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Abstract

Compressional Alfvén eigenmodes (CAEs) have been linked to electromag-
netic emission detected in tokamaks in the frequency range around harmonics of the
ion cyclotron frequency, and more recently to sub-ion cyclotron frequency emission
in spherical tokamak experiments. This has sparked interest in using CAEs as a
diagnostic for fast-ion distributions in fusion devices. This thesis presents a linear
stability code, Whales2, that solves for CAEs using the linearised cold ideal Hall-
MHD equations. Whales2 is a mixed finite elements spectral code that operates in a
2-dimensional axisymmetric toroidal geometry to solve for the frequency and spatial
structure of CAEs in a given ideal-MHD equilibrium.

In this thesis we present how the Whales2 code is designed to calculate
CAEs whilst avoiding the physical coupling of CAEs to the slow-magnetoacoustic
and shear Alfvén eigenmodes. We demonstrate that Whales2 is free from spectral
pollution and that the self-adjointness of the ideal-MHD equations is preserved in
the numerical methods employed by Whales2. We show that Whales2 well repro-
duces analytical and qualitative predictions of CAE theory in a range of test cases
in cylindrical and toroidal geometries. We also use output from Whales2 to estab-
lish the behaviour of CAEs with respect to including the Hall term in the MHD
equations, particularly in the lifting of the positive/negative frequency degeneracy
that is present in ideal-MHD. Results from Whales2 show the impact that the Hall
term can have on the spatial localisation of CAEs. Whales2 manipulates the MHD
equations based on the method detailed in [3] to avoid CAE coupling to the shear
Alfvén continuum - the effectiveness of this method is demonstrated clearly for the
first time, to the author’s knowledge.

xi



Chapter 1

Introduction

1.1 Fusion Power Overview

Nuclear fusion refers to the fusing of two atomic nuclei into a single larger nucleus

whilst nuclear fission is the opposite process of a large nucleus dividing into smaller

nuclei. The idea of harnessing these nuclear processes to produce energy in labo-

ratories manifested in the first half of the 20th century when nuclear physics was

being explored. Nuclear reactions produce significantly more energy per unit of fuel

than their chemical counterparts, making research into commercial nuclear power

plants attractive. The first fission reactors started supplying electricity commer-

cially in the 1950s and since then nuclear fission has become an integral part of the

energy landscape. Nuclear fusion is still yet to be realised as a means of commercial

electricity production due to its many complexities. Interest in nuclear fusion has

been growing at least in part due to an increasing awareness of the contribution of

fossil fuel burning energy sources to the global greenhouse effect and the benefits

and feasibility of fusion power have been widely analysed [1, 4–7].

The energy released in nuclear reactions, both fission and fusion, comes from

the difference in the summed binding energies of the reactant particles against the

sum of the products’ binding energies. The binding energy is, roughly, the work

required to separate all of the protons and neutrons from the particle nucleus to the

point at which they are no longer held together. Fig. 1.1 shows the binding energies

(per nucleon) against nucleon number for isotopes of each element, revealing that

the most stable elements are those with isotopes comprised of about 56 nucleons

(particularly Fe56). There are clearly two routes to exploiting this difference in

binding energies to extract energy: fission primarily exploits the ‘right hand side’

of Fig. 1.1 whereas fusion predominately outputs energy when fusing the lowest

1



Figure 1.1: Diagram showing binding energy per nucleon for each element against their
nucleon number. Image courtesy of Wikimedia Commons.

nucleon number elements.

Nuclear fusion occurs when two atomic nuclei collide with sufficient energy

to overcome their mutual coulombic repulsion, the so-called coulombic barrier, so

that the strong force can act to bind the nuclei together. Classically this gives a high

minimum energy requirement for a successful fusion collision. However, quantum

tunneling allows particles to ‘tunnel’ through the potential barrier, thus giving a

non-zero fusion probability for particle collisions at lower energies. The probability

of a collision leading to a fusion reaction is expressed through the cross-section σ,

which is a function of particle velocities at the point of collision. Temperature in

fusion literature is often given in units of energy (usually keV) using the conversion

E = kBT so that 1 eV = 11605 K . There are many different fusion reactions to

be considered but most of them require too high a temperature or density to be

considered worthwhile. The most feasibly achievable reactions in a lab are given

below:

2
1D + 3

1T → 4
2He + 1

0n + 17.6 MeV , (1.1)

2
1D + 2

1D → 3
2He + 1

0n + 3.27 MeV , (1.2)

2
1D + 2

1D → 3
1T + 1

1H + 4.03 MeV , (1.3)

2
1D + 3

2He → 4
2He + 1

1H + 18.3 MeV , (1.4)

2



Figure 1.2: A plot of the velocity averaged cross-section for the D-T, D-D and D-He
reactions. This clearly indicates that D-T reactions have the highest cross-section peak
at the lowest temperatures and so is therefore the most feasible fusion reaction. Image
reproduced from [1].

and a plot of their velocity averaged (over a Maxwellian distribution at given tem-

perature) cross-sections against temperature is given in Fig. 1.2. It is desirable for

a reaction to have a large cross-section at low temperatures and a large energy out-

put. Of the four reactions (1.1)-(1.4) the D-T reaction, Eq. (1.1), best satisfies these

requirements.

The basic power balance for a fusion reactor was calculated by J.D. Lawson

in 1957 [8]. There are two major milestones by which to measure the power output of

successive fusion reactor designs: breakeven and ignition. Breakeven is defined as the

point at which the total heating power is equal to the power output from the fusion

reactions when the reactor is operating at steady-state (i.e. the total heating power

balances the power losses). Ignition is a more stringent condition that is achieved

when the reactor is operating at steady-state but there is no external heating, so

the plasma is being heated purely by the fusion reactions. Considering the case of a

plasma consisting of a 50-50 (by number density) mixture of deuterium and tritium

in a fusion device then Eq. (1) of [8] tells us that the total fusion power per unit

volume is:

Pfus =
1

4
n2 < σv > E , (1.5)

where n is the total ion number density, < σv > is the velocity averaged cross-

section and E is the energy output from each reaction. In the D-T reaction the

produced neutrons gain ∼ 80% of the kinetic energy output in each reaction and

the α-particles only ∼ 20%. If we assume that the α-particles can redistribute their

3



energy perfectly back to the reactants then this is a source of internal heating for

the plasma. The neutrons, however, have a mean-free-path that is much larger than

any practical reactor design and so these cannot be considered in plasma heating.

Following in the style of [9] we can write the power balance:

PH +
1

4
n2 < σv > Eα =

3nT

τE
, (1.6)

where PH is the externally applied heating power (per unit volume), Eα = E
5 is the

energy per reaction carried by the α-particles and the right hand side represents the

power loss from the reactor where τE is defined as the energy confinement time -

the characteristic timescale of energy loss from the reactor.

For breakeven the LHS of Eq. (1.9) is equal to the fusion power given in

Eq. (1.5). Therefore can be written as a condition on the number density and

energy confinement time:

nτE >
12T

< σv > E
. (1.7)

In the temperature range of interest for fusion reactors of 10−20 keV then < σv >≈
1.1× 10−24T2 m3s−1 with T in keV [9]. The output energy from a single reaction is

E = 17.6 MeV so then breakeven is written as a condition on the triple product:

nTτE > 6.2× 1020 m−3keVs . (1.8)

The analysis proceeds similarly for the ignition case. Without an external heat

source (PH = 0) the condition becomes:

nTτE > 3.1× 1021 m−3keVs . (1.9)

There are a few potential routes to fusion energy though most can be broadly

categorised into one of two philosophies. Magnetic confinement fusion (MCF) aims

to confine the charged particles via a strong magnetic field and therefore increase

the energy confinement time. Inertial confinement fusion (ICF) is based around

increasing the achievable plasma density. These are broad descriptions and both

branches have a plethora of ways to achieve the goal of net fusion energy output.

Within this thesis we will be concentrating on a particular MCF approach that uses

a confinement device called a Tokamak [1,5, 9].
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1.2 Tokamak Design

Some of the earliest approaches to MCF were based on the concept of a plasma

pinch. In a pinch a large directional current induces a strong magnetic field that

compresses the conducting material [10]. The earliest pinch reactor designs came

from the so-called θ-pinch and Z-pinch, where the prefix refers to the direction of the

current in a conducting cylinder. Each of these suffers from a particular drawback.

The θ-pinch suffers from end losses with particles streaming out of the cylinder caps.

Some manipulation of the magnetic fields may be used to try and mitigate this, as

in a magnetic mirror device, but ultimately the end losses are too great. The Z-

pinch suffers from disruptive instabilities (collective motion that pushes the plasma

away from an equilibrium state), particularly the kink instability, that lead to loss

of equilibrium and loss of plasma to the device wall. The screw-pinch is a hybrid

of these concepts that allows for a helical current and therefore a helical magnetic

field. This stabilises the Z-pinch. End losses can then be eliminated by connecting

the screw-pinch ends into a torus thereby creating the Tokamak concept.

Figure 1.3: A sketch to illustrate the main sizes in a torus, and the directions of increasing
poloidal, θ, and toroidal, φ, angle.

The main features of a tokamak geometry can be characterised by a few

parameters. The major radius, R0, is defined as the distance from the Z-axis to the

toroidal axis. The minor radius, a, is the distance from the geometric centre of the

plasma to the outer wall. The plasma cross-section is usually highly shaped but its
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main characteristics are described by the following parameters:

ε =
a

R0
- inverse aspect ratio, (1.10)

κ =
Zmax
a

- elongation or ellipticity, (1.11)

τ =
Rmax −R0

a
- triangularity, (1.12)

where Rmax is the value of the major radius at the point of maximum height of the

plasma, Zmax. We refer here only to up-down symmetric plasma equilibria. For

the avoidance of any ambiguity, we follow the definitions for each quantity (and the

extension to asymmetric plasma shapes) given by Luce [11]. The angular directions

of a tokamak are defined with the poloidal, θ, direction going the “short way around”

and toroidal, φ, the “long way around” - see Fig. 1.3.

The primary magnetic field in a tokamak is toroidal, generated by using

poloidally shaped rings through which current is passed. A poloidal field can then be

generated by using the plasma itself as a secondary transformer winding. A current

is passed through a core on the tokamak central axis which induces a toroidal cur-

rent in the plasma, thereby creating a poloidal field. Poloidal field coils (toroidally

shaped rings) may also be used for additional plasma shaping. The plasma shape

can be described by magnetic flux surfaces - surfaces through which there is no mag-

netic flux at any point. These surfaces typically form a set of closed, nested surfaces

concentric on the magnetic axis, though there may be magnetic islands and recon-

nection points. In particular, most tokamaks now employ plasma shaping in order

to form an X-point so that plasma material can be directed towards the divertor

which is specially designed to handle a high heat flux. The boundary between the

open and closed magnetic field regions is called the last closed flux surface (LCFS)

or the separatrix [9].

Magnetic flux surfaces and the poloidal flux function, ψ, will be covered in

Section 1.5. However, for now it is sufficient to say that ψ can be used as a proxy ra-

dial co-ordinate and so we use the co-ordinate convention (ψ, φ, ϑ) which produces a

right-handed co-ordinate system consistent with Fig. 1.3. φ is the ignorable toroidal

co-ordinate. We use the notation ϑ when referring to a general poloidal angle and

θ to specifically refer to the circular polar angle.

Tokamaks that have an aspect ratio of around R0/a > 2 (the definition is not

precise) are considered to be conventional tokamaks. There are many conventional

tokamak experiments currently in existence with the largest conventional tokamak

to date, ITER, currently under construction. The main goals of ITER are to test the
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components required for a future fusion reactor and to demonstrate a long duration

steady state plasma burn with a high ratio of output to input power [12]. The

current record for this ratio, denoted Q, was made in 1997 in JET (Joint European

Torus) with Q ' 0.67 [13]. Breakeven occurs at Q = 1 and ITER is designed to

exceed this by several times, and is hoped to reach ignition [12]. ITER is designed

as a D-shaped plasma, with the following basic shape parameters [14]:

a = 2.0m , (1.13)

R0 = 6.2m , (1.14)

κ95 = 1.70 , (1.15)

τ95 = 0.33 , (1.16)

where the subscript indicates values that are applicable at 95% of the distance to

the outer surface from the magnetic axis.

Another class of tokamak is categorised as having an aspect ratio of around

R0/a < 2. These are called spherical tokamaks (ST). The main advantage of an ST

over a conventional tokamak is that the compact design allows for greater values of

a quantity called the plasma-β [1]. Plasma-β is a ratio of the kinetic pressure in the

plasma to the magnetic pressure:

β =
2µ0p

B2
. (1.17)

However, the higher plasma-β values does not usually imply a higher kinetic pres-

sure value but instead a lower magnetic field value for a given kinetic pressure

when compared to a conventional tokamak. A particular example of the ST design

is MAST-U (Mega-Ampère Spherical Tokamak - Upgrade) that has the following

shaping parameters [15]:

a = 0.65m , (1.18)

R0 = 0.85m , (1.19)

κ = 2.50 , (1.20)

τ = 0.3− 0.8 , (1.21)

1.3 Basic Plasma Physics

At temperatures where it can efficiently fuse, the D-T fuel will be a plasma. Col-

loquially a plasma is often described as an ionised gas but this does not capture
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the full range of behaviour that a true plasma exhibits. Chen [5] gives a qualitative

definition: “A plasma is a quasineutral gas of charged and neutral particles which

exhibits collective behavior”. Friedberg also states that a plasma should have “very

high electrical conductivity” [1]. In a quantitative sense there are three conditions

that a plasma should satisfy, out of which the above properties will follow. We need

to define three quantities, the Debye length (λD), Debye sphere (ΛD) and plasma

frequency (ωp), to show this.

The Debye length is essentially a measure of the plasma conductivity - it

defines the characteristic lengthscale over which a DC electric field would be shielded

by the plasma. It is given by the expression [16]:

λD =
(ε0T
e2n

) 1
2
, (1.22)

for a single fluid plasma. When considering a two-fluid plasma one can define a De-

bye length for both the positively and negatively charged fluids. If the Debye length

is small compared to the overall plasma size this implies high electrical conductivity

- DC electric fields will be effectively shielded.

The Debye sphere is a measure of the number of particles within a volume

element of side length λD (we could use a sphere but the numerical factor is irrele-

vant):

ΛD = nλ3D =
ε
3
2
0 T

3
2

e3n
1
2

. (1.23)

This is a measure of the strength of the long-range collective behaviour of the par-

ticles against the short-range collisional behaviour. We know that electric fields

are shielded over a distance of the Debye radius and so a more densely populated

Debye sphere implies that more particles feel the electromagnetic effects of a given

particle in the sphere, therefore a larger Debye sphere implies stronger collective

behaviour [16]. Thus a plasma should have a Debye sphere such that ΛD � 1.

We also consider the shielding of AC electric fields. An oscillating electric

field causes the charged particles to accelerate back and forth in order to try to cancel

out the field. For the fusion plasmas that we are considering, the positive ion species

(hydrogen or similar) is much more massive than the negative ions (electrons), so

the electrons will have a much more rapid response to any applied AC electric field.

Therefore, the plasma frequency is equivalent to the electron frequency, defined by

the maximum frequency of AC field that the electrons in the plasma can shield.

This is given by [16]:

ωp ≡ ωpe =
( e2n

ε0me

) 1
2
. (1.24)
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So, for example, any EM wave that oscillates above this frequency will be able to

freely travel in the plasma but below this frequency and it will be attenuated. These

reactive motions should be much faster than the thermal motions of the particles in

order to provide effective AC shielding.

Now we can write the three quantitative conditions as follows:

λD � L , (1.25)

ΛD � 1 , (1.26)

ωpe �
vTe
L

, (1.27)

where L is the macroscopic size of the plasma.

A typical plasma in a tokamak will have values of temperature and number

density on the order of T ∼ 10keV and n ∼ 1020m−3. This gives the following values

for the key plasma parameters:

λD ' 7.4× 10−5 m , (1.28)

ΛD ' 4.1× 107 , (1.29)

ωpe ' 5.6× 1011 s−1 , (1.30)

Even if we imagine an extreme scenario where the macroscopic scale of the tokamak

is on the order of decimeters, L ∼ 0.1 m, and the thermal motion of the particles is

on the order of the speed of light, vT ∼ 108 ms−1, then the values (1.28) - (1.30) still

comfortably satisfy conditions (1.25) - (1.27). Regular tokamak operation will be

on larger macroscopic scales and lower thermal speeds, so we are justified in using

plasma theory to model the ionised hydrogen gas.

1.4 Single Particle Motion

The most fundamental description of plasma behaviour happens at the particle level

and all plasma phenomena can be reproduced using a sufficiently accurate simulation

of all the plasma particles and their basic interactions. Therefore understanding the

basic motion of particles in electromagnetic fields underpins the understanding of

many interesting processes in a tokamak plasma including wave-particle interactions.

In the following discussion we will only consider electric and magnetic fields

(E and B) that are externally imposed and assume any induced fields from the

particle motion are negligible in magnitude compared to the external fields. The
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equation of motion for a single particle is given by the Lorentz force:

m
dv

dt
= q (E + v ×B) . (1.31)

The simplest situation is that of a constant, uniform, straight magnetic field. It is

convenient to separate the velocity into a sum of components parallel and perpen-

dicular to the magnetic field. Defining b = B/B where B = |B| then we can further

define:

v‖ = (v · b)b , (1.32)

v⊥ = v − v‖ . (1.33)

Substituting Eqs. (1.32)-(1.33) into Eq. (1.31) gives two independent equations of

motion

dv‖

dt
= 0 , (1.34)

dv⊥
dt

=
( q
m

)
v⊥ ×B , (1.35)

from which we can see that the particle’s parallel velocity is simply a constant.

To find the perpendicular velocity we take the vector-product of the perpendicular

equation of motion with the magnetic field. We use the vector triple product A ×
(B×C) = (A ·C)B− (B ·C)A with v⊥ ·B = 0 to give:

d(v⊥ ×B)

dt
= −qB

2

m
v⊥ . (1.36)

We then rearrange Eq. (1.35) for v⊥ ×B and substitute into Eq. (1.36):

d2v⊥
dt2

= −ω2
c v⊥ , (1.37)

where ωc = qB
m . This equation has oscillatory solutions. It is easy to see that

the motion of v⊥ is a gyration of the particle around the magnetic field lines with

the cyclotron frequency, ωc. The radius at which the particles gyrate is called the

Larmor radius, given by:

rL =
|v⊥|
ωc

=
mv⊥
qB

. (1.38)

Positively charged particles rotate in a left-handed sense and negatively charged

particles a right-handed one.

We consider an external force F in addition to the magnetic field and so
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rewrite the equations of motion as:

m
dv‖

dt
= F‖ , (1.39)

m
dv⊥
dt

= F⊥ + qv⊥ ×B . (1.40)

The parallel velocity equation gives an obvious acceleration. The perpendicular is

a first order linear ODE in v⊥ for which we have a solution to the homogeneous

case. A particular solution for the inhomogeneous case can be found by assuming a

constant velocity solution (labelled vD)

0 = F⊥ + qvD ×B , (1.41)

⇒vD =
F⊥ ×B

qB2
=

F×B

qB2
. (1.42)

The overall velocity is the sum of the parallel motion, the gyration around the

magnetic field lines and a constant drift velocity that is perpendicular both to the

magnetic field lines and the applied force. A particular example of this applied

force is that from an external electric field which leads to the so-called ‘E × B’

(”ee-cross-bee”) drift. A particular property of this drift is that since F = qE

then vE×B = (E × B)/B2 the drift doesn’t depend on the charge of the particles

involved. Therefore there is no electric field set up by the charge separation that

acts to counter the drift, unlike in charge-dependent drifts. This can have a serious

effect on tokamak confinement.

Other particle drifts can be found by relaxing the condition that the magnetic

field is homogeneous. Note that a charged particle gyrating around an electric field

is effectively a current loop with magnetic dipole moment µ = mv2⊥/(2B) which

is a constant of the system. It can also be seen from taking the scalar-product of

Eq (1.31) (when E = 0) with v that dt
(
v2
)

= 0, i.e. the magnetic field does no

work on a particle, so cannot cause an overall acceleration. A changing magnetic

field causes a particle’s perpendicular velocity to change, since the magnetic moment

is invariant, and so the parallel velocity of the particle must change accordingly to

satisfy the no-work condition. This is the mechanism behind the magnetic mirror

force which is given by the expression [1]:

F = −µ∇B . (1.43)

We can now substitute this into the general expression for the drift velocities,
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Eq. (1.42), to determine the ‘grad-B’ drift

v∇B = ±
v2⊥
2ωc

B×∇B
B2

, (1.44)

where the ”±” refers to the sign of charge of the particle being considered. This

drift leads to charge separation, unlike the E×B drift.

Now consider that the magnetic field lines are not necessarily straight. Here

we apply an assumption that the Larmor radius of the particle is small compared to

the length-scales over which the magnetic field varies in the perpendicular direction.

This allows us to consider the drift for the particle’s guiding centre separately from

the gyro-motion. Moving into a reference frame that rotates with the guiding centre

of the particle then we see that there is a centrifugal force acting on the particle [9]

Fc =
mv2‖

R2
c

Rc , (1.45)

where Rc is the curvature vector of the field lines. Note that all quantities are

evaluated at the guiding centre path. The associated curvature drift is given by

substituting Eq. (1.45) into Eq. (1.42).

1.5 MHD Theory

1.5.1 MHD equations

In a realistic fusion reactor environment the number of particles involved means that

calculating for each individual trajectory and updating the electromagnetic fields

self-consistently quickly becomes an intractable problem. One possible approach to

build a self-consistent model is to consider particle distributions, as initially con-

sidered by Vlasov, the so-called kinetic approach. However, to sufficiently resolve a

statistically significant amount of particles over a reasonably resolved phase space is

computationally expensive and so the six dimensional phase space must be restricted

to fewer dimensions [17].

Gyrokinetics is particular form of this approach that seperates the particle

motion into the guiding center motion of the particle and the rotation of the particle

about the magnetic field lines. Gyrokinetics averages over the rotation angle and so

just considers the guiding center motion of each particle. This reduces the number of

dimensions in phase space by one. Gyrokinetics is valid at frequencies that are small

compared to the ion cyclotron frequency and is usually used for studying turbulent

plasma behaviour [18].
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Particle-In-Cell (PIC) simulations aim to overcome the computational ex-

pense by grouping large numbers of particles together as a single “macroparticle”

which holds information about its position and velocity in a continuous space. The

magnetic and electric fields values are held at the spatial grid nodes where the field

equations are solved and then interpolated to the macroparticle position to update

the macroparticle’s information [17]. The fields are then self-consistently updated

according to the new macroparticle information.

The approach we take here is considering the ionised gas as a fluid under the

influence of electromagnetic fields, the magnetohydrodynamic (MHD) approach.

There are various MHD approaches depending on the assumptions made in pro-

ducing the model. In the work presented from here we will either be considering

ideal-MHD or Hall-MHD. Both are non-relativistic models. It should be noted that

we use the term Hall-MHD, for brevity, to refer to ideal Hall-MHD - that is to say

that we consider resistivity to be negligible. We proceed with the more general

Hall-MHD derivation and then relate that back to ideal-MHD.

The fluid equations for each charged particle species are:

∂nj
∂t

+∇ · (njuj) = 0 , (1.46)

mjnj

(
∂

∂t
+ uj ·∇

)
uj = Fj , (1.47)(

∂

∂t
+ uj ·∇

)
pj
ργj

= 0 . (1.48)

These represent conservation of mass, momentum and energy respectively. The

index j corresponds to the charge carrier species. Any application of MHD in this

thesis refers to a two-species plasma with a more massive ionic species (atomic nuclei)

than the negative charge carriers (electrons). Therefore we can restrict j ∈ {i, e}
with mi � me.

The mass equations assume that the total number of particles in each species

remains constant. This negates any loss or gain processes of which there can be many

in a fusion plasma; however, these can be added as source or sink terms if necessary.

These processes are not important to our considerations.

The term Fj in the momentum equation refers to any forces acting on that

fluid species. It consists of the Lorentz force and kinetic pressure gradient:

Fj = Zjenj(E + uj ×B)−∇pj . (1.49)

More generally we should consider the pressure tensor P rather than the scalar
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pressure. However, if we assume an isotropic pressure then ∇ · P = ∇p [5]. This

is equivalent to the assumption that the collisional timescale of the plasma is short

compared to the fluid, i.e. MHD, timescale [19].

The energy equation represents an adiabat for an ideal gas. We have ignored

heating/cooling terms on the right hand side as most of these processes do not

happen on MHD timescales [1]. One term that is conspicuously missing is energy

transfer (through collisions) to the other species - this implies Ohmic heating of the

plasma species. This term is considered negligible in the ideal-MHD regime as the

plasma is assumed to be perfectly conducting, i.e. zero resistivity.

Now we require Maxwell’s equations to close our fluid equations:

∇×E = −∂B

∂t
, (1.50)

∇×B = µ0

(
J + ε0

∂E

∂t

)
, (1.51)

∇ ·E =
ρc
ε0

, (1.52)

∇ ·B = 0 . (1.53)

Note that ρc is the charge density, not to be confused with ρ, which we use in general

to denote the mass density. MHD describes the macroscopic stability of the plasma

and therefore the characteristic MHD lengthscale, L, is comparable to the overall

plasma size. Similarly we say that the characteristic velocity of the MHD model

is the ion thermal speed VT i, from which we can define a characteristic timescale

τ ∼ a/VT i or frequency ω = τ−1. Then our MHD assumptions follow:

L� rLi � rLe , (1.54)

ωce � ωH � ν̄ei || ωce � ωci � ωI � ν̄ei , (1.55)

VT i � VTe � c , (1.56)

where ωH and ωI refer to Hall- and ideal-MHD respectively. ν̄ei is the electron-ion

collision frequency.

The electric charge density in Gauss’ law ρc = Zieni − ene is assumed to be

negligible by the quasineutrality of the plasma. Therefore ∇ · E � ene and n ≡
Zini ≈ ne. The frequency assumption (1.55) implies that we don’t have to consider

collisionality and that MHD events are much slower than the electron response.

Therefore the electron inertia term is negligible. Finally Eq. (1.56) implies that the

displacement current term in Maxwell’s equations is negligible.

By multiplying the mass-conservation equation by the respective particle
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mass and summing we get the single fluid equation:

∂ρ

∂t
+∇ · (ρv) = 0 , (1.57)

where ρ ≡ mini +mene ≈ mini and ρv ≡ miniui +meneue.

By summing the momentum equations and noting that J = Zieniui− eneue
then we obtain:

ρ

(
∂

∂t
+ v ·∇

)
v +

mimeni
Zρe2

(Zme −mi)J ·∇
(

1

ρ
J

)
= J×B−∇p , (1.58)

where p is the sum of the two species’ pressures. A quick comparison of terms shows

that the J ·∇
(
1
ρJ
)

term is negligible.

Multiplying each momentum equation by the species charge over mass we

obtain an Ohm’s law:

∂J

∂t
+ J ·∇v + (meneui +miniue) ·∇

(
1

ρ
J

)
=

Ze2ρ

mime
(E + v×B) +

e(Znem
2
e − nim2

i )

mimeρ
J×B− Ze

mi
∇pi −

e

me
∇pe . (1.59)

Using the assumptions about particle mass, mi � me, and frequency, Eq. (1.55)

we come to the following form of Ohm’s law:

E = −v×B +
1

en
J×B− 1

en
∇pe . (1.60)

The last two terms are called the Hall and Battery terms respectively. Both terms

are only considerable for MHD frequencies ω ∼ ωci; we neglect both of them in ideal

MHD. Then the strength of the Battery relative to the Hall term is proportional to
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the plasma-β. This gives the full equation set of Hall-MHD:

∂ρ

∂t
+∇ · (ρv) = 0 , (1.61)

ρ

(
∂

∂t
+ v ·∇

)
v = J×B−∇p , (1.62)(

∂

∂t
+ v ·∇

)
p

ργ
= 0 , (1.63)

∇×E = −∂B

∂t
, (1.64)

E = −v×B +
1

en
J×B− 1

en
∇pe , (1.65)

∇×B = µ0J , (1.66)

∇ ·B = 0 . (1.67)

It should be noted that the MHD description does not capture the full range of

plasma phenomena, even at low frequencies within the model’s assumed ordering.

When approaching the ion-cyclotron frequency, the MHD description predicts a res-

onance for the Shear Alfvén wave (one of the MHD waves described in Section 1.6).

As the wave frequency approaches the resonance the wavenumber tends to infinity,

k →∞, and the group velocity tends to zero [20]. This leads to plasma waves with

non-physical energies and so clearly insufficient physics is captured in the MHD de-

scription to correctly describe this situation. Kinetic theory is required to describe

the mode conversion and dissipation of energy when these waves encounter a fre-

quency match with the ion cyclotron frequency at some point within the plasma

domain. However, the MHD description is sufficient within the remit of this thesis

as MHD includes the essential physics required for predicting the frequency and

wave structure of the class of wavemodes that we will study.

1.5.2 Linearised MHD Equations

We linearise the MHD equations in order to remove some of the complexity of the

equation and make it easier to solve. The trade-off is that the solutions have limited

validity. We make the assumption that there is a full solution to the equations that

can be written as x = x0 + εx1 + ε2x2 + ... where ε� 1. To linearise we substitute

x into the equations and negate any terms of order ε2 or higher. We choose x0 to

be a known equilibrium solution to the MHD equations. This means x0 solves the

original equations and so terms that only involve equilibrium terms disappear from

the linearised form, leaving only terms with exactly one linear contribution. For

brevity we absorb the εn prefactor into each xn term when presenting the work. We
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also pre-empt the assumption of equilibria free from bulk flows (i.e. v0 = 0) though

this is not required in general. The linearised equations are:

∂ρ1
∂t

+∇ · (ρ0v1) = 0 , (1.68)

ρ0
∂v1

∂t
= J0 ×B1 + J1 ×B0 −∇p1 , (1.69)

∂

∂t

(
p1
ργ0
− γp0

ργ+1
0

ρ1

)
+ v1 ·∇

p0
ργ0

= 0 , (1.70)

∇×E1 = −∂B1

∂t
, (1.71)

E1 = −v1 ×B0 +
1

en0
J1 ×B0 +

1

en0
J0 ×B1 (1.72)

− n1
en20

J0 ×B0 −
1

en0
∇pe1 +

n1
en20
∇pe0 ,

∇×B1 = µ0J1 , (1.73)

∇ ·B1 = 0 . (1.74)

1.5.3 MHD Equilibrium

The study of MHD equilibria goes naturally alongside that of plasma stability. The

equilibrium equation is generally difficult to solve for plasmas that have a higher

dimensionality than 1. We make the following assumptions to find an equation for

MHD equilibrium in a 2-dimensional ‘tokamak-like’ geometry, with ignorable co-

ordinate φ. We assume that the plasma is stationary, ∂
∂t ≡ 0, and that the plasma

has no bulk flows, v = 0. In actuality, spherical tokamaks may have considerable

toroidal plasma rotation due to the neutral beam injection (NBI) heating, where

beams of neutral particles are injected tangentially into the plasma at high velocity.

However, the main effect of this is to cause a Doppler shift to the frequency of plasma

waves which is typically small for waves in the frequency range we are concerned

about.

We start from the force-balance equation:

J×B = ∇p , (1.75)

which must be satisfied in the tokamak. This represents the balance struck by

the plasma (kinetic) pressure, magnetic pressure and magnetic tension forces. To

explicitly express the magnetic pressure and tension forces we separate out the left
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hand side of the above equation:

(∇×B0)×B0 = B0 ·∇B0 −B0∇B0 . (1.76)

The first term of the right hand side refers to the magnetic tension force which acts

against magnetic field line bending. The second term is the magnetic pressure force,

which acts against the accumulation of magnetic flux. The components of these

forces in the direction of the magnetic field must cancel, so using the notation ∇‖
to refer to the gradient in the magnetic field direction we define ∇⊥ = ∇ −∇‖.
Then we can rewrite (1.76) as:

(∇×B0)×B0 = (B0 ·∇B0)⊥ −B0∇⊥B0 . (1.77)

It clearly follows from (1.75) by taking scalar-products that

B · ∇p = J · ∇p = 0 . (1.78)

Therefore magnetic field lines and lines of current both lie on surfaces of constant

pressure.

The solenoidal condition written in cylindrical coordinates with an ignorable

angle reads:

∇ ·B =
1

R

∂

∂R
(RBR) +

∂Bz
∂z

= 0 . (1.79)

Like incompressible fluid flow we can take a stream function, ψ, so that:

BR = − 1

R

∂ψ

∂z
, (1.80)

Bz =
1

R

∂ψ

∂R
. (1.81)

The surfaces of constant ψ are the boundaries of streamtubes and so there is no

magnetic flux through these surfaces. For our axisymmetric setup these surfaces

form a set of nested tori [9]. Using ∇φ = 1
R φ̂ we can rewrite the equilibrium

magnetic field [21]:

B = RBφ∇φ+∇ψ ×∇φ . (1.82)

Considering the magnetic vector potential

B = ∇×A = −
∂Aφ
∂z

R̂+

(
∂AR
∂z
− ∂Az

∂R

)
φ̂+

1

R

∂

∂R
(RAφ)ẑ , (1.83)

we see that ψ = RAφ (up to an additive constant). Ampère’s law is analogous to
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the above equation and ∇ · J = 0 so we can introduce a stream function for the

current, say f , such that:

f = RBφ , (1.84)

JR = − 1

µ0R

∂f

∂z
, (1.85)

Jz =
1

µ0R

∂f

∂R
. (1.86)

The magnetic field lines and current lines lie in the same surfaces of constant pressure

and so these must be the surfaces of constant value for the stream functions ψ and f .

Therefore we can choose to write f = f(ψ) and p = p(ψ), and Eq. (1.82) becomes:

B = f(ψ)∇φ+∇ψ ×∇φ . (1.87)

Now, omitting the derivation, we can come to the Grad-Shafranov equation describ-

ing the static equilibrium of axisymmetric toroidal plasmas in ideal MHD without

bulk flows [9, 21]

R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂z2
= −µ0R2p′(ψ)− f(ψ)f ′(ψ) . (1.88)

The quantity ψ is constant on a given flux surface and so can be used to label flux

surfaces provided that it is an injective function to the flux surfaces. We take ψ to

be our “radial” coordinate where radial now describes the direction that has its axis

at the magnetic axis and moves outwards over the flux surfaces. The toroidal direc-

tion remains the same. To generalise to non-circular tori we define the “poloidal”

direction to mean the angular direction around the magnetic axis that follows the

flux surface boundary and is orthogonal to the toroidal direction.

To relate to ψ physically we take the poloidal magnetic flux given by

ψp =

∫
A

Bp · dA , (1.89)

where A is the ribbon-shaped area formed by taking the line from the magnetic axis

to a particular flux surface and then rotating 2π toroidally around the z-axis [19].

Without loss of generality we assume that the ribbon extends from the magnetic

axis to higher major radius so that Bp and A are in the ẑ-direction. Recalling

Eq. (1.81):

ψp =

∫ 2π

0
dφ

∫ R

Rm

BzR
′dR = 2π(ψ(R)− ψ(0)) . (1.90)
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So ψ is the poloidal magnetic flux per radian, barring an additive constant. For

brevity we will refer to ψ simply as the poloidal flux function where there is no

ambiguity.

Solovev Equilibrium

Solovev [22] proposed an analytical solution to the above form of the Grad-Shafranov

equation by assuming the form of the two free functions f(ψ) and p(ψ). Solovev

originally looked for solutions by expanding ψ around the magnetic axis, noticing

that exact solutions can be found if one assumes µ0p
′(ψ) = −F and f(ψ)f ′(ψ) =

−E where E,F are constants. With these profiles the Grad-Shafranov equation,

Eq. (1.88), becomes:

R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂z2
= E + FR2 . (1.91)

So Solovev equilibria refer to solutions of the Grad-Shafranov equations that have

free functions of the form:

f(ψ) =
√
R2

0B
2
0 − 2Eψ , (1.92)

µ0p(ψ) = µ0p0 − Fψ . (1.93)

However, specifying E,F is not enough to fix a unique solution. We detail two

possible solution methods that are implemented in Whales2.

The first implementation of a Solovev equilibrium is based on [22, 23]. The

equilibrium is found by Taylor expanding the poloidal magnetic flux, ψ, in the

spatial variables R,Z around the magnetic axis. Terms up to 4th order are kept

such that ψ solves the Grad-Shafranov equation exactly. These can be split into a

particular solution of Eq. (1.91) and a homogeneous solution for the left hand side

of that equation:

ψp =
1

2

(
E + FR2

)
Z2 , (1.94)

ψh0 = 1 , (1.95)

ψh1 = R2 , (1.96)

ψh2 = R4 − 4R2Z2 . (1.97)

Then ψ can be written as a linear combination of these functions. When the problem
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is normalised such that:

ψ(R,Z)→ ψ̂(x, y) = Ψ0ψ , (1.98)

R→ x =
R−R0

a
, (1.99)

Z → y =
Z

a
, (1.100)

then Eq. (1.91) becomes:

∂2ψ̂

∂x2
+
∂2ψ̂

∂y2
− ε

1 + ε

∂ψ̂

∂x
= A+Bx

(
1 +

ε

2
x
)
. (1.101)

The particular solution (1.94) is normalised:

ψ̂p =
1

2

(
A+Bx

(
1 +

ε

2
x
))

y2 , (1.102)

but the homogeneous solutions are scale independent and so can remain unchanged.

We write ψ̂ as the linear combination:

ψ̂ = ψ̂p + σ0ψh0 + σ1ψh1 + σ2ψh2 . (1.103)

There are 5 free parameters to the scaled problem A,B, σ0, σ1, σ2 and we impose

conditions to fix these parameters. We fix the gauge by imposing that ψ̂(d, 0) = 0

and the regularity condition ∂ψ
∂x (d, 0) = 0, where x = d is the magnetic axis. The

solution is up-down symmetric and so automatically satisfies ∂ψ
∂y (x, 0) = 0. These

conditions imply that:

σ0 = R4
mσ2 , (1.104)

σ1 = −2R2
mσ2 , (1.105)

Rm = R0 + ad . (1.106)

Now we specify points on the outer flux surface. ψ̂(1, 0) = 1 and ψ̂(−1, 0) = 1

together give the value of x at the magnetic axis and σ2:

d =
1

ε

(√
1 + ε2 − 1

)
, (1.107)

σ2 =
1

4R2
0a

2
. (1.108)

Finally, instead of specifying the free parameters A,B (equivalent to specifying E,F )

we specify the elongation of the outer flux surface on the line x = 0, κ0, and the
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triangularity of the outer surface, τ . Note that this definition of elongation may not

be the same as the elongation quoted for tokamak geometries, which is usually the

one we defined in Section 1.2. We apply these conditions to give the values for A,B:

A = 2

(
1 +

1− 1
4ε

2

κ20

)
, (1.109)

B = 4ε

(
1 + τ

1− 1
4ε

2

κ20

)
, (1.110)

and so the magnetic flux function is:

ψ̂ =
(
x− ε

2
(1− x2)

)2
+

(
1− ε2

4

)
(1 + ετx(2 + εx))

(
y

κ0

)2

(1.111)

We then transform back to the original problem with an additional free parameter

that specifies the magnitude of the magnetic flux. The inputs that Whales2 takes

for this Solovev implementation are:

B0(0) - equilibrium magnetic field at the magnetic axis , (1.112)

a - minor radius of the plasma , (1.113)

R0 - major radius of the magnetic axis , (1.114)

κ0 - elongation of the plasma surface at the geometric centre , (1.115)

τ - triangularity of the plasma surface , (1.116)

α - parameter related to the total poloidal magnetic flux . (1.117)
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These inputs are used to calculate the following quantities of the Solovev solution:

Ψ0 =
a2B0

α
, (1.118)

A = 2

(
1 +

1− 1
4ε

2

κ20

)
, (1.119)

B = 4ε

(
1 + τ

1− 1
4ε

2

κ20

)
, (1.120)

E = Ψ0
R0

a3
(εA− 1

2
B) , (1.121)

F =
Ψ0B

2R0a3
, (1.122)

x =
1

ε

((
1 + 2ε

√
ψ̂ cos θ + ε2

) 1
2

− 1

)
, (1.123)

y =
κ

√
ψ̂ sin θ((

1− 1
4ε

2
)(

1 + 2ετ

√
ψ̂ cos θ + ε2τ

)) 1
2

, (1.124)

The functions that specify the equilibrium then follow as:

R = R0 + ax (1.125)

Z = ay (1.126)

ψ = Ψ0ψ̂ (1.127)

µ0p(ψ) =
β0B

2
0

2
− Fψ (1.128)

f(ψ) =
√
R2

0B
2
0 − 2Eψ (1.129)

where the value of β0 is set by the boundary condition for the pressure (in this case

that the pressure is zero at the outer plasma boundary - see Section 2.5.2). This

condition implies that:

β0 =
Bε

α2
. (1.130)

There is also a condition on α to ensure that f(ψ) is always a real quantity. The

condition reads:

α2 > (1− τ)
(4− ε2)ε2

κ2
if τ < 1 . (1.131)

It is useful to know the approximate magnitudes of the poloidal and toroidal com-
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ponents of the equilibrium magnetic field, which can be seen as:

Bt = |f(ψ)∇φ| ∼ B0 , (1.132)

Bp = |∇ψ ×∇φ| ∼ εB0

α
. (1.133)

The second implementation of the Solovev equilibrium follows [19, 24]. The

derivation is much the same as for the previous case, except terms of a higher order

are kept in the Taylor expansion of ψ around the magnetic axis. Keeping terms up

to 6th order in R,Z still allows an exact solution to be found, but now there are

extra free parameters. Some definitions differ from the first implementation, i.e.:

R = R0x , (1.134)

Z = R0y . (1.135)

The scaled Grad-Shafranov equation is:

x
∂

∂x

(
1

x

∂ψ̂

∂x

)
+
∂2ψ̂

∂y2
= A+ (1−A)x2 , (1.136)

A =
E

E + FR2
0

. (1.137)

So now the particular and homogeneous solutions are:

ψ̂p =
x4

8
+A

(
x2

2
lnx− x4

8

)
, (1.138)

ψh0 = 1 , (1.139)

ψh1 = x2 , (1.140)

ψh2 = y2 − x2 lnx , (1.141)

ψh3 = x4 − 4x2y2 , (1.142)

ψh4 = 2y4 − 9y2x2 + 3x4 lnx− 12x2y2 lnx , (1.143)

ψh5 = x6 − 12x4y2 + 8x2y4 , (1.144)

ψh6 = 8y6 − 140y4x2 + 75y2x4 − 15(x6 − 12x4y2 + 8x2y4) lnx . (1.145)

Again, ψ̂ is a linear combination of these functions and the coefficients are deter-

mined by specifying points of the outer surface shape so that they match those
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points given by the parametric equations:

R = R0 + a cos(ϑ+ δ sinϑ) , (1.146)

Z = aκ sinϑ , (1.147)

where sin δ = τ . This sets up a set of seven linear equations that can then be

solved numerically to give the coefficients of the linear combination of homogeneous

solutions. The inputs for this implementation of a Solovev solution are then:

B0(0) - equilibrium magnetic field at the magnetic axis , (1.148)

a - minor radius of the plasma , (1.149)

R0 - major radius of the magnetic axis , (1.150)

κ - elongation of the plasma surface , (1.151)

τ - triangularity of the plasma surface , (1.152)

E - ‘gradient of the current flux function’ , (1.153)

F - ‘gradient of the pressure function’ . (1.154)

More precisely, E = −f(ψ)f ′(ψ) and F = −µ0p′(ψ) as in the first equilibrium out-

lined. In general we will use this second implementation of the Solovev equilibrium,

unless stated otherwise, as it gives greater control of the plasma shape.

1.6 MHD Waves

There are three distinct wave types that are supported in an MHD uniform plasma

setup. Rearranging the linearised Hall-MHD equations for low plasma-β plasmas

gives the following wave equations:

(
∂4

∂t4
− (C2

s + V 2
A)

∂2

∂t2
∇2 + C2

sV
2
A∇2
‖∇

2

)
p
′
T = −

V 2
A

ωci
(B0 ·∇)

∂3J
′

‖

∂t3
, (1.155)(

∂2

∂t2
− V 2

A∇2
‖

)
∂J
′

‖

∂t
=

V 2
A

ωciB0
∇2
‖∇

2

(
∂2

∂t2
− C2

s∇2

)
p
′
T . (1.156)

Here pT is the total pressure perturbation (the sum of plasma and magnetic pres-

sure perturbations), C2
s = γp0/ρ0 is the sound speed in the plasma, and V 2

A =

B2
0/(ρ0µ0) is the Alfvén speed. Eq. (1.155) is called the magnetoacoustic equation

and Eq. (1.156) is the Alfvén equation. These are coupled by the Hall term. To

learn qualitatively about the waves at low frequencies, we neglect the Hall term. We
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assume a uniform plasma and so postulate plane-wave solutions where the perturbed

quantities ∼ ei(k·x−ωt). This leads to the dispersion relations:

ω2 =
1

2
(C2

s + V 2
A)k2

(
1±

√
1− 4

C2
T

C2
s + V 2

A

k2‖

k2

)
, (1.157)

ω2 = V 2
Ak

2
‖ , (1.158)

where C2
T = C2

sV
2
A/(C

2
s+V 2

A) is the tube speed. The± solutions of Eq. (1.157) refer to

the fast-magnetoacoustic (or Compressional Alfvén) wave and slow-magnetoacoustic

wave respectively. Eq. (1.158) is the dispersion relation for the shear Alfvén wave.

The shear Alfvén wave perturbs the magnetic field lines transversely both

to the direction of wave propagation and the equilibrium magnetic field direction.

Thus the restoring force for the wave is the magnetic tension, analagous to the

restoring force in a plucked string. This wave is incompressible, with zero density

and pressure perturbations. The shear Alfvén wave is anisotropic and does not prop-

agate transversely to the equilibrium magnetic field - this is obvious from inspecting

the dispersion relation (1.158). The fast- and slow-magnetoacoustic waves are both

compressible with the magnetic and plasma pressures as their restoring forces. The

magnetic pressure resists the bunching of magnetic field lines, similarly to kinetic

pressure acting on a particle system. Both waves have longitudinal and transverse

components. The slow wave is similarly anisotropic as the shear Alfvén wave and

only flows along equilibrium magnetic field lines. The fast wave flows almost isotrop-

ically, with a slight preference to travel perpendicular to the equilibrium magnetic

field. All three wave types, as derived here in a uniform medium, are non-dispersive

but this does not hold generally.

It is possible to derive the dispersion relations for these waves in Hall-MHD.

Omitting the derivation we have:

(ω2 − V 2
Ak

2 cos2 θ)(ω4 − (C2
s + V 2

A)k2ω2 + C2
sV

2
Ak

4 cos2 θ) =

V 4
A

ω2
ci

k4 cos2 θ ω2(ω2 − C2
sk

2) , (1.159)

where θ is the angle between k and the equilibrium magnetic field. For the case of

perpendicular propagation (θ = π
2 ) then the slow and shear waves vanish and the

fast wave travels with phase velocity ω/k =
√
C2
s + V 2

A. This exactly replicates the

ideal MHD case. For parallel propagation (θ = 0) the slow wave decouples from the
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other two wave types and the dispersion relations become:

Slow : ω2 = C2
sk

2 , (1.160)

Fast/Alfvén : ω2 =
V 2
Ak

2

2

(
2 +

V 2
Ak

2

ω2
ci

± VAk

ωci

√
4 +

V 2
Ak

2

ω2
ci

)
. (1.161)

If we solve Eq. (1.161) for V 2
Ak

2 instead the two wave solutions are represented more

clearly:

Fast : V 2
Ak

2 =
ω2

1 + ω
ωci

, (1.162)

Alfvén : V 2
Ak

2 =
ω2

1− ω
ωci

, (1.163)

from which we see that the Alfvén wave has a resonance as ω → ωci, the ion-

cyclotron frequency. As the frequency approaches the ion-cylotron frequency, the

wave number tends to infinity. At short-wavelengths dissipative and kinetic effects

will become important, so the MHD description is not sufficient. Note that this is

different to the wave-particle resonances described later. For waves with significantly

higher frequencies it is necessary to retain more terms in the MHD model but we

will not describe them here as they are not of interest to this thesis.

Plasma normal modes

In geometries relevant to fusion devices, i.e. plasma cylinders and tori, the plas-

mas are bounded, meaning the plane-wave solutions are now normal modes of the

plasma. We consider a plasma cylinder, described by ideal-MHD, with azimuthal

and axial symmetry, and axial periodicity. For the cylindrical co-ordinates (r, θ, z),

the product of the wavenumber and position vector is written:

k · x = krr +mθ + kz . (1.164)

The periodicity condition implies that m ∈ Z and (2πk/Lz) ∈ Z. It is common to set

Lz = 2πR0, the so-called straight tokamak approximation. The three types of MHD-

wave that we have established now exist in the cylinder as discrete or continuous

spectra. In the homogeneous plasma case the slow-magnetoacoustic modes and

the shear Alfvén modes each form an infinitely degenerate spectrum at a particular

frequency, say ωS and ωA respectively [25]. The introduction of radial inhomogeniety

extends these infinitely degenerate points into continua, ωS(r) and ωA(r). Both the
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slow and the Alfvén modes may also have two associated discrete spectra located

either side of their respective continua in frequency-space, which may form a cluster

point at an extremum of the continua for certain plasma equilibria [26]. The fast-

magnetoacoustic modes form a discrete spectrum of modes with a cluster point at

ω = ∞. Since we are now dealing with normal modes of the fast wave we change

our terminology and refer to them as Compressional Alfvén Eigenmodes (CAEs).

Modes in the slow and shear Alfvén continua are localised to a particular magnetic

flux surface with which their frequency is matched, their so-called resonant surface.

Discrete modes of all three Alfvén wave branches, however, are global modes that

can exist across the plasma domain.

Consider a toroidal geometry described by (s, φ, ϑ), with s a proxy radial

co-ordinate, φ the toroidal angle, and ϑ the poloidal angle. Eq. (1.164) is now

written:

k · x = krr + nφ+mθ . (1.165)

The periodicity condition applies to the toroidal and poloidal directions, implying

m,n ∈ Z. The toroidal mode number n is related to the axial wavenumber k in the

straight tokamak description via n = R0k. For ideal-MHD in a torus we still expect

to find a slow and an Alfvén continuum, with spatially localised modes, as well

as a discrete spectrum of CAEs with a cluster point at infinity [23, 25]. The main

difference of concern for this thesis is that a new class of discrete shear Alfvén modes

appears, the so-called gap modes. These modes exist in ‘gaps’ in the continuum that

are opened up by the interaction of Alfvén continuum modes with different poloidal

wavenumbers. In particular, Alfvén continuum modes follow the dispersion relation

(1.158) and in a torus the parallel wavenumber is approximately:

k‖ =
1

R

(
n+

m

q

)
. (1.166)

Therefore, there may exist in a tokamak two counter-propagating continuum mode

with different poloidal mode numbers, say ωm = k‖,mVA and ωm+1 = −k‖,m+1VA.

If there exists a point in the plasma such that q = −(m + 1
2)/n then the counter-

propagating waves will interfere destructively to produce a frequency gap in the

continuum around that spatial location. A discrete shear Alfvén mode may then

exist with a frequency that is constrained by the frequency gap. The reason that gap

modes are present in a torus but not in a cylinder is that, unlike in a cylinder which

is poloidally symmetric, there exists a mechanism in a torus for modes with different

poloidal mode numbers to interact. Toroidicity allows a coupling between m and

m ± 1 modes. Shaping effects such as ellipticity and triangularity, and properties

28



of the equilibrium such as finite plasma-β all facilitate particular poloidal mode

couplings and each have a type of gap mode named after them. Heidbrink [27]

provides a good overview of the main types of gap mode.

1.7 CAEs in Tokamaks

In order to observe Compressional Alfvén eigenmodes, and other normal modes of

the plasma, they must be driven by a source of free-energy in the plasma. In the case

of CAEs the source of free-energy is a fast-ion population with a positive velocity

gradient, such as fusion born alpha-particles or NBI ions. These fast-ions exchange

energy with CAEs via the ion cyclotron resonance - see Section 1.8. The resonance

condition can be written [28,29]:

ω = lωci + k‖v‖ + k⊥vD , (1.167)

where l is an integer. This condition is only expected to be satisfied by waves with

frequencies on the order of the ion cyclotron frequency, ωci. CAEs are predicted to

exist with frequencies on the order of ωci unlike the slow-magnetoacoustic and shear

Alfvén modes which are generally predicted to have much lower frequencies. There-

fore, CAEs are central to the current interpretation of electromagnetic emission in

the ion cyclotron frequency range, ion cyclotron emission (ICE), that has been ob-

served from a range of conventional tokamak devices [30–33]. Another candidate for

ICE is the Global Alfvén eigenmode (GAE), a type of discrete shear Alfvén mode.

CAEs have also been observed directly in spherical tokamak devices such as

MAST [2] and NSTX [28]. CAEs are easily excited by fast-ions in ST devices as

they typically have a lower equilibrium magnetic field strength than a conventional

tokamak, meaning a lower ion cyclotron frequency. MAST and NSTX both have

NBI heating capable of accelerating a beam of particles to a velocity higher than

the Alfvén velocity of the bulk plasma - this provides a fast-ion source for driving

the CAEs. The CAEs are measured using an array of magnetic pickup coils that

measure magnetic fluctuations above the surface of the bulk plasma. The mag-

netic activity is identified as CAEs by comparison with CAE theory, in particular

the expected spatial structure of CAEs and the spectral structure. For example,

the frequency difference between bands of CAE activity matches that expected for

eigenmodes of different modes numbers, with three scales of frequency difference for

the radial, poloidal and toroidal mode numbers. Fig. 1.4 shows an example of CAE

modes identified during a MAST pulse. Modes are labelled with their toroidal mode

number, which can be determined as there are several magnetic pickup coils located
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at different toroidal angles on the outboard side of the tokamak [2,34]. Modes with

consecutive toroidal mode numbers are separated by a frequency gap on the order

of ∼ 10 kHz, with two clear bands of mode activity separated by a frequency gap

around 150 MHz. Since modes with the same n appear in each band it is predicted

that the two bands contain modes with different poloidal mode numbers, say m and

m + 1. This is supported by predictions of the frequency gap for modes with con-

secutive poloidal mode numbers from CAE analytical and numerical models. The

poloidal and radial mode numbers of the CAEs cannot be measured on MAST as the

current configuration of magnetic pickup coils cannot measure in different poloidal

or radial positions.

Figure 1.4: CAEs measured during a MAST pulse. There are two visible bands of CAEs
and the toroidal mode number of each mode is labelled. Image reproduced from [2].

1.8 Anomalous Transport

Particle transport is an important area of research for fusion power plant operation

as the energy confinement time, τE , forms part of the triple product, Eq. (1.9), and

so it is important to understand the transport processes that influence it. Classi-
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cal transport theory offers a first estimate by describing the particle transport due

to Coulomb collisions in a plasma cylinder. Neoclassical transport extends this to

include the more complex magnetic geometries of a plasma torus, which allows for

particle drifts such as the ∇B-drift. Neoclassical transport makes predictions that

are significantly closer to the measured values of particle transport than those of

classical transport theory. However neoclassical theory is still limited in its appli-

cability, leading to measurements that are up to two orders of magnitudes larger

than the neoclassical prediction [1, 9]. The difference between the measured values

and the predictions of neoclassical theory is termed anomalous transport. A major

contributor to anomalous transport are plasma instabilities, in which a perturbation

of the plasma equilibrium grows and pushes the plasma away from its equilibrium

state.

In this thesis we are concerned with a wave-particle resonance, the ion cy-

clotron instability, which can affect shear Alfvén eigenmodes and CAEs. Discrete

shear Alfvén modes, specifically toroidal Alfvén eigenmodes (TAEs), have been ob-

served scattering fast-ions from NBI onto the vacuum vessel wall which can lead to

structural damage and remove heat from the plasma which degrades the tokamak

efficiency [35]. Conversely, the prospect of alpha channeling provides hope that

plasma phenomena can be harnessed to enhance efficiency [36]. Alpha channeling

refers to waves that are deliberately excited in the plasma via an antenna in order

to harness a specific resonance with the fast-ions which redistributes their energy to

the core of the bulk plasma.

Ion cyclotron resonance

Electric fields accelerate charged particles via the Lorentz force, exchanging en-

ergy with the particles. This happens most effectively when particles are in reso-

nance with the electric field. Consider an electric plane-wave with the form E =

Ey cos(kx − ωt + φ)ŷ where φ is the phase of the wave relative to (x, t). Taking

(x, t) to be the position of the particle, the particle experiences the largest sustained

electric field when the relative phase is stationary in time and is an integer multiple

of π. This results in maximal energy transfer. This is Landau resonance and the

resonance condition is that the particle is in phase with the wave initially and travels

with the phase velocity v = ω/k in the direction of the wave propagation, i.e. x̂.

In a magnetised plasma charged particles travel helically around the magnetic

field lines, gyrating at their cyclotron frequency. A resonance occurs with circularly

polarised waves when the particle is in phase with the wave crest. We let the particles
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have velocity v and k is the wavevector. The resonance condition is then:

ω − k‖v‖ − lωc = 0 , (1.168)

where l = ±1 refers to the Doppler shifted cyclotron resonance and anomalous

Doppler shifted cyclotron resonance respectively. The case l = 0 is the Landau

resonance described above. Suppose the particle and wave are co-propagating in

the parallel direction so that k‖v‖ > 0. The k‖v‖ term Doppler shifts the wave’s

frequency, so that ω − k‖v‖ is the wave frequency from the particle’s guiding centre

frame of reference. Therefore this frequency should match the gyration frequency of

the particle, with a sign modification depending on whether the handedness of the

wave is the same or opposite to the particle. For |l| > 1 it is necessary for wave’s

electric field to vary in space, particularly on the spatial scale of the particle’s

Larmor radius [37, 38]. These resonances are usually weaker than the fundamental

resonance. It is clear that Eq. (1.168) is a necessary condition for the wave-particle

cyclotron resonance to occur, but it is not sufficient - we also need information

about the polarisation of the wave and the particle, as well as direction of travel.

Therefore, to model the resonance one must have detailed spatial information about

the wave and the particle orbit.

We note that Eq. (1.168) assumes all of the perpendicular motion of the

resonant particle to the magnetic field is cyclotron motion. A modified resonance

condition incorporates the particles’ drift velocities:

ω − k‖v‖ − k⊥ · vD − lωc = 0 . (1.169)

Of course, further corrections can be incorporated to account for more detailed

particle motion.

1.9 Chapter Summary

In this chapter we have set out the case for studying the MHD compressional Alfvén

eigenmodes as a means to further understanding one aspect of particle and energy

transport in a plasma. We have established that we need to solve the linearised ideal

Hall-MHD equations for both the eigenfrequency and eigenfunction, which gives the

spatial structure of the CAE. We have established that Hall-MHD theory gives valid

description of plasma waves for the frequency regime in which we are interested. We

have also given an overview of the cylindrical and toroidal geometries in which we

are interested, and introduced the equations that determine the equilibrium state
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of the background plasma under certain conditions. The remainder of this thesis

demonstrates how we built and tested the MHD linear stability code Whales2 and

is arranged as follows.

Chapter 2 shows the rearrangement of the linearised Hall-MHD equations

into a form suitable for the application of numerical methods, describes the particu-

lar geometry and co-ordinate system employed in Whales2, and derives the boundary

conditions for a plasma cylinder/torus surrounded by a solid wall. Chapter 3 de-

scribes the numerical methods of Whales2 used to discetise the linearised Hall-MHD

equations, the schemes employed to suppress unwanted physical and numerical be-

haviours, and demonstrates the self-adjointness of the discretised linear ideal-MHD

equations in Whales2. Chapters 4 & 5 compare the numerical output of Whales2

against analytical and qualitative behaviour expected from CAE theory in cylindri-

cal and toroidal geometries respectively.
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Chapter 2

Theory

2.1 Linearized MHD Equations

To move the MHD equations into the final form to be solved, we start from the

linearised Hall-MHD equations (1.68) - (1.74). We combine the linearised Faraday’s

law (1.71) with Ohm’s law (1.73) to give the induction equation, and also rear-

range the energy equation (1.70) using the mass equation (1.68). This produces the

following set of linear equations:

∂ρ1
∂t

+∇ · (ρ0v1) = 0 , (2.1)

ρ0
∂v1

∂t
= J0 ×B1 + J1 ×B0 −∇p1 , (2.2)

∂p1
∂t

+ v1 ·∇p0 + γp0∇ · v1 = 0 , (2.3)

∂B1

∂t
=∇×

[
v1 ×B0 +

1

en0
J1 ×B0 +

1

en0
J0 ×B1

− n1
en20

J0 ×B0 −
1

en0
∇pe1 +

n1
en20
∇pe0

]
, (2.4)

∇×B1 = µ0J1 , (2.5)

∇ ·B1 = 0 . (2.6)
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We then treat the Hall and battery terms as negligible to obtain the linearised

ideal-MHD equations. We also substitute Ampère’s law (2.5) into (2.2), giving:

∂ρ1
∂t

+∇ · (ρ0v1) = 0 , (2.7)

µ0ρ0
∂v1

∂t
= (∇×B0)×B1 + (∇×B1)×B0 − µ0∇p1 , (2.8)

∂B1

∂t
=∇× (v1 ×B0) , (2.9)

∂p1
∂t

+ v1 ·∇p0 + γp0∇ · v1 = 0 , (2.10)

∇ ·B1 = 0 . (2.11)

It can be seen that in the absence of a steady flow, gravity or dissipative terms,

the evolution of the density perturbation is described solely by the mass equation

and so may be solved for after the other variables are determined. In order to

eliminate some time derivatives we change variables v → ξ where ξ is the plasma

displacement, i.e. the distance of a fluid element between its current position and

the equilibrium position. The plasma velocity is then the Lagrangian derivative [26]

v = ∂ξ
∂t + v ·∇ξ. The linearisation is carried out about an equilibrium position that

is assumed static and flow-free (Section 1.5.3), therefore v1 = ∂ξ1
∂t . For brevity we

denote ξ1 = ξ. The linearised ideal-MHD equations are thus:

ρ1 +∇ · (ρ0ξ) = 0 , (2.12)

µ0ρ0
∂2ξ

∂t2
= (∇×B0)×B1 + (∇×B1)×B0 − µ0∇p1 , (2.13)

B1 =∇× (ξ ×B0) , (2.14)

p1 + ξ ·∇p0 + γp0∇ · ξ = 0 . (2.15)

The condition ∇ · B1 = 0 is unnecessary as Eq. (2.14) implies the condition is

satisfied. We transform these equations to a form to solve for ξ by substituting

the induction and energy equations into the linearised momentum equation. This

produces an equation of the form:

µ0ρ0
∂2ξ

∂t2
= F (ξ) , (2.16)

which is analogous to Newton’s second law. We broadly follow the work in [39]

to achieve this rearrangement. We employ projections for ξ and B1 following the

vectors:

∇ψ , B0 , T =
B0 ×∇ψ
|∇ψ|2 . (2.17)
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Figure 2.1: The left figure, (a), shows a poloidal cross-section of a typical tokamak geometry
showing the nested flux surfaces concentric on the magnetic axis. The radial direction is
given by the gradient of the flux function, which is illustrated for one point on an example
surface. The right figure, (b), extends two example surfaces in the toroidal direction and
gives a side-on view. An example equilibrium magnetic field line is depicted by a solid line
in the surface. The directions given by the equilibrium magnetic field and the binormal are
then highlighted at one point on each surface. Note that these directions change depending
both on the position on a particular flux surface, as well as the particular flux surface.

These vectors are the gradient of the flux function (i.e. the normal to the

flux surfaces), the equilibrium magnetic field direction, and the so-called binormal

respectively, examples of which are shown in Fig. 2.1. Projecting the displacement

and perturbed magnetic field onto these vectors gives:

ξ = ξ⊥
∇ψ
|∇ψ|2 + ξ∧

B0 ×∇ψ
B2

0

+ ξ‖
B0

B2
0

, (2.18)

B1 = b⊥
∇ψ
|∇ψ|2 + b∧

B0 ×∇ψ
|∇ψ|2 + b‖

B0

B2
0

. (2.19)

This projection, which may be called the “Stix frame” [40,41], naturally follows some

important directions in the plasma. ∇ψ defines the most natural radial co-ordinate

from the magnetic axis to the outer wall, following the direction normal to the

magnetic surfaces. The equilibrium magnetic field introduces a preferential direction

for the shear Alfvén and slow waves to propagate along. The binormal describes

a direction that is within each particular flux surface but orthogonal to the local

equilibrium magnetic field. It should be noted that these perturbed components

don’t have the dimensions of either displacement or magnetic field respectively,

but are affected by the dimension of the direction vectors which are themselves not

dimensionless. ∇ψ has the dimension [∇ψ] = BL where B denotes the dimension of

magnetic field and L the dimension of length, and so ξ⊥ and b⊥ have the dimensions

BL2 and B2L respectively. Similarly, ξ‖ and b‖ have dimensions BL and B2 while
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b∧ has dimension BL and ξ∧ is dimensionless. Therefore, when calculating these

components of the displacement it must be remembered that they do not have the

dimensions of displacement (i.e. length) and must be appropriately normalised to

recover the physical displacement. Also, directional derivatives in the directions of

the vectors (2.17) do not simply have dimension L−1.

We define the linearised total pressure perturbation (or just ‘total pressure’

when this is unambiguous) to be the sum of the linear parts of the kinetic pressure

and the magnetic pressure perturbations:

pT = p1 +
B0 ·B1

µ0
. (2.20)

We also express some geometric quantities :

S = T ·∇×T , (2.21)

κ = (b0 ·∇)b0 = (∇× b0)× b0 , b0 =
B0

B0
. (2.22)

The quantity S is the negative local shear which measures the differential torsion of

the magnetic field [42]. In an axisymmetric geometry the torsion must be constant

toroidally and so the shear describes how the magnetic field differentially twists

when looking over the radial direction. This shear is therefore related to the radial

derivative of the safety function.

κ is the curvature of the magnetic field lines. This is inversely related to the

radius of curvature and defined to be in the opposite direction, so that if Rc is the

radius of curvature then:

κ = −Rc

R2
c

. (2.23)

The component of the curvature in the radial direction is called the normal curva-

ture, whilst the component in the binormal direction is the geodesic curvature [42].

One would expect that the curvature is proportional to the magnetic tension force,

which acts to resist the bending of the magnetic field lines, and this can be seen by

analysing the equilibrium Lorentz force.

(∇×B0)×B0 =B0(∇B0 × b0)× b0 +B2
0(∇× b0)× b0

=B0(∇B0 · b0)b0 −B0∇B0 +B2
0κ

=B2
0κ−B0∇⊥B0 . (2.24)

If we compare this with Eq. (1.77) (∇×B0)×B0 = (B0 ·∇B0)⊥ −B0∇⊥B0 then

the connection between magnetic tension and curvature is clear.
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We also have the radial derivative of the equilibrium pressure (since pressure

is a flux function it only varies in this direction):

p′0 =
∇ψ ·∇p0
|∇ψ|2 . (2.25)

We start from the momentum equation and rewrite in terms of the total pressure:

µ0ρ0
∂2ξ

∂t2
= −µ0∇pT +∇b‖ + (∇×B1)×B0 + (∇×B0)×B1 . (2.26)

To resolve the cross-products we use the relations:

∇×
(
B0

B2
0

)
×B0 + (∇×B0)×

(
B0

B2
0

)
= 2κ , (2.27)

∇b‖ +

[
∇b‖ ×

(
B0

B2
0

)]
×B0 =

B0

B2
0

(B0 ·∇)b‖ , (2.28)[
∇
(

b⊥
|∇ψ|2

)
×∇ψ

]
×B0 = (B0 ·∇)

(
b⊥
|∇ψ|2

)
∇ψ , (2.29)

[∇b∧ × T ]×B0 = T (B0 ·∇)b∧ , (2.30)

which gives

µ0ρ0
∂2ξ

∂t2
= − µ0∇pT

+ (B0 ·∇)

(
b⊥
|∇ψ|2

)
∇ψ + µ0(J0 ×∇ψ)

b⊥
|∇ψ|2

+ T (B0 ·∇)b∧ + (∇× T )×B0 b∧ + µ0(J0 × T ) b∧

+
B0

B2
0

(B0 ·∇)b‖ + 2κ b‖ . (2.31)

We now examine the individual components of the momentum equations. We start

with the perpendicular component by projecting Eq. (2.31) on ∇ψ:

µ0ρ0
∂2ξ⊥
∂t2

= − µ0∇ψ ·∇pT + |∇ψ|2 (B0.∇)

(
b⊥
|∇ψ|2

)
+
(
|∇ψ|2S − µ0J0 ·B0

)
b∧ + (2∇ψ · κ) b‖ , (2.32)

where we used

[(∇× T )×B0] ·∇ψ = |∇ψ|2S , (2.33)

(J0 × T ) ·∇ψ = −J0 ·B0 . (2.34)
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To obtain the wedge component of the momentum equation, we further establish

the relation:

[(∇× T )×B0] · T = − B2
0

|∇ψ|2 ∇ψ · (∇× T ) = 0 , (2.35)

and explicitly write out the geodesic curvature in terms of the equilibrium magnetic

field and flux:

κ.T = − B0

|∇ψ|2∇ψ · (∇× b0) = − B0

|∇ψ|2∇ψ ·
(
∇B−10 ×B0

)
= − B2

0

2|∇ψ|2∇ψ ·
(
∇B−20 ×B0

)
= − B2

0

2|∇ψ|2 ∇ ·
(
B0 ×∇ψ

B2
0

)
. (2.36)

This gives the wedge component as:

µ0ρ0
∂2ξ∧
∂t2

= − µ0T ·∇pT + µ0
J0 ·B0

|∇ψ|2 b⊥ +
B2

0

|∇ψ|2 (B0 ·∇)b∧

− B2
0

|∇ψ|2 ∇ ·
(
B0 ×∇ψ

B2
0

)
b‖ . (2.37)

For the parallel component of the momentum equation we look back to Eq. (2.13)

to determine:

µ0ρ0
∂2ξ‖

∂t2
= −µ0B0 ·∇p1 − µ0(J0 ×B0) ·B1 . (2.38)

Recalling that in our equilibrium J0 ×B0 =∇p0 and that p0 is a flux function, so

∇p0 ∼∇ψ then we have:

µ0ρ0
∂2ξ‖

∂t2
= −(B0 ·∇)µ0p1 − µ0p′0b⊥ . (2.39)

We don’t write this equation in terms of the total pressure as we will be solving the

wave equations in the zero plasma-β limit, where the parallel displacement will be

shown to be absent.

We eliminate the magnetic field perturbation in favour of the displacement

by examining the linearised induction equation Eq. (2.14). The three components
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of B1 can be written as follows, starting with the perpendicular component:

b⊥ = B1 ·∇ψ

= [∇× (ξ⊥ ×B0)] ·∇ψ

= ∇ · [(ξ⊥ ×B0)×∇ψ]

= ∇ · (ξ⊥B0)

= (B0 ·∇) ξ⊥ . (2.40)

The wedge component is:

b∧ = B1 ·
B0 ×∇ψ

B2
0

=
|∇ψ|2

B2
0

[∇× (ξ⊥ ×B0)] · T

=
|∇ψ|2

B2
0

{∇ · [(ξ⊥ ×B0)× T ] + (ξ⊥ ×B0) ·∇× T }

=
|∇ψ|2

B2
0

{∇ · [(ξ⊥ · T )B0]− ξ⊥T ·∇× T + ξ∧∇ψ ·∇× T }

=
|∇ψ|2

B2
0

[(B0 ·∇) ξ∧ − Sξ⊥] . (2.41)

Finally, the parallel component:

b‖ = B1 ·B0

= [∇× (ξ⊥ ×B0)] ·B0

=∇ · [(ξ⊥ ×B0)×B0] + (ξ⊥ ×B0) ·∇×B0

= −∇ · (ξ⊥B2
0)− µ0(J0 ×B0) · ξ⊥

= −B2
0(∇ · ξ⊥)−

[
∇B2

0 + µ0(J0 ×B0)
]
· ξ⊥ . (2.42)

The final bracketed term of the parallel equation is a sum of the kinetic and magnetic

pressures and so we expand out the Lorentz force term in terms of curvature as per

(2.24). We can safely write ∇B2
0 →∇⊥B2

0 as the subsequent scalar product is with

the directions perpendicular to the equilibrium magnetic field direction. Therefore:

∇⊥B2
0 + µ0(J0 ×B0) = B0∇⊥B0 +B2

0κ . (2.43)

Finally we use the energy equation to study pT . Looking to Eq. (2.15) it is easy to
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see

µ0pT = µ0p1 + b‖ = −µ0γp0∇ · ξ − µ0p′0ξ⊥ + b‖ . (2.44)

Now we substitute in the components of B1 to leave the equations in terms of ξ and

pT . We start with the total pressure:

µ0pT =−B2
0

[
∇ ·

(
∇ψ
|∇ψ|2

ξ⊥

)
+

(2∇ψ · κ)

|∇ψ|2
ξ⊥

]
−B2

0

[
B0 ×∇ψ

B2
0

· ∇B
2
0

B2
0

ξ∧ +∇ ·
(

B0 ×∇ψ
B2

0

ξ∧

)]
− µ0γp0∇ · ξ . (2.45)

Using another identity will put this expression in a form that can be understood

physically. We start from T ·∇p0 = 0 and we have from Eq. (2.24) that: B2
0T ·κ =

T ·∇B2
0 . So the above becomes:

µ0pT =−B2
0

[
∇ ·

(
∇ψ
|∇ψ|2

ξ⊥

)
+ 2κ · ∇ψ

|∇ψ|2
ξ⊥

]
−B2

0

[
∇ ·

(
B0 ×∇ψ

B2
0

ξ∧

)
+ 2κ · B0 ×∇ψ

B2
0

ξ∧

]
− µ0γp0∇ · ξ . (2.46)

These terms are similar to those in common formulations of the energy principle,

in which the MHD equations are cast as a perturbed potential energy to anal-

yse the stability of a configuration. |µ0γp0∇ · ξ|2 corresponds to the energy re-

quired to compress the plasma and so is associated with the Slow magnetoacoustic

wave [19]. The first two lines of the total pressure expression above are analogous to

B2
0 |∇ · ξ⊥ + 2ξ⊥ · κ|2, which is the energy required to compress the magnetic field

and so is associated with CAEs [19]. These terms mostly correspond to the contri-

bution to the total pressure from the parallel component of the perturbed magnetic

field, and this is expected as b‖ is the dominant perturbed magnetic field component

for CAEs [43]. Thus, as expected, the total pressure is important to both the Slow

waves and CAEs but not the Shear Alfvén waves which have the restoring force

of magnetic tension. Following the energy principle analogy, the Shear waves are

associated with the two perpendicular components of the perturbed magnetic field

as |b⊥ + b∧|2 is the energy required to bend magnetic field lines. The correspon-

dence of each of these terms to the respective wave only holds strictly in the case

of a homogeneous magnetic field, but the intuition gained from thinking of these

correspondences is still useful in more complicated plasma setups.
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Now writing the components of the plasma displacement:

µ0ρ0
∂2ξ⊥
∂t2

=− µ0∇ψ ·∇pT + (2∇ψ · κ)(µ0pT + µ0γp0∇ · ξ)

+ µ0p
′
0(2∇ψ · κ)ξ⊥

+ |∇ψ|2(B0 ·∇)

(
(B0 ·∇)ξ⊥

|∇ψ|2

)
− |∇ψ|

2

B2
0

(|∇ψ|2S − µ0(J0 ·B0))Sξ⊥

+
|∇ψ|2

B2
0

(|∇ψ|2S − µ0(J0 ·B0))(B0 ·∇)ξ∧ , (2.47)

µ0ρ0
∂2ξ∧
∂t2

=− µ0T ·∇pT −
B2

0

|∇ψ|2
∇ ·

(
B0 ×∇ψ

B2
0

)
(µ0pT + µ0γp0∇ · ξ)

− B2
0

|∇ψ|2∇ ·
(

B0 ×∇ψ
B2

0

)
µ0p
′
0ξ⊥

− B2
0

|∇ψ|2 (B0 ·∇)

[
|∇ψ|2

B2
0

Sξ⊥

]
+
µ0J0 ·B0

|∇ψ|2 (B0 ·∇)ξ⊥

+
B2

0

|∇ψ|2
(B0 ·∇)

[
|∇ψ|2

B2
0

(B0 ·∇)ξ∧

]
, (2.48)

µ0ρ0
∂2ξ‖

∂t2
=µ0γp0(B0 ·∇)∇ · ξ . (2.49)

So for the two perpendicular components of the displacement, the first three

terms of the right hand side are primarily associated with magnetic field line and

plasma compression, i.e. the terms involving p′0 and pT . The last three terms,

involving S and (B0 ·∇), describe field line bending.

The parallel displacement is correlated with the plasma pressure and so is an

important displacement component for both the CAEs and slow waves. However,

the CAEs are driven primarily by the magnetic pressure unlike the slow waves which

are primarily driven by plasma pressure, and so to eliminate the slow waves from the

MHD wave equation we assume that the plasma-β is negligible. This assumption of

β = 2µ0p0/B
2
0 � 1 is equivalent to µ0p0 � B2

0 so the plasma pressure is considered

negligible in comparison to the magnetic terms. In the limit of zero plasma-β then

it follows that p0 = 0 and this is applied to the MHD wave equation. Clearly this

forces ξ‖ = 0 and so we neglect the parallel displacement component.
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2.2 Axisymmetric toroidal geometry

We apply an axisymmetric toroidal geometry to the equations. The geometry can

be summarised as (ψ, φ, ϑ) where ψ is our ‘radial’ co-ordinate and ϑ is any poloidal

angle, provided it creates a left-handed co-ordinate system. These two are orthogo-

nal to the toroidal angle φ but not necessarily to each other. This is similar to the

‘PEST co-ordinate system’ (named after the early linear stability code) [44].

The metric tensor is:g
ψψ gψφ gψϑ

gφψ gφφ gφϑ

gϑψ gϑφ gϑϑ

 =

∇ψ ·∇ψ 0 ∇ψ ·∇ϑ
0 ∇φ ·∇φ 0

∇ϑ ·∇ψ 0 ∇ϑ ·∇ϑ

 (2.50)

The choice to implement this co-ordinate system on the equations, rather than the

Stix frame that was used for the projection of the displacement and the magnetic

field perturbation, was made to fully take advantage of the axisymmetry. Deriva-

tives of equilibrium functions in one direction vanish automatically and four metric

elements also vanish. The Jacobian, J , can be expressed as [45] :

J =
1

∇ψ · (∇φ×∇ϑ)
=

1√
(gψψgϑϑ − gψϑgϑψ)gφφ

. (2.51)

We denote the contravariant basis (∇ψ,∇φ,∇ϑ) and the covariant basis (eψ, eφ, eϑ).

We now demonstrate that the terms in Eq. (2.63) reading

− B2
0

|∇ψ|2∇ ·
(

B0 ×∇ψ
B2

0

)
µ0p
′
0ξ⊥ −

B2
0

|∇ψ|2 (B0 ·∇)

[
|∇ψ|2

B2
0

Sξ⊥

]
+
µ0J0 ·B0

|∇ψ|2 (B0 ·∇)ξ⊥ , (2.52)

are equivalent to the expression

− B2
0

|∇ψ|2 (B0 ·∇)

[
|∇ψ|2S − µ0J0 ·B0

B2
0

ξ⊥

]
, (2.53)

by showing that:

−∇ ·
(

B0 ×∇ψ
B2

0

)
p′0 = (B0 ·∇)

J0 ·B0

B2
0

. (2.54)

To start we use the expression for the equilibrium magnetic field given in (1.82) in
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the cross-product:

B0 ×∇ψ = f(ψ)∇φ×∇ψ + (∇ψ ×∇φ)×∇φ

= f(ψ)∇φ×∇ψ + gψψ∇φ . (2.55)

Remembering the axisymmetry of the equilibrium, i.e. ∂φA0 = 0, we have:

∇ ·
(

B0 ×∇ψ
B2

0

)
=

1

J
∂ϑ

(
∇ϑ · (∇φ×∇ψ)

B2
0

J f(ψ)

)
= −f(ψ)

J
∂ϑ

(
1

B2
0

)
. (2.56)

Because (B0 ·∇) = f(ψ)gφφ∂φ+ 1
J ∂ϑ and the axisymmetry of equilibrium quantities,

Eq.(2.54) can be rewritten as:

∂ϑ

(
J0 ·B0 − f(ψ)p′0

B2
0

)
= 0 . (2.57)

We make use of Eqs. (1.75) and (2.25):

f(ψ)p′0 =
f(ψ)

gψψ
∇ψ · (J0 ×B0)

=
f(ψ)

gψψ
J0 · (B0 ×∇ψ)

= J0 ·
(
f(ψ)∇φ+

f2(ψ)

gψψ
∇φ×∇ψ

)
, (2.58)

to eliminate the plasma pressure gradient from Eq. (2.57). We also use the following

relations:

(∇×B0) ·∇ψ =
1

J
(∂φBϑ − ∂ϑBφ) = 0 , (2.59)

gϑϑ = eϑ · eϑ
= J 2(∇ψ ×∇φ) · (∇ψ ×∇φ)

= J 2((∇ψ ·∇ψ)(∇φ ·∇φ)− (∇ψ ·∇φ)(∇φ ·∇ψ))

= J 2gψψgφφ , (2.60)
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to rewrite the numerator of Eq. (2.57):

J0 ·B0 − f(ψ)p′0 = J0 · (∇ψ ×∇φ)

(
gψψ + f2(ψ)

gψψ

)
= J0ϑ∇ϑ · (∇ψ ×∇φ)

B2
0

gψψgφφ

= J0ϑ
B2

0

J gψψgφφ

= (∇×B0) · eϑ
B2

0

µ0J gψψgφφ

= (∇×B0) · (gϑϑ∇ϑ+ gϑψ∇ψ)
B2

0

µ0J gψψgφφ

=
gϑϑ
J
∂ψf(ψ)

B2
0

µ0J gψψgφφ

=
B2

0

µ0
∂ψf(ψ) . (2.61)

So finally we come to:

∂ϑ

(
J0 ·B0 − f(ψ)p′0

B2
0

)
=

1

µ0
∂ϑ (∂ψf(ψ)) = 0 . (2.62)

Therefore since Eq. (2.57) is true then the original assertion, Eq. (2.54), is correct

and so we rewrite our equation for ξ∧:

µ0ρ0
∂2ξ∧
∂t2

=− µ0T ·∇pT −
B2

0

|∇ψ|2
∇ ·

(
B0 ×∇ψ

B2
0

)
(µ0pT + µ0γp0∇ · ξ)

− B2
0

|∇ψ|2
(B0 ·∇)

[
|∇ψ|2S − µ0J0 ·B0

B2
0

ξ⊥

]
+

B2
0

|∇ψ|2
(B0 ·∇)

[
|∇ψ|2

B2
0

(B0 ·∇)ξ∧

]
. (2.63)

We now apply the geometry to obtain a final form of the linearised ideal

MHD equations. For this, we make use of the following changes of variable:

ξ⊥ → ξ̃⊥ = J ξ⊥ , (2.64)

ξ∧ → ξ̃∧ =
|∇ψ|
B0

ξ∧ . (2.65)

The first change of variable is made for convenience as factors of J ξ⊥ will appear

inside radial derivatives. The second facilitates simpler boundary conditions (see

Section 2.5). We apply these substitutions in the zero plasma-β limit to Eq. (2.46)
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for the total pressure perturbation:

µ0pT =− B2
0

J
∂ψ ξ̃⊥ −

B2
0

J
∂ϑ

(
gψϑ

gψψ
ξ̃⊥

)
− (2∇ψ · κ)B2

0

J gψψ
ξ̃⊥

−∇ ·
(

B0 ×∇ψ
B0

|∇ψ| ξ̃∧
)
. (2.66)

Note that since∇×B0 = µ0J0 and lines of current are contained within a particular

flux surface then the following equality holds:

∇ · (B0 ×∇ψ) =∇ψ · (∇×B0)−B0 · (∇×∇ψ) = 0 . (2.67)

So the total pressure is rewritten more simply as:

µ0pT =− B2
0

J
∂ψ ξ̃⊥ −

B2
0

J
∂ϑ

(
gψϑ

gψψ
ξ̃⊥

)
− (2∇ψ · κ)B2

0

J gψψ
ξ̃⊥

− gψψ(T ·∇)

(
B0

|∇ψ| ξ̃∧
)
. (2.68)

We use Eq. (2.68) to eliminate the total pressure term from Eqs. (2.47) and (2.63),

which results in:

µ0ρ0
J gψψ

∂2ξ̃⊥
∂t2

=

∂ψ

(
B2

0

J
∂ψ ξ̃⊥ +

B2
0

J
∂ϑ

(
gψϑ

gψψ
ξ̃⊥

)
+

(2∇ψ · κ)B2
0

J gψψ
ξ̃⊥

)
+
gψϑ

gψψ
∂ϑ

(
B2

0

J
∂ψ ξ̃⊥ +

B2
0

J
∂ϑ

(
gψϑ

gψψ
ξ̃⊥

)
+

(2∇ψ · κ)B2
0

J gψψ
ξ̃⊥

)
− (2∇ψ · κ)B2

0

J gψψ
∂ψ ξ̃⊥ −

(2∇ψ · κ)B2
0

J gψψ
∂ϑ

(
gψϑ

gψψ
ξ̃⊥

)
− (2∇ψ · κ)2B2

0

J gψψ2
ξ̃⊥

+ (B0 ·∇)

(
(B0 ·∇){ 1

J ξ̃⊥}
gψψ

)
− S

J
(gψψS − µ0j0 ·B0)

B2
0

ξ̃⊥ + µ0p
′
0

(2∇ψ · κ)

J gψψ
ξ̃⊥

+ ∂ψ

(
gψψ(T ·∇)

B0

|∇ψ|
ξ̃∧

)
+
gψϑ

gψψ
∂ϑ

(
gψψ(T ·∇)

B0

|∇ψ|
ξ̃∧

)
− (2∇ψ · κ)(T ·∇)

(
B0

|∇ψ|
ξ̃∧

)
+
gψψS − µ0J0 ·B0

B2
0

(B0 ·∇)

(
B0

|∇ψ|
ξ̃∧

)
, (2.69)
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J µ0ρ0
∂2ξ̃∧
∂t2

=

J |∇ψ|B0(T ·∇)

(
1

J
∂ψ ξ̃⊥ +

1

J
∂ϑ

(
gψϑ

gψψ
ξ̃⊥

))
+ J |∇ψ|B0(T ·∇)

(
(2∇ψ · κ)

J gψψ
ξ̃⊥

)
− JB0

|∇ψ|
(B0 ·∇)

[
gψψS − µ0J0 ·B0

JB2
0

ξ̃⊥

]
+ J |∇ψ|B0(T ·∇)

(
gψψ

B2
0

(T ·∇)

(
B0

|∇ψ|
ξ̃∧

))
+
JB0

|∇ψ|
(B0 ·∇)

[
gψψ

B2
0

(B0 ·∇)

(
B0

|∇ψ|
ξ̃∧

)]
. (2.70)

These equations are equivalent to the ideal-MHD wave equation given by Eqs. (3.51)-

(3.54) of [39], reformulated for the components of ξ given by Eq. (2.18). We have

also applied a specific axisymmetric geometry and the additional assumptions of

zero plasma-β and no hot-ion pressure tensor.

2.3 Hall-MHD

To obtain the linearised Hall-MHD equations describing the Eulerian perturbations

to the MHD equilibrium we neglect the plasma pressure terms, i.e. p0 and p1, in

favour of magnetic terms. This ensures that there is no force along the equilibrium

magnetic field and v1‖ = 0. However, this condition is not enforced in setting up

the equilibrium. We recall the linearised Hall-MHD equations Eqs. (2.1)-(2.6) and

write the mass, momentum and induction equations again here:

∂ρ1
∂t

= −∇ · (ρ0v1) , (2.71)

ρ0
∂v1

∂t
= J0 ×B1 + J1 ×B0 , (2.72)

∂B1

∂t
=∇×

[
v1 ×B0 −

1

en0
(J0 ×B1 + J1 ×B0)

]
. (2.73)

The equilibrium density can be written ρ0 = (me +mi)n0 ' min0 since we assume

me � mi. We again introduce the plasma displacement to write the induction

equation as:

B1 =∇×
[
ξ ×B0 −H

∂ξ

∂t

]
, (2.74)

where we introduced the mass-charge ratio H = mi/e. We introduce a modified

displacement η where:

η = ξ +
H

B2
0

∂ξ

∂t
×B0 . (2.75)
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This allows us to reformulate the induction equation into the ideal-MHD form:

B1 =∇× (η ×B0) . (2.76)

The modified displacement η is decomposed in the same manner as ξ, i.e. such that

η⊥ = η ·∇ψ and η∧ = η ·T. We know that in the zero plasma-β regime that ξ‖ = 0,

so taking the scalar product of (2.75) with B0 shows that η‖ = 0 for zero plasma-β.

The remaining components of η are then written in terms of the chosen geometry

as:

η⊥ = ξ⊥ +H
gψψ

B2
0

∂ξ∧
∂t

, (2.77)

η∧ = ξ∧ −H
1

gψψ
∂ξ⊥
∂t

. (2.78)

The choice of the modified displacement means the expressions for the perturbed

magnetic field components have the same mathematical form but with η in the place

of ξ:

b⊥ = (B0 ·∇)η⊥ , (2.79)

b∧ =
gψψ

B2
0

[(B0 ·∇)η∧ − Sη⊥] , (2.80)

b‖ = −∇ · (B2
0η) . (2.81)

For ideal-MHD in the zero plasma-β limit we write the linearised perturbed mo-

mentum equations as:

µ0ρ0
J gψψ

∂2ξ̃⊥
∂t2

= G⊥(ξ̃⊥, ξ̃∧) , (2.82)

J µ0ρ0
∂2ξ̃∧
∂t2

= G∧(ξ̃⊥, ξ̃∧) , (2.83)

where G⊥ and G∧ represent the right-hand side terms of Eqs. (2.69) and (2.70)

respectively. It follows that in Hall-MHD we can easily rewrite those momentum

equations as:

µ0ρ0
J gψψ

∂2ξ̃⊥
∂t2

= G⊥(η̃⊥, η̃∧) , (2.84)

J µ0ρ0
∂2ξ̃∧
∂t2

= G∧(η̃⊥, η̃∧) , (2.85)
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where we apply the variable transformation of Eqs. (2.64)-(2.65) to η, i.e.:

η̃⊥ = J η⊥ = ξ̃⊥ +HJ |∇ψ|
B0

∂ξ̃∧
∂t

, (2.86)

η̃∧ =
|∇ψ|
B0

η∧ = ξ̃∧ −
H

J
1

B0|∇ψ|
∂ξ̃⊥
∂t

. (2.87)

Eq. (2.75) implies that in the limit ωH/B0 → 0, i.e. ω � ωci, then η → ξ and the

equations of ideal-MHD are recovered. We rewrite Eqs. (2.84)-(2.85) in terms of ξ,

arriving at:

µ0ρ0
J gψψ

∂2ξ̃⊥
∂t2

= G⊥(ξ̃⊥, ξ̃∧) +HG⊥

(
J |∇ψ|

B0

∂ξ̃∧
∂t

,− 1

JB0|∇ψ|
∂ξ̃⊥
∂t

)
, (2.88)

J µ0ρ0
∂2ξ̃∧
∂t2

= G∧(ξ̃⊥, ξ̃∧) +HG∧

(
J |∇ψ|

B0

∂ξ̃∧
∂t

,− 1

JB0|∇ψ|
∂ξ̃⊥
∂t

)
, (2.89)

We apply the following transformation to the radial co-ordinate, ψ → s =
√
ψ, mean-

ing the radial derivatives are transformed: ∂ψ → (1/2s)∂s. Multiplying through by

the factor ∂ψ
∂s = 2s more easily facilitates some integration by parts that will be

applied later on, and so the linearised Hall-MHD equations become:

2s
µ0ρ0
J gψψ

∂2ξ̃⊥
∂t2

= G̃⊥(ξ̃⊥, ξ̃∧) +
∂

∂t

{
HG̃⊥

(
J |∇ψ|

B0
ξ̃∧,−

1

JB0|∇ψ|
ξ̃⊥

)}
, (2.90)

2sJ µ0ρ0
∂2ξ̃∧
∂t2

= G̃∧(ξ̃⊥, ξ̃∧) +
∂

∂t

{
HG̃∧

(
J |∇ψ|

B0
ξ̃∧,−

1

JB0|∇ψ|
ξ̃⊥

)}
, (2.91)
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where we can move the time derivative outside of G due to the assumption that the

equilibrium is static, i.e. ∂tA0 = 0. The terms G̃⊥ and G̃∧ are:

G̃⊥(ξ̃⊥, ξ̃∧) =

∂s

(
B2

0

2sJ
∂sξ̃⊥ +

B2
0

J
∂ϑ

(
gψϑ

gψψ
ξ̃⊥

)
+

(2∇ψ · κ)B2
0

J gψψ
ξ̃⊥

)
+
gψϑ

gψψ
∂ϑ

(
B2

0

J
∂sξ̃⊥ + 2s

B2
0

J
∂ϑ

(
gψϑ

gψψ
ξ̃⊥

)
+ 2s

(2∇ψ · κ)B2
0

J gψψ
ξ̃⊥

)
− (2∇ψ · κ)B2

0

J gψψ
∂sξ̃⊥ − 2s

(2∇ψ · κ)B2
0

J gψψ
∂ϑ

(
gψϑ

gψψ
ξ̃⊥

)
− 2s

(2∇ψ · κ)2B2
0

J gψψ2
ξ̃⊥

+ 2s(B0 ·∇)

(
(B0 ·∇){ 1

J ξ̃⊥}
gψψ

)
− 2s

S

J
(gψψS − µ0j0 ·B0)

B2
0

ξ̃⊥

+ ∂s

(
gψψ(T ·∇)

B0

|∇ψ|
ξ̃∧

)
+ 2s

gψϑ

gψψ
∂ϑ

(
gψψ(T ·∇)

B0

|∇ψ|
ξ̃∧

)
− 2s(2∇ψ · κ)(T ·∇)

(
B0

|∇ψ|
ξ̃∧

)
+ 2s

gψψS − µ0J0 ·B0

B2
0

(B0 ·∇)

(
B0

|∇ψ|
ξ̃∧

)
, (2.92)

G̃∧(ξ̃⊥, ξ̃∧) =J |∇ψ|B0(T ·∇)

(
1

J
∂sξ̃⊥ +

2s

J
∂ϑ

(
gψϑ

gψψ
ξ̃⊥

)
+ 2s

(2∇ψ · κ)

J gψψ
ξ̃⊥

)
− 2s

JB0

|∇ψ|
(B0 ·∇)

[
gψψS − µ0J0 ·B0

JB2
0

ξ̃⊥

]
+ 2sJ |∇ψ|B0(T ·∇)

(
gψψ

B2
0

(T ·∇)

(
B0

|∇ψ|
ξ̃∧

))
+ 2s

JB0

|∇ψ|
(B0 ·∇)

[
gψψ

B2
0

(B0 ·∇)

(
B0

|∇ψ|
ξ̃∧

)]
. (2.93)

For completeness we expand out the Hall terms of Eqs. (2.90)-(2.91) as we use the

product rule to simplify some terms, in particular:

∂s

(
(2∇ψ · κ)B0

|∇ψ|
ξ̃∧

)
− (2∇ψ · κ)B2

0

J gψψ
∂s

(
J |∇ψ|

B0
ξ̃∧

)
=

∂s

(
(2∇ψ · κ)B2

0

J gψψ

)
J |∇ψ|

B0
ξ̃∧ , (2.94)
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The Hall terms are then:

G̃⊥
(
J |∇ψ|

B0
ξ̃∧,−

1

JB0|∇ψ|
ξ̃⊥

)
=

− ∂s
(
gψψ(T ·∇)

1

J gψψ
ξ̃⊥

)
− 2s

gψϑ

gψψ
∂ϑ

(
gψψ(T ·∇)

1

J gψψ
ξ̃⊥

)
+ 2s(2∇ψ · κ)(T ·∇)

(
1

J gψψ
ξ̃⊥

)
− 2s

gψψS − µ0j0 ·B0

B2
0

(B0 ·∇)

(
1

J gψψ
ξ̃⊥

)
+ ∂s

(
B0|∇ψ|

2s
∂sξ̃∧ +

B2
0

J
∂ψ

(
J |∇ψ|

B0

)
ξ̃∧ +

B2
0

J
∂ϑ

(
gψϑ

gψψ
J |∇ψ|

B0
ξ̃∧

))
+
gψϑ

gψψ
∂ϑ

(
B0|∇ψ|∂sξ̃∧ + 2s

B2
0

J
∂ψ

(
J |∇ψ|

B0

)
ξ̃∧ + 2s

B2
0

J
∂ϑ

(
gψϑ

gψψ
J |∇ψ|

B0
ξ̃∧

)
+ 2s

(2∇ψ · κ)B0

|∇ψ|
ξ̃∧

)
+ ∂s

(
(2∇ψ · κ)B2

0

J gψψ

)
J |∇ψ|

B0
ξ̃∧

− 2s
(2∇ψ · κ)B2

0

J gψψ
∂ϑ

(
gψϑ

gψψ
J |∇ψ|

B0
ξ̃∧

)
− 2s

(2∇ψ · κ)2B0

gψψ|∇ψ|
ξ̃∧

+ 2s(B0 ·∇)

(
(B0 ·∇){ |∇ψ|B0

ξ̃∧}
gψψ

)
− 2s

S

B2
0

(gψψS − µ0j0 ·B0)
|∇ψ|
B0

ξ̃∧ , (2.95)

G̃∧
(
J |∇ψ|

B0
ξ̃∧,−

1

JB0|∇ψ|
ξ̃⊥

)
=

− 2sJ |∇ψ|B0(T ·∇)

(
gψψ

B2
0

(T ·∇)

(
1

J gψψ
ξ̃⊥

))
− 2s

JB0

|∇ψ|
(B0 ·∇)

[
gψψ

B2
0

(B0 ·∇)

(
1

J gψψ
ξ̃⊥

)]
+ J |∇ψ|B0(T ·∇)

(
|∇ψ|
B0

∂sξ̃∧ +
2s

J
∂ψ

(
J |∇ψ|

B0

)
ξ̃∧ +

2s

J
∂ϑ

(
gψϑ

gψψ
J |∇ψ|

B0
ξ̃∧

))
+ 2sJ |∇ψ|B0(T ·∇)

(
(2∇ψ · κ)

|∇ψ|B0
ξ̃∧

)
− 2s

JB0

|∇ψ|
(B0 ·∇)

[
gψψS − µ0j0 ·B0

B2
0

|∇ψ|
B0

ξ̃∧

]
. (2.96)

2.4 MHD wave coupling

There exist physical mechanisms via which the different types of MHD mode can

exchange energy, converting one type of MHD wave into another. In particular,

CAEs, which are discrete fast-magnetoacoustic modes, can exchange energy with

continuum modes through resonant mode conversion. Take the example of homo-

geneous plasma cylinder and introduce a radial density profile to the plasma. This
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means that the Alfvén speed has a radial profile and so the shear Alfvén dispersion

relation, ωA(r) = VA(r)k‖, has a unique Alfvén frequency for every flux surface ψ(r).

If the CAE frequency matches the local Alfvén frequency on a particular flux surface

then resonant mode conversion can occur [20]. Fig. 2.2 shows an example of this

phenomenon occurring in output from Whales2. The ‘pure’ CAE is modified by a

local spike, which is the shear Alfvén mode on the flux surface where the frequencies

match. CAEs can couple to the slow continuum in the same way, though in most

tokamak plasmas ωCAE > ωS .

Figure 2.2: The perturbed displacement components of a CAE mode in a cylinder are
shown for axial wavenumbers k = 6, 7 and radially varying equilibrium density profile. The
resonant mode conversion can be seen to occur at the point where the CAE frequency
coincides with the local Alfvén frequency. Solving for the same mode whilst neglecting the
shear terms removes this local mode conversion.

This physical coupling is important in real plasmas as a damping mecha-

nism for the CAEs, but it complicates the study of CAE properties and so we
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employ strategies in Whales2 to mitigate these couplings. We have assumed zero

plasma-β in the perturbed MHD equations, Eqs (2.90)-(2.91), to exclude the slow-

magnetoacoustic modes from the solutions. In order to suppress the shear Alfvén

continuum so that ωCAE > ωA we identify terms in the MHD equations that con-

tribute predominately to shear Alfvén modes in order to neglect them from Whales2.

We want to do this whilst modifying the ‘pure’ CAE mode as little as possible, so

we aim to be parsimonious in the terms we neglect. We follow the practice of [3]

which identifies terms of the order k2‖, i.e. (B0 ·∇)2 acting on a perturbed quantity,

to be neglected. We shall refer to these simply as the shear terms when there is no

ambiguity. Whales2 includes a user option to either include or neglect these terms

from the perturbed MHD equations. Fig. 2.2 compares the output from Whales2

when the shear terms are either included or neglected for two cases where the CAE

couples to the shear Alfvén continuum with varying coupling strength.

The inclusion of resistivity into the perturbed MHD equations lifts the res-

onant mode conversion of CAEs with the shear Alfvén continuum [20]. We chose

not include resistivity in Whales2 as the objective of Whales2 is to study the effect

of the Hall term on CAEs. The ideal-MHD equations are self-adjoint and so admit

only real eigenvalues, ω2 ∈ R. Therefore, the frequencies of modes in ideal-MHD are

purely real or imaginary. The inclusion of either the Hall term or non-zero resistivity

allows any complex frequency, so extra work would be required to separate the Hall

effects from the dissipative effects.

2.5 Boundary Conditions

We introduce spatial boundary conditions to the Hall-MHD equations in order to

represent the effect of having a physical outer boundary and to ensure the continuity

of the plasma displacement at the magnetic axis. The solutions to the Hall-MHD

wave equation must be 2π-periodic in both angular directions and these conditions

will be automatically satisfied by the particular form that we will choose the solu-

tions to have. In the radial direction there are two boundaries to consider: the outer

wall and the magnetic axis. We assume that the plasma fully extends to the outer

wall, i.e. that there is no vacuum region.

2.5.1 Magnetic Axis

The choice of co-ordinate system (see Section 2.2) suffers from a geometric singular-

ity at the magnetic axis. This is merely due to the choice of co-ordinate system but

means that we must impose a boundary condition at the magnetic axis to ensure
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continuity of the plasma displacement, which we would expect physically. To derive

the boundary conditions at the magnetic axis we follow a similar procedure to the

analysis in [46]. We first assume that sufficiently near to the magnetic axis the flux

surfaces are related to the local tokamak coordinates by:

R = R0 + s cosϑ , (2.97)

φ = φ , (2.98)

Z = s sinϑ , (2.99)

i.e. the flux surfaces in the vicinity of the magnetic axis are concentric circles

centred on the magnetic axis. Note that the following analysis is also applicable for

concentric ellipses centre on the magnetic axis, so we assume circles for brevity. The

components of the displacement ξi for i ∈ {R,φ, Z} are analytic functions in the

plasma volume so they are Taylor expanded around the magnetic axis. We are only

concerned with the behaviour of the displacement in the R-Z plane and so keep the

toroidal coordinate φ fixed. The Taylor expansions thus become:

ξi = Ai +Bi(R−R0) + CiZ + ... (2.100)

= Ai +Bis cosϑ+ Cis sinϑ+O(s2) , (2.101)

with Ai, Bi, Ci constants.

The position vector is r = RR̂+ ZẐ and so the flux coordinates are related

to the tokamak coordinates as:

ŝ =
1∣∣∂r
∂s

∣∣ ∂r∂s = cosϑR̂+ sinϑẐ , (2.102)

ϑ̂ =
1∣∣∂r
∂ϑ

∣∣ ∂r∂ϑ = − sinϑR̂+ cosϑẐ , (2.103)

or, inversely:

R̂ = cosϑŝ− sinϑϑ̂ , (2.104)

Ẑ = sinϑŝ+ cosϑϑ̂ . (2.105)

The displacement vector can be written as:

ξ =ξsŝ+ ξϑϑ̂+ ξφφ̂ (2.106)

=ξRR̂+ ξZẐ + ξφφ̂ . (2.107)
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Substituting (R̂, Ẑ) in terms of (ŝ, ϑ̂) in Eq. (2.107) implies that:

ξs = ξR cosϑ+ ξZ sinϑ , (2.108)

ξϑ = −ξR sinϑ+ ξZ cosϑ . (2.109)

We use Eq. (2.101) to expand this out to:

ξs =
1

2
(BR + CZ)s+AR cosϑ+AZ sinϑ+

1

2
(BR − CZ)s cos 2ϑ

+
1

2
(CR +BZ)s sin 2ϑ+O(s2) , (2.110)

ξϑ =
1

2
(BZ − CR)s+AZ cosϑ−AR sinϑ+

1

2
(BZ + CR)s cos 2ϑ

+
1

2
(CZ −BR)s sin 2ϑ+O(s2) , (2.111)

ξφ =Aφ +Bφs cosϑ+ Cφs sinϑ+O(s2) . (2.112)

We expand ξ as a Fourier series in the poloidal direction, giving:

ξ(s, ϑ) =

∞∑
m=−∞

ξm(s)eimϑ (2.113)

We now compare Eqs. (2.110) - (2.112) to Eq. (2.113) to derive a boundary condition

for each component of the Fourier expansion at the magnetic axis. The components

ξs and ξϑ have the same form and so we focus on ξs to determine the boundary

condition for both of these components.

m = 0

For m = 0 then we identify the components of ξ0 with:

ξ0s (s) =
1

2
(BR + CZ)s+O(s2) , (2.114)

ξ0φ(s) =Aφ +O(s2) . (2.115)

Taking the limit s→ 0, i.e. at the magnetic axis, then ξ0s → 0 and ξ0φ → Aφ. Taking

the radial derivative then ∂ξ0φ/∂s ∼ O(s) and so ∂ξ0φ/∂s → 0 as s → 0. We may

therefore state the boundary condition for m=0 as:

ξ0s = 0 , ξ0ϑ = 0 ,
∂ξ0φ
∂s

= 0 . (2.116)
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m = ±1

We consider solely the m = 1 Fourier harmonic, noting that the m = −1 case will

have the same result. We identify the real and imaginary components of ξ1eiϑ :

ξ1αe
iϑ =

{
<(ξ1α) cosϑ−=(ξ1α) sinϑ

}
+ i
{
<(ξ1α) sinϑ+ =(ξ1α) cosϑ

}
. (2.117)

So we compare this with Eqs. (2.110) - (2.112) to give the following equalities, in

leading order in s:

<(ξ1s ) = AR , =(ξ1s ) = −AZ , (2.118)

<(ξ1ϑ) = AZ , =(ξ1ϑ) = AR , (2.119)

<(ξ1φ) = Bφs , =(ξ1φ) = Cφs . (2.120)

We take the limit s→ 0 to produce the final boundary conditions which, following

the same reasoning as the m = 0 case, are:

∂ξms
∂s

= 0 ,
∂ξmϑ
∂s

= 0 , ∂ξmφ = 0 , m = ±1 . (2.121)

|m| ≥ 2

For |m| ≥ 2 it is clear that ξms , ξ
m
ϑ = O(s|m|−1) , ξmφ = O(s|m|) so the boundary

condition becomes:

ξms = 0 , ξmφ = 0 , ξmϑ = 0 . (2.122)

The m = ±1 case implies a transverse displacement of the magnetic axis in the

poloidal cross-section. For all other values of m, the magnetic axis remains at rest.

This transverse displacement is characteristic of the internal kink mode, a plasma

instability that can occur for the poloidal mode number |m| = 1 [9].

To translate the derived boundary conditions into conditions for variables

ξ⊥, ξ∧ we take advantage of their definition as projections of the displacement vector:

ξ⊥ = ξ ·∇ψ

=
∂ψ

∂s

∂s

∂R
ξR +

∂ψ

∂s

∂s

∂Z
ξZ

=
∂ψ

∂s
cosϑξR +

∂ψ

∂s
sinϑξZ

=
∂ψ

∂s
ξs . (2.123)
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Since |∇ψ| ∼ ∂ψ
∂s ∼ s then it follows that ξ⊥ = 0 at the magnetic axis for all

values of m. Furthermore, J is a non-zero constant as s → 0 and so the modified

displacement ξ̃⊥ = J ξ⊥ has the same boundary condition as ξ⊥ at the magnetic

axis.

For ξ∧ recall that ψ is related to the equilibrium magnetic field as a stream-

function and so:

ξ∧ = ξ · B0 ×∇ψ
|∇ψ|2

=
1

|∇ψ|2

[
B0φ

∂ψ

∂Z
ξR +

(
B0Z

∂ψ

∂R
−B0R

∂ψ

∂Z

)
ξφ −B0φ

∂ψ

∂R
ξZ

]
=

1

|∇ψ|2

[
B0φ

∂ψ

∂s
sinϑξR +

1

R

((
∂ψ

∂R

)2

+

(
∂ψ

∂Z

)2
)
ξφ −B0φ

∂ψ

∂s
cosϑξZ

]

=
1

R
ξφ −

B0φ

|∇ψ|2
∂ψ

∂s
ξϑ . (2.124)

Both R and B0φ are finite and non-zero over the plasma domain and in the limit

s→ 0 then ξ∧ ∼ ξϑ/s. For |m| = 1 this would suggest that ξ∧ →∞ at the magnetic

axis, due to the geometric singularity. This singularity is lifted when we consider

the modified variable ξ̃ϑ = |∇ψ|
B0

ξ∧:

ξ̃∧ =
|∇ψ|
R

ξφ −
B0φ

|∇ψ|
∂ψ

∂s
ξϑ . (2.125)

The first term is proportional to s for all values of m. The second term is propor-

tional to s for |m| 6= 1 and is a finite constant for |m| = 1. Therefore ξ̃∧ follows the

same boundary conditions as ξϑ at the magnetic axis. We summarize the boundary

conditions at the magnetic axis as:

ξ̃⊥ = 0 , ξ̃∧ = 0 , m = 0 ,

ξ̃⊥ = 0 ,
∂ ξ̃∧
∂s

= 0 , |m| = 1 ,

ξ̃⊥ = 0 , ξ̃∧ = 0 , |m| ≥ 2 . (2.126)

2.5.2 Outer Wall

Since there is no vacuum region the outer boundary of the computational plasma

domain is taken to be a particular flux surface (usually the last closed flux surface)

of the plasma equilibrium found from solving the Grad-Shafranov equation. This

is the “reactor wall”. We assume that this wall is perfectly conducting and that
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there is no particle flux through the wall. This is not a realistic scenario as a typical

tokamak will have a vacuum region in the vacuum vessel and there will be some

plasma that hits and recombines with the wall, as well as impurities that enter

the plasma from the wall. However, for our purposes this is acceptable as we are

aiming to study small amplitude CAEs, as per our linearisation. The conditions of

a perfectly conducting solid wall can be written as [26]:

n · ξ = 0 , (2.127)

n ·B = 0 , (2.128)

where n is the normal to the wall and is parallel to∇ψ at the last closed flux surface.

This implies that ξ̃⊥ = 0 at the outer boundary. Then n · B = 0 follows directly

from Eq. (2.40).

This choice of boundary condition at the wall preserves the quantities of

magnetic flux, energy, mass and momentum [26]. This is important for studying

the effect of the Hall-term on CAE modes as keeping the system as simple as pos-

sible means the physics of the CAEs can be studied without the ‘noise’ of outside

phenomena.
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Chapter 3

Methodology

In order to solve the Hall-MHD wave equations (2.90) and (2.91) we opt to solve

for a discrete approximation to the continuous function ξ. In order to discretise the

PDEs we employ the finite elements method radially and spectral methods in the

angular directions.

3.1 Finite Elements

For the radial direction (∇ψ) we use finite elements analysis [23, 47, 48]. Finite

elements first requires that a finite set of points, or nodes, is chosen in the space of the

independent variables. For example in a 1-d space suppose the domain is [xmin, xmax]

and we choose a set of nr + 1 points {xi}nri=0 ∈ [xmin, xmax], where x0 = xmin ,

xnr = xmax and xi < xi+1. The intervals [xi−1, xi+1] (appropriately truncated at

the domain boundary) are then the so-called elements. The dependant variables,

or field values, are then approximated by a weighted sum of piecewise polynomials.

These polynomials are localised to a particular element with at least one piecewise

polynomial for each different element. Suppose, for brevity, we’re looking to solve the

homogeneous ODE: F (y(x)) = 0 (the method can easily be extended to include non-

homogeneous ODEs). We define an approximate solution y(N)(x) =
∑N−1

j=0 yjHj(x)

where N is the number of local polynomials in the approximation. The integer N

depends on the choice of finite elements scheme and is a strictly increasing function

of nr. The basis functions Hj(x) are piecewise polynomials local to a specific element

and zero everywhere else. The weights yj are related to the approximate function

y(N)(x) as values of the function, or values of the function’s derivative, at a specific

point within the element to which Hj is localised (usually the central gridpoint

xj). Finite elements is similar to the method of finite differences, but whereas the
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continuous variables in finite elements are approximated by a discrete set of basis

functions with local support, in finite differences the variables are approximated by

a discrete set of values at the gridpoints.

In order to solve the ODE F (y(x)) = 0 numerically we seek to minimise

the absolute value of the residual, defined as r(N)(x) := F (y(x)) − F (y(N)(x)) =

F (y(N)(x)), across all x ∈ [xmin, xmax]. It is clearly desirable that r(N)(x) → 0 as

nr →∞ for all x in the domain. To solve for the unknown values yj we specify that

a set of weighted integrals of the residual are each equal to zero:∫ xmax

xmin

wj r
(N)dx = 0 , ∀j. (3.1)

Upon specification of the weight functions wj(x) this creates a set of linear equations

that can be solved for yj . In the Galerkin scheme the weight functions are chosen to

be the same as the basis functions. This choice implies that the basis functions are

orthogonal to the residual for the inner product defined by
∫ xmax
xmin

Hj(x) r(N)(x)dx.

We also employ the weak formulation of the problem whereby an integration

by parts is performed to lower the order of a derivative term in the ODE F (y). The

derivative is shifted onto the weight function [23]. This allows for solutions that have

a lower order of differentiability, increasing the size of the possible solution space.

For the Hall-MHD equations (2.90)-(2.91) there are second order differentials in

the radial direction, meaning the solution must be at least twice differentiable in

the radial variable. In the weak formulation the solution only needs to be once

differentiable in the radial variable. Eq. (3.1) can be represented in matrix form

A · y(N) = 0. Now y(N) = (y0, y1, ..., yN ) and Aij =
∫ xmax
xmin

HiF (Hj)dx with A an

N ×N matrix. This system of equations can then be solved by standard methods.

We impose the radial boundary conditions of the physical system on the

linear system of equations. The boundary conditions of the perfectly conducting

wall and the magnetic axis can be categorised into two different types. A ‘Dirichlet’

type boundary condition occurs when the function value is fixed on the boundary,

for example y(0) = 0. In finite elements problems these are called essential bound-

ary conditions as they must be explicitly applied to the model. In practice this

means removing those basis functions which do not satisfy the boundary condition,

effectively setting rows of the system matrix to zero. ‘Neumann’ type boundary con-

ditions involve specifying functional derivatives at the boundary. In finite elements

these are termed natural boundary conditions and in the weak formulation they can

usually be imposed on the surface terms arising from the by-parts integration. In

practice this does not happen in Whales2 as the surface terms are all forced to zero
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when the essential boundary conditions are imposed, and we do not impose the

natural boundary conditions in any additional way.

Choosing basis functions

The function space that is chosen for our basis functions can be characterised as a

space of local piecewise polynomials of a given degree of differentiability. Gruber and

Rappaz offer the notation Sdp for the functional spaces to which the approximate

solutions of the finite elements analysis belong [49]. The function y(N)(x) ∈ Sdp

will have the following properties: y(N) is d − 1 times continuously differentiable

across the whole domain, where d = 1 implies that y(N) is continuous but not

necessarily differentiable, and d = 0 does not impose continuity. y(N) is also a

piecewise polynomial of order p on restriction to each interval [xi, xi+1]. The details

of how to construct a basis for Sdp are well explained in [49]. Example bases are

shown in Fig. 3.1.

The basis functions currently available in Whales2 are chosen to have the

highest order of differentiability that is permitted for a basis of a particular polyno-

mial order, i.e. the bases in Whales2 form the spaces S0
0 , S1

1 , S1
2 , S2

3 , S2
4 which we

refer to as the constant, linear, quadratic, cubic and quartic bases respectively. The

approximate solutions using these bases can be written as follows:

Constant : ξ(N) =

nr−1∑
i=0

ξi+ 1
2
Hi , (3.2)

Hi(x) =

1 x ∈ [xi, xi+1] ,

0 x 6∈ [xi, xi+1] .

Linear : ξ(N) =

nr∑
i=0

ξiHi , (3.3)

Hi(x) =


x−xi−1

xi−xi−1
x ∈ [xi−1, xi] ,

xi+1−x
xi+1−xi x ∈ [xi, xi+1] ,

0 x 6∈ [xi−1, xi+1] .
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Quadratic : ξ(N) =

nr∑
i=0

ξiH
1
i +

nr−1∑
i=0

ξi+ 1
2
H2
i , (3.4)

H1
i (x) =


(2x−xi−xi−1)(xi−x)

(xi−xi−1)2
x ∈ [xi−1, xi] ,

(2x−xi+1−xi)(x−xi+1)
(xi+1−xi)2 x ∈ [xi, xi+1] ,

0 x 6∈ [xi−1, xi+1] ,

H2
i (x) =


4(x−xi)(xi+1−x)

(xi+1−xi)2 x ∈ [xi, xi+1]

0 x 6∈ [xi, xi+1]

Cubic : ξ(N) =

nr∑
i=0

ξiH
1
i +

nr∑
i=0

ξ′iH
2
i , (3.5)

H1
i (x) =


(x−xi−1)

2(3xi−xi−1−2x)
(xi−xi−1)3

x ∈ [xi−1, xi] ,

(xi+1−x)2(xi+1−3xi+2x)
(xi+1−xi)3 x ∈ [xi, xi+1] ,

0 x 6∈ [xi−1, xi+1] ,

H2
i (x) =


(x−xi−1)

2(x−xi)
(xi−xi−1)2

x ∈ [xi−1, xi] ,

(xi+1−x)2(x−xi)
(xi+1−xi)2 x ∈ [xi, xi+1] ,

0 x 6∈ [xi−1, xi+1] ,

Quartic : ξ(N) =

nr∑
i=0

ξiH
1
i +

nr∑
i=0

ξ′iH
2
i +

nr−1∑
i=0

ξi+ 1
2
H3
i , (3.6)

H1
i (x) =


(x−xi−1)

2(x2i−1−4xixi−1−5x2i−2xi−1x+14xix−8x2)
(xi−xi−1)4

x ∈ [xi−1, xi] ,
(xi+1−x)2(x2i+1−4xixi+1−5x2i+2xi+1x+14xix−8x2)

(xi+1−xi)4 x ∈ [xi, xi+1] ,

0 x 6∈ [xi−1, xi+1] ,

H2
i (x) =


(xi−1+xi−2x)(xi−x)(xi−1−x)2

(xi−xi−1)3
x ∈ [xi−1, xi] ,

(xi+1+xi−2x)(x−xi)(xi+1−x)2
(xi+1−xi)3 x ∈ [xi, xi+1] ,

0 x 6∈ [xi−1, xi+1] ,

H3
i (x) =


16(x−xi)2(xi+1−x)2

(xi+1−xi)4 x ∈ [xi, xi+1]

0 x 6∈ [xi, xi+1] .
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Figure 3.1: Figures (a) - (e) show the full bases within the spaces S0
0 , S1

1 , S1
2 , S2

3 , S2
4 which

are employed by the Whales2 code. These particular elements are chosen such that they
have the highest order of differentiability allowed within the constraints imposed on a finite
elements basis. Figure (f) shows the bases in S1

2 decomposed into three shape functions
restricted to a particular grid-cell. The bases can then be thought of as unions of these
shape functions.
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Spectral pollution

Since the Hall-MHD formulation (2.90)-(2.91) has two variables ξ̃⊥, ξ̃∧ there are two

independent choices of basis for the finite elements analysis. However, most choices

will lead to spectral pollution and so must be avoided. Take the model eigenvalue

problem A · x = Λx and suppose finite elements analysis produces approximate

solutions (xi, λi)
N
i=0. Spectral pollution describes a phenomenon where in the limit

nr → ∞ (i.e. vanishingly small grid spacing) the limit limnr→∞ λi = Λi is not a

solution of the original system [49]. Alternatively each individual eigenvalue may

converge as n→∞ but the system as a whole does not converge [50], i.e. maxi |λi−
Λi| does not converge.

Spectral pollution is associated with systems that have an accumulation

point, an infinitely degenerate eigenvalue or a continuous spectrum [49]. The ideal-

MHD equations usually have two associated continuous spectra - the shear Alfvén

continuum and the slow continuum. In the case of a homogeneous ideal-MHD equi-

librium these continua become infinitely degenerate points in frequency-space. The

assumption of zero plasma-β eliminates the slow spectrum. The shear Alfvén modes

are typically lower frequency than the CAEs, but good representation of the Alfvén

continuum is important for the following reasons. Firstly, since the CAEs couple

to the Alfvén continuum via resonant absorption then a poor representation of the

Alfvén spectrum may lead to spurious coupling and hinder strategies to calculate

‘pure’ CAEs. Also, spurious modes clutter calculated spectra making it harder to

analyse results and so should be avoided as a matter of course. The Hall-MHD equa-

tions also form a continuum of shear Alfvén modes in the limit of zero plasma-β.

Inclusion of the Hall term and non-zero plasma pressure, however, transforms this

continuum into a set of discrete modes [51].

Pollution can arise when a given physical condition cannot be sufficiently

fulfilled across the domain. In the case of the Alfvén spectrum in ideal-MHD one

particular condition of interest has been identified as ∇ · ξ = 0 [52, 53]. In the

simple case of a homogeneous θ-pinch, with cylindrical co-ordinates (r, θ, z), the

Alfvén modes are clustered at the infinitely degenerate point where:

ω2
A =

k2B2
0

ρ0
. (3.7)

The wavenumber k = k · ẑ is the cylindrical analogue of the toroidal wavenumber

n. These Alfvén modes are incompressible, i.e. ∇ · ξ = 0, across the whole domain.

Given the cylindrical geometry then the expression for incompressibility can be
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Figure 3.2: Both figures show the output frequencies (+) from Whales2 for a given equi-
librium against increasing radial resolution, with the analytically known frequencies (x) at
perfect resolution “nr =∞”. The left figure uses linear-constant basis elements and shows a
clear convergence to the known solutions. The figure on the right uses a linear-linear basis,
which is higher order overall than the left figure but produces much worse convergence.
The poorly represented shear Alfvén modes can be seen scattered across the whole range of
frequencies.

expanded as:

∇ · ξ =
1

r

∂(rξr)

∂r
+
im

r
ξθ = 0 , (3.8)

since ξz = 0 for this particular set of solutions [52] and only a single Fourier harmonic

in the poloidal direction is necessary. The variables employed by Whales2 become

in this regime ξ̃⊥ → rξr, ξ̃∧ → ξθ, s ∼ r.
Suppose ξ̃⊥, ξ̃∧ belong to the space of local piecewise linear functions that

are continuous over the whole domain, S1
1 . Then Eq. (3.8) cannot be satisfied ev-

erywhere. ∂sξ̃⊥ is a piecewise constant (discontinuous) function in s whilst ξ̃∧ is

piecewise linear, so the only way to impose incompressibility across all the grid cells

is to set each to zero. Therefore the Alfvén spectrum will not be well represented

by such a scheme and searching for non-trivial solutions will violate condition (3.8),

producing spurious solutions.

This can be formulated in terms of dimensions and constraints. For a scheme

in which piecewise linear functions are employed there are 2(nr + 1) nodal values

so this is the dimension of the system. Suppose |m| 6= 1, for brevity. There are

three constraints from the boundary conditions. Further, the condition (3.8) adds

2(nr − 1) + 1 constraints, after the application of boundary conditions, since ξ̃⊥
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and ξ̃∧ must be individually constrained to ensure ∇ · ξ = 0 over each grid cell.

Therefore, the total number of constraints is 2(nr + 1), equal to the dimension of

the system and so no solutions satisfying (3.8) are allowed [52]. Bases of higher

order polynomials may allow a handful of such solutions. A non-polluting choice

is ξ̃⊥ ∈ S1
1 and ξ̃∧ ∈ S0

0 so that each term in Eq. (3.8) is piecewise constant. The

incompressibility can be satisfied everywhere whilst ξ 6= 0. This is because the

incompressibility condition now only applies nr constraints on the space of (slightly

lower) dimension 2nr + 1. There are now two applicable boundary conditions, so

overall there are nr − 1 possible solutions that can satisfy (3.8).

In the weak formulation of the ideal-MHD wave equations, the ξ̃⊥ displace-

ment component may be subject to first-order radial derivatives whereas ξ̃∧ is not

subject to any radial derivatives. This relationship in the order of derivatives nat-

urally suggests that ξ̃⊥ should be approximated with a functional dependence on

the radial co-ordinate, s, of exactly one order higher than that of ξ̃∧. Therefore

we extend the principle set out above, that suppresses spectral pollution in a ho-

mogeneous θ-pinch, and apply it to all equilibrium configurations when solving the

ideal-MHD wave equations. We refer to the order of a particular finite elements

scheme in the form perp-wedge, for example if ξ̃⊥ ∈ S1
1 and ξ̃∧ ∈ S0

0 then we would

call this choice of basis function linear-constant.

Spectral pollution has also been found to occur in MHD linear stability codes

that use a 2-dimensional finite elements approach in the radial and poloidal di-

rections, even though the basis functions are chosen so that the incompressibility

condition (3.8) can be satisfied [54]. The pollution was determined to stem from

the operator (B0 ·∇) which could not vanish exactly on a singular surface with

the particular finite elements implementation. This prompted the proposal of finite

hybrid elements in which the variables of the system and their derivatives are con-

sidered as independent variables [55]. Note that this is only applied to derivatives in

the directions where finite elements analysis is employed. In this manner finite hy-

brid elements should be considered as an extension of the basis matching described

above, where now each variable and their derivatives are chosen to have the same

functional dependence. For example, in the case of the ideal-MHD setup above

we expand the set of variables from (ξ̃⊥, ξ̃∧) to (∂sξ̃⊥1, ξ̃⊥2, ξ̃∧). Then we choose,

say, ξ̃⊥1 ∈ S1
1 and ξ̃⊥2, ξ̃∧ ∈ S0

0 so that, after the radial derivative is applied, each

variable is approximated by a discontinuous constant basis. Integral conditions are

applied to relate each variable to its derivatives [49, 55]. The condition that must
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be satisfied is [49]: ∫ xmax

xmin

(
ξ̃⊥1 − ξ̃⊥2

)
w(x)dx = 0 ∀w ∈ S , (3.9)

where here S is the space of all piecewise polynomial functions on the domain

[xmin, xmax]. For the example bases chosen we only need consider w ∈ S0
0 to get

the necessary relation between the nodal values. ξ̃⊥1 =
∑nr

i=0 ξ⊥,iH
LN
i and ξ̃⊥2 =∑nr

i=0 ξ⊥,i+ 1
2
HCN
i as defined by (3.2)-(3.3) respectively. We look at the restriction

of Eq. (3.9) to a particular grid-cell, say [xi, xi+1], from which the relation emerges:

ξ⊥,i+ 1
2

=
ξ⊥,i+1 + ξ⊥,i

2
. (3.10)

We use this to make the substitution to eliminate ξ⊥,i+ 1
2

in favour of ξ⊥,i.

We have found finite hybrid elements to often give better results than regular

finite elements when applied to the Hall-MHD perturbations. This is likely because

due to the introduction of radial derivatives acting on ξ̃∧, which means that if we

apply the non-polluting schemes for the incompressibility condition there is now a

two-order difference between the radial polynomials for the variables ξ̃⊥ and ∂sξ̃∧.

Hybrid elements allows us to choose the same functional dependence for ξ̃⊥, ∂sξ̃⊥,

ξ̃∧, ∂sξ̃∧.

3.2 Spectral Methods

Spectral methods work similarly to the finite elements method. The domain is

discretized and the solution is approximated by a weighted sum of functions. In

this case the functions used are global functions on the domain of interest. This

is particularly useful when these global functions satisfy a desired property of the

exact solution. Spectral methods are applied in the direction of the poloidal and

toroidal angles where the geometry 2π-periodic and so the solutions are 2π-periodic

also. Therefore we approximate the solution using a truncated Fourier series as each

Fourier harmonic satisfies the periodicity property.

In the toroidal direction the system is symmetric and so only a single Fourier

harmonic is required as there is no toroidal coupling. In the poloidal direction the

solution is approximated by the truncated series

y(ϑ) ' y(M)(ϑ) =
m+M∑

k=m−M
yke

ikϑ , (3.11)
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where m is any integer. As with finite elements we aim to minimise the residual (c.f.

Eq. (3.1)), though now over the interval [0, 2π]. The weight functions are chosen to

be the complex conjugates of the basis functions and so we can use the orthogonality

relation: ∫ 2π

0
ei(k−l)ϑdϑ = 2πδkl . (3.12)

Again a linear system is set up A · y(M) = 0 with Akl = F(k−l), the (k− l)th Fourier

harmonic of F (yl).

3.3 Code Elements

Applying the finite elements and spectral methods to discretise the Hall-MHD equa-

tions (2.90)-(2.91) means that there two residuals to minimise, one for each equation:

rNM⊥ =− 2s
µ0ρ0
J gψψ

∂2ξ̃NM⊥
∂t2

+ G̃⊥
(
ξ̃NM⊥ , ξ̃NM∧

)
+H

∂

∂t
G̃⊥
(
J |∇ψ|

B0
ξ̃NM∧ ,− 1

JB0|∇ψ|
ξ̃NM⊥

)
, (3.13)

rNM∧ =− 2sJ µ0ρ0
∂2ξ̃NM∧
∂t2

+ G̃∧
(
ξ̃NM⊥ , ξ̃NM∧

)
+H

∂

∂t
G̃∧
(
J |∇ψ|

B0
ξ̃NM∧ ,− 1

JB0|∇ψ|
ξ̃NM⊥

)
. (3.14)

The discretised displacement components are each given by the expression:

ξ̃NM⊥/∧ =

m+M∑
l=m−M

nr∑
j=0

ξ̂jl⊥/∧H
j
⊥/∧(s)ei(lϑ+nφ−ωt) , (3.15)

We assume, for clarity of illustration, that we are using a linear-linear system of

shape functions and we ignore boundary conditions, meaning that each displace-

ment component has exactly one associated variable per radial node. This gives

the radial system size as N = 2(nr + 1), where nr is the number of radial nodes

(not to be confused with toroidal mode number n). Hj
⊥/∧(s) refers to the basis

function centered on the jth node for either the ⊥ or ∧ displacement component.

The residuals must each satisfy:∫
V
e−ikϑHh

⊥/∧(s)rNM⊥/∧ dV = 0 , ∀k, h . (3.16)
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where V is the plasma volume so that:∫
V
dV =

1

(2π)2

∫ 2π

0

∫ 2π

0

∫ smax

smin

dsdϑdφ . (3.17)

This gives a set of linear equations to be solved for the coefficients ξ̂jl⊥/∧ and can be

represented in a matrix format. We solve for normal modes of the Hall-MHD wave

equation for which the displacement has a temporal dependency of the form:

ξ(r, t) = ξ(r) e−iωt . (3.18)

The equations Eq. (3.16) can then be written:

(
ω2I + ωH+ F

)
· ξNM = 0 , (3.19)

where

ξNM =
(
ξ̂
0(m−M)
⊥ , ξ̂

0(m−M)
∧ , . . . , ξ̂

nr(m+M)
⊥ , ξ̂

nr(m+M)
∧

)
. (3.20)

Eq. (3.19) has the form of a generalised eigenvalue problem and can be solved by

standard numerical methods. The matrices I , H , F correspond to the inertial,

Hall and force terms respectively. Each matrix can be split up into blocks that

correspond to each Fourier harmonic. Within each of these blocks we iterate over

the radial basis functions. So the overall matrix is a (2M + 1) × (2M + 1) block

matrix and each block is N × N in size (note that N depends on the boundary

conditions and the choice of finite element shape functions). We denote the (h, j)th

element of the (k, l)th block of matrix A by Aklhj .

A =


M

00
M

01
. . . M

0(2M)

M
10

M
11

. . . M
1(2M)

. . .

M
(2M)0

M
(2M)1

. . . M
(2M)(2M)

 (3.21)

M
kl

=


Akl00 Akl01 . . . Akl0(N−1)
Akl10 Akl11 . . . Akl1(N−1)
. . .

Akl(N−1)0 Akl(N−1)1 . . . Akl(N−1)(N−1)

 (3.22)

Akl
h̃j̃

=

∫
V
e−i(kϑ+nφ)Hh

α(s)Aαβ

(
Hj
β(s)ei(lϑ+nφ)

)
dV . (3.23)
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Here we have used h̃ and j̃ where:

h =

h̃/2 h̃ even

(h̃− 1)/2 h̃ odd
(3.24)

and similarly for j, so that h̃, j̃ ∈ {0, . . . , N − 1} and h, j ∈ {0, . . . , nr}. So if h̃/j̃ is

even then it refers to a weight/basis function H⊥ and h̃/j̃ odd refers to H∧, as per

the even-odd pattern in Eq. (3.20). Aαβ(•) is an operator that denotes the relevant

part of the residual, Eqs. (3.13)-(3.14), that contributes to the matrix A, where

α, β ∈ {⊥,∧}. So α =⊥ if h̃ is even and α = ∧ if h̃ is odd (similarly with β and j̃).

For each matrix, the integrand operators can be split up:

I⊥⊥ (•) = 2s
µ0ρ0
J gψψ

• , (3.25)

I∧∧ (•) = 2sJ µ0ρ0• , (3.26)

H⊥⊥ (•) = iHG̃⊥
(

0,
1

JB0|∇ψ|
•
)
, (3.27)

H⊥∧ (•) = −iHG̃⊥
(
J |∇ψ|

B0
•, 0
)
, (3.28)

H∧⊥ (•) = iHG̃∧
(

0,
1

JB0|∇ψ|
•
)
, (3.29)

H∧∧ (•) = −iHG̃∧
(
J |∇ψ|

B0
•, 0
)
, (3.30)

F⊥⊥ (•) = G̃⊥ (•, 0) , (3.31)

F⊥∧ (•) = G̃⊥ (0, •) , (3.32)

F∧⊥ (•) = G̃∧ (•, 0) , (3.33)

F∧∧ (•) = G̃∧ (0, •) . (3.34)

To illustrate, if h̃ and j̃ are both even then:

Ikl
h̃j̃

= e−iωt
∫
V
ei(l−k)ϑHh

⊥(s)2s
µ0ρ0
J gψψ

Hj
⊥(s)dV . (3.35)

In order to fully write out the functions that form the matrices, we further sepa-

rate these functions into whether radial derivatives are applied to the weight/basis

function. This allows us to denote where we have applied the integration by parts re-

quired to achieve the weak Galerkin form. We write Aαβ = Āα′β′+Āα′β+Āαβ′+Āαβ

where for α′ an integration by parts has been performed. The integral (3.23) be-
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comes:

Akl
h̃j̃

=S +

∫
V
e−i(kϑ+nφ)

dHh
α(s)

ds
Āα′β′

(
dHj

β(s)

ds
ei(lϑ+nφ)

)
dV

+

∫
V
e−i(kϑ+nφ)

dHh
α(s)

ds
Āα′β

(
Hj
β(s)ei(lϑ+nφ)

)
dV

+

∫
V
e−i(kϑ+nφ)Hh

α(s)Āαβ′

(
dHj

β(s)

ds
ei(lϑ+nφ)

)
dV

+

∫
V
e−i(kϑ+nφ)Hh

α(s)Āαβ

(
Hj
β(s)ei(lϑ+nφ)

)
dV , (3.36)

where S represents the collected “surface terms” associated with the by-parts inte-

gration. We list each of the integrand functions used to build the matrices Eq. (3.19):

Ī⊥⊥ (•) = 2s
µ0ρ0
J gψψ

• , (3.37)

Ī∧∧ (•) = 2sJ µ0ρ0• , (3.38)

H̄⊥′⊥ (•)
(−iH)

= gψψ(T ·∇)
1

J gψψ
• , (3.39)

H̄⊥⊥ (•)
(−iH)

=2s

{
− g

ψϑ

gψψ
∂ϑ

(
gψψ(T ·∇)

1

J gψψ
•
)

+ (2∇ψ · κ)(T ·∇)

(
1

J gψψ
•
)

−g
ψψS − µ0j0 ·B0

B2
0

(B0 ·∇)

(
1

J gψψ
•
)}

, (3.40)

H̄⊥′∧′ (•)
(−iH)

=− B0|∇ψ|
2s

• , (3.41)

H̄⊥′∧ (•)
(−iH)

=− B2
0

J
∂ψ

(
J |∇ψ|

B0

)
• −B

2
0

J
∂ϑ

(
gψϑ

gψψ
J |∇ψ|

B0
•
)
, (3.42)

H̄⊥∧′ (•)
(−iH)

=
gψϑ

gψψ
∂ϑ

(
B0|∇ψ| •

)
, (3.43)
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H̄⊥∧ (•)
(−iH)

=

2s

{
gψϑ

gψψ
∂ϑ

(
B2

0

J
∂ψ

(
J |∇ψ|

B0

)
•+

B2
0

J
∂ϑ

(
gψϑ

gψψ
J |∇ψ|

B0
•
)

+
(2∇ψ · κ)B0

|∇ψ|
•
)

+ ∂ψ

(
(2∇ψ · κ)B2

0

J gψψ

)
J |∇ψ|

B0
• −(2∇ψ · κ)B2

0

J gψψ
∂ϑ

(
gψϑ

gψψ
J |∇ψ|

B0
•
)

− (2∇ψ · κ)2B0

gψψ|∇ψ|
•

+(B0 ·∇)

(
(B0 ·∇){ |∇ψ|B0

•}
gψψ

)
− S

B2
0

(gψψS − µ0j0 ·B0)
|∇ψ|
B0
•

}
, (3.44)

H̄∧⊥ (•)
(−iH)

=2s

{
−J |∇ψ|B0(T ·∇)

(
gψψ

B2
0

(T ·∇)

(
1

J gψψ
•
))

−JB0

|∇ψ|
(B0 ·∇)

[
gψψ

B2
0

(B0 ·∇)

(
1

J gψψ
•
)]}

, (3.45)

H̄∧∧′ (•)
(−iH)

= J |∇ψ|B0(T ·∇)

(
|∇ψ|
B0
•
)
, (3.46)

H̄∧∧ (•)
(−iH)

=2s

{
J |∇ψ|B0(T ·∇)

[
1

J
∂ψ

(
J |∇ψ|

B0

)
•+

1

J
∂ϑ

(
gψϑ

gψψ
J |∇ψ|

B0
•
)

+
(2∇ψ · κ)

|∇ψ|B0
•
]
−JB0

|∇ψ|
(B0 ·∇)

[
gψψS − µ0j0 ·B0

B2
0

|∇ψ|
B0
•
]}

, (3.47)

F̄⊥′⊥′ (•) = − B2
0

2sJ
• , (3.48)

F̄⊥′⊥ (•) = −B
2
0

J
∂ϑ

(
gψϑ

gψψ
•
)
− (2∇ψ · κ)B2

0

J gψψ
• , (3.49)

F̄⊥⊥′ (•) =
gψϑ

gψψ
∂ϑ

(
B2

0

J
•
)
− (2∇ψ · κ)B2

0

J gψψ
• , (3.50)
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F̄⊥⊥ (•) =2s

{
gψϑ

gψψ
∂ϑ

(
B2

0

J
∂ϑ

(
gψϑ

gψψ
•
)

+
(2∇ψ · κ)B2

0

J gψψ
•
)

− (2∇ψ · κ)B2
0

J gψψ
∂ϑ

(
gψϑ

gψψ
•
)
− (2∇ψ · κ)2B2

0

J gψψ2
•

+(B0 ·∇)

(
(B0 ·∇){ 1

J •}
gψψ

)
− S

J
(gψψS − µ0j0 ·B0)

B2
0

•

}
, (3.51)

F̄⊥′∧ (•) =− gψψ(T ·∇)
B0

|∇ψ|
• , (3.52)

F̄⊥∧ (•) =2s

{
gψϑ

gψψ
∂ϑ

(
gψψ(T ·∇)

B0

|∇ψ|
•
)
− (2∇ψ · κ)(T ·∇)

B0

|∇ψ|
•

+
gψψS − µ0J0 ·B0

B2
0

(B0 ·∇)
B0

|∇ψ|
•
}
, (3.53)

F̄∧⊥′ (•) =J |∇ψ|B0(T ·∇)
1

J
• , (3.54)

F̄∧⊥ (•) =2s

{
J |∇ψ|B0(T ·∇)

(
1

J
∂ϑ

(
gψϑ

gψψ
•
)

+
(2∇ψ · κ)

J gψψ
•
)

−JB0

|∇ψ|
(B0 ·∇)

[
gψψS − µ0J0 ·B0

JB2
0

•
]}

, (3.55)

F̄∧∧ (•) =2s

{
J |∇ψ|B0(T ·∇)

(
gψψ

B2
0

(T ·∇)

(
B0

|∇ψ|
•
))

+
JB0

|∇ψ|
(B0 ·∇)

[
gψψ

B2
0

(B0 ·∇)

(
B0

|∇ψ|
•
)]}

. (3.56)

The surface terms from the integration by parts are evaluated at the points s = 0

and s(r = a) and each act on at least one of either the weight or basis function that

corresponds to H⊥ and is not differentiated. The boundary conditions Eqs. (2.126)-

(2.127) therefore imply that all of the surface terms vanish. In order to construct

these matrix elements it is necessary to perform Fourier transforms as well as nu-

merical derivative and integration (quadrature) schemes.
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Fourier transforms

Discrete Fourier Transforms (DFTs) are a standard numerical technique, covered in

many texts - for example [56]. Whales2 uses the FFTW3 library [57] to perform

the required DFTs on equilibrium quantities. For a quantity, say X, defined over

an equally spaced poloidal grid {ϑ0, . . . , ϑNϑ−1} ∈ [0, 2π] then denote Xj = X(ϑj).

The DFT calculates:

Yk =

Nϑ−1∑
j=0

Xje
−i 2π

Nϑ
jk

(3.57)

After appropriate normalisation these Yk form the coefficients for approximating X

by a truncated Fourier series, which can easily be seen from the inverse DFT:

Xj =
1

Nϑ

Nϑ−1∑
k=0

Yke
i 2π
Nϑ

jk
=

1

Nϑ

Nϑ−1∑
k=0

Yke
ikϑj (3.58)

with ϑj = j 2π
Nϑ

being the equally spaced grid in ϑ. Since YNϑ−k = Y−k we can instead

think of the sum above as being in the range k = {−(Nϑ−1)/2, . . . , (Nϑ−1)/2} for

Nϑ odd or k = {−(Nϑ/2) + 1, . . . , Nϑ/2} for Nϑ even. In the even case we choose

to ignore the ambiguous coefficient Y−Nϑ/2 = YNϑ/2 after performing the DFT, so

the range becomes k = {−(Nϑ/2) + 1, . . . , (Nϑ/2)− 1}.
The equilibrium quantities used in Whales2 are all real numbers and so must

correspond to a real-valued DFT, implying that Yk = Y †−k where † denotes a complex

conjugation. This has the corollary that Y0 is a real number.

Derivatives

Derivatives of discrete quantities are applied differently depending on whether the

derivative is in the direction of a periodic co-ordinate. In the angular directions

taking a Fourier transform then replaces the derivative with multiplication. For

the toroidal direction ξ(φ) ∼ einφ and our geometry is symmetric in φ meaning that

equilibrium quantities have no φ-dependence and so ∂φ → in. Equilibrium functions

may vary poloidally and so each Fourier component is multiplied by the appropriate

exponent, for example since ξ(ϑ) ∼ eimϑ then:

∂ϑ (Xξ) ∼ ∂ϑ

(
Nϑ−1∑
k=0

Yke
ikϑeimϑ

)
=

Nϑ−1∑
k=0

i(k +m)Yke
ikϑeimϑ (3.59)

The equilibrium functions and discretised displacement are not approxi-

mated by a Fourier series in the radial direction and so we employ a finite dif-
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ference approach to radial derivatives of equilibrium functions. For the discretised

displacement the radial derivatives of the basis functions are known exactly and

so are used when appropriate. The finite difference method makes a discrete ap-

proximation to the derivative function using values of the operand on the grid of

the independent variable. Suppose equilibrium function f is defined on the dis-

crete grid {s0, . . . , sn−1} ∈ [smin, smax], so fi = f(si). Consider the Taylor series

fi+1 = fi + f ′i(si+1 − si) +
f ′′i
2! (si+1 − si)2 + . . . where we denote (si+1 − si) = ∆si.

Then rearranging gives the desired approximation:

f ′i =
fi+1 − fi

∆si
+O(∆si) (3.60)

and the process is easily generalised to higher order derivatives.

In order to decrease the error there are two main strategies. Firstly, we note

that the error is a function of ∆si which therefore should be made a small quantity

to decrease the error. Secondly, if ∆si � 1 then the accuracy of the derivative can

be increased by increasing the leading order to which the error depends on ∆si. To

achieve the second of these we can take Taylor series for the dependent function

at further grid points, say fi−1 = fi − f ′i∆si−1 +
f ′′i
2! ∆s2i−1 + . . . , then solve to

eliminate fi, f
′′
i , . . . whilst not eliminating f ′i (or similar for whichever desired order

of derivative). The number of grid point values used in the discrete derivative can

also be called the stencil of the derivative.

The derivative formula (3.60) is called a forward difference derivative [48]

as it uses only values fj to calculate f ′i where j ≥ i. A similar definition is made

for backward difference derivatives with j ≤ i. These are usually made at the grid

boundaries due to the unavailability of points sj > sn−1 or sj < s0, but in the grid

interior a central difference formula is often preferable as it usually offers a reduced

error on equally spaced grids. For example, suppose ∆si = ∆si−1 = ∆s, then:

f ′i =
fi+1 − fi−1

2∆s
+O(∆s2) (3.61)

Integration

Again there are separate schemes for performing numerical integration depending

over which direction it is applied. For the angular directions the orthogonality

relation (3.12) applies and so integration is replaced merely with identifying the

appropriate Fourier components.

For the radial direction Gaussian quadrature provides a simply implemented,

reasonably accurate numerical integration scheme. Gaussian quadrature provides a
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method of approximating integrals of the form

∫ b

a
w(s)f(s)ds '

N−1∑
i=0

wif(si) , (3.62)

where the integrand, f(s), and the weight function, w(s), are defined on the (possibly

infinite) interval [a, b]. The weight function must adhere to certain conditions to be

suitable for the Gaussian quadrature process, though we do not list them here as it

is sufficient to note that all positive, continuous functions on [a, b] are valid [58].

The weights and abscissas, wi and si, are found through the following process.

First we introduce the space of weighted square integrable functions L2[a, b] and the

inner product:

(f, g) =

∫ b

a
w(s)f(s)g(s)ds , (3.63)

so f(s) ∈ L2[a, b] if (f, f) is well-defined and finite [58]. The first step is then to

generate a sequence of functions pn ∈ L2[a, b] such that pn is a polynomial of order

n and (pi, pj) = 0 for i 6= j. The sequence is defined specifically by the recurrence

relation:

p0(s) ≡ 1 , “ p−1(s) ≡ 0 ”

pi+1(s) = (s− δi+1)pi(s)− γ2i+1pi−1(s) (3.64)

δi+1 =
(xpi, pi)

(pi, pi)
, γ2i+1 =

 1 i = 0

(pi,pi)
(pi−1,pi−1)

i ≥ 1
(3.65)

Finally, for a scheme of order n, our abscissas are the roots of the polynomial pn(s),

{s0, . . . , sn−1} ∈ (a, b) and the weights are the solutions to the following linear

system:
n−1∑
i=0

pk(si)wi =

(p0, p0) k = 0

0 k = 1, . . . , n− 1
(3.66)

Then the Gaussian quadrature scheme of order n can be expressed through the sum

Eq. (3.62). It can further be shown that if f(s) is a polynomial of order 2n − 1 or

less then the quadrature is exact [58].

The Gaussian quadrature implemented as standard in Whales2 is Gauss-

Legendre quadrature. This particular variation of Gaussian quadrature uses the

weight function w(s) = 1 and is expressed on the interval [a, b] = [−1, 1]. The

advantage of this method is that the abscissas and weights for many values of N

have already been calculated in many texts, such as [59], or are easily calculated.
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The Legendre polynomials are generated by the recurrence relation described above,

abscissas can be solved with a numerical root finder (or analytically as radicals in

the case of some low N values) and the weights are given by the formula [59]:

wi =
2

(1− s2i )[P ′N (si)]
2 . (3.67)

So the weights and abscissas can be pre-calculated and held in Whales2, thereby

decreasing the computational load and ensuring that the values are calculated to

the correct precision beforehand. To apply these values to the integrals required in

Whales2 a change of limits is necessary, namely:∫ b

a
f(s)ds =

b− a
2

∫ 1

−1
f

(
b− a

2
s̃+

b+ a

2

)
ds̃ . (3.68)

If w̃i and s̃i correspond to the interval [−1, 1] then the corresponding weights and

abscissas used to integrate over [a, b] are:

si =
b− a

2
s̃i +

b+ a

2
, (3.69)

wi =
b− a

2
w̃i . (3.70)

This method will integrate polynomials of order up to and including 2N −1 exactly,

though of course this is limited by floating point precision. However, machine preci-

sion can nearly be achieved when using the same precision abscissas and weights. In

order to determine the required value of N , the integrand in finite elements can be

thought of as the product of the two shape functions with the equilibrium function.

If the equilibrium is taken from a numerical solver, then the equilibrium functions

will be represented by an interpolating polynomial and so it is trivial to calculate

the value of N that will give exact integration, since both of the shape functions are

also polynomials. In this case, the error is determined by the interpolation rather

than the quadrature. In the case of an analytical equilibrium, such as Soloviev, the

equilibrium functions will not necessarily be polynomials and so exact integration

is not ensured. An upper bound for the error in Gaussian Quadrature can be given

as [60]:

EN = (b− a)2N+1 N + 1

N(2N + 1)

N !4

(2N)!3
||f (2N)||∞ . (3.71)

This converges to zero quickly with increasing N and so for most situations simply

calculating the required n to exactly integrate the product of the two polynomials

and setting N = n + 1 is more than sufficient, with one major exception outlined
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below. Choosing a larger N is often wasteful as it significantly increases the com-

putational time required to set up the matrices.

Furthermore, the geometry employed in Whales2 suffers from a geometric

singularity at the magnetic axis, s = 0, and functions of the type s−j can be

encountered in the integrands, where j is positive. These functions are not well

approximated by polynomials in the vicinity of the singularity and so the Gaussian-

Legendre quadrature becomes inaccurate. This applies to grid cells which are near

to but do not include the singularity so we refer to this as an “offstage singular-

ity” [61]. An alternative quadrature is therefore made available in Whales2 based

on Gaussian quadrature but with a weight function of the form w(s) = s−2. The

quadrature becomes:

∫ b

a
f(s)ds =

∫ b

a
w(s)(s2f(s))ds '

N−1∑
i=0

wi(s
2
i f(si)) (3.72)

So any functions of the sort f(s) ∼ s−j can be integrated accurately as polynomials

for j ≤ 2. The extension of this method for j > 2 is simple to implement. The

advantage of this method over Gauss-Legendre is that the offstage singularity can

be treated up to arbitrary order in s−j . Also, it is a general method that does not

require much information about the integrand beforehand, though it will become

inaccurate if j in the integrand is higher than the weight function. The drawback

of this method is that it will require a larger N to have the same highest order

accuracy as Gauss-Legendre. This new method will be able to “perfectly” integrate

an integrand s2f(s) of polynomial order 2N−1, implying the function f(s) is of order

2N − 3. The polynomials for this quadrature can be calculated by hand in terms

of a and b but this quickly becomes very tedious and prone to mistakes, so instead

the recurrence relation Eq. (3.64) is set up to numerically calculate the polynomial

coefficients. Using common floating point datatypes (float, double) quickly leads to

unacceptable truncation error and so a high precision datatype is necessary. The

abscissas and weights are solved for using standard numerical techniques as there are

no general analytic expressions in this case. Since this recurrence must be performed

for each [a, b] and requires high precision floating point numbers there is additional

computational burden compared to Gauss-Legendre, though it is small compared to

the overall runtime of a typical Whales2 run.

An alternative method to handle offstage singularities is given by Carley [61],

building on the work of Kolm and Rokhlin [62]. The implementation is similar to

that of Gaussian Quadrature, but requires that a system of equations is solved for

each interval of integration to reflect the changing position of the singularity relative
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to the interval. This method is reported to achieve high precision for sufficiently

high order N . However, it loses the attractive fundamental property of Gaussian

quadrature that ensures precise integration of polynomials of order 2N−1 or less [61].

Therefore, this scheme has not been included in this version of Whales2.

3.4 Choice of eigenvalue solver

The finite elements discretisation of the MHD equations implies that the matrices

of the generalised eigenvalue problem (3.19) are banded matrices, meaning that all

non-zero elements of the matrix are present within a constrained number of columns

from the central diagonal, where the constraint is less than the matrix size. Whales2

employs finite elements that use the smallest possible stencil, only coupling to their

immediate neighbours. This gives a banding size of 3V where V is the number

of variables at each node. The spectral method of discretisation uses global modes

that can all couple, producing a dense block matrix of these banded submatrices (see

Eqs. (3.21)-(3.22)). This overall matrix is still sparse and so using sparse eigenvalue

solvers to solve Eq. (3.19) can be significantly more efficient than dense solvers

when only a few eigenvalues are required. Whales2 uses the SLEPc library [63, 64]

of eigensolvers, which includes a range of sparse and dense eigensolvers with options

to use external packages.

3.5 Self-Adjointness of Whales2

The linearised ideal-MHD equations can be cast into the form (cf. Eq. 2.16):

µ0
∂2ξ

∂t2
=

1

ρ0
F (ξ) . (3.73)

If we introduce the form of the normal modes as per Eq. (3.18) then we retrieve the

eigenvalue equation:

−µ0ω2ξ =
1

ρ0
F (ξ) . (3.74)

for the linear operator ρ−10 F , which is known to be self-adjoint [65]. This property of

self-adjointness informs the spectral theory of the linearised Ideal-MHD equations,

implying that ω2 ∈ R [26]. Therefore, linear ideal-MHD supports modes that are

oscillatory, so-called stable waves, with ω2 > 0 so the temporal dependence of the

normal modes becomes e±i
√
ωt, and instabilities for ω2 < 0 which gives e±

√
ωt.

We are not aware of any similar proof of self-adjointness for the linearised ideal
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Hall-MHD equations, so in this regime there are additional possible modes where

ω2 ∈ C that are not purely real or imaginary. Labelling the frequency ω = ωR + iωI

we see that these modes can either be stable, damped modes with e±iωRt−ωI t or

overstable modes with e±iωRt+ωI t. The self-adjointness of the linear ideal-MHD

operator should be preserved in the numerical scheme used to model the equations,

though it is not guaranteed. In particular this means for the setup of Eq. (3.19),(
ω2I + ωH+ F

)
· ξNM = 0, the inertial and force matrices should be self-adjoint -

i.e. each matrix should equal its transpose complex conjugate. For the ideal-MHD

system:
(
ω2I + F

)
· ξNM = 0, self-adjointness of both matrices guarantees that the

eigenvalues ω2 are real numbers [26].

We will demonstrate that the scheme employed by Whales2 leads to self-

adjoint inertial and force matrices. The general term of the inertial matrix can be

written:

Ikl
h̃j̃

=

∫
V
ei(l−k)ϑHh

⊥(s)2s
µ0ρ0
J gψψ

Hj
⊥(s) dV

+

∫
V
ei(l−k)ϑHh

∧(s)2sJ µ0ρ0Hj
∧(s) dV . (3.75)

The complex conjugate transpose of this general term of the inertial matrix is:

(
I lk
j̃h̃

)†
=

∫
V
e−i(k−l)ϑHj

⊥
†
(s)2s

µ0ρ
†
0

J †gψψ†
Hh
⊥
†
(s) dV

+

∫
V
e−i(k−l)ϑHj

∧
†
(s)2sJ †µ0ρ†0H

h
∧
†
(s) dV . (3.76)

The equilibrium quantities and shape functions are strictly real, so this expression

becomes: (
I lk
j̃h̃

)†
=

∫
V
ei(l−k)ϑHj

⊥(s)2s
µ0ρ0
J gψψ

Hh
⊥(s) dV

+

∫
V
ei(l−k)ϑHj

∧(s)2sJ µ0ρ0Hh
∧(s) dV

= Ikl
h̃j̃
, (3.77)

so we see that the inertial matrix is self-adjoint (given that the surface terms vanish).

To show that the force matrix is self-adjoint we devise a set of rules for integrand

terms that ensure self-adjointness. Suppose we have equilibrium quantity A and

integrands of the form:

F lk
j̃h̃

= e−ilϑHj
αAe

ikϑHh
β , (3.78)
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and

Glk
j̃h̃

= e−ilϑHj
β Ae

ikϑHh
α . (3.79)

These integrands are each other’s complex conjugate transpose, i.e.
(
F kl
h̃j̃

)†
= Glk

j̃h̃

and vice versa. The integral of the sum of these integrands, say P lk
j̃h̃

, will therefore

be self-adjoint:

P lk
j̃h̃

=

∫
V
F lk
j̃h̃

+Glk
j̃h̃
dV , (3.80)(

Pkl
h̃j̃

)†
=

∫
V

(
F kl
h̃j̃

)†
+
(
Gkl
h̃j̃

)†
dV (3.81)

=

∫
V
Glk
j̃h̃

+ F lk
j̃h̃
dV (3.82)

= P lk
j̃h̃
. (3.83)

So terms of the force matrix integrand that obey this relationship will only contribute

self-adjoint terms to the matrix. Note that if α = β then this term in an integrand

is its own complex conjugate transpose - this is the case for the integrands of inertial

matrix (3.37)-(3.38). This is also true for the force matrix integrand (3.48). For

the purposes of establishing self-adjointness we view the radial derivatives of the

shape functions as though they are shape functions for an independent variable,

i.e. α, β ∈ {⊥,⊥′,∧,∧′}. Therefore, we see that the second terms in each of the

integrands (3.49) and (3.50) obey the same relationship as Eqs. (3.78)-(3.79) and so

will contribute self-adjoint terms to the force matrix. By establishing a full set of

such relationships that cover each type of function encountered in the force matrix

integrands we show that the force matrix is self-adjoint.

In the case that the integrand contains a derivative in the poloidal direction

we have to take into account that the equilibrium functions can also have a poloidal

dependence. The equilibrium functions are real-valued and analytical across the

plasma domain, so we write a generic equilibrium quantity as:

E(ϑ) =
∞∑

m=−∞
E(m)eimϑ , (3.84)

with E(m) =
(
E(−m)

)†
. Suppose we have the integrands:

F lk
j̃h̃

= e−ilϑHj
αA∂ϑ

(
B eikϑHh

β

)
, (3.85)
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and

Glk
j̃h̃

= −e−ilϑHj
β B∂ϑ

(
AeikϑHh

α

)
. (3.86)

We will show that F lk
j̃h̃

=
(
Gkl
h̃j̃

)†
. The equilibrium functions A and B are expanded

as (3.84) and we choose a, b such that a + b + k − l = 0 as only these terms will

contribute to the matrix. We write, without loss of generality:

F lk
j̃h̃

= e−ilϑHj
αA

(a)eiaϑ∂ϑ

(
B(b)eibϑ eikϑHh

β

)
= i(b+ k)ei(a+b+k−l)ϑHj

αA
(a)B(b)Hh

β . (3.87)

We only need to show that Gkl
h̃j̃

contains a term that is the complex conjugate of

(3.87). We choose the −a and −b terms of the expansions of A and B respectively:

Gkl
h̃j̃

= −e−ikϑHh
β B

(−b)e−ibϑ∂ϑ

(
A(−a)e−iaϑ eilϑHj

α

)
= −i(l − a)e−i(a+b+k−l)Hh

β B
(−b)A(−a)Hj

α

= −i(b+ k)e−i(a+b+k−l)Hj
αA

(−a)B(−b)Hh
β , (3.88)

where we have used that a + b + k − l = 0. Now using that
(
A(−a))† = A(a) then

it is clear that F lk
j̃h̃

=
(
Gkl
h̃j̃

)†
so the sum of Eqs. (3.85) and (3.86) gives self-adjoint

terms.

Omitting further tedious derivation we present a list of integrand pairs that,

when taken together, give self-adjoint terms to the matrix. We employ the condensed

notation Hα/β = e±ilϑHj
α/β for all l/k and j/h. The list starts with the two relations

just derived:

HαAHβ ↔ Hβ AHα , (3.89)

HαA∂ϑ (BHβ)↔ −Hβ B ∂ϑ (AHα) , (3.90)

HαA∂ϑ (B ∂ϑ (C Hβ))↔ Hβ C ∂ϑ (B ∂ϑ (AHα)) , (3.91)

HαA∂φHβ ↔ −Hβ A∂φHα , (3.92)

HαA∂
2
φHβ ↔ Hβ A∂

2
φHα . (3.93)

We expand out the wedge and parallel directional derivatives:

∇B = (B0 ·∇) =
1

J
∂ϑ + f(ψ)gφφ∂φ , (3.94)

∇T = (T ·∇) = gφφ∂φ −
f(ψ)

J gψψ
∂ϑ , (3.95)
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and use Eqs. (3.89)-(3.93) to derive the following:

HαAJ∇B (BHβ)↔ −Hβ B J∇B (AHα) (3.96)

HαAJ∇B (B∇B (C Hβ))↔ Hβ C J∇B (B∇B (AHα)) (3.97)

HαAJ gψψ∇T (BHβ)↔ −Hβ B J gψψ∇T (AHα) (3.98)

HαAJ gψψ∇T (B∇T (C Hβ))↔ Hβ C J gψψ∇T (B∇T (AHα)) (3.99)

HαA∂ϑ

(
B J gψψ∇T (C Hβ)

)
↔ Hβ C J gψψ∇T (B ∂ϑ (AHα)) (3.100)

All terms in the force matrix integrands (3.48)-(3.56) have a self-adjoint pair as

per the rules derived above, therefore we conclude that both the force and inertial

matrices in Whales2 are self-adjoint. The self-adjoint nature of the ideal-MHD

equations is therefore preserved in Whales2.

3.6 Convergence testing

To determine the effectiveness of the implementation of finite elements scheme, we

measure the error in the eigenfrequency output from Whales2 as a function of the

number of grid points, N . The expected relation between these variables is a power

law in the form:

λN = λ+ E0 ·N−t (3.101)

where λ is the true eigenfrequency, λN is the approximate eigenfrequency, E0 is a

constant, and t is a positive constant. In the case of a single variable PDE then

first order accuracy in the eigenfunction is predicted when using constant basis

functions [66]. This leads to second order accuracy of the eigenfrequency, i.e. t = 2,

as the frequency is an integral quantity of the equation. Increasing the order of the

basis polynomial gives an increase of two orders in the accuracy of the eigenvalue, so

that a linear basis gives fourth-order accuracy in the eigenfrequency etc [67]. Fig. 3.3

shows the error convergence for Whales2 in the case of a CAE in a homogeneous

cylinder, for which the frequency is analytically known. Fig. 3.3 plots the error

|λ − λN | against N in a log-log scale, so that power law relations will be seen

as straight lines with gradient −t. We expect that the mixed basis elements are

limited in accuracy by the lower order basis, so that a linear-constant basis, for

example, will predict a second-order convergence in the eigenfrequency. In fact,

Fig. 3.3 shows that the linear-constant choice of basis in Whales2 leads to a power

law with 2 ≤ t ≤ 3. The quadratic-linear and cubic-quadratic bases conform to the

expectation well, clearly showing power law relations of t = 4 and t = 6 respectively.
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Figure 3.3: The output from Whales2 for each basis function is represented as follows:
linear-constant (×, top), quadratic-linear (+, middle) and cubic-quadratic (∗, bottom).
Example power law relations, in solid colours, are of the form Eq. (3.101) where E0 is
calculated to match the N = 8 point of the Whales2 output.

3.7 MHD linear stability codes

This thesis presents a linear stability code, Whales2, that calculates the spectrum

of CAEs in a given tokamak geometry using the ideal Hall-MHD wave equation.

There are several linear stability codes currently available to solve for MHD eigen-

modes such as MARS [68,69], CASTOR [70–72], NOVA [39,73], CAE3B [3,74] and

WHALES [3, 29]. MARS and CASTOR solve the resistive-MHD equations for the

spectrum of eigenmodes using finite elements and spectral methods. NOVA solves

the ideal-MHD equations using finite elements and spectral methods. These codes

do not include the Hall term and so are restricted to the frequency regime such that

ω � ωci.

CAE3B and WHALES are both based around the methodology set out by

Smith and Verwichte [3], though neither code is named at that point. Each solves the

linearised ideal Hall-MHD equations. CAE3B follows the methodology of [3] directly,
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solving for the three components of the perturbed magnetic field b⊥, b∧ and b‖ using

a finite difference scheme in the radial and poloidal directions. A single Fourier mode

is assumed in the toroidal direction, though CAE3B is extended to include the effects

of toroidal equilibrium plasma flow. WHALES employs finite elements in the radial

direction, a Fourier series poloidally and single Fourier harmonic toroidally to solve

for the two components of the modified displacement η⊥ and η∧. WHALES and

CAE3B both assume a negligible plasma-β to eliminate the slow-magnetoacoustic

modes and neglect the shear terms, k2‖, to suppress the shear Alfvén eigenmodes.

Whales2 is built on the same principles as CAE3B and WHALES, so shares

many traits with these linear stability codes. However, meaningful differences exist

and so a comparison can be made. Though ostensibly CAE3B, WHALES and

Whales2 solve the same equations of linearised ideal Hall-MHD, they are solved

in different representations for different variables. CAE3B uses a dielectric tensor

description of the linearised Hall-MHD, solving for the eigenfrequency iteratively

with the Hall term correction updated with each iteration. In WHALES the user

can choose to switch the Hall term off, like in Whales2. However, the underlying

ideal-MHD equations in WHALES do not have the self-adjointness property that is

preserved in Whales2. The lack of self-adjointness makes it difficult for the user to

distinguish non-ideal effects occurring due to the lack of self-adjointness and those

arising from the inclusion of the Hall term. Whales2 also allows the user choice in the

finite elements scheme employed and the eigenvalue solver. Judicious application

of both can be used to optimise the performance of Whales2. A comparison of

results between the three codes CAE3B, WHALES and Whales2 would be useful to

determine the relative advantages of each implementation of [3] and is recommended

for further work to build on the results in this thesis.
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Chapter 4

CAEs in cylindrical Hall-MHD

Whales2 is used to explore particular eigenmode structures and the spectrum of

eigenfrequencies for CAEs. We demonstrate the code’s ability to reproduce CAE

modes by applying it to a cylindrical geometry, the simplest geometry implemented

in Whales2. We use the (r, θ, z) coordinate system to describe the cylinder. Due

to the θ and z symmetries the equilibrium only depends on the radial coordinate.

Only cylinders with a circular cross-section have currently been implemented in

Whales2. The ideal-MHD equilibrium in a cylinder follows a simple force balance

equation that can be written in terms of the magnetic field and plasma pressure.

We achieve this by rearranging the Lorentz force equation (1.75), the Solenoidal

condition (1.67), and Ampère’s law (1.66) into the following equation [26]:

d

dr

[
µ0p(r) +

B2
0

2

]
= −

B2
0θ

r
. (4.1)

We focus on results for CAEs solved with the inclusion of Hall terms in the

linearised MHD equations. As noted in Section 3.5, in this case the CAE frequencies

can be complex numbers. However, for all of the results in this section we have found

that the imaginary component of the frequency is negligible to the point where it

is indistinguishable from computational error. Therefore, we treat the computed

frequencies as though they are purely real numbers.

4.1 Homogeneous θ-pinch

The homogeneous θ-pinch is described by an equilibrium with uniform magnetic

field, pressure and density profiles - this clearly satisfies the force balance Eq. (4.1).

We choose the pressure function to be zero. The magnetic field is in the ẑ-direction,
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B0 = B0ẑ, which means that there is no poloidal magnetic flux. Therefore, for

this equilibrium we choose to use the toroidal magnetic flux function in place of the

poloidal flux function. The toroidal flux function is:

ψT =
B0

2
r2 . (4.2)

We note that the relation of this toroidal flux function to the toroidal magnetic flux,

ΦT , is: ψT = ΦT /2π. The coordinate vectors (2.17) for the homogeneous θ-pinch

become:

∇ψ = B0rr̂ , T =
1

r
θ̂ , B0 = B0ẑ , (4.3)

and the displacement components:

ξ̃⊥ = rξr , ξ̃∧ = ξθ . (4.4)

The following quantities are simply expressed:

S = 0 , κ = 0 , J0 = 0 , V 2
A =

B2
0

µ0ρ0
, (4.5)

where the Alfvén velocity is constant. We define the Alfvén frequency:

ω2
A = V 2

Ak
2 . (4.6)

The variables for this configuration can be summarised:

B0 , a , ρ0 , s , m , k , (4.7)

where here, and throughout the rest of this chapter unless stated otherwise, s is the

radial wavenumber. We use the ‘quantum number’ style notation (s,m, k) to label

discrete eigenmodes within a given equilibrium. The quantum numbers m and k are

well-defined in the cylindrical geometry as each refers to a single Fourier harmonic

in the azimuthal (poloidal) and longitudinal (toroidal) directions respectively. How-

ever, s depends on the radial boundary conditions which depend on m and are not

consistent across the various perturbed quantities that we are interested in, i.e. ξ̃⊥,

ξ̃∧ and b‖. Therefore, we use the convention that the fundamental harmonic, i.e. the

CAE that exists with the fewest number of nodes/anti-nodes, is labelled s = 1 and

subsequent CAEs in the sense of increasing number of nodes/anti-nodes are labelled

consecutively with integer values of s.
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Ideal-MHD

When the Hall term is set to zero in Eq. (3.19) the eigenvalue problem is reduced

to: (
ω2I + F

)
· ξNM = 0 . (4.8)

In the ideal-MHD case Whales2 solves for the eigenvalue ω2. Therefore there are

actually two degenerate solutions for each eigenmode, ±ω. For the ideal-MHD

solutions we will usually refer to ω2 rather than ω.

The ideal-MHD equations for the zero-pressure homogeneous θ-pinch with

the boundary conditions Eq. (2.126)-(2.127) can be expressed through the total

pressure, pT , as:

∂2pT
∂r2

+
1

r

∂pT
∂r
−
(
χ2 +

m2

r2

)
= 0 , (4.9)

ρ0(ω
2 − ω2

A)ξr =
∂pT
∂r

, (4.10)

ρ0(ω
2 − ω2

A)ξθ =
im

r
pT , (4.11)

where χ is given by:

χ2 = −
ω2 − ω2

A

V 2
A

. (4.12)

These are solved to give the displacement components for the CAEs as:

ξr =
|χ|

ρ0(ω2 − ω2
A)
J ′m(|χ|r) , (4.13)

ξθ =
im

r

1

ρ0(ω2 − ω2
A)
Jm(|χ|r) , (4.14)

where Jm is a Bessel function of the first kind, of order m. The boundary conditions

imply that for this set of solutions: χ2 < 0, i.e. the CAEs are of higher frequency

than the Alfvén frequency, as we expect, and that |χ|a = j′ms where j′ms is the sth

zero of J ′m. There is another set of solutions pertaining to the shear Alfvén modes,

an infinitely degenerate set of solutions at the frequency ω2 = ω2
A. Eqs. (4.9)-(4.14)

are unchanged under the substitution k → −k, and this is also clearly true of the

shear Alfvén modes. We say that in a homogeneous cylinder the linearised ideal-

MHD equations are symmetric in k. For m→ −m the sign of ξθ changes relative to

ξr but the frequency ω2 is unaffected. Fig. 4.1 shows that the output eigenfunctions

from Whales2 well match the expressions (4.13)-(4.14) for various values of (s,m, k).

The boundary conditions (2.126)-(2.127) are clearly adhered to for both ξ̃⊥ and ξ̃∧.

88



Figure 4.1: The solid coloured lines show the eigenfunctions output from Whales2, whilst
the black dotted lines show the values known analytically from Eqs. (4.13) - (4.14). We have
normalised both displacement components independently. The chosen equilibrium values are
B0 = 1 T, a = 1 m, ρ0 = 1 kgm−3, k = 1.

In order to study the dispersion relation of the CAE spectrum we rearrange

Eq. (4.12) to give in terms of ω:

ω2 = (k2 − χ2)V 2
A = k2eV

2
A , (4.15)

with ke =
√
k2 + j′2ms/a

2, the effective wavenumber for the dispersion relation. This

dispersion relation for the CAE modes is clearly Sturmian - increasing wavenumber

implies higher frequency - and this can be seen in Fig. 4.2. Fig. 4.2 shows a hierarchy

in the quantum numbers s,m, k as to how the frequency increases with an increase

in the respective wavenumber. Analogously with the dispersion relation for CAEs in

a homogeneous magnetic slab Eq. (1.157), which in the absence of plasma pressure

reduces to: ω2 = V 2
A(k2x + k2y + k2z), an approximate heuristic dispersion relation for

a homogeneous cylinder is [43,75]:

ω2 ' V 2
A

(
s2

L2
r

+
m2

a2
+ k2

)
, (4.16)
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where Lr is a length scale that is related to the radial width of the eigenmode. Note

that the relation (4.16) is a hyperbolic function in each of the three mode numbers

(s,m, k) when the other two are held constant.

Since Lr < a it follows that the difference in frequency is largest for a change

in the wavenumber s, i.e. ∆ωs→s±1 > ∆ωm→m±1 = ∆ωk→k±1. In Fig. 4.2 we

observe ∆ωs→s±1 > ∆ωm→m±1 > ∆ωk→k±1 instead - this is more like what we

would expect in a tokamak where k → n/R0 and R0 > a so ∆ωm→m±1 > ∆ωn→n±1.

The dashed lines in Fig. 4.2 show the predicted values from Eq. (4.16), where Lr

has been calculated so that the predicted frequency matches the known frequency

at the fundamental mode (s,m, k) = (1, 1, 1). It is clear that Eq. (4.16) should only

be used to predict frequencies for the lowest values of s and m.

Figure 4.2: CAE dispersion relations are shown for a homogeneous θ-pinch when varying
the individual “quantum numbers” s, m, and k. The crosses show the analytically known
eigenfrequencies calculated from Eq. (4.15) and the dashed lines show the predicted frequen-
cies from Eq. (4.16). Note that the dashed line for m (blue) and k (green) are coincident.
The output from Whales2 was produced using Nψ = 64, Nθ = 256, ρ0 = 10−6 kgm−3,
a = 1 m, B0 = 1 T.
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Hall-MHD

The addition of the Hall term lifts the ±ω degeneracy present in ideal-MHD. In this

case Whales2 solves for ω as the eigenvalue. The spectrum of CAE modes for the

Hall-MHD equations in a homogeneous θ-pinch has an analytical solution given by:

ξr ∼ A|χ|J ′m(|χ|r) + hω2
A

m

r
Jm(|χ|r) , (4.17)

ξθ ∼ hω2
A|χ|J ′m(|χ|r) +A

m

r
Jm(|χ|r) , (4.18)

with:

A = ω2 − ω2
A , (4.19)

h =
ω

ωci
, (4.20)

χ2 = −
A2 − h2ω4

A

V 2
A(A+ h2ω2

A)
= −

(ω2 − ω2
A)

V 2
A

1− h2 ω4
A

(ω2−ω2
A)

2

1 + h2
ω2
A

(ω2−ω2
A)

 . (4.21)

We do not explicitly include the amplitude for Eqs. (4.17)-(4.18) as Whales2 is a

linear code and so the amplitude of each mode is arbitrary (though the relative

amplitudes of the displacement components ξ̃⊥ and ξ̃∧ are preserved). Note that

in the limit h → 0 expressions (4.17), (4.18) and (4.21) reduce to the equivalent

ideal-MHD expressions.

The CAE dispersion relation from solving Hall-MHD equations in this ge-

ometry is:

D(ω) = A|χ|J ′m(|χ|a) + hω2
A

m

a
Jm(|χ|a) = 0 . (4.22)

Since χ is a function of ω, dispersion relation (4.22) is transcendental and an ex-

act solution cannot be found analytically. We can still determine an approximate

analytical solution. Both the components (4.17)-(4.18) and the dispersion relation

(4.22) are even functions in the wavenumber k, as in the ideal-MHD case, but are

no longer even in ω or m. However, m and ω appear as a product and so there is a

symmetry upon the substitution (ω,m)→ (−ω,−m). Therefore, we choose to solve

for ±ω with m ≥ 0 (and k ≥ 0) without loss of generality.

In order to obtain a mathematically tractable form of the dispersion relation

(4.22), we assume that the contribution from the Hall term is small. For the case

m 6= 0 we assume h� 1, and linearise the dispersion relation about the ideal-MHD

dispersion relation. We denote the ideal-MHD solution quantities with a subscript

0, e.g. ω0. The quantity χ only contains factors of h2 and so χ→ χ0. The dispersion
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relation can be written:

D(ω) ' D0(ω) +D1(ω) , (4.23)

D0(ω) = A|χ0|J ′m(|χ0|a) , (4.24)

D1(ω) = hω2
A

m

a
Jm(|χ0|a) . (4.25)

We write ω = ω0 + δω with δω ∼ O(h) as the Hall correction. The linearised

dispersion relation has the form:

D(ω) ' D0(ω0 + δω) +D1(ω0) . (4.26)

We take a Taylor expansion: D0(ω0 + δω) = D0(ω0) +D′0(ω0)δω +O(h2). We note

that D0(ω0) = 0. We neglect the higher order terms, O(h2), giving the linearised

dispersion relation:

D′0(ω0)δω +D1(ω0) = 0 , (4.27)

so rearranging for the Hall frequency correction:

δω = −D1(ω0)

D′0(ω0)
, (4.28)

The denominator can be simplified as follows:

D′0(ω0) = A′0|χ0|J ′m(|χ0|a) +A0|χ0|′J ′m(|χ0|a) +A0|χ0||χ0|′aJ ′′m(|χ0|a)

= A0|χ0||χ0|′aJ ′′m(|χ0|a) , (4.29)

since J ′m(|χ0(ω0)|a) = 0. Now we note that A0/V
2
A = j′2ms/a

2 and use this to obtain

the expression:

δω = − m

ωci

ω2
A

j′2ml

Jm(|χ0(ω0)|a)

J ′′m(|χ0(ω0)|a)
(4.30)

We further simplify this using the following relations for Bessel functions [59]:

2m

x
Jm(x) = Jm−1(x) + Jm+1(x) , (4.31)

2J ′m(x) = Jm−1(x)− Jm+1(x) , (4.32)

which can be manipulated to show:

J ′′m(x) =

{(m
x

)2
− 1

}
Jm(x)− 1

x
J ′m(x) . (4.33)
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Therefore the ratio of Bessel functions in Eq. (4.30) becomes:

Jm(|χ0(ω0)|a)

J ′′m(|χ0(ω0)|a)
=
Jm(j′ms)

J ′′m(j′ms)
=

j′2ms
m2 − j′2ms

, (4.34)

and the final expression is:

δω =
ω2
A

ωci

m

j′2ms −m2
m 6= 0 . (4.35)

For the case m = 0, the first-order Hall frequency correction is zero. We need to

expand the dispersion relation (4.22) further to include second-order terms.

D(ω) = A|χ|J ′m(|χ|a) = 0 ⇒ |χ|a = j′0s . (4.36)

We write ω = ω0 + δω with δω ∼ O(h2) and apply a binomial expansion to |χ| to

obtain:

|χ| =
(

A2 − h2ω4
A

V 2
A(A+ h2ω2

A)

) 1
2

=

(
A2 − h2ω4

A

V 2
A

) 1
2
(

1

A0
−

2ω0δω + h2ω2
A

A0
+ . . .

) 1
2

,

(4.37)

with A0 = ω2
0 − ω2

A. Now we multiply out and neglect terms of order O(h4) in Eq.

(4.37):

|χ|(ω0 + δω) ' A
1
2
0

VA

{
1−

2A0ω0δω − h2ω2
0ω

2
A

A2
0

} 1
2

. (4.38)

Now we use that |χ0|(ω0) = j′ms/a and Eq. (4.36) to determine the expression for

δω:

δω =
h2ω0ω

2
A

2A0
=

1

2ω2
ci

(j′20s + k2a2)
3
2k2

j′20sa
m = 0 . (4.39)

There are some interesting differences between the expressions (4.35) and (4.39)

for δω. We label the expression in Eq. (4.35) as δω(m) and Eq. (4.39) as δω(0).

δω(0) is an odd function in ω0 which means that ω = ω0 + sgn(ω0)δω(|ω0|). The

positive and negative frequency solutions have the same magnitude. Alternatively,

δω(m) is even in ω0 and ω = ω0 + δω(|ω0|). This means that there is a difference of

magnitude 2|δω| between the positive and negative frequency solutions. We observe

that j′2ms > m2, at least for moderate values of m. If we label the positive and

negative frequency solutions as ω+\ω− respectively then |ω+| > |ω0| > |ω−| for

m > 0, with the inequalities reversed for m < 0.

It is useful to normalise Eqs. (4.35) and (4.39) by ω0 to get a measure of the
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Figure 4.3: CAE dispersion relations against increasing values of the radial mode number,
s, are shown for m = 0, 1, 2. The output from Whales2 was generated with parameters
B0 = 1 T, a = 1 m, ρ0 = 10−4 kgm−3, k = 1, using hybrid quadratic elements for the
perpendicular component and regular linear elements for the wedge component. The grid
sizes used are Nψ = 128 and Nϑ = 256.
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Figure 4.4: The same setup as Fig. 4.3 is used with the single change ρ0 = 10−6 kgm−3,
giving increased Hall term strength.
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Figure 4.5: CAE dispersion relations plotted in the poloidal mode number m for s = 1, 2, 3,
constructed using the same parameters as for Fig. 4.3. They show a marked difference
between the fundamental harmonic, s = 1, and the higher harmonics in the shape of the
dispersion relations.
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Figure 4.6: The same setup as Fig. 4.5 with the density change ρ0 = 10−6 kgm−3.
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relative size of δω for each eigenmode:

δω̂(0) =
δω(0)

ω0
=

m2
i

2q2µ0

1

ρ0

(
j′20s + k2a2

)
k2

j′20s
, (4.40)

δω̂(m) =
δω(m)

ω0
=

mi

q
√
µ0

1
√
ρ0

k2a

(j′2ms + k2a2)
1
2

m

j′2ms −m2
. (4.41)

Measuring this relative change in frequency means that the effects from the Hall term

can be seen separately from the change in ideal-MHD frequency. δω̂(0) and δω̂(m)

have the same positive or negative correlation with each of the six variables listed

in Eq. (4.7), though they may differ in the strength of the correlation. For example,

neither δω̂(0) or δω̂(m) has any term involving the magnetic field B0. Both are

negatively correlated with density, the correlations being δω̂(0) ∼ ρ−10 and δω̂(m) ∼
ρ
−1/2
0 .

Figs. 4.3-4.6 show dispersion relations in s and m for the normalised Hall

corrections as output from Whales2, calculated by:

δω±whales =


ω−|ω0|
|ω0| ω > 0

ω+|ω0|
|ω0| ω < 0

(4.42)

Due to the relative precision required to get an accurate measurement of the Hall cor-

rection these eigenmodes were solved for individually using a Shift-and-Invert tech-

nique [64] with the corresponding ideal-MHD eigenvalue as the target. δω±pred refers

to the predicted Hall corrections in the limit of small h, calculated by Eqs. (4.40)-

(4.41) for ±|ω0|, where it should be noted that δω+
pred = δω−pred for m 6= 0. δω+\δω−

are the output Hall corrections obtained via applying a bisection method solver di-

rectly to the dispersion relation Eq. (4.22) to solve for ω > 0 and ω < 0 respectively,

then proceeding as in Eq. (4.42).

Figs. 4.3-4.4 show that the lower density equilibrium produces a larger nor-

malised Hall correction, as expected. Lower density increases the eigenmode fre-

quency but not the ion-cyclotron frequency, so h increases. Dispersion relations at

each density and each m show a negative correlation between s and δω̂. We expect

that the Hall correction increases in magnitude with s, since h ∼ ω ∼ s, but the

overall frequency ω is increasing at a higher rate than δω.

The Hall correction predicted by Eq. (4.41) is equal for positive and negative

frequency solutions, but Figs. 4.3-4.4 show consistently that δω̂+ > δω̂pred > δω̂− >

0, for m 6= 0, meaning that the negative Hall-MHD solution is closer to the ideal-

MHD eigenvalue than the positive solution. In the case of m = 0, δω̂+ = −δω̂− as
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we expect.

Figs. 4.5-4.6 also show that a lower density equilibrium produces a larger

normalised Hall correction, as expected. The case m = 0 is clearly a special case

which can be seen by looking at the various dispersion relations - again here δω̂+ =

−δω̂− as we expect. For m 6= 0 then the s = 1 dispersion relations behave similarly

to those in Figs. 4.3-4.4, with the growth in ω with increasing m outpacing that of

δω. For s = 2, 3 the trends are less steep and seem to be peaked at either m = 2

or m = 3. We see that δω̂+ > δω̂pred > δω̂− > 0 for ρ0 = 10−4, but for ρ0 = 10−6

then δω̂− < 0 for s = 2, 3 and so |ω−| > |ω0| contrary to the analysis done assuming

h� 1.

Figure 4.7: The displacement components for the CAE with mode numbers (s,m, k) =
(1, 2, 1) whilst varying the strength of the Hall term. The displacement components are
almost identical in each case, even with ω ∼ ωci. The displacement components are nor-
malised so that |ξ̂⊥| + |ξ̂∧| = 1 when summed over the radius. The equilibrium for each
mode used Nψ = 128, Nθ = 512, a = 1 m, B0 = 1 T. The density for the h = 0 and
h = 0.62 modes is ρ0 = 10−8 kgm−3 and for the h = 0.06 mode ρ0 = 10−6 kgm−3 was used.

We do not expect that the inclusion of the Hall term will affect the eigen-

functions of the CAEs much for frequencies |ω| . ωci, as the effect on the magnitude

of the frequency is small as shown in Figs. 4.3-4.6. Fig. 4.7 shows a particular CAE
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for different values of h. It is clear from inspecting Fig. 4.7 that the eigenmode

structure is indeed only slightly affected by inclusion of Hall effects for moderate

values of h.

4.2 Inhomogeneous θ-pinch

We introduce a radial density profile to make the cylinder inhomogeneous. This

means that the Alfvén frequency now has a radial profile, so the infinitely degenerate

shear Alfvén eigenmode becomes a continuum with each mode localised to a flux

surface oscillating at the local Alfvén frequency. Coupling of the CAEs to the shear

Alfvén continuum is possible in this regime.

The radial profiles of the CAEs can be affected by the density profile which

means labelling each mode with the quantum numbers (s,m, k) is less straightfor-

ward than in the homogeneous cylinder. For the homogeneous cylinder the CAE

structures were such that the number of anti-nodes in the ξ̃⊥ component were equal

to the quantum number s for that mode. However, the density profile may affect the

number of nodes/anti-nodes for each perturbed quantity and so there is no simple

mapping procedure between anti-nodes and harmonics. We propose that in order

to label each mode that they are related back to their equivalent mode in the homo-

geneous cylinder through slow deformation of the density profile, as shown in Fig.

4.8. We introduce the following density profile:

ρ0(r) = ρ0(0)

(
1− αr

2

a2

)
, α ∈ (0, 1) , (4.43)

to be used throughout this section.

Ideal-MHD

To reach a particular inhomogeneous equilibrium from the homogeneous one we can

alter the density profile (4.43) by varying α until reaching the desired profile. In

Fig. 4.8 shows the infinitely degenerate shear Alfvén mode for α = 0 transformed

into a continuum as α is increased to α = 0.9. The Alfvén speed increases outwards

from the magnetic axis, where VA is constant against any change in α. The shear

Alfvén modes form a continuum from the maximum Alfvén frequency at ω2
A(a) to

an accumulation point at the minimum frequency ω2
A(0). The accumulation point

occurs at the radial point where dωA/dr = 0. The CAEs display an increasing

frequency as α increases due to the increased average Alfvén speed, and the dashed

lines in Fig. 4.8 follow the evolution of each radial harmonic with increasing α.
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Fig. 4.8 also shows the difference in radial structure of the displacement components

for the s = 1 mode at α = 0 and the equivalent mode at α = 0.9.

Figure 4.8: Dispersion relations for the first four CAE harmonics as well as the spectrum
of Shear Alfvén modes are shown for an evolving density profile (4.43). The structure of the
displacement components for the (s,m, k) = (1, 2, 1) CAE at the extreme values of α are
plotted below. The equilibrium values are B0 = 1 T, a = 1 m, ρ0(0) = 10−6 kgm−3 with
Whales2 parameters Nψ = 64, Nϑ = 512, using a cubic-quadratic finite elements scheme.
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CAEs may also develop a radially localised structure, depending on the par-

ticular density profile and the wavenumber of the eigenmode. Coppi et al [76] derived

the following equation to describe the perturbed parallel magnetic field in a θ-pinch

with a density profile. They assumed that the wave vector is dominated by the

azimuthal component, i.e. |k| ≈ m/r. This is achieved for a sufficiently large value

of the poloidal wave number m.

1

r

∂

∂r

(
r
∂b‖

∂r

)
= W (r)b‖ , (4.44)

with

W (r) =

(
m2

r2
− ω2

V 2
A(0)

ρ0(r)

ρ0(0)

)
, (4.45)

for a parallel perturbed magnetic field of the form: b‖(r, t) = b‖(r)e
i(k‖z+mθ−ωt).

Coppi then identified W (r) on the RHS of Eq. (4.44) as an ‘effective potential’ acting

on the parallel perturbed magnetic field. This term can also be identified with the

radial wavelength as W ∼ −k2r . Therefore, wave solutions that are oscillatory in

the radial direction exist for W < 0, and for W > 0 the waves are evanescent. We

substitute the density profile (4.43) into W (r) to obtain:

W (r) =
m2

r2
− ω2

V 2
A(0)

(
1− αr

2

a2

)
, (4.46)

For a flat density profile, α = 0, then W (r) is a monotonically decreasing function

(unless m = 0 in which case V (r) is flat) and so the condition to satisfy W (r) = 0

within the plasma cylinder is:

r0 =
|m|VA(0)

|ω|
< a . (4.47)

As |m| increases, the domain over which oscillatory solutions can exist moves away

from the plasma centre, or the frequency of the mode increases in magnitude. When

α 6= 0 then W (r) is no longer monotonic and so may have a local minimum within

plasma cylinder, given by:

∂W

∂r

∣∣∣∣
rloc

= 0 ⇒ rloc =

(
m2a2V 2

A(0)

αω2

) 1
2

. (4.48)
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We substitute the approximation for the frequency given by [76]:

ω2 ' V 2
A(0)

ρ0(0)

ρ0(rloc)

m2

r2loc
, (4.49)

into (4.48), which then coincides with the expression for the radius of localisation

given by [76]:

rloc = −2

(
∂ ln (ρ0(r)/ρ0(0))

∂r

)−1
r=rloc

. (4.50)

applied to the density profile (4.43). The predicted values for the frequency and

localisation radius become:

rC =
a√
2α

, (4.51)

ωC = VA(0)
m

a

√
α . (4.52)

In contrast, Mahajan and Ross [77] manipulated the zero plasma-β ideal-MHD wave

equation in terms of a modified variable related to the perturbed radial electric field.

They make the assumption k⊥ = m
r � k‖ to identify a “Schrodinger-like” equation:

∂2ζ

∂r2
+

[
ω2

V 2
A(0)

ρ0(r)

ρ0(0)
− m2

r2

]
ζ =

∂2ζ

∂r2
+ [ε− V (r)] ζ = 0 (4.53)

with ζ = r
3
2

m

(
ω2

V 2
A
− k2‖

) 1
2
Er and associated energy and potential:

ε =
ω2

V 2
A(0)

, (4.54)

V (r) =
m2

r2
− ω2

V 2
A(0)

(
1− ρ0(r)

ρ0(0)

)
. (4.55)

The radial point of localisation is then given by:

rloc = a

(
m2

a2
ε

) 1
4

. (4.56)

To estimate the frequency Mahajan expands about the minimum potential and trun-

cates the expansion to treat the equation as a simple harmonic oscillator, thereby

producing an ODE that can be solved to give the eigenmode structure and the

frequency. Applying this method for the density profile (4.43) gives the following
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frequency and localisation radius [77]:

rM =
a√
2α

(
m

m+ 1 + 2s

) 1
2

, (4.57)

ωM = VA(0)
2(m+ 1 + 2s)

a

√
α . (4.58)

We compare the Coppi and Mahajan models, noting that rM → rC and ωM → 2ωC

in the limit m → ∞. A comparison between these two models and the output

from Whales2 is shown in Fig. 4.9. We used a high m value (m = 50) against

the low parallel wavenumber k = 1 to satisfy that assumption of the Coppi and

Mahajan models. Fig. 4.9 shows the the Mahajan model has good agreement with

Figure 4.9: The radius of localisation for the density profile Eq. (4.43) is plotted against α.
As α decreases towards α = 0, the radius of localisation moves towards the outer wall. When
either model predicts that the localisation radius exceeds the outer wall, which occurs in
both models for α < 0.5, we say that the outer wall is the radius of localisation. The radius of
localisation is determined from the output of Whales2 by numerically calculating the point
at which the global maximum occurs. The grid sizes are Nψ = 128 and Nϑ = 1024, with
physics parameters ρ0(0) = 1.0× 10−8 kgm−3, a = 1.0 m, B0 = 1.0 T, (s,m, k) = (1, 50, 1)
and using finite elements order Cubic-Quadratic.
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Whales2 for large values of α whereas Coppi agrees better as the localisation moves

towards the outer wall. Whales2 predicts a much faster movement of the radius

of localisation towards the outer wall as α increases than either model, which is

possibly due to the simplifying assumptions made in each model. Fig. 4.10 shows

a typical mode with poloidal mode number m = 50 alongside a mode with m = 2.

The radial localisation of the m = 50 can be clearly seen.

Figure 4.10: The radial structure for CAEs with poloidal mode numbersm = 2 andm = 50,
for α = 0.7. The parameters used are Nψ = 128, Nϑ = 1024, ρ0(0) = 1.0 × 10−8 kgm−3,
a = 1.0 m, B0 = 1.0 T, s = 1, k = 1. The same equilibrium was used in the calculation of
both modes.
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Hall-MHD

The inclusion of the Hall terms in the linearised MHD equations gives an asymmetry

in the solutions with respect to the sign of the poloidal mode number m, as discussed

in the previous section. The following equation describes the linearised Hall-MHD

equations acting on the parallel perturbed magnetic field, with the assumption m�
1 [78]:

∂2b‖

∂r2
=

(
m2

r2
− ω2

V 2
A(r)

+
m

r

ω

ωci

ρ′(r)

ρ(r)

)
b‖ . (4.59)

We again denote the bracketed term as W (r) and note that in the limit h→ 0 then

W (r) is the same as in the Coppi model for ideal-MHD. The additional Hall term

in W (r) contains an odd function of m, hence breaks the ±m symmetry. We can

consider only ω > 0 for ±m without loss of generality. For the density profile (4.43),

W (r) becomes:

W =
m2

r2
− ω2

V 2
A(0)

+ α
ω2

V 2
A(0)

r2

a2
− m

a2
ω

ωci

2α

1− α r2
a2

, (4.60)

∂W

∂r
=
−2m

r3
+ α

ω2

V 2
A(0)

2r

a2
+
mr

a4
ω

ωci

4α2(
1− α r2

a2

)2 . (4.61)

Eq. (4.60) shows that W has a lower value for m > 0 than m < 0 and so the

threshold to have oscillatory solutions, W < 0, is lower for positive m than negative

m, suggesting that when m < 0 the frequency of the CAEs will be higher than

for the corresponding m > 0 modes. Fig. 4.11 shows the output from Whales2 for

s = 1, 2, 3, m = ±50, α ∈ {0.0, 0.1, . . . , 0.9}. The dispersion relations show that

clearly for all α > 0, the frequency is indeed higher for the negative m modes.

Looking at the structure of the parallel perturbed magnetic field, Fig. 4.11 also

shows that for α = 0.9 the m = 50 modes are localised further towards the outer

wall than their m = −50 counterparts. It appears that in the case of high α the

Hall term has a much more significant impact of the radial structure of the CAEs

than for a flat density profile.

4.3 Twisted Magnetic Field

We now introduce a radial profile for the magnetic field B0. Previously we only

required an axial magnetic field component but with the introduction of a radial

profile we need either a non-zero pressure with a non-constant radial profile or

a poloidal component of the magnetic field in order to satisfy the force balance,
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Figure 4.11: Dispersion relations for six CAEs, calculated by Whales2 in the Hall-MHD
regime, are shown with frequency plotted against α as defined by Eq. (4.43). The structures
of b‖ for a subset of modes is shown below. These modes have equilibrium parameters
B0 = 1 T, a = 1 m, ρ0(0) = 10−6 kgm−3 and k = 1. The solver parameters are Nψ = 64,
Nϑ = 1024 with hybrid-quadratic finite elements order.
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Eq. (4.1). We choose the plasma pressure force to remain negligible compared with

the magnetic forces. In the limit of the plasma-β → 0, the magnetic pressure force is

balanced completely by the magnetic tension force arising from a twisted magnetic

field.

In a twisted cylinder, the relevant directions become:

∇ψ = Bθr̂ , (4.62)

T =
Bz
Bθ
θ̂ − ẑ , (4.63)

B0 = Bθθ̂ +Bz ẑ , (4.64)

with ψ the poloidal flux function. The CAE wavenumbers in each of these directions

are:

k⊥ = kr ∼ r , (4.65)

k∧ =
1

iA|T |
(T ·∇)A =

Bz
B0

m

r
− Bθ
B0
k , (4.66)

k‖ =
1

iAB0
(B0 ·∇)A =

Bθ
B0

m

r
+
Bz
B0

k , (4.67)

where A is any perturbed quantity. Note that k2∧ + k2‖ = m2

r2
+ k2, as expected, and

that these quantities are still independent of the radial mode number s. In analogy

with the straight cylinder we expect that ideal-MHD in the twisted cylinder regime is

unchanged under the transformation k‖ → −k‖ and that k∧ → −k∧ affects only the

relative signs of ξ̃⊥ and ξ̃∧. Hall-MHD is expected to remain unchanged with respect

to k‖ → −k‖, but under k∧ → −k∧ we expect that the mode frequency will change.

We also expect that there will be a symmetry with respect to the substitution

(ω, k∧) → (−ω,−k∧). We explore these properties using a particular form for the

magnetic field that has constant magnetic field strength over the cylinder:

B0 = Bθa
r

a
θ̂ +

(
B2
z0 −B2

θa

r2

a2

) 1
2

ẑ , (4.68)

which has strength B0 = Bz0. In order to achieve k∧ → −k∧ whilst k‖ remains

constant we can either apply (Bz, k) → (−Bz,−k) or (Bθ,m) → (−Bθ,−m). To

avoid ψ < 0 we choose the former. Similarly to achieve k‖ → −k‖ we substitute

(Bz,m)→ (−Bz,−m). Fig. 4.12 shows the dispersion relations of two CAEs against

a changing poloidal magnetic field strength with these transforms applied. Under

ideal-MHD all frequencies are the same despite the sign of the wavenumbers, as
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Figure 4.12: Shown are dispersion relations for the two lowest CAE harmonics against Bθa
using the magnetic field profile (4.68). We used parameters |m| = 2, |k| = 1, Bz0 = 1 T,
a = 1 m and Nψ = 64, Nϑ = 1024 with a Cubic-Quadratic finite elements scheme for the
ideal-MHD modes and Hybrid Quadratic scheme for the Hall-MHD modes.

expected. For Hall-MHD we see that ω(k∧, k‖) = ω(k∧,−k‖) and that ω(−k∧, k‖) =

−ω(k∧, k‖), which is analogous to the Hall-MHD modes in a straight cylinder with

wavenumbers m, k.

We introduce the pitch of the magnetic field, defined in the cylinder as [26]:

µ(r) =
Bθ(r)

rBz(r)
, (4.69)

and its inverse, the safety factor : q(r) = µ−1(r). We define a magnetic field profile
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that has constant pitch:

B0 = Bz0
µr

1 + µ2r2
θ̂ +

Bz0
1 + µ2r2

ẑ , (4.70)

|B0| =
Bz0

(1 + µ2r2)
1
2

, (4.71)

and satisfies Eq. (4.1) for a zero-pressure equilibrium. The magnetic field strength

for this configuration is clearly non-constant and so both the Alfvén speed and

the ion-cyclotron frequency have a radial profile, meaning that the parameter h =

ω/ωci, which acts as a proxy for measuring the relative strength of the Hall effects,

varies over the radial domain. For the particular magnetic field strength (4.71) the

Hall parameter will have its minimum on the magnetic axis and maximum at the

outer wall. Fig. 4.13 compares the ideal- and Hall-MHD solutions for a particular

CAE using magnetic field profile (4.70) for two different pitches. The difference in

structure for the displacement components ξ̃⊥ and ξ̃∧ between the ideal and Hall

modes is not particularly pronounced in either case, but the parallel perturbed

magnetic field b‖ has significantly differences for ideal and Hall near to the magnetic

axis for both pitches. These differences can be attributed to the changing relative

strengths of ξ̃⊥ and ξ̃∧, which can be seen in Fig. 4.13. Fig. 4.13 uses the same

normalisation as Fig. 4.7, i.e. |ξ̃⊥|+ |ξ̃∧| = 1 when summed over the radius.
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Figure 4.13: The radial structure of the (s,m, k) = (1, 2, 1) CAE is shown for both ideal-
and Hall-MHD. The different pitches give different ranges for the Hall strength parameter
h(r). The low pitch µ = 0.1 implies h ∈ [0.426, 0.428], and the high pitch µ = 0.8 gives
h ∈ [0.389, 0.498]. We used parameters m = 2, k = 1, Bz0 = 1 T, a = 1 m, ρ0(0) =
2.0 × 10−8 kgm−3 and Nψ = 64, Nϑ = 512 with a Cubic-Quadratic finite elements scheme
for the ideal-MHD modes and Hybrid Quadratic scheme for the Hall-MHD modes.
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Chapter 5

Axisymmetric toroidal geometry

We use the following co-ordinate system to describe a plasma torus: (
√
ψ, φ, ϑ). The

radial variable,
√
ψ, and the poloidal variable, ϑ, are each orthogonal to the toroidal

angle, φ, but not necessarily to each other. The co-ordinate system is linked to the

magnetic flux surfaces as the direction∇ψ describes the outward normal to the flux

surfaces. The poloidal direction is defined as the direction within each flux surface

that is orthogonal to the toroidal direction.

The most significant change introduced to the linearised MHD equations by

the toroidal geometry is the loss of poloidal symmetry. In a tokamak the magnetic

field is inversely proportional to the major radius, i.e. B0 ∼ 1/(R0 + r cos θ). This

poloidal dependence causes coupling in the linearised MHD equations, Eqs. (3.13)-

(3.16), between the poloidal Fourier harmonics. Plasma shaping, such as triangu-

larity and ellipticity, also causes poloidal coupling. Therefore, there is no longer

a well-defined notion of the poloidal quantum number m which we have been us-

ing to describe modes. We now use the full expression (3.15) for the discretised

displacement components, i.e.:

ξ̃NM⊥/∧ =

m+M∑
l=m−M

nr∑
j=0

ξ̂jl⊥/∧H
j
⊥/∧(s)ei(lϑ+nφ−ωt) , (5.1)

We note that for the continuous MHD wave equations then l ∈ [−∞,∞], but this is

truncated for the discretised equations. We propose using a classification convention

as in [3], where each mode is related back to the equivalent mode in the large

aspect ratio circular tokamak by a gradual decreasing of the shaping parameters

and increasing of the aspect-ratio. The ‘quantum number’ m of the low aspect-ratio

mode is given by the large aspect-ratio equivalent as it becomes well-defined in the

cylindrical limit. The integer value of s is similarly designated by the equivalent
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number in the limit of the homogeneous cylinder, as discussed in Section 4.2. The

toroidal quantum number n is given by a single Fourier harmonic, so remains well-

defined. The displacement components (5.1) are only suitable for studying the

central Fourier harmonic with poloidal mode number m. Harmonics near the edge

of the truncation, such as m±M , are not well represented as their potential poloidal

couplings are asymmetric. One way to observe the change of a particular CAE

through lowering aspect ratio and increased shaping is to look at the relative mode

power of each poloidal Fourier harmonic:

|ξ̂l|2 =

nr∑
j=0

(
|ξ̂jl⊥ |

2 + |ξ̂jl∧ |2
)
. (5.2)

We expect that in the circular, large aspect-ratio case the power spectrum will be

dominated by ξ̂m⊥/∧, but mode couplings introduced through the plasma shape and

equilibrium will redistribute some of the mode power to the wings of the spectrum.

For example, toroidicity introduces an l ± 1 coupling and so we expect that the

power spectrum is peaked at l = m whilst monotonically decreasing away from this

point. Ellipticity introduces an l ± 2 coupling and so we expect to see local peaks

at l = 0,±2,±4, . . . that decrease in amplitude as the distance from m increases.

Triangularity causes l ± 3 coupling. Output from Whales2, presented in Fig. 5.1,

demonstrates these couplings can be seen when introducing each shaping parameter

independently. The same couplings are present in the Hall term corrections to the

ideal-MHD equations, just scaled by h = ω/ωci as all the Hall term corrections are.

Therefore, the presence of the Hall terms in the MHD equations does little to modify

the poloidal coupling strengths, as can be seen in Fig. 5.1.

Another consequence of the poloidal Fourier coupling is that we must consider

an Alfvén continuum for each poloidal harmonic. We write:

ω
(l)
A = VAk

(l)
‖ , (5.3)

for l ∈ [−∞,∞]. As l → ∞ then |k(l)‖ | → ∞. Therefore, in the continuous MHD

equations the Alfvén continuum effectively extends to infinite frequency, though for

the truncated Fourier series such that l ∈ [m−M,m+M ] there is a maximum Alfvén

frequency. The possibility exists that a CAE with particular dominant poloidal

wavenumber m1 may be continuum damped by a shear Alfvén mode with a different

dominant poloidal mode, m2. This can be seen in Fig. 5.2 where the CAE has the

characteristics of an m = 1 mode but there is coupling to a shear Alfvén mode that

has dominant poloidal wavenumber m = 2. The continuum coupling can clearly
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Figure 5.1: The poloidal Fourier harmonic couplings that arise from different plasma shap-
ing effects in output from Whales2 with m = 7 and M = 5. The top, middle and bottom
plots show the effects of toroidicity, ellipticity and triangularity. Each behaves as expected
with local peaks at l ∈ {7}, l ∈ {3, 5, 7, 9, 11} and l ∈ {4, 7, 10} respectively. Compar-
ison between the ideal-MHD output (solid) and the Hall-MHD output (dashed) for the
equivalent mode indicates that the Hall terms do not significantly modify the poloidal cou-
pling. The other Soloviev parameters used in each case are: B0(0) = 1 T, E = 1, F = 0,
ρ0 = 10−6 kgm−3, n = 10. Also, Nψ = 64, Nϑ = 512 and hybrid-quadratic finite elements
are used.

be seen as a localised spike in the displacement in both the 2d cross-section plot

and the radial plot of the poloidal harmonics in the case when the shear terms are

included in the MHD equations. The localised spike is absent when the shear terms

are neglected, confirming that it is a product of the CAE coupling to the shear

Alfvén continuum. Though the coupling to the shear continuum is physical, it is

clearly undesirable in the study of CAE spatial structure as they become dominated

by the localised shear mode. Fig. 5.2 illustrates that the option to switch off the

shear terms, though it slightly modifies the underlying CAE, is a useful tool to
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study ‘pure’ CAEs in Hall-MHD without having to add dissipation to remove the

continuum coupling.

Figure 5.2: The 2d structure of the ⊥ and ∧ displacement components is shown for a
mode calculated using Whales2, with shear terms included (top row) and neglected (bottom
row). Also shown is the radial structure of the displacement components for each Fourier
harmonic for both cases: with shear (solid lines) and without shear (dashed lines). The
Soloviev parameters used are: B0(0) = 1.0 T, a = 1.0 m, R0 = 3.0 m, κ = 1.0, τ = 0.1,
E = 1, F = 0, ρ0 = 10−6 kgm−3, s = 1, m = 1, M = 1, n = 4.

We re-examine the heuristic dispersion relation Eq. (4.16) which becomes,

in a toroidal geometry:

ω2 ' V̄ 2
A

(
s2

L2
r

+
m2

a2
+
n2

R2
0

)
, (5.4)

where V̄A is the average Alfvén speed. For the purposes of comparison with out-

put from Whales2, we again determine the unknown quantity Lr by specifying that

the predicted frequency of Eq. (5.4) matches the output from Whales2 for the fun-

damental harmonic (s,m, n) = (1, 1, 1). Fig. 5.3 shows the comparison between
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Figure 5.3: The dispersion relations for CAEs in a toroidal configuration, plotting squared
frequency against the ‘quantum numbers’ s, m and n. The equilibrium parameters are
a = 1.0 m, R0 = 10.0 m, B0 = 1.0 T, ρ0 = 10−6 kgm−3, E = 1, F = 0 for a plasma with
a circular cross-section. The heuristic dispersion relation Eq. (5.4) is also plotted (dashed
lines) and the CAEs calculated in the absence of shear terms in the MHD equations (circles).

Eq. (5.4) and Whales2. The relations are well matched for the dispersion relation in

increasing n but for m and s the gradients of the dispersion relations output from

Whales2 are steeper than those predicted by (5.4) meaning that Eq. (5.4) should

not be used to make accurate predictions of frequency beyond the lowest s and m

numbers. Fig. 5.3 also shows the same dispersion relations output from Whales2

when we neglect the shear terms, i.e. k2‖ → 0. This has the largest effect for high

values of the integer wavenumber n as for this particular configuration high n im-

plies a dominant parallel wavenumber, i.e. k‖ > k⊥ and k‖ > k∧. In the case of

increasing s or m we enter a regime where k⊥ � k‖ or k∧ � k‖ respectively, and so

the importance of the shear terms in the MHD wave equations are reduced in com-

parison with other spatial derivatives. For these particular CAEs when calculated
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with the shear terms included, the underlying mode structure of the CAE was still

obvious and so for simply calculating the frequency there is no need to neglect the

shear terms. For cases of larger k‖ this may not be true however, as the shear Alfvén

mode will come to dominate the spatial structure, making it difficult to identify the

particular CAE.

We use Whales2 to calculate a CAE throughout lowering of the aspect-ratio

from that of a conventional tokamak to a spherical tokamak configuration, keeping a

circular cross-section. In these studies it was necessary to lift the computational do-

main away from the magnetic axis in order to avoid numerical issues associated with

unbounded functions at the geometric singularity. To achieve this we constrained

the radial domain to
[
0.1
√
ψ(a),

√
ψ(a)

]
.

Figure 5.4: The perpendicular displacement component (top), wedge displacement com-
ponent (middle) and parallel perturbed magnetic field (bottom) are shown for a particular
CAE mode. The major radius of the geometry is reduced from left to right, but the plasma
shaping is otherwise kept the same. The Soloviev parameters used are: B0(0) = 1.0 T,
a = 1.0 m, κ = 1.0, τ = 0.0, E = 1, F = 0, ρ0 = 10−6 kgm−3, s = 1, m = 3, M = 2, n = 2.
Also, Nψ = 64, Nϑ = 512 and cubic-quadratic finite elements are used.

Fig. 5.4 shows the evolution of the displacement components and the parallel

component of the perturbed magnetic field for the mode (s,m, n) = (1, 3, 2). The

displacement component ξ̃⊥ becomes outboard localised with reduced aspect-ratio

whereas ξ̃∧ and b‖ become inboard localised. Extensions to the theories of radial
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localisation for CAEs show that the inclusion of toroidal effects can lead to poloidal

localisation of the CAE around either the inboard or the outboard mid-plane [79–81].

Therefore, our observations are in line with the theory. However, since the theories

are usually derived with respect solely to a particular component, usually b‖, it is

unclear whether it is feasible to have different components of the same CAE localised

around different poloidal locations. This would suggest that the potential-well has

a different form for each component and so to refer to localised CAEs we must refer

to which perturbed component is localised. This is also an interesting result as the

parallel perturbed magnetic field component, b‖, is localised on the inboard side of

the tokamak. As noted in Section 1.7 the magnetic pickup coils on MAST are located

on the outboard side. Therefore, there may be CAEs that are excited by fast-ions

that are inboard localised and the strength of these modes is underestimated or they

are missed entirely. Further investigation to see if inboard localised modes can exist

in MAST-like geometries and equilibria is warranted.

Figure 5.5: The perturbed magnetic field component b‖ is shown for a decreasing aspect-
ratio from left to right with ideal-MHD CAEs in the top row and Hall-MHD with positive
and negative real frequency in the middle and bottom rows respectively. The plasma equi-
librium has a circular cross-section and a flat density profile, with B0(0) = 1.0 T and
ρ0 = 10−8 kgm−3. The other equilibrium parameters are E = 1, F = 0, with mode num-
bers m = −2, M = 2, n = 2. The ratio of the CAE frequency to the ion-cyclotron frequency
on the magnetic axis is approximately: h0 = ω/ωci(0) ∼ 2
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We compare the output from Whales2 when solving for the CAE with mode

numbers (s,m, n) = (2,−2, 2) in the ideal-MHD context and with the Hall term.

Fig. 5.5 shows the structure of b‖ for this mode in the ideal-MHD context and the

Hall-MHD context, with both negative and positive real part of the frequency. The

differences in the structure between these three cases are enhanced by the decreased

aspect-ratio as the 1/R drop-off of the equilibrium magnetic field becomes steeper,

meaning the variation of ωci, and therefore h = ω/ωci, increases over the plasma

cross-section. It is interesting to note that for the positive frequency Hall-MHD

CAE, the frequency is not monotonic as a function of the aspect-ratio. This is

because the frequency difference due to the inclusion of the Hall term, which in this

case increases the frequency, overtakes the drop in the frequency of the ideal-MHD

mode caused by the reduced aspect-ratio.

Figure 5.6: The Hall frequency correction, as defined by Eq. (4.42), output from Whales2
is shown for the (s,m, n) = (2,−2, 2) CAE. The equilibrium is the same as in Fig. 5.5 for
both cases, except for the magnitude of the density which becomes ρ0 = 10−6 kgm−3 in the
high density case. The ratio of the CAE frequency to the ion-cyclotron frequency on the
magnetic axis is approximately h0 ∼ 2 for the low density modes and h0 ∼ 0.2 for the high
density modes.
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We also calculate the Hall correction to the frequency for the same CAE

with (s,m, n) = (2,−2, 2). Fig. 5.6 shows the normalised frequency correction,

cf. Eq. (4.42), for the positive and negative Hall solutions in two different density

regimes. Generally it can be said that the Hall corrections increase in magnitude

as the aspect ratio decreases, though the positive frequency solutions in the high

density regime are non-monotonic. These results are interesting as, unlike the Hall

corrections plotted against differing s or m in Figs. 4.3-4.6, the behaviour of the

dispersion relations is strongly affected by the magnitude of the density. For high

density modes both positive and negative Hall solutions produce a negative Hall

correction - this behaviour was not seen in any of the cylindrical cases. The Hall

correction is not large as a fraction of the overall frequency, but as the corrections

grow in magnitude with decreasing aspect ratio then the frequency split between the

positive and negative modes may be measurable in a tokamak experiment. Further

investigation into the magnitude of the Hall correction frequency splitting in realistic

tokamak geometries, particularly spherical tokamaks, may yield interesting results.
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Chapter 6

Summary

In this thesis we have argued that the study of compressional Alfvén eigenmode

spectra and spatial structure is necessary to understand the impact that CAEs

have on the transport of energy and particles in fusion devices, and that Hall-MHD

theory gives a sufficient description of CAEs to capture the relevant physics to this

problem. We then described the design of Whales2, an MHD linear stability solver

that can solve for CAEs using the linearised cold ideal Hall-MHD equations cast

as wave-equations acting on normal modes of the plasma displacement. We have

outlined how the physical coupling of CAEs to the slow-magnetoacoustic and shear

Alfvén continua is supressed in Whales2 and shown it to be an effective tool for

producing pure CAEs. Unphysical spectral pollution was shown to be mitigated

through choice of numerical scheme. We have also demonstrated that Whales2 can

be used to solve the linearised ideal-MHD equations and that the approximation

to these equations in Whales2 is Hermitian. Whales2 also allows the user freedom

to choose the particular finite elements scheme and eigenvalue solver used in each

situation.

Chapters 4 & 5 of this thesis were concerned with demonstrating that the

output from Whales2 is in agreement with CAE theory, as well as establishing the

behaviour of the Hall term in simple MHD configurations. We have shown that

Whales2 has good agreement with analytically known results in a homogeneous

cylinder for both ideal- and Hall-MHD. Radial mode localisation was also measured

in Whales2 and contrasted with the predictions of two models for ideal-MHD. The

Mahajan model was shown to be closer to the output of Whales2 for steep density

curves, whereas the Coppi model gave better agreement for flatter density profiles.

Output from Whales2 applied to toroidal geometries also suggests the existence of

inboard poloidally localised modes in the variable b‖, which have been predicted in
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theory but haven’t been widely studied numerically.

We must also analyse the importance of the inclusion of the Hall-MHD terms

in Whales2. The results from Whales2 applied to cylindrical geometries indicate that

the Hall term can have a significant effect on the radius of localisation when the

density profile has a steep gradient, as shown in Fig. 4.11. Fig. 4.13 shows that

the Hall terms modify the eigenfunction noticeably in the presence of high pitch of

the magnetic field. These results contrast what is shown in Fig. 4.7, for a homoge-

neous equilibrium, where the eigenfunctions for both the ideal-MHD and Hall-MHD

output are not significantly different. From this we infer that the Hall terms have

a non-negligible effect on the MHD equations in cylindrical geometries for non-

homogeneous profiles. This conclusion is supported by evidence from measuring

the difference in eigenfrequency values for ideal-MHD-degenerate modes whose de-

generacy has been lifted by inclusion of Hall-MHD effects. The study of variable

poloidal magnetic field at the outer wall, Fig. 4.12, shows that the modes are all of

frequency ∼ 1 MHz, and for the highest poloidal magnetic field the frequency gap

between ideal-MHD-degenerate modes is ∼ 10 kHz. The numbers are comparable

to observed frequencies and splittings in MAST [2]. In toroidal geometries Whales2

shows that the Hall terms do little to modify the poloidal mode coupling present

in ideal-MHD, at least for modest values of the shaping parameters ε, κ, and τ .

The difference in eigenfrequency between ideal-MHD and Hall-MHD modes with

the same mode numbers are shown to reach values on the order of 1% of the ideal-

MHD frequency, with the splitting increasing as the aspect ratio of the tokamak

decreases. Overall, these results suggest that impact of the Hall terms on CAEs in

tokamaks is measurable and could be important in understanding such phenomena

as the fine frequency splitting of observed CAEs.

6.1 Future Work

Future work with Whales2 has two obvious directions in which to proceed - im-

provements made to the code itself in order to access new physics, or using the

code to further investigate new phenomena with its current capabilities. In terms of

improvements to the code, a modest start will allow for a broad range of interesting

investigations. In this thesis we made no comparison from Whales2 with experimen-

tally observed CAEs. This was mostly due to time constraints, but it has also been

noted that Solovev equilibria can produce poor representations of spherical tokamak

equilibria, in which we are most interested [82]. Future work should aim to incor-

porate equilibria into Whales2 that better represent spherical tokamaks such as the
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analytical equilibrium of Weening [82], or through integration of a numerical equi-

librium solver such as HELENA [83]. Whales2 can then be used to model the CAE

frequency differences measured in tokamak experiments. In particular, results from

WHALES have suggested that fine splitting of CAEs may be due to several CAEs

present with the same mode numbers [29]. A study to corroborate these results

could be instigated using several spherical tokamak equilibria to observe whether

the modes are also present in output from Whales2.

Another avenue of further work is the investigation of the CAE interaction

with fast-ions through the ion cyclotron resonance. The drawback of Whales2 is

that it is a linear code and so cannot self-consistently update after interacting with

the fast-ions. However, Whales2 can be used to calculate CAE structures to high

resolution and so is suitable for determining where the ion cyclotron resonance occurs

for particular fast-ion distributions. This can be done by pushing a distribution of

fast-ions in a particular plasma equilibrium with a particular CAE driven at an

amplitude that is varied between runs. By comparing the positions for the fast-

ion distribution, and the energy distribution of the particles in space, between the

different runs points of high wave-particle interaction will be seen as significant

deviations.
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putació, Universitat Politècnica de València, 2020.

[65] I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, “An en-

ergy principle for hydromagnetic stability problems,” Proceedings of the Royal

Society of London. Series A. Mathematical and Physical Sciences, vol. 244,

pp. 17–40, Feb. 1958.

[66] G. Strang, G. J. Fix, and D. S. Griffin, “An analysis of the finite-element

method,” Journal of Applied Mechanics, vol. 41, pp. 62–62, Mar. 1974.

[67] O. C. Zienkiewicz, R. L. Taylor, and J. Zhu. Elsevier, 2013.

[68] D. Liu and A. Bondeson, “Improved poloidal convergence of the MARS code for

MHD stability analysis,” Computer Physics Communications, vol. 116, pp. 55–

64, Jan. 1999.

[69] Y. Q. Liu, A. Bondeson, C. M. Fransson, B. Lennartson, and C. Breitholtz,

“Feedback stabilization of nonaxisymmetric resistive wall modes in tokamaks.

i. electromagnetic model,” Physics of Plasmas, vol. 7, pp. 3681–3690, Sept.

2000.

[70] W. Kerner, J. Goedbloed, G. Huysmans, S. Poedts, and E. Schwarz, “CASTOR:

Normal-mode analysis of resistive MHD plasmas,” Journal of Computational

Physics, vol. 142, pp. 271–303, May 1998.

[71] D. Borba and W. Kerner, “CASTOR-K: Stability analysis of Alfvén eigen-

modes in the presence of energetic ions in tokamaks,” Journal of Computational

Physics, vol. 153, no. 1, pp. 101–138, 1999.

129



[72] E. Strumberger and S. Günter, “CASTOR3D: linear stability studies for 2D

and 3D tokamak equilibria,” Nuclear Fusion, vol. 57, p. 016032, Nov 2016.

[73] C. Cheng and M. Chance, “NOVA: A nonvariational code for solving the MHD

stability of axisymmetric toroidal plasmas,” Journal of Computational Physics,

vol. 71, no. 1, pp. 124–146, 1987.

[74] H. M. Smith and E. D. Fredrickson, “Compressional alfvén eigenmodes in rotat-

ing spherical tokamak plasmas,” Plasma Physics and Controlled Fusion, vol. 59,

p. 035007, Feb. 2017.

[75] N. Gorelenkov, E. Fredrickson, W. Heidbrink, N. Crocker, S. Kubota, and

W. Peebles, “Discrete compressional Alfvén eigenmode spectrum in tokamaks,”

Nuclear Fusion, vol. 46, pp. S933–S941, Sept. 2006.

[76] B. Coppi, S. Cowley, R. Kulsrud, P. Detragiache, and F. Pegoraro, “High-

energy components and collective modes in thermonuclear plasmas,” Physics

of Fluids, vol. 29, no. 12, p. 4060, 1986.

[77] S. M. Mahajan and D. W. Ross, “Spectrum of compressional Alfvén waves,”

Physics of Fluids, vol. 26, no. 9, p. 2561, 1983.
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