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Abstract—This paper studies the multi-H∞ controls for the 

inputs-interference nonlinear systems via adaptive dynamic 

programming (ADP) method, which allows for multiple inputs to 

have the individual selfish component of the strategy to resist 

weighted interference. In this line, the ADP scheme is used to 

learn the Nash-optimization solutions of the inputs-interference 

nonlinear system such that multiple H∞ performance indices can 

reach the defined Nash equilibrium. Firstly, the 

inputs-interference nonlinear system is given and the Nash 

equilibrium is defined. An adaptive neural network (NN) observer 

is introduced to identify the inputs-interference nonlinear 

dynamics. Then, the critic NNs are used to learn the multiple H∞ 

performance indices. A novel adaptive law is designed to update 

the critic NN weights by minimizing the Hamiltonian-Jacobi- 

Isaacs (HJI) equation, which can be used to directly calculate the 

multi-H∞ controls effectively by using input-output data, such 

that the actor structure is avoided. Moreover, the control system 

stability and updated parameter convergence are proved. Finally, 

two numerical examples are simulated to verify the proposed ADP 

scheme for the inputs-interference nonlinear system. 

 
Index Terms—H∞ control, adaptive dynamic programming, 

multi-input system, neural networks, nonlinear system. 

 

I. INTRODUCTION 

einforcement learning (RL) refers to actors or agents 

modify their actions based on rewards and punishments in 

response to their actions in the environment. One typical RL 

method is known as the critic-actor structure, where two 

neuronlike adaptive elements are used to solve a difficult 
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learning control problem as presented in [1]. Lewis extended 

the actor-critic based RL method, and designed an optimal 

feedback control in [2], which is named as adaptive dynamic 

programming (ADP). It has been shown that ADP is an 

effective intelligent method to solve the optimal control of 

nonlinear systems because ‘dimension disaster’ in the nonlinear 

Hamiltonian-Jacobi-Bellman (HJB) equation is avoided [3], 

and it has been used to solve the practical engineering problem 

in [4]. The event-triggered tracking control problem was also 

addressed by using a single-network based ADP in [5]. 

However, previous work only considered the general nonlinear 

or linear system. In recent years, ADP has been also used in 

several multi-input systems, such as the nonzero-sum (NZS) 

game with constraint input in [6] and zero-sum game in [7]. The 

NZS optimal problems are to obtain a series of optimal 

strategies of nonlinear or linear games, such that the game 

system can track the predetermined target and the performance 

index of each input can reach the optimal value under the Nash 

equilibrium as presented in [8]. The linear NZS game is 

resolved with the multiple coupled Riccati equations, but the 

optimal problem of the nonlinear system is a more intractable 

issue because of the nonlinear characteristics. As an intelligent 

learning algorithm, ADP has provided a novel and effective 

method for NZS and zero-sum games. 

There have been some research work on the zero-sum games 

in [9], [10], where two players compete with each other to reach 

a Nash equilibrium. This situation is similar to the H∞ control 

problem because both of them have the minimax value 

functions. However, zero-game is a more comprehensive 

theory than H∞ control. In this case, one policy is obtained to 

try to resist interference such that the value function converges 

to zero or is minimized. A model-free Q-learning scheme was 

proposed in [11] to study the solution of the linear zero-sum 

system, where the system knowledge is avoided. Wei et al. 

applied the ADP structure into the two-player zero-sum game 

in [12], where the saddle-point is not necessary and the stability 

of the performance index is analyzed. An adaptive critic 

structure with unknown system information is then developed 

for the discrete-time (DT) zero-sum games in [13], where only 

the measured data is required for searching the saddle point. An 

integral ADP is presented to online determine the zero-sum 

Nash equilibrium in [14], where the offline learning capability 

is enhanced. Vamvoudakis et al. in [15] solved the bounded 

L2-gain problem with the zero-sum game theory using an online 

synchronous ADP algorithm. Liu et al. in [16] proposed an 

iterative ADP for DT zero-sum affine nonlinear systems, where 

Multi-H∞ Controls for Unknown 

Inputs-interference Nonlinear System with 

Reinforcement Learning 

Yongfeng Lv, Member, IEEE, Jing Na, Member,IEEE,  Xiaowei Zhao, Yingbo Huang, Xuemei Ren 

R 

mailto:lvyilian1989@foxmail.com
mailto:najing25@163.com
mailto:Yingbo_Huang@126.com
mailto:xmren@bit.edu.cn


 

three NNs are presented to approximate the action, the 

disturbance, and the performance index, respectively. All these 

reveal that ADP has been widely used to solve the H∞ control 

or zero-sum games recently.  

On the contrary, in the NZS game or optimal controls of 

multi-input system, multiple inputs try to cooperate with each 

other and have a selfish policy to optimize the performance 

index such that a saddle point can be obtained for all the value 

functions [17]. Vamvoudakis et al. applied an online iterative 

ADP method to solve the optimal strategy of cooperative game 

for multi-input system in [18], where the solutions of both the 

coupled Riccati equations and coupled Hamilton–Jacobi 

equations are studied, so that the Nash equilibrium is acquired. 

Song applied the integral reinforcement learning (RL) method 

with an asynchronous algorithm to study the strategy of 

nonlinear multi-player in [19]. A synchronous iterative RL 

method is introduced for the NZS game in [20]. Then, the 

finite-horizon optimal method is proposed to learn the 

nonzero-sum game solution with input constraints and partially 

known system dynamics in [6]. An online ADP method in [21] 

is developed for unknown NZS nonlinear games. ADP is an 

effective algorithm for solving the NZS games or optimal 

control problem of multi-input system. 

It is obvious that two different situations in the game theory 

have been widely studied in the literature [22], [23]: two-person 

zero-sum competition game and multi-person NZS cooperation 

game [24], [25]. However, the multi-input model including 

both game situations has not been fully considered in the 

previous work, which can be used to solve multiple H∞ 

controls of multi-input system with disturbance. Moreover, that 

allows for inputs to have an individual selfish average 

component of the strategy to resist interference. Nevertheless, 

there is a Nash equilibrium point between the multiple H∞ 

performance indicators of multiple inputs.  This multiple H∞ 

control theory can solve the optimal problem of the 

multi-driven servo system with disturbance that can be applied 

to the large radars, gantry planer, large shearer and other 

industry equipment. When the multi-motor driven load system 

suffers to the disturbance, the proposed multi-H∞ controls can 

provide an effective and robust control for the better 

performance as presented in [26]. 

To address this issue, this paper considers an 

inputs-interference nonlinear system, which allows for multiple 

inputs to have the individual selfish component of the strategy 

to resist disturbance. It is the extension and development of 

zero-sum and nonzero-sum game theory, and can provide an 

effective solution to the H∞ controls of the multi-input system 

with interference. This type of system can be widely found in 

engineering and economic fields. However, due to the coupling 

relationship, it is very difficult to use multiple inputs to resist 

the interference such that the multi-input system with 

disturbance can be stabilized in an optimal manner. The 

RL-based ADP algorithm presented in [26], [27] has been 

widely used to solve the optimal problem of multi-input system 

[6], [13], [28]. Therefore, this scheme can also provide an 

effective way for the optimal solution to the proposed the 

inputs-interference nonlinear system, such that the obtained 

inputs can make multiple H∞ performance indicators reach an 

equilibrium point, and satisfy the global optimization. 

Moreover, we prove that the proposed ADP-based 

inputs-interference nonlinear model is stable with Lyapunov 

theory.  

The contribution of the paper can be summarized as  

1) An inputs-interference nonlinear system is considered, 

where the multiple inputs cooperate with each other to resist 

interference. 

2) A weighted average method is proposed to realize the 

balanced resistance of each input to the interference 

according to its own dynamics. 

3) Multi-H∞ controls of the inputs-interference system are 

studied via the ADP algorithm, such that the system can be 

stabilized in an optimal manner with the disturbance. 

The paper is structured as follows. To address the multi-H∞ 

control issue, Section II firstly proposes the inputs-interference 

nonlinear model and defines the Nash equilibrium of multiple 

H∞ performance indices. Section III introduces an adaptive NN 

identifier to approximate the completely unknown 

inputs-interference nonlinear model. Section IV develops the 

ADP learning scheme to solve the coupled HJI equations, and 

obtained the optimal policies with the worst interference. 

Section V proves the stability of inputs-interference nonlinear 

model. Section VI shows numerical results. Section VII gives 

the conclusions. 

II. H∞ PROPERTY DEFINITION FOR INPUTS-INTERFERENCE 

NONLINEAR SYSTEM 

The studied multi-input nonlinear system with the 

interference is given as 

  1

( ) ( ) ( )
N

j j

j

x f x g x u k x 
=

= + +  (1) 

where nx   is the system state, m

ju   ( j N ) are the 

policy inputs, q   is the unknown bounded input 

interference, which can be caused by the system load, 

interference, or other external unknown factors. 2N   is a 

positive integer. ( ) nf x  , ( ) n m

jg x   and ( ) n qk x   

are dynamic information. Supposed that (0) 0f = , ( )f x , 

( )jg x , ( )k x  are Lipschitz continuous, and multi-input model 

(1) is controllable such that there exist continuous policies on 

  to asymptotically stabilize the system. 

The multi-input systems in practical engineering are usually 

subjected to external interference. In this system (1), the 

multiple inputs 1{ , , , , }j Nu u u  cooperate to resist the 

interference  . However, how to use multiple inputs to resist 

the interference is a very intractable problem. Because H∞ 

policy has the capability to solve the disturbance in the system, 

it can be used for the inputs-interference nonlinear system. H∞ 

policies  * * * *

1 , , , , ,i Nu u u   for the multi-input system seek 

for minimizing the value functions, simultaneously attenuating 

the worst interference, which can be regarded as a zero-sum 

game. Simultaneously, the multi-H∞ cost functions should 

reach a Nash equilibrium as the nonzero-sum game. Thus, the 

following definition is given. 

Definition 1 (
2L gain− ): There are some policies 

1{ }, , Nu u  for the multi-input system (1) that can make 

2L gain −   with a positive constant   if 
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1( ( ), ( ), ( )) ( )i N
t t

z x u u d d       
 

  , i    (2) 

where 
2

1 1
( ( ), ( ), , ( ))

NT T

i N i j ij jj
z x u u x Q x u R u  

=
= +   with 

symmetric positive definite matrices iQ  and ijR , and 

2( ) [ , )L t   + . 

To realize the balanced resistance of each input to the 

interference, we decouple the interference as 

1( ) ( ) ( ) ( )i N       = + + + + , i   (3) 

where ( )i   will be defined in the following content,  is the 

positive integer set. The decoupled interference can guarantee 

that every input resists part of the external interference such 

that all the H∞ performance indices reach a Nash equilibrium. 

Then, the infinite horizon cost functions of H∞ control for 

the inputs-interference system associated with each input is 

given as 

1( ( )) ( , , , , , , )i i i N
t

J x r x u u u d  


=  , i   (4) 

where 
22

1 1
( , , , , )

NT T

i N i j ij jj
r x u u x Q x u R u  

=
= + −  is 

the utility function. The H∞ policies  1{ , , , , }i Nu u u  will be 

obtained to minimize the cost functions, while   is obtained 

to maximize them. It can be formularized as 

*

1( ( )) minmax ( ( ), ( ), , ( ), , ( ), ( ))
i

i i i N
tu

J x r x u u u d


       


=  .

 (5) 

For system (1) and cost function (4),  1, , , ,i Nu u u are 

the admissible policies. 

The optimal policy sequence will be calculated such that all 

the H∞ indices of the inputs-interference system can be 

optimized and the equilibrium  * * * *

1 , , , , ,i Nu u u   can be 

researched. The optimal policies 
1{ , , }Nu u  will minimize the 

cost functions (4) while the interference ( )x  will maximize it. 

Thus, the optimal cost functions of each input are described as 

*

1( ) minmax ( , , , , , , )
i

i i i N
tu

V x r x u u u d


 


=  , i  . (6) 

The N-tuple of * * *

1{ ( ), , ( ), , ( )}i NV x V x V x
 
are known as an 

outcome of the H∞ policies for the inputs-interference system. 

The Nash equilibrium policies  * * *

1 , , ,Nu u   of the 

inputs-interference system are defined as  

Definition 2 (Nash Equilibrium) [29]: In the 

inputs-interference nonlinear system, the Nash equilibrium 

 * * * *

1 , , , , ,i Nu u u  is obtained, if  * * * *

1 , , , , ,i Nu u u   

satisfy the following inequalities 
* * * * * * *

1 1( , , , , , ) ( , , , , , )i i N i i NV u u u V u u u    

* * *

1( , , , , , )i i NV u u u  , i  .(7) 

It should be stressed that inequality (7) contains the 

information of both zero-sum and nonzero-sum games. On the 

Equilibrium, the optimal inputs  * * *

1 , , , ,i Nu u u  are the 

solutions to minimize the cost functions * ( )iV x , the worst 

interference is the solution to maximize the cost functions 
* ( )iV x . After Nash equilibrium  * * * *

1 , , , , ,i Nu u u   is 

obtained, other interference   will lead to a better cost 

function performance than * . To obtain the optimal policy 

sequence  * * *

1 , , ,Nu u   of the H∞ indices, the differential 

equation associated with each cost function of the 

inputs-interference nonlinear system is defined as 

( ) ( )1 1, , , , , , , , ,a a

i i N i i N iH x V u u r x u u  =    

( ) ( )1
( ) ( ) ( )

NT a

i j j ij
V f x g x u k x 

=
+  + + , i  (8) 

where /i iV V x =   , and a

i  is the interference policy with 

respect to the ith input, which is obtained by the decoupled 

equation (3). Thus, the Hamiltonian-Jacobi-Isaacs (HJI) 

function of each input is given by 

( ) ( )* * * * * *

1 10 , , , , , , , , ,a a

i i N i i N iH x V u u r x u u =  =    

( ) ( )* * *

1
( ) ( ) ( )

T N a

i j j ij
V f x g x u k x 

=
+  + + , i  .(9) 

It should be noted that the term *

1
( )

N

j jj
g x u

=  contains the ith 

input dynamic *( )i ig x u  such that ith optimal policy *

iu  and 

*a

i  can be calculated with the HJI equation (9). From (9), it 

can be obtained that 

* 1 *

*

1
0 ( )

2

Ti

i ii i i

i

H
u R g x V

u

−
=  = − 


, i   (10) 

*
0i

a

i

H




= 



* *

2

1
( )

2

a T

i ik x V


=  , i  . (11) 

It is denoted that  

* * *

2

1 1

( ) ( )1
( ) ( )

2( ) ( )

i ia T

i i iN N

j jj j

g x g x
k x V

g x g x
  


= =

= = 

 
.(12) 

From (3), it can be easily obtained that * *

1( ) ( )   = +  

* *( ) ( )i N   + + +  is the equilibrium worst interference 

policy of the cost function with H∞ property. We introduce a 

weighted method to obtain the worst disturbance of the 

inputs-interference nonlinear system such that the multiple H∞ 

policies get the saddle point. 

Remark 1: Although multi-input optimal policies have been 

addressed in some previous work, the H∞ controls with 

multiple performance indices are not considered. Because of 

the coupling relationship, it is very difficult to use multiple 

inputs to resist the interference such that the multi-input system 

with disturbance can be stabilized in an optimal manner. This 

paper proposes the H∞ property for the multi-input nonlinear 

system and solves its optimal problem such that each input can 

resist the interference averagely. We use the RL-based NN 

approximation to approximate the H∞ value functions 

associated with each input. Each optimal policy will minimize 

the value function itself and all the N optimal inputs reach an 

equilibrium point. Simultaneously, we obtain the worst 

interference policy related to each policy by using a weighting 

method, such that the coupled inputs can result in a Nash 

equilibrium, and satisfy the global optimization. 

Remark 2: Before the inputs obtain the optimal control 

strategies, the interference is regarded as an input such that it 

can be calculated to be the worst one with the proposed method 

in this paper. After that, the parameters of the optimal strategies 



 

are adjusted, the worst policy of interference is obtained, and 

the Nash equilibrium of the performance indices is reached. 

When the system is subjected to other interference after that, it 

will get better system performance and value functions. 

III. ADAPTIVE ESTIMATION NETWORK 

This section adopts the adaptive NNs to identify the 

unknown nonlinear multi-input system with the interference, 

where the system dynamic ( )f x , input dynamics ( )jg x  and 

( )k x  are approximated separately. We defined the identifier 

networks on a compact set   as follows.  

( ) ( ) ff x x = +  (13) 

( ) ( )j j j gjg x x  = +  (14) 

( ) ( ) kk x x = +  (15) 

where n k 
 , jn k

j




  and 
n k

  are the ideal 

weights. ( )
k

x   , ( ) jk m

j x 


  and ( )
k q

x R 
  are 

the activation functions. f , gj  and k  are the NN errors. 

According to the NN property in [30], [31], it can be known 

that the approximation errors f , gj  and k  will vanish 

as the NN neurons , ,jk k k   increase. 

The nonlinear multi-input model (1) with interference is 

reconstructed as  

1
( ) ( ) ( )

N

j j j fj
x x x u x     

=
= + + +   

1 j

N

g j kj
u  

=
+ + . (16) 

It can be written as a compact form. 

1( , , , , )T

N Tx W x u u  = +  (17) 

where 1[ , , , , ]T b n

NW    =   , 1( , , , , )Nx u u  =  

[ ( ),T x 1 1 ( ), , ( )T T T T

N Nu x u x  , ( )]T T T b nx  
 
with b k= +  

1 Nk k + + k+ , and 1 1T f g gN N ku u     = + + + +  is 

augmented  approximation error. 

Based on (17), one can claim that the nonlinear multi-input 

model (1) can be accurately approximated provided that the 

precise NN weights W can be yielded. Therefore, a novel 

estimation law suggested in [32]-[34] will be employed here to 

update the NN weight parameter W in equation (17). To achieve 

this purpose, a low-order low-pass filer ( ) 1/ ( 1)( )f ks= +  is 

introduced to obtain the smooth signal of the multi-input model. 

Thus, we define the following filtered variables as in [35].  

f f

f f

kx x x

k  

+ =


+ =

 (18) 

where 0k   is a constant of the adopted low-pass filter. From 

(17) and (18), we can obtain (ignoring the exponentially 

vanishing term stemming from the non-zero initial condition) 

that 

fT

f Tf

x x
W

k
 

−
+ =   (19) 

where Tf  is the filtered form with the low-pass filter 

Tf Tf Tk  + = , which is a bounded variable. Then, to design 

the adaptive law, it can be obtained that 

[ ]
fT T T

f f f Tf f

x x
W

k
    

−
+ =  (20) 

We define two auxiliary filtered matrices d dM   and 
d nN   as 

, (0) 0

[ ] , (0) 0

T

f f

f T

f

M M M

x x
N N N

k

  

 

 = − + =


−
= − + =



  (21) 

where 0   is a filter factor. M  and N  are the filtered 

variables of T

f f   and [ ]
f T

f

x x

k


−
 by using another filter 

( ) 1/ ( )( )f s = + . 

Then, one can derive the solution of (21) as 

( )

0

( )

0

( ) ( ) ( )

.( ) ( )
( ) ( )

t
t r T

f f

T
t ft r

f

M t e r r dr

x r x r
N t e r dr

k





 



− −

−− −

 =


 − 
 =  
  




 (22) 

The terms M , N  are involved in (21) can be taken as the 

forgetting factors; these forgetting factors can guarantee the 

boundedness of M  and N
 
given in (22) as presented in [33]. 

From (20) and (21), we design another auxiliary weight error 

matrix as 
ˆMW N = −   (23) 

where Ŵ  is the estimation NN weights. It can be derived that 
TN MW = −  (24) 

with ( )

0
( ) ( ) ( )

t
t r T

f Tft e r r dr  − −= − , which satisfies    

with 0  . It should be noted that 
Tf  will vanish when the 

neural nodes converge to infinity, i.e. 0 →  for 

, ,jk k k   →  . 

It can be known   contains the information of W as in [36]. 

Thus, we design the adaptive law as 

Ŵ = −  (25) 

where 0   is the learning scalar. Ŵ  is the estimation NN 

weight and ˆW W W= −  is the NN estimation error. For tuning 

the parameters in the adaptive law, we can increase the learning 

gain   to enhance the convergence rate of adaptive law, while 

too large gains may make the system output oscillating. 

Moreover, the forgetting factors M , N  are adopted to 

retain the boundedness of M , N , and thus   is generally set 

as a small positive constant. Moreover, as proved in  [23], [32], 

the NN weights in the identifier converge to a compact set 

around zero. 

Thus, the adaptive approximation of the unknown system (1) 

can be further presented as 

1

ˆˆ ˆ( ) ( ) ( )
N

j j j fj
x x x u x     

=
= + + +   

    
1

+
j

N

g j k Nj
u   

=
+ +   (26) 

where ̂ , ̂  and ˆ  are the approximations of  ,   and , 

respectively. These estimations can be obtained by the 

estimated NN weight Ŵ . 
N W =  is the approximation NN 

error. Thus, the approximation system can be represented as  



 

1

ˆ ˆˆ ˆ( ) ( ) ( )
N

j jj
x f x g x u k x 

=
= + +  (27) 

where x̂ , ˆ ( )f x , ˆ ( )jg x  and ˆ( )k x  are the approximated 

dynamics. 

Remark 3: In the practical engineering, the accurate model is 

usually difficult to obtain. Based on the measured input-input 

data, this paper uses NNs to identify the unknown multi-input 

system with disturbance. It should be noted that the interference 

is regarded as an input at the beginning adjustment of the 

multi-H∞ controls. In case that the disturbance is a load or other 

certain system, the initial signal should be added and its 

dynamic ( )k x  should be identified to obtain the worst one. In 

the other case that the disturbance is uncertain, the disturbance 

dynamic is equal to one, i.e. ( ) 1k x =  in multi-input system (1). 

Thus, it is unnecessary to identify the ( )k x , and the identified 

system (27) can be presented as 
1

ˆˆ ˆ( ) ( )
N

j jj
x f x g x u 

=
= + + . 

Remark 4: It should be noted that the disturbance cannot be 

identified separately in the studied system. In this multi-input 

system with interference, the disturbance is regarded as an 

input that needs to be calculated with the ADP scheme. Once 

the multi-H∞ controls  * * * *

1 , , , , ,i Nu u u   are obtained and 

the learning gains are tuned, *  is the obtained worst 

disturbance for the performance index ( )iV x . When the 

system surfers from other disturbance, the performance index 

satisfies 
2 22

1( ( ), ( ), ( )) ( )i N
t t

z x u u d d       
 

  , which 

means the system performance will be better than the worst 

disturbance * . 

IV. H∞ POLICIES DESIGN WITH GAME THEORY 

The multi-input system with interference has been identified 

by an adaptive NN structure. Because the H∞ optimal value 

function is difficult to obtain directly, this section uses a value 

function approximation (VFA) to solve this issue such that H∞ 

policies (10) and (11) can be calculated. To realize this purpose, 

the coupled HJI equations are constructed as 

( )*

1
( ) ( )

0 min max [ , , , , , ]
i

a

i i N i
u

H x V u u



   

=    

( )*

1, , , , a

i N ir x u u =   

( )*

1

ˆ ˆ( ( ) ( )
T NT T

i j j jj
V x x u   

=
+  +         

* *

1

ˆ ( ) + )
j

NT a a

f g j k Nj
x u      

=
+ + + + .    (28) 

Then, the H∞ policies of multi-input system with interference 

can be obtained that  

* 1 *1
ˆ0 ( )

2

i

i ii i i i

i

H
u R x V

u
 −

=  = − 


, i   (29) 

*
0i

a

H




= 



* *

2

1 ˆ ( )
2

a T

i ix V 


=  , i  . (30) 

From (3), (11) and (12), the weighted worst policy of 

interference can be obtained as  
* *

1
( ) ( )

N

ii
t t 

=
=    

*
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1

ˆ ( )1 ˆ[ ][ ( ) ]
2 ˆ ( )

N i i T

iNi

j jj

x
x V

x

 


  
=

=

 
 

=  
  




. (31) 

This equation uses a weighted algorithm to calculate the 

worst policy of interference, such that all the policies can reach 

the Nash equilibrium and the multi-input system with the 

interference can be stabilized in a nearly-optimal manner. Note 

that *

iV  cannot be calculated directly because of the 

nonlinearity and the dimensionality curse [37]-[40]. Hence, we 

use the NN to approximate it, which can be represented as 
*( ) ( )T

i ci ci ciV x W x = +  (32) 

with 1[ , , ] K

ci ci ciKW W W=   and 
1( ) [ ( ), , ( )]ci ci ciKx x x  =  

K . K  is the neuron number, and ci  denotes the 

approximated error. In this paper, we use NNs to approximate 

the optimal value function. Hence, the used ADP scheme 

belongs to HDP algorithm. Its time derivative is obtained as  
* T

ci ci ci ciV W  =  +   (33) 

where /ci ci x  =    and /ci ci x  =    are the partial 

derivatives of ci  and ci . l

ciW   is ideal critic weight 

parameters. ( ) l n

ci x   is the activation function. ci  is the 

critic network approximated error, l  represents the neuron 

number. It is denoted that ˆ
ciW  is the estimation of *

ciW , and 

ˆ
ci ci ciW W W= −  is the estimation error. Then, the approximation 

of derivative value function is written as 

ˆ ˆT

ci ci ciV W =   (34) 

Finally, the approximation H∞ policies of each index can be 

derived by 

11 ˆˆˆ ( )
2

T

i ii i i ci ciu R x W  −= −  , i   (35) 

2

1 ˆ ˆˆ ( )
2

a T T

i ci cix W  


=  , i  . (36) 

The obtained policies can ensure that the ith H∞ performance 

for a prescribed attenuation level  .  

Finally, the approximation weighted worst disturbance can 

be calculated from (12) and (31), which can guarantee that all 

the H∞ indices reach a Nash equilibrium as in Definition 2. 

  
1

ˆ( ) ( )
N

ii
t t 

=
=    
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1

ˆ ( )1 ˆ ˆ[ ][ ( ) ]
2 ˆ ( )

N i i T T

ci ciNi

j jj

x
x W

x

 
 

  
=

=

 
 

=  
  




. (37) 

We design an adaptive law to update the estimation ˆ
ciW  

based on the HJI equation. Then, the approximation HJI 

equations (28) with (33) can be represented as 

( )*

10 , , , , a

i N ir x u u = +  

( ) ( )*

1

ˆˆˆ ˆ( ) ( ) ( )
T NT T T T a

ci ci j j j Hij
W x x u x       

=
 + + +  (38) 

where
*

1
( )( )

j

NT a

Hi ci ci f g j kj
W u     

=
=  + + ˆ( )( ( )T

ci x  +   

*

1

ˆˆ ( ) ( )
N T T a

j j jj
x u x   

=
+ + + *

1
+ )

j

N a

f g j k Nj
u    

=
+ +  

is the HJI equation error. It is assumed that the HJI residual 



 

error in (38) is bounded with 
Hi Hib   for some positive 

constant Hib as in [15]. It should be stressed that the HJI 

equation (38) contains the information of approximated 

multi-input system with interference, such that the learning 

algorithm designed with this equation includes the system 

information and optimal theory. To facilitate the estimation 

algorithm, it is denoted that 
1

ˆ ˆ[ ( ) ( )
NT T T

i ci j j jj
x x u     

=
=  +   

*ˆ ( ) ]T ax + , and 
2

2 *

1

NT T a

i i j ij j ij
x Q x u R u  

=
 = + − . Then, 

the HJI equation is simplified by a linearization form as 
T

i ci i HiW   + = − . (39) 

Note that equation (39) contains the information of the 

identified system and the utility function. We multiply both 

sides by i , it can be obtained that  

T

i i i i ci i HiW     + = − . (40) 

Equation (40) will be used to construct the adaptive law of critic 

NN ciW . To this end, two filtered matrices l l

ciM   and 

l

ciN   are given as 

,

,

T

ci ci ci i i

ci ci ci i i

M M

N N

  

 

 = − +


= − + 

(0) 0

(0) 0

ci

ci

P

Q

=

=
 (41) 

where ci  is a filter factor. From (40), we define another matrix 

as 

ci ci ci ciM W N = + . (42) 

Noted that ci  is the filtered variable of i Hi −  in (40). 

Finally, the adaptive law is designed as  

ˆ
ci ci ciW = −   (43) 

where 0ci   is the learning gain. Moreover, one can obtain 

that 

ˆ
ci ci ci ci ci ci ciM W N M W  = + = − +

 (44)
 

where ˆ
ci ci ciW W W= − . We can conclude that ci  is obtained 

from vector 
ciW  and ci , and 

( )

0
( ) ( )ci

t
t r T

ci Hie r r dr
  − −

= −  

is bound with 
ci ci  , 0ci  . The critic NN weights 

converge to a compact set around zero, which has been proved 

in the [32] and will not be presented in this paper. 

Remark 5: In this paper, the NN weights are updated online 

synchronously. The identifier NN weights converge to their 

true values based on the input-output data as presented in 

Section III. Then, the critic NN weights are updated based on 

the HJ equations (28), which depend on the identified dynamics. 

Thus, the critic NN weights will converge to the true values 

after the identifier NN weights achieve convergence, as shown 

in the simulations. Moreover, all the critic NN weights are 

synchronously updated such that all the performances can come 

to a Nash equilibrium  * *

1 , , NV V , which is known as the 

static game.  

Remark 6: The general ADP method uses the actor-critic 

structure, where two NNs are used to derive the optimal control 

of nonlinear systems as in [27]. Moreover, the gradient 

algorithm is used to minimize the HJB equation in general ADP 

schemes to update the NN weights. Different to the general 

ADP methods, a newly developed adaptation algorithm driven 

by the NN weight errors are used to update the NN weights in 

the proposed ADP structure, such that the actor can be avoided 

and only a single-critic NN is used in this paper. 

V. STABILITY ANALYSIS 

From the above estimation results and the obtained H∞ 

policies, this section will analyze the stability of the 

inputs-interference model. Substituting the H∞ policies (35) 

and (37) into the system (1), it can be obtained that  

1

1

1

ˆ( ) ( ) ( )

1
ˆ( ) ( ){ [ ( )] }

2

N

j j

j

N
T T

j ii j ci ci

j

x f x g x u k x

f x g x R g x W





=

−

=

= + +

= + − 




  

2 1

1

( )1 ˆ( ){ [ ( )] [( )( )]}
2 ( )

N i iT T

ci ciNj

j jj

x
k x k x W

x

 


  
=

=

+ 


(45) 

where ˆˆ ( )j j jg x  =  and ˆ ˆ( ) ( )k x x=  are obtained from (25). 

Lemma 1 [33]: The matrices M  and 
ciM  are positive 

definite, i.e. 
min ( ) 0M   , and min ( ) 0ci ciM    for 

positive constants   and ci  in case the activation vectors   

and ci  are persistently excited (PE). 

Assumption 1 [41]: The NN weights W  and ciW , activation 

function  , ci  and the derivative ci  are bounded, i.e. 

dW W , 
d  , 

ci NiW W , 
ci Ni  , 

ci Mi   ; the 

NN error v  and v  are bounded, i.e. 
v b  , 

v vb  . 

Assumption 2 [42], [43]: The multi-input system dynamics 

satisfy the conditions that ( ) ,ff x b x ( ) ,j gjg x b
 

( ) kk x b
 
for positive constants 0fb  , 0gjb  , 0kb  . 

To show the conclusions of the proposed optimal solutions 

for the multi-input system with interference, the following 

Theorem is presented to show the convergence of the identifier 

and the derived optimal control actions, and control system 

stability. 

Theorem 1: For the multi-input system (1) with the 

interference, by using the H∞ policies (35), (36) and (37), the 

adaptive laws (25) and (43), if the regressor vectors   and ci
 

are PE, then  

1) The NN weight errors W  and 
ciW  are uniformly ultimately 

bounded (UUB); 

2) H∞ policies go closely to the truth values *

iu  and * ; 

3) The closed-loop inputs-interference model is stable. 

Proof: Consider the Lyapunov function as 

1 2 3 4 5L L L L L L= + + + +   

 ( )1 1

1

1 1

2 2

NT T T

ci ci cii
tr W W W W x x− −

=
=  +  +   

*

1 1

N NT T

i i ci ci cii i
K V    

= =
+ +  +     (46) 

where ( )1

1

1

2

TL tr W W−=  , 
1

2 1 1

( )

2

T
N N ci ci ci

cii i

W W
L L

−

= =


= =  ,  

i  , *

3 1

NT

i ii
L x x K V

=
= +  , 4

TL  =  , 
5 1

N T

ci ci cii
L  

=
=    



 

 with positive constants 0iK  , 0ci  , 0  , 0ci  . 

From (23) and (24), it can be obtained that 

ˆMW MW  = − +  MW = − + . Using Young’s inequality 
2 / 2ab a  +  2 / 2b   with 0  , from (25) we obtain 

( ) ( )
2

1

T T TL tr W MW tr W W W  = − +  − +   

2
21

( )
2 2

W
 




 − − + . (47) 

Furthermore, it can be concluded that 

1

2 1 1

1

2

1

( )

( )

N N T

ci ci ci cii i

N T T

ci ci ci ci cii

N T

ci ci ci cii

L L W W

W M W W

W W



 

−

= =

=

=

= = 

= − +

= − +

 




  

2
2

21 1

1
( ) ,

2 2

N N i ci

i cii i
i

W i
 


= =

 − − +    (48) 

where   and 2i  are the positive constants. The inequalities 

(47) and (48) imply that both W  and 
ciW  are UUB with 

appropriate  and i . Moreover, consider the inequality 

2 2/ 2 / 2ab a b   + , from (6) and (45) one may write 3L  as 

2
2

3 1

1
1

1

2
2

1

2

1
1

1

2 ( )

( )
2 { ( ) ( ) ( ){ [( ) ]}}

( )

( )

{ ( ) 2 ( )}

NT T T a

i i j ij j ij
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N iT a

j j iNj
j

jj

NT T a

i i j ij j ij

N
N gi

i m i f gj k Nj
j

gjj

L x x K x Q x u R u

g x
x f x g x u k x

g x

K x Q x u R u

b
K Q b b b x

b

 



 



=

=
=

=

=

=
=

=

= − + −

= + +

− + −

 − − + +



 



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22
2

1
1

1

[ ( ) ] [( ) ]
N

N gi a

m ij gj j k iNj
j

gjj

b
R b u b

b
  

=
=

=

− − + + 


.(49) 

From (24), we obtain T

f Tf   = − + . Then, it has 

( )4 2 2T T T

f TfL      =  =  − +   

22 1
(2 ) T

f Tf    


 −  − +  .  (50) 

Moreover, we conclude from (44) that T

ci ci ci Hi   = − + , so 

that  

( )5 2 2T T T

ci ci ci ci ci HiL      =  =  − +   

22 1
(2 ) T

ci ci ci ci Hi   


 −  − +    (51) 

Finally, it is able to obtain that 

2 2 2

1 2 3 4 5 1 2 3

1

N

i ci

i

L L L L L L a W a W a x
=

= + + + +  − − −   

  
22 2

4 5 6

1

[ ]
N

i ci j j

j

a a a u 
=

− − − +   (52) 

where 1

1

2
a 


= − , 2 2

1

2
i i

i

a 


= − ,  

3 1
1

1

{ ( ) 2 ( )}
N
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i m i f gj k Nj
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gjj
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a K Q b b b

b


=
=

=

= − + + 


, 

4 2a  =  − , 5 2i ci cia  =  − , 6 ( )j m ij gja R b= − ,  

2 2
2
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1
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1
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2 2
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N gj i cia

k iNj
i

gjj
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b

b
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=
=

=

 = + + + 


 

2 21 1T T

f Tf ci Hi  
 

+  +  . 

From the above equation, the upper bound variable   

contains the variables a

i , ( )t , ci , 
f Tf   and 

Hi , it is 

easily known that when the NN neurons , ,jk k k  , k  increase, 

the NN approximation errors 
Tf  , f , 

jg , k and ci  will 

converge to zero, such that the related terms Hi , ( )t , ci , 

f Tf   and 
f Tf   will converge to zero. Thus, as the neurons 

increase, the bound will converge to 

2
2

0 1

1

[( ) ]
N gj a

k iNj

gjj

b
b

b
 

=

=

 = +


, which is a term regarding 

to the ideal worst-case interference a

i . When the parameters 

K ,  , ci ,  , i  satisfy 

1 m

1
1

2 ( ) / ( )
N

gj

f gj k N
j

gjj

N

j

b
K b b b Q

b


=
=

=
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 
 


 −



− 


, 
1

2



 , 

1

2
i

i




 , 
2




  , 

2
ci

ci




  , 

and the NN weights W , 
ciW , the system state x  locate the 

outside of the following compact sets 

 1| /W W a  ,  2| /ci ci iW W a  ,  3| /x x a  , 

          4| / a    ,  5| /ci ci ia     (53) 

then 0L   holds. Thus, from Lyapunov theory as in [44], it 

can be known that the NN weights W , 
ciW , the system state x , 

the residual errors   and ci  are UUB. 

Moreover, H∞ policy errors will be analyzed. The following 

equation can be obtained as 
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11
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2
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The previous proof shows that the approximated system 

dynamics are bounded, the estimation errors i  and  are 

bounded. From equation (54) and (55), one can indicate that 
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1
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2
i i ii gi Ni ci

t
u u R b W b −
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ˆ( ) ]Ni i i Ni uix W   +   (56) 

( )*

2 1

1

( )1
lim { [ ]

2 ( )

N i

k Ni ciNjt
jj

g x
b W b

g x
  

 =→+

=

−  +


1

1

( )
ˆ[ ] ( ) }

( )

N i T

Ni ciNj

jj

g x
W x

g x
  

=

=

+ 


(57) 

with 0ui  , 0   from the identifier NN error and value 

function approximation structure. That completes the proof. It 

is noted that similar proofs can be found in [45], but where the 

identifier NN errors are not considered in the control 

convergence analysis. This paper considers both identifier 

errors and control design errors in the proof. 

VI. SIMULATION RESULTS 

This section validates the proposed H∞ policies for the 

multi-input system with interference via two numerical 

examples, where no prior knowledge of the system is known 

and only the input-output data is needed. The first linear system 

is adopted to evaluate the convergence of the proposed learning 

algorithm, while the second nonlinear example is dedicated to 

showcasing the applicability of the ADP-based H∞ policies for 

the proposed inputs-interference model. 

A. Liner example of two-input with interference 

Consider the following two-input linear affine system with 

an interference 

1 2

3
2

4
x x u u = − + + − . (58) 

The H∞ performance indices for the two-input system are 

defined as 

( )2 2 2 2 2

1 1 2 1
0

2 2 2 2*4 aJ x u u dt


= + + − ,   

( )2 2 2 2 2

2 1 2 2
0

4 aJ x u u dt


= + + − . (59) 

These value functions show that two inputs work together to 

resist the interference, and every policy minimizes the value 

function itself. When the system information (58) is not known, 

the adaptive NN identifier (17) and adaptive law (25) are used 

to approximate the unknown system model. The bounded 

activation function is 
1 2 1 1 2 2( , , , ) [ , , , ]T T T T

f g g kx u u u u      =  

 1 2, , ,
T

x u u = . The initial values are set as (0) 1x = , (0)W =  

 0.5 0.5 0.5 0.5
T

, 
1(0) [0 0 0]T

cW = , 
2 (0) [0.5 0 0]T

cW = . 

The learning gains in (25) are given by 0.001k = , 1 = , 

450I = , and we set 2 4 6

1 2( ) ( ) [ ]T

c cx x x x x = = . Fig. 1 

is the weight parameters in observer, it can be shown that 

1 2[ , , , ]T

f g g kW W W W W= [ 3 / 4,1,2, 1]T= − − , which go closely to 

the ideal values. We select the activation function as the 

high-order neural network function for the critic NN and 

preliminary information of system for the identifier. 

 
Fig. 1.  Parameter convergence of NN observer. 

 
Fig. 2.  Weights for index 1 with two inputs and interference. 

 

The adaptive law gains of critic NN are given by 10ci = , 

300 ([0.1, 1, 1])ci diag = , i = 1, 2. Fig. 2 shows the NN 

approximation weights of input performance index 1, Fig. 3 is 

the convergence profile of performance index 2, both them 



 

converge to some constant parameters, which indicates that the 

outcomes * *

1 2{ , }V V  of the optimal value functions of two inputs 

with interference are obtained. Fig. 4 represents the system 

trajectory x, which is stabilized to zero in a short time. The H 

policies and the worst policy of interference are presented in 

Fig. 5.  

 
Fig. 3.  Weights for index 2 with two inputs and interference. 

 
Fig. 4.  System state x. 

 
Fig. 5.  Obtained policies for each input and interference. 

After this simulation result is obtained, the learning gains in 

the control are tuned such that other interference will make 

better performance of cost function. In this game situation, 

inputs 1u  and 2u  cooperate. They cooperate to resist 

interference  .These simulations show that the proposed 

methods can observe the unknown linear system of two-input 

with interference, and the H∞ indices can be obtained. 

B. Nonlinear example of two-input with interference 

A two-input nonlinear example with interference is 

presented to illustrate the effectiveness of the proposed Nash 

conclusions. The inputs-interference model [15] is given as 
2 2

1
( ) ( ) ( ) ,ii i

x f x g x u k x x
=

= + +   (60) 

where 

2

2 2

2 1 2 1 2 1

( )
0.5 0.25 (cos(2 ) 2) 0.25 (sin(4 ) 2)

x
f x

x x x x x x

 
=  

− − − + + + 
, 

1

1

0
( ) ,

cos(2 ) 2
g x

x

 
=  

+ 
 

2 2

1

0
( )

sin(4 ) 2
g x

x

 
=  

+ 
, 

  
1

0
( )

sin(4 ) 2
k x

x

 
=  

+ 
. 

As in our previous work [46], ( )f x , 1( )g x , 2 ( )g x  and 

( )k x  are unknown. Define the initial states as 1(0) 1x = , 

2 (0) 1x = − , the RL-based NN initial values are given as 

1
ˆ (0)=[0.25,0,0.25]T

cW , 
2

ˆ (0)cW = [0.1,0.1,0.1]T
. The parameters 

of the adaptive identifier are given by 0.001k = , 2 = , 

500 =  with the regressor vector  

1 2( , , , ) [ ,fx u u  =  
1 1 2 2( ), , ]T T T T

g g ku x u      

2

2

2 1 2 1

0 0

(cos(2 ) 2)

x

x x x x


= 

+
2

2 1

0

(sin(4 ) 2)x x + 1 1

0

(cos(2 ) 2)u x +
 

2

2 1

0

(sin(4 ) 2)u x +
 

1

0

(sin(4 ) 2)

T

x




+ 
.  

Fig.6 shows the observer NN parameter convergence of 

1 2
ˆ [ , , , ]T

d f g g kW W W W W= , where the updated parameters 

converge to their true values, and the two-input unknown 

nonlinear system with interference is identified well. Besides, 

there exists an overshoot in Fig. 6, which is produced by the 

high-order terms in the activation function. However, the 

estimated weights in the high-order network are steady and 

converge to their true values in a short time. 

For the critic NN, we set 2ci = , ([1,0.1,5])ci diag = , 

1, 2i = , 1 2 8 = = , 1 2Q I= , 2Q I= , 
11 12 2R R I= =  and 

21 22R R I= =  as shown in [15, 20]. Fig. 7 is the critic NN 

weight convergence of H index 1 and Fig. 8 presents the 

weight of the index 2, which show that the updated NN weights 

are all convergent, and the H∞ indices of two-input nonlinear 

systems with interference are obtained. Fig. 9 presents the 

system state trajectories of the interference model, which 

converge to zero with small overshoot in a short time. The most 

appropriate policies of each input and interference are shown in 

Fig. 10, where it should be noted that inputs 1 and 2 work 

together to resist the interference. The optimal inputs 1 and 2 



 

are obtained to minimize the cost function, while the worst 

interference is to maximize the one. After the sequence 

 * * *

1 2, ,u u   is obtained, the other   will satisfy (2), the 

performance will be better. 

 
Fig. 6.  Observer NN parameters. 

 
Fig. 7.  Critic NN weight convergence of H∞ index 1. 

 
Fig. 8.  Critic NN weight convergence of H∞ index 2. 

 

 
Fig. 9.  System state trajectories. 

 
Fig. 10.  Policies of each input and interference. 

 

All performances of the simulation including the NN 

observer, the state trajectories, the index NN weight convergent, 

and the policies illustrate that the ADP scheme can provide an 

effective approximate optimal policy to make H indices of the 

unknown inputs-interference nonlinear game system reach the 

defined Nash equilibrium. Simultaneously, the linear 

simulation results are given to show that the proposed H∞ 

controls can not only solve the nonlinear system, but also suit 

the linear system. The simulation results show that the 

proposed methods are more universal in practical engineering. 

Moreover, to show the advantage of the adaptive algorithms 

in this paper over conventional gradient learning algorithms for 

the ADP synthesis, a comparison simulation is presented with 

the adaptive law and control design method in [45]. The results 

are shown as in Figs. 11-12. Fig. 11 shows the actor NN 

weights, which cannot converge to the true values. Fig. 12 is the 

system state performance. Compared with Fig. 9, it can be 

shown that the adaptive law used in this paper can achieve 

better performance with no overshoot. The comparison results 

show that the adaptive law in this paper can realize accurate 

convergence results and better state performance. 



 

 
Fig. 11 Actor NN weights with adaptive law in [45]. 

 
Fig. 12 System states with adaptive law in [45]. 

VII. CONCLUSION 

This paper considered an inputs-interference nonlinear 

system model, where the Nash equilibrium of the model was 

defined. A reinforcement learning (RL) based approximate 

dynamic programming (ADP) structure was used to study 

Nash-optimization point of the proposed inputs-interference 

nonlinear system. The unknown system dynamics were first 

identified by the parameter-estimation-based NN algorithm 

with the input-output data. Moreover, the critic NNs are 

adopted to synthesis the H∞ controls. All the weight parameters 

throughout the paper were updated with a new estimation 

algorithm. The parameter convergence and the uniformly 

ultimate boundedness of the controlled system were both 

proved. Finally, two examples showed the efficacy of the 

proposed H∞ controls for the studied inputs-interference 

nonlinear model and algorithm. In our future work, we will 

further extend this control method and learning algorithm to 

practical multi-motor driven system. 
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