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Abstract 

Intelligent Transportation Systems are leveraging the power of increased sensory coverage and computing power to deliver data-
intensive solutions achieving higher levels of performance than traditional systems. Within Traffic Signal Control (TSC), this has 
allowed the emergence of Machine Learning (ML) based systems. Among this group, Reinforcement Learning (RL) approaches 
have performed particularly well. Given the lack of industry standards in ML for TSC, literature exploring RL often lacks 
comparison against commercially available systems and straightforward formulations of how the agents operate. Here we attempt 
to bridge that gap. We propose three different architectures for TSC RL agents and compare them against the currently used 
commercial systems MOVA, SurTrac and Cyclic controllers and provide pseudo-code for them. The agents use variations of 
Deep Q-Learning and Actor Critic, using states and rewards based on queue lengths. Their performance is compared in across 
different map scenarios with variable demand, assessing them in terms of the global delay and average queue length. We find that 
the RL-based systems can significantly and consistently achieve lower delays when compared with existing commercial systems. 
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1. Introduction 

Traffic Signal Control (TSC) can be used to ensure the safe and efficient utilisation of the road network at 
junctions, where traffic can change directions and merge, having to manage conflicting individual priorities with the 
global needs of the network. Traffic congestion has a major financial impact. A study by INRIX (2019) shows that 
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traffic congestion in 2019 cost £6.9 billion in the UK alone, with similar patterns being observed in other developed 
countries. Cities around the globe are starting to explore the deployment of smart Urban Traffic Controllers (UTCs) 
that use real time data to adjust their stage schedule and green time duration. Traditionally, fixed time plans have 
been used, with systems that optimise the green time splits in a deterministic manner, requiring costly site-specific 
knowledge and typical demand profiles to provide effective control. These methods are not easily scalable and 
deteriorate over time as the traffic demand changes (Bell and Bretherton (1986)). With the development of induction 
loops, real time actuated UTCs were created in two variants: those that optimise single isolated intersections with 
systems such as MOVA (Vincent and Peirce (1988)), and those that cover multiple intersections such as SCOOT 
(Hunt et al. (1982)). To remedy the scalability problem, other systems are based on local rules, generating a self-
organising area traffic controllers, such as SurTrac (Smith et al. (2013)). With the breakthrough of Deep 
Reinforcement Learning (DRL) on complex problems such as Atari games or Go (Mnih et al. (2013); Silver et al. 
(2017)), attention has turned towards adapting these approaches to generate industry-grade controllers for 
traditionally noisy and systems such as TSC. This paper aims to reproduce some of the results of the main and most 
successful RL approaches on intersections of increasing complexity, while comparing different architectures of DRL 
TSC agents, since, given the complexity of their implementation, most available literature only deals with a single 
class. 

2. State of the Art 

2.1. Previous Work 

RL is an area of ML aiming to imitate how biological entities learn, where an agent evolves in an unknown 
environment, learning how to perform with no prior information, based on its interactions said environment. The 
agent aims to maximise a reward signal it receives as feedback for its actions. RL methods have been applied to 
TSC in experimental setups. While there is a variety of approaches in the literature that craft successful RL-based 
TSC systems, most do no present comparisons against commercial systems that are the concern of this paper. 

Recent works (Gao et al. (2017); Wan and Hwang (2018); Mousavi et al. (2017)) use neural networks as function 
approximators to avoid the dimensionality and computing limitations of table-based methods in large state-action 
spaces, showing DRL TSC can be more efficient than some earlier methods. The first two use discreet cell encoding 
vectors to represent the system, which are passed to a Convolutional Neural Network (CNN), whereas the second 
directly uses pixels in the same manner. Gao et al. (2017) compared the results against a fixed time and longest-
queue-first systems, finding RL to perform better, while Wan and Hwang (2018) found similar results comparing 
against a fixed time system. Liang et al (2018) used the same initial approach and compared against two different 
fixed-time systems, ranking better than both and providing some early evidence of the benefits of using Double 
DQN (Hasselt (2010)), Duelling architecture (Want et al. (2016)) and Prioritised Experience Replay (PER) (Schaul 
et al (2016)). Genders and Razavi (2018) evaluated different state representations, finding little difference in the 
performance of the agents as a result of the change in the magnitudes observed. Stevanovic and Martin (2008) 
compared SCOOT with a Genetic Algorithm-based control method. It is shown that SCOOT's performance can be 
surpassed by more adaptive Genetic Algorithms that, in turn, tend to be less effective at learning than RL methods. 
Despite these previous works, most results are hard or impossible to reproduce given the lack of industry standards 
in terms of simulators, performance metrics, the lack of availability of commercial algorithms for comparison and 
the fierce protection of their internal workings, and the lack of open-source code of proposed RL models. 

2.2. Commercial Traffic Signal Control Simulators and Optimisers 

PTV Vissim. Our simulations are conducted on PTV Vissim, a state-of-the-art commercial traffic simulator that 
can produce a wide variety of traffic demands over an array of signal controls and road traffic scenarios. We 
interface our RL algorithms via COM interface, using Tensorflow to construct deep learning agents. 

MOVA (Microprocessor Optimised Vehicle Actuation, Vincent and Peirce (1988)) is a traffic controller 
designed by TRL Software that aims to reduce delay on isolated junctions. The basic functioning of MOVA 
involves two induction loop detectors estimating the flow of vehicles in each lane. The system makes a virtual cell 
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representation of the lanes within MOVA, then computing a performance index based on the delays. If the index 
results lower than a certain threshold, the signal is changed to the next stage, otherwise the stage it is extended. 

Surtrac (Scalable URban TRaffic Control, Smith et al (2013)) is decentralised, with each intersection allocating 
green time independently and asynchronously based on incoming flows. Each intersection is controlled by a local 
scheduler and communicates projected outflows to the downstream neighbouring junctions, modelling vehicles as a 
sequence of clusters. This allows for locally balancing competing flows while creating "green corridors" by finding 
an optimal sequence such that the input jobs (ordered clusters) are cleared while minimising the joint waiting time. 

3. Methods 

The control problem can be formulated as a Markov Decision Process (MDP) defined in terms of a 5-tuple: A set 
of possible environment states 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆, a set of actions of the agent 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴, a stochastic transition function 𝒯𝒯𝒯𝒯𝓈𝓈𝓈𝓈,𝓈𝓈𝓈𝓈′

𝒶𝒶𝒶𝒶 ≜
𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1 = 𝑠𝑠𝑠𝑠′|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎), a scalar real valued reward function 𝑅𝑅𝑅𝑅(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 , 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡)  providing a performance measure 
to the transition generated by progressing into the state 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1 after taking action 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 while in state 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, and a discount 
factor γ that will provide the balance between immediate exploitation and approaches that aim to maximise returns 
over time. In the case of TSC, the MDP is modelled as partially observable, following an unknown stochastic 
transition function. 

The goal of the agents is to maximise their future discounted return 𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡 = ∑ γ𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡)+∞
𝑡𝑡𝑡𝑡=0  with γ ∈ [0,1] by 

learning a policy π, parametrised by the weights θ of the neural network performing the approximation of the 
reward function and mapping states to actions: π: 𝑆𝑆𝑆𝑆 → 𝐴𝐴𝐴𝐴. The reward function maps an action given a state to a 
reward scalar value: 𝑟𝑟𝑟𝑟: 𝑆𝑆𝑆𝑆 × 𝐴𝐴𝐴𝐴 → 𝑅𝑅𝑅𝑅 . The action-value function or Q-value is 𝑄𝑄𝑄𝑄π(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎) = 𝐸𝐸𝐸𝐸π[𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎] 
representing the total episodic return by following π after being in state 𝑠𝑠𝑠𝑠 and taking action 𝑎𝑎𝑎𝑎. 

Value Based RL Methods: Tabular value-based methods, such as Q-Learning, attempt to learn an optimal 
policy 𝑄𝑄𝑄𝑄π∗ = max

π
𝐸𝐸𝐸𝐸 [𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎] by iteratively performing Bellman updates on the Q-values of the individual 

state-action pairs: 𝑄𝑄𝑄𝑄π(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡) ← 𝑄𝑄𝑄𝑄π(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡) + α�𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 − 𝑄𝑄𝑄𝑄π(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡+1)�, with    𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 + γmax
𝑎𝑎𝑎𝑎′

𝑄𝑄𝑄𝑄π (𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎′, θ′), where 
α is the learning rate and 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 is the Temporal Difference (TD) target for the value function. 

Deep Q-Network (DQN) agents are an evolution of Q-Learning. The purpose of the agent is to find an 
approximation of 𝑄𝑄𝑄𝑄π ∗ by tuning the weights θ of a neural network. The agent keeps a second neural network, the 
target network, parametrised by the weights vector θ′ which is used to generate the TD targets. The experience 
replay memory increases training stability, obtaining samples that cover a wider range of situations and that can be 
used several times for gradient descent. Three additional modules have been applied to the agent to improve 
performance, Double Q Learning, PER, and Dueling Architecture. 

The DQN variants implemented are described on the algorithms displayed in Figs. 1a and 1b, and use the 
hyperparameters described in Fig. 2b. 

Policy Gradient Reinforcement Learning Methods: Policy Gradient in RL is based on the idea that obtaining a 
direct policy π(𝑠𝑠𝑠𝑠) mapping states to actions can be easier than estimating the value function or the state-action 
values. It has an added benefit in that it can learn stochastic policies, generating a probability distribution over the 
potential actions. The goal is to find the policy that maximises the reward. To do so one has to perform gradient 
ascent on the performance measure 𝐽𝐽𝐽𝐽 =  ∑ 𝐸𝐸𝐸𝐸[𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠0,𝑎𝑎𝑎𝑎)𝜋𝜋𝜋𝜋(𝑎𝑎𝑎𝑎|𝑠𝑠𝑠𝑠)]𝑎𝑎𝑎𝑎∈𝐴𝐴𝐴𝐴 . The Advantage Actor Critic (A2C) method tries 
to reduce the variance in the policy method by combining the direct mapping from actions with the value-based 
approximation method. The goal is to learn an actor πθ = 𝑃𝑃𝑃𝑃θ[𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠], and a critic 𝑉𝑉𝑉𝑉πθ(𝑠𝑠𝑠𝑠) = 𝐸𝐸𝐸𝐸θ[𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠] 
both of which are parametrised by the neural network weights vector θ. The pseudocode for the A2C agent can be 
found in Fig. 2a and its hyperparameters are displayed in Fig. 2c. 

3.1. State, Actions and Reward of the Agents 

All the experiments here presented use the same descriptions for state and reward calculation, differing in the 
number of actions available to them. The state of an intersection of 𝑙𝑙𝑙𝑙 lanes will be presented to the agents as a state 
vector 𝑠𝑠𝑠𝑠 ∈ 𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙+𝟙𝟙𝟙𝟙, in which each component represents the length of the queue of vehicles measured upstream from 
the traffic light in metres. The last component will be current stage being implemented. 
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Fig. 1. (a) DDQN pseudocode; (b) DDDQN pseudocode. 

 

Fig. 2. (a) A2C pseudocode; (b) DDQN/DDDQN hyperparameters (c) A2C Hyperparameters. 

While marginal improvements in performance can be obtained by using different variables for reward (Cabrejas-
Egea et al. (2020); Cabrejas-Egea and Connaughton (2020)), as per the discussion of Heydecker (2004), queues can 
be a reasonable choice for states and rewards, being able to transmit useful information to the agent relative to the 
mean rate of delay of the system. Based on this, the reward after an action will be calculated as the negative sum of 
the length of the queues of all lanes immediately upstream from the intersection: 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 = −∑ 𝑞𝑞𝑞𝑞𝑙𝑙𝑙𝑙,𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙 . The agents were 
trained using a fixed vehicle demand of 400 vehicles per hour on each of the incoming lanes. Both DQN variants 
were trained for 400 episodes, using an ϵ geometrically annealed from 1 to 0.001. The A2C agents were trained for 
100 episodes until they converged. Best performing agents in each class were selected for benchmarking and 
evaluated in scenarios lasting one hour. In order to compare the agents’ performance, a testing framework was 
defined. For each model, a demand profile will be created, following the shape found in a typical day using the 
methodology introduced in Cabrejas-Egea et al (2018) and expanded in Cabrejas-Egea and Connaughton (2019). 
The profile will be split on 10 segments of length 6 minutes. Each of these will correspond with a level of demand. 
The demand levels are obtained by setting the maximum demand the intersection will suffer, setting that magnitude 
to coincide with the peaks of the distribution that could be found on said typical day, and will be specified in each 
experiment's section. Random seeds are updated after every simulation episode, training or testing. The quantitative 
metrics on which the system will be evaluated are the Global Cumulative Delay (deviations from free-flow time) 
and the Average Queue Length generated during the evaluation. 
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representation of the lanes within MOVA, then computing a performance index based on the delays. If the index 
results lower than a certain threshold, the signal is changed to the next stage, otherwise the stage it is extended. 

Surtrac (Scalable URban TRaffic Control, Smith et al (2013)) is decentralised, with each intersection allocating 
green time independently and asynchronously based on incoming flows. Each intersection is controlled by a local 
scheduler and communicates projected outflows to the downstream neighbouring junctions, modelling vehicles as a 
sequence of clusters. This allows for locally balancing competing flows while creating "green corridors" by finding 
an optimal sequence such that the input jobs (ordered clusters) are cleared while minimising the joint waiting time. 

3. Methods 

The control problem can be formulated as a Markov Decision Process (MDP) defined in terms of a 5-tuple: A set 
of possible environment states 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆, a set of actions of the agent 𝑎𝑎𝑎𝑎 ∈ 𝐴𝐴𝐴𝐴, a stochastic transition function 𝒯𝒯𝒯𝒯𝓈𝓈𝓈𝓈,𝓈𝓈𝓈𝓈′

𝒶𝒶𝒶𝒶 ≜
𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1 = 𝑠𝑠𝑠𝑠′|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎), a scalar real valued reward function 𝑅𝑅𝑅𝑅(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 , 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡)  providing a performance measure 
to the transition generated by progressing into the state 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1 after taking action 𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 while in state 𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡, and a discount 
factor γ that will provide the balance between immediate exploitation and approaches that aim to maximise returns 
over time. In the case of TSC, the MDP is modelled as partially observable, following an unknown stochastic 
transition function. 

The goal of the agents is to maximise their future discounted return 𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡 = ∑ γ𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡)+∞
𝑡𝑡𝑡𝑡=0  with γ ∈ [0,1] by 

learning a policy π, parametrised by the weights θ of the neural network performing the approximation of the 
reward function and mapping states to actions: π: 𝑆𝑆𝑆𝑆 → 𝐴𝐴𝐴𝐴. The reward function maps an action given a state to a 
reward scalar value: 𝑟𝑟𝑟𝑟: 𝑆𝑆𝑆𝑆 × 𝐴𝐴𝐴𝐴 → 𝑅𝑅𝑅𝑅 . The action-value function or Q-value is 𝑄𝑄𝑄𝑄π(𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎) = 𝐸𝐸𝐸𝐸π[𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎] 
representing the total episodic return by following π after being in state 𝑠𝑠𝑠𝑠 and taking action 𝑎𝑎𝑎𝑎. 

Value Based RL Methods: Tabular value-based methods, such as Q-Learning, attempt to learn an optimal 
policy 𝑄𝑄𝑄𝑄π∗ = max

π
𝐸𝐸𝐸𝐸 [𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎] by iteratively performing Bellman updates on the Q-values of the individual 

state-action pairs: 𝑄𝑄𝑄𝑄π(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡) ← 𝑄𝑄𝑄𝑄π(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 ,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡) + α�𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 − 𝑄𝑄𝑄𝑄π(𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡+1)�, with    𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 = 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 + γmax
𝑎𝑎𝑎𝑎′

𝑄𝑄𝑄𝑄π (𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1,𝑎𝑎𝑎𝑎′, θ′), where 
α is the learning rate and 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡 is the Temporal Difference (TD) target for the value function. 

Deep Q-Network (DQN) agents are an evolution of Q-Learning. The purpose of the agent is to find an 
approximation of 𝑄𝑄𝑄𝑄π ∗ by tuning the weights θ of a neural network. The agent keeps a second neural network, the 
target network, parametrised by the weights vector θ′ which is used to generate the TD targets. The experience 
replay memory increases training stability, obtaining samples that cover a wider range of situations and that can be 
used several times for gradient descent. Three additional modules have been applied to the agent to improve 
performance, Double Q Learning, PER, and Dueling Architecture. 

The DQN variants implemented are described on the algorithms displayed in Figs. 1a and 1b, and use the 
hyperparameters described in Fig. 2b. 

Policy Gradient Reinforcement Learning Methods: Policy Gradient in RL is based on the idea that obtaining a 
direct policy π(𝑠𝑠𝑠𝑠) mapping states to actions can be easier than estimating the value function or the state-action 
values. It has an added benefit in that it can learn stochastic policies, generating a probability distribution over the 
potential actions. The goal is to find the policy that maximises the reward. To do so one has to perform gradient 
ascent on the performance measure 𝐽𝐽𝐽𝐽 =  ∑ 𝐸𝐸𝐸𝐸[𝑄𝑄𝑄𝑄(𝑠𝑠𝑠𝑠0,𝑎𝑎𝑎𝑎)𝜋𝜋𝜋𝜋(𝑎𝑎𝑎𝑎|𝑠𝑠𝑠𝑠)]𝑎𝑎𝑎𝑎∈𝐴𝐴𝐴𝐴 . The Advantage Actor Critic (A2C) method tries 
to reduce the variance in the policy method by combining the direct mapping from actions with the value-based 
approximation method. The goal is to learn an actor πθ = 𝑃𝑃𝑃𝑃θ[𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠], and a critic 𝑉𝑉𝑉𝑉πθ(𝑠𝑠𝑠𝑠) = 𝐸𝐸𝐸𝐸θ[𝐺𝐺𝐺𝐺𝑡𝑡𝑡𝑡|𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 = 𝑠𝑠𝑠𝑠] 
both of which are parametrised by the neural network weights vector θ. The pseudocode for the A2C agent can be 
found in Fig. 2a and its hyperparameters are displayed in Fig. 2c. 

3.1. State, Actions and Reward of the Agents 

All the experiments here presented use the same descriptions for state and reward calculation, differing in the 
number of actions available to them. The state of an intersection of 𝑙𝑙𝑙𝑙 lanes will be presented to the agents as a state 
vector 𝑠𝑠𝑠𝑠 ∈ 𝑅𝑅𝑅𝑅𝑙𝑙𝑙𝑙+𝟙𝟙𝟙𝟙, in which each component represents the length of the queue of vehicles measured upstream from 
the traffic light in metres. The last component will be current stage being implemented. 
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Fig. 1. (a) DDQN pseudocode; (b) DDDQN pseudocode. 

 

Fig. 2. (a) A2C pseudocode; (b) DDQN/DDDQN hyperparameters (c) A2C Hyperparameters. 

While marginal improvements in performance can be obtained by using different variables for reward (Cabrejas-
Egea et al. (2020); Cabrejas-Egea and Connaughton (2020)), as per the discussion of Heydecker (2004), queues can 
be a reasonable choice for states and rewards, being able to transmit useful information to the agent relative to the 
mean rate of delay of the system. Based on this, the reward after an action will be calculated as the negative sum of 
the length of the queues of all lanes immediately upstream from the intersection: 𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 = −∑ 𝑞𝑞𝑞𝑞𝑙𝑙𝑙𝑙,𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙 . The agents were 
trained using a fixed vehicle demand of 400 vehicles per hour on each of the incoming lanes. Both DQN variants 
were trained for 400 episodes, using an ϵ geometrically annealed from 1 to 0.001. The A2C agents were trained for 
100 episodes until they converged. Best performing agents in each class were selected for benchmarking and 
evaluated in scenarios lasting one hour. In order to compare the agents’ performance, a testing framework was 
defined. For each model, a demand profile will be created, following the shape found in a typical day using the 
methodology introduced in Cabrejas-Egea et al (2018) and expanded in Cabrejas-Egea and Connaughton (2019). 
The profile will be split on 10 segments of length 6 minutes. Each of these will correspond with a level of demand. 
The demand levels are obtained by setting the maximum demand the intersection will suffer, setting that magnitude 
to coincide with the peaks of the distribution that could be found on said typical day, and will be specified in each 
experiment's section. Random seeds are updated after every simulation episode, training or testing. The quantitative 
metrics on which the system will be evaluated are the Global Cumulative Delay (deviations from free-flow time) 
and the Average Queue Length generated during the evaluation. 
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Fig. 3. (a) Cross Straight Map; (b) Cross Triple Map. 

 

Fig. 4. Global Cumulative Delay in Single Cross for DQN variants, A2C, Surctrac, MOVA and the reference Cyclic controller.. 

4. Experimental Results 

Experiment 1: Cross Straight. The first test is conducted on the simplest junction, shown in Fig. 3a. The 
junction is composed on 4 lanes distributed in 4 arms. The controller has two stages, a north-south stage and an east-
west stage and turning is not allowed. The aim was to perform an initial performance comparison of DRL 
algorithms against MOVA, SUTRAC, and a cyclic controller. Here the goal for the agent was to exert fine adaptive 
timing control while extrapolating, rather than using complicated transitions between stages. MOVA was configured 
using loop detectors set in accordance with its manual, the implementation of Surtrac follows the work of Xie et al 
(2012). During evaluation, an average of 2120 vehicles are inserted in the model, with 2 peaks of demand of 3000 
veh/h for 6 minutes each.  

Figure 4 and Table 1 show the Global Cumulative Delay and average queue length for the network. As expected, 
the cyclic solution is outperformed by all adaptive controllers. The different controllers are on a par with a slight 
advantage for the DuelingDDQN which saves the community an average of 3000 seconds compared to MOVA on 
this hour of simulation, which represents on average 1-2 seconds per vehicle. RL agents also seem slightly more 
robust against changes in demand, producing lower slopes in the delay graphs in sections of extreme demand. The 
cyclic controller resulted in saturated lanes during both peaks and queues in excess of 150 metres during a great part 
of the simulation. MOVA suffered two moments in which at least a sensor was saturated coinciding with the peaks 
in demand, however the queues were close to lengths of around 50 metres during the most part of the simulator. 
Surtrac followed a similar pattern, having a single lane saturated coinciding with the second peak in demand. RL 
agents as suffered no saturation in any of their lanes during the length of the evaluation. They all managed a more 
balanced distribution of queues in their respective lanes, displaying a higher ability to balance loads during peak 
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times. Because of the simplicity of this 2 actions intersection, there is not a lot of delay difference between adaptive 
UTCs. As it will be appreciated shortly, these results will change when we consider more complex junctions. Given 
the difference in performance between the adaptive and cyclic controllers, which is expected to become greater on 
more complex intersections, and the increasing difficulty in setting them in large intersections, the cyclic controller 
will be omitted for the next examples. Given that the A2C agent has been clearly outperformed in this experiment by 
those based on the DQN architecture, the following experiments will focus on the performance of this last 
architecture compared with commercial systems. 

Table 1. Cumulative Delay and Average Sum of Queues in Single Cross Straight. 

Controller Cumulative Delay [s] Average Sum of Queues [m] 

Cyclic 143660.50 132.37 

MOVA 27187.53 60.59 

SURTRAC 29008.36 72.41 

A2C 26382.14 56.07 

DDQN 28303.94 50.11 

DDDQN 21286.86 49.42 

 

Fig. 5. (a) Global Cumulative Delay in Cross Triple - 4 actions. (b) Global Cumulative Delay in Cross Triple - 8 actions. 

Experiment 2: Cross Triple - 4 actions. This junction, as shown in Fig. 3b displays a much higher complexity 
than the intersection presented in the previous section. It is composed of 4 incoming links of 3 lanes each. In each 
incoming link, the left lane serves a dedicated nearside turning lane, the central allows for forward travel and the 
right lane allows for both offside turning and going straight. To mitigate this, the first experiment was run with 
agents that would take 4 queue inputs, plus the state of the traffic signal as state input. The action set was 
consequently limited to 4 different actions, being allowed only those that set to green the 3 traffic lights serving the 
lanes of the same incoming link. This allows for turning vehicles, but prevents more sophisticated stages from 
happening. During the hour of evaluation, the demand profile from the last experiment was used with a scaling 
factor of 1.5, an average of 3180 vehicles were introduced to the model, with 2 peaks of demand of 4500 
vehicles/hour for 6 minutes each. 

As it can be seen in Table 2 the UTC using MOVA performs poorly compared to the DQN-based agents. During 
this hour of simulation RL agents halve the cumulative delay, saving over 27 hours of travel time for all vehicles 
involved, an average of over 32 seconds of per vehicle. The length of the queues in those intersections controlled by 
RL agents during the test scenario were lower than the ones controlled by MOVA. Further in Figure 5a we see that 
DDQN significantly outperforms MOVA over a wide range of loads and traffic scenarios. It can be seen that the 
agent using Dueling Q-Learning has a better performance than that Dueling Double Q-Learning. 

Experiment 3: Cross Triple - 8 actions. In order to allow the use of a higher variety of stages in the controllers 
the map was reworked. All lanes were partitioned into their own independent links, allowing extra space for lane 
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Fig. 3. (a) Cross Straight Map; (b) Cross Triple Map. 

 

Fig. 4. Global Cumulative Delay in Single Cross for DQN variants, A2C, Surctrac, MOVA and the reference Cyclic controller.. 

4. Experimental Results 

Experiment 1: Cross Straight. The first test is conducted on the simplest junction, shown in Fig. 3a. The 
junction is composed on 4 lanes distributed in 4 arms. The controller has two stages, a north-south stage and an east-
west stage and turning is not allowed. The aim was to perform an initial performance comparison of DRL 
algorithms against MOVA, SUTRAC, and a cyclic controller. Here the goal for the agent was to exert fine adaptive 
timing control while extrapolating, rather than using complicated transitions between stages. MOVA was configured 
using loop detectors set in accordance with its manual, the implementation of Surtrac follows the work of Xie et al 
(2012). During evaluation, an average of 2120 vehicles are inserted in the model, with 2 peaks of demand of 3000 
veh/h for 6 minutes each.  

Figure 4 and Table 1 show the Global Cumulative Delay and average queue length for the network. As expected, 
the cyclic solution is outperformed by all adaptive controllers. The different controllers are on a par with a slight 
advantage for the DuelingDDQN which saves the community an average of 3000 seconds compared to MOVA on 
this hour of simulation, which represents on average 1-2 seconds per vehicle. RL agents also seem slightly more 
robust against changes in demand, producing lower slopes in the delay graphs in sections of extreme demand. The 
cyclic controller resulted in saturated lanes during both peaks and queues in excess of 150 metres during a great part 
of the simulation. MOVA suffered two moments in which at least a sensor was saturated coinciding with the peaks 
in demand, however the queues were close to lengths of around 50 metres during the most part of the simulator. 
Surtrac followed a similar pattern, having a single lane saturated coinciding with the second peak in demand. RL 
agents as suffered no saturation in any of their lanes during the length of the evaluation. They all managed a more 
balanced distribution of queues in their respective lanes, displaying a higher ability to balance loads during peak 
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times. Because of the simplicity of this 2 actions intersection, there is not a lot of delay difference between adaptive 
UTCs. As it will be appreciated shortly, these results will change when we consider more complex junctions. Given 
the difference in performance between the adaptive and cyclic controllers, which is expected to become greater on 
more complex intersections, and the increasing difficulty in setting them in large intersections, the cyclic controller 
will be omitted for the next examples. Given that the A2C agent has been clearly outperformed in this experiment by 
those based on the DQN architecture, the following experiments will focus on the performance of this last 
architecture compared with commercial systems. 

Table 1. Cumulative Delay and Average Sum of Queues in Single Cross Straight. 

Controller Cumulative Delay [s] Average Sum of Queues [m] 

Cyclic 143660.50 132.37 

MOVA 27187.53 60.59 

SURTRAC 29008.36 72.41 

A2C 26382.14 56.07 

DDQN 28303.94 50.11 

DDDQN 21286.86 49.42 

 

Fig. 5. (a) Global Cumulative Delay in Cross Triple - 4 actions. (b) Global Cumulative Delay in Cross Triple - 8 actions. 

Experiment 2: Cross Triple - 4 actions. This junction, as shown in Fig. 3b displays a much higher complexity 
than the intersection presented in the previous section. It is composed of 4 incoming links of 3 lanes each. In each 
incoming link, the left lane serves a dedicated nearside turning lane, the central allows for forward travel and the 
right lane allows for both offside turning and going straight. To mitigate this, the first experiment was run with 
agents that would take 4 queue inputs, plus the state of the traffic signal as state input. The action set was 
consequently limited to 4 different actions, being allowed only those that set to green the 3 traffic lights serving the 
lanes of the same incoming link. This allows for turning vehicles, but prevents more sophisticated stages from 
happening. During the hour of evaluation, the demand profile from the last experiment was used with a scaling 
factor of 1.5, an average of 3180 vehicles were introduced to the model, with 2 peaks of demand of 4500 
vehicles/hour for 6 minutes each. 

As it can be seen in Table 2 the UTC using MOVA performs poorly compared to the DQN-based agents. During 
this hour of simulation RL agents halve the cumulative delay, saving over 27 hours of travel time for all vehicles 
involved, an average of over 32 seconds of per vehicle. The length of the queues in those intersections controlled by 
RL agents during the test scenario were lower than the ones controlled by MOVA. Further in Figure 5a we see that 
DDQN significantly outperforms MOVA over a wide range of loads and traffic scenarios. It can be seen that the 
agent using Dueling Q-Learning has a better performance than that Dueling Double Q-Learning. 

Experiment 3: Cross Triple - 8 actions. In order to allow the use of a higher variety of stages in the controllers 
the map was reworked. All lanes were partitioned into their own independent links, allowing extra space for lane 
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changes. While these modifications allowed using information from all lanes in an akin manner to what modern 
sensors would achieve, due the lane changing limitations, direct comparisons with Experiment 2 must be handled 
with care. Both models share rough geometry, but the lanes layout is changed and so are the routing possibilities. 

 

 

Fig. 6(a) Queue length by demand level in Cross Straight. (b) Queue length by demand level in Cross Triple. 

Table 2. Cumulative Delay and Average maximum Queue length in Single Cross Triple – 4 actions. 

Controller Cumulative Delay [s] Average Max Queue [m] 

MOVA 260257.65 179.27 

MOVA 135220.91 153.58 

DDDQN 155563.22 128.20 

 
The results presented below, use DQN agents taking 12 queue length inputs plus the state of the signal. There are 

8 different stages. Here there are 4 additional stages available for non-conflicting cross traffic. No specific stage 
order is enforced, and the agents are free to change between any combination of stages.  

Table 3. Cumulative Delay and Average maximum Queue length in Single Cross Triple – 8 actions. 

Controller Cumulative Delay [s] Average Max Queue [m] 

MOVA 165456.44 339.41 

MOVA 72642.59 123.52 

DDDQN 71245.61 119.86 

 
The RL agents display a similar gap in performance with MOVA as in the previous experiment, with both classes 

benefiting from the increased actions pool. RL agents manage to generate about a third of the delay produced by 
MOVA. While this appears to be a great success, these results have to be put into context. MOVA has a lot of 
internal parameters meant to be fine-tuned by a traffic engineer with site-specific knowledge. Our settings did 
produce a successful control loop, operating in line with what was expected of the configuration process. None of 
the RL agents has been fine tuned to the level that would be expected during commercial operation. The neural 
depth, width and activations weren’t optimised, meaning that the RL agents can still be improved upon. 

5. Discussion 

Several neural network architectures for RL controllers were tested. The agents did not require extensive or 
complex configurations to adequately control traffic junctions, outperforming the commercial controllers. RL agents 
showed great stability and robustness to control situations within their training envelope as well as outside of it. 
Additionally, agents trained on relatively low uniform demand showed they can perform better than commercial 
systems during evaluation tests that included variable demand 5 times higher than experienced during training. 

In Experiment 1 MOVA and the RL agent following a DuelingDDQN architecture obtained very similar results, 
with a slight advantage for the RL agent. Experiment 2 implies less granularity in the data and makes the control 
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task more challenging. The results followed the same pattern with a DuelingDDQN agent obtaining the best 
performance over an array of loadings, despite the lower resolution in the input data. Experiment 3 introduced a 
much more complex intersection. Once again RL agents obtained significantly better results than MOVA, with the 
DuelingDDQN agent obtaining the lowest global and stop delay. The gap between the performance of MOVA and 
RL agents is increased here with respect to the last experiment. Most likely reasons are higher granularity in the data 
and extra actions being available to the agent, allowing it to display more complex sequences of actions.  

We find that Reinforcement Learning applied to UTC can significantly outperform current adaptive traffic 
controllers in realistic commercial simulation software. These experiments provide credible evidence that 
Reinforcement Learning based UTC will be part of the next generation of traffic signal controllers. 
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changes. While these modifications allowed using information from all lanes in an akin manner to what modern 
sensors would achieve, due the lane changing limitations, direct comparisons with Experiment 2 must be handled 
with care. Both models share rough geometry, but the lanes layout is changed and so are the routing possibilities. 
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