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People must often make inferences about, and decisions concerning, a highly complex and 

unpredictable world, on the basis of sparse evidence. An "ideal" normative approach to such 

challenges is often modeled in terms of Bayesian probabilistic inference. But for real-world 

problems of perception, motor control, categorization, language comprehension, or common-

sense reasoning, exact probabilistic calculations are computationally intractable. Instead, we 

suggest that the brain solves these hard probability problems approximately, by considering one, 

or a few, samples from the relevant distributions. By virtue of being an approximation, the 

sampling approach inevitably leads to systematic biases. Thus, if we assume that the brain 

carries over the same sampling approach to easy probability problems, where the "ideal" solution 

can readily be calculated, then a brain designed for probabilistic inference should be expected to 

display characteristic errors. We argue that many of the "heuristics and biases" found in human 

judgment and decision-making research can be reinterpreted as side effects of the sampling 

approach to probabilistic reasoning. 
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Introduction 

Humans frequently make judgments and decisions regarding present or future states of 

a world of which they are at least partially ignorant; in psychology this is generally referred 

to as probability judgments and decision making under risk. Considering that there is little 

that is certain in life, we can reasonably assume that humanity would have to be equipped 

with some mechanism for making such inferences, ideally as quickly and accurately as 

possible, or we would have been hard-pressed to survive this long. Nevertheless, people 

regularly and systematically make simple mistakes (e.g., judgment biases) that, on closer 

inspection, seem rather obvious even without any formal schooling in either probability 

theory or psychology. 

Many of these biases can be explained due to the fact that the information we receive 

from the world is in itself biased. The world we live in is large and complex, and we are often 

aware of only a limited part of it at a time, either because only a small portion of information 

is available to us or because we do not have the time or capacity to enumerate the totality of 

our surroundings. Instead, we typically experience only a few glimpses of the world around 

us, which we usually refer to as samples, and if those samples are biased in some way, then 

the judgments and decisions that we make based on that information are likely to be biased as 

well. It is important to note that this will be the case even if the observer has a complete 

model of how information is generated and processes it flawlessly (e.g., Le Mens & Denrell, 

2011; Konovalova & Le Mens, 2020). 

Yet, there remain certain biases that cannot be explained by the structure of the 

environment or biases in the information gathering process, primarily those that demonstrate 

incoherence in human cognition. Coherence implies adherence to the principles of logic and 

probability theory (e.g., Kolmogorov’s axioms), which will necessarily be reflected in the 

information sampled from the world. For example, probability theory tells us that the 
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probability of an event occurring plus the probability of an event not occurring will be equal 

to one (i.e., P(A) + P(not-A) = 1); conversely, if we count the number of rainy days during a 

week, then the number of rainy days plus the number of days without rain will obviously 

equal the total number of days of the week, regardless of whether our sample is representative 

of the average precipitation in our area or not. Therefore, since information sampled from the 

environment will necessarily be coherent according to the theorems of probability theory, the 

conclusions of a perfectly Bayesian mind should be coherent as well. Of course, perfect 

Bayesian accounts of actual cognitive processes are computationally intractable (e.g., van 

Rooij, 2008; van Rooij & Wareham, 2012), since the calculations involved in modeling every 

single possible state of any system relating to our physical environment would be 

overwhelmingly complex. Consequently, we must assume that the mind is limited to, at best, 

approximating the Bayesian solutions to inference problems. 

Fortunately, we can extend the information-sampling paradigm to apply to the internal 

workings of the mind as well. In this case, we assume that, rather than explicitly calculating 

optimal Bayesian solutions, the brain approximates these solutions by considering a small 

number of samples from relevant distributions. While Bayesian calculation is difficult, 

sampling is often surprisingly easy; even when it is not possible to represent a distribution 

analytically it might be possible to sample from it, which is why sampling is often used as a 

tool in computational statistics and machine learning. Additionally, these sampling processes 

can explain many apparent idiosyncrasies in human probabilistic inference, including the 

aforementioned incoherence biases, because of a combination of internal sampling with 

compensatory strategies for small samples and computationally rational sampling algorithms. 

(For an in-depth introduction to the algorithms by which these sampling processes are 

realized, see Chapter X in the same volume.) 
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Approximating Bayesian inference by sampling 

The internal sampling processes that we are discussing here differ from the process of 

sampling information from the environment (which, for clarity, we will refer to as ‘external 

sampling’) in that we are primarily concerned with sampling taking place within the mind 

itself. This is not to say that internal and external sampling processes do not each contribute 

to various quirks in human behavior but, as previously observed, the way internal sampling is 

realized can explain certain incoherence biases that external sampling cannot. It is clear that 

these two types of sampling interact, since much of the information one samples from the 

mind will have been influenced by what has been sampled from the environment (see the 

Conclusions section for a brief discussion on this point), but for simplicity we will limit 

ourselves to internal sampling in this chapter. 

The basic principle of internal sampling is that, for each inference, a number of samples 

are drawn from an internal distribution, which is in turn based on information sampled from 

the environment (see Figure 1). As an illustration, let us consider the standard statistical 

example of estimating the proportion of blue and red balls in an urn. As per usual, one can 

sample balls from the urn and make a frequency judgment based on the proportion of blue 

and red balls in the sample. But we need not assume that the information associated with the 

sampled balls is discarded after being sampled, rather we can assume that it contributes to the 

basis of a second ‘internal’ urn. The obvious advantage of the internal urn is that whenever 

one is subsequently obliged to make a judgment regarding the proportion of blue and red 

balls in the external urn, one can use the internal urn as a proxy. 
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Figure 1. Schematic illustration of the internal sampling process: Selections of information 

are sampled from the environment, which contribute to an internal distribution. When an 

inference is made, a small number of samples are drawn from the internal distribution and an 

inference is created on the basis of those samples. 

 

Sampling has the desirable quality that, in the limit (i.e., with an infinite number of 

samples), it will approach the “true” distribution. Of course, we cannot expect the brain to 

process an infinite number of samples, nor necessarily a large one. Human cognition is 

inevitably subject to computational constraints, implying an unstated upper bound on human 

rational inference, usually referred to as bounded rationality (Gigerenzer & Selten, 2002; 

Lieder & Griffiths, 2020; Simon, 1955). It is, therefore, more reasonable to assume that 

people only use enough samples to make “good enough” inferences about the world. 

Evidence further suggests that rational inferences might indeed only require very few 

samples, even as few as a single one in some situations (Vul, Goodman, Griffiths, & 

Tenenbaum, 2014). 

The phenomena of probability matching illustrate this process nicely. Research has 

shown that, when choosing among alternatives with stochastic payoffs, people tend to choose 

alternatives in proportion to the probability of their payoffs rather than sticking with the 

alternative that would maximize their expected outcome, even when they have reliable 
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knowledge of the outcome distributions (e.g., Koehler & James, 2009). If we assume that, for 

each decision, one draws a limited number of samples from an internal distribution (i.e., the 

internal urn) then alternatives will consequently be chosen according to their proportions in 

this distribution, which, assuming that the external sampling process is unbiased, will match 

the proportions of the environment (i.e., the external urn). 

There are empirical as well as methodological hurdles for the internal sampling account 

to overcome. From the empirical perspective, there are a number of systematic biases, 

primarily those that imply incoherence in human probabilistic inference, that cannot be 

explained by sampling alone. From the theoretical perspective, a small number of samples 

might be enough to make rational decisions in many cases, but they often create obvious 

inaccuracies when making judgments. Additionally, although sampling is usually 

computationally easy, it might not be possible to represent the relevant distribution to sample 

from, meaning that independent and identically distributed sampling is not possible.  

Fortunately, as we will demonstrate in the following sections, we can find solutions to 

the empirical hurdles by solving the methodological ones. Firstly, we will describe how 

Bayesian adjustment for a small number of samples, expressed by the Bayesian sampler 

model’s prior on responses, can account for incoherence biases such as subadditivity and the 

conjunction fallacy, as well as repulsion and representativeness effects. Secondly, we will 

describe how sampling algorithms that do not require global knowledge of the sampling 

space can explain heavy-tailed changes and autocorrelations in human cognition, as well as 

supply an additional account for subadditivity, anchoring, and representativeness. We will see 

that both of these mechanisms generate departures from standard probability theory: the prior 

on responses through the small number of samples and how this is compensated for, and the 

alternative sampling methods through the introduction of correlations between samples and 

the consequent biases. These mechanisms can provide explanations of various classic 
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heuristics and biases in the literature on judgements and decision making (see Table 1) and 

indeed, as we will see, the same phenomena can often be generated by both types of 

mechanisms. 
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Table 1. 

Phenomena Mechanism 

Subadditivity Explicit subadditivity: Each judgment is adjusted, so the sum of a number of 

judgments of the components of a category will be adjusted more than a 

single judgment of the category (PR) 

Implicit subadditivity/superadditivity: Combined judgments of common 

components of a category are judged as more likely than the category, while 

combined judgments of uncommon components of a category are judged as 

less likely than the category (SA) 

Conjunction fallacy Conjunctions between events are based on fewer samples than individual 

events, and are therefore judgments of conjunctions are adjusted more (PR) 

If sampling starts in a rich region for the individual events, more occurrences 

of the individual events are likely to be found and therefore they are likely to 

be judged as more likely (SA) 

Anchoring Gradually exploring the sample space means that responses will be biased by 

the starting point of the sampling processes (SA) 

Repulsion Optimal stopping implies that sampling is more likely to stop when evidence 

favors a particular decision, shifting judgments away from the boundary 

(PR) 

Representativeness Counting sufficiently similar “near misses” (i.e., approximate Bayesian 

computation) will bias judgments towards alternatives that are similar to 

available samples (PR) 

Random number generation Sampling algorithms moving through the distribution with momentum will 

struggle with generating truly random sequences (SA) 

Heavy tailed changes in 

individual aggregate behavior 

(e.g., potentially in artificial 

and real financial markets) 

Heavy tailed changes arise from the MC3 sampling algorithm (Metropolis-

coupled Markov chain Monte Carlo), in which several autocorrelated 

samplers run in parallel, at different levels of noise, with the possibility of 

switching the lowest noise level (the lowest temperature) to the current best 

guess (SA; see Chapter X for further details) 

1/f noise Changes in behavioral measures, from rhythmic tapping (Gilden, Thornton 

& Mallon, 1995), to reaction times in standard psychological experiments 

(van Orden, Holdon & Turvey, 2003) often show characteristic 

autocorrelations at all scales over time; MC3 sampling generates this pattern, 

but most sampling algorithms, and indeed other types of cognitive model, do 

not (SA) 

PR = Prior on Responses; SA = Sampling Algorithms
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A prior on responses: Adjustment for limited samples 

As previously described, internal sampling can explain the stochasticity of individual 

human probabilistic inference but cannot in itself explain biases that imply that people’s 

judgments and decisions are incoherent on average. Firstly, people’s probability judgments 

tend to be subadditive, meaning that when making separate probability judgments of the 

components of a category (e.g., “rain”, “snow”, or “any other type of precipitation”), the sum 

of these separate judgments is higher than the judgment of the category itself (e.g., “any type 

of precipitation”; e.g., Redelmeier, Koehler, Liberman, & Tversky, 1995). Secondly, people 

tend to make conjunction fallacies, by judging the probability of the conjunction of two (or 

more) events (e.g., rainy and windy weather) as higher than either of the individual events 

(e.g., rainy weather; e.g., Tentori, Crupi, & Russo, 2013; Tversky & Kahneman, 1983). 

Internal sampling can potentially result in subadditivity and conjunction fallacies for 

individual judgments solely on account of the variability inherent in a small number of 

samples, but if the samples are representative of the internal distribution, then the average of 

repeated sampling will approach the average of the distribution, meaning that people’s 

judgment should be unbiased on average. If people compensate for limited samples in a 

Bayesian manner, however, then biases such as these are unavoidable, and some 

compensation is often necessary in order to avoid obviously inaccurate inferences. For 

example, if one drew one blue ball from an urn with an unknown proportion of blue and red 

balls, then one would most likely not conclude that the urn contained only blue balls based on 

that evidence alone. Similarly, if one flipped a coin once and it came up heads, then one 

would certainly not conclude that the coin will always come up heads. Rather, assuming that 

any combination of red or blue balls in the urn is equally likely (i.e., a uniform prior), the 

Bayesian estimate is .67 blue balls. As for the coin, we usually have a strong prior that the 
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probability of heads is .5, so we would reasonably require a rather long run of heads to 

change our opinion. 

The Bayesian sampler model (Zhu, Sanborn, & Chater, 2020) formalizes this intuition 

with respect to human probability judgments. This model predicts that, for each probability 

judgment, a small number of instances are sampled from an internal representation, for 

example by drawing them from long-term memory or performing mental simulation, and the 

judgment is based on the proportion of outcomes in the sample after being adjusted according 

to a prior on responses. Given a symmetric prior expressed by the beta distribution Beta(β, β), 

the average judgment of the Bayesian sampler is 

 
𝐸 (𝑃̂(𝐴)) =

𝑁

𝑁 + 2𝛽
𝑃(𝐴) +

𝛽

𝑁 + 2𝛽
. 

1 

We can see that when the number of samples N increases, the first term will approach one 

and the second term will approach zero, while when the prior parameter β increases, the first 

term will approach zero and the second term will approach .5. Therefore, the Bayesian 

sampler predicts that, for a limited number of samples, human probability judgments will be 

adjusted towards the middle of the probability scale. This type of conservatism is indeed what 

we see in human behavior; as a rule, people’s probability judgments tend to be less extreme 

than one would expect (Edwards, 1968; Erev, Wallsten, & Budescu, 1994; Hilbert, 2012; 

Peterson & Beach, 1967). 

The Bayesian sampler can explain the subadditivity effect described above, by 

predicting that samples of lower (or higher) probabilities are adjusted more than probabilities 

close to .5. Because the components of a category are necessarily less probable than the 

category itself, the probabilities of each of them are likely to be more heavily adjusted than 

the probability of the category as a whole. The sum of the individual adjustments of the 

components is larger than the single adjustment of the category, which will in turn result in 

subadditivity. The conjunction fallacy, on the other hand, can be explained if we assume that 
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fewer samples are used when judging the probabilities of conjunctions than when judging the 

probabilities of single events (a reasonable assumption, since conjunctions are more complex 

than individual events and therefore presumably more difficult to sample). In this case, 

conjunctions will be adjusted more than individual events due to the smaller number of 

samples, and conjunction fallacies will result, given that the probabilities of the conjunctions 

and the individual events are close enough to each other. 

The Bayesian sampler thus differs from some other sampling-based models in that 

biases are not due to “naive” or “myopic” interpretation of small samples (e.g., Juslin, 

Winman, & Hansson, 2007) but rather due to a well-founded correction process that will, in 

the long run, improve accuracy. This does not necessarily imply that we can expect 

equivalent correction processes in all sampling-based inference; probability judgments in 

particular allow for a correction process that is both intuitively and mathematically accessible 

due to the application of a Beta prior, which might not always be the case. For example, naive 

use of small samples causes confidence intervals to be too narrow, but it is difficult to correct 

for this without knowing the form of the distribution. Nevertheless, the Bayesian sampler 

invites us to view traditional sampling models in a new light and ask ourselves what types of 

corrections (if any) people make in other situations. Ultimately, although beyond the scope of 

this chapter, applying a Bayesian perspective on extant models of internal as well as external 

sampling might allow for many new insights. 

The use of a Beta prior also allows for the definition of an optimal stopping rule for 

sampling, which in turn provides an explanation for the repulsion bias sometimes observed in 

decision making, describing that comparisons of perceptual features against predefined 

boundaries can lead to subsequent estimates to be repulsed from that boundary. For example, 

judging whether the number of dots appearing in an array is above or below 25 causes an 

aversion to responses of 25 in later direct estimates (Zhu, Sanborn and Chater, 2019). In such 
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cases, a decision-maker might take samples from a sensory representation to guide their 

answer, collecting evidence for either ‘higher’ or ‘lower’. In combination with the prior, this 

evidence can then be used to determine the value of continued sampling: with each sample, 

the decision-maker can weigh the projected benefit of information from further samples 

against the time and effort required to retrieve those samples, stopping when the cost exceeds 

the benefit. Such a rule can then lead to biases in the aggregated samples since sampling is 

more likely to stop where collected evidence favors a particular decision, even if those 

samples do not accurately reflect the target distribution. Any subsequent judgement made 

based on those samples will then reflect that bias; in the case of the dots, a series of samples 

suggesting the response ‘higher’ could lead to early termination, but possible overestimation 

when attempting to determine the actual count, thus shifting responses away from the 

boundary (Zhu, Sanborn and Chater, 2019; see Chapter XX for treatment of related 

phenomena). 

This viewpoint also provides a natural mechanism in terms of which we can understand 

the probabilistic biases that are often ascribed to the representativeness heuristic (Tversky & 

Kahneman, 1972). Suppose a person is asked to estimate the probability of, say, a fair coin 

falling heads five times in a row (HHHHH) versus a mix of heads and tails (e.g., HTTHH). 

To solve this directly by sampling sequences of five coin flips and comparing the relative 

frequencies of five heads versus the different mixes of heads and tails would require mentally 

simulating these coin flips many times; indeed, given that the true probability is just 1/32, a 

large sample of at least several hundred repetitions would be required to give a reasonably 

accurate estimate of either sequence. Clearly, for more complex events, the size of the sample 

required will grow very rapidly. But a sampling approach can still be applied, by drawing a 

small number of samples and seeing whether they are similar to the event of interest. For 

example, to work out the rough probability of crashing your car, it would be inefficient (and 
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dangerous!) simply to wait for a sufficient number of crashes to obtain a reliable estimate. 

Observing a few near-misses however can inform us that this is, perhaps, more probable than 

we had expected, and consequently that we should drive more cautiously. Indeed, in 

computational statistics, this intuition is embodied in the method of Approximate Bayesian 

Computation (Beaumont, 2019), where a probability is estimated from the number of samples 

that are sufficiently similar to the target event. But this approximation may be misleading in 

some circumstances, depending on the psychology of similarity judgements. For example, if 

we mentally simulate or recall typical short sequences of coin flips, most will be an 

unpredictable mix of heads and tails, and therefore judged as similar to the equally patternless 

HTTHH, but few if any of a small sample of sequences will be judged as similar to HHHHH. 

Thus, counting “near misses” will lead to the erroneous conclusion that the irregular sequence 

is in fact more probable. 

 

“A sense of location:” Sequential dependencies in internal sampling 

So far, we’ve assumed that people can draw independent samples from their internal 

model of a probability distribution, but in reality, this is neither computationally feasible nor 

consistent with the operation of human memory. For example, if a person is asked to think of 

as many different animals as they can, starting with lion would probably prompt a sample of 

other animals native to Africa, such as zebra, antelope, hippopotamus, and so on, while 

starting with whale might lead to primarily sampling other animals that live in the ocean. The 

same principle can also be applied to problem-solving. If given a scrambled word such as 

CIBRPAMOLET most people will find it very difficult to discern what the unscrambled 

word is supposed to be, which is hardly surprising considering that there are 39,916,800 

different possible combinations. From a sampling perspective, this is indeed a very large 

distribution to sample over and finding the correct solution by direct sampling would require 
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quite a lot of time. On the other hand, if we are given a starting point closer to our goal, such 

as PROBELMATIC, then it is much easier to reach a correct conclusion (Sanborn, Zhu, 

Spicer, Sundh, León-Villagrá, & Chater, 2021). 

Dependencies in internal sampling are perhaps most evident when people are asked to 

generate random sequences; human-generated sequences of random numbers show too many 

adjacent numbers, too few repetitions of digits, and continuing along the number line too 

often (e.g., 1-2-3) compared to truly random sequences (Wagenaar, 1972). These results have 

been taken as evidence that people are attempting to ensure that their sequences are locally 

representative of a random sequence (Kahneman & Tversky, 1972), or alternatively that they 

generate sequences using schemas (Baddeley, 1998). 

Although fully random sampling is generally the most efficient way of ensuring that 

samples are representative, it is clearly psychologically and computationally unrealistic since 

it requires global knowledge of the target distribution. Instead, there are more psychologically 

reasonable alternatives that retain the guarantee of convergence to the target distribution in 

the limit of a large number of samples. In particular, Markov Chain Monte Carlo (MCMC) 

algorithms work by gradually exploring the sampling space, meaning that each sample will 

be dependent on the sample that came before, and therefore provides an alternative 

explanation for these deviations from truly random sequences. MCMC algorithms make local 

proposals, which account for the higher-than-expected proportion of adjacent numbers, and 

some of the most popular versions of this algorithm prefer to transition to new states when 

the probabilities of the states are equal, which can account for the fewer-than-expected 

repetitions. Continuing along the number line further than expected requires a more 

specialized mechanism, however, such as a sampling algorithm with some momentum in how 

it moves, which is inherent in some popular sampling algorithms like Hamiltonian Monte 

Carlo (Castillo, León-Villagrá, Chater, & Sanborn, 2021). Although algorithms such as 
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MCMC require fewer cognitive resources than direct sampling, it will create dependencies 

and autocorrelations, which, as noted, is something we also observe in human behavior (see 

Chapter X in this volume for an in-depth introduction to sampling algorithms and their 

implications). 

While these explanations are difficult to distinguish in random number generation, 

different predictions can be made for newly trained representations. Castillo et al. (2021) 

performed such an experiment, in which participants learned a one-dimensional or two-

dimensional grid of syllables and were then asked to generate random syllables. Participants’ 

generated sequences were better matched by moving around the representation with 

momentum than by the transitions between syllables in either natural language or in the 

training they received on the representation. 

The sampling algorithm’s starting point. Applying algorithms with a sense of 

location to internal sampling means that where you start sampling can have a large influence 

on what is sampled, as in the relative difficulties of unscrambling CIBRPAMOLET and 

PROBELMATIC. The substantial influence of the starting point has thus been used to 

explain a number of framing effects: effects on how a question is asked upon the answer that 

is produced. For example, while in explicit subadditivity, the sum of separate judgments (e.g., 

of the probabilities of “rain”, “snow”, or “any other type of precipitation”) is higher than the 

probability of the combined judgments (e.g., “any type of precipitation”) there are implicit 

versions of the task that show different results. If you were asked for a combined judgement 

of the probability of “rain, snow, or any other type of precipitation”, then this is composed of 

common components that might be judged as more likely than “any type of precipitation”. 

However, if you were asked for a combined judgment of “diamond dust, virga, or any other 

type of precipitation”, you may judge this to be less likely than “any type of precipitation”. 

Implicit subadditivity effects such as these depend on the likelihood of the examples given, 
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which can be explained by the starting point of internal sampling; starting with highly 

probable examples means that they are unmissable, while for the packed version of the 

question they could be missed. Conversely, starting with highly improbable examples can 

make it more difficult to bring the highly probable examples to mind (Dasgupta, Schulz, & 

Gershman, 2017; Sanborn & Chater, 2016; Sloman, Rottenstreich, Wisniewski, 

Hadjichristidis, & Fox, 2004). 

The starting point of internal sampling can also be used to explain the anchoring effect, 

in which estimates are seemingly pulled towards values presented in preceding comparisons. 

For example, participants estimating the proportion of African countries in the U.N. guess 

higher numbers if first comparing this figure to 65% than without such a comparison 

(Tversky & Kahneman, 1974). These ‘anchors’ might act as starting points for MCMC chains 

that, with a limited number of iterations, the decision-maker is unable to sufficiently escape 

(Lieder, Griffiths, Huys, & Goodman, 2018). 

Finally, the starting point of internal sampling can explain at least some forms of the 

conjunction fallacy. In Tversky and Kahneman’s seminal 1983 paper, the first empirical 

evidence they provided resulted from asking participants to estimate across four pages of a 

novel either the number of words that had the form “_ _ _ _ i n g” or the number of words 

that had the form “_ _ _ _ _ n _”. While the first question asked for a subset of the words 

asked for by the second, participants still estimated the number of words with the form “_ _ _ 

_ i n g” to be higher. Like with the implicit subadditivity example, we can think of this as a 

result of internal sampling that starts in a richer region of the internal representation when 

given the form “_ _ _ _ i n g”, and which has more trouble finding this richer region from the 

starting point “_ _ _ _ _ n _” (Sanborn & Chater, 2016). 

The sampling algorithm’s movement. Aside from the starting point of internal 

sampling, the way in which sampling moves through a mental representation is also 
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important for explaining aspects of human behavior. As noted in the animal-naming example, 

the contents of the mind that are relevant for answering a question might be divided into 

clusters (e.g., animals native to Africa, animals that live in the ocean, etc.), and so are 

internally sampled in a clustered fashion (Bousfield & Sedgewick, 1944; Hills, Jones, & 

Todd, 2012).  

This problem of retrieving clustered items has been extensively studied in the animal 

foraging literature, as animals face the parallel challenge of obtaining food that is distributed 

into patches (e.g., berry bushes that cluster together with substantial distances between the 

clusters). The distances that animals travel have been found to correspond to power-law 

distributions in these kinds of environments. This means that while there is a high probability 

of travelling short distances, there is also a substantial probability of travelling large 

distances; the probability of each distance is proportional to that distance raised to a 

(negative) power. This implies that we should expect any type of concept generation or 

memory sampling to demonstrate similar patterns where information is similarly clustered in 

the mind. These distributions of movements appear to be adaptive, as the most effective blind 

search means moving according to a power-law distribution with an exponent of negative two 

(Viswanathan, Buldyrev, Havlin, da Luz, Raposo, & Stanley, 1999). Interestingly, the 

dynamics of internal sampling show a surprising correspondence to animal foraging. When 

retrieving animal names, there are long delays between retrieving names that come from 

different clusters (Hills, Jones, & Todd, 2012), and delays between retrievals are distributed 

according to a power-law distribution with an exponent that is close to negative two (Rhodes 

& Turvey, 2007). This suggests that internal sampling is able to move effectively in a 

clustered mental representation. 

The way in which sampling moves through a mental representation does not just 

depend on the previous state, as it might if location were all that mattered. Instead, internal 
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sampling shows long-range autocorrelations, with the next state of internal sampling 

depending on long-ago states as well. This has been demonstrated in a wide range of 

dependent measures, including repeated estimates of time intervals (e.g., one second), 

estimates of spatial intervals (e.g., one inch), and the response times of repeated trials of tasks 

such as lexical decision, mental rotation, visual search, and implicit association (Correll, 

2008; Gilden, 1997; Gilden, Thornton, & Mallon, 1995). In particular, these dependencies 

have been characterized as 1/f noise, which is notable because such a pattern is not 

straightforward to produce (Gardner, 1978). This means, in practice, that the response you 

make does not just depend on your last response but also on responses you made many trials 

ago. 

The combination of power-law distributions and 1/f noise in human cognition is 

interesting for two reasons, one theoretical and one practical. It is of interest to psychological 

theory because it is even more difficult to produce power-law distance distributions and 1/f 

noise in tandem; the most common models of each effect (i.e., Levy flights for distance 

distributions and fractal Brownian motion for 1/f noise) do not produce the other effect. It is 

also very useful for distinguishing between sampling algorithms. Of all the algorithms 

reviewed in Chapter X, only Metropolis-coupled MCMC seems capable of reliably producing 

both effects, which is of particular interest as this is also the best algorithm in this set for 

sampling from a clustered representation (Zhu, Sanborn, & Chater, 2018). 

The combination of power-law distance distributions and 1/f noise is of practical 

interest because it is very similar to some of the stylized facts found in financial markets. 

Both individual asset prices and indices like the S&P 500 show heavy-tailed price increases 

and decreases: while there are many days in which the prices change a little bit, there are a 

few days in which it changes dramatically. In addition, markets have long-range 

autocorrelations in their volatility: the magnitude of a price change (though importantly not 
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the direction of a price change) depends on the magnitude of previous price changes (Cont, 

2001). The correspondence between these effects found in internal sampling and those found 

in financial markets allows for the tentative suggestion that there may be a relationship 

between these levels that past market-based explanations have overlooked (Chater, Sanborn, 

Zhu, & Spicer, 2020). 

 

Putting the pieces together: The Bayesian sampler with a sense of location 

In the above sections, we discussed two possible mechanisms for explaining various 

classic biases in the literature on judgements and decision making. These mechanisms do not 

necessarily have to act separately, but instead can work together within the same model. As 

an illustration, we return to the previously described numerosity task in which participants are 

asked to judge whether the number of dots presented briefly on a computer screen is greater 

than 25. We can integrate the two mechanisms by assuming that a sampling algorithm with a 

sense of location, such as MCMC, generates samples from a distribution of estimates of the 

number of dots observed, for example, 24-26-27-26. Next, samples are re-coded according to 

the decision boundary (i.e., greater than 25), so that they can be expressed as 0-1-1-1. The 

confidence in the hypothesis “greater than 25” is then a result of combining these re-coded 

samples with the Beta prior, and a (potentially varying) threshold in confidence is used to 

determine when to stop sampling and make a decision (Zhu, Sundh, Chater, & Sanborn, 

2021). 

This simple model reproduces an impressive number of stylized facts about the 

relationships between confidence, accuracy, and response time. It also gives a novel 

explanation of why erroneous response times are often slower than correct response times, 

especially when participants are instructed to focus on accuracy, being a result of the 

autocorrelation of the samples. Finally, beginning to sample for the next trial where sampling 
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for the previous trial left off allows the model to produce the long-range autocorrelations in 

response times that can explain the general variability in this measure (Gilden, 1997; Zhu, et 

al., 2021). 

 

Discussion 

On the one hand, human judgment and decision-making are subject to a number of 

systematic biases. On the other hand, human behavior in much more complex problems than 

the simplified tasks commonly used in judgment and decision making studies have been 

shown to be close to ideal/normative Bayesian inference in areas such as perception (Kersten,  

Mamassian,  &  Yuille,  2004), categorization  (Anderson, 1991; Lake, Salakhutdinov, & 

Tenenbaum, 2015; Sanborn, Griffiths, & Navarro, 2010), reasoning and argumentation (Hahn 

& Oaksford, 2007; Oaksford & Chater, 1994, 2020), and intuitive physics (Battaglia, 

Hamrick, & Tenenbaum, 2013; Sanborn, Mansinghka, & Griffiths, 2013). The common 

factor of these latter approaches, sometimes collectively labelled Bayesian cognitive science, 

is that probabilistic reasoning, rather than heuristics, is considered the core component of 

human cognition, which is often viewed as Bayesian in the sense that it is adapted to make 

rational inferences based on subjective uncertainty (Oaksford & Chater, 2009). Yet the 

aforementioned biases seemingly contradict this perspective, implying an apparent paradox 

when different areas of cognitive science are compared. 

In this chapter, we have demonstrated how internal and external sampling can relate to 

each other, using the metaphor of an external and an internal urn illustrated in Figure 1, and 

that the concept of internal sampling can be used to extend the information sampling 

paradigm in order to create a more complete account of human probabilistic inference and 

associated biases. External sampling in itself can explain biases in the correspondence of 

judgments and decisions to the external environment, because biased information will persist 
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even if one were a perfect Bayesian inference machine, yet it cannot account for biases that 

imply incoherence. To understand this better, we can first make the simplifying assumptions 

that the brain perfectly stores and retrieves unmodified and unbiased samples from the 

environment to make inferences (e.g., Shi, Griffiths, Feldman, & Sanborn, 2010). After 

storing a small number of external samples, draws from the internal urn will on average not 

be very close to the true environmental value: there will be a random deviation of the mean of 

the internal urn from the true environmental value. Only with a large number of external 

samples will draws from the internal urn be on average close to the true environmental value. 

This serves as a (highly simplified) model of expertise: more samples will mean that 

judgments will on average correspond more closely to the environment, given a suitable 

inference algorithm. 

But the number of draws from the internal urn plays a separate role in the coherence of 

judgments. If we assume that the information that has previously been sampled from the 

environment (i.e., from the external urn) is in turn sampled with replacement from the mind 

(i.e., from the internal urn) for each individual judgment or decision, then using small 

samples that are adjusted appropriately can be used to explain many of the most well-known 

and persistent biases observed in human behavior. A person who draws a small number of 

samples will show greater inconsistency when asked the same question a second time, and 

assuming a prior on their responses, will show greater explicit subadditivity and conjunction 

fallacy effects. It is only with a very large number of samples that a person would be 

perfectly coherent and consistent, no matter the number of external samples in their urn. 

Thus, internal sampling processes, perhaps related to cognitive capacities such as working 

memory capacity (Lloyd, Sanborn, Leslie, & Lewandowsky, 2019), can unite seemingly 

contradictory results, by the assumption that people indeed make rational inferences, given 

computational restrictions and small samples. 
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In conjunction, the number of internal and external samples can explain the surprising 

finding that experts often demonstrate the same biases as amateurs, despite more experience 

and expertise (e.g., Redelmeier, Koehler, Liverman, & Tversky, 1994; Reyna & Lloyd, 2006; 

Tversky & Kahneman, 1983). Going back to the central metaphor, although the experts by 

virtue of their expensive experiences and greater opportunity for sampling presumably have a 

larger number of balls in their internal urn, they still draw the same number of samples when 

making a decision. Therefore, although experts might have an internal urn that better 

represents the nature of the world, incoherence biases will nevertheless occur. 

Although most of the findings discussed in this chapter can also be explained by other 

(sometimes many other) theories, one of the main strengths of the internal sampling account 

is that it simultaneously explains so many of them. Additionally, because it will, in the limit, 

result in a perfectly calibrated inference, sampling is based on a rational foundation that other 

theories sometimes lack. As such, internal sampling stands out as one of the most complete 

accounts of incoherence in human probabilistic inference. Furthermore, there are some 

cognitive phenomena that sampling is uniquely equipped to tackle, such as probability 

matching (e.g., Koehler & James, 2009), since it is very difficult to account for such 

stochasticity without an underlying stochastic process such as sampling. An important next 

step in further validating the internal sampling account is to determine if human behavior 

exhibits more such characteristic patterns; for example, recent research has shown that the 

variance of human probability judgments is consistent with a binomial process, where the 

variance can be used to approximate the number of samples used (Sundh, Zhu, Chater, & 

Sanborn, under review). 

Of course, there are many complications to this picture. Alongside the internal 

sampling mechanisms we discuss above, information samples from the environment are often 

biased, and participants at least partially correct for these biases as well as incorporate other 
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information into their decisions (Hayes, Banner, Forrester, & Navarro, 2019). Instead of 

assuming a frequentist interpretation of these samples (e.g., Costello & Watts, 2014), we 

instead take a Bayesian perspective in which samples are drawn according to subjective 

degrees of belief that have already incorporated prior beliefs and whatever correction for 

environmental biases that people use. Furthermore, internal sampling differs from external 

sampling in the sense that we cannot observe the distributions or the samples directly. There 

are indications that sampling-based accounts of cognition are roughly compatible with those 

used in neural sampling models (Buesing, Bill, Nessler, & Maass, 2011; Fiser, Berkes, 

Orbán, & Lengyel, 2010; Hoyer & Hyvarinen, 2003; Moreno-Bote, Knill, & Pouget, 2011), 

but until this connection can be modelled on an implementation level (see Marr, 1982) 

internal sampling methods remain as-if models. Nevertheless, a clear strength of the internal 

sampling account is that we know that it could indeed be implemented by the structure and 

machinery of the brain. 

 

Conclusions 

In this chapter, we have considered how the human mind is able to deal with a complex 

and uncertain world. The “ideal” approach to dealing with uncertainty is often thought to be 

Bayesian probabilistic reasoning, but the calculations involved are hopelessly intractable for 

dealing with the challenges of the real world. Instead, we suggest the mind approximates 

Bayesian inference by sampling small numbers of items from the relevant probability 

distributions, where these samples are generated through mental simulation or by drawing on 

memory. Indeed, this is a widely adopted strategy in computational statistics and artificial 

intelligence, where various tractable schemes for sampling from complex distributions have 

been developed. 
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Approximate Bayesian inference using sampling will inevitably lead to systematic 

departures from precise Bayesian probabilistic calculation though. We have considered two 

systematic ways in which this is the case. First, if we draw samples, probability estimates 

from these samples have to be modified by prior knowledge (or many events will be assigned 

definitive probabilities of 0 or 1), but this adjustment will itself lead to systematic biases in 

probability judgments, as we saw arising from the Bayesian sampler model of probability 

judgement (inflating small probabilities will lead, for example, to subadditivity). Second, for 

problems of realistic complexity, samples cannot be drawn independently from the 

probability distribution of interest, which is, after all, complex and unknown. Instead, 

samples will be generated by local sampling methods such as Markov Chain Monte Carlo 

methods, and thus introduce “autocorrelated” samples, where each sample tends to be similar 

to prior samples. Such methods will, in the limit, sample accurately from the underlying 

distribution; but, of course, the cognitive system must make do instead with a small number 

of samples, so that the starting point of the sampling process, in particular, will have strong 

impacts on the sample drawn, and hence on the resulting probability judgements. We have 

seen that both sources of systematic bias can help explain well-known phenomena 

traditionally captured in the heuristics and biases framework pioneered by Kahneman and 

Tversky; thus, the conjunction fallacy, and biases associated with anchoring, 

representativeness, and others, seem naturally to arise from a sampling framework. 

In contrast to many of the chapters of this book, we have focused primarily on internal 

sampling, through mental simulation or from memory, rather than potentially biased 

sampling arising from our interactions with the external world. But there are potentially 

interesting connections between sampling from the mind and sampling from the environment, 

which are likely to be interesting to explore in future research. For example, it may be that 

mental samples simply mirror samples we experience from the environment (Anderson, 
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1990; Stewart, Chater & Brown, 2006), so that biased sampling of the environment may be 

reflected in mental sampling. Or, in many social contexts, one person’s mental sampling 

feeds into another person’s environment (e.g., if one person’s judgements, arising from 

mental sampling, are then communicated to others); so, biases in mental sampling may shape 

biases in environmental sampling. Other more complex interactions can, of course, also be 

imagined. We suggest that combining theories about mental sampling and sampling from the 

environment, together with the quirks and biases of both, is likely to be a useful direction for 

understanding both the remarkable human ability to cope with a complex and uncertain 

world, and our tendency to make systematic errors on even the most elementary reasoning 

problems. 
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