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Abstract—In this paper, a novel nonlinear model-based 

predictive controller without speed/position sensors is designed 

for control of a wind turbine permanent magnet synchronous 

generator (PMSG) and grid. Here, both grid and generator sides 

are controlled via a predictive mechanism including an 

optimization subject to nonlinear constraints of current and 

voltage amplitudes as well as the harmonic distortion magnitude 

of currents. To have a sensorless design, a Kalman filter is also 

designed. First, an extended Kalman filter (EKF) is used to 

estimate the speed and then an augmented extended Kalman 

filter (AEKF) is designed to estimate the flux without the need to 

add complex equations. The simulation results show an 

acceptable performance of the proposed method despite the 

changes in the reference speed and disturbance. 

Index Terms--Augmented extended Kalman filter, nonlinear 

predictive control, permanent magnet synchronous generator, 

wind turbine. 

I. INTRODUCTION 

Today, with the growth in the population and improved 
standard of living and human welfare, the need for energy 
resources has significantly increased. However, due to the 
environmental problems and the exhaustible nature of fossil 
fuels, it is clear that clean and renewable energies should be 
taken into account as alternative sources. Advances in power 
electronics and their application in the wind energy field have 
made it possible to use variable speed turbines. Wind turbine 
equipped with a permanent magnet synchronous generator is 
one of the most popular types. Advantages of wind turbines 
based on PMSGs are high power factor, power generation at 
any wind speed, reduced maintenance cost due to the removal 
of the gearbox as a major fault source in wind turbines, proper 
performance under short-circuited output and variable wind 
speed conditions and low volume. Various methods have been 
proposed for control of these types of turbines [1]. 
Nonetheless, one of the most important issues in controlling 

PMSG is the requirement for the accurate information of rotor 
speed and position, commonly measured by an encoder and a 
tachometer. The sensors required for this measurements 
reduce reliability and safety and increase the overall cost, 
dimensions and noise pollution of the system. For this reason, 
recent studies on sensorless control methods have attracted the 
attention of researchers and several methods for speed and 
position estimation have been studied in articles [2]. 

In [3], the particle swarm optimization (PSO) algorithm is 
used to optimize the parameters of a proportional-integral (PI) 
controller to reach the maximum power point (MPP) in the 
variable speed wind turbine based on PMSG. Feedback 
linearization-based control is designed to track the MPP in a 
wind turbine based on PMSG [4]. In this method, the feedback 
controller coefficients are obtained using PSO. The proper 
performance of the proposed method is shown in variable 
wind speeds. In [5], an internal model feedback is used to 
control a wind turbine based on PMSG. In this method, the 
state feedback coefficients are optimally determined from 
linear quadratic regulator path to minimize the DC current 
tracking error. The back-propagation block method has been 
used to control the PMSG sensor in the wind turbine [6]. The 
radial basis function (RBF) neural networks are also used for 
speed estimation. In [7], the recursive least square estimation 
algorithm is designed for sensorless control of a wind turbine 
based on PMSG. The simulation results show the high 
accuracy of this algorithm in speed estimation. To achieve the 
MPP in the wind turbine with PMSG, generalized nonlinear 
Levenberg observer and PI controller has been used [8]. In 
this method, the speed of the generator is estimated using 
system current and voltage and employing the nonlinear 
dynamic model of the generator and nonlinear observer gain. 
The model-based predictive control (MPC) is presented for 
controlling the currents and speed of a wind turbine based on 
PMSG is presented in [9]. 
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Predictive control along with extended Kalman filter has 
been utilized in [10] for speed control and estimation of a 
wind turbine with a back-to-back inverter type PMSG. Dead-
beat predictive controller and conventional predictive 
controller are used for torque control on the generator and 
power control on the grid sides respectively. The controller is 
implemented using FPGA on an experimental system and it 
has proved satisfactory performance. The MPC with a dead-
beat structure is presented in [11] for a wind turbine with 
PMSG. Authors in [12] use robust predictive control for 
sensorless surface control of a PMSG. In this method, speed 
and position estimation of the rotor is carried out using an 
EKF while to encounter the model parameters changes and/or 
unmodeled dynamics a disturbance observer is employed.  

A finite-time and sensorless predictive controller is used 
for wind turbine based on PMSG in [13]. The study exploits a 
reference model adaptive observer to estimate the speed and 
position of the rotor. Performance of three control methods, 
including integral sliding mode control, finite-time MPC, and 
conventional PI controller are compared. According to 
simulation results, integral sliding mode controller provides a 
better tracking performance. However, implementation of the 
model-based predictive controller is much simpler. [15] 
reviews the estimation methods for wind turbines based on 
PMSG. In this paper, estimation methods such as single-order 
and quadratic polynomials, neural networks such as multilayer 
perceptron networks, RBF, adaptive neuro-fuzzy inference 
systems, nonlinear observers like EKF, recursive least square 
algorithm, maximum probability estimation, unknown input 
observer, PSO filter, and to name but a few, are analyzed and 
a summary of their characteristics are described. In [16], 
another classification for speed estimation methods for 
PMSGs is introduced. Based on [16], open-loop methods 
include algebraic and inductance- and flux-based methods, 
while closed-loop methods include disturbance observer-based 
control (DOBC), sliding mode, adaptive reference model, 
EKF, and state observers. In [17, 18], unscented Kalman filter 
is used for speed estimation of a PMSG in a wind turbine. 
Instead of linearization around the previous estimated point, 
the filter benefits an unscented transformation and the 
statistical characteristics of the estimated point. Refs. [19-22] 
employ a constrained nonlinear predictive control for control 
of biped robots and doubly-fed induction generators (DFIGs).  

Considering the abovementioned challenges of a 
sensorless design for PMSG-based wind turbine, a nonlinear 
MPC method is proposed in this paper to control both the 
PMSG and grid sides. The novelty of this study is that the cost 
function of the proposed controller is selected with multiple 
objectives: tracking the current and speed reference paths, 
optimizing the input voltages, and taking into account the 
physical constraints of maximum allowable current ripple, as 
well as maximum allowable voltage and current. In other 
words, this design includes a constrained nonlinear 
optimization technique which has not been addressed for this 
type of generators before. To boost this design, an EKF is 
used to estimate the speed and position of the rotor. Due to the 
changes in the flux caused by temperature variations and its 
direct impact on the prediction equations of the controller, flux 
estimation is performed online. The other feature of the 

proposed design which makes it superior to the available 
studies is that in the suggested method, the speed, position, 
and flux are estimated simultaneously by adding only the flux 
estimation equation to Kalman filter equations and there is no 
need to add a new observer or parameter identification 
methods. This simultaneous state estimation and parameter 
identification using the Kalman filters have not been 
previously used for these systems as well.  

Different sections of the paper are organized as follows. 
Section 2 describes the dynamic model of the wind turbine 
based on PMSG. Then, the nonlinear MPC, the cost function 
and the design constraints are given in Section 3. The design 
procedure of the augmented EKF for flux estimation is 
explained in Section 4. Simulation results of the proposed 
method are given and analyzed in Section 5. Finally, Section 6 
provides the conclusions of the paper. 

II. DYNAMIC OF A WIND TURBINE BASED ON PMSG 

A PMSG based wind turbine includes a synchronous 
generator (SG), where several permanent magnet (PM) 
components instead of an exciting winding are used on the 
rotor for supplying the rotor field. To establish a variable 
speed operation, a back-to-back inverter is embedded to 
connect the machine stator to the electrical grid. These 
inverters include s generator-side inverter and a grid-side 
inverter. The machine-side inverters control the generator so 
that the maximum possible energy is extracted from wind, 
while the grid-side inverter is responsible for controlling the 
DC-link voltage and reactive power exchanged with the grid. 
The advantage of using an inverter is to completely separate 
the turbine and gird and facilitate controlling the grid and the 
generator individually. Fig. 1 shows a schematic of the 
mentioned turbine. 

 

Figure 1.  Schematic of a wind turbine based on PMSG 

A.  Permanent Magnet Synchronous Generator Model 

Equations for PMSG expressed in d-q axes are given as 
follows [11]: 

( )
1sd

sd s sd sq sq

sd

di
V R i p L i

dt L
= − +  (1) 

( )
1sq

sq s sq sd sd r

sq

di
V R i p L i p

dt L
 = − − +  (2) 

( )
1

r sq L

d
p i f T

dt J


 = − −  (3) 

d

dt


=  (4) 

where sdi and sqi are currents, sdV and sqV are voltages, and 

sdL  and sqL are stator inductances of d-q axes. sR denotes 

AC/DC DC Link DC/AC 

PMSG Grid 
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the stator resistance,   and   are the angular speed and 

position of the rotor, r is the flux of the permanent magnet, 

J is the inertia coefficient, f shows the friction coefficient, 

p is the number of pole pairs, and LT  represents the load 

torque. Eqs. (1) to (4) can be written in the state space form: 

( ),

         

sx f x V

y Cx

=

=





 (5) 

where 
T

, , ,sd sqx i i   =  
is the vector of state variables, 

C is the output matrix, 
T

,s sd sqV V V =  
is the input matrix, 

and f is a nonlinear function as follows. 

( )

( )

( )

1

1

1

sd s sd sq sq

sd

sq s sq sd sd r

sq

r sq L

V R i p L i
L

V R i p L i p
f L

p i f T
J



 

 



− +

− − +
=

− −

 
 
 
 
 
 
 
 
 
  

 

1 0 0 0

0 1 0 0
C =

 
 
 

 

(6) 

B. Grid-side Model 

The mathematical model of the grid side on d-q axes is 
expressed as follows [11]: 

( )
1gd

gd g gd g g gq convd

g

di
V R i L i V

dt L
= − + −  (7) 

( )
1gq

gq g gq g g gd convq
g

di
V R i L i V

dt L
= − − −  (8) 

g gd gd gq gqP V i V i= +  (9) 

g gq gd gd gqQ V i V i= −  (10) 

where gdi  and gqi  are currents, gdV  and gqV are grid 

voltages, convdV  and  convqV  are output voltages of the 

inverter on d-q axes, g shows the angular frequency of the 

grid voltage, gR and gL are resistance and inductance of the 

filter used on the grid side, and gP and gQ are active and 

reactive power of the grid. The DC-link voltage dcV is 

calculated as: 

dc
dc s g

dV
CV P P

dt
= −  (11) 

where sP  is the output power of the generator inverter and 

C is the capacity. Eqs. (7) to (11) can be written in the state 

space form: 

( ), ,g g g g sx f x V P=  (12) 

where 
T

, ,g gd gq dcx i i V =  
 is the vector of state variables, 

T
,g gd gqV V V =  

 represents the input vector, and gf is a 

nonlinear function as follows. 

( )

( )

1

1

gd g gd g g gq convd

g

gq g gq g g gd convqg

g

s gd gd gq gq

dc

V R i L i V
L

V R i L i Vf
L

P V i V i

CV





− + −

− − −=

− −

 
 
 
 
 
 
 
 
  

 (13) 

III. NONLINEAR MODEL-BASED PREDICTIVE CONTROL 

In recent decades, predictive control methods have been 
significantly and widely addressed in the research and control 
of industrial systems. An important feature of predictive 
control is the consideration of saturation and the ability of 
actuators to produce control inputs. Regarding the prediction 
of future output, this method is much suitable for systems 
with varying reference inputs as well as for systems subject to 
disturbance. This method has the capability of dealing with 
the linear and nonlinear physical and practical constraints of 
the system for obtaining the control signal and provide a 
desired output. The following three items are the 
fundamentals of the predictive control: 1) Explicit use of 
system model for predicting the system's future outputs 
during the prediction horizon, 2) Calculation of the sum of 
the future control signal by minimizing the cost function 
based on the difference between the system's future outputs 
and the determined suitable values, 3) Applying the first 
optimized, calculated control signal to the system and 
repeating the whole prediction and optimization cycle. 

A. Prediction Model 

Based on the use of constrained optimization function 
fmincon in MATLAB, the following discrete predictive 

model is taken into account, where sT  is the sampling time.  

( ) ( ) ( )1 , s sx k x k f x V T+ = +  (14) 

( ) ( ) ( )1 , ,g g g g g s sx k x k f x V P T+ = +  
(15) 

B. Cost Function 

The cost function for control of the generator and the grid 
side to track the reference signals and generate the minimum 

input is defined as (16) and (17) where 
ref , ref

sdi , ref
dcV , and 

ref
gqi are the paths for the reference speed, stator current of d-

axis, DC-voltage and grid-side current of q-axis, respectively. 

pN (prediction horizon) is the time interval at which the 

tracking error will be minimized and cN (control horizon) is 

the time interval at which the control input will be minimized. 

1 6, ,Q Q are the weighting coefficients of the cost function.  
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( ) ( )( )
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4

0
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 (17) 

C. Constraints 

The following constraints are considered to limit the 
phase currents of the generator and the grid within the 
acceptable range and reduce instantaneous total harmonic 
distortion (THD) in optimizing the cost function of the 
generator and grid: 

10 10; 10 10sabc gabci i−   −    (18) 

THD 5% ; THD 5%s gi i   (19) 

( )
2 2 2
3 5

1

... nI I I
THD I

I

+ + +
=  (20) 

where 1I  and nI  are fundamental and nth harmonics [23-24].  

IV. AUGMENTED EXTENDED KALMAN FILTER 

Kalman filter is a powerful and widely used tool for 
estimating the states of the systems described by the state-
space model. Using a recursive algorithm and due to the 
availability of process and measurement noise distributions 
and application of matrix operators, the filter predicts new 
states of the system in continuous and discrete spaces. Kalman 
filter is known as the optimal estimator because leads to an 
unbiased estimation with the minimum variance of the states 
of a linear state-space model. To design an EKF, discrete 
nonlinear system equations are taken into account as follows: 

( ) ( ) ( )( ) ( )

( ) ( ) ( )

1 ,

                     

x k f x k u k w k

y k Cx k v k

+ = +

= +





 (21) 

where x  is the state vector, u is the input vector, y is the 

output vector, f is a nonlinear function, C is the output 

matrix, and w and v are the process and output noises. The 

following assumptions are taken into account for these noises: 

( )  ( ) ( )  ( )

( )  ( ) ( )  ( )

( ) ( ) 

T

T

T

0;  

0;      

0                                   

E w k E w k w k Q

E v k E v k v k R

E v k w k

  

  



= + =

= + =

+ =

 (22) 

where Q and R  are positive matrices with appropriate 

dimensions for the covariance of the noises and   is the 

impulse function. EKF equations include time updating 
equations and then measurement updating as: 

a) Time Updating 

( ) ( ) ( ) ( )T
1|P k k F k P k F k Q+ = +  (23) 

( ) ( ) ( )( ),ˆ | ˆ1x k k f x k u k+ =  (24) 

where x̂  is the vector of estimated states and P  is the 
covariance matrix of the estimation error with the following 
initial conditions: 

( ) ( )   ˆ 0 0  x E x=  

( ) ( ) ( )( ) ( ) ( )( ) T
0 0ˆ0 0 0ˆP E x x x x= − −  

(25) 

Matrix F is a Jacobian linearization of nonlinear equations 
of the system (21) around the previous estimated point, and is 
calculated as follows: 

( )
( )

T
T

ˆ 1

  

x x k k

f
F k

x
= −


=


 (26) 

b) Measurement Updating 

( ) ( ) ( ) ( )( )
1

T T
1| 1| 1|ˆK k x k k P k k C CP k k C R

−

= + +  + +  (27) 

( ) ( ) ( ) ( )1 1| 1 1|P k P k k K k CP k k+ = + − + +  (28) 

( ) ( ) ( ) ( ) ( )( )1ˆ 1 1| 1ˆ 1|ˆx k x k k K k y k Cx k k+ = + + + + − +  (29) 

where K is the gain of the EKF. In PMSG, the state equations 
of the system with an augmented flux state are considered as 
follows.  

( ),

                   

aug aug aug s

aug

x f x V

y C

 =


=

 (30) 

where  
T

,aug rx x =  is the augmented state vector, and 

according to 0r =  the function  augf will be as follows: 

T
T  ,0  augf f =

 
 (31) 

Therefore, after discretization and linearization of the 
Jacobian matrix, F is obtained as (32). 

V. SIMULATION RESULTS 

To simulate the proposed method, parameters of the 
generator and grid are listed in Tables I and II. The initial 
covariance matrix of the estimation error is assumed as 

( ) 30 10 I P = . The design parameters are considered as 

follows: 
2

1 4 2 5 3 6
1;     0.1;     10 I .Q Q Q Q Q Q

−
= = = = = =  
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 (32) 

TABLE I.  PMSG PARAMETERS [14] 

Parameter Value Parameter Value 

sR  0.295 Ω  J  20.00679 kg.m  

sd sqL L=  3 mH  f  2 -10.0034 kg.m .s  

r  0.33 Wb  p  3  

TABLE II.  GRID PARAMETERS [1] 

Parameter Value Parameter Value 

gR  3 Ω  C  1100 μF  

gL  50 mH  g  2 50   

 

To evaluate the performance of the method in the presence 

of disturbances, a disturbance of 10LT Nm=  is applied at t = 

0.1 s for a duration of 0.05 s to the generator [11]. Also a noise 
with the variance of 0.001 is considered in the system. Fig. 2 
illustrates the phase currents of the stator. By applying the 
load torque disturbance, currents are increased and then 
returned to the normal condition. The current amplitudes are 
within the allowable range and the average THD is 4.96. Figs. 
3 and 4 depict the tracking and estimation of the speed and its 
error for the generator. The tracking is performed in less than 
0.01 s and the steady-state error is zero. After the occurrence 
of the disturbance, a small overshoot appears with a (4%) 
error. The tracking speed of the DC-link voltage is depicted in 
Fig. 5. Voltage tracking in the presence of disturbance is 
carried out with proper speed and acceptable overshoot. The 
flux estimation using Kalman filter is provided in Fig. 6. This 
parameter reaches its real value in less than 0.03 s.  
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Figure 2.  Stator current signals 
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Figure 3.  Speed signals 
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Figure 4.  Speed tracking and estimation error signals 
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Figure 5.  DC-link voltage 

0 0.1 0.2 0.3 0.4 0.5
0.3

0.31

0.32

0.33

t (sec)


 (

W
b
)

 

 



 hat

 

Figure 6.  Flux 

In order to compare our method to [11], the speed and DC-

link voltage are plotted in Fig. 7 and Fig. 8. As it is shown, the 

speed of tracking in the proposed method is more than [11]. In 

the proposed method,   tracks the reference signal in 0.03 

second but in [11] is 0.25 second. dcV  tracks its reference in 

0.07 and 1.7 second in the proposed method and [11]. 

 

Figure 7.  Speed signal in [11] 
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Figure 8.  DC- link voltage in [11] 

VI. CONCLUSIONS 

The paper employs a novel framework of a nonlinear MPC 
based on an augmented EKF to control a wind turbine based 
on PMSG. The cost function of this controller is comprised of 
current tracking errors, DC voltage, and control speed and 
input terms for their optimization. One of the advantages of 
the proposed controller is that physical constraints such as 
allowable amplitude and acceptable current ripples, actuators 
saturation, applicable changes in the variables, etc are taken 
into account. Besides, using the augmentation technique 
instead of separate equations and/or different methods for 
identifying nonlinear systems, flux estimation is performed 
only via a small change in the EKF set of equations. 
Simulation results prove the accuracy and efficiency of the 
proposed method in tracking and estimation of the speed, DC 
voltage, current and flux in the presence of changes in the 
reference speed. 
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