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Abstract 

The brain must make inferences about, and decisions concerning, a highly complex and 

unpredictable world, based on sparse evidence. An "ideal" normative approach to such 

challenges is often modeled in terms of Bayesian probabilistic inference. But for real-world 

problems of perception, motor control, categorization, language understanding or 

commonsense reasoning, exact probabilistic calculations are computationally intractable. 

Instead, we suggest that the brain solves these hard probability problems approximately, by 

considering one, or a few, samples from the relevant distributions. Here we provide a gentle 

introduction to the various sampling algorithms that have been considered as the 

approximation used by the brain. We broadly summarise these algorithms according to their 

level of knowledge and their assumptions regarding the target distribution, noting their 

strengths and weaknesses, their previous applications to behavioural phenomena, as well as 

their psychological plausibility. 
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An Introduction to Psychologically Plausible Sampling Schemes for Approximating Bayesian 

Inference 

Both natural and built environments are complex, and people often have to operate 

under great uncertainty about the true state of the world. One major cause of this uncertainty, 

as discussed in several of the other chapters in this book, is that we often have access to only 

a small number of samples of information from the environment. These investigations of 

information sampling often study situations in which this information is either biased or 

unreliable. Though even when it is both unbiased and reliable, the number of relevant 

experiences we have available in most tasks is far fewer than the 25,500 that Jacob Bernoulli 

estimated were required to have “moral certainty” about the probability of even a simple 

binary event (Stigler, 1986). 

Fortunately, Bayesian models of cognition provide a principled way for the mind to 

deal with this uncertainty: stating all hypotheses ℎ, defining a prior probability for these 

hypotheses 𝑝(ℎ), and then updating these beliefs according to the rules of probability theory 

as information about the environment 𝑑 becomes available. These updated beliefs are the 

posterior probabilities 𝑝(ℎ|𝑑), and are proportional to the prior multiplied by the likelihood 

that the data are produced from each hypothesis 𝑝(𝑑|ℎ). Interestingly in many complex 

domains, from language production and common-sense reasoning to vision and motor control 

and intuitive physics, human behaviour corresponds well to this probability calculus (Chater 

& Manning, 2006; Battaglia, Hamrick, & Tenenbaum, 2013; Sanborn, Mansinghka, & 

Griffiths, 2013; Wolpert, 2007; Sanborn & Chater, 2016). If the assumptions of the Bayesian 

model are correct, there are straightforward ways to incorporate the costs and benefits of each 

action to decide the best action to take under uncertainty.  

To enjoy many of the benefits of the Bayesian approach, the brain, and, in fact, any 

biological and physical machinery, has to calculate the posterior in realistic amounts of time. 
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Unfortunately, computing exact posterior degrees of belief has been proven computationally 

difficult and is typically not possible in most real-life applications (Roth, 1996; van Rooij, 

2008). To give an intuition as to why, we consider the following running example: suppose 

that I plan to meet up with a friend in London for a bite to eat at a place of their choosing, 

though they have not yet told me where. I call my friend as I jump into the cab, but they do 

not answer. Where should I tell the driver to go? I don’t have the time (or money) to ride 

around London visiting possible locations, so I must make a single decision based on my 

internal knowledge. Ideally, in order to minimise how far I need to walk once my friend 

finally answers their phone, I would like to be dropped off at the average location (as 

opposed to the most likely location) that I expect my friend to be1. To calculate this average 

location exactly, I would have to assign a probability to each establishment that serves food in 

London, based on my knowledge of my friend. Then, I would multiply the longitude of every 

establishment by the probability that my friend is at that establishment, sum up the results, 

and then repeat the calculation for latitude. However, because London has more than 44,000 

establishments that serve food, calculating average locations in this way is implausibly 

difficult. 

There is no doubt that a compromise must be made: for example, one might settle for 

an approximation of Bayesian inference rather than an exact calculation. One class of 

algorithms for approximating the posterior, developed in computer science and statistics, is 

based on Monte Carlo methods. The idea is simple: instead of using the entire posterior 

distribution, 𝑝(ℎ|𝑑), generate a sequence of samples from the posterior distribution, 

ℎ!~𝑝(ℎ|𝑑), where ℎ! is the 𝑖-th sample of the hypotheses, and then use them to guide future 

behaviour. These samples are then internal mental samples, rather than samples of 

 
 

1 For simplicity, we assume that I want to minimize only the squared walking distance 
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information from the environment. While these samples provide a less accurate 

characterization of the posterior distribution than the probabilities do, they help with the 

complexity of calculating with that distribution.  For example, to calculate the location I 

should travel to meet my friend, if I’m given a set of sampled locations where my friend 

might be, then I can simply take the average latitude and longitude of the samples. The 

accuracy of this estimate increases with the number of samples: while in the limit of an 

infinite number of samples the accuracy of my calculation would be perfect, an imperfect but 

still useful answer can still be found using a psychologically realistic sample size, one that is 

far smaller than the total number of eating establishments in London (Vul et al., 2014).  In 

this chapter, we review a psychological literature that pursued this line of research and 

examine the potential link between sampling algorithms and cognitive psychology 

(summarized in Table 1 and Figure 1), with a more in-depth discussion of how sampling 

algorithms can explain human behavior given in Chapter X. 

 

 

Table 1. 

Sampling algorithms and their statistical and psychological implications. 

Knowledge 

Required of 

Probability 

Distribution 

Algorithms Deviations From 

Ideal Inference 

Example applications 

Global 

knowledge 

Direct sampling Stochastic behavior Probability matching 

behaviours (Vul et al., 2014);  

Exploration-exploitation 

tradeoff (Speekenbrink & 

Konstantinidis, 2015; 

Gershman, 2018) 
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Approximate 

global 

knowledge 

 

 

 

 

Importance 

sampling; Particle 

filters 

 

Stochastic behavior; 

Overweighting 

extreme events;  

Order effects in 

updating 

 

Overweighting of extreme 

events and the four-fold 

pattern of risky preference 

(Lieder et al., 2018; 

Nobandegani et al., 2018); 

Reproductions from memory 

of perceptual stimuli, and 

predictions about the 

duration of real-life events 

(Shi et al., 2010); Serial 

dependence and working 

memory capacity in category 

learning (Sanborn et al., 

2010; Lloyd et al., 2019); 

Order effects in human 

causal learning (Abbott & 

Griffiths, 2011); Classical 

conditioning in animal 

behaviours (Daw & 

Courville, 2008; Gershman 

et al., 2010); Decision 

making in changing 

environments (Yi et al., 

2009; Brown & Steyvers, 

2009). 

 

Local 

knowledge 

 

MCMC algorithms: 

Random walk 

Metropolis;  

Gibbs sampling; 

Metropolis-coupled 

 

Stochastic behavior; 

Framing effects; 

Autocorrelated 

behavior 

 

Bistable perception 

(Gershman et al., 2012); 

Anchoring bias (Lieder et al., 

2018); Biases in probability 

judgments (Sanborn & 

Chater, 2016; Dasgupta et 
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Markov chain Monte 

Carlo 

al., 2017); Autocorrelation in 

human causal learning 

(Bramley et al., 2017); 1/f 

noise and Lévy flight in 

repeated estimation and 

memory retrieval (Zhu et al., 

2018);  

 

 

 

Figure 1. A ‘family tree’ of sampling-based approximate inference, where higher parent 

nodes (in red) represent more generalized concepts and lower leaf nodes (in dark blue) denote 

specific sampling algorithms. The algorithms requiring global or approximate global 

knowledge are circles, whereas those requiring local knowledge are squares. 

 

 

Approximate 
Bayesian 
inference

Sampling 
approximation

Direct 
sampling

Importance 
sampling

Particle 
filter

Metropolis-
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MCMC
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Metropolis
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Hastings
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Sampling with Global Knowledge 

Direct Sampling 

The simplest idea in sampling is to draw a random sample from the probability distribution of 

interest, termed the target distribution, or in our example, the distribution of where my friend 

might be, directly: ℎ!~𝑝(ℎ|𝑑). Each of the samples are independent of one another and the 

sample average is also unbiased. This requires global knowledge of the distribution—the 

knowledge of all states and their probabilities. For the meeting-a-friend example, by analogy, 

direct sampling simply means drawing samples of many possible locations and taking the 

empirical average of these samples to approximate my friend’s true average location. We do 

not need to integrate over all possible places, but can instead rely on a few samples drawn 

from the distribution of the possible meetup places to get a good estimate of where to travel. 

Psychological Applications of Direct Sampling. 

Given a specific input, Bayesian models of cognition are deterministic: each input 

typically leads to a single response for that input. In two-alternative forced choice where the 

reward history of both options has been observed, a reward-maximising agent should always 

choose the option with the higher chance of reward. This contrasts with the observation that 

human behavior is almost inevitably noisy, even in tasks in which the stimuli are clear and so 

there is unlikely to be any sensory noise (Mosteller & Nogee, 1951; Spicer, Mullett, & 

Sanborn, submitted). Instead, an extensive empirical literature shows that people “probability 

match” and choose an option with a frequency proportional to the probability of reward 

(Vulkan, 2000).  

Adding the assumption of direct sampling makes Bayesian models of cognition 

stochastic, and so offers an explanation for the noise in human behavior without losing the 

benefits of the normative framework of Bayesian reasoning. When decisions are carried out 

based on one or a few samples, stochastic behaviour is expected to occur because samples are 
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randomly generated. The matching law fits nicely with the sampling view of decision 

making, especially when making decisions based on a single sample (Vul et al., 2014). 

Further assuming people draw one sample from past trials and act optimally towards the 

sample, the predicted choice pattern of one option should match the probability of reward of 

the option: direct sampling adds noise but does not add any bias (at least beyond any bias in 

the distribution it draws samples from). 

Indeed, direct sampling is also widely used in non-Bayesian psychological models; 

most stochastic models of human behaviour tend to use direct sampling by default. For 

example, the drift diffusion model of choice and response time supposes that decision making 

is a process of evidence accumulation until a threshold is reached. Each piece of evidence is 

typically assumed to be independent of the last and is directly sampled from memory or the 

environment (Ratcliff & Rouder, 1998; Usher & McClelland, 2001; Pleskac & Busemeyer, 

2010; Nosofsky, 2011; Blurton et al., 2020; Shadlen & Shohamy, 2016). Global memory 

matching models assume that recalled items are directly sampled from a distribution over 

items in memory (Raaijmakers & Shiffrin, 1981; Brown, Neath, & Chater, 2007), while 

influential models of categorization and many other tasks assume that responses are directly 

sampled from a distribution of responses (Nosofsky, 1984). 

  

Sampling with Approximate Global Knowledge 

There remain, however, some psychologically implausible aspects of direct sampling 

from Bayesian models. Aside from the issue of generating samples that are independent and 

unbiased draws from a distribution (which people are notoriously poor at anyway; Wagenaar, 

1972), there is the issue of obtaining and representing global knowledge: knowledge of all of 

the states and their probabilities. Without these probabilities, direct sampling is not possible 

to implement. 
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Returning to our example, let’s say that while trying to decide what destination to tell 

my cab driver in London, I receive a somewhat ambiguous text message from my friend 

saying that they are hungry for a curry. This data (i.e., new piece of information from my 

friend), 𝑑, allows me to update my probabilities as to where I should tell the cab driver to go. 

But there is a tractability issue that arises from Bayes rule itself. When updating a probability 

distribution with new information, the posterior probability of each hypothesis is equal to its 

likelihood, 𝑝(𝑑|ℎ), multiplied by its prior, 𝑝(ℎ), divided by a proportionality constant or 

partition function 𝑍 that also needs to be calculated: 

𝑝(ℎ|𝑑) =
𝑝(𝑑|ℎ)𝑝(ℎ)

𝑍 =
𝑝∗(ℎ|𝑑)

𝑍  

This partition function 𝑍 is the sum of each and every hypothesis multiplied by its likelihood:  

𝑍 =+ 𝑝(ℎ|𝑑)𝑝(ℎ)
#

 

This means that while it is relatively easy to calculate a value 𝑝∗(ℎ|𝑑) = 𝑝(𝑑|ℎ)𝑝(ℎ) that is 

proportional to the posterior probability of a single hypothesis, it is much more 

computationally demanding to determine the constant 𝑍 needed to find the exact value of the 

posterior probability. And, because the average longitude and average latitude require 

multiplying each longitude and latitude by its probability (whether or not sampling is used), 

knowing only 𝑝∗(ℎ|𝑑) instead of 𝑝(ℎ|𝑑) is not enough – it means that my answer will be off 

by 𝑍, which is an unknown constant2,3. If, as before, I wish to avoid summing across the more 

 
 

2 For discrete hypotheses, 𝑍 lies between zero and one, while for continuous hypotheses 𝑍 can 
take any value greater than zero. 

3 Another intuition about the importance of the partition function is to think about calculating 
the chances of winning a neighborhood lottery in which the ticket sellers have gone door to door. You 
will know how many tickets you yourself have purchased, but your chances of winning will depend 
on an unknown constant: the total number of tickets sold.  
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than 44,000 eating establishments in London, a new approximation approach is much 

needed4.  

One way to do so is to utilize approximate global knowledge of the posterior 

probability distribution: starting with a rough idea of the posterior that is refined by 

calculating values 𝑝∗(ℎ|𝑑) proportional to the posterior distribution for only a sample of the 

hypotheses, rather than for every hypothesis as calculating 𝑍 requires. However, unlike direct 

sampling, for small sample sizes this method can introduce biases which depend on the 

particulars of the sampling algorithm. We next introduce a key example of a method which  

draws samples with such approximate global knowledge of the posterior, importance 

sampling. 

Importance Sampling 

If directly sampling from 𝑝(ℎ|𝑑) is computationally daunting except for the simplest toy 

examples, one may consider an alternative sampling strategy that first draws samples from 

conventional and simple distributions (e.g., a Gaussian distribution) and later adjusts these 

samples to align with the target distribution. Indeed, this is the key idea behind the 

importance sampling algorithm. This method draws samples from a simpler distribution 𝑞(ℎ) 

(also known as the proposal distribution), and then reweights them in reference to the target 

posterior distribution 𝑝(ℎ|𝑑), correcting for the difference between the two distributions. As 

we shall soon see, the reweighting scheme (i.e., the correction for the difference) can be done 

 
 

4 Another intuition to understand why it could be hopeless to do direct sampling for complex 
problems can be drawn from the history and evolution of scientific theories. In science, deciding how 
probable a theory is when new data arrives requires integration over all possible theories. It is, 
however, an almost impossible job to imagine all possible theories. Furthermore, if we chose theories 
at random, the likelihood of the theory predicting the new data would almost always be zero. Instead, 
scientists make local adjustments to theories with only occasionally breakthroughs (most dramatically 
in Kuhn [1962] called paradigm shifts)). On explaining how light bends around heavy objects, for 
example, it is impossible to find a high likelihood account before Einstein’s theory of relativity or by 
integrating over all possible Newtonian theories of physics. Normalization is hard because it requires 
a comprehensive survey of all possible theories. 
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with unnormalized probabilities. Therefore, the partition function, which requires summation 

over the all possible hypotheses, is no longer needed for importance sampling. In general, to 

make samples from 𝑞 more representative of 𝑝, samples from more probable states in 𝑝 and 

less probable states in 𝑞 will receive more weight.  

Following on the same meeting-a-friend example as above, importance sampling does 

not require the global knowledge of all possible meeting places and their associated 

probabilities used by direct sampling. Instead, the extent of knowledge needed in importance 

sampling can be understood by analogy to rough knowledge of which areas in London have 

the highest chance of my friend being there (e.g., their home or workplace) and how quickly 

the chance drops off from those streets. I then could sample establishments guided by this 

rough knowledge and correct for the estimated probabilities of meetup based on the 

probability of that place. Formally, the correction step that reweights samples is defined as 

follows: 

𝑤! =
𝑝(ℎ!|𝑑)/𝑞(ℎ!)

∑ 𝑝(ℎ$|𝑑)/𝑞(ℎ$)%
$&'

	with	+ 𝑤! = 1
%

!&'
 

where 𝑁 is total number of samples. The weights of samples can be seen as a measure of how 

well the proposal distribution 𝑞 (i.e., the rough knowledge) fits the target distribution 𝑝. 

Consider an extreme scenario when 𝑞 matches 𝑝 exactly (i.e., 𝑞 = 𝑝), the samples will be 

equally weighted (i.e., 𝑤! = '
%
, 𝑖 = 1,2, … , 𝑁) because there is no need of reweighting to 

correct the differences between two distributions. To this end, the method may appear to be 

redundant: why bother to draw samples from another distribution if we can readily evaluate 

𝑝(ℎ|𝑑)? The usefulness of the importance sampling algorithm is realised since the equation 

above can be further simplified as follows: 
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𝑤! =

𝑝∗:ℎ!|𝑑;
𝑍𝑞(ℎ!)

∑ 𝑝∗(ℎ$|𝑑)
𝑍𝑞(ℎ$)

%
$&'

=
𝑝∗(ℎ!|𝑑)/𝑞(ℎ!)

∑ 𝑝∗(ℎ$|𝑑)/𝑞(ℎ$)%
$&'

	where	ℎ!~𝑞(ℎ) 

As the equation above suggests, the normalisation constant of 𝑝(ℎ|𝑑), 𝑍, can be ignored in 

calculating weights, meaning that one can use the un-normalised values 𝑝∗(ℎ|𝑑), 

significantly reducing the amount of computation required to run the algorithm. One common 

choice for the proposal distribution is to use the prior distribution: 𝑞(ℎ) = 𝑝(ℎ). That is, 

samples are initially drawn from the prior distribution, and then reweighted to act as samples 

from the posterior distribution. Note that the importance sampler needs to know the 

unnormalized posterior at the sampled hypotheses, but not the normalized posterior which 

requires a global knowledge of the entire hypothesis space. The weights for this scheme, 

called likelihood-weighted importance sampling, are particularly simple because the prior 

probabilities cancel  

𝑤! =
𝑝∗(ℎ!|𝑑)/𝑝(ℎ!)

∑ 𝑝∗(ℎ$|𝑑)/𝑝(ℎ$)%
$&'

=
𝑝(𝑑|ℎ!)

∑ 𝑝(𝑑|ℎ$)%
$&'

	where	ℎ!~𝑝(ℎ) 

so the weights are just samples proposed from the prior weighted by their likelihoods. As 

with any proposal distribution, this scheme works well when the proposal distribution (i.e., 

now the prior) is similar to the target distribution (i.e., the posterior), but poorly when they 

are very different.  

While a speed-up in computation can be achieved through using the unnormalised 

distribution (i.e., 𝑝∗(ℎ|𝑑)), the proposal distribution still requires knowledge at least the 

space of states in 𝑝 that are non-zero, and covers the same space in 𝑞 with non-zero 

probabilities as well. This is simply because the importance sampling algorithm will never 

propose states from the spaces where the proposal distribution, 𝑞, has zero probabilities. In 

this sense, the importance sampling algorithm requires approximate global knowledge of the 

target distribution: a rough knowledge of where the probable states in the target distribution 
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might be located. Without this knowledge the algorithm will be very inefficient. If 𝑞 is too 

broad compared to 𝑝 (e.g., 𝑞 is a uniform distribution across all possible meetup locations, 

meaning that I have no prior knowledge of believing one restaurant is more probable for a 

meetup than another), many of the proposed states will be low probability states in the target 

distribution and a very large number of samples will be needed to produce a good 

approximation. And alternatively, when 𝑞 is too narrow compared to 𝑝, high probability 

states in 𝑝 are very unlikely to be proposed based on 𝑞, and so again a very large number of 

samples will be needed to produce a good approximation. 

In practice, the importance sampling algorithm has been widely used to approximate 

averages of some function 𝑓(ℎ) with state probabilities distributed according to 𝑝(ℎ|𝑑). For 

example, when the function 𝑓(ℎ) is a utility function, the algorithm can be used to 

approximate expected utility. In our example of meeting a friend for a bite to eat, 𝑓(ℎ), is 

either the longitude or latitude of the eating establishment ℎ (i.e., a hypothesis of where my 

friend might be). The sample-based approximation to function average is simply the weighted 

average of the function values at sampled hypotheses: 

𝔼([𝑓] ≈
1
𝑁+𝑤!𝑓(ℎ!)

%

!&'

 

And in fact, this functional form provides a generalization of the well-known exemplar model 

of categorization (Nosofsky, 1986). In an exemplar model, exemplars of each category are 

remembered and the category label of a new exemplar is inferred from their similarity of the 

new exemplar to each of the old exemplars (Nosofsky, 1986). If the remembered exemplars 

are considered to be samples from a prior distribution (where the sampling is done by the 

environment rather than internally), and the similarity of each new exemplar to the old 

exemplars is encoded by the likelihood function, then the exemplar model can be written 

exactly as a likelihood-weighted importance sampler, providing a mathematical link between 
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a sampling scheme and an empirically supported cognitive model (Shi, Griffiths, Feldman, & 

Sanborn, 2010).  

While the link of the importance sampler to the exemplar model is an unbiased use of 

samples, in other situations unbiased samples are not the most useful samples. When function 

averages are approximated by importance sampling with a limited amount of samples, certain 

states should matter more in their impact on the average and thus should be prioritised. 

Intuitively, those states that are highly probable in 𝑝 and are more extremely valued in the 

function 𝑓 should influence the average stronger than the other states. In fact, the optimal 

proposal distribution for calculating function average has been proved to capture these 

intuitions (Geweke, 1989; Murphy, 2012): 

𝑞)*+,-./(ℎ) =
|𝑓(ℎ)|𝑝(ℎ|𝑑)

∑ |𝑓(ℎ0)|𝑝(ℎ0|𝑑)#0
 

Paradoxically, in order to optimally use the importance sampling to approximate function 

average, the optimal proposal distribution requires global knowledge of both 𝑓 and 𝑝. 

Psychological Applications of the Importance Sampler 

The optimality of preferentially sampling more extreme states in importance sampling 

has inspired a rational reinterpretation of people’s overestimation in judging the frequency of 

extreme events (Lieder, Griffiths, & Hsu, 2018; Nobandegani et al., 2018). The 

overrepresentation of extreme events is often measured by observing people’s risky choices 

in experiments in which the extremities and probabilities of outcomes were systematically 

manipulated (Tversky & Kahneman, 1973; Lieder et al., 2018). While the rational model of 

risky decision making, expected utility theory (von Neumann & Morgenstern, 2007), 

prescribes that people choose the option with the highest expected utility (with some 

axiomatic assumptions on the utility function), the computation of expected utility as a 

weighted average of the utility function is generally intractable.  
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This, however, can be approximated by importance sampling using a utility-weighted 

sampler which prioritizes eventualities according to their extremity and frequency: 

|𝑢(ℎ)|𝑝(ℎ|𝑑) (Lieder et al., 2018; Nobandegani et al., 2018). If people are assumed to 

calculate expected utility with importance sampling, the optimal proposal distribution to do 

so is determined by the extremity of the utility, meaning people should oversample (relative 

to their probabilities) hypotheses with large positive or negative utilities: in essence, it is 

important to consider rare events if their consequences could be life-changing (in either a 

positive or negative sense). Such overrepresentation can then persist in judgements even 

when samples are reweighted as described above. This model shows how a rational agent, 

who is bounded by computational resources and time in calculating exact expected utility 

(i.e., only small sample sizes are affordable), should overestimate extreme eventualities 

because they are drawn from an importance distribution designed to efficiently estimate 

expected utility. 

 

Particle Filters 

The importance sampling algorithm is designed for situations in which there are no new 

observations about the environment (i.e., sampling from a fixed target distribution), but in 

many realistic scenarios, especially those highlighted in other chapters in this book, it is 

important to deal with incoming information (i.e., a constantly evolving target distribution). 

To draw an analogy with the example of meeting my friend for a bite to eat, we can now 

imagine that my friend is sending me a series of text messages: first telling me that they want 

a curry, then telling me that they don’t want to spend too much money, and then telling me 

that they don’t want to travel too far. Each of these texts conveys additional information that I 

will want to use to update the best location to tell my cab driver, but the other algorithms that 
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we review in this chapter are ill-suited for inference of this type because they need to start 

sampling from scratch whenever the posterior distribution changes.   

Luckily, importance sampling can be generalized to sample from changing posterior 

distributions by performing importance sampling sequentially. At its simplest, this involves 

updating the weights of each sampled hypothesis by multiplying each weight by the 

likelihood of that hypothesis producing the new incoming data, iteratively applying 

likelihood-weighted importance sampling. Sequential importance sampling is part of a family 

of algorithms known as particle filters, which often for efficiency reasons involve resampling 

the set of hypotheses from the weight distribution so that each resampled hypothesis has 

equal weight (Doucet et al., 2001; Arulampalam et al., 2002; Speekenbrink, 2016). In 

cognitive terms, the particle filter acts like an evolving set of hypotheses in the mind: the 

hypotheses that better explain the observed data have a higher chance of surviving and 

multiplying while hypotheses that poorly explain observed data are likely to go extinct.  

Psychological Applications of Particle Filters 

Particle filters have been used to explain primacy effects found in human cognition, in 

which early data have an outsized influence. These primacy effects are often difficult to 

explain with Bayesian models because the temporal structure of data typically should not 

matter for the tasks people are tested on, but particle filters can produce them as a result of 

the evolving set of hypothesis samples concentrating on initially-promising hypotheses, and 

so failing to have any samples of hypotheses that should later dominate. For example, particle 

filters have been used to explain garden-path sentences such as ‘The women brought the 

sandwich from the kitchen tripped’ which first may lead the listener into first thinking that the 

sandwiches were brought by the women, until the word ‘tripped’ makes it clear that the 

sandwiches were brought to the women (Levy, Reali, & Griffiths, 2009). Primacy effects 

have also explained serial dependence and working memory capacity in category learning 
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(Sanborn et al., 2010; Lloyd et al., 2019), order effects in human causal learning (Abbott & 

Griffiths, 2011), classical conditioning in animal behaviours (Daw & Courville, 2008; 

Gershman et al., 2010), and decision making in changing environments (Prat-Carrabin et al., 

2021; Yi et al., 2009; Brown & Steyvers, 2009). 

 

Sampling with Local Knowledge 

While approximate global knowledge significantly reduces computational costs, is it 

possible to sample with a lesser form of knowledge? What if I don’t know where my friend is 

likely to be, even approximately? I might only be able to easily calculate the unnormalized 

probabilities 𝑝∗(ℎ|𝑑), and must somehow sample from the posterior distribution without 

access to the partition function 𝑍. Here we introduce a general family of sampling algorithms 

that operate on this principle, Markov chain Monte Carlo (MCMC). The core idea in MCMC 

is to simulate transitions of a Markov chain whose stationary distribution is proportional to 

𝑝(ℎ|𝑑). That is, we can sample from a conditional probability 𝑞(ℎ0|ℎ) (i.e., the transition 

probability of a Markov chain)5 recursively long enough, such that the stationary distribution 

of the Markov chain is in proportion to 𝑝(ℎ|𝑑). In our meetup example, this is similar to 

comparing the likelihood of two possible restaurants: we do not know the exact probability 

that my friend selected either location, but we do know which has the better chance, and, with 

enough pairwise comparisons, can create an approximation of the underlying distribution 

given certain assumptions (Tierney, 1994).  

While a Markov chain converges to a unique stationary distribution, there are many 

ways to design the Markov chain’s transitions, 𝑞(ℎ0|ℎ), to do so while using only local 

 
 

5 Following on our example of meeting a friend, the transition probability of a Markov chain 
can be thought as the probability of thinking about next restaurant based on the current restaurant. It is 
also possible that the next restaurant turns out to be the same as the current one. 
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knowledge of the target distribution. We define local knowledge of the distribution to be the 

ability to determine the unnormalized probability of any state 𝑝∗(ℎ|𝑑), but there is no 

requirement to store all of the 𝑝∗(ℎ|𝑑) or even to store a list of all possible states ℎ. It is only 

necessary to consider a very small number of states and unnormalized probabilities at any one 

time, and these can be forgotten following evaluation, which greatly increases the 

psychological plausibility of these sampling algorithms. Different 𝑞(ℎ0|ℎ) suit different target 

distribution geometries. As a result, the sampler dynamics vary among algorithms; so do their 

psychological implications. In this section, we will focus on discussing the Random Walk 

Metropolis (RWM) that has achieved empirical successes in explaining aspects of human 

data, while also briefly mentioning related algorithms including Gibbs sampling and 

Metropolis-coupled MCMC (MC3). 

 

Random Walk Metropolis 

A commonly used proposal distribution of MCMC is a Gaussian distribution centered on the 

current state: 𝑞(ℎ0|ℎ) = 𝒩(ℎ0; ℎ, 𝜎1). That is, new potential states are likely to fall close to 

the previous state. However, not every proposed state ℎ0	will be automatically accepted; if 

rejected, the new state should remain ℎ. There exist numerous rules for accepting or rejecting 

proposed states, whose ultimate objectives are to approximate a probability distribution 

𝑝(ℎ|𝑑) by staying at a state for an amount of times that is also proportional to its probability 

(Dellaportas & Roberts, 2003). The combination of a Gaussian proposal distribution and the 

Metropolis-Hastings acceptance rules is also known as a Random Walk Metropolis (RWM) 

algorithm (Metropolis et al., 1953).  

To solve the meeting-a-friend example as a RWM sampler, I should plan my direction 

of travel by first mentally comparing restaurants in London in a sequential fashion. I start 

with one restaurant and then think about the unnormalized probability that my friend picked 
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it. Then I think of a nearby restaurant and the unnormalized probability that my friend picked 

it instead. If the new restaurant has higher chance of being picked by my friend than the last, 

then I focus on the new restaurant. Conversely, if the new restaurant has lower chance than 

the last, then I stochastically decide whether to focus on this restaurant or focus on the 

previous one. Whichever restaurant I focus on, I again then randomly think of one of its 

neighbours next. Surprisingly, the proportion of times I focus on a restaurant gives an 

estimate of that establishment’s probability of meetup. 

How does the Metropolis-Hastings acceptance rule guarantee that the sampler spends 

time in each state in proportion to its probabilities in the target distribution 𝑝(ℎ|𝑑)? Because 

we want a proposal distribution that does not relate to the target distribution (i.e., does not 

appeal to the global knowledge), the sampler cannot a priori know how probable the 

proposed state ℎ′ is in the target distribution. The sampler does know, however, that the 

proposed state ℎ′ is either more probable or less probable than the current state ℎ;	that is, 

whether my friend is more likely to be at the new establishment. If the sampler greedily 

moves only to more probable states, it then should mimic optimisation algorithms that search 

for local optima. Our goal is not to find the maximum probability, however, but instead to 

draw representative samples from the target distribution; hence unlike most optimisation 

algorithms, the sampler has to move to less probable states occasionally. The quantity that 

governs the stochastic movement between proposed and current states is the relative 

probability between the two states (2#
!|45

((#|4)
. The formal condition underlying the convergence 

of RWM is known as the detailed balance (O’Hagan & Forster, 2004). In practice, the 

probability of accepting the proposed state follows: 

𝑝.889*+ = min	(1,
𝑝(ℎ0|𝑑)𝑞(ℎ|ℎ0)
𝑝(ℎ|𝑑)𝑞(ℎ0|ℎ) ) 
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In RWM, a symmetric Gaussian distribution is used as the proposal distribution, 

meaning that 𝑞(ℎ|ℎ0) = 𝑞(ℎ′|ℎ). Furthermore, the calculation of relative probability between 

ℎ and ℎ′ can be further simplified using unnormalised distribution because the normalisation 

constant cancels out: 

𝑝(ℎ0|𝑑)
𝑝(ℎ|𝑑) =

𝑝∗(ℎ0|𝑑)/𝑍
𝑝∗(ℎ|𝑑)/𝑍 =

𝑝∗(ℎ0|𝑑)
𝑝∗(ℎ|𝑑)  

Metropolis-Hastings algorithms are useful in practice because we now can sample 

from 𝑝(ℎ|𝑑) even if the normalisation constant 𝑍 is unknown: we do not need to know the 

probability of every eatery in London, but only the relative chance of one location over 

another. For the algorithms running symmetric proposal distribution such as the random walk 

Metropolis, the acceptance probability can be further shortened as follows: 

𝑝.889*+ = min	(1,
𝑝∗(ℎ0|𝑑)
𝑝∗(ℎ|𝑑) ) 

Psychological Applications of the random walk Metropolis 

RWM typically generates autocorrelated samples even when the target distribution 

remains unchanged. This is because the proposal distribution often suggests new states within 

a local neighborhood of the current state (i.e., local jumps). As a result, RWM is sensitive to 

its starting point, which allows it to explain framing effects. For example, RWM has been 

used to explain the anchoring bias where people’s estimates are biased toward a previously-

presented irrelevant quantity: though irrelevant to the subsequent task, people may use the 

irrelevant quantity as the starting point for RWM. If only a few samples are generated, there 

will only be a few local jumps from the starting point; hence estimates are biased toward the 

starting point (Lieder et al., 2018).  

The unpacking effect also can be explained by a biased starting point. Depending on 

the examples that are unpacked, people judge the probability of an implicitly unpacked event 

(e.g., “death from heart attack, cancer, and other natural courses”) differently than the 
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probability of an equivalent packed one (e.g., “death from natural causes”) despite 

probability theory requiring the two to be the same (Sloman et al., 2014; Fox & Tversky, 

1998; Dasgupta et al., 2017). Empirically, unpacking to typical examples increases 

probability judgments (i.e., subadditivity), while unpacking to atypical examples decreases 

probability judgments (i.e., superadditivity). In RWM, due to local search and autcorrelation, 

starting in high probability region will likely miss out atypical examples, while starting in 

low probability region will likely overestimate atypical examples, therefore explaining these 

unpacking effects as a starting point bias (Dasgupta et al., 2017). In addition to these two 

examples, the starting point has been used to explain a range of other biases, including the 

observed autocorrelation in human hypothesis generation (Sanborn & Chater, 2016; Dasgupta 

et al., 2017; Bonawitz et al., 2014; Gershman et al., 2012; Vul & Pashler, 2008), which we 

discuss further in Chapter X. 

 

Gibbs Sampling 

When the probability distribution of one variable conditioned on the values of all the 

other variables is relatively simple to express, it can be more efficient to use the conditional 

probability as the proposal distribution. Gibbs sampling implements this very idea that the 

transition probability 𝑞(ℎ0|ℎ) is defined as the probability of one variable given fixed values 

of all of the other variables (Geman & Geman, 1984). The conditional probability is often 

easy to calculate in probabilistic graphic models where conditional dependencies are 

explicitly expressed in a graph (Koller & Friedman, 2009). 

If we consider the meeting-a-friend example again, instead of thinking of new eating 

establishments based on their straight-line distance from my current focus, I instead think of 

possible meetup places along the longitudes and latitudes of London iteratively. Making the 

unrealistic assumption that London is laid out on a grid this would be like sampling among all 
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the eating establishments on a single (either north-south or east-west) road. For instance, I fix 

a latitude first, and then randomly sample an eatery along it (i.e., a longitude). Then, fixing 

that sampled longitude, I randomly sample an eatery along it (i.e., a new latitude). By 

iteratively swapping back and forth, I can gradually build up my estimate of the probability of 

each establishment being the actual meetup place. In this example, one iteration of the Gibbs 

sampling could be as follows: 

ℎ:! ~𝑝(ℎ:|ℎ;!<', 𝑑) 

ℎ;! ~𝑝(ℎ;|ℎ:! , 𝑑) 

where ℎ: and ℎ; are longitude and latitude of the restaurant ℎ. It is straightforward to see that 

we are effectively sampling from the joint distribution,	𝑝(ℎ|𝑑) = 𝑝:ℎ:|ℎ; , 𝑑;𝑝:ℎ;J𝑑;,	when 

the latitude that have been conditioned on (i.e., ℎ;) are sufficiently explored6.  

Psychological Applications of Gibbs Sampling 

Causal relationships are often represented as a set of boxes and arrows with the boxes 

representing variables and the arrows indicating how variables causally influence one 

another. Gibbs sampling is often used for performing approximate inference because it is 

relatively easy to sample the value of a variable given fixed values of all of the other 

variables. Interestingly, the dynamics of Gibbs sampling match the sequential belief changes 

of human participants in online causal learning experiments, in which participants are asked 

to report their causal model after each observation (Bramley et al., 2017). More specifically, 

when asked to identify true causal models, there is a strong tendency for people to identify a 

model that only differs in a single aspect from the causal model they identified on the 

previous trial. That is, people appear to maintain a global hypothesis about the causal model 

 
 

6 Here, ℎ" and ℎ# are interchangable. 
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that is updated by making local changes. This behavior matches Gibbs sampling which 

focuses on one specific aspect of the causal models at a time and updates conditional on the 

rest.  

 

Metropolis-coupled MCMC (MC3) 

While the random walk Metropolis and Gibbs samplers can be successful in exploring simple 

distributions, these algorithms can have issues with more complex spaces. A key example of 

this is provided by multimodal distributions: new states are unlikely to fall far from the 

current state, meaning the RWM sampler will have difficulty finding distant modes, 

particularly if those modes are separated by low value regions. Returning to our example of 

meeting my friend, if I start out sampling a restaurant that is surrounded by only steak houses 

then, knowing that my friend wants a curry, I might never sample beyond that initial 

restaurant and incorrectly conclude that this is where my friend must end up. 

To allow a sampler to escape from a single mode, one strategy is to "melt” the target 

distribution to make the differences between probabilistic peaks and valleys less extreme. In 

doing so, the sampler can quickly traverse through valleys between modes (low probability 

regions); hence, making the remote modes easier to sample from. In statistics, the process of 

smoothing out a distribution can be done through controlling the computational temperature 

of the distribution. Increasing the temperature of a distribution leads to flatter probabilistic 

landscape; the distribution converges to a flat, uniform distribution when the temperature 

approaches infinity. 

The distorted distribution, though easier to explore, is no longer the original 

distribution. The computational temperature, which was initially increased in order to smooth 

out the distribution, should be decreased back to 1 in order to ensure sampling from the target 

distribution. This process of heating and cooling has been implemented both serially and 
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parallelly in algorithms. The serial implementation is known as simulated annealing in 

statistics (Kirkpatrick et al., 1983); this algorithm intuitively resembles the way that metals 

are forged by repeatedly heating and cooling in order to align the molecules. The parallel 

implementation, which will be our focus, is known as Metropolis-coupled MCMC (MC3), or 

parallel tempering in statistics (Geyer, 1991; Earl & Deem, 2005). This algorithm maintains 

multiple parallel Markov chains at different temperatures, and allows communication among 

chains. The higher temperature chains, which preferentially make long distance moves in the 

probabilistic landscape, assist lower temperature chains to make non-local jumps.  

Psychological Applications of MC3 

The sampler dynamic of MC3, due to swapping between chains, differs from that of 

RWM: a swap often induces a long-distance, non-local jump. As a result, the cold chain will 

perform local jumps on most occasions, but may intermittently swap to better locations with 

non-local jumps. The overall distribution of jump distances thus can resemble a power-law 

distribution, which is associated with Lévy flights in the animal and cognitive foraging 

literature, and has also been observed in people “internally foraging” for the names of 

animals (Todd & Hills, 2020; Rhodes & Turvey, 2007). For the same reason, MC3 also emits 

long-range, non-Markovian dependencies for every individual chain. This serial dependence 

can be characterised as 1/f noise, a type of long-range dependence which is ubiquitous in 

cognitive time series (Zhu et al., 2018; Gilden et al., 1995; Gilden, 2001).  

 

Discussion and Conclusions 

Sampling algorithms are methods for generating examples to approximate a 

probability distribution about which little might be known in advance. We have reviewed a 

number of algorithms here and discussed their psychological plausibility and how they have 

been deployed by researchers to explain how internal samples are generated. While many 
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algorithms are effective only when sampling from an unchanging distribution, there are some, 

such as particle filters, that are able to operate as information is obtained from the outside 

environment, as in information sampling.  

The juxtaposition of information and internal sampling in this book suggests an 

interesting prospect for investigation. Perhaps the sampling algorithms that we have outlined 

here are not just used internally, as in sampling from memory, but perhaps also used 

externally for information sampling. For instance, direct sampling, in combination with a 

greedy policy that selects the best action given the sample, has been widely applied in multi-

arm bandit problems. The combined algorithm, famously known as Thompson sampling, 

balances exploitation of the current best alternative with exploration of potentially better 

alternatives in a way that is optimal for the simple bandit task and many other sequential 

decision-making problems (Russo et al., 2017; Thompson, 1933). Human behaviour in these 

sequential tasks, to some extent, also corresponds to Thompson sampling (Speekenbrink & 

Konstantinidis, 2015; Gershman, 2019).  

Finally, moving beyond the behaviour of individuals, there is a long tradition in 

economics of seeing trading in markets, and especially in betting and financial markets, as 

implementing a form of distributed computation aggregating the knowledge of distinct 

rational (and sometimes boundedly rational) agents (e.g., Bowles, Kirman & Sethi, 2017). It 

is also an intriguing possibility that individual agents viewed as samplers may, when able to 

interact with each other (whether through copying, communication, or trade), in aggregate be 

viewed as carrying out distributed Bayesian computation by sampling (see, e.g., Krafft et al, 

2021). 
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