig. 9 where
he data are plotted side-by-side with a standard 2D reconstruction.
he effect of the tilt out of the v x –v y plane is seen in the data where

he larger amplitude component does not have the symmetry of its
n-plane counterpart. In the 2D reconstruction, the tilted component
eads to another nice example of the double cone effect, being ‘in
ocus’ at the point where it crosses v z = 0, but spreading out into a
ing pattern at either end. The resultant fit is poor with a χ2 per point

2 / N = 8 – the data contain behaviour that cannot be captured by a
D model. 
Starting from these data, three 3D reconstructions were performed

sing a plain Gaussian default, and squeezed defaults with 25 and
0 per cent pull factors, as were used in the disc reconstructions of
ig. 8 . These reconstructions, along with the original model, are
hown in projection in Fig. 10 . In all cases, χ2 / N = 1 was reached.
he reconstructions in this admittedly simplified scenario are a return

o low level artefacts and the differences between the reconstructions
nd the model appear to be relatively minor. This may again be related
o the compact nature of the structures and positivity constraints.
herefore as a final test, a double Gaussian disc was added of the

orm 

exp 

(
− v 2 z 

2 σ 2 
z 

)
exp 

( 

−v 2 x + v 2 y 

2 σ 2 
xy 

) 

, (46) 

ith σz = 20 km s −1 and σxy = 600 km s −1 . This was not intended
o model anything specific, but just to be representative of the sort
f additional emission components of unclear origin one sometimes
ees in real systems. The abo v e component is strongest in a narrow
and near v z = 0, but broadly spread o v er the v x –v y plane. Its total flux
as scaled to match the total flux from the cylindrical components.
he model and reconstructions, exactly equi v alent to Fig. 10 for the
ylindrical components on their own, are displayed in Fig. 11 . 

As might have been expected given the similarities with the disc
imulation, some clear artefacts now appear. In the model (top row),
he presence of the extra Gaussian slab is clear in the two side-on

art/stab3335_f9.eps
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Figure 10. Top-to-bottom: the model and three reconstructions based on 
the ‘polar’ data of Fig. 9 . All cases are shown in projection. The three 
reconstructions differ by the default used. For the second row a simple 
Gaussian def ault w as used while the third and fourth rows used a 25 and 
50 per cent squeezed default. Each reconstruction fits the data well with 
χ2 / N = 1. 

Figure 11. The model and three reconstructions based upon the same ‘polar’ 
model used for Fig. 10 but with the addition of a broad Gaussian emission 
component spread out in the v x –v y plane, and best seen in the edge-on 
projections in the two top-right panels. See the caption of Fig. 10 for an 
explanation of the row order. 
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rojections at the top right of the plot. Ho we ver, it is not seen at all in
he Gaussian convolution reconstruction (second row). Instead, clear 
i-conical artefacts appear. They are particularly evident in the right- 
ost panel where the ballistic stream is seen end on. The two lower

queezed default rows show partial reco v ery of the Gaussian slab,
nd a reduction in strength of the bi-conical artefacts, but they also
eveal a new effect in the form of slight kinks in the sloping magnetic
ow component. This is a result of the Gaussian slab’s contribution

owards the weighted mean value of v z during the computation of
he squeezed default. 

These e xperiments rev eal a comple x interplay between different
tructures, but at the same time, they are modestly encouraging of the
iew that there may be something to be learned from the application
f 3D imaging to real systems, in spite of the missing information. 

 DI SCUSSI ON  

omography in 3D is hard to pin down. There is for sure a problem
ith missing information, seen most clearly in Fourier terms, which 
akes it qualitati vely dif ferent from the 2D case. On the other hand,

ometimes at least, qualitatively correct reconstructions appear to 
merge. Ho we ver, Figs 4 and 8 warn of the potential for peril in
he pursuit of 3D images. In Fig. 8 , data generated from a 2D disc
mage, with emission precisely confined to v z = 0, results in a 3D
ap in which the bulk of the emission lies at | v z | > 500 km s −1 .
he fit to the data from this manifestly corrupted image is fine,
ith χ2 / N = 1, and, moreo v er, equally good fits to the data can be
btained with extremely different looking images (lower two rows). 
his result is compelling given that the data were simulated with
igher than typical signal-to-noise; in a more realistic case, there 
ould be significantly more freedom still. There is nothing in the
ata to distinguish between the three reconstructions shown row-by- 
ow in Fig. 8 . 

The potential for such artefacts depends very much upon the 
missivity distribution itself. If emission is concentrated into a few 

elatively compact structures, useful reconstructions can emerge. 
his may explain the results of Kononov et al. ( 2014 ) who were able

o reco v er relativ ely simple input emission distributions for polars
hat were created from MHD simulations. Ho we v er, the e xample of
isc emission shows the danger of the disc-v ersus-jet de generac y
nd, for instance, suggests that the jet-like outflow seen in U CrB
y Agafonov et al. ( 2009 ) could be spurious. As far as I can tell,
he potential impacts of such de generac y hav e not been recognized
efore, as, had they been, it is perhaps unlikely that Agafonov et al.
 2018 ) would have said that artefacts were reduced to a negligible
evel using the CLEAN algorithm. No algorithm, maximum entropy 
r CLEAN or any other, can make up for the missing Fourier
omponents in the 3D case, and this applies even if data could be
cquired with infinite signal-to-noise and resolution, and at all binary 
hases. We need other assumptions – positivity for example – to help 
s out. 
F or relativ ely simple structures, positivity seems to get us a long
 ay, but may f ail in more complex ones such as the disc emission

xample. A difficulty in practice will be knowing when such failures
ave occurred, as there are no ‘input models’ when it comes to
eal data. It might therefore al w ays be wise to start 3D tomography
nalyses with the bar set lower, aiming first of all to answer whether
he data pro vide an y compelling evidence for a finite spread o v er
he off-plane component, v z . I presented one possible approach 
sing what I term a ‘squeezed default’ where the aim is to attempt
o concentrate the emission in the v z direction, but it might need
odification according to the system under inv estigation. Ev en this
MNRAS 510, 1340–1351 (2022) 
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o w le v el target may pro v e dif ficult to achie v e in practice, as v ery
ften 2D images struggle to fit data of good signal-to-noise and a
D image is almost bound to find a better solution in terms of χ2 

n such cases. It then may become a matter of subjective judgement
hether one believes the results, as motion in v z is not the only
ay in which line profiles can become impossible to match with 2D

mages. 
At the very least, if applying the maximum entropy method of this

aper, the effect of the choice of default upon a reconstruction at
xed χ2 should al w ays be investigated. In the case of the elementary
olar of Fig. 10 , it made little difference whether a homogeneous
aussian default or one squeezed towards constant v z was used,
hereas the images of Figs 8 and 11 were significantly affected by

his choice. The same effects for real data might offer some assurance
hat features were real in the first instance, or potentially false in the
econd. 

 SUMMARY  A N D  C O N C L U S I O N S  

n this paper, I have considered to what extent line profiles from
inary systems can be used to unco v er their emissivity distribution
n 3D velocity space, i.e. over v x , v y , and v z , adding motion parallel
o the orbital axis of the binary as well as the motion parallel to
he orbital plane that is accounted for in the standard 2D version of
oppler tomography. The problem is simplest to analyse in terms of
ourier transforms. Line profiles directly constrain the 3D Fourier

ransform of the 3D emissivity image in velocity coordinates, but
nly on a 2D surface that has the shape of a double cone in Fourier k -
pace aligned with the k vz axis, and centred upon the origin. This very
artial information rules out a well-constrained inversion comparable
o the usual 2D imaging case where the full 2D Fourier transform is
otentially obtainable from data. 
Some information on the 3D emissivity distribution is nevertheless

ontained within binary star line profiles. A straightforward extension
f the 2D imaging method developed by Marsh & Horne ( 1988 )
as implemented and applied to a number of test cases. The
delity of the reconstructed images was found to depend very
uch upon the form of the test image. In some cases, the essential

orm of the input image was returned to a large extent, whereas
ome others were corrupted by artefacts. To combat the latter
roblem, a method was presented to steer the reconstruction towards
n essentially 2D distribution in an attempt to answer the more
lementary question of whether the data contain any evidence for
D motion. 
These results allow cautious hope that there might be some scope

o apply 3D tomography to real data, but great care is needed in the
nterpretation of results from such an e x ercise. Three dimensional
omography is very different from its two dimensional relation, and
he experience built up from decades of application of the latter may
ot be a useful guide. Any such study is likely to require an element of
imulations to assess the possible impact of reconstruction artefacts.
t will be easy to obtain results, but much harder to judge their
eracity. 
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PPENDI X  A :  P Y T H O N -BASED  DOPPLER  

O M O G R A P H Y  C O D E  

he computations in this paper were carried out using a mixed
YTHON and C ++ -based implementation of the method presented by
arsh & Horne ( 1988 ). PYTHON here acts as the interface between

he data and Doppler images which are stored in FITS files and
he computations which are devolved to C ++ subroutines. This
ombines the ease of use and flexibility of PYTHON , for instance
o access the ASTROPY software suite (Astropy Collaboration 2013 ,
018 ) with its routines for handling FITS-format data, with the speed
f C -code. Thus, the image and data files are read into NUMPY arrays
t the PYTHON top level and then sent to C ++ -routines. The arrays
eturned are then dealt with by PYTHON . There is some complexity
n the interface code itself, but there should be no need for users to
ngage with this aspect; at the user level, the code appears as a set of
YTHON methods and classes, and associated scripts can be used to
perate in command line mode, which is the usual anticipated usage.
ogether these form a PYTHON module called trm.doppler . 
The details are best unco v ered by e xamining the code, but, to giv e

he gist of it, the heart of the software lies in the subroutine that
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mplements equation (40). This contains seven nested loops which 
terate in turn o v er the following: (1) each data set; (2) each image; (3)
ach spectrum; (4) each sub-spectrum within a spectrum to simulate 
nite length exposures; (5), (6), and (7), the v z , v y , and v x axes of the

mage. An OpenMP (omp or open multiprocessing) parallelization 
irective is applied prior to loop (3) o v er the spectra since the effort
equired per spectrum from a given data set is very similar and well
alanced. The innermost three loops which iterate o v er all elements
f the images are written to operate as efficiently as possible. Interme- 
iate finely spaced buffers are used to implement blurring operations 
o represent finite instrumental resolution, which is allowed to vary 
rom data set to data set. The blurring itself is implemented with
 ourier Transforms. F ourier transforms are also used for the blurring
perations often needed during default computation. 
As a piece of software that is likely to undergo changes in the

uture, there is no point in attempting too detailed a description here,
o I confine myself to a description of its key features, as these
ight pro v e the best guide for those wondering whether to try out

he software. These are as follows: 
FITS-based data and ima g e model: Both the data and the images

ave a FITS-based format, each with multiple header data units 
HDUs). This is a mo v e a way from the previous F77 -based code
hich relied upon libraries developed for the UK’s STARLINK 
roject (Marsh & Horne 1988 ). The FITS routines of the ASTROPY

roject are used to read and write these files. The first step in any
sage of the software is conversion of one’s data into the required
ITS input data structure. 
Multiple independent data sets as inputs: One can reconstruct 

mages using more than one source of data. For instance, one could
se data co v ering H α, say, from different telescopes and instruments,
ach with a different resolution, co v erage, and sampling. Each set of
ata appears as a set of HDUs containing flux es, errors, wav elengths,
nd phases or times. Within such a set, the fluxes are stored as 2D
ata, but if other data are taken with an incompatible sampling and
esolution, then another set of HDUs representing them can be added. 
he F77 -code only operated on single homogeneous data sets taken 
ith a single instrument and telescope, with a fixed configuration 

hroughout the run. This feature is of particular use in long-running 
onitoring experiments where it can be close to impossible to ensure 

niform instrumentation throughout. A good example of just this is 
he Doppler imaging study published by Manser et al. ( 2016 ) which
ombined data from multiple instruments taken o v er more than a
ecade to obtain an image of a slowly precessing debris disc around
n isolated white dwarf. 

Raw wavelength scale: To use the F77 -code, one had to re-bin
ne’s data to have a single scale for all spectra that was uniform in
erms of radial velocity step from pixel to pixel. This is no longer
equired, as the new code works with arbitrary wavelength scales, 
lthough they are assumed to vary smoothly. 

Multiple and blended lines: An arbitrary number of atomic lines 
an be imaged at the same time. They can be o v erlapping in the
ata. It is also possible to define one image as representative of
ore than one line in the data. For instance, one may believe that

ll Balmer lines are essentially the same except for a scaling factor.
hen one can link all the Balmer lines to a single image, along with
ppropriate scaling factors (that can themselves be optimized as part 
f the optimization). 
Finite exposure times: For short period, faint systems, it can 

e difficult to take exposures that are not a significant fraction of
he orbital period. This can be allowed for by defining set-ups in
hich each spectrum is computed by sub-dividing the exposure and 

rapezoidally averaging across the exposure. The effect of this can 
e to reduce the amount of azimuthal smearing in images, although
t is usually only partially successful in practice. 

Speed: The code operates fast. Standard 2D imaging operations 
ake much less than a second, and a complete set of iterations in such
ases may only require a few seconds. The OMP parallelization 
llows it to utilize multicore machines efficiently, which is of 
articular importance in the 3D case. 
Modulation mapping: Steeghs ( 2003 ) introduced an extension to 

oppler tomography to account for the common issue of compo- 
ents that vary in flux with orbital phase. Such variations are not
ccommodated by ‘classical’ Doppler tomography (Marsh 2001 ). 
he new code allows for this with the addition of extra component
hose contribution is added in after multiplication by sine and cosine

erms, as explained in further detail by Steeghs ( 2003 ). 
Negative fluxes: As shown in this paper, positivity can greatly 

uppress artefacts in otherwise poorly constrained reconstructions. 
evertheless, it is very common in practice to encounter data 
hich could be much better fit if the image could become at

east partially ne gativ e. This is common for instance when the
ine emission lies on top of absorption, perhaps from a white
warf. Another common case occurs in high inclination systems 
here the disc can absorb light from the white dwarf leading to
 deep central cores to the lines. While ne gativ e flux es are not
hysical, allowing for them may enable the fit to have an easier time
tting the data, revealing features that can be missed if positivity

s rigidly adhered to. The new code allows for this in rather
he same way as for modulation mapping by the introduction of
dditional image components, which although they are individually 
ntirely positive to allow the computation of the entropy, contribute 
e gativ ely to the line profiles. Given the results of this paper, it
s likely that this option should only ever be used for 2D imag-
ng. 

2D and 3D: Last but not least, obviously the code can handle both
onventional 2D as well as 3D Doppler tomography, but, as the paper
hould also be clear, the 3D case will al w ays require special care o v er
he reality of features. It may, ho we ver, be of some value simply as
 more flexible fitting tool than the 2D version. 
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