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Abstract
Ageneric rectangulation is a partition of a rectangle into finitely many interior-disjoint
rectangles, such that no four rectangles meet in a point. In this work we present a
versatile algorithmic framework for exhaustively generating a large variety of different
classes of generic rectangulations. Our algorithms work under very mild assumptions,
and apply to a large number of rectangulation classes known from the literature, such
as generic rectangulations, diagonal rectangulations, 1-sided/area-universal, block-
aligned rectangulations, and their guillotine variants, including aspect-ratio-universal
rectangulations. They also apply to classes of rectangulations that are characterized
by avoiding certain patterns, and in this work we initiate a systematic investigation
of pattern avoidance in rectangulations. Our generation algorithms are efficient, in
some cases even loopless or constant amortized time, i.e., each new rectangulation is
generated in constant time in the worst case or on average, respectively. Moreover, the
Gray codes we obtain are cyclic, and sometimes provably optimal, in the sense that
they correspond to a Hamilton cycle on the skeleton of an underlying polytope. These
results are obtained by encoding rectangulations as permutations, and by applying our
recently developed permutation language framework.
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1 Introduction

Partitioning a geometric shape into smaller shapes is a fundamental theme in discrete
and combinatorial geometry. In this paper we consider rectangulations, i.e., partitions
of a rectangle into finitely many interior-disjoint rectangles. Such partitions have an
abundance of practical applications, which motivates their combinatorial and algorith-
mic study. For example, rectangulations are an appealing way to represent geographic
information as a cartogram. This is a map where each country is represented as a
rectangle, the adjacencies between rectangles correspond to those between countries,
and the areas of the rectangles are determined by some geographic variable, such as
population size [26]. If the rectangulation is area-universal [12] or aspect-ratio-
universal [16], respectively, then such an adjacency-preserving cartogram can be
drawn for any assignment of area values or aspect ratios to the rectangles. Another
important use of rectangulations is as floorplans in VLSI design and architectural
design. These problems often involve additional constraints on top of adjacency, such
as extra space for wires [33] or proportion limits for the rooms [31]. An important
notion in this context are slicing floorplans [33], also known as guillotine floorplans,
i.e., floorplans that can be subdivided into their constituent rectangles by a sequence
of straight vertical or horizontal cuts.

Rectangulations have rich combinatorial properties, and a task that has received a lot
of attention is counting, i.e., determining the number of rectangulations of a particular
type with n rectangles, either exactly as a function of n [43] or asymptotically as n
grows [39]. This led to several beautiful bijections of rectangulations with pattern-
avoiding permutations [1, 4, 36] or with twin binary trees [43]. The focus of this
paper is on another fundamental algorithmic task, which is more fine-grained than
counting, namely exhaustive generation, meaning that every rectangulation from a
given class must be produced exactly once. While such generation algorithms are
known for many other discrete objects such as permutations, combinations, subsets,
trees etc. and covered in standard textbooks such as Knuth’s [25], much less is known
about the generation of geometric objects such as rectangulations.

The ultimate goal for a generation algorithm is to produce each new object in
timeO(1), which requires that consecutively generated objects differ only by a ‘small
local change’. Such a minimum change listing of combinatorial objects is often called
a Gray code [38]. If the time boundO(1) for producing the next object holds in every
step, then the algorithm is called loopless [11], and if it holds on average it is called
constant amortized time (CAT) [37]. The Gray code problem entails the definition of
a flip graph, which has as nodes all the combinatorial objects to be generated, and an
edge between any two objects that differ in the specified small way. Clearly, computing
a Gray code ordering of the objects is equivalent to traversing a Hamilton path or cycle
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in the corresponding flip graph. It turns out that some interesting flip graphs arising
from rectangulations can be equipped with a natural lattice structure [29], analogous
to the Tamari lattice on triangulations, and realized as polytopes in high-dimensional
space [27], analogous to the associahedron (see [34] for generalizations). This ties
in the Gray code problem with deep methods and results from lattice and polytope
theory.

1.1 Our Results

Themain contribution of this paper is a versatile algorithmic framework for generating
a large variety of different classes of generic rectangulations, i.e., rectangulations with
the property that no four rectangles meet in a point. In particular, we obtain efficient
generation algorithms for several interesting classes known from the literature, in some
cases loopless or CAT algorithms; see Table 1.

The initialization time and memory requirement for all these algorithms is linear
in the number of rectangles. The classes of rectangulations shown in the table arise
from generic rectangulations by imposing structural constraints, such as the guillotine
property or forbidden configurations, or by equivalence relations, and they will be
defined in Sect. 2.2. We implemented the algorithms generating the classes of rectan-
gulations from the table in C++, and we made the code available for download and
experimentation on the Combinatorial Object Server [45].

The classes of rectangulations that our algorithms can generate are not limited
to the examples shown in Table 1, but can be described by the following closure
property; see Fig. 1. Given an infinite class of rectangulations C, we require that if a
rectangulation R is contained in C, then the rectangulation obtained from R by deleting
the bottom-right rectangle is also in C, and the two rectangulations obtained from R
by inserting a new rectangle at the bottom or right, respectively, are also in C (formal
definitions of deletion and insertion are given in Sect. 2). If C satisfies this property,
then our algorithms allow generating the set Cn ⊆ C of all rectangulations from C
with exactly n rectangles, for every n ≥ 1, by so-called jumps, a minimum change
operation that generalizes simple flips, T-flips, and wall slides studied in [9, 36] (the
formal definition of jumps is in Sect. 3.1). Moreover, if the class C is symmetric, i.e.,
if R is in C then the rectangulation obtained from R by reflection at the diagonal from
top-left to bottom-right is also in C, then the jump Gray code for Cn is cyclic, i.e., the
last rectangulation differs from the first one only by a jump. In other words, we not
only obtain a Hamilton path in the corresponding flip graph, but a Hamilton cycle.
In fact, all the classes of rectangulations listed in Table 1 satisfy the aforementioned
closure and symmetry properties, so in all those cases we obtain cyclic jump Gray
codes.

Generic rectangulations and diagonal rectangulations, shown in the first two rows
of Table 1, have an underlying lattice and polytope structure [27, 29], and in those
two cases our Gray codes form a Hamilton cycle on the skeleton of this polytope, i.e.,
jumps are provably optimal minimum change operations. The Gray codes for these
two rectangulation classes with n = 1, . . . , 5 rectangles are shown in Appendix D.
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,

bottom-right

,

bottom right

symmetry property

closure property

∈ C

deletion

∈ C

∈ C ∈ C

insertion insertion

Fig. 1 Closure property and symmetry property

It turns out that many interesting classes of rectangulations can be characterized by
pattern avoidance; see the second column in Table 1. Under very mild conditions on
the patterns, these classes satisfy the aforementioned closure property, and can hence
be generated by our framework. In this work we initiate a systematic investigation of
pattern avoidance in rectangulations, and we obtain the first counting results for many
known and new classes; see the third column in Table 1 and the more extensive table
in Sect. 9.

Our generation framework for rectangulations consists of two main algorithms.
The first is a simple greedy algorithm that generates a jump Gray code ordering for
any set of rectangulations Cn ⊆ C for which C satisfies the aforementioned closure
property; see Algorithm J� and Theorem 3.3 in Sect. 3. The second is a memoryless
version of the first algorithm, which computes the same ordering of rectangulations;
see Algorithm M� and Theorem 5.1 in Sect. 5. This algorithm can be fine-tuned to
derive efficient algorithms for several known rectangulation classes such as the ones
listed in Table 1, by providing corresponding jump oracles for the class C.

To prove Theorems 3.3 and 5.1, we encode rectangulations by permutations as
described by Reading [36], and we then apply our framework for exhaustively gener-
ating permutation languages presented in [20–22]. Theminimumchange operations on
permutations used in that framework translate to jumps on rectangulations. Generating
different classes of rectangulations efficiently is thus another major new application
of our permutation language framework, and in this paper we flesh out the details of
this application.

1.2 RelatedWork

There has been some prior work on generating a few special classes of rectangu-
lations, all based on Avis and Fukuda’s reverse search method [6]. Specifically,
Nakano [32] described a CAT generation algorithm for generic rectangulations, which
does not produce a Gray code, however. This algorithm has been adapted by Takagi
and Nakano [40] to generate generic rectangulations with bounds on the number of
rectangles that do not touch the outer face. Yoshii et al. [44] gave a Gray code for
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generic rectangulations based on a generating tree that is different from ours, resulting
in a loopless algorithm. Their Gray code changes at most three edges of the rectan-
gulation in each step, whereas our algorithm changes only 1 edge in each step for
generic and for diagonal rectangulations. Consequently, none of the listings produced
by these earlier algorithms corresponds to a walk along the skeleton of the underlying
polytope.

There has been a lot of work on combinatorial properties of rectangulations. Yao
et al. [43] showed that diagonal rectangulations are counted by the Baxter numbers
and that guillotine diagonal rectangulations are counted by the Schröder numbers,
using a bijection between diagonal rectangulations and twin binary trees. Ackerman
et al. [1] presented another bijection between diagonal rectangulations and Baxter
permutations,which also yields a bijectionbetweenguillotine diagonal rectangulations
and separable permutations. Leifheit [28] showed that this bijection can be restricted
to the 1-sided variants of these two rectangulation classes by adding two permutation
patterns; see Table 1. Shen and Chu [39] provided asymptotic estimates for diagonal
rectangulations and their guillotine variant. Moreover, He [18] presented an optimal
encoding of diagonal rectangulations with n rectangles using only 3n − 3 bits, which
is optimal.

The term ‘generic rectangulation’ was coined by Reading [36], who established a
bijection between generic rectangulations and 2-clumped permutations, proving that
these permutations are representatives of equivalence classes of a lattice congruence of
theweak order on the symmetric group. Earlier, generic rectangulations had been stud-
ied under the name ‘rectangular drawings’ by Amano et al. [3] and by Inoue et al. [15,
23],who established recursion formulas and asymptotic bounds for their number.More
general classes of rectangular partitions were analyzed by Conant and Michaels [10].

Ackerman et al. [2] considered the setting where we are given a set of n points in
general position in a rectangle, and the goal is to partition the rectangle into smaller
rectangles by n walls, such that each point from the set lies on a distinct wall. They
showed that for every set of points that forms a separable permutation in the plane,
the number of possible rectangulations is the (n + 1)st Baxter number, and for every
point set the number of possible guillotine rectangulations is the nth Schröder number.
They also presented a counting and generation procedure based on simple flips and
T-flips using reverse search, which was later improved by Yamanaka et al. [42].

1.3 Outline of This Paper

In Sect. 2 we provide basic definitions and concepts that will be used throughout the
paper. In Sect. 3 we present a greedy algorithm for generating a set of rectangulations
by jumps, and we provide a sufficient condition for the algorithm to succeed. In Sect. 4
we show that the algorithm applies to a large number of rectangulation classes that are
characterized by pattern avoidance. In Sect. 5 we demonstrate how to make our gen-
eration algorithm memoryless and efficient. The data structures and basic functions
used by our algorithms are provided in Sects. 6 and 7. The proofs of Theorems 3.3
and 5.1 are presented in Sect. 8, by establishing a connection between rectangulations
and permutations and by applying our permutation language framework. In Sect. 9 we
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R

r1

r2 r3 r4

r8

r6

vertices

walls

edges

r5
r7

Fig. 2 Generic rectangulation R with 11 rectangles. The rectangle r1 is below r2, r3, and r4, above r5
and r6, right of r7, and left of r8

report on our computer experiments about counting pattern-avoiding rectangulations.
We conclude the paper with some interesting open questions in Sect. 10. The proofs of
two technical lemmas and for the results on rectangulations under S-equivalence men-
tioned in Table 1 are deferred to Appendices A and B, as well as several visualizations
of Gray codes produced by our algorithms.

2 Preliminaries

2.1 Generic Rectangulations

A generic rectangulation, or rectangulation for short, is a partition of a rectangle into
finitely many interior-disjoint axis-aligned rectangles, such that no four rectangles of
the partition have a point in common; see Fig. 2. In otherwords, every pointwhere three
rectangles meet, or where two rectangles meet the outer face forms a T-joint with the
incident rectangle boundaries.Given rectangles r and s, we say that r is left of s, and s is
right of r , if the right side of r intersects the left side of s (necessarily in a line segment,
rather than a single point). Similarly, we say that r is below s, and s is above r , if the
top side of r intersects the bottom side of s. We consider generic rectangulations up to
equivalence that preserves the left/right and below/above relations between rectangles,
and we use Rn , n ≥ 1, to denote the set of all rectangulations with n rectangles. We
write � for the unique rectangulation in R1, i.e., the rectangulation consisting of a
single rectangle.

We refer to every rectangle corner in a rectangulation as a vertex, to every minimal
line segment between two vertices as an edge, and to every maximal line segment
between two vertices that are not corners of the rectangulation as a wall. The type of
a vertex that is not a corner of the rectangulation describes the shape of the T-joint at
this vertex, and it is one of �, �, ⊥, or �.
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simple flip

wall slide

T-flip
v t

w′

w′′

Fig. 3 Local change operations on rectangulations

2.2 Flip Operations and Classes of Rectangulations

Our Gray codes use three types of local change operations on rectangulations; see
Fig. 3.

A wall slide swaps the order of two neighboring vertices of types � and � along
a vertical wall, or of types � and ⊥ along a horizontal wall. A simple flip swaps the
orientation of a wall that separates two rectangles. Given a vertex v that belongs to
three rectangles, we consider the wall w that goes through v and the wall t that ends
at v, and we let w′ and w′′ be the two halves of w meeting in v. If w′ or w′′ is an edge,
respectively, then a T-flip swaps the orientation of this edge so that it merges with t .

We now define various interesting subclasses of generic rectangulations that have
been studied in the literature and that appear in Table 1. Examples illustrating these
classes are in Fig. 4. A diagonal rectangulation is one in which every rectangle inter-
sects the main diagonal that goes from the top-left to the bottom-right corner of
the rectangulation. We write Dn ⊆ Rn for the set of all diagonal rectangulations
with n rectangles. Diagonal rectangulations are characterized by avoiding the wall

patterns and [9]. Consider the equivalence relation on Rn obtained from
wall slides, sometimes referred to as R-equivalence [4]. The equivalence classes are
referred to asmosaic floorplans, and every equivalence class contains exactly one diag-

onal rectangulation, obtained by repeatedly destroying occurrences of or by
wall slides [9]. Consequently, in a diagonal rectangulation, along every vertical wall,
all �-vertices are below all �-vertices, and along every horizontal wall, all ⊥-vertices
are to the left of all �-vertices.

In a 1-sided rectangulation, every wall is the side of at least one rectangle, i.e.,

these rectangulations are characterized by avoiding the four patterns , ,

, and . The notion of 1-sidedness was introduced by Eppstein et al. [12] to
characterize area-universal rectangulations, i.e., for any assignment of areas to the
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(a) (b) (c) (d)

Fig. 4 Examples of different classes of rectangulations: a diagonal, but neither 1-sided nor guillotine, b
1-sided, but not guillotine, c guillotine, but not diagonal, d guillotine and 1-sided. Occurrences of the
corresponding forbidden patterns are highlighted

rectangles, the rectangulation can be drawn so that each rectangle has the prescribed
area.

Asinowski et al. [4] also considered the equivalence relation on Rn obtained
from wall slides and simple flips, and they called it S-equivalence. By definition,
S-equivalence is a coarser relation than R-equivalence, i.e., the equivalence classes
are obtained by identifying mosaic floorplans that differ in simple flips. In Appendix B
we introduce block-aligned rectangulations, which are a subset of diagonal rectangu-
lationswith the property that every equivalence class of S-equivalence contains exactly
one block-aligned rectangulation.

A rectangulation is guillotine, if each of its rectangles can be cut out from the
entire rectangulation by a sequence of straight vertical or horizontal cuts. Guillotine

rectangulations are characterized by avoiding the windmill patterns and ,
which is a folklore result.Various special classes of guillotine diagonal rectangulations,
characterized by the avoidance of certain wall configurations, were introduced by
Asinowski andMansour [5] (see Sect. 4 for precise definitions of these configurations).
Mosaic floorplans that are guillotine are also known as slicing floorplans.

Felsner, Nathenson, and Tóth [16] showed that 1-sided guillotine rectangulations
are precisely the aspect-ratio-universal rectangulations, i.e., for any assignment of
aspect ratios to the rectangles, the rectangulation can be drawn so that each rectangle
has the prescribed aspect ratio.

2.3 Deletion of Rectangles

We now describe two operations on a generic rectangulation R, namely deleting a
rectangle and inserting a rectangle. The resulting rectangulations will be denoted
by p(R) and ci (R), notations that refer to the parent and children of R, in a tree
structure that will be discussed shortly. The deletion and insertion operations were
introduced in [19] and heavily used e.g. in [1] and [32].

The idea of deletion is to contract the rectangle in the bottom-right corner of the
rectangulation. Formally, given a rectangulation R ∈ Rn , n ≥ 2, we consider the
rectangle r in the bottom-right corner, and we consider the top-left vertex of r . If
this vertex has type �, then we collapse r by sliding its top side, which forms a wall,
downwards until it merges with the bottom side of r ; see Fig. 5a. Similarly, if this
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R p(R)

R p(R)

(a)

(b)
r

r

Fig. 5 Deletion operation

1

2

3

4

5 6

8

7
9

1

2

3

4

5 6

8

7

1

2

3

4

5 6

7

1

2

3

4

5 6

. . .

p(R) = R[8] p2(R) = R[7] p3(R) = R[6]R

Fig. 6 A rectangulation and the indexing of its rectangles given by repeated deletion

vertex has type �, then we collapse r by sliding its left side, which forms a wall, to
the right until it merges with the right side of r ; see Fig. 5b. We denote the resulting
rectangulationwith n−1 rectangles by p(R) ∈ Rn−1, andwe say that p(R) is obtained
from R by deletion.

Moreover, we denote the n rectangles of R by rn, rn−1, . . . , r1 in the order in which
they are deleted when applying the deletion operation exhaustively; see Fig. 6. Clearly,
if ri is deleted and its top-left vertex has type �, then the rightmost rectangle above ri

is ri−1. Similarly, if the top-left vertex has type �, then the lowest rectangle to the left
of ri is ri−1.

For any R ∈ Rn and i = 1, . . . , n we define R[i] := pn−i (R), i.e., this is the
sub-rectangulation of R formed by the first i rectangles; see Fig. 6.

2.4 Insertion of Rectangles

The idea of insertion is to add a new rectangle into the bottom-right corner of the
rectangulation. Given a rectangulation R ∈ Rn−1, we first define a set of points in R
that can become the top-left corner of the newly added rectangle; see Fig. 7.

For any rectangle r in R ∈ Rn−1, n ≥ 2, that touches the bottom boundary of R,
we consider all edges forming the left side of r , and from every such edge we select
one interior point, and we refer to it as a vertical insertion point.
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Fig. 7 Linear ordering of insertion points. First and last insertion point are filled

Similarly, for any rectangle r in R that touches the right boundary of R, we consider
the set of all edges forming the top side of r , and from every such edge we select one
interior point, and we refer to it as a horizontal insertion point. Combinatorially it
does not make a difference which interior point of each edge is selected.

We order the insertion points linearly, by sorting all vertical insertion points
lexicographically by their (x, y)-coordinates, followed by all horizontal insertion
points sorted lexicographically by their (y, x)-coordinates; see Fig. 7. We write
I (R) = (q1, q2, . . . , qν) for the sequence of all insertion points ordered in this linear
order. In particular, ν = ν(R) denotes the number of insertion points.

Lemma 2.1 For any rectangulation R ∈ Rn−1 we have ν(R) ≤ n.

Proof Each rectangle in R has at most one vertical insertion point on its right side,
and at most one horizontal insertion point on its bottom side. Moreover, no rectangle
has both, the bottom-right rectangle rn−1 has neither of the two, and exactly two
insertion points lie on the boundary of R. Combining these observations shows that
ν(R) ≤ ((n − 1) − 1) + 2 = n. �

Clearly, the upper bound in Lemma2.1 is attained if every rectangle touches the bottom
or right boundary of R.

Given R ∈ Rn and the sequence of insertion points I (R) = (q1, . . . , qν), for each
i = 1, . . . , ν we define a rectangulation ci (R) ∈ Rn as follows: If qi is a vertical
insertion point, then ci (R) is obtained from R by inserting a new rectangle rn in the
bottom-right corner such that rn has above it exactly all rectangles which in R lie to
the right of qi and touch the bottom boundary of R, and such that rn has to its left
exactly all rectangles which in R touch the vertical wall through qi below qi ; see
Fig. 8a. Similarly, if qi is a horizontal insertion point, then ci (R) is obtained from R
by inserting a new rectangle rn in the bottom-right corner such that rn has to its left
exactly all rectangles which in R lie below qi and touch the right boundary of R, and
such that rn has above it exactly all rectangles which in R touch the horizontal wall
through qi to the right of qi ; see Fig. 8b. We say that ci (R) is obtained from R by
insertion.
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Fig. 8 Insertion operation

By these definitions, the operations of deletion and insertion are inverse to each
other, which we record in the following lemma.

Lemma 2.2 For any rectangulation R ∈ Rn−1 and any two distinct insertion points qi

and q j from I (R), the rectangulations ci (R) ∈ Rn and c j (R) ∈ Rn are distinct, and
we have R = p(ci (R)) = p(c j (R)). Moreover, for any R′ ∈ Rn with p(R′) = R
there is an insertion point qi in I (R) such that ci (R) = R′.

The first and last insertion point play a special role in our arguments, which is why they
are highlighted in Fig. 8. We say that R is bottom-based if R has a rectangle whose
bottomside is the entire bottomboundary of R, and R is right-based if R has a rectangle
whose right side is the entire right boundary of R. Note that the rectangulation� ∈ R1
is both bottom-based and right-based, and if n ≥ 2, then R ∈ Rn is bottom-based if
and only if R = c1(p(R)) and right-based if and only if R = cν(p(R))(p(R)).

3 The Basic Algorithm

In this section we present the basic algorithm that we use to generate a set of rectan-
gulations Cn ⊆ Rn .
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Fig. 9 Jumps generalize wall slides, simple flips, and T-flips

3.1 Jumps in Rectangulations

To state the algorithm, we first introduce a local change operation that generalizes
the three kinds of flips introduced in Sect. 2.2 (recall Fig. 3) and that will be applied
when moving from one rectangulation in Cn to the next in the algorithm. A jump
changes the insertion point for exactly one rectangle of the rectangulation. Formally,
for a rectangulation R ∈ Rn , we say that R′ ∈ Rn differs from R by a right jump of
rectangle r j by d steps, denoted R′ = #„

J (R, j, d), where 2 ≤ j ≤ n and d > 0, if
one of the following conditions holds; see Fig. 10:

• j = n, and we have p(R) = p(R′) =: P ∈ Rn−1, R = ck(P), and R′ = ck+d(P)

for some k > 0;
• j < n, and R and R′ are either both bottom-based or both right-based, and p(R′)
differs from p(R) in a right jump of rectangle r j by d steps.

In words, the first condition asserts that the first n − 1 rectangles in R and R′ form the
same rectangulation P ∈ Rn−1, and R and R′ are obtained by insertion from P using
the kth and (k +d)th insertion point, respectively. The second condition asserts that R
and R′ agree in the rectangle rn , which either forms the bottom boundary or the right
boundary of those rectangulations, and p(R′) differs from p(R) in a right jump with
the same parameters.

A right jump as before is called minimal w.r.t. to a set of rectangulations Cn ⊆ Rn ,
if in the first condition above there is no index � with k < � < k + d such that
c�(P) ∈ Cn .

A (minimal) left jump, denoted R′ = #„
J (R, j, d), is defined analogously by replac-

ing ck+d by ck−d and k < � < k+d by k > � > k−d in the definitions above. Clearly,
if R′ differs from R by a right jump of rectangle r j by d steps, then R differs from R′
by a left jump of rectangle r j by d steps, and vice versa, i.e., we have R′ = #„

J (R, j, d)

if and only if R = #„
J (R′, j, d). We sometimes simply say that R and R′ differ in a

jump, without specifying the direction left or right.

We state the following simple observations for further reference; see Fig. 9.
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Fig. 10 Illustration of jumps

Lemma 3.1 Consider two rectangulations R, R′ ∈ Rn that differ in a jump of rect-
angle r j , define P := R[ j−1] = R′[ j−1] ∈ R j−1, and let qk and q� be the insertion
points in I (P) such that R[ j] = ck(P) and R′[ j] = c�(P).

(a) If qk and q� are consecutive (w.r.t. I (P)) on a common wall of P, then R and R′
differ in a wall slide.

(b) If qk lies on the last vertical wall and q� on the first horizontal wall of P
(w.r.t. I (P)), then R and R′ differ in a simple flip.

(c) If qk lies on a vertical wall and q� is the first insertion point on the next vertical
wall of P (w.r.t. I (P)), or if qk lies on a horizontal wall and q� is the last insertion
point on the previous horizontal wall, then R and R′ differ in a T-flip.

For any rectangulation R ∈ Rn , we say that two insertion points from I (R) belong
to the same vertical or horizontal group, if they lie on the same vertical or horizontal
wall in R, respectively. In the sequence I (R), insertion points belonging to the same
group appear consecutively.

3.2 Generating Rectangulations byMinimal Jumps

Consider the following algorithm that attempts to greedily generate a set of rectangu-
lations Cn ⊆ Rn using minimal jumps.

Algorithm J� (greedy minimal jumps). This algorithm attempts to greedily gener-
ate a set of rectangulations Cn ⊆ Rn using minimal jumps starting from an initial
rectangulation R0 ∈ Cn .
J1. [Initialize] Visit the initial rectangulation R0.
J2. [Jump] Generate an unvisited rectangulation from Cn by performing a minimal

jump of the rectangle with largest possible index in the most recently visited
rectangulation. If no such jump exists, or the jump direction is ambiguous, then
terminate. Otherwise visit this rectangulation and repeat J2.

To illustrate how Algorithm J� works, we consider the set of five rectangulations
C4 = {R1, . . . , R5} ⊆ R4 shown in Fig. 11. If initialized with R0 := R1, then the
algorithm performs a left jump of rectangle 4 by one step (a right jump of rectangle 4 is
impossible) to reach R2, i.e., we have R2 = #„

J (R1, 4, 1). In R2, there are two options,
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Fig. 11 Example execution of Algorithm J�

either a right jump of rectangle 4 by one step, leading back to R1, which has been
visited before, or a left jump of rectangle 4 by two steps, leading to R3, so we visit
R3 = #„

J (R2, 4, 2). In R3, the jumps involving rectangle 4 lead to rectangulations that
were visited before (R1 and R2). Moreover, a jump of rectangle 3 does not lead to
a rectangulation in C4. However, a right jump of rectangle 2 by one step leads to R4
(a left jump of rectangle 2 is impossible), so we visit R4 = #„

J (R3, 2, 1). Finally, in
R4 a right jump of rectangle 4 by two steps leads to R5 = #„

J (R4, 4, 2) (a left jump
of rectangle 4 is impossible). In this example, Algorithm J� successfully visits every
rectangulation from C4 exactly once.

On the other hand, suppose we instead initialize the algorithm with R0 := R3. The
algorithm will then visit R2 := #„

J (R3, 4, 2) followed by R1 := #„
J (R2, 4, 1), and then

terminates without success, as from R1 no jump leads to an unvisited rectangulation
from C4. Lastly, suppose we initialize Algorithm J� with R0 := R2. As before, in R2,
there are two possibilities, either a right jump or a left jump of rectangle 4, both leading
to an unvisited rectangulation from C4. Both are minimal jumps in opposite directions,
and as the jump direction is ambiguous, the algorithm terminates immediately without
success.

Remark 3.2 We do not recommend using Algorithm J� in the stated form to generate
a set of rectangulations efficiently! This is because the algorithm requires to maintain
the list of all previously visited rectangulations (possibly exponentially many), and to
look up this list in each step to check whether a rectangulation obtained by a jump
from the current one has been visited before. For us, Algorithm J� is merely a tool to
define a Gray code ordering of the rectangulations in the given set Cn in way that is
easy to remember (cf. [41]). In fact, in Sect. 5 we will present a modified algorithm
that dispenses with the costly lookup operations, and that computes the very same
sequence of rectangulations.

3.3 A Guarantee for Success

By definition, Algorithm J� visits every rectangulation from a given set Cn ⊆ Rn at
most once, but it may terminate before having visited all. We now provide a sufficient
condition guaranteeing that Algorithm J� visits every rectangulation from Cn exactly
once.
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A set of generic rectangulations Cn ⊆ Rn is called zigzag, if either n = 1 and
C1 = {�}, or if n ≥ 2 and Cn−1 := {p(R) | R ∈ Cn} is zigzag and for every R ∈ Cn−1
we have c1(R) ∈ Cn and cν(R)(R) ∈ Cn . In words, the set Cn must be closed under
repeatedly deleting bottom-right rectangles and replacing them by rectangles inserted
either below or to the right of the remaining ones; recall Fig. 1. The name ‘zigzag’
does not refer to the shape of a rectangulation, but to the order in which they are
visited by Algorithm J�, which will become clear momentarily. We also say that Cn is
symmetric, if reflection at the main diagonal is an involution of Cn , i.e., if R ∈ Cn , then
the rectangulation obtained from R by reflection at the main diagonal is also in Cn .

We write ...
n for the rectangulation that consists of n vertically stacked rectangles.

Theorem 3.3 Given any zigzag set of rectangulations Cn and initial rectangulation

R0 = ...
n , Algorithm J� visits every rectangulation from Cn exactly once. Moreover,

if Cn is symmetric, then the ordering of rectangulations generated by Algorithm J� is
cyclic, i.e., the first and last rectangulation differ in a minimal jump.

The proof of Theorem 3.3 is provided in Sect. 8.

Note that the rectangulation R0 = ...
n is contained in every zigzag set by definition,

so this is a valid initialization for Algorithm J�. We write J�(Cn) for the sequence of
rectangulations generated by Algorithm J� for a zigzag set Cn when initialized with

R0 = ...
n .

It is easy to see that the number of distinct zigzag sets of generic rectangulations is
at least 2|Rn |(1−o(1)) ≥ 2�(11.56n) (the latter estimate uses the best known lower bound
on |Rn| from [3]), i.e., at least double-exponential in n. In other words, Algorithm J�
exhaustively generates a given set of generic rectangulations in a vast number of cases.
Moreover, many natural classes of rectangulations are in fact zigzag. In particular,
all the different classes introduced in Sect. 2.2 and shown in Table 1 satisfy the
aforementioned closure property. Moreover, all of these classes are symmetric, so for
each of them we obtain cyclic jump orderings. Several such Gray codes are visualized
in Appendix D.

3.4 Tree of Rectangulations

The notion of zigzag sets and the operation of Algorithm J� can be interpreted
combinatorially in the so-called tree of rectangulations, which is an infinite rooted
tree, defined recursively as follows; see Fig. 12: The root of the tree is a single
rectangle � ∈ R1. For any node R ∈ Rn−1, n ≥ 2, of the tree we consider all
insertion points of the rectangulation R, and the set of children of R in the tree is
{ci (R) ∈ Rn | i = 1, . . . , ν(R)}. Conversely, the parent of each R ∈ Rn , n ≥ 2, is
p(R) ∈ Rn−1. In words, insertion leads to the children of a node, and deletion leads
to the parent of a node. By Lemma 2.2, each generic rectangulation appears exactly
once in the tree, and the set of nodes at distance n from the root of the tree is precisely
the setRn+1 of generic rectangulations with n + 1 rectangles. We emphasize that this
tree is unordered, i.e., there is no specified ordering among the children of a node.
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Fig. 12 Tree of generic rectangulations up to depth 3 with insertion points highlighted, where first and
last insertion point are filled. The rectangulations in the dashed boxes at the bottom level R4 are stacked
on top of each other due to space constraints, but they are children of a common parent node. Bottom- or
right-based rectangulations, corresponding to insertion at the first or last insertion point, are marked by gray
boxes

By Lemma 2.1, a node R ∈ Rn in the tree has at most n + 1 children, i.e., we
have |Rn| ≤ n!. As we see from Fig. 12, this inequality is tight up to n = 4, but
starting from n = 4, there are nodes R ∈ Rn with strictly less than n + 1 children,
i.e., we have |R5| < 5!. In fact, it was shown in [3] that |Rn| = O(28.3n).

A subset Cn ⊆ Rn of nodes in depth n − 1 of this tree is zigzag, if and only if it
arises from the full tree of rectangulations by pruning some subtrees whose roots are
neither bottom-based nor right-based rectangulations. In Fig. 12, all bottom-based or
right-based rectangulations are highlighted by gray boxes, and can therefore not be
pruned, while all other nodes can possibly be pruned. If no nodes are pruned, then
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we have Cn = Rn , and if all possible nodes are pruned, then Cn is the set Bn of 2n−1

rectangulations obtained by repeatedly stacking a new rectangle either below or to the
right of the previous ones, i.e., Bn = {c1(R), cν(R)(R) | R ∈ Bn−1} for n ≥ 2 and
B1 = {�}. Moreover, we have Bn ⊆ Cn ⊆ Rn for any zigzag set Cn .

The operation of Algorithm J� for a zigzag set Cn as input can be interpreted as
follows: Given the pruned tree corresponding to Cn , we consider the set of nodes on all
previous levels of the tree, i.e., the setsCi−1 := {p(R) | R ∈ Ci } for i = n, n−1, . . . , 2,
which are all zigzag sets by definition. Moreover, we consider the orderings J�(Ci ),
i = 1, . . . , n, defined by Algorithm J� for each of these sets. These sequences turn the
unordered tree corresponding to Cn into an ordered tree, where the children ci (R) of
each node R from left to right appear alternatingly in increasing order i = 1, . . . , ν(R)

or in decreasing order i = ν(R), ν(R) − 1, . . . , 1. Consequently, in the sequence
J�(Ci ), i ≥ 2, which forms the left-to-right sequence of all nodes in depth i − 1 of
this ordered tree, the rectangle ri alternatingly jumps left and right between the first
and last insertion point, whichmotivates the name ‘zigzag’ set; see also the animations
provided in [45].

It is important to realize that these orderings are not consistent with respect
to taking subsets, i.e., if we have two zigzag sets C′

n ⊆ Cn , then the entries of
the sequence J�(C′

n) do not necessarily appear in the same relative order in the
sequence J�(Cn).

4 Pattern-Avoiding Rectangulations

In this section we show that Algorithm J� applies to a large number of rectangulation
classes that are defined by pattern avoidance, under some very mild conditions on the
patterns; recall Table 1.

A rectangulation pattern is a configuration of walls with prescribed directions and

incidences. For example, the windmill patterns and describe four walls such
that when considering the walls in clockwise or counterclockwise order, respectively,
the end vertex of one wall lies in the interior of the next wall. We can also think of a
pattern as the rectangulation formed by the given walls and incidences. For example,
we can think of the windmill patterns as rectangulations with five rectangles. We say
that a rectangulation R contains the pattern P , if R contains a subset of walls with the
directions and incidences specified by P . Otherwise we say that R avoids P . For any
set of rectangulation patterns P and for any set of rectangulations C, we write C(P)

for the rectangulations from C that avoid each pattern from P . For example, diagonal

rectangulations are given by Dn = Rn
({

,
})
. Examples of rectangulations

containing and avoiding various patterns are shown in Fig. 4.
We say that a rectangulation pattern P is tame, if for any rectangulation R that

avoids P , we also have that c1(R) and cν(R)(R) avoid P . In words, inserting a new
rectangle below R or to the right of R must not create the forbidden pattern P . The
next lemma follows directly from these definitions.
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Lemma 4.1 If a rectangulation pattern is neither bottom-based nor right-based, then

it is tame. In particular, each of the patterns , , , , , , ,

is tame.

The following powerful theorem allows to obtain many new zigzag sets of rectan-
gulations from a given zigzag set Cn ⊆ Rn by forbidding one or more tame patterns.
All of these zigzag sets can then be generated by our Algorithm J�.

Theorem 4.2 Let Cn ⊆ Rn be a zigzag set of rectangulations, and let P be a set of
tame rectangulation patterns. Then Cn(P) is a zigzag set of rectangulations. Moreover,
if P is symmetric, then Cn(P) is symmetric.

Recall thatP is symmetric if for each pattern P ∈ P , we have that the pattern obtained
from P by reflection at the main diagonal is also in P . The significance of the second
part of the theorem is that if Cn(P) is symmetric, then the ordering of rectangulations
of Cn(P) generated by Algorithm J� is cyclic by Theorem 3.3.

Proof As Cn is a zigzag set of rectangulations, we know that Ci−1 := {p(R) | R ∈ Ci }
for i = n, n − 1, . . . , 2 are also zigzag sets. We argue by induction that Ci (P) is
also a zigzag set for all i = 1, . . . , n. For the induction basis i = 1 note that the
rectangulation � that consists of a single rectangle has no walls, so it avoids any
pattern, showing that C1(P) = C1 = {�}. For the induction step we assume that
Ci (P), i ∈ {1, . . . , n − 1}, is a zigzag set, and we prove it for Ci+1(P). Note that
{p(R) | R ∈ Ci+1(P)} = Ci (P), and sowe only need to check that c1(R) and cν(R)(R)

are in Ci+1(P) for all R ∈ Ci (P), which is guaranteed by the assumption that each
pattern P ∈ P is tame. This proves the first part of the theorem.

It remains to prove the second part. If R ∈ Cn(P), then R avoids every pattern
fromP . Let R′ be the rectangulationobtained from R by reflection at themaindiagonal.
R′ must also avoid every pattern from P , because if it contained a pattern P from P ,
then R would contain the corresponding reflected pattern P ′, which is inP because of
the assumption thatP is symmetric. It follows that R′ ∈ Cn(P), completing the proof.�


5 Efficient Computation

Recall from Remark 3.2 that Algorithm J� in its stated form is unsuitable for efficient
implementation. We now discuss how to make the algorithm efficient, so as to achieve
the time bounds claimed in Table 1 for several interesting classes of rectangulations.

5.1 Memoryless Algorithm

Consider Algorithm M� below, which takes as input a zigzag set of rectangula-
tions Cn ⊆ Rn and generates them exhaustively byminimal jumps in the same order as
Algorithm J�, i.e., in the order J�(Cn). After initialization in line M1, the algorithm
loops over linesM2–M5, visiting the current rectangulation R at the beginning of each
iteration (line M2), until it terminates (line M3).

The key idea of the algorithm is to track explicitly which rectangle jumps in each
step, and the direction of the jump. With this information, the jump is determined by
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the condition that it must be minimal w.r.t. Cn , i.e., starting from the current insertion
point of the given rectangle, we choose the first insertion point (w.r.t. their linear
ordering) for that rectangle in the given direction that creates the next rectangulation
from Cn .

Algorithm M� (memoryless minimal jumps). This algorithm generates all rect-
angulations of a zigzag set Cn ⊆ Rn by minimal jumps in the same order as
Algorithm J�. It maintains the current rectangulation in the variable R, and aux-
iliary arrays o = (o1, . . . , on) and s = (s1, . . . , sn).

M1. [Initialize] Set R ← ...
n , and o j ← � , s j ← j for j = 1, . . . , n.

M2. [Visit] Visit the current rectangulation R.
M3. [Select rectangle] Set j ← sn , and terminate if j = 1.
M4. [Jump rectangle] In the current rectangulation R, perform a jump of rectan-

gle r j that is minimal w.r.t. Cn , where the jump direction is left if o j =� and
right if o j =� .

M5. [Update o and s] Set sn ← n. If o j =� and R[ j] is bottom-based set o j ← � ,
or if o j =� and R[ j] is right-based set o j ← � , and in both cases set
s j ← s j−1 and s j−1 ← j − 1. Go back to M2.

Specifically, the jump directions are maintained by an array o = (o1, . . . , on),
where o j =� means that rectangle r j performs a left jump in the next step, and
o j =� means that rectangle r j performs a right jump in the next step (line M4). All

sub-rectangulations of the initial rectangulation ...
n are right-based, so the initial jump

directions are o j =� for j = 1, . . . , n (line M1). Whenever rectangle r j jumps left
and reaches the first insertion point, which means that R[ j] is bottom-based, or if it
jumps right and reaches the last insertion point, which means that R[ j] is right-based,
then the jump direction o j is reversed (line M5).

The array s = (s1, . . . , sn) is used to determine which rectangle jumps in each
step. Specifically, the last entry sn determines the rectangle that jumps in the current
iteration (lineM3). This array simulates a stack in a loopless fashion, following an idea
first used by Bitner et al. [7]. The stack is initialized by (s1, . . . , sn) = (1, 2, . . . , n)

(line M1), with sn being the value on the top of the stack. The stack is popped (by the
instruction s j ← s j−1 in line M5) when rectangle r j reaches its first or last insertion
point in this step, meaning that this rectangle is not eligible to jump in the next step, but
becomes eligible again after the next step, which is achieved by pushing the value j
on the stack again (by the instructions sn ← n and s j−1 ← j − 1 in line M5).

Table 2 shows the execution of Algorithm M� with input C4 = D4 being the set of
all diagonal rectangulations with four rectangles.

Theorem 5.1 For any zigzag set of rectangulations Cn ⊆ Rn, Algorithm M� visits
every rectangulation from Cn exactly once, in the order J�(Cn) defined by Algo-
rithm J�.

The proof of Theorem 5.1 is provided in Sect. 8. To make meaningful statements
about the running time of Algorithm M�, we need to specify the data structures used
to represent the current rectangulation R, and the operations on this data structure to
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Table 2 Execution of AlgorithmM� for the set C4 = D4 of diagonal rectangulations with four rectangles.
Empty entries in the o and s column are unchanged compared to the previous row

J�(C4) Jump o1 o2 o3 o4 s1 s2 s3 s4 J�(C4) Jump o1 o2 o3 o4 s1 s2 s3 s4

1

1
2

3
4

#„
J (R, 4, 1) � � � � 1 2 3 4 12

1
2

3
4

#„
J (R, 4, 1) � 1 1 4

2

1
2

3
4

#„
J (R, 4, 1) 4 13

1
2

3
4

#„
J (R, 4, 1) 4

3

1
2

3
4

#„
J (R, 4, 1) 4 14

1
2

3
4

#„
J (R, 4, 1) 4

4

1
2

3
4

#„
J (R, 3, 1) � 3 3 15

1
2

3
4

#„
J (R, 3, 1) � 3 3

5

1
2

3
4

#„
J (R, 4, 1) 4 16

1
2

3
4

#„
J (R, 4, 1) 4

6

1
2

3
4

#„
J (R, 4, 1) 4 17

1
2

3
4

#„
J (R, 4, 1) 4

7

1
2

3
4

#„
J (R, 4, 1) 4 18

1
2

3
4

#„
J (R, 4, 1) 4

8

1
2

3
4

#„
J (R, 3, 1) � 3 3 19

1
2

3
4

#„
J (R, 3, 1) � 3 3

9

1
2

3
4

#„
J (R, 4, 1) � 2 2 4 20

1
2

3
4

#„
J (R, 4, 1) � 2 1 4

10

1
2

3
4

#„
J (R, 4, 2) 4 21

1
2

3
4

#„
J (R, 4, 2) 4

11

1
2

3
4

#„
J (R, 2, 1) � 3 2 22

1
2

3
4

� 3 1

perform jumps in line M4 and to check the bottom-based and right-based property in
lineM5.Most importantly, we will develop oracles which efficiently compute the next
minimal jump w.r.t. Cn for some interesting zigzag sets Cn . One should think of Cn

here as a class of rectangulations specified by some properties or forbidden patterns,
such as ‘diagonal guillotine rectangulations’, and not as a large precomputed set of
rectangulations. All of these details are described in the following sections, and they
are part of our C++ implementation provided in [45].

6 Data Structures and Basic Functions

In the following we describe the data structures we use to represent and manipulate
generic rectangulations, and the efficient implementation of jump operations using
those data structures.
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4
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8
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4
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9
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12
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i
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t
a
i
l

h
e
a
d

p
r
e
v

n
e
x
t

l
e
f
t

r
i
g
h
t

w
a
l
l

1 1 2 0 2 0 1 1
2 2 3 1 0 0 3 1
3 4 5 0 4 3 4 2
4 5 6 3 0 3 5 2
5 7 8 0 0 1 2 3
6 9 10 0 7 2 0 4
7 10 11 6 8 4 0 4
8 11 12 7 0 5 0 4
9 9 7 0 10 0 2 5
10 7 1 9 0 0 1 5
11 10 8 0 12 2 4 6
12 8 4 11 13 1 4 6
13 4 2 12 0 1 3 6
14 11 5 0 0 4 5 7
15 12 6 0 16 5 0 8
16 6 3 15 0 3 0 8

vi

n
o
r
t
h

e
a
s
t

s
o
u
t
h

w
e
s
t

t
y
p
e

1 0 1 10 0 0
2 0 2 13 1

⊥

3 0 0 16 2 0
4 13 3 12 0

⊥

5 0 4 14 3

⊥

6 16 0 15 4 ⊥

7 10 5 9 0

⊥

8 12 0 11 5 ⊥

9 9 6 0 0 0
10 11 7 0 6 ⊥
11 14 8 0 7 ⊥
12 15 0 0 8 0

wi f
i
r
s
t

l
a
s
t

1 1 3
2 4 6
3 7 8
4 9 12
5 9 1
6 10 2
7 11 5
8 12 3

ri n
e
a
s
t

s
e
a
s
t

s
w
e
s
t

n
w
e
s
t

1 2 8 7 1
2 8 10 9 7
3 3 6 4 2
4 5 11 10 4
5 6 12 11 5

Fig. 13 Data structures used to represent a generic rectangulation with n = 5 rectangles. Edges are labeled
black, and walls are labeled gray

6.1 Data Structures

We represent a generic rectangulation with n rectangles as follows; see Fig. 13: Rect-
angles are stored in the variables r1, . . . , rn , indexed by the reverse deletion order
described in Sect. 2.3 (recall Fig. 6). Vertices and edges are stored in variables
v1, . . . , v2n+2 and e1, . . . , e3n+1, respectively (indexed in no particular order).

Each vertex v points to the edges incident to it in the four directions by v.north,
v.east, v.south, and v.west. Some of these can be 0, indicating that no edge is
incident. This information determines the type v.type, which is one of �, �, ⊥, �,
or 0 at the corner vertices of the rectangulation. We give all edges a default orientation
from left to right, or from bottom to top. The dir entry of each edge e specifies its
direction, which is either e.dir =� for a horizontal edge or e.dir =� for a vertical
edge. Each edge e points to its two end vertices, specifically to its tail by e.tail and
to its head by e.head (with respect to the default orientation). It also points to the
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previous and next edge, in the direction of its orientation, by e.prev and e.next,
respectively, which can be 0 if no such edge exists. The rectangle to the left and right
side of an edge e, in the direction of its orientation, are stored in e.left and e.right,
which can be 0 at the boundary of the rectangulation. Each rectangle r points to its four
corner vertices by r .neast, r .seast, r .swest, and r .nwest in the corresponding
directions.

For some rectangulation classes it is useful to store information about walls, i.e.,
maximal sequences of edges between two vertices that are not corners of the rectan-
gulation. These are stored in w1, . . . , wn+3, where for simplicity we also keep track
of the four maximal line segments between corners of the rectangulation (which are
not walls in our definition). We also think of walls having a default orientation from
left to right, or from bottom to top, and each wall w points to its first and last vertex
by w.first and w.last, respectively, in the direction of its orientation. Moreover,
each edge e has an entry e.wall pointing to the wall that contains it.

Remark 6.1 The aforementioned data structures are natural in the sense that they also
capture the dual graph of the rectangulation, i.e., the graph obtained by replacing every
rectangle by avertex, andby joining any twovertices that correspond to rectangles shar-
ing a common edge. This allows constructing the so-called transversal structure [17]
(also known as regular edge labeling [24]), which is useful for computing a
layout of the rectangulation; see Felsner’s survey [13]. Our data structures also
allow to easily extract the twin binary tree representation of diagonal rectangulations
described in [43].

We now use these data structures for implementing jumps efficiently. Recall the con-
ditions stated in Lemma 3.1 when a jump is one of the three flip operations shown in
Fig. 3. We refer to a jump as in (a), (b), or (c) in the lemma as a W-jump, S-jump, or
T-jump, respectively. By these definitions, a W-jump is a special wall slide, an S-jump
is a special simple flip, and a T-jump is a special T-flip. We refer to W-, S- and T-jump
as local jumps collectively. Moreover, a W-jump or T-jump between two horizontal
insertion points, or between two vertical insertion points, is referred to as a horizontal
or vertical W- or T-jump, respectively.

Consider two rectangulations R and R′ that differ in a jump of rectangle r j . If
the jump is an S-jump or a horizontal T-jump, we let h(R, R′) denote the number of
horizontal insertion points of I (R[ j−1]) = I (R′[ j−1]) that lie in the interior of the
top side of rectangle r j in R or R′; see Fig. 14. Similarly, if the jump is an S-jump
or a vertical T-jump, we let v(R, R′) denote the number of vertical insertion points
of I (R[ j−1]) = I (R′[ j−1]) that lie in the interior of the left side of rectangle r j in R
or R′.
Lemma 6.2 Local jumps can be implemented with the following time guarantees:

(a) A W-jump takes time O(1).
(b) An S-jump between rectangulations R, R′ takes timeO(h(R, R′)+v(R, R′)+1).
(c) A horizontal T-jump between rectangulations R and R′ takes timeO(h(R, R′)+1)

and a vertical T-jump takes time O(v(R, R′) + 1).

Clearly, every jump can be performed as a sequence of local jumps, and then the time
bounds given by Lemma 6.2 can be added up.
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v(R, R ′) j

j − 1

jj − 1

S-jump

j

horizontal T-jump

j

R R ′ R R ′

h(R, R ′)
h(R, R ′)

Fig. 14 Illustration of Lemma 6.2

Proof The time bounds follow from the number of incidences that change during local
jumps. The crucial point is that during a jump of rectangle r j between R and R′, all
rectangles rk for k = j + 1, . . . , n are right-based or bottom-based in R[k] and R′[k],
entailing that only constantly many incidences with such rectangles have to be modi-
fied. �


6.2 Auxiliary Functions

In Sect. 6.3 we provide implementations of local jumps with the runtime guarantees
stated in Lemma 6.2. Before doing so, we introduce some auxiliary functions to add
and remove edges from a rectangulation. These auxiliary functions only update the
incidences between edges, vertices and walls, but not the incidences between rect-
angles and any other objects and the type of vertices (this will be done separately
later).

The following function remHead(β) removes the edge eβ together with its head
vertex.

Function remHead(β) (remove eβ and its head).
1. [Prepare] Set α ← eβ.prev, γ ← eβ.next, a ← eβ.tail.
2. [Update edges/vertices] Ifα �= 0, set eα.next ← γ . If γ �= 0, set eγ .prev ←

α and eγ .tail ← a. If eβ.dir =� , set va .east ← γ . Otherwise we have
eβ.dir =� and set va .north ← γ .

3. [Updatewall] Set x ← eβ.wall. If eβ.head = wx .last, setwx .last ← a.

After defining some auxiliary variables in the first step, the function remHead(β)

updates the incidences between edges and vertices in the second step, and the inci-
dences between walls and edges in the third step.We also define an analogous function
remTail(β) that removes eβ and its tail instead of its head. For details, see our C++
implementation [45].
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The following two functionsinsBefore(β, a, γ ) andinsAfter(α, a, β) insert
the edge eβ with head va or tail va , respectively, before or after the edge eγ or eα .

Function insBefore(β, a, γ ) (insertion of eβ with head va before eγ ).
1. [Prepare] Set α ← eγ .prev and b ← eγ .tail.
2. [Update edges/vertices] Set eβ.tail ← b, eβ.head ← a, eβ.prev ← α,

eβ.next ← γ , eγ .tail ← a, eγ .prev ← β, and if α �= 0 set eα.next ←
β. If eγ .dir =� , set eβ.dir ← � , va .west ← β, va .east ← γ and
vb.east ← β. Otherwise we have eγ .dir =� and set eβ.dir ← � ,
va .south ← β, va .north ← γ and vb.north ← β.

3. [Update wall] Set eβ.wall ← eγ .wall.

Function insAfter(α, a, β) (insertion of eβ with tail va after eα).
1. [Prepare] Set γ ← eα.next and b ← eα.head.
2. [Update edges/vertices] Set eβ.tail ← a, eβ.head ← b, eβ.prev ← α,

eβ.next ← γ , eα.head ← a, eα.next ← β, and if γ �= 0 set eγ .prev ←
β. If eα.dir =� , set eβ.dir ← � , va .west ← α, va .east ← β and
vb.west ← β. Otherwise we have eα.dir =� and set eβ.dir ← � ,
va .south ← α, va .north ← β and vb.south ← β.

3. [Update wall] Set eβ.wall ← eα.wall.

6.3 Local Jumps

Armed with these auxiliary functions, we now tackle the implementation of local
jumps with the time guarantees stated in Lemma 6.2. Each of the functions
Wjump(R, j, d, α), Sjump(R, j, d, α), and Tjump(R, j, d, α) below takes as input
the current rectangulation R in which the jump is performed, the index j of the rectan-
gle r j to be jumped, the direction d ∈ {� ,�} of the jump, and the index α of the edge
eα which contains the insertion point of R[ j−1] thatwill become the top-left vertex of r j

after the jump. In the pseudocode of these algorithms, all references to rectangles ri ,
edges ei , vertices vi or walls wi are with respect to the current rectangulation R.

We first present the implementation of W-jumps. For simplicity, we only show
the implementation of left horizontal W-jumps in the function Wjumph(R, j,�, α)

below; see Fig. 15a. The implementation of right horizontal W-jumps, and of left and
right vertical W-jumps in a function Wjumpv(R, j, d, α) is very similar; we omit the
details here.

Function Wjumph(R, j,�, α) (left horizontal W-jump).
1. [Prepare] Set a ← r j .nwest, β ← va .west and k ← eα.left.
2. [Flip and update rectangles]CallremHead(β) andinsAfter(α, a, β). Then

set eβ.left←k and eβ.right ← j .
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Fig. 15 Implementation of local jumps: a horizontal W-jumps; b S-jumps; c horizontal T-jumps. Vertices
are drawn as squares, insertion points as circles

The running time of Wjumph(R, j,�, α) is clearly O(1), as claimed in part (a) of
Lemma 6.2.

We proceed with the implementation of S-jumps. For simplicity, we only provide
the implementation of left S-jumps in the function Sjump(R, j,�, α) below; see
Fig. 15b. The implementation of right S-jumps is very similar.

Function Sjump(R, j,� , α) (left S-jump).
1. [Prepare] Set a ← r j .nwest, b ← r j .swest, c ← r j .neast, α′ ←

va .west, β ← va .east, β ′ ← vb.west, γ ← vc.south, δ ← va .south,
c′ ← eβ ′ .tail, k ← eα.left, � ← eγ .right and x ← eδ.wall.

2. [Flip] Call remTail(β), remHead(β ′), insBefore(β, a, α), and
insAfter
(γ, b, β ′). Then set eδ.dir ← � , eδ.tail ← a, eδ.head ← b, va .east ←
δ, va .west ← 0, va .type ← �, vb.east ← 0, vb.west ← δ, vb.type ←
�, wx .first ← a, and wx .last ← b.

3. [Update rectangles] Set r j .neast ← b, r j .swest ← c′, r j−1.neast ← c,
and r j−1.swest ← a. Set ν ← vc.west, and while ν �= α′ repeat
eν .right ← j − 1 and ν ← eν .prev. Set ν ← vc′ .north, and while
ν �= α repeat eν .right ← j and ν ← eν .next. Also set eβ.left ← k,
eβ.right ← j , eβ ′ .left ← j − 1, and eβ ′ .right ← �.

Let R′ be the rectangulation obtained from R by one call of Sjump(R, j,� , α). The
running time of this call is O(h(R, R′) + v(R, R′) + 1), as claimed in part (b) of
Lemma 6.2. This time is incurred by the while-loops in step 3. Specifically, the first
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while-loop is iterated exactly h(R, R′) times, and the second while-loop is iterated
exactly v(R, R′) + 1 times.

We complete this section by presenting the implementation of T-jumps; see Fig. 15c.
For simplicity, we only provide the implementation of left horizontal T-jumps in the
functionTjumph(R, j,� , α) below. The implementation of right horizontal T-jumps,
and of left and right vertical T-jumps in a function Tjumpv(R, j, d, α) is very similar.

Function Tjumph(R, j,�, α) (left horizontal T-jump).
1. [Prepare] Set a ← r j .nwest, b ← eα.head, c ← r j .neast, α′ ←

va .west, β ← va .east, β ′ ← va .south, γ ← vc.south, γ ′ ←
vb.south, k ← eβ ′ .left, �←eγ .right, m ← eα.right, x ← eα.wall
and y ← eγ ′ .wall.

2. [Flip]CallremTail(β),remTail(β ′),insAfter(α, a, β), andinsAfter
(γ, b, β ′). Then set eβ.head ← b, eγ ′ .head ← a, va .south ← γ ′,
vb.west ← β, wx .last ← b, and wy .last ← a.

3. [Update rectangles] Set r j .neast ← b, rk .neast ← c and rm .neast ← a.
Set ν ← vc.west, and while ν �= α′ repeat eν .right ← k and ν ←
eν .prev. Also set eβ.left ← k and eβ ′ .right ← �.

Let R′ be the rectangulation obtained from R by one call of Tjumph(R, j,� , α). The
running time of this call isO(h(R, R′)+1), as claimed in part (c) of Lemma 6.2. This
time is incurred by the while-loop in step 3, which is iterated exactly h(R, R′) + 1
times.

7 Minimal JumpOracles

A minimal jump oracle is a function that is called in line M4 of Algorithm M� to
compute a jump in the current rectangulation R that is minimal respect to the given
zigzag set of rectangulations Cn ⊆ Rn . In this section we specify such oracles for the
zigzag sets Cn mentioned in Table 1, which allows us to establish the runtime bounds
for Algorithm M� stated in the last column of the table (except for block-aligned
rectangulations, which are handled in Appendix B). A minimal jump oracle has the
form nextCn (R, j, d), and this function call performs in the current rectangulation R
a jump of rectangle r j in direction d that is minimal w.r.t. Cn , and the function will
modify R accordingly. Depending on Cn , our minimal jump oracles perform a suitable
W-, S-, or T-jump, or a combination thereof, as implemented in the previous section.

7.1 Generic Rectangulations

We first consider the case Cn = Rn of generic rectangulations. Given the current
rectangulation R, upon a jump of rectangle r j in direction d, every insertion from
I (R[ j−1]) is used, so we simply need to detect the next one.

By Lemma 3.1, a W-jump occurs between any two consecutive (w.r.t. I (R[ j−1]))
insertion points belonging to the same horizontal or vertical group, an S-jump occurs
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between the last vertical insertion point and the first horizontal insertion point, and a
T-jump occurs between the last insertion point of a group and the first insertion point of
the next group, if both groups are vertical or horizontal. Specifically, suppose there are
λ vertical groups and μ horizontal groups with cardinalities gk , k = 1, . . . , λ, and hk ,
k = 1, . . . , μ, respectively in I (R[ j−1]) (note that g1 = hμ = 1). Then the jump
sequence consisting of letters {W , S, T } that specifies the types of jumps performed
with rectangle r j from the first to the last insertion point is

(T W g2−1)(T W g3−1) · · · (T W gλ−1) S (W h1−1T )(W h2−1T ) · · · (W hμ−1−1T ); (1)

see Fig. 16a. Of course, during Algorithm M�, these jump operations are not consec-
utive, but they are interleaved with the jump sequences of other rectangles rk , k > j .
The details are spelled out in the function nextRn (R, j, d).

nextRn (R, j, d) (minimal jump oracle for generic rectangulations).
N1. [Prepare] Set a ← r j .nwest. If d =� and va .type = �, setα ← va .west,

β ← va .south, b ← eβ.tail and c ← eα.tail, and goto N2. If d =�
and va .type = �, set α ← va .east, b ← eα.head, and goto N3. If d =�
and va .type = �, set α ← va .north, β ← va .east, b ← eβ.head and
c ← eα.head, and goto N4. If d =� and va .type = �, set α ← va .south,
b ← eα.tail, and goto N5.

N2. [Horizontal left jump] If vc.type = ⊥, set γ ← vc.west and call
Wjumph(R, j,�, γ ). Else if vb.type = �, set γ ← vb.west and call
Tjumph(R, j,�, γ ). Otherwise we have vb.type = ⊥, set γ ← vc.south
and call Sjump(R, j,�, γ ). Return.

N3. [Horizontal right jump] If vb.type = ⊥, set γ ← vb.east and call
Wjumph(R, j,�, γ ). Otherwise we have vb.type = �, set k ← eα.left,
c ← rk .nwest and γ ← vc.east, and call Tjumph(R, j,�, γ ). Return.

N4. [Vertical right jump] If vc.type = �, set γ ← vc.north and call
Wjumpv(R, j,�, γ ). Else if vb.type = ⊥, set γ ← vb.north and call
Tjumpv(R, j,�, γ ). Otherwise we have vb.type = �, set γ ← vc.east
and call Sjump(R, j,�, γ ). Return.

N5. [Vertical left jump] If vb.type = �, set γ ← vb.south and call
Wjumpv(R, j,�, γ ). Otherwise we have vb.type = ⊥, set k ← eα.left,
c ← rk .nwest and γ ← vc.south and call Tjumpv(R, j,�, γ ). Return.

The four distinct cases treated in lines N2–N4 come from the directions d ∈ {�,�}
and whether the jump is horizontal or vertical. The latter condition is determined in
line N1 by querying the type of the top-left vertex of r j , which is either � or �. Note
that the code in lines N2 and N4 is symmetric by reflecting all directions at the main
diagonal. The same holds for the code in lines N3 and N5.

Lemma 7.1 Consider a rectangulation P ∈ Rn−1 with ν = ν(P) insertion points.
Then calling nextRn (R, n,�) exactly ν − 1 times with initial rectangulation R =
c1(P), yields ci (P) for i = 1, . . . , ν, and the total time for these calls is O(ν). An
analogous statement holds for nextRn (R, n,�).
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Fig. 16 Illustration of the proofs of a Theorem 7.2 for generic rectangulations and b Theorem 7.5 for
diagonal rectangulations

Proof If the sequence of insertion points I (P) has λ vertical groups and μ horizontal
groups of cardinalities gk , k = 1, . . . , λ, and hk , k = 1, . . . , μ, respectively, then the
sequence of jumps performed by the calls tonextRn has the form (1).We clearly have
ν = ∑λ

k=1 gk + ∑μ
k=1 hk . We use Lemma 6.2 to bound the overall time to perform

those operations; see Fig. 16a. The number of W-jumps in (1) is w := ∑λ
k=1(gk − 1)

+∑μ
k=1(hk − 1) ≤ ν. The sum of the terms v(R, R′) + 1 and h(R, R′) + 1 over

any two consecutive rectangulations R, R′ in this sequence that differ in a T-jump is
t := ∑λ−1

k=1 gk and t ′ := ∑μ
k=2 hk , respectively. The sum v(R, R′) + h(R, R′) + 1 for

the two consecutive rectangulations R, R′ in this sequence that differ in an S-jump is
s := gλ + h1 − 1. Clearly, we have s + t + t ′ ≤ ν. Consequently, the overall time for
those operations is O(w + s + t + t ′) = O(ν), as claimed. �

Theorem 7.2 Algorithm M� with the minimal jump oracle nextRn takes time O(1)
on average to visit each generic rectangulation.

Proof For some fixed j ∈ {2, . . . , n}, we consider all jumps of rectangle r j . Whenever
rectangle r j jumps in a rectangulation R ∈ Rn , then R[k] is either bottom-based or
right-based for all k = j + 1, . . . , n. Moreover, none of the rectangles k = j − 1,
j − 2, . . . , 2 jumps unless R[ j] is bottom-based or right-based. Consequently, we can
partition the jumps of r j in the entire jump sequence into subsequences, such that in
each subsequence, for each rectangulation R ∈ Rn of the subsequence, R[ j−1] ∈ R j−1
is the same subrectangulation and in R the rectangle r j jumps to the next insertion
point of I (R[ j−1]). By Lemma 7.1, the total time for visiting the ν = ν(R[ j−1]) many
rectangulations of this subsequence is O(ν), which is O(1) on average. �

Remark 7.3 By slightly modifying our data structures, we could even obtain a loopless
algorithm for generic rectangulations. The idea is to introduce an additional data
structure called sides. Each rectangle is subdivided into four sides, and in the incidence
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relations, sides sit between edges and rectangles, i.e., edges do not point to the two
touching rectangles directly, but to the relevant sides of those rectangles, and each
side points to the rectangle it belongs to. During S-jumps and T-jumps, a rectangle can
be broken up into its four sides and the sides of two rectangles can be interchanged
in constant time, avoiding the while-loops in the functions Sjump and Tjump that
need to update possibly linearly many incidences between edges and rectangles. To
keep the presentation simple, we do not show these modifications. Also, the resulting
improvement is not substantial, and sides are a somewhat artificial concept.

7.2 Diagonal Rectangulations

Recall that in a diagonal rectangulation R ∈ Dn , every rectangle intersects the main

diagonal, or equivalently, R avoids the patterns and . Consequently, during a
jump of rectangle r j in the current rectangulation R, we need to consider precisely
the insertion points from I (R[ j−1]) that are the first insertion point of a vertical group,
or the last insertion point of a horizontal group, as any other insertion point from
each group would create one of the forbidden pattern; see Fig. 16b. Consequently, if
the sequence I (R[ j−1]) has λ vertical groups and μ horizontal groups, then the jump
sequence that specifies the types of jumps with rectangle r j from the first to the last
insertion point is

T λ−1 S T μ−1.

In particular, we do not perform any wall slides. An implementation of this is provided
in the function nextDn (R, j, d).

nextDn (R, j, d) (minimal jump oracle for diagonal rectangulations).
N1. [Prepare] Set a ← r j .nwest. If d =� and va .type=�, set α ← va .south

and b ← eα.tail, and goto N2. If d = � and va .type = �, set α ←
va .east and goto N3. If d =� , and va .type = �, set α ← va .east and
b ← eα.head, and goto N4. If d =�, and va .type = �, set α ← va .south
and goto N5.

N2. [Horizontal left jump] If vb.type = �, set γ ← vb.west, and call
Tjumph(R, j,�, γ ). Otherwisewehave vb.type = ⊥, set c ← r j−1.swest
and γ ← vc.north, and call Sjump(R, j,�, γ ). Return.

N3. [Horizontal right jump] Set k ← eα.left, b ← rk .neast and γ ←
vb.west, and call Tjumph(R, j,�, γ ). Return.

N4. [Vertical right jump] If vb.type = ⊥, set γ ← vb.north and call
Tjumpv(R, j,�, γ ). Otherwisewe have vb.type = �, set c ← r j−1.neast
and γ ← vc.west, and call Sjump(R, j,�, γ ). Return.

N5. [Vertical left jump] Set k ← eα.left, b ← rk .swest and γ ← vb.north,
and call Tjumpv(R, j,�, γ ). Return.
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Similarly to before, the code in linesN2 andN4, and in linesN3 andN5 is symmetric by
reflecting all directions at the main diagonal. For diagonal rectangulations the runtime
analysis is straightforward and gives a loopless algorithm.

Lemma 7.4 Each call nextDn (R, j, d) takes time O(1).

Proof Let R′ be the rectangulation after the call nextDn (R, j, d), which differs
from R in an S-jump or T-jump. As we only consider the first insertion point of
each vertical group and the last insertion point of each horizontal group of I (R[ j−1]),
we have v(R, R′) = 0 and h(R, R′) = 0. The claim now follows from Lemma 6.2,
(b) and (c). �

Lemma 7.4 immediately yields the following result.

Theorem 7.5 Algorithm M� with the minimal jump oracle nextDn takes time O(1)
to visit each diagonal rectangulation.

Remark 7.6 Jumps as performed by the oracles nextRn and nextDn and shown
in Fig. 16 correspond to cover relations in the lattice of generic rectangulations
and the lattice of diagonal rectangulations described by Meehan [29] and Law and
Reading [27], respectively, which both arise as lattice quotients of the weak order on
the symmetric group. Consequently, our cyclic Gray codes correspond to Hamilton
cycles in the cover graphs of those lattices. In [22] we showed that our permutation
language framework can be used to generate a Hamilton path on every lattice quo-
tient of the weak order, which also yields a Hamilton path on the skeleton of the
corresponding polytope [35] (see also [34]).

7.3 Pattern-Avoiding Rectangulations

For any zigzag set of rectangulations Cn ⊆ Rn , and any set of tame patterns P ,
Theorem 4.2 guarantees that the set Cn(P) of rectangulations that avoid all patterns
fromP is also a zigzag set.We now describe howwe can obtain aminimal jump oracle
for Cn(P) from a minimal jump oracle nextCn (R, j, d) for Cn . The idea is simply to
perform aminimal jump of r j w.r.t. Cn , and to test after each jumpwhether the resulting
rectangulation contains any pattern from P , repeating this process until we arrive at
a rectangulation that avoids all patterns from P . This is guaranteed to terminate after
at most j ≤ n iterations, as the first and last insertion point of I (R[ j−1]) will produce
rectangulations that avoid all patterns from P , due to the zigzag property.

nextCn(P)(R, j, d) (minimal jump oracle for pattern-avoiding permutations).
N1. [Fast forward] While R contains a pattern from P repeat nextCn (R, j, d).

We immediately obtain the following generic runtime bounds.

Theorem 7.7 Let P be a finite set of tame rectangulation patterns. If the zigzag set
Cn has a minimal jump oracle nextCn that runs in time fn, and containment of any
pattern from P in R can be tested in time tn, then nextCn(P) is a minimal jump oracle
for Cn(P) that runs in time O(n( fn + tn)).
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Fig. 17 Testing containment of the patterns a , b , and c . The forbidden configuration of
walls is highlighted

In some cases the runtime bound for at most n consecutive calls of nextCn (R, j, d) or
several consecutive pattern containment tests can be improved upon the trivial bounds
O(n fn) andO(ntn), respectively (see the proof of Theorem 7.9 below). Moreover, for
some patterns further optimizations of the function nextCn(P)(R, j, d) are possible.
For example, the property of R to be guillotine is invariant under W-jumps and S-
jumps, so if R is found to contain one of the windmill patterns, then we only need
to check containment after the next T-jump performed by the call nextCn (R, j, d).
Most importantly, when testing for containment of a pattern, we only need to check
incidences of walls involving the rectangle r j . In the following, we provide functions
contains(R, j, P) that test whether R contains one of the tame patterns P listed
in Lemma 4.1 after a sequence of jumps of rectangle r j from a rectangulation that
avoids P . We emphasize here that these functions only work under these assumptions,
and are not suitable for general pattern containment testing of arbitrary rectangulations,
but only for use within our algorithm M�.

We first present an implementation of such a containment testing function

contains(R, j, P) for the clockwise windmill P = ; see Fig. 17a. It uses
the wall data structure w1, . . . , wn+3 to quickly move to the end vertex of a wall
(without traversing the possibly many edges along the wall).

contains
(
R, j,

)
(check for clockwise windmill pattern after jump of rect-

angle r j ).
C1. [Prepare] Set a ← r j .nwest. If va .type = �, return false. Otherwise

we have va .type = � and proceed with C2.
C2. [Check] Set α ← va .north, x ← eα.wall, b ← wx .last, β ← vb.east,

y ← eβ.wall, c ← wy .last, γ ← vc.south, z ← eγ .wall, d ←
wz .first, and δ ← vd .west. If eδ.right = j , return true, otherwise
return false.

The function that tests for the counterclockwise windmill P = is symmetric, and
is not shown here for simplicity.

The next two functions test for containment of the patterns P = and P = ,
respectively; see Fig. 17, b and c.
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contains
(
R, j,

)
(check for after jump of rectangle r j ).

C1. [Prepare] Set a ← r j .nwest. If va .type = �, return false. Otherwise
we have va .type = � and proceed with C2.

C2. [Check] Set α ← va .south and b ← eα.tail. If vb.type = �,
return true, otherwise return false.

contains
(
R, j,

)
(check for after jump of rectangle r j ).

C1. [Prepare] Set a ← r j .nwest. If va .type = �, return false. Otherwise
we have va .type = � and proceed with C2.

C2. [Check] Set α ← va .north and b ← eα.head. If vb.type = �,
return true, otherwise return false.

Similarly to before, testing for the patterns P = and P = is symmetric to
the previous two cases, so we omit those implementations.

It remains to provide containment testing for the patterns P = and P = .
We only show the first case, as the other is symmetric; see Fig. 18.

contains
(
R, j,

)
(check for after jump of rectangle r j ).

C1. [Prepare] Set a ← r j .nwest. If va .type = �, return false. Otherwise
we have va .type=�, set b ← r j .swest and proceed with C2.

C2. [Go up] While vb.type /∈ {�, 0} repeat: goto C3; [*] set β ← vb.north
and b ← eβ.head. Return false.

C3. [Go left] Set c ← b.While vc.type /∈ {�, 0} repeat: if vc.type = ⊥gotoC4;
[**] set γ ← vc.west and c ← eγ .tail. Go back to [*].

C4. [Go up] Set d ← c. While d �= b and vd .type /∈ {�, 0} repeat: if vd .type =
� return true; set δ ← vd .north and d ← eδ.head. Go back to [**].

Lines C2–C4 are essentially a triply nested loop that moves along the edges of the
vertical wall x that contains the left side of r j (line C2), the edges of each horizontal
wall y whose right end vertex lies on x (line C3), and the edges of each vertical wall z
whose bottom end vertex lies on y, searching for a vertex of type � on z (line C4);
see Fig. 18. This is realized by repeatedly calling line C3 from within the while-loop
in line C2, and upon completion returning to from where the call occurred. Similarly,
lineC4 is repeatedly called fromwithin thewhile-loop in lineC3, and upon completion
it returns to from where it was called.

The aforementioned functions have the following runtime guarantees.

Lemma 7.8 The function contains(R, j, P) takes time O(1) for the patterns P =
, , , , , and time O(n) for the patterns P = , .

Proof For the first six patterns the statement is obvious, as the specified functions only

make constantly many changes to our data structures. For the pattern P = , note
that each edge index of the rectangulation R is assigned to one of the variables β, γ, δ
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Fig. 18 Testing containment of the pattern . The forbidden configuration of walls is highlighted

at most once during the call contains(R, j, P) in lines C2–C4, and the number of

edges of R is 3n + 1 = O(n). For the pattern P = the argument is the same. �

The next theorem combines all the observations from this section, thus establishing
most of the runtime bounds stated in Table 1.

Theorem 7.9 Let P1 := {
, , , , ,

}
and P2 := {

,
}
.

Algorithm M� with the minimal jump oracle nextRn(P) or nextDn(P) visits each
rectangulation fromRn(P) orDn(P), respectively, in timeO(n) for any set of patterns
P ⊆ P1 and in time O(n2) for any set of patterns P ⊆ P1 ∪ P2.

All the bounds stated in Theorem 7.9 hold in the worst case (not just on average).

Proof We first consider the minimal jump oracle nextDn(P), which repeatedly calls
the function nextDn described in Sect. 7.2. Applying Theorem 7.7 with the bound
fn = O(1) from Lemma 7.4 and the bounds tn = O(1) for P ⊆ P1 and tn = O(n)

for P ⊆ P1 ∪ P2 from Lemma 7.8, the term n( fn + tn) evaluates to O(n) or O(n2),
respectively, as claimed.

We now consider the minimal jump oracle nextRn(P), which repeatedly
calls nextRn described in Sect. 7.1. In this case applying Theorem 7.7 directly
would not give the desired bounds, so we have to refine the analysis of the while-
loop in the algorithm nextRn(P). Specifically, we consider the sequence of calls to
nextRn (R, j, d) from one rectangulation R ∈ Rn avoiding all patterns from P
until the next one. The length of this sequence is at most ν = ν(R[ j−1]) ≤ n
(recall Lemma 2.1), and by Lemma 7.1 the total time of all calls to nextRn (R, j, d)

is O(ν) = O(n). The total time of all pattern containment tests is at most νtn ≤ ntn ,
which is O(n) for P ⊆ P1 and O(n2) for P ⊆ P1 ∪ P2 by Lemma 7.8. This proves
the claimed bounds, completing the proof of the theorem. �


123



Discrete & Computational Geometry

Remark 7.10 For P := {
,

}
we have Rn(P) = Dn , so we could use, or

rather ‘misuse’, the minimal jump oracle nextRn(P) to generate Dn . However, this
would give a worse guarantee ofO(n) time per visited diagonal rectangulation, rather
than O(1) for nextDn as guaranteed by Theorem 7.5.

Remark 7.11 We write c(Cn−1(P)) for the set of all rectangulations from Cn that
are obtained by inserting a rectangle into a rectangulation from Cn−1(P). To assess
the runtime bounds stated in Theorem 7.9, one may try to investigate the quantity
|c(Cn−1(P)|/|Cn(P)|. This is a lower bound for the average number of iterations of the
while-loop of the algorithm nextCn(P) before it returns a rectangulation from Cn(P).
Experimentally, we found that this ratio grows with n in many cases, though maybe
not linearly with n, hinting at the possibility that the time bounds stated in Theorem 7.9
are too pessimistic and can be improved in an average case analysis.

8 Proofs of Theorems 3.3 and 5.1

In this section we present the proofs of Theorems 3.3 and 5.1. For this purpose we
first recap the exhaustive generation framework for permutation languages developed
in [20, 21]. Definitions and terminology intentionally parallel the corresponding def-
initions given for rectangulations before, and the connection between rectangulations
and permutations will be made precise in Lemma 8.7 below.

8.1 Permutation Basics

For any two integers a ≤ b we define [a, b] := {a, a + 1, . . . , b}, and we refer to a
set of this form as an interval. We also define [n] := [1, n] = {1, . . . , n}. We write
Sn for the set of permutations on [n], and we write π ∈ Sn in one-line notation as
π = π(1)π(2) · · · π(n) = a1a2 · · · an . Moreover, we use ε ∈ S0 to denote the empty
permutation, and idn = 12 · · · n ∈ Sn to denote the identity permutation.

Given two permutations π and τ , we say that π contains the pattern τ , if there is
a subsequence of π whose elements have the same relative order as in τ . Otherwise
we say that π avoids τ . For example, π = 6 35 41 2 contains the pattern τ = 231,
as the highlighted entries show, whereas π = 654123 avoids τ = 231. In a vincular
pattern τ , there is exactly one underlined pair of consecutive entries, with the inter-
pretation that the underlined entries must match adjacent positions in π . For instance,
the permutation π = 3 1 4 2 contains the pattern τ = 231, but it avoids the vincular
pattern τ = 231.

8.2 Deletion, Insertion, and Jumps in Permutations

For π ∈ Sn , n ≥ 1, we write p(π) ∈ Sn−1 for the permutation obtained from π

by deleting the largest entry n. We also define π [i] := pn−i (π) for i = 1, . . . , n.
Moreover, for any π ∈ Sn−1 and any 1 ≤ i ≤ n, we write ci (π) ∈ Sn for the
permutation obtained from π by inserting the new largest value n at position i of π ,
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i.e., if π = a1 · · · an−1 then ci (π) = a1 · · · ai−1 n ai · · · an−1. For example, for π =
412563 we have p(π) = 41253 and c1(π) = 7412563, c5(π) = 4125763, and
c7(π) = 4125637. Given a permutation π = a1 · · · an with a substring ai · · · ai+d

with d > 0 and ai > ai+1, . . . , ai+d , a right jump of the value ai by d steps is a cyclic
left rotation of this substring by one position to ai+1 · · · ai+dai . Similarly, given a
substring ai−d · · · ai with d > 0 and ai > ai−d , . . . , ai−1, a left jump of the value ai

by d steps is a cyclic right rotation of this substring to ai ai−d · · · ai−1. For example,
a right jump of the value 5 in the permutation 265134 by two steps yields 261354.

We say that a jump is minimal w.r.t. a set of permutations Ln ⊆ Sn , if every jump
of the same value in the same direction by fewer steps creates a permutation that is
not in Ln .

8.3 Generating Permutations byMinimal Jumps

Consider the following analogue of Algorithm J� for greedily generating a set of
permutations Ln ⊆ Sn using minimal jumps.

Algorithm J (greedy minimal jumps). This algorithm attempts to greedily gener-
ate a set of permutations Ln ⊆ Sn using minimal jumps starting from an initial
permutation π0 ∈ Ln .
J1. [Initialize] Visit the initial permutation π0.
J2. [Jump] Generate an unvisited permutation from Ln by performing a minimal

jump of the largest possible value in the most recently visited permutation.
If no such jump exists, or the jump direction is ambiguous, then terminate.
Otherwise visit this permutation and repeat J2.

The following results were proved in [21]. A set of permutations Ln ⊆ Sn is called a
zigzag language, if either n = 0 and L0 = {ε}, or if n ≥ 1 and Ln−1 :={p(π) |π ∈ Ln}
is a zigzag language and for every π ∈ Ln−1 we have c1(π) ∈ Ln and cn(π) ∈ Ln .

We now define a sequence J (Ln) of all permutations from a zigzag language
Ln ⊆ Sn . For any π ∈ Ln−1 we let #„c (π) be the sequence of all ci (π) ∈ Ln for
i = 1, 2, . . . , n, starting with c1(π) and ending with cn(π), and we let #„c (π) denote
the reverse sequence, i.e., it starts with cn(π) and ends with c1(π). In words, those
sequences are obtained by inserting into π the new largest value n in all possible
positions from left to right, or from right to left, respectively, in all possible positions
that yield a permutation from Ln , skipping the positions that yield a permutation that
is not in Ln . If n = 0 then we define J (L0) := ε, and if n ≥ 1 then we consider the
finite sequence J (Ln−1) =: π1, π2, . . . and define

J (Ln) := #„c (π1),
#„c (π2),

#„c (π3),
#„c (π4), . . . , (2)

i.e., this sequence is obtained from the previous sequence by inserting the new largest
value n in all possible positions alternatingly from right to left, or from left to right.

Theorem 8.1 [21, Thm. 1 + Lem. 4] Given any zigzag language of permutations Ln

and initial permutation π0 = idn, Algorithm J visits every permutation from Ln exactly
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once, in the order J (Ln) defined by (2). Moreover, if |Li | is even for all 2 ≤ i ≤ n −1,
then the sequence J (Ln) is cyclic, i.e., the first and last permutation differ in a minimal
jump.

A permutation π is called 2-clumped if it avoids each of the vincular patterns 35124,
35142, 24513, and 42513. We write S′

n ⊆ Sn for the set of 2-clumped permutations.

Lemma 8.2 [21, Thm. 8 + Lem. 10] We have S′
0 = {ε}, and for every n ≥ 1 we have

S′
n−1 = {p(π) | π ∈ S′

n} and S′
n ⊇ {c1(π), cn(π) | π ∈ S′

n−1}. In particular, S′
n is a

zigzag language for all n ≥ 0.

We also state the following observations for further reference.

Lemma 8.3 The sequence of permutations J (Ln) defined in (2) has the following
properties:

(a) The first permutation in J (Ln) is the identity permutation idn.
(b) For j = 2, . . . , n, the first jump of the value j in J (Ln) is a left jump.
(c) Every jump in the sequence J (Ln) is minimal w.r.t. Ln.
(d) Given two consecutive permutations π, ρ in J (Ln) that differ in a jump of some

value j , then we have π [k] = c1(π [k−1]) and ρ[k] = c1(ρ[k−1]), or π [k] =
ck(π

[k−1]) and ρ[k] = ck(ρ
[k−1]) for all k = j + 1, . . . , n.

(e) Let π, ρ be two consecutive permutations in J (Ln) such that ρ is obtained from π

by a left jump of some value j , and let π ′, ρ′ be the next two consecutive permu-
tations in J (Ln) that differ in a jump of j . If j is not at the first position in ρ and
the value left of it is smaller than j , then ρ′ is obtained from π ′ by a left jump.
Conversely, if j is at the first position in ρ or the value left of it is bigger than j ,
then ρ′ is obtained from π ′ by a right jump. An analogous statement holds with
left and right interchanged.

The proof of Lemma 8.3 is deferred to Appendix A.

8.4 A Surjection from Permutations to Generic Rectangulations

Observe that a diagonal rectangulation with n rectangles can be laid out canonically
so that each rectangle intersects the main diagonal in a 1/n-fraction. Specifically,
rectangle ri intersects the main diagonal in the i th such line segment counted from
top-left to bottom-right, for i = 1, . . . , n. We say that ri is left-fixed or left-extended,
if its left side touches or does not touch the diagonal, respectively. These notions are
defined analogously for all the other three sides right, bottom, and top.

We begin by reviewing a mapping ρ : Sn → Dn , n ≥ 1, from permutations to diag-
onal rectangulations, first described by Law and Reading [27]. Maps closely related
to ρ have appeared previously in the literature, see e.g. [2, 14]. We consider the outer
rectangle and divide its main diagonal into n equally sized line segments numbered
1, . . . , n from top-left to bottom-right. Given a permutation π = a1 · · · an ∈ Sn , the
diagonal rectangulation ρ(π) is obtained as follows; see Fig. 19: For i = 1, . . . , n,
in step i we add the rectangle rai such that it intersects the main diagonal precisely
in the ai th line segment, and such that the rectangle is maximal w.r.t. the property
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Fig. 19 Illustration of the mapping ρ : Sn → Dn for the permutation π = (8, 13, 7, 5, 11, 2, 14, 6, 15, 9,
10, 3, 1, 4, 12) (example from [36])

that the rectangles ra1 ∪ · · · ∪ rai form a staircase, which means that the bottom-left
boundary of ra1 ∪· · ·∪rai is an L-shape, and the top-right boundary is a non-increasing
polygonal line.

With any wall w of a generic rectangulation R ∈ Rn we associate a wall shuffle
σ(w), which is a permutation of a subset of the rectangles that share a side with w,
defined as follows; see Fig. 20. If the wall w is horizontal, we move from the left
endpoint of w to the right endpoint, and whenever we encounter a vertical wall w′
that is incident to w from the bottom, we record the rectangle whose top side lies
on w and left side lies on w′, and if we encounter a vertical wall w′ that is incident
to w from the top, we record the rectangle whose bottom side lies on w and right
side lies on w′. Clearly, we record all rectangles whose bottom or top side lies on w,
except the first rectangle below w and the last rectangle above w. On the other hand,
if the wall w is vertical, we move from the bottom endpoint of w to the top endpoint,
and whenever we encounter a horizontal wall w′ that is incident to w from the left,
we record the rectangle whose right side lies on w and bottom side lies on w′, and
if we encounter a horizontal wall w′ that is incident to w from the right, we record
the rectangle whose left side lies on w and top side lies on w′. In this case we record
all rectangles whose left or right side lies on w, except the first rectangle to the left
of w and the last rectangle to the right of w. Observe that wall slides do not affect the
rectangles that appear in a wall shuffle, but only their relative order in the shuffle.

We are now in position to define the mapping γ : Sn → Rn , n ≥ 1, from per-
mutations to generic rectangulations; see Fig. 21. From π ∈ Sn we first construct
the diagonal rectangulation R := ρ(π) ∈ Dn . Let w be a horizontal wall in R, and
consider the rectangles in R whose bottom side lies on w from left to right. By con-
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Fig. 20 Illustration of wall shuffles
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Fig. 21 Illustration of the surjection γ : Sn → Rn . This example continues Fig. 19

struction of ρ, these rectangles form an increasing subsequence of π . Similarly, the
rectangles in R whose top side lies on w from left to right form an increasing sub-
sequence of π . Thus, we can specify a wall shuffle σ(w) by taking the subsequence
of π that contains the appropriate rectangle numbers. On the other hand, for a vertical
wall w in R, the rectangles in R whose left side lies on w from bottom to top form
a decreasing subsequence of π , and the rectangles whose right side lies on w form
a decreasing subsequence of π , so we can specify a wall shuffle σ(w) by taking the
subsequence of π containing the appropriate rectangle numbers. The rectangulation
γ (π) ∈ Rn is obtained from R ∈ Dn by applying wall slides to it, so as to obtain the
wall shuffles specified by π .

Lemma 8.4 [36, Prop. 4.2] The map γ : Sn → Rn is surjective.

Even though γ is not a bijection, Reading [36] showed that it becomes a bijection
when restricting the domain to 2-clumped permutations.

Theorem 8.5 [36, Thm. 4.1] The map γ is a bijection when restricted to the set S′
n of

2-clumped permutations.
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8.5 The Connection Between Permutations and Rectangulations

The key lemma of this section, Lemma 8.7 below, asserts that deletion, insertion and
jumps in permutations as defined in Sect. 8.2 are in bijective correspondence under γ

to deletion, insertion and jumps in generic rectangulations as defined in Sects. 2.3, 2.4,
and 3.1. In order to prove it, we first establish a coarser version of this statement for
the mapping ρ.

Lemma 8.6 Let π = a1 · · · an ∈ Sn, n ≥ 1, and define P := ρ(π) ∈ Dn. In the
sequence I (P) = (q1, . . . , qν), consider the subsequence I ′(P) = (q j1 , . . . , q jμ)

consisting of the first insertion point of every vertical group, and the last insertion point
of every horizontal group. Then we have p(ρ(ci (π))) = P for all i = 1, . . . , n + 1,
and the sequence 1, . . . , n +1 can be partitioned into consecutive nonempty intervals
I1, . . . , Iμ with the following properties:

(a) for every k = 1, . . . , μ and every i ∈ Ik we have ρ(ci (π)) = c jk (P);
(b) for any interval Ik = [ı̂, ı̌], 1 < k < μ, such that the top-left vertex of rn+1

in ρ(ci (π)), i ∈ Ik , has type �, we have that the rectangle raı̂−1 is the unique
rectangle left of rn+1, and the rectangle raı̌ is the leftmost rectangle above rn+1;

(c) for any interval Ik = [ı̂, ı̌], 1 < k < μ, such that the top-left vertex of rn+1
in ρ(ci (π)), i ∈ Ik , has type �, we have that the rectangle raı̂−1 is the topmost
rectangle left of rn+1, and the rectangle raı̌ is the unique rectangle above rn+1;

(d) we have I1 = {1} and Iμ = {n + 1}.
Proof For the reader’s convenience, the proof is illustrated in Fig. 22. Recall the
definition of the mapping ρ via the process described in Sect. 8.4 and illustrated
in Fig. 19. Using the definition of the rectangle insertion from Sect. 2.4, we first
observe that ρ(c1(π)) = c1(P) and ρ(cn+1(π)) = cν(P). We consider the sequence
of permutations ci (π) for i = 1, . . . , n + 1 and their images under ρ. Observe that
ci+1(π) is obtained from ci (π) by the adjacent transposition (n + 1)ai → ai (n + 1).
We consider the construction of R := ρ(ci (π)), specifically the two steps in which the
rectangles rn+1 and rai are added, and we analyze how the swapped insertion order of
these two rectangles changes the resulting rectangulation R′ := ρ(ci+1(π)). Clearly,
in both R and R′, the rectangle rn+1 is either left-extended and top-fixed, or left-fixed
and top-extended, and we treat both cases separately. In particular, these two cases are
not symmetric.

Case (i): rn+1 is left-extended and top-fixed in R. This case is shown in the top and
middle part of Fig. 22. We distinguish two subcases, namely ai = n and ai < n.

Case (ia): ai = n. In this case the top side of rn+1 coincides with the bottom
side of rai = rn in R, as both rectangles left-extend to the same vertical line by the
staircase property and the fact that every rectangle intersects the main diagonal; see
Fig. 22a2. Consequently, inserting them in the swapped order, first rn and then rn+1,
produces a sub-rectangulation that differs in a simple flip of the wall between these
two rectangles; see Fig. 22a3. As the height of the top side of rn is not determined
by rn+1, but only by previous rectangles ra1, . . . , rai−1 , both insertion orders produce
the same staircase ra1 ∪ · · · ∪ rn ∪ rn+1, which by the definition of ρ is all that matters
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Fig. 22 Illustration of the proof of Lemma 8.6

for the next construction steps. Consequently, R and R′ differ in a simple flip of the
rectangles rn+1 and rn . Moreover, by the definition of rectangle deletion given in
Sect. 2.3 we have p(R) = p(R′) = P , and by the definition of rectangle insertion
and the definition of I ′(P) we have R = c jk (P) and R′ = c jk+1(P) for some index k.
Note that in R, the top-left vertex of rn+1 has type � and raı̌ , ı̌ := i , is the leftmost
rectangle above rn+1. Furthermore, in R′, the top-left vertex of rn+1 has type � and
raı̂−1 = rai , ı̂ := i + 1, is the topmost rectangle left of rn+1.

Case (ib): ai< n. If rai is bottom-fixed in R, or if rn+1 does not left-extend beyond the
vertical line � through the right endpoint of the ai th interval on the main diagonal, then
the rectangles rn+1 and rai do not touch; see Fig. 22a1. Consequently, inserting them
in the swapped order, first rai and then rn+1, produces the same sub-rectangulation.
It follows that R = R′, i.e., ρ(ci (π)) = ρ(ci+1(π)), and therefore trivially p(R) =
p(R′).
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On the other hand, if rai is bottom-extended and rn+1 left-extends beyond �, then
rai must be right-fixed because of ai < n (otherwise rai would reach into the (ai +1)st
line segment on the main diagonal). Moreover, because of the staircase property the
top side of rn+1 contains the bottom side of rai , and both rectangles left-extend to the
same vertical line; see Fig. 22b2. Consequently, inserting them in the swapped order,
first rai and then rn+1 produces a sub-rectangulation that differs in a T-flip from ⊥
to � around the top-right common vertex of these two rectangles; see Fig. 22b3. As
the height of the top side of rai is not determined by rn+1, and as rai is right-fixed
and rn+1 is top-fixed in both insertion orders, we obtain that R and R′ differ in a
T-flip around the top-right common vertex of the rectangles rn+1 and rai . Moreover,
by the definition of rectangle insertion and deletion and the definition of I ′(P), we
have p(R) = p(R′) = P , and R = c jk (P) and R′ = c jk+1(P) for some index k. Note
that in R, the top-left vertex of rn+1 has type� and raı̌ , ı̌ := i , is the leftmost rectangle
above rn+1. Furthermore, in R′, the top-left vertex of rn+1 has type � and raı̂−1 = rai ,
ı̂ := i + 1, is the unique rectangle left of rn+1.

Case (ii): rn+1 is left-fixed and top-extended in R. This case is shown in the bottom
part of Fig. 22. As rn+1 is top-extended, the staircase property implies that ai < n, as
n must be among the first entries a1, . . . , ai−1 of π .

If rai is right-fixed in R, or if rn+1 does not top-extend beyond the horizontal line �

through the right endpoint of the (ai + 1)st interval on the main diagonal, then the
rectangles rn+1 and rai do not touch; see Fig. 22c1. Consequently, inserting them in the
swapped order, first rai and then rn+1, produces the same sub-rectangulation. It follows
that R = R′, i.e., ρ(ci (π)) = ρ(ci+1(π)), and therefore trivially p(R) = p(R′).

On the other hand, if rai is right-extended and rn+1 top-extends beyond �, then
rai must be bottom-fixed because of ai < n (otherwise rai would reach into the
(ai + 1)st line segment on the main diagonal). Moreover, because of the staircase
property the top side of rn+1 must lie on the horizontal line through the bottom side
of rai , and therefore rai right-extends to the right outer boundary, i.e., the bottom side
of rai contains the top side of rn+1; see Fig. 22c2. Consequently, inserting them in
the swapped order, first rai and then rn+1 produces a sub-rectangulation that differs in
a T-flip from � to � around the bottom-left common vertex of these two rectangles;
see Fig. 22c3. As the height of the top side of rai is not determined by rn+1 in the
two insertion orders, we obtain that R and R′ differ in a T-flip around the bottom-left
common vertex of the rectangles rn+1 and rai . Moreover, by the definition of rectangle
insertion and deletion and the definition of I ′(P), we have p(R) = p(R′) = P , and
R = c jk (P) and R′ = c jk+1(P) for some index k. Note that in R, the top-left vertex
of rn+1 has type � and raı̌ , ı̌ := i , is the unique rectangle above rn+1. Furthermore,
in R′, the top-left vertex of rn+1 has type � and raı̂−1 = rai , ı̂ := i + 1, is the topmost
rectangle left of rn+1.

This proves (a), (b), and (c). For (d) observe that the rectangle in the bottom-
left corner of ρ(π) is ra1 , whereas the rectangle in the top-right corner is ran , so
ρ(c1(π)) �= ρ(c2(π)) and ρ(cn(π)) �= ρ(cn+1(π)). This completes the proof of the
lemma. �

Lemma 8.7 Let π = a1 · · · an ∈ Sn, n ≥ 1, and consider the rectangulation P :=
γ (π) ∈ Rn with ν = ν(P) insertion points. Then we have p(γ (ci (π))) = P for
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all i = 1, . . . , n + 1, and the sequence i = 1, . . . , n + 1 can be partitioned into
consecutive nonempty intervals I1, . . . , Iν , such that for every k = 1, . . . , ν and
every i ∈ Ik we have γ (ci (π)) = ck(P). Furthermore, if π is 2-clumped, then each
interval Ik contains exactly one 2-clumped permutation.

The proof of Lemma 8.7 shows that I1 = {1} and Iν = {n + 1}.
Proof For any i = 1, . . . , n +1, consider the permutation ci (π), and the two diagonal
rectangulations P ′ := ρ(π) ∈ Dn and R′ := ρ(ci (π)) ∈ Dn . From Lemma 8.6 we
know that P ′ = p(R′) and R′ = c j (P ′) for some index j such that the j th insertion
point in I (P ′) is the first of a vertical group, or the last of a horizontal group. By the
definitions from Sect. 8.4, γ consists of applying ρ plus wall slides that are determined
by the wall shuffles of P ′ and R′ and the relative order of the rectangle indices in those
shuffles in π and ci (π), i.e., P = γ (π) and R := γ (ci (π)) are obtained from P ′
and R′ by wall slides. Observe that in R′ and R, the bottom-right rectangle rn+1 is
contained in at most one wall shuffle. Specifically, if the top-left corner of rn+1 has
type� and does not lie on the left boundary of the rectangulation, then rn+1 participates
in a single wall shuffle of the vertical wall that contains the left side of rn+1, whereas
if the top-left corner of rn+1 has type � and does not lie on the upper boundary of the
rectangulation, then rn+1 participates in a single wall shuffle of the horizontal wall
that contains the top side of rn+1. In particular, in the cases j = 1 and j = ν(P ′) the
rectangle rn+1 is not contained in anywall shuffle. As the elements of all subsequences
of π and ci (π) that do not contain n + 1 appear in the same relative order in both
permutations, all wall shuffles of P and R are the same, except the wall shuffle of R
containing n+1, which is obtained from awall shuffle of P by inserting the value n+1.
We conclude that p(R) = P and R = ck(P) for some index k.

The desired interval partition I1, . . . , Iν of the indices 1, . . . , n + 1 is obtained by
refining the partition I ′

1, . . . , I ′
μ guaranteed by Lemma 8.6, where μ is the number of

vertical and horizontal groups of P ′, which is the same for P , as wall slides do not
affect it. As I ′

1 = {1} and I ′
μ = {n + 1} by Lemma 8.6(d), these two intervals are not

refined, so we have I1 := I ′
1 = {1} and Iν := Iμ = {n + 1}. It remains to consider the

remaining intervals I ′
k , 1 < k < μ.

First consider an interval I ′
k =: [ı̂, ı̌], 1 < k < μ, such that in R′ := ρ(ci (π)) ∈ Dn ,

i ∈ Ik , the top-left vertex has type � (recall Lemma 8.6(a)). By Lemma 8.6(b), in R′
the rectangle raı̂−1 is the unique rectangle left of rn+1, and the rectangle raı̌ is the
leftmost rectangle above rn+1. Consider the wall shuffle σ(w) of the vertical wall w

between raı̂−1 and raı̌ in P . It has the form σ(w) = (b1, . . . , bλ, aı̌ , . . .), for some
λ ≥ 0, i.e., the rectangles rb1, . . . , rbλ are stacked on top of raı̂−1 and their bottom
sides are incident with w below the incidence of the top side of rı̌ with w. It follows
that π contains the subsequence aı̂−1, b1, . . . , bλ, aı̌ , and so the permutations ci (π)

for i = ı̂, . . . , ı̌ have the value n + 1 appear at every possible position within the
subsequence b1, . . . , bλ. Consequently, the interval I ′

k is refined into λ subintervals
such that γ (ci (π)) = γ (ci+1(π)) if i, i +1 are in the same subinterval and γ (ci (π)) =
c�(P) and γ (ci+1(π)) = c�+1(P) for some index � if i, i + 1 are in consecutive
subintervals.

Now consider an interval I ′
k =: [ı̂, ı̌], 1 < k < μ, such that in R′ := ρ(ci (π)) ∈

Dn , i ∈ Ik , the top-left vertex has type � (recall Lemma 8.6(a)). By Lemma 8.6(c),
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in R′ the rectangle raı̂−1 is the topmost rectangle left of rn+1, and the rectangle raı̌

is the unique rectangle above rn+1. Consider the wall shuffle σ(w) of the horizontal
wall w between raı̂−1 and raı̌ in P . It has the form σ(w) = (. . . , aı̂−1, b1, . . . , bλ),
for some λ ≥ 0, i.e., the rectangles rbλ , . . . , rb1 are stacked to the left of raı̌ and their
right sides are incident with w to the right of the incidence of the left side of raı̂−1

with w. It follows that π contains the subsequence aı̂−1, b1, . . . , bλ, aı̌ , and so the
permutations ci (π) for i = ı̂, . . . , ı̌ have the value n + 1 appear at every possible
position within the subsequence b1, . . . , bλ. Consequently, the interval I ′

k is refined
into λ subintervals such that γ (ci (π)) = γ (ci+1(π)) if i, i + 1 are in the same
subinterval and γ (ci (π)) = c�(P) and γ (ci+1(π)) = c�+1(P) for some index � if
i, i + 1 are in consecutive subintervals.

It remains to argue that each set of permutations Ck := {ci (π) | i ∈ Ik}, k =
1, . . . , ν, contains exactly one 2-clumped permutation. Indeed, Ck can contain at
most one 2-clumped permutation by Theorem 8.5, as all π ∈ Ck have the same
image under γ . Suppose for the sake of contradiction that Ck contains no 2-clumped
permutation. Then by Theorem 8.5 there is another 2-clumped permutation ρ ∈ Sn+1
with ρ /∈ C := {ci (π) | i = 1, . . . , n + 1} and γ (ρ) = γ (ci (π)) for all i ∈ Ck .
However, by Lemma 8.2, the permutation ρ′ := p(ρ) ∈ Sn is also 2-clumped, i.e.,
we have ρ′ ∈ S′

n . Moreover, we have ρ′ �= π as ρ /∈ C , and by Lemma 8.7 we have
γ (ρ′) = γ (π) = R, a contradiction to the fact that γ is a bijection between S′

n andRn

by Theorem 8.5. �


8.6 Proof of Theorem 3.3

With Lemma 8.7 in hand, we are now in position to present the proof of Theorem 3.3.

Proof of Theorem 3.3 Consider a zigzag set of rectangulations Cn ⊆ Rn , and consider
the zigzag sets Ci−1 := {p(R) | R ∈ Ci } for i = n, n − 1, . . . , 2. By Lemma 8.7, for
all i = 1, . . . , n there is a set of 2-clumped permutations Li ⊆ S′

i such that γ restricted
to Li is a bijection between Li and Ci , and such that Li−1 = {p(π) | π ∈ Li } for
all i = 2, . . . , n. Moreover, as Ci is a zigzag set, we know that for all R ∈ Ci−1 we
have c1(R) ∈ Ci and cν(R)(R) ∈ Ci , for all i = 2, . . . , n. By Lemma 8.7, this implies
that for all π ∈ Li−1 we have c1(π) ∈ Li and ci (R) ∈ Li , for all i = 2, . . . , n,
i.e., Ln is a zigzag language of 2-clumped permutations (using that L1 = {1} and
L0 := {p(π) | π ∈ L1} = {ε} are zigzag languages).

By Theorem 8.1, Algorithm J visits every permutation from Ln exactly once, in the
order J (Ln) defined by (2). FromLemma8.3(d)we obtain that if Algorithm J performs
a jump of some value j in the current permutation π ∈ Ln , then the corresponding
rectangulations R[k] := γ (π [k]) for k = j + 1, . . . , n are either bottom-based or
right-based. Using the definition of jumps from Sect. 3.1 and Lemma 8.7, a minimal
left/right jump of the value j in π ∈ Ln , as performed by Algorithm J, corresponds
to a minimal left/right jump of the rectangle r j in γ (π) ∈ γ (Ln) = Cn , as performed

by Algorithm J�. This together with the observation that γ (idn) = ...
n proves the

first part of the theorem. Specifically, the ordering of rectangulations generated by
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Algorithm J� is

J�(Cn) = γ (J (Ln)). (3)

To prove the second part of the theorem, by Theorem 8.1 it suffices to show that
|Ci | = |γ (Li )| is even for all 2 ≤ i ≤ n − 1. For any rectangulation R ∈ Rn , we
write λ(R) ∈ Rn for the rectangulation obtained by reflection at the main diagonal.
First observe that if R, R′ ∈ Rn , n ≥ 2, satisfy R′ = λ(R), then we also have
p(R′) = λ(p(R)). Consequently, the assumption that Cn is symmetric implies that
Ci is symmetric for all i = 1, . . . , n. Consider a rectangulation R ∈ Rn , n ≥ 2, and
observe that if the top-left vertex of the bottom-right rectangle rn of R has type �,
then it has type � in λ(R), and vice versa. It follows that λ is an involution without
fixed points on Ci for all i = 2, . . . , n, proving that |Ci | is even. This completes the
proof. �


8.7 Memoryless Generation of Permutations

Consider Algorithm M below, which takes as input a zigzag language of permuta-
tions Ln ⊆ Sn and generates them exhaustively by minimal jumps in the same order
as Algorithm J, i.e., in the order J (Ln).

Algorithm M (memoryless minimal jumps). This algorithm generates all permu-
tations of a zigzag language Ln ⊆ Sn by minimal jumps in the same order as
Algorithm J. It maintains the current permutation in the variable π , and auxiliary
arrays o = (o1, . . . , on) and s = (s1, . . . , sn).
M1. [Initialize] Set π ← idn = 12 · · · n, and o j ← � , s j ← j for j = 1, . . . , n.
M2. [Visit] Visit the current permutation π .
M3. [Select value] Set j ← sn , and terminate if j = 1.
M4. [Jump value] In the current permutation π , perform a jump of the value j that

is minimal w.r.t. Ln , where the jump direction is left if o j = � and right if
o j = �.

M5. [Update o and s] Set sn ← n. If o j =� and j is at the first position in π or
the value left of it is bigger than j set o j ← � , or if o j = � and j is at the
last position in π or the value right of it is bigger than j set o j ← � , and in
both cases set s j ← s j−1 and s j−1 ← j − 1. Go back to M2.

Theorem 8.8 For any zigzag language of permutations Ln ⊆ Sn, n ≥ 1, Algorithm M
visits every rectangulation from Ln exactly once, in the order J (Ln) defined by (2).

The rest of this section is devoted to proving Theorem 8.8. For any π in the
sequence J (Ln) we define a sequence sπ

n = (sπ
n,1, . . . , sπ

n,n) as follows: If n = 1
we have J (L1) = π with π := 1 and we define sπ

1 = (1). If n ≥ 2, we con-
sider the permutation π ′ := p(π) ∈ Sn−1 in the sequence J (Ln−1), and we define
c(π ′) := #„c (π ′) if π ′ appears at an odd position in J (Ln−1), or c(π ′) := #„c (π ′) if π ′
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appears at an even position. If π is not the last permutation in c(π ′) we define

sπ
n,i :=

{
sπ ′

n−1,i if i ≤ n − 1, (4a)

n if i = n, (4b)

for i = 1, . . . , n, and ifπ is the last permutation in c(π ′)we define, for i = 1, . . . , n,

sπ
n,i :=

⎧⎪⎨
⎪⎩

sπ ′
n−1,i if i ≤ n − 2, (5a)

n − 1 if i = n − 1, (5b)

sπ ′
n−1,n−1 if i = n. (5c)

The following lemma captures important properties of the sequences defined in this
way.

Lemma 8.9 The sequences defined in (4) and (5) have the following properties:

(a) For the first permutation π = idn in the sequence J (Ln), we have sπ
n =

(1, 2, . . . , n).
(b) For any two consecutive permutations π, ρ in the sequence J (Ln), ρ is obtained

from π by a jump of the value sπ
n,n.

(c) For the last permutation π in J (Ln) we have sπ
n,n = 1.

Moreover, for any three consecutive permutations π, ρ, σ in J (Ln) we have:

(d) If π and ρ differ in a jump of n, and ρ and σ differ in a jump of n, then we have
sρ

n,i = sπ
n,i for i = 1, . . . , n − 1.

(e) If π and ρ differ in a jump of n, and ρ and σ differ in a jump of j < n, then we
have sρ

n,i = sπ
n,i for i ∈ {1, . . . , n − 2} and sρ

n,n−1 = n − 1.
(f) If π and ρ differ in a jump of j < n, ρ and σ differ in a jump of n, and j is not at

a boundary position in pn− j (ρ), then we have sρ
n,i = sπ

n,i for i = 1, . . . , n − 1.
(g) If π and ρ differ in a jump of j < n, ρ and σ differ in a jump of n, and j is at a

boundary position in pn− j (ρ), then we have sρ
n,i = sπ

n,i for i ∈ {1, . . . , n − 1} \
{ j − 1, j}, sρ

n, j−1 = j − 1, and sρ
n, j = sπ

n, j−1.

The proof of Lemma 8.9 is deferred to Appendix A.

Proof of Theorem 8.8 We establish the following invariants about the permutation π

visited in line M2 of the algorithm:

(A) For all j = 2, . . . , n, the direction of the next jump of the value j after the
permutation π in J (Ln) is left if o j =� and right if o j =�.

(B) The values in the array s = (s1, . . . , sn) satisfy s = sπ
n with sπ

n as defined in (4)
and (5).

By Lemma 8.3(a), the identity permutation π := idn is the first permutation in the
sequence J (Ln). Moreover, by the initialization of π in line M1, π = idn is also
the first permutation visited in line M2. Combining this with the above invariants, we
obtain by induction on the length of J (Ln) that after visiting a permutationπ ∈ Ln , the
next permutation visited by AlgorithmM is the permutation that succeeds π in J (Ln).
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Indeed, by the instructions in line M3 and M4, the next permutation ρ visited by
the algorithm is obtained from π by a jump of the value j := sn that is minimal
w.r.t. Ln , and the jump direction is left if o j =� and right if o j =�. Applying (B) and
Lemma 8.9(a), and (A) and Lemma 8.3(c), we obtain that ρ is indeed the permutation
that succeeds π in J (Ln). Also, the algorithm terminates correctly after visiting the
last permutation in the sequence J (Ln) by the condition in lineM3 and Lemma 8.9(c).

We prove (A)+ (B) by double induction on n and the number of iterations of Algo-
rithm M. The induction basis n = 1 is trivial. For the induction step, let n ≥ 2, and
assume that the invariants hold for the zigzag language Ln−1 = {p(π) | π ∈ Ln}.
We first verify that (A)+ (B) hold in line M2 during the first iteration of the algorithm
when π = idn . By line M1 we have o j =� for j = 2, . . . , n, so (A) is satisfied by
Lemma 8.3(b). By line M1 we also have s = (s1, . . . , sn) = (1, . . . , n), which equals
sπ

n = sidn
n by Lemma 8.9(a).

For the induction step, consider three consecutive permutations π̂ , ρ̂, σ̂ in the
sequence J (Ln), and suppose that (A)+ (B) are satisfied when Algorithm M vis-
its π = π̂ . We need to verify that (A)+ (B) still hold after one iteration through
lines M2—M5, after which the algorithm visits π = ρ̂ by the instructions in lines M3
and M4, as argued before.

Case (i): We first consider the case that π̂ , ρ̂ satisfy p(π̂) = p(ρ̂) =: π̂ ′ ∈ Ln−1
and therefore both are contained in the subsequence c(π̂ ′) of J (Ln). We only treat
the case c(π̂ ′) = #„c (π̂ ′), as the other case c(π̂ ′) = #„c (π̂ ′) is symmetric. In this case ρ̂

is obtained from π̂ by a left jump of the value n. In particular, the variable j has the
value j = sn = n and on =� in this iteration of the algorithm.

Case (ia): The value n is not at the first position in ρ̂. Then by (2) the permutation σ̂

is obtained from ρ̂ by another left jump of the value n. In line M5, the value of sn is
set to n, which was the previous value, but none of the conditions in line M5 holds for
π = ρ̂, so overall none of the arrays s and o is modified. We conclude that (A) holds
after this iteration for π = ρ̂. Moreover, (B) holds by Lemma 8.9(c) and (4b).

Case (ib): The value n is at the first position in ρ̂, i.e., we have ρ̂ = c1(π̂ ′) = n π̂ ′.
Then by (2) we have σ̂ = c1(ρ̂′) = n ρ̂′ where ρ̂′ ∈ Ln−1 succeeds π̂ ′ in the
sequence J (Ln−1). In line M5, the value of sn is set to n, which is the same as
the previous value, but since the first if-condition is satisfied, sn is then overwritten
by sn−1, and sn−1 is set to n − 1. Consequently, the new values are sn−1 = n − 1 and
sn = sπ̂

n,n−1 = sπ̂ ′
n−1,n−1 by induction and (B) and (4a). Moreover, the value of on is

flipped to on =�. Using Lemma 8.3(e), we conclude that (A) holds after this iteration
for π = ρ̂. Applying Lemma 8.9(d) and using that sπ

n,n = sπ̂ ′
n−1,n−1 by (5c), we obtain

that (B) holds as well.

Case (ii): It remains to consider the case that p(π̂) �= p(ρ̂), i.e., both permutations
have n at the first or last position. By symmetry, it suffices to consider the case that n is
at the first position, i.e., π̂ = c1(π̂ ′) = n π̂ ′ and ρ̂ = c1(ρ̂′) = n ρ̂′, where π̂ ′ and ρ̂′ are
consecutive permutations in J (Ln−1). They differ in a jump of the value j := sn < n
by Lemma 8.9(b) and (B). Then by (2), the permutation σ̂ is obtained from ρ̂ by a
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right jump of n. We proceed to show that (A) and (B) hold for π = ρ̂, and for this we
distinguish subcases.

Case (iia): The value j is not at a boundary position in pn− j (ρ̂). Then byLemma8.3(d)
in ρ̂ the value j is surrounded by the same values as in pn− j (ρ̂), both smaller than j . In
line M5, the value of sn is set to n, and no other entries of s and o are modified. Using
Lemma 8.3(e), we conclude that (A) holds after this iteration forπ = ρ̂. Moreover, (B)
holds by Lemma 8.9(e), also using that sρ̂

n,n = n by (4b).

Case (iib): The value j is at a boundary position in pn− j (ρ̂), and the value k next to it
is smaller than j . Then by Lemma 8.3(d) in ρ̂ the value k is also next to j , and either
j is at a boundary position (the right boundary, as n is at the first position in ρ̂) or the
other value next to in the direction o j of the jump is bigger than j . In line M5, the
value of sn is set to n, the value of s j is set to s j−1, and s j−1 is set to j − 1. Moreover,
the value of o j is flipped. Using Lemma 8.3(e), we conclude that (A) holds after this

iteration for π = ρ̂. Moreover, (B) holds by Lemma 8.9(f), also using that sρ̂
n,n = n

by (4b). This completes the proof of the theorem. �


8.8 Proof of Theorem 5.1

Proof of Theorem 5.1 In the proof of Theorem 3.3 we showed that the ordering of
rectangulations generated byAlgorithmJ� is given by (3) for some zigzag language Ln

of 2-clumped permutations. The theorem hence follows by applying Theorem 8.8.
�


9 Counting Pattern-Avoiding Rectangulations

In this section we report on computer experiments that count pattern-avoiding rect-
angulations Cn(P) for all interesting subsets of patterns P ⊆ {P1, . . . , P8} where

P1 = , P2 = , P3 = , P4 = , P5 = , P6 = , P7 = ,

P8 = . Clearly, we can omit sets of patterns that are equivalent to another set
of patterns under D4 actions (rotations and mirroring vertically or horizontally).
Table 3 shows the results for generic rectangulations Cn = Rn as a base class. For
counting results with block-aligned rectangulations as a base class, see Appendix C.
The set of patterns used in each row of the table is denoted by the pattern indices,
omitting curly brackets and commas. For example, the row 1478 refers to the set
P = {P1, P4, P7, P8}.

Several of these counting sequences appear in the OEIS [46], and are related to
pattern-avoiding permutations (see e.g. [8]). The matching OEIS entries marked with
? are observed through numerical experiments, but no formal bijective proof has been
obtained yet, even though finding one should be straightforward in some cases. The
last two rows in Table 3 with ? are interesting, as the correspondence to the objects
mentioned in those OEIS entries is not obvious. This is true in particular for OEIS

sequence A000984, which are the central binomial coefficients
(2n

n

)
.
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10 Open Questions

The subject of pattern-avoiding rectangulations deserves further systematic investi-
gation, and may still hold many undiscovered gems; recall Table 3. Understanding
the number of pattern-avoiding rectangulations that are obtained by rectangle inser-
tion may also help to improve the runtime bounds for our generation algorithms
(recall Remark 7.11). Moreover, does the avoidance of a rectangulation pattern always
correspond to the avoidance of a particular permutation pattern, and what is this cor-
respondence?

In our paper we considered R-equivalence and S-equivalence of generic rect-
angulations Rn , and these equivalence relations are induced by wall slides, or by
wall slides and simple flips, respectively. Considering all three basic flip opera-
tions F = {W , S, T }, namely wall slides, simple flips, and T-flips, there are 23 = 8
possible subsets of F to induce an equivalence relation onRn . Which of these equiv-
alence relations are interesting (apart from ∅, {W }, and {W , S} considered here), and
what are suitable representatives that can be generated efficiently?

Another interesting question to investigate would be Gray codes for rectangula-
tions of point sets as introduced by Ackerman et al. [2]. Some first results in this
direction have been obtained by Yamanaka et al. [42]. In particular, can we apply our
permutation-based generation framework for this task?
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Appendix A: Proofs of Lemmas 8.3 and 8.9

Proof of Lemma 8.3 Properties (a) and (b) follow easily from the definition (e). Prop-
erty (c) follows from Theorem 8.1 and line J2 of Algorithm J. We prove (d) and (e)
by induction on n. Both statements are trivial for n = 0 and n = 1, which settles the
induction basis. We now assume that n ≥ 2, and suppose that J (Ln−1) =: π1, π2, . . .

satisfies (a) and (b) for jumps of all values j ∈ {2, . . . , n − 1}.
We start with the induction step for (d). If π, ρ in J (Ln) differ in a jump of the

value j = n, then (d) is satisfied trivially, so it suffices to consider jumps of values
j ∈ {2, . . . , n −1} in J (Ln). However, by (2), such jumps only occur at the transitions
between #„c (πk) and

#„c (πk+1) or between
#„c (πk) and

#„c (πk+1) for some k. In the first
case, π = π [n] := nπk = c1(πk) = c1(π [n−1]) is followed by ρ = ρ[n] := nπk+1 =
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c1(πk+1) = c1(ρ[n−1]), and in the second case π = π [n] := πkn = cn(πk) =
cn(π [n−1]) is followed by ρ = ρ[n] := πk+1n = cn(πk+1) = cn(ρ[n−1]), completing
the proof.

We proceed with the induction step for (e). If π, ρ in J (Ln) differ in a jump of
the value j = n, then (e) follows from the definition (e) and of the sequences #„c (πi )

and #„c (πi ). On the other hand, consider π, ρ in J (Ln−1) that differ in a jump of some
value j ∈ {2, . . . , n − 1}, and let π ′, ρ′ be the next two permutations in J (Ln−1) that
differ in a jump of j , satisfying (e) by induction. Then in J (Ln), after the jump of j
from c1(π) to c1(ρ) or from cn(π) to cn(ρ), the next jump of the value j is from c1(π ′)
to c1(ρ′) or from cn(π ′) to cn(ρ′). If j is not at the first position in ρ and the value left
of it is smaller than j , then j is not at the first position and the value left of it is smaller
in both c1(ρ) and cn(ρ), and c1(ρ′) and cn(ρ′) are obtained from c1(π ′) and cn(π ′),
respectively, by a left jump. On the other hand, if j is at the first position in ρ or the
value left of it is bigger than j , then j is at the first position or the value left of it is
bigger than j in both c1(ρ) and cn(ρ), and c1(ρ′) and cn(ρ′) are obtained from c1(π ′)
and cn(π ′), respectively, by a right jump. This completes the proof. �


Proof of Lemma 8.9 We prove these properties by induction on n. The induction basis
n = 1 is trivial. For the induction step let n ≥ 2 and assume that all properties hold for
the sequence J (Ln−1). We first show the induction step for (a), (b), and (c). Consider
a permutation π in J (Ln) and define π ′ := p(π) ∈ Sn−1.

To prove (a), let π = idn be the first permutation in J (Ln) (recall Lemma 8.3(a)).
We have π ′ = idn−1 and by induction and (a) we hence have sπ ′

n = (1, 2, . . . , n − 1).
Using (4a) we obtain sπ

n = (1, 2, . . . , n), as claimed.
To prove (b), let π be a permutation that is not the last in the sequence J (Ln), and

let ρ be the permutation succeeding π in J (Ln). If π is not the last permutation in the
subsequence c(π ′) of J (Ln), then by (2) the permutation ρ is obtained from π by a
jump of the value n, and then (b) follows directly from (4b). On the other hand, if π

is the last permutation in the subsequence c(π ′), then ρ is obtained from π by a jump
of the value sπ ′

n−1,n−1 by induction and (b), and by (5c) we have sπ
n,n = sπ ′

n−1,n−1, as
desired.

To prove (c), let π be the last permutation in J (Ln). Then the permutation π ′ is also
the last permutation in J (Ln−1), so by induction we have sπ ′

n−1,n−1 = 1. Using (5c)

we see that sπ
n,n = sπ ′

n−1,n−1 = 1, as desired.
To prove (d), note that p(π) = p(ρ) = p(σ ) and therefore ρ is not the last

permutation in the subsequence c(p(ρ)), so the claim follows directly from (4a).
To prove (e), note that p(π) = p(ρ) �= p(σ ) and therefore ρ is the last permutation

in the subsequence c(p(ρ)), so the claim follows directly from (4a), (5a), and (5b).
To prove (f) and (g), let π ′ := p(π), ρ′ := p(ρ) and σ ′ := p(σ ). Note that

π ′ �= ρ′ = σ ′ and therefore π is the last permutation in the subsequence c(π ′),
whereasρ is the first permutation in the subsequence c(ρ′). Consequently, sπ

n is defined
by (5a) and sρ

n is defined by (4a). In particular, we have sπ
n,n−1 = n − 1 by (5b) and

sρ
n,n−1 = sρ′

n−1,n−1 by (4a).
We first prove (f), and we distinguish whether j = n −1 or j < n −1. If j = n −1,

then π ′ and ρ′ differ in a jump of j = n−1, and as j is not at a boundary position in ρ′,
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ρ′ and σ ′ also differ in a jump of n − 1 by (2). Consequently, we have sρ′
n−1,i = sπ ′

n−1,i

for i = 1, . . . , n −2 by induction and (d), and sρ′
n−1,n−1 = n −1 by (4b), so (f) indeed

holds in this case.
If j < n − 1, then π ′ and ρ′ differ in a jump of j < n − 1, and ρ′ and σ ′ differ in a

jump of n −1 by (2). As j is not at a boundary position in pn− j (ρ) = pn−1− j (ρ′), we
have sρ′

n−1,i = sπ ′
n−1,i for i = 1, . . . , n − 2 by induction and (f), and sρ′

n−1,n−1 = n − 1
by induction and (b), so (f) indeed holds in this case.

We now prove (g), and again we distinguish whether j = n − 1 or j < n − 1. If
j = n − 1, then π ′ and ρ′ differ in a jump of j = n − 1, in particular p(π ′) = p(ρ′),
and as j = n−1 is at a boundary position in pn− j (ρ) = p(ρ) = ρ′, ρ′ and σ ′ differ in
a jump of some value smaller than n−1 by (2). Consequently, we have sρ′

n−1,i = sπ ′
n−1,i

for i = 1, . . . , n − 3 and sρ′
n−1,n−2 = n − 2 by induction and (e). Moreover, we have

sρ′
n−1,n−1 = s p(ρ′)

n−2,n−2 = s p(π ′)
n−2,n−2 = sπ ′

n−1,n−2 by (4a). Combining these observations
shows that indeed (g) holds in this case.

If j < n − 1, then π ′ and ρ′ differ in a jump of j < n − 1, and ρ′ and σ ′ differ in a
jump of n − 1 by (2). Clearly, j is at a boundary position in pn− j (ρ) = pn−1− j (ρ′),
and by induction and (g) we have sρ′

n−1,i = sπ ′
n−1,i for i ∈ {1, . . . , n − 2} \ { j − 1, j},

sρ′
n−1, j−1 = j − 1 and sρ′

n−1, j = sπ ′
n−1, j−1. Moreover, we have sρ′

n−1,n−1 = n − 1
by (4a). Combining these observations proves (g) in this last case. �


Appendix B: S-Equivalence of Rectangulations

Recall that R-equivalence is the equivalence relation onRn obtained from wall slides,
i.e., any two generic rectangulations that differ in a sequence of wall slides are equiv-
alent. It is well known that every equivalence class contains exactly one diagonal
rectangulation, i.e., Dn is a set of representatives for R-equivalence (see e.g. [9]).

We aim to do something analogous for S-equivalence, and to pick a suitable
set of representatives for our generation algorithm. Recall that S-equivalence is the
equivalence relation on Rn obtained from wall slides and simple flips, i.e., any two
generic rectangulations that differ in a sequence of wall slides or simple flips are
equivalent. Figure 23 shows the equivalence classes of generic rectangulations under
S-equivalence for n = 2, 3, 4. Unfortunately, one can check that there is no choice
of representatives P2 ⊆ R2, P3 ⊆ R3, P4 ⊆ R4 for those equivalence classes (i.e.,
|P2| = 1, |P3| = 2, |P3| = 6) that is consistent with the operations of rectangle dele-
tion and insertion, i.e., such that P2 = {p(R) | R ∈ P3} and P3 = {p(R) | R ∈ P4}.
Consequently, for S-equivalence there is no set of unique representatives, one for each
equivalence class, that would form a zigzag set, so our generation algorithms cannot
be applied directly. However, we will show how to choose representatives for each
equivalence class (highlighted in Fig. 23), such that those representatives and the rect-
angulations obtained from them by a simple flip of the rectangle rn admit a generation
tree approach with our algorithms.
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Fig. 23 Equivalence classes of generic rectangulations under S-equivalence for n = 2, 3, 4. Block-aligned
rectangulations as equivalence class representatives are highlighted

B.1 Representatives for S-Equivalence

By definition, S-equivalence is a coarsening of R-equivalence, and we will therefore
choose a subset of diagonal rectangulations as representatives. We start with some
definitions; see Fig. 24. A rectangulation is horizontally aligned, or H-aligned for
short, if all of its walls are horizontal.Moreover, a rectangulation is almost horizontally
aligned, or AH-aligned for short, if all of its walls except one at the bottom are
horizontal. Equivalently, it is obtained by gluing copies of � on top of �.

Similarly, a rectangulation is vertically aligned, or V-aligned for short, if all of
its walls are vertical. Moreover, a rectangulation is almost vertically aligned, or AV-
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(a) (c)(b) (d)

Fig. 24 Illustration of aligned rectangulations. Rectangulation a is V-aligned, b is AV-aligned, c is V-
alignable but neither V-aligned nor AV-aligned, d is V-aligned and AH-aligned

aligned for short, if all of its walls except one at the right are vertical. Equivalently, it
is obtained by gluing copies of � on the left of �.

The rectangulation� isH-aligned andV-aligned. The rectangulation� isH-aligned
and AV-aligned, and the rectangulation � is V-aligned and AH-aligned. A rectangu-
lation is H- or V-alignable, if we can apply a sequence of simple flips to make it H-
or V-aligned, respectively. Clearly, a rectangulation is H-alignable if it is obtained by
vertically gluing together copies of � and �, and it is V-alignable if it is obtained
by horizontally gluing together copies of � and �. A block in a rectangulation is a
subset of rectangles whose union is a rectangle. The size of a block is the number of
rectangles of the block.

Lemma B.1 Every diagonal rectangulation can be partitioned uniquely into maximal
alignable blocks.

Proof Suppose for the sake of contradiction that for some rectangulation R ∈ Dn

there were two distinct block partitions P, P ′ of R. Consider a block B in P that is
not a block in P ′. Consider one of the rectangles in B, and consider the block B ′ of P ′
containing this rectangle. As R does not have any points where four rectangles meet
and B ′ �= B, the block B ′ must be a proper subset or superset of B, contradicting the
maximal choice of the blocks. �

Lemma B.1 holds more generally for generic rectangulations and for maximal blocks
with any additional property (such as alignable), but this is not needed here.

Lemma B.2 For any diagonal rectangulation, the partition into maximal alignable
blocks is invariant under simple flips.

Proof Consider a wall that can be simple-flipped, and observe that the two rectangles
to both sides of the wall must belong to the same alignable block due to the maximal
choice of the blocks. �

From now on, whenever we refer to a block in a rectangulation, we mean a maximal
alignable block. A block is a base block, if it contains the bottom boundary of the
rectangulation.

Based on the partition of a diagonal rectangulation R ∈ Dn into blocks, which
is unique by Lemma B.1, we introduce the following definitions; see Fig. 25. We
refer to each block of R as an H-block or V-block, if it is H-alignable or V-alignable,
respectively.We consider anH-block B of size at least 2with rectangle ri at the bottom-
right. If i = n or if rectangle ri+1 of R is below ri we say that B is free, whereas if
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Fig. 25 Illustration of blocks and block-aligned rectangulations.Blocks are highlighted by the same shading.
H-blocks are B1, B2, B3, B4, B6, and B7, with B7 free and B3, B4, and B6 locked. V-blocks are B1, B2, B4,
B5, B6, and B7, with B4, B6, and B7 free and B5 locked. Rectangulation a is not block-aligned, whereas
b is block-aligned

ri+1 is right of ri we say that B is locked. Similarly, we consider a V-block B of size
at least 2 with rectangle ri at the bottom-right. If i = n or if rectangle ri+1 of R is
right of ri we say that B is free, whereas if ri+1 is below ri we say that B is locked.

We say that R ∈ Dn is block-aligned if for every block B of size at least 2 in R the
following conditions hold: if B is a free H-block then B is H-aligned, if B is a free
V-block then B is V-aligned, if B is a locked H-block then B is AH-aligned, and if B
is a locked V-block then B is AV-aligned. A special rule applies if the rectangle rn is
contained in a block of size 2 (which is free and both H-alignable and V-alignable),
and then we require this block to be V-aligned, unless it is a base block, in which case
it must be H-aligned. Note that a block B of size exactly 2 that does not contain rn

is both an H-block and a V-block, however, if B is a locked/free H-block then B is a
free/lockedV-block, respectively, so this definition is consistent (as AH-aligned equals
V-aligned and H-aligned equals AV-aligned for a block of size 2).

WewriteBn ⊆ Dn for the set of diagonal rectangulations that are block-aligned.We
partition this set into B�

n and B�
n , respectively, according to whether the rectangle rn

is contained in a block of size 1 or at least 2, respectively. Note that if R ∈ B�
n ,

then the wall between rn and rn−1 does not admit a simple flip, whereas if R ∈ B�
n ,

then this wall admits a simple flip. For any R ∈ B�
n we write s(R) ∈ B�

n for the
rectangulation obtained from rn by a simple flip of this wall. The set B�

n is partitioned
into B�

n and B �

n according to whether this wall is horizontal or vertical, respectively.
As a consequence of LemmaB.2, every equivalence class of generic rectangulations

under S-equivalence contains exactly one block-aligned diagonal rectangulation; see
Fig. 23. Consequently, we will use the block-aligned rectangulations Bn ⊆ Dn as
representatives for S-equivalence.

B.2 Insertion in Block-Aligned Rectangulations

The next two lemmas describe how to construct block-aligned rectangulations by
rectangle insertion; see Fig. 27. For any diagonal rectangulation R ∈ Dn , we let Iv(R)
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denote the subsequence of I (R) of the first insertion point of each vertical group.
Similarly, we let Ih(R) denote the subsequence of I (R) of the last insertion point of
each horizontal group.

Lemma B.3 Let P ∈ B�
n−1, Iv(P) =: (qi1 , . . . , qiλ), and Ih(P) =: (q j1, . . . , q jμ).

Then we have the following:

• For any 1 ≤ k < λ we have cik (P) ∈ B�
n , and every R ∈ B�

n for which the top-left
vertex of rn has type � and rn−1 forms its own block is obtained by insertion from
some P ∈ B�

n−1 in this way.

• For any 1 < k ≤ μ we have c jk (P) ∈ B�
n , and every R ∈ B�

n for which the top-
left vertex of rn has type � and rn−1 forms its own block is obtained by insertion
from some P ∈ B�

n−1 in this way.

• If λ > 1 we have c j1(P) ∈ B �

n , and every R ∈ B �

n for which rn−1 and rn form a
V-aligned block of size 2 is obtained by insertion from some P ∈ B�

n−1 in this way.

• If λ = 1 we have ci1(P) ∈ B�
n , and every R ∈ B�

n for which rn−1 and rn form
an H-aligned base block of size 2 is obtained by insertion from some P ∈ B�

n−1 in
this way.

Proof The first and second part of the lemma are symmetric, so it suffices to prove the
first one. For this we analyze how the blocks of R := cik (P) differ from the blocks
of P , and prove that they are all aligned as required.

The rectangle rn−1 forms a block of size 1 in P , and as k < λ this is also true in R.
Similarly, as k < λ the rectangle rn forms a block of size 1 in R. Consequently, we
only need to verify whether blocks of R not containing rn−1 or rn in P are aligned
as required. If k = 1, then the blocks of R are the same as those of P , plus the block
containing rn , so we are done; see Fig. 26a. If k > 1, we let ra and rb be the rectangles
in P to the left and right of the edge that contains the insertion point qik . If ra and rb

belong to two distinct blocks in P , then the blocks of R are the same as those of P , plus
the block containing rn , so we are done; see Fig. 26b. On the other hand, if ra and rb

belong to the same block B in P , then it must be a free V-block that is V-aligned or a
locked H-block that AH-aligned, and we have b = a + 1. If B is a free V-block in P ,
then in R this block is split into two free V-blocks B ′ and B ′′, one containing ra and
the other one containing rb = ra+1, and both B ′ and B ′′ are V-aligned; see Fig. 26c. If
B is a locked H-block in P , then in R this block is split into the H-block B \{ra, ra+1},
and two blocks of size 1 containing ra or ra+1, respectively; see Fig. 26d. Moreover,
if |B| = 3 then |B \ {ra, ra+1}| = 1, and otherwise B \ {ra, ra+1} is a free H-block
that is H-aligned in R. In all cases we obtain R ∈ B�

n , as claimed.
We continue to prove the third part of the lemma about the rectangulation R :=

c j1(P). The rectangle rn−1 forms a block of size 1 in P , and together with rn it forms
a block of size 2 in R; see Fig. 26e. This block is V-aligned in R, so we have R ∈ B �

n ,
as claimed.

It remains to prove the fourth part of the lemma about the rectangulation R :=
ci1(P).The rectangle rn−1 forms a block of size 1 in P , and together with rn it forms
a block of size 2 in R; see Fig. 26f. This block is a base block and H-aligned in R, so
we have R ∈ B�

n , as claimed. �
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Fig. 26 Illustration of the proofs of Lemmas B.3 and B.4

Lemma B.4 Let P ∈ B�
n−1 and P ′ := s(P), or let P ′ ∈ B �

n−1 and P := s(P ′),
and define Iv(P) =: (qi1 , . . . , qiλ) and Ih(P ′) =: (q j1 , . . . , q jμ). Then we have the
following:

• For any 1 ≤ k < λ we have cik (P) ∈ B�
n , and every R ∈ B�

n for which the
top-left vertex of rn has type � and rn−1 is contained in a block of size at least 2
is obtained by insertion from some P ∈ B�

n−1 in this way.

• For any 1 < k ≤ μ we have c jk (P ′) ∈ B�
n , and every R ∈ B�

n for which the
top-left vertex of rn has type � and rn−1 is contained in a block of size at least 2
is obtained by insertion from some P ′ ∈ B �

n−1 in this way.

• We have ciλ(P) ∈ B�
n , and every R ∈ B�

n for which rn−1 and rn are contained in
an H-aligned block of size at least 3 is obtained by insertion from some P ∈ B�

n−1
in this way.

• We have c j1(P ′) ∈ B �

n , and every R ∈ B �

n for which rn−1 and rn are contained in

a V-aligned block of size at least 3 is obtained by insertion from some P ′ ∈ B �

n−1
in this way.

Proof The proof for the first part in the case P ∈ B�
n−1 and for the second part in the

case P ′ ∈ B �

n−1 is analogous to the proof of Lemma B.3. Therefore, by symmetry, to
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complete the proof of the first two parts, it suffices to argue about the case P ′ ∈ B �

n−1,
P := s(P ′) and the rectangulation R := cik (P) for 1 ≤ k < λ; see Fig. 26g. The
V-block B in P ′ containing rn−1, which is free and V-aligned in P ′, is AV-aligned
and free in P . Consequently, in R the block B is either split into two blocks, a free
V-block B ′ that is V-aligned to the left of a locked V-block B ′′ (Fig. 26g1) that is
AV-aligned, or B remains a single locked V-block that is AV-aligned in R (Fig. 26g2),
where the locking is due to the insertion of rn . The remaining blocks of P ′ are treated
as in the proof of Lemma B.3. In all cases we obtain that R ∈ B�

n , as claimed.
The third and fourth part of the lemma are symmetric, so it suffices to prove the third

one about the rectangulation R := ciλ(P). In this case {rn−2, rn−1, rn} is an H-block
that is free and H-aligned in R, and either |B \ {rn−2, rn−1}| = 1 or B \ {rn−2, rn−1}
is a V-block that is free and V-aligned in R; see Fig. 26h. It follows that R ∈ B�

n , as
claimed. �


B.3 Tree of Block-Aligned Rectangulations

By Lemmas B.3 and B.4, all block-aligned rectangulations Bn can be obtained by
suitable rectangle insertions into all block-aligned rectangulations Bn−1 and s(B�

n−1).
We consider the subtree of the tree of rectangulations discussed in Sect. 3.4 induced
by the rectangulations Bn and s(B�

n ) for all n ≥ 1. By gluing together pairs of
nodes (R, s(R)) for all R ∈ B�

n , we obtain the tree shown in Fig. 27.
For any P ∈ B�

n−1, using the notation from Lemma B.3 we define

c(P) :=
{

(ci1(P), . . . , ciλ−1(P), c j1(P), c j2(P), . . . , c jμ(P)) if λ > 1,

(ci1(P), c j2(P), . . . , c jμ(P)) if λ = 1.
(6a)

For any P ∈ B�
n−1 ∪ s(B �

n−1) and P ′ := s(P), using the notation from Lemma B.4
we define

c(P) := (ci1(P), . . . , ciλ−1(P), ciλ(P), c j1(P ′), c j2(P ′), . . . , c jμ(P ′)). (6b)

These sequences define an ordering among the children of each node in the aforemen-
tioned (unordered) tree of block-aligned rectangulations.

Note that any two consecutive rectangulations in the sequence (6a) differ in a T-
flip, except ciλ−1(P) and c j1(P), and ci1(P) and c j2(P), which differ in a T-flip plus
a simple flip. Similarly, any two consecutive rectangulations in the sequence (6b)
differ in a T-flip, except ciλ(P) and c j1(P ′), which differ in a simultaneous flip of the
two walls between rn , rn−1, and rn−2. We refer to this operation as a D-flip (D like
‘double’).

B.4 Next Oracle for Block-Aligned Rectangulations

Using (6), we may modify the minimal jump oracle nextDn for diagonal rectangula-
tions described in Sect. 7.2 for the generation of block-aligned rectangulations within
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17 18

9 9

18 17

Fig. 27 Tree of block-aligned rectangulations. Rectangulations fromB�
n are drawngray, and those fromB�

n
are drawn white. For any R ∈ B�

n , the wall between rectangles rn and rn−1 is drawn dashed, whereas
the corresponding wall in s(R) is drawn dotted. Each insertion point marked by a disk corresponds to one
child of the current node as in the first two parts of Lemmas B.3 and B.4. Each insertion point marked by
an empty square corresponds to one child as in the third or fourth part of Lemma B.3, whereas crossed
insertion points are not used. Each insertion point marked by a solid square corresponds to one child as in
the third or fourth part of Lemma B.4. The numbers at the bottom indicate the number of nodes in the next
level of the tree, of which there are 2(17 + 18 + 9) = 88 overall (i.e., we have |B6| = 88)
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Algorithm M� as follows. Some Gray code orderings produced by this algorithm are
shown in Sect. 1.

nextBn (R, j, d) (next oracle for block-aligned rectangulations).
N1. [Prepare] Set a ← r j .nwest and callunlock( j, d). If d =� and va .type =

�, setα ← va .south and b ← eα.tail. If vb.type = � gotoN2, otherwise
we have vb.type = ⊥ and goto N3. If d = � and va .type = �, set α ←
va .east and goto N4. If d = � and va .type = �, set α ← va .east and
b ← eα.head. If vb.type = ⊥ goto N5, otherwise we have vb.type = �
and goto N6. If d =� and va .type = �, set α ← va .south and goto N7.

N2. [Horizontal left jump (T/TS)] Set γ ← vb.west and call Tjumph(R, j,
� , γ ). Then set a ← r j .nwest, α ← va .south, b ← eα.tail, c ←
r j−1.swest, γ ← vc.north, c′ ← r j .seast, and if vb.type = ⊥ and
[vc′ .type = � or [ j = n and eγ .left = 0]] call Sjump(R, j, � , γ ). Call
lock(R, j, � ) and return.

N3. [Horizontal left jump (ST/D)] Set c ← r j−1.swest and γ ← vc.north, and
call Sjump(R, j, � , γ ). Then set γ ← vc.north, k ← eγ .left, c′ ←
rk .swest and γ ′ ← vc′ .north, and call Tjumpv(R, j, � , γ ′). Set c ←
r j−1.swest, γ ← vc.north and a ← eγ .head. If va .type = � we have
k = j − 2, set c′ ← r j−2.swest, γ ′ ← vc′ .north and call Sjump(R, j −
1, � , γ ′). Call lock(R, j − 1, � ) and return.

N4. [Horizontal right jump (T/TS)] Set k ← eα.left, b ← rk .neast and γ ←
vb.west, and call Tjumph(R, j, � , γ ). Then set a ← r j .nwest, α ←
va .south, b ← eα.tail, β ← vb.south, γ ← vb.west, c ← eβ.tail,
and c′ ← eγ .tail, and if vc.type = ⊥ and vc′ .type = �wehave k = j−2,
set γ ′ ← va .west and call Sjump( j − 1, R, � , γ ′). Call lock(R, j, � )

and return.
N5. [Vertical right jump (T/TS)] Set γ ← vb.north and call Tjumpv(R, j,

� , γ ). Then set a ← r j .nwest, α ← va .east, b ← eα.head, c ←
r j−1.neast, γ ← vc.west, c′ ← r j .seast, e ← r j−1.nwest, and if
vb.type = � and [vc′ .type = ⊥ or [ j = n and not [ve.type = � and
eγ .tail = e]] call Sjump(R, j, � , γ ). Call lock(R, j, � ) and return.

N6. [Vertical right jump (ST/D)] Set c ← r j−1.neast and γ ← vc.west and
call Sjump(R, j, � , γ ). Then set γ ← vc.west, k ← eγ .left, c′ ←
rk .neast, and γ ′ ← vc′ .west, and call Tjumph(R, j, � , γ ′). Set c ←
r j−1.neast, γ ← vc.west, and a ← eγ .tail. If va .type = �wehave k =
j−2, set c′ ← r j−2.neast, γ ′ ←vc′ .west and call Sjump(R, j −1,� ,γ ′).
Call lock(R, j − 1, � ) and return.

N7. [Vertical left jump (T/TS)] Set k ← eα.left, b ← rk .swest and γ ←
vb.north and call Tjumpv(R, j, � , γ ). Then set a ← r j .nwest, α ←
va .east, b ← eα.head, β ← vb.east, γ ← vb.north, c ← eβ.head,
and c′ ← eγ .head, and if vc.type = � and vc′ .type = �wehave k = j−2,
set γ ′ ← va .north and call Sjump( j − 1, R, � , γ ′). Call lock(R, j, � )

and return.
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Fig. 28 Flip operations in lines N2–N4 of the oracle nextBn

Lines N2–N4 are symmetric to lines N5–N7, so we only consider N2–N4; see the
illustrations in Fig. 28. Lines N2 and N4 perform a T-flip, possibly followed by a
simple flip. Line N3 performs a simple flip followed by a T-flip, possibly followed by
a simple flip, and in this case the combination of three flips, simple flip plus T-flip plus
simple flip, yields a D-flip overall. The function lock(R, j,dir), dir ∈ {�,�},
called at the end of each of the lines N2–N7 checks whether rectangle r j participates
in an H-aligned block (if dir =�) or V-aligned block (if dir =�) that is locked
and must be transformed to an AH-aligned block or AV-aligned block by a simple
flip. The function unlock(R, j, d), d ∈ {�,�}, called at the beginning in line N1
does the converse, namely checking whether r j participates in an AH-aligned block
or AV-aligned block that must be made H-aligned or V-aligned, respectively, before
performing a jumpof rectangle r j in directiond. The implementation of these functions
is shown below for the cases dir=� and d =�. The other variants dir =� and
d =� are omitted for simplicity.
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lock(R, j, � ) (lock block if necessary).
L1. [Prepare] Set a ← r j .neast, b ← r j .swest, c ← r j .seast, α ←

va .west, β ← vb.east and return if vb.type �= � or vc.type �= � or
eβ.head �= c.

L2. [Lock if necessary] Set d ← r j+1.seast and if vd .type = ⊥ call
Sjump(R, j + 1, � , α).

unlock(R, j, � ) (unlock block if necessary).
U1. [Prepare] Set a ← r j .neast, b ← r j .seast, c ← r j .swest and γ ←

vc.north.
U2. [Unlock if necessary] If va .type = � and vb.type = ⊥ call Sjump(R, j +

1, � , γ ).

To use Algorithm M� with this oracle, in line M5 we also need to check whether
R[ j−1] is bottom-based or right-based (in addition to R[ j]), and whether R[ j−1]
or R[ j] are one simple flip away from such a configuration. Similarly, to use this
oracle in conjunction with the oracle nextBn(P) defined in Sect. 7.3, we need to
test containment of a pattern P in the rectangulation R after a jump of rectan-
gle r j not only via contains(R, j, P), but also using contains(R, j − 1, P)

and contains(R, j + 1, P), as all three rectangles r j−1, r j , and r j+1 may be
modified through one call of nextBn (R, j, d). For details see our C++ implementa-
tion [45].

We obtain the following analogue of Theorems 4.2 and 5.1.

Theorem B.5 Let n ≥ 3. For any set of patterns P that are neither bottom-based
nor right-based nor simple-flippable to a bottom-based or right-based pattern, Algo-
rithm M� with the oracle nextBn(P) defined in Sect. 7.3, which calls nextBn as
defined above, visits every rectangulation from Bn(P) exactly once, performing a
sequence of one T- or D-flip plus at most three simple flips in each step.

It remains to analyze the running time of this algorithm.

Lemma B.6 Each call nextBn (R, j, d) takes time O(1).

As we are dealing with a subset of diagonal rectangulations, the proof is very similar
to the proof of Lemma 7.4.

Proof Consider anyof the callsSjump(R, j, d),Tjumph(R, j, d),Tjumpv(R, j, d)

in lines N2–N7 and let R′ be the rectangulation after the call. As we only consider the
first insertion point of each vertical group and the last insertion point of each horizontal
group of I (R[ j−1]), we have v(R, R′) = 0 and h(R, R′) = 0, so the claim follows
from Lemma 6.2, (b) and (c). �

Lemma B.6 immediately yields the following result.

Theorem B.7 Algorithm M� with the oracle nextBn takes time O(1) to visit each
block-aligned rectangulation.

For the pattern avoidance version of this algorithm, we obtain the following runtime
bounds.
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Theorem B.8 For any set of patterns P ⊆ {
,

}
, Algorithm M� with the oracle

nextBn(P) visits each rectangulation from Bn(P) in time O(n).

Proof The oracle nextBn(P) repeatedly calls the function nextBn . Applying Theo-
rem 7.7 with the bound fn = O(1) from Lemma B.6 and the bound tn = O(1) from
Lemma 7.8, the term n( fn + tn) evaluates to O(n), as claimed. �


Appendix C: Counting Results for Block-Aligned Rectangulations

Table 4 is the counterpart of Table 3 shown in Sect. 9 for block-aligned rectangulations
Cn = Bn as a base class. Note that the patterns P3, . . . , P8 cannot be used, as they do
not satisfy the conditions of Theorem B.5.

Table 4 Counts for pattern-avoiding rectangulations with block-aligned rectangulations as a base class

Patterns P Counts |Bn(P)| for n = 1, . . . , 13 OEIS

∅ 1, 1, 2, 6, 22, 88, 374, 1668, 7744, 37182, 183666, 929480, 4803018, . . . A214358

1 1, 1, 2, 6, 21, 79, 312, 1280, 5416, 23506, 104198, 470192, 2154204, . . .

12 1, 1, 2, 6, 20, 70, 254, 948, 3618, 14058, 55432, 221262, 892346, . . . A078482

Appendix D: Visualization of Gray Codes

In this section we visualize the Gray codes obtained from our algorithms for generic
rectangulations, diagonal rectangulations and block-aligned rectangulations (without
any forbidden patterns). The corresponding 2-clumped permutations are shown below
each rectangulation.

D.1 Generic Rectangulations

See Figs. 29, 30, 31, 32, and 33.

1

Fig. 29 n = 1

12 21

Fig. 30 n = 2
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12345 12354 12534 15234 51234 51243 15243 12543 12453

12435 14235 14253 14523 15423 51423 54123 45123 41523

41253 41235 41325 41352* 41532 45132 54132 51432 15432

14532 14352 14325 13425 13452 13542 15342 51342 51324

15324 13524 13254 13245 31245 31254 31524 53124 53142

31542 31452 31425 34125 34152 34512 35412 53412 54312

45312 43512 43152 43125 43215 43251 43521 45321 54321

53421 35421 34521 34251 34215 32415 32451 32541 35241

53241 53214 35214 32514 32154 32145 23145 23154 23514

25314* 52314 52341 25341 23541 23451 23415 24315 24351

24531 25431 52431 54231 45231 42531 42351 42315 42135

42153 45213 54213 52413 25413 24153 24135 21435 21453

21543 25143 52143 52134 25134 21534 21354 21345

Fig. 31 n = 5. The two non-guillotine rectangulations are marked by *
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123 132 312 321 231 213

Fig. 32 n = 3

1234 1243 1423 4123 4132 1432 1342 1324 3124 3142 3412

4312 4321 3421 3241 3214 2314 2341 2431 4231 4213 2413

2143 2134

Fig. 33 n = 4

D.2 Diagonal Rectangulations

See Figs. 34, 35, 36, 37, and 38.

1

Fig. 34 n = 1

12 21

Fig. 35 n = 2
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12345 12354 12534 15234 51234 51243 15243 12543 12453

12435 14235 14253 15423 51423 54123 41253 41235 41325

41352* 41532 54132 51432 15432 14532 14352 14325 13425

13452 13542 15342 51342 51324 15324 13524 13245 31245

31524 53124 53142 31542 31452 31425 43125 43152 45312

54312 54321 45321 43521 43251 43215 34215 34251 34521

35421 53421 53241 35241 32451 32415 32145 35214 53214

52314 25314* 23514 23145 23415 23451 23541 25341 52341

52431 25431 24531 24351 24315 42315 42351 42531 54231

54213 42153 42135 24135 24153 25413 52413 52134 25134

21354 21345

Fig. 36 n = 5. The two non-guillotine rectangulations are marked by *
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123 132 312 321 231 213

Fig. 37 n = 3

1234 1243 1423 4123 4132 1432 1342 1324 3124 3142 4312

4321 3421 3241 3214 2314 2341 2431 4231 4213 2413 2134

Fig. 38 n = 4

D.3 Block-Aligned Rectangulations

See Figs. 39, 40, 41, 42, and 43.

1

Fig. 39 n = 1

21

Fig. 40 n = 2

123 321

Fig. 41 n = 3

1234 1432 4132 4321 2341 2314

Fig. 42 n = 4
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12345 12543 15243 51243 51432 15432 13452 13425 41325

41352* 54132 54321 34521 34251 34215 23415 23451 25431

52431 52314 25314* 23145

Fig. 43 n = 5. The two non-guillotine rectangulations are marked by *
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