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Abstract

With the fast development of wind energy, new technological challenges
emerge, which calls for new research e↵orts to further reduce the cost of wind power.
A lot of e↵orts have been spent to tackle the modelling and control of wind tur-
bines and wind farms. However, big research gaps still exist due to the complexity
and strong nonlinearity of the underlying structural and fluid systems. On the
other hand, machine learning (ML), which is very powerful in handling complex
and nonlinear systems, is developing very fast in the past years. Therefore, this the-
sis aims to tackle the modelling and control issues arising from the fast-developing
wind industry, based on both traditional methods (including structural mechanics,
control engineering, fluid dynamics, and scientific computing) and ML (including
reinforcement learning, supervised ML, dimensionality reduction, generative adver-
sarial network, and physics-informed deep learning).

First, at the turbine level, mitigation of dynamic response of a floating wind
turbine using active tuned mass dampers is investigated, where a reinforcement
learning algorithm is employed and a neural network structure is designed to realize
the employed algorithm. Second, at the farm level, novel static and dynamic wind
farm wake models are developed by proposing novel ML-based surrogate modelling
methods for distributed fluid systems and then training the model based on high-
fidelity CFD database generated by large eddy simulations. Third, the prediction
of the spatiotemporal wind field in the whole domain in front of a wind turbine
is investigated by combining data (i.e. LIDAR measurements at sparse locations)
and physics (i.e. Navier-Stokes equations) in a unified manner via physics-informed
deep learning. The results presented in this thesis fully demonstrate the great
performance of the proposed structural controllers, the great accuracy, e�ciency &
robustness of the developed wind farm models, and the great accuracy of the full
spatiotemporal wind field predictions.
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Chapter 1

Introduction

As one of the most important sustainable energy resources, wind energy has been

investigated extensively all over the world. The recent decades have seen substantial

growth of wind power, e.g. the global wind power installation has surpassed 651 GW

at the end of 2019 [1] while this figure was just 74GW back in 2006 [2]. In order to

achieve the net-zero target in the coming decades, sustained and accelerated growth

of wind power is expected.

With the fast development of wind energy (such as the design of larger wind

turbine blades to further increase the power capture e�ciency and the develop-

ment of floating wind technology for deep water sites), new technological challenges

emerge. First, at the individual turbine level, due to the installation limitations of

the land-based wind turbines and on the other hand the high quality of the o↵shore

wind, more and more wind turbines are being constructed o↵shore [3], including

both the monopile wind turbines in shallow water site and the floating wind turbines

in deep water sites where the fix-bottom structures become economically infeasible.

However, the strong wind and wave conditions in o↵shore environment have a great

impact on the fatigue loads on the wind turbine structures [3]. Therefore their load

mitigation is of great importance for reducing maintenance costs and increasing

lifespan. Second, at the wind farm level, the wake interactions between individual

wind turbines within a wind farm have a large impact on the farm’s overall perfor-

mance [4]. As the turbine rotor wakes are characterized by reduced wind speed and

an increased turbulence level & wind shear, the downstream turbines operating in

the wakes usually generate less power and experience more severe structural loads

than the ones operating in freestream wind. Therefore the modelling and control of

wind farm wake flows are important for achieving the optimal power generations of

wind farms. Third, the spatiotemporal variability of the intermittent and chaotic
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Load mitigation 
- structural control

- reinforcement learning  


Wake interaction 
- computational fluid dynamics 

- supervised machine learning

- unsupervised machine learning


Wind prediction 
- wind measurements

- flow physics
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Figure 1.1: The illustration of the modelling and control issues investigated in this
thesis and the overview of the proposed methods. Background: the Horns Rev
O↵shore Wind Farm (photo by Christian Steiness); (a) the illustration of a floating
turbine structural system (figure adapted from [9]); (b) the illustration of wind
turbine wake flows, generated by CFD simulations; (c) the illustration of wind
measurements by turbine-mounted LIDAR.

wind poses great challenges for wind industry, in the scenarios such as the afore-

mentioned load mitigation of turbine structures and the wind farm modelling &

control, as well as in other research scenarios such as the integration of wind power

into the power grid [5,6] and the wind resource assessment [7,8]. Therefore, detailed

and accurate wind field predictions are of great importance. The aforementioned

challenges, which are the main focus of this thesis, are summarized in Figure 1.1.

A lot of research e↵orts have been spent to tackle these challenges, based

on the advancements in structural mechanics, fluid dynamics, control engineering,

and scientific computing. However, due to the complexity and strong nonlinearity

of the underlying structural and fluid systems, a big gap still exists and new mod-

elling & control methods are still urgently required. On the other hand, the field of
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machine learning (ML), including supervised ML, unsupervised ML and reinforce-

ment learning (RL), is developing very fast and has seen great progress in the past

few years. The advancement of ML is also revolutionizing other fields including

both engineering applications and fundamental research, such as in renewable en-

ergy systems [10], transportation systems [11], fluid mechanics [12], and biology &

medicine research [13]. As ML (in particular deep learning [14]) is very powerful

in handling complex and nonlinear systems, it brings new opportunities in tackling

the technological challenges arising from wind industry.

Therefore, this thesis aims to tackle the modelling and control issues emerging

from the fast-developing wind industry, as shown in Figure 1.1, by employing and

designing new methods based on the recent progress in ML research while taking

advantage of the traditional approaches in structural mechanics, control engineering,

fluid dynamics, and scientific computing. Specifically, in this thesis, (a) a novel

structural control design approach is proposed for the load mitigation of floating

turbine structures based on traditional structural control and RL; (b) novel wind

farm wake models are developed based on computational fluid dynamics (CFD)

and supervised & unsupervised ML; and (c) spatiotemporal wind field prediction

approaches are developed based on sparse measurements, flow physics and physics-

informed deep learning. The overview of the proposed methods is summarized in

Figure 1.1.

In the rest part of this chapter, the literature review on the modelling and

control of wind turbine structures and wind farm wakes is given in 1.1. Then the

literature review on the related ML approaches is given in 1.2. Based on these

literature reviews, the motivations and the original contributions of this thesis are

described in Section 1.3. Finally the thesis layout is presented in Section 1.4.

1.1 Modelling and Control of Wind Turbine Structures

and Wind Farm Wakes

1.1.1 Wind Turbine Control

With the global wind sector moving further towards o↵shore [1], the modelling

and control of o↵shore wind turbines is becoming a hot topic. The foundations of

o↵shore wind turbines can be classified as the fix-bottom and the floating ones. The

fix-bottom turbines are installed in shallow water sites while the floating turbines are

constructed in deep water sites where the fix-bottom structures become economically

infeasible [3]. The fatigue loads on floating wind turbines are much more severe than
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the fix-bottom ones, due to the platform motions caused by the significant external

disturbances (i.e. strong wind and waves) [3].

One approach to mitigate the structural load of wind turbines is to make use

of the rotor thrust as the restoring force to stabilize the turbine structures, which

can be achieved through either turbine blade pitch control [15] (including individ-

ual pitch control [16] and collective pitch control [17, 18]) or torque control [19].

However, this approach may interfere with the nominal power generation. An-

other approach is to install additional control devices, such as Tuned Mass Dampers

(TMDs) [20] and Tuned Liquid Dampers (TLDs), to dampen the platform/tower vi-

brations directly without interfering with power generation. In [21], passive TMDs

were investigated for the structural control of both monopile turbines and floating

turbines. Further study considered the use of multiple TMDs [22] and di↵erent

modelling approaches for monopile turbines [23] and floating turbines [24]. As for

TLDs, they were investigated for the structural control of wind turbines in [25].

Further studies investigated the modelling and optimal design of TLDs [26], the

semi-active control approach [27], and the use of bidirectional tuned liquid column

damper (BTLCD) [28].

The performance of a TMD can be further improved by adding active force

control to it, which is referred as Hybrid Mass Dampers (HMDs) [29]. The existing

works on active structural control of floating wind turbines by using HMDs are

rather limited. In [30], structural control of a floating barge-type wind turbine

was investigated, where an HMD was positioned in the turbine nacelle to reduce

the loads. A limited degree of freedom (DoF) model was constructed through the

system identification procedure, then a H1 multivariable loop shaping controller

was designed. The paper [31] further investigated the e↵ects of both actuator

dynamics and control-structure interaction on the active control of floating wind

turbines. In [9], load mitigation of floating wind turbines by an HMD installed

on the platform was investigated. A linear design model was first identified, then

a generalized H1 method was employed to optimize control gains, which achieved

good performance under normal wind and wave conditions. However, this method

was not able to work on extreme wind and wave conditions. In [32], a contact

nonlinear modelling method for barge-type floating wind turbines was presented,

where a stroke-limited HMD was included. The HMD was installed in the turbine’s

nacelle and a state-feedback linear quadratic regulator controller was proposed for

the active structural control.

The control designs in the aforementioned works were all based on linear

models, whether they were formulated based on physical principles or identified
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by synthetic data. However, the motion of floating wind turbines in the o↵shore

environment can be quite complex and the turbine position can be quite far away

from equilibrium, due to the extreme wind/waves loads. These control approaches

thus work mainly in the normal wind/wave conditions. Therefore, a control strategy

that can take account of the nonlinear dynamics of floating wind turbines is urgently

required.

1.1.2 Wind Farm Wake Modelling

Wake interactions have a great impact on the overall performance of wind farms. For

example, the experimental investigation [4] showed that the downstream turbine’s

power loss due to the wake e↵ects could be up to 46% compared to the power

generation in the designed wind condition. In order to mitigate the wake e↵ects,

turbine layout is usually optimized during the design phase [33, 34] while various

control techniques are proposed for the operation phase to steer the wake away

from the downstream turbines, which include turbine yaw control, individual pitch

control, and tilt-based control [35]. Therefore, wake modelling is of great importance

in order to take wake interactions into account in the optimal design and control of

wind farms.

Wake Models

A range of wake models have been developed in the literature [36], including the low-

fidelity analytical models, the medium-fidelity dynamic models, and the high-fidelity

CFD models.

The most widely used wake models are the low-fidelity analytical models,

such as the Jensen Park model [37,38], the Frandsen model [39], the FLOw Redirec-

tion and Induction in Steady-state (FLORIS) model [40], the 3D wake model [41,42],

and the models developed in [43,44]. These models are formulated analytically and

are very fast to evaluate, which makes them suitable for wind farm layout opti-

mization. The further development of analytical models is still an active area, such

as taking into account the turbulence e↵ect [33, 45], modelling yaw e↵ects [46–48],

modelling background flow e↵ects [49], considering the expansion of physical wake

boundary [50], and incorporating uncertainty based on high-fidelity data [51]. How-

ever, as these models are static, they are mainly used for optimizing static quantities

such as mean power generations. The dynamic features of wind turbine wakes are

missing in these models.

Most investigations of unsteady wakes are carried out using high-fidelity CFD
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models, such as the studies of the Lillgrund wind farm in [52] and the Horns Rev

o↵shore wind farm in [53]. The high-fidelity CFD models solve the filtered Navier-

Stokes (NS) equations using numerical methods with the turbine modelled by the

actuator disk method (ADM) [52, 54, 55] or the actuator line method (ALM) [40,

56, 57]. The comparisons of the ADM and ALM methods in wind farm simulations

were also investigated, by using the PALM model [58], the UTDWF model [59], and

the model developed in [60]. The further development of wind farm solvers is still

an active area, such as the Nalu-Wind solver in [61]. Although these high-fidelity

models can capture the detailed 3D wake dynamics, such as wake recovery and wake

meandering, they are time-consuming and expensive to run. For instance, in [40]

about 60 hours of distributed computation with 512 processors on high-performance

computing (HPC) clusters were used for 1000s large eddy simulation (LES) of a 3km

⇥ 3km wind farm with 6 turbines. The requirement of long simulation time and

enormous computing resources makes high-fidelity models not suitable for control

design purposes. In the existing literature, there are also a few medium-fidelity

dynamic models, such as the dynamic wake meandering (DWM) in [62], WFSim

in [63], and the continuous-time dynamic wake model in [64]. The development of

such control-oriented dynamic wake models is becoming very active now.

Uncertainty Quantification of Wake Models

Currently, the low-fidelity wake models are still the main tool in wind industry

for wake predictions, though they can not predict the detailed flow dynamics and

careful calibration of the empirical model parameters is often needed to increase

the prediction accuracy [65]. The underlying uncertainty of analytical wake models

needs to be rigorously quantified in order to achieve reliable wake predictions.

The input uncertainty and model uncertainty are the two main sources of

uncertainty in wind turbine wake predictions. The former has been investigated

in the literature. In [66], wind direction uncertainty was investigated and its im-

pact on predicting turbine power generation was evaluated. The results showed

the inclusion of direction uncertainty improved the agreement between the power

predictions of analytical wake models and measurement data. In [67], Jensen wake

model was employed with the consideration of the inflow direction uncertainty to

predict the wake profile behind wind turbines and the results showed a better match

between the predicted wake profiles and measurement data. Recently, the inclusion

of uncertainty in active wake control is also receiving attention [68, 69]. However,

all these work only considered the input uncertainty and did not consider the model

uncertainty.
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The model uncertainty for a general computer model can be classified into

parameter uncertainty, model inadequacy, residual variability and code uncertainty

according to the Bayesian uncertainty quantification (UQ) framework [70]. Among

them, the parameter uncertainty and model inadequacy are the two most important

uncertainty sources. The former arises from the lack of knowledge of the heuristic

model parameters and the latter represents the discrepancy between the true physi-

cal values and the model output at the optimal model parameters. In recent years, a

lot of research attention has been paid to the parameter uncertainty of fluid dynam-

ics such as boundary layer flows [71–73], channel flows [74], transitional flows [75],

compressible jet-in-crossflow [76], etc. The parameter uncertainty of wake models in

wind farm simulations has not yet been investigated in the literature, which will be

rigorously quantified in this thesis. This UQ study of traditional wake model is also

very useful to demonstrate the need of developing novel wake models for improved

wake predictions.

1.1.3 Wind Field Predictions

The detailed wind field information is of great interest for wind applications, such

as in developing strategies on the wind resource assessment and the monitoring &

control of wind turbine/farm. For example, the control of wind turbines based on

detailed flow structures was studied in [77] which showed the consideration of de-

tailed wind information (i.e. the coherent flow structures in the incoming wind)

could improve the control performance significantly. In order to obtain such infor-

mation, wind measurement technologies and wind prediction approaches have been

investigated extensively.

Wind measurement technologies, such as light detection and ranging (LI-

DAR) [78], have been developed in the past decades. Extensive research e↵orts

have since then been spent in the measurement analysis of LIDAR [79,80] and their

applications in wind turbine control [81, 82] and wind resource assessment [7, 83].

However, LIDAR can only provide wind speed measurements at sparse spatial lo-

cations along the laser beam. Also, it can only measure the line-of-sight (LoS)

wind speed in the laser beam direction [84], so the wind speed magnitude and di-

rection have to be estimated (Cyclops’ dilemma). The measurement of the whole

spatiotemporal wind field is still not feasible by the current sensor technologies.

On the other hand, numerous wind prediction approaches have been pro-

posed and recent advancements include the deep learning ensemble model with data

denoising [85], the recurrent neural networks based approach with error correc-

tion [86], and the variational Bayesian deep learning based approach [87]. These
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studies showed very promising results in wind speed predictions. However, as the

measurement data is usually only available at sparse spatial locations, the whole

flow field in front of the wind turbines can not be predicted with these approaches.

Numerical approaches have been investigated to obtain the detailed spatiotemporal

wind field information [8, 88], by numerically solving the NS equations. However,

numerical models were mainly designed for forward simulations of fluid flows thus

cannot take real-time wind measurements into account. In order to achieve the

accurate prediction of the spatiotemporal wind field information, both flow physics

and real-time wind measurements need to be considered.

Currently there are very limited studies that can achieve wind field pre-

dictions based on scattered wind measurements. In [89], a wind field reconstruc-

tion method was proposed, where a simplified dynamic model of the atmospheric

boundary layer was derived and then an unscented Kalman filter (UKF) was used

to estimate the model state from LIDAR measurements. The sensitivity study of

the developed method was also carried out, where di↵erent beam half-angles, look

directions, atmosphere conditions, and measurement noise levels were considered.

In [90], a velocity and pressure field estimation framework was proposed, where

a reduced order dynamic model was built based on NS equations, by uniquely em-

ploying a pressure Poisson equation formulation in conjunction with a basis function

decomposition method. Then a modified UKF algorithm was used for the state es-

timation. The proposed method was validated by both numerical experiments and

real-world LIDAR measurements. In [91], a wind field reconstruction method was

developed based on CFD and proper orthogonal decomposition (POD), where CFD

simulations were carried out to generate a database of wind fields and POD was em-

ployed to extract the low-dimensional basis vectors. The flow field reconstruction

was then carried out through these basis vectors based on measurements from the

optimally-placed sensors. The authors of [91] further investigated the optimal design

of the sensor arrangement in order to improve the reconstruction performance [92].

To summarize, all these studies showed very promising results by combining flow

physics (either through dynamic wind model, NS equations or CFD simulations)

with wind measurements in the wind field prediction process. However, due to the

complexity (e.g. the strong nonlinearity and the multi-scale characteristics) of the

wind dynamics, the aforementioned studies all included an explicit model reduction

process in reconstructing the flow field (i.e. low-order wind model [89], reduced-

order model from NS equations [90], dimensionality reduction by POD [91, 92]),

therefore their prediction performance was limited by the explicit model reduction

error (i.e. the error due to the limited number of reduced basis used for the flow
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reconstruction).

1.2 Machine Learning Based Modelling and Control Ap-

proaches

This section reviews the ML approaches that are closely related to the modelling and

control works presented in this thesis. They include RL, supervised ML, dimension-

ality reduction, generative adversarial network (GAN) and physics-informed deep

learning. It is worth noting that this is a very broad research field and the litera-

ture review in this section is not exhaustive i.e. only the most relevant literature is

included.

1.2.1 Reinforcement Learning for Optimal Control

RL, also called approximate or adaptive dynamic programming (ADP) in control

communities, is a powerful tool for optimal control of complex systems. Originally

proposed by Webos [93, 94], ADP has caught extensive attention recently on the

optimal control of both continuous-time and discrete-time systems [95–102]. It

is specifically designed and developed to tackle the control of complex nonlinear

systems. Typical examples include coal gasification [103], energy management sys-

tems [104], hypersonic vehicle tracking [105], microgrid system [106] and optimal

tracking [107].

There are mainly two types of iterative ADP algorithms: Value Iteration

Approximate Dynamic Programming (VI-ADP) and Policy Iteration Approximate

Dynamic Programming (PI-ADP) [108–110]. For VI-ADP approaches, the iteration

begins with an initial value function, and then the policy improvement is carried out

according to the iterative value function. This approach does not require an initial

admissible control law. However, the initialization of the value function needs to

be designed in order to guarantee the stability and convergence of the iteration

process. The paper [111] proposed a VI-ADP approach with a value function

initialization technique, where the convergence property was also proved. In [112]

a generalized VI-ADP algorithm was proposed, which only requires an arbitrary

positive semi-definite function to initialize the value function in order to guarantee

the convergence property of the algorithm. On the other hand, for the PI-ADP

approaches, an admissible initial control law is required for the iteration process. In

[113], a discrete-time PI-ADP algorithm was proposed for nonlinear systems with

convergence and stability analysis, and an e↵ective method to obtain the initial
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admissible control law was given. A generalized PI-ADP approach was proposed in

[114], which relaxed the requirement of obtaining the initial admissible policy [99].

Though very powerful in tackling complex nonlinear control problems, the work on

the RL-based control of wind energy systems is still in its infancy and more works

are expected to emerge in the future.

1.2.2 Machine Learning for Surrogate Modelling of Fluid Flows

CFD is an important tool for investigating complex flow problems in many engi-

neering and scientific applications, e.g. aircraft design, weather forecasting, and

turbulence research. However, despite the fast development of HPC technology, its

use for repetitive and real-time tasks, such as optimization and real-time control, is

still highly challenging due to the requirement of enormous computational resources

and long simulation time. For instance, the 3D Reynold-averaged Navier-Stokes

(RANS) simulation of complex flows typically requires several hundred/thousand

CPU hours, not to say the LES and the direct numerical simulations (DNS) where

the unsteady flow details are resolved. Therefore, surrogate modelling, which aims

at constructing an e�cient yet accurate approximation to the full CFD model, has

attracted a lot of attention, such as in aeroelastic computations [115], aerodynamic

load evaluations [116], aerodynamic simulations with consideration of multiple op-

erating conditions [117], UQ of turbulence models [73], combustion modelling [118],

and the simulations of single-injector combustion process [119].

ML-based surrogate modelling of fluid flows is attracting more and more

research attention recently. One approach is to directly formulate the surrogate

modelling of fluid systems as a supervised ML problem to train a model with the

flow parameters as training input and the full flow field as training output [120,121].

This kind of approach makes use of the-state-of-art ML algorithms, which can thus

mimic the fluid system to high accuracy if there are enough training data available

and the model generalisation issue is carefully addressed. Another approach is to

first reduce the high-dimensional flow field into its low-dimension representation by a

dimensionality reduction technique, and then formulate a supervised ML problem to

predict the reduced coe�cients instead of the full flow field, with the flow parameters

as input. In this way, the trained model can capture the main features of the fluid

systems while alleviating the need for a large amount of high-fidelity training data.

The combination of POD for dimensionality reduction [122–124] and su-

pervised ML for flow field prediction has been investigated recently. In [125], a

surrogate modelling technique called POD-NN was proposed, where POD was used

to extract the reduced basis and neural network (NN) was used for approximating

10



the map between flow parameters and the POD coe�cients. The combination of

POD and other ML techniques, i.e. Gaussian process regression (GPR), was inves-

tigated in [126,127] and it was tested on a set of numerical examples. The potential

to incorporate physical constraints was investigated in [128]. They proposed the

use of particular solutions in the POD expansion to enforce certain constraints, e.g.

boundary conditions. In addition, a set of supervised ML techniques were consid-

ered, including NN, multivariate polynomial regression, k-nearest-neighbours, and

decision trees.

To avoid the explicit dimensionality reduction errors and at the same time

mitigate the overfitting issues in predicting high-dimensional target, GAN, an ML

framework extremely powerful in generating realistic high-dimensional content, may

o↵er improved performance for the surrogate modelling of fluid flows. Di↵erent from

explicitly fitting the training target in the supervised ML, GAN is trained implicitly

to produce realistic high-dimensional content. It consists of two networks, a gener-

ator and a discriminator. The generator is designed to generate high-dimensional

content while the discriminator aims to distinguish the content generated by the

generator from the true content. The generator and the discriminator are trained

in an adversarial way such that the generator learns to produce more realistic con-

tent so that it can ‘fool’ the discriminator, while the discriminator learns better

ways to distinguish fake from true. Since its first publication, GAN has attracted

extensive attention rapidly in the ML field. Its developments have led a lot of excit-

ing successes, such as the conditional generative adversarial network (CGAN) [129],

deep convolutional generative adversarial network (DC-GAN) in image representa-

tions [130], image-to-image translation with CGAN [131], Wasserstein GAN [132],

and cycle-consistent GAN [133]. The applications of GAN in fluid problems are

still rare. A few examples include the super-resolution problems of fluid flows [134],

super-resolution turbulent flow reconstructions [135], modelling of fluid flows using

DC-GAN [136], and turbulence enrichment [137]. It is expected that more works

based on GAN will emerge in the future on various fluid applications, as they share

an important feature - the high dimensionality of the model output (e.g. high-

resolution images vs high-fidelity flow snapshots).

1.2.3 Machine Learning Incorporating Data and Physics

Most works on the application of ML in physical systems treat ML models as ‘black-

box’ and the physical knowledge is usually neglected during the training of the ML

model. In order to take full advantage of both data and the physical knowledge, the

works on the incorporation of physical laws in the training of deep learning models
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are emerging lately, such as the data-based turbulence modelling [138,139], the dis-

covery of governing equations [140, 141], solving high-dimension partial di↵erential

equations (PDEs) [142] and the surrogate modelling of physical systems [143,144]. A

versatile ML framework for solving forward and inverse problems involving PDEs,

called physics-informed neural networks (PINNs), was proposed in [145] recently.

The main idea of PINNs is to encode PDEs in terms of loss functions, which are

then used for NN training together with the available labelled data. Specifically,

automatic di↵erentiation [146] is employed to take the derivatives of the NN output

with respect to the NN input (i.e. space and time coordinates). These derivatives

are then used to form the loss functions that represent the residues of the PDEs.

The development of PINNs is becoming very active. Recent studies include both

method development (such as the UQ of PINNs [147], the use of adaptive activation

functions [148] and the learning from multi-fidelity [149] and noisy data [150]) and

various applications (such as vortex-induced vibrations [151], high-speed flow [152],

and hidden-physics inference from flow visualizations [153]).

For the ML-based surrogate modelling of fluid flows, a set of flow field data,

which is usually generated by CFD simulations, is available for training the ML

model. However, there are other research scenarios that the flow field data is not

available at all. For example, in the spatiotemporal wind field prediction problems

considered in this thesis, only sparse LIDAR measurements are available. In such

scenarios, the physics-informed deep learning is particularly powerful as it does not

need the flow field data to train the deep learning model. Therefore, by incorporating

physics and data in a unified framework, it opens new opportunities in the scenarios

of ‘small’ data for physical systems.

1.3 Motivations and Research Contributions

With the main technological challenges identified and the related literature described

in the previous sections, the motivations and the research contributions of this thesis

are described in this section.

• At the turbine level, the structural control of floating wind turbines using

active TMD is investigated based on the RL approach. Di↵erent from previous

works which are based on linear design models, the proposed approach takes

account of the nonlinear dynamics of the structural system in the control

design process. To the best of the author’s knowledge, this is the first time

that RL-based approach is employed to this type of application. Specifically,

an ADP algorithm is used to derive the optimal control law based on the
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nonlinear structural dynamics, and the large-scale ML platform Tensorflow is

employed for the design and implementation of the NN structure.

• Then the research moves to the farm level. For the first time, the parameter

uncertainty of wind farm wake models is investigated. As previous works in the

literature mainly focus on the input uncertainty, this work further advances

the accurate characterization of uncertainties in wind farm wake predictions.

Specifically, the parameter uncertainty of the widely-used FLORIS model is

quantified rigorously in the Bayesian UQ framework, based on the high-fidelity

flow field data generated by the LES flow solver Simulator fOr Wind Farm

Applications (SOWFA).

• After investigating traditional analytical wake models, novel wake models are

then developed. An ML-based surrogate modelling method for distributed

fluid systems is first proposed, where a dimensionality reduction technique,

such as POD, independent component analysis (ICA), auto-encoder (AE) in

this work, is employed to reduce the flow field dimension and a regression

model (such as the fully-connected NN in this work) is employed to predict

the reduced representation of the flow field with the flow parameters as the

input. The proposed method is specifically designed to tackle the fluid systems

involving distributed aerodynamic structures, by first decomposing the whole

fluid domain into subdomains, then carrying out surrogate modelling for each

subdomain by treating both the boundary information and the distributed

flow parameters as the input parameters, and finally combining the flow field

of each subdomain with the consideration of the matching condition at the

subdomain interface. The proposed method is then applied to wind farm wake

modelling, based on the flow field data generated by high-fidelity simulations.

• The above surrogate modelling method is based on the supervised ML frame-

work and explicit dimensionality reductions are employed to reduce the flow

field dimension. To avoid the explicit dimensionality reduction errors and at

the same time mitigate the overfitting issues in predicting high-dimensional

target, a novel surrogate modelling method is proposed, which follows the

GAN framework [154], in particular deep convolutional conditional generative

adversarial network (DC-CGAN). A novel wind farm wake model is then devel-

oped using the proposed method, based on the data generated by high-fidelity

simulations.

• The above works focus on the static wind farm wake modelling. Thus they
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can not be used for the simulation of unsteady wind farm wakes. In order to

capture the dynamic wake behaviours, a deep learning based dynamic wake

model is developed. First, a set of LES simulations are carried out to generate

a series of flow field data for wind turbines operating in di↵erent conditions.

Then a surrogate modelling method, called POD-LSTM, is proposed to build

this novel wake model, where POD is employed to reduce the flow field dimen-

sion and the long short-term memory (LSTM) network is employed to predict

the reduced representation of the flow field at a future time step based on

historical flow fields. After training, the model can be used for the fast sim-

ulation of unsteady wind farm wakes. An illustrative example is given based

on a 9-turbine wind farm to demonstrate the capability of the method and

evaluate the computational cost.

• The load mitigation of individual wind turbines and the modelling & control

of wind farms both depend greatly on the accurate characterization of wind

field information, which is still not available with the current sensor technol-

ogy. To fill the gap, a deep learning method which can combine sparse LIDAR

measurements and flow physics is developed to predict the time-varying onset

flow upstream of a wind turbine. Specifically, a deep NN is constructed and

the NS equations are incorporated in the deep NN by employing the physics-

informed deep learning technique. The training of this physics-incorporated

deep learning model only requires the sparse LIDAR measurement data while

the spatiotemporal wind field in the whole domain (which cannot be mea-

sured) can be predicted after training. This study can discover complex wind

patterns that do not present in the training dataset, thus is totally distinct

from previous ML-based wind prediction studies which treat ML models as

‘black-box’ and require the corresponding input and target values to learn

complex relations.

• All the previous works focused on the predictions of the 2D wind field. For the

first time, the prediction of the full 3D spatiotemporal wind field in front of a

wind turbine is investigated in this thesis. Specifically, a deep learning model

is developed which combines the 3D NS equations and the scanning LIDAR

measurements via physics-informed deep learning. The turbulent viscosity is

also taken into account to further improve the prediction performance.
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1.4 Thesis Outline

In Chapter 2, the RL-based structural control of floating wind turbines is presented.

This chapter is derived based on the following peer-reviewed journal paper published

by the author:

• J. Zhang, X. Zhao and X. Wei, Reinforcement learning-based structural con-

trol of floating wind turbines, IEEE Transactions on Systems, Man, and

Cybernetics: Systems(2020), DOI: 10.1109/TSMC.2020.3032622.

In Chapter 3, the quantification of parameter uncertainty in wind farm wake

modelling is investigated. This chapter is derived based on the following peer-

reviewed journal paper published by the author:

• J. Zhang and X. Zhao, Quantification of parameter uncertainty in wind farm

wake modeling, Energy 196 (2020) 117065.

In Chapter 4, an ML-based surrogate modelling method is proposed for aero-

dynamic flow around distributed structures, which is then applied to wind farm wake

modelling. This chapter is derived based on the following peer-reviewed journal pa-

per published by the author:

• J. Zhang and X. Zhao, Machine-learning-based surrogate modeling of aero-

dynamic flow around distributed structures, AIAA Journal 59 (3) (2021)

868–879.

In Chapter 5, a surrogate modelling method is proposed based on DC-CGAN

and then applied to wind farm wake modelling. This chapter is derived based on

the following journal paper draft:

• J. Zhang and X. Zhao, Wind farm wake modeling based on deep convolutional

conditional generative adversarial network, journal paper draft (2021), under

review.

In Chapter 6, a novel dynamic wind farm wake model is developed which can

capture dynamic wake characteristics in real-time. This chapter is derived based on

the following peer-reviewed journal paper published by the author:

• J. Zhang and X. Zhao, A novel dynamic wind farm wake model based on

deep learning, Applied Energy, 277 (2020) 115552.

In Chapter 7, the spatiotemporal wind field prediction based on physics-

informed deep learning and LIDAR measurements is presented. This chapter is

derived based on the following peer-reviewed journal paper published by the author:
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• J. Zhang and X. Zhao, Spatiotemporal wind field prediction based on physics-

informed deep learning and LIDAR measurements, Applied Energy 288

(2021) 116641.

In Chapter 8, the full 3D spatiotemporal wind field reconstruction is inves-

tigated based on the 3D NS equation and scanning LIDAR measurements. This

chapter is derived based on the following peer-reviewed journal paper published by

the author:

• J. Zhang and X. Zhao, Three-dimensional spatiotemporal wind field recon-

struction based on physics-informed deep learning, Applied Energy 300

(2021) 117390.

In Chapter 9, the conclusions are drawn and future perspectives are dis-

cussed.

I declare that all the works in the above papers are originated, conducted,

and investigated by me, including conceptualization, data curation, formal analysis,

investigation, methodology, project administration, software, validation, visualiza-

tion, and writing of the original draft & review.
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Chapter 2

Reinforcement Learning Based

Structural Control of Floating

Wind Turbines

2.1 Introduction

This chapter investigates the RL-based control design for the load mitigation of

floating wind turbines, by using active TMD. The barge type platform is considered

in this work, and the TMD is installed on the platform instead of in the turbine

nacelle. Then the PI-ADP approach for discrete-time systems [99] is employed for

the structural control design. Because the considered open-loop system (the floating

wind turbine with passive TMD) is stable, there exists a natural admissible control

policy (i.e. active control force set to be zero). This control policy is used for the

initialisation of the employed PI-ADP approach which can ensure the stability of the

closed-loop system [99, 113]. The employed algorithm includes three networks, i.e.

an action network, a critic network, and a plant network. The training of the plant

network and critic network is carried out in supervised manner while the training of

the action network aims to minimise the critic network output, which requires the

gradient information flowing through all the three networks. The NN structures in

the existing literature are usually very simple where only weight vectors outside the

NN activations were included in the NN structure or the weight matrix in the hidden

layer were included but not used for training, which undermined the ability of NNs

in approximating the plant’s complex nonlinear behaviour in practical applications.

This allows the gradients being derived analytically, but it is infeasible to do so for

complex network structures. In this work, the automatic di↵erentiation is employed
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to calculate the gradients in all the NN training including the training of the hidden

layer and this method is independent of specific applications, which greatly extends

the PI-ADP algorithm’s ability in solving complex practical problems and simplifies

its implementation. The large-scale ML platform Tensorflow [155] is used for the

implementation of the proposed NN structure. Its highly parallel computing en-

vironment makes the proposed NN implementation even more powerful, especially

with the use of GPU.

The National Renewable Energy Laboratory (NREL) 5-MW baseline ITI

Energy barge wind turbine model [3] (upwind, three blades, 126m rotor, variable

speed) is used in this study. An HMD (i.e. a TMD with an additional active force

control) is installed on the platform and designed to suppress the vibration in the

fore-aft direction. It is worth noting that the side-to-side vibration of the platform

can be well tackled by passive TMDs. The NREL Flow Analysis Software Toolkit

(FAST) code [156] is employed to simulate the structural system, and the plant

network is trained based on the data generated by FAST. After training the plant

network, a series of ADP controllers are obtained by varying the penalty term in

the action-critic network training, which considers the trade-o↵ between the control

performance and power consumption.

The remaining part of this chapter is organised as follows: the structural

control of floating wind turbines is formulated in Section 2.2. The PI-ADP algorithm

and its implementation with the proposed NN structure are described in Section 2.3,

where the training of the plant network, the critic network, and the action network

is presented in detail. The structural control design based on PI-ADP is described

in Section 2.4. The control performance is evaluated in Section 2.5, where a set of

wind/wave conditions are considered. Finally the conclusions are drawn in Section

2.6.

2.2 Problem Formulation

The structural control of a floating wind turbine is described in this section. Here

the turbine’s structural dynamics with HMD and the control objective are given.

2.2.1 Floating Turbine System with HMD

The structural control of an NREL 5-MW floating wind turbine model within FAST

code [3] is investigated here. An HMD is coupled to the floating platform of this

model, which moves in the fore-aft direction to suppress the structural vibration of

the floating turbine in this direction, see Figure 2.1. An illustration of the floating
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Figure 2.1: A schematic illustration of the floating wind turbine model within FAST
[157] coupled with an HMD.

turbine structural system is also given in Figure 1.1(a). A stroke limit of ±17m is im-

posed for the HMD since the length of the platform is 40m. The damping coe�cient,

sti↵ness coe�cient and mass of the HMD are set as 60393N/(m/s), 103019N/m and

400000kg respectively, which are the optimal values used in [9]. All the DoFs are

enabled except the nacelle yaw DoF as the yaw control is not considered in this

work. Among all the DoFs, the main structural dynamics of this turbine-HMD sys-

tem can be characterized by the platform pitch angle, the tower-top displacement,

and the HMD displacement. Therefore, the structural system can be approximated

by a discrete system F :

xk+1 = F (xk, uk), k = 0, 1, 2, ..., (2.1)

where k is the discret time step, u is the control variable ( i.e. the active HMD

force), and x is the state variable which is defined as

x = [xhmd, uhmd, xplfm, uplfm, xtt, utt]. (2.2)

Here xhmd, uhmd, xplfm, uplfm, xtt, utt represent the HMD displacement, HMD ve-

locity, platform pitch angle, platform pitch angular velocity, tower top displacement

and tower-top velocity, respectively.
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2.2.2 Control Objective

The active structural control aims at reducing the vibrations of the turbine’s plat-

form and tower in the fore-aft direction with a minimum amount of power consump-

tion. Denote the sequence of active HMD forces as ūk = {uk, uk+1, uk+2, ...}, then

the cost function for the state x0 under the control ū0 is defined as

J(x0, ū0) =
1X

k=0

U(xk, uk) (2.3)

where the utility function U(xk, uk) is defined as

U(xk, uk) = (xk)
T
·Au · (xk) +Bu(uk)

2
, (2.4)

where · represents the dot product, the superscript T represents the matrix trans-

pose, and the empirical parameters Au and Bu are used to investigate the trade-o↵

between the active control force and the control performance. Equation 2.4 allows

the utility function U(xk, uk) to be positive definite [99,113] and to take account of

the costs from both the structural vibrations (which is described by the first term)

and the active power consumption (which is described by the second term).

Here this work focuses on state-feedback control thus an arbitrary control

law can be expressed as

uk = µ(xk). (2.5)

The cost function for the state x0 under the control law µ can then be expressed as

J
µ(x0) =

1X

k=0

U(xk, µ(xk)). (2.6)

The structural control objective is to find an optimal control policy µ
⇤(xk) such that

µ
⇤(xk) = argmin

uk

{U(xk, uk) + J
⇤(F (xk, uk))}, (2.7)

where

J
⇤(xk) = min

uk

{U(xk, uk) + J
⇤(F (xk, uk))}. (2.8)
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2.3 PI-ADP Algorithm and its Implementation

The PI-ADP algorithm begins with an admissible control law µ0 and then obtains

the optimal cost function and the optimal control law iteratively through the policy

evaluation and policy improvement procedure. During policy evaluation, the value

function Vi is constructed based on the corresponding control law µi such that it

satisfies the following equation

Vi(xk) = U(xk, µi(xk)) + Vi(F (xk, µi(xk))). (2.9)

Then during the policy improvement, the control law µi+1 is updated based on the

value function Vi according to

µi+1(xk) = argmin
uk

{U(xk, uk) + Vi(F (xk, uk))}. (2.10)

Through the iteration process (µ0 ! V0 ! µ1 ! V1 ! µ2 ! ...VN�1 ! µN ), the

optimal cost function J
⇤ is approximated by VN and the optimal control law µ

⇤ is

approximated by µN . The properties of the PI-ADP algorithm have been proved

in [99, 113], where an admissible initial control law is required to guarantee the

convergence and stability of the algorithm. The main contribution of this chapter

is a novel NN realisation of the employed PI-ADP algorithm and its application on

structural control of floating wind turbine (which is also applicable to other complex

industrial systems). The interested reader may refer to [99, 113] for the detailed

proof of stability. The proposed NN structure and its training details are described

in the following subsections.

2.3.1 Neural Network Structure

The whole NN structure proposed in this work is illustrated in Figure 2.2. The

plant network, the action network, and the critic network in Figure 2.2 are all fully-

connected NNs with one-hidden layer as illustrated in Figure 2.3.

Here the network is designed in order to feed standardized data for all the

NN trainings. The standard scaler (denoted as Scaler 1, Scaler 2, Scaler 3 and Scaler

4 in Figure 2.2) is employed, which normalizes the data by their mean value and

standard deviation

d
std =

d�m(d)

s(d)
(2.11)

where m(d) and s(d) represent the mean and standard deviation of the dataset
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Figure 2.2: The whole NN structure including the plant network, the action network
and the critic network.

Figure 2.3: The illustration of a fully-connected NN with one hidden layer. x is the
N1-dimension input variable, h is the N2-dimension hidden layer output, and y is
the N3-dimension output variable. w1, b1, w2, and b2 are the training variables of
the NN and � is the activation function.

d. The utility function is redefined in terms of the standardized state and action

variables as

U(xstd

k , u
std

k ) = (xstd

k )T ·A
⇤
u · (xstd

k ) +B
⇤
u(u

std

k )2, (2.12)

so that the costs arising from structural vibration and the power consumption are

comparable. The forward and inverse mappings of Scaler 1 - Scaler 4 are denoted as

S1 - S4 and S �1
1 - S �1

4 , respectively. The forward mappings of the plant network,

the action network, and the critic network are denoted as P, A and C respectively.
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The plant network is designed to approximate the structural system such that

xk+1 = xk + S �1
3 �P

�
S1(xk),S2(uk)

�
, (2.13)

where � represents the composition of functions. The plant network is designed to

predict the state change instead of the state variable because this way can greatly

increase the prediction accuracy — the state change is usually subtle compared to

the state variable. The action network is designed to approximate the structural

controller such that

uk = S �1
2 �A �S1(xk). (2.14)

The critic network is designed to approximate the value function such that

V (xk) = C �S4(xk). (2.15)

Thus, with this NN structure, Equation 2.9 is approximated by

Ci�S4(xk) = U
�
S1(xk),Ai �S1(xk)

�

+ Ci �S4

⇣
xk + S �1

3 �P
�
S1(xk),Ai �S1(xk)

�⌘
, (2.16)

and Equation 2.10 is approximated by

Ai+1 �S1(xk) = argmin
A �S1(xk)

n
U
�
S1(xk),A �S1(xk)

�

+ Ci �S4

⇣
xk + S �1

3 �P
�
S1(xk),A �S1(xk)

�⌘o
. (2.17)

2.3.2 Neural Network Training

The training of the proposed NN structure is detailed here and the overall training

process is summarised in Algorithm 1.

Equation 2.13 can be reformulated as

S3(xk+1 � xk) = P
�
S1(xk),S2(uk)

�
, (2.18)

thus the plant network is trained by minimising the mean-squared error (MSE) loss

lp = MSE

⇣
S3(xk+1 � xk),P

�
S1(xk),S2(uk)

�⌘
. (2.19)

The critic network training can be done in two di↵erent approaches. In the
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Algorithm 1 The training of the proposed NN structure

1: Load the training data {x
⇤
k
}, {u⇤

k
} and {x

⇤
k+1}, and preprocess them to obtain

{x
std⇤
k

}, {ustd⇤
k

} and {dx
std⇤
k

}.
2: Set the hidden layer neuron number N2; Set the learning rate lr.
3: Train the plant network by feeding {x

std⇤
k

}, {ustd⇤
k

} and {dx
std⇤
k

} into x
std

k
, ustd

k
,

and dx
std

k
.

4: Set the maximum iteration number Niter.
5: Initialise i = 1; Set the convergence criterion ✏.
6: Initialise the action network such that the initial control law is admissible.
7: while i < Niter + 1 do

8: Compute the {Vi(x⇤k+1)} according to Equation 2.20 by feeding {x
⇤
k+1} into

xk.
9: Train the critic network by feeding {x

⇤
k+1} and {Vi(x⇤k+1)} into xk+1 and

V (xk+1).
10: Train the action network by feeding {x

⇤
k
} into xk.

11: if i > 1 then:
12: Compute econv: the MSE between {Vi�1(xk)} and {Vi(xk)}.
13: if econv < ✏ then:
14: The whole process is convergent.
15: Break.
16: end if

17: end if

18: i i+ 1
19: end while

first approach, the critic network is trained such that Equation 2.9 is satisfied. In

the second approach, the value function is approximated directly by

V (xk) =
NX

j=0

U(xstd

k+j , u
std

k+j) (2.20)

where N is a large number. In this work the second approach is employed, as it

converges faster than the first one. Thus the critic network is trained by minimising

lc = MSE

⇣ NX

j=0

U
�
S1(xk+j),A �S1(xk+j)

�
,C �S4(xk)

⌘
. (2.21)

where xk+j is obtained by evaluating the plant network iteratively.
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According to Equation 2.17, the action network is trained by minimising

la = MSE

 
0, U

�
S1(xk),A �S1(xk)

�
+

C �S4

⇣
xk + S �1

3 �P
�
S1(xk),A �S1(xk)

�⌘
!
. (2.22)

The critic network and the action network are trained iteratively until the whole

process converges which is described in detail in Algorithm 1. All the NN trainings

are carried out with Adam optimization algorithm [158]. Automatic di↵erentiation

[146], which calculates the gradients of complex graphs automatically based on the

chain rule, is employed here for deriving @lp/@wp (@lc/@wc or @la/@wa) for the plant

(critic or action) network training, where wp (wc or wa) represents the training

variables in the plant (critic or action) network.

The relationship between the three sub-networks is further explained here.

Plant network is trained alone in supervised manner, as only P is involved in

Equation 2.19. Critic network is also trained alone in supervised manner as only

forward evaluation of A and P is needed in deriving @lc/@wc in Equation 2.21.

The training of action network, however, requires the gradient information flowing

through the whole network, as P, C and A are all involved in deriving @la/@wa in

Equation 2.22.

2.4 HMD Controller Design of a Floating Wind Turbine

In this section, the design of an ML-based HMD controller for a floating wind

turbine is investigated, using the NN structure and training algorithm proposed in

the previous section.

2.4.1 Plant Network Training

The plant network is trained by using the data generated by the floating wind

turbine simulation model shown in Figure 2.1. The training dataset is a set of

training samples with each sample consisting of the state variable at the current

time step, the action variable at the current time step and the state variable at

the next time step. The time step is set as 0.06s, which is also the time step of

the trained plant network. To generate the training dataset, 100 random initial

conditions for [xhmd, xplfm, xtt] in the parameter space [�15, 15]m ⇥ [�15, 15]deg ⇥

[�3, 3]m are first obtained by Latin hypercube sampling method, then a 15-second
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simulation with a time step of 0.01s is carried out for each initial condition, under

the excitation of random HMD force with a time step of 0.1s and within the interval

[�5000, 5000]kN. Next, the first 5-second time series is eliminated and the data

sample is extracted with a time interval of 0.1s. All the data samples are collected

together to form the final training dataset.

After generating the training dataset, a plant network with the hidden-layer

neuron number N2 = 20 is constructed. The learning rate is set as 0.001 and the

training error is set as 10�3. The plant network is then trained to mimic the struc-

tural system. In order to assess the accuracy of the trained network, a comparison

of the FAST simulation results and the plant network calculations is given in Figure

2.4, with the test HMD force time series shown in Figure 2.4(a) and the comparison

of the structural response under this HMD force excitation shown in 2.4(b)-(g). Both

calculations are based on the same initial condition at t = 5s, and the test HMD

force time series shown in Figure 2.4(a) has not been used during training. Figures

2.4(b)-(g) show a perfect match between the FAST simulation and the plant net-

work calculation for the whole simulation period. This demonstrates that the plant

network has captured the nonlinear dynamics of the structural system.

2.4.2 Action-Critic Network Training

The action-critic network training is conducted iteratively according to Algorithm

1. The hidden-layer neuron number of both networks is set as 20, and the learning

rate is set as 0.001. The bias term is not used for the action network, imposing

the condition µ(0) = 0. The training error of critic network is set as 10�3 and

the training of action network is deemed completed when the training loss la drops

less than a prescribed threshold with further training, which is set as 10�5 here.

The action network is initialised by very small random weights as µ0 = 0 is an

admissible control law for the structural system. N in Equation 2.20 is set as 5000.

A
⇤
u in the utility function is set as 10�4

⇥ diag{(1, 1, 25, 25, 1, 1)} and a number of

values are chosen for B⇤
u, which are reported in Table 2.1. Each chosen B

⇤
u results in

a di↵erent action network after the training process. These trained action networks

are the state-feedback controllers that will be used for the structural control in the

next section (denoted as ADP1-ADP8 hereafter).

All the NN trainings are carried out with one NVIDIA Tesla K80 GPU card to

take advantage of Tensorflow’s e�ciency with GPU backend. For all the 8 (ADP1-

ADP8) controller design, on average, the plant network training requires about

88s, the critic network training requires about 33s, and the action network training

requires about 245s. The action network training takes much longer than other NNs
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(a) The test HMD force

(b) HMD displacement (c) HMD velocity

(d) Platform pitch angle (e) Platform pitch angular velocity

(f) Tower top displacement (g) Tower top velocity

Figure 2.4: The comparison of the FAST simulation results (solid line) and the plant
network calculations (dashed line).
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as it requires the gradient information flowing through the whole network (all three

sub-networks are involved). The same training process is also tested out with 4

INTEL Xeon CPUs (2.40GHz) and it is more than three times slower than training

with GPU. This clearly demonstrates the advantage of the current implementation

on Tensorflow with GPU backend.

2.5 Simulation Study

With the converged plant network capturing the dynamics of the structural system

and the converged action network approximating the optimal control law, which are

developed above, this section is devoted to simulation tests.

2.5.1 Wind and Wave Conditions

The turbulent wind is generated based on the IEC Kaimai Spectral Model with NTM

in TurbSim [159], and the wave condition is generated by the HydroDyn module in

FAST based on JONSWAP spectrum. Two extreme and two normal environmental

conditions are considered first to analyse the control performance. Then a range

of wind/wave conditions are included to further demonstrate the e↵ectiveness of

the ADP controllers. For the two extreme events (Event E1 and Event E2), which

were recorded in the report [3], the main hub-height longitudinal wind speeds are

respectively 22m/s and 24m/s, the turbulence intensity is category B, and the peak-

spectral periods of the incident waves are 13.4s and 15.5s with the significant wave

heights of 4.7m and 5.5m respectively. For the two normal events (Event N1 and

Event N2), the main hub-height longitudinal wind speeds are respectively 9m/s and

18m/s, the turbulence intensity is category A, and the peak-spectral periods of the

incident waves are 12s and 11s with the significant wave heights of 2m and 4.5m

respectively. For the remaining cases (ranging from normal to extreme conditions),

the wind speed increases from 9m/s to 24m/s with an interval of 3 m/s, and B level

turbulence intensity is used for all the cases. The corresponding significant wave

heights increase linearly from 2m to 5.5m and peak-spectral periods increase linearly

from 12s to 15.5s.

2.5.2 Performance Evaluation and Discussions

The simulation results are given here, including the calculations with no TMD,

passive TMD, HMD usingH1 controller, and HMD using a series of ADP controllers

(ADP1-ADP8).
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The standard deviation (SD) of the platform pitch angle and the correspond-

ing HMD power consumption for the two normal events (N1 and N2) and the two

extreme events (E1 and E2) are given in Table 2.1. Figure 2.5 shows the corre-

sponding time responses. First, the performances of the ADP8 controller and the

H1 controller are compared because their active power consumption are similar.

In the two normal events, the SDs of the platform pitch displacement are reduced

by 12.34% and 11.69% using the controller ADP8, compared with the passive case,

while they are reduced by 10.83% and 9.64% using the H1 controller. It is con-

cluded that the ADP controller and the H1 controller perform similarly in normal

events. However, in the two extreme events, as can be seen from Figure 2.5(c-d) and

Table 2.1, the platform pitch displacement with the controller ADP8 is much smaller

than the ones with the H1 controller. Compared with the passive case, the SDs

of the pitch displacement are reduced by 14.64% and 10.15% using the controller

ADP8 while they are reduced by 8.72% and 2.67% using the H1 controller. In

conclusion, a clear advantage of the ADP controller over H1 controller is observed

in the extreme events but the ADP controller performs only slightly better in the

normal events. This observation is reasonable because the H1 controller is expected

to perform well in the linear range of the dynamic systems and the ADP controller

shows its advantages in strongly nonlinear situations.

The simulation results of ADP1, the controller with the most e↵ective vi-

bration suppression performance, are also given in Figure 2.5, with the SDs of the

platform pitch displacement reduced by 38.53% and 35.56% in the events N1 and

N2, and by 41.01% and 40.43% in the events E1 and E2. In addition, the HMD

power consumptions are 719.25kW and 863.59kW in E1 and E2 and 236.73kW and

657.62kW in N1 and N2. In [9], an average reduction of 18.1% for the platform pitch

root-mean-square by the generalized H1 controller was reported with an average

power consumption of 684kW . In addition, they stated that their generalized H1

controller was not able to work under the extreme wind and wave conditions. The

results here clearly demonstrate the great advantage of the ML-based approach over

the H1 control approach in the structural control of floating wind turbines.

By changing the penalty coe�cient B⇤
u related to the HMD force magnitude

in the utility function, a set of controllers have been obtained which consider the

trade-o↵ between the control performance and power consumption. Figure 2.6 shows

the reduction of the SDs of the platform pitch displacements against the power con-

sumptions for the events N1, N2, E1, and E2. It shows that ADP1 is the suitable

choice if the ability of the wind turbines to withstand extreme conditions is the pri-

mary concern, while ADP5 may be more suitable if the cost of the active control (i.e.
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(a) N1 (b) N2

(c) E1 (d) E2

Figure 2.5: The simulation results including the ones with no TMD, passive TMD,
HMD using H1 controller, HMD using ADP1 controller, and HMD using ADP8
controller, for the normal event N1 and N2, and the extreme event E1 and E2.
Among ADP controllers, ADP1 controller is the most e↵ective one in terms of
vibration suppression and the ADP8 controller uses similar amount of HMD power
as the H1 controller.

the HMD power consumption) becomes more concerned. It should be kept in mind

that the active power consumption should be much less than the power generation

of wind turbines in order to make the active control approach economically feasible.

To further evaluate the ADP controllers’ performance, the simulations rang-

ing from normal conditions to extreme conditions (from 9m/s to 24m/s with an

interval of 3 m/s) are carried out and the results are given in Table 2.2. As can be

seen, the proposed ADP controllers perform very well for all the cases.
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Figure 2.6: The reduction of the SDs of the platform pitch displacements against
the HMD power, for the events E1, E2, N1, and N2. The symbols in each line (from
left to right) represent the results obtained by ADP8, ADP7,..., ADP1.
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2.6 Conclusions

The RL-based structural control of floating wind turbines has been investigated. An

HMDwas installed on the floating platform in order to reduce the platform vibration,

and the ADP approach was employed to obtain the optimal control law. The design

of NN structure and its implementation on the modern large-scale ML platform

Tensorflow were proposed. Three networks were included in the whole NN structure,

including a plant network, a critic network, and an action network. After training,

the approximate optimal controller was obtained, based on the plant network which

captured the nonlinear dynamics of the structural system. The simulation results

showed that the designed controller performed very well in both normal and extreme

conditions, with the standard deviation of the platform pitch displacement being

reduced by around 40%. A clear advantage of the ADP controllers over the H1

controller was observed, especially for extreme wind/wave conditions - the scenarios

that must be considered seriously in o↵shore wind technology.

In addition, the developed algorithm allows to consider the trade-o↵ between

the control performance (i.e. the reduction of the structural vibration) and the power

consumption. A series of ADP controllers were obtained by varying the penalty term

in the network training. As expected, the control performance increased with the

increase of power consumption. It is worth noting that in practice, the passive TMD

is expected to work alone most of the time and the active part is only activated when

the vibration is above a certain limit.
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Chapter 3

Quantification of Parameter

Uncertainty in Wind Farm

Wake Modelling

3.1 Introduction

This chapter investigates the parameter uncertainty of analytical wake models in

wind farm wake predictions. In the literature, the empirical parameters in analyt-

ical wake models were usually calibrated against high-fidelity simulations or mea-

surement data [40] but the underlying uncertainty was usually ignored. Thus only

fixed-point predictions can be carried out for the quantities of interest (QoIs). In

this work, the high-fidelity CFD data, generated by the LES flow solver SOWFA

[160, 161], is used to calibrate the analytical wake model, using FLORIS [40] as an

example, in terms of the empirical parameters’ probability density functions (PDFs)

in the Bayesian UQ framework. The resulting model with parameter uncertainty

(called stochastic FLORIS) can predict the statistics of the QoIs which include the

information for both the mean value and the corresponding uncertainty while the

fixed-point calibration can only predict a single value. An apparent advantage of

this work is that it can be used to not only maximise the average power but also

minimise the power fluctuation while the fixed-point prediction of the QoIs cannot

be used for the latter.

The main contribution of this work is the first application of UQ method in

wind farm wake modelling and the detailed analysis of the resulting stochastic model.

This work paves the way for wind farm predictions with quantified uncertainty and

the proposed framework can be easily applied to other wake models. The remaining
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part of this chapter is organised as follows: the Bayesian UQ approach is described

in Section 3.2. The application of the UQ approach in the wake model FLORIS

is described in Section 3.3, where the formulation of FLORIS and the procedure

of high-fidelity data generation are given. The results are given in Section 3.4,

including the parameter uncertainty of FLORIS inferred from the high-fidelity data

and the evaluation of the prediction performance of the developed FLORIS model

with parameter uncertainty. The conclusions are drawn in Section 3.5.

3.2 Bayesian Uncertainty Quantification Framework

The UQ approach used in this work is briefly described in this section and further

details can be found in [72,73]. In Bayesian UQ framework, various forms of uncer-

tainties are represented through random variables, which are usually characterized

by their PDFs. Here for the parameter uncertainty, model parameters are treated

as random variables. According to Bayes’ rule, the posterior distributions of model

parameters can be obtained by

p(z|d) / p(d|z)p(z), (3.1)

where p(z) represents the prior distribution of the model parameters z and p(d|z)

represents the likelihood of the experimental observation d given z. A stochastic

model needs to be constructed in order to obtain the likelihood. In this work it

is constructed by simply modelling the model inadequacy through a multiplicative

Gaussian random variable:

d̃ =(1 + ⌘)M (x, z), (3.2)

where d̃ is the true value of the experimental observation, M (x, z) is the prediction

of d̃ by the computer model which depends on the explanatory variable x (e.g.

turbine yaw angle) and the model parameter z, and ⌘ is a random vector with each

component ⌘i being zero-mean, independent and identically distributed Gaussian,

i.e. ⌘i ⇠ N (0,�2). d̃ can be related to the experimental observation d as:

d = d̃+ e. (3.3)

Here e represents the measurement error, which is modelled as a zero mean, inde-

pendent and identically distributed Gaussian, i.e. ei ⇠ N (0,�2e). �e is determined

from the corresponding experiments. From Equation 3.2 and 3.3, the model output
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can be related to the experimental observation as

d =(1 + ⌘)M (x, z) + e. (3.4)

Thus,

d|�, z ⇠ N (µ,�), (3.5)

where

µ = M (x, z) and � = M T (x, z)�2M (x, z) + �
2
eI. (3.6)

Equation 3.1 can then be recast as:

p(✓M |d) /
1p

(2⇡)Nd |�|
exp(�

1

2
�T��1�)p(✓M ) (3.7)

where ✓M denotes {�, z}, Nd is the dimension of the experimental observation, |�|

represents the determinant of �, and � = d�M (x, z).

Then a sampler is employed to obtain the posterior samples according to

Equation 3.7 and the kernel estimation is used to evaluate the posterior PDFs

of the model parameters. In this work the adaptive Metropolis-Hastings Markov

chain Monte Carlo (MCMC) sampler [162], as implemented in the R [163] package

MHadaptive [164], is employed. Once the calibration is completed, the model pre-

diction can be carried out by propagating the posterior PDFs of model parameters

through the computer model to obtain the PDFs of the QoIs. The so-obtained PDFs

are in fact the posterior distribution of the QoIs given the experimental observation:

p(q̃|d) =

Z
p(q̃, z|d)dz

=

Z
p(q̃|d, z)p(z|d)dz

=

Z
p(q̃|z)p(z|d)dz, (3.8)

where q̃ represents the QoIs, which can be the same quantity as the experimen-

tal observation or other flow quantities. The last step in Equation 3.8 follows by

assuming q̃ and d are conditionally independent given z.
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3.3 Wind Farm Wake Modelling with Quantified Un-

certainty

The Bayesian UQ approach described above can be used for general fluid systems

and is thus applied to wind farm wake modelling in this section. For this purpose,

the computer model M (x, z) and the experimental observation d in Equation 3.7

need to be specified. Here the computer model M (x, z) is specified as the analyti-

cal wake model FLORIS, with x being the turbine yaw angle, z being the empirical

parameters in FLORIS, and the output M being the flow field prediction. The

detailed formulation of M (x, z) is given in Subsection 3.3.1. The experimental ob-

servation d is generated by high-fidelity numerical experiments with the simulation

details given in Subsection 3.3.2.

3.3.1 An Analytical Wake Model - FLORIS

The analytical wake model FLORIS is briefly described in this section, including

the modelling of wake deflection, wake expansion and wake velocity. Further details

can be found in [40].

For wake deflection, the turbine wake center yw(x) is determined by

yw(x) = Y + �yw,rotation(x) + �yw,yaw(x), (3.9)

where x is the downwind coordinate, Y is the turbine’s crosswind location, and

�yw,rotation(x) and �yw,yaw(x) represent the rotation-induced and yaw-induced wake

lateral o↵set. They are formulated as:

�yw,rotation(x) = ad + bd[x�X], (3.10)

and

�yw,yaw(x) =

⇠init(a, �)


15
h
2kd[x�X]

D
+ 1
i4

+ ⇠init(a, �)2
�

30kd
D

h
2kd[x�X]

D
+ 1
i5

�
⇠init(a, �)D[15 + ⇠init(a, �)2]

30kd
, (3.11)

where X is the turbine’s downwind location, D is the turbine rotor diameter, a is the

axial induction factor, � is the yaw angle, and ⇠init(a, �) = 2cos2(�)sin(�)a[1 � a].

Three empirical parameters, ad, bd, and kd, are involved in this deflection model.
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Model parameter kd ad bd ke me,1 me,2 me,3

Left boundary 0.05 -50.0 -0.05 0.04 -1.0 -0.3 0.0
Right boundary 0.25 50.0 0.05 0.14 -0.2 0.3 4.0

Continued aU bU MU,1 MU,2 MU,3

Left boundary 0.0 0.66 0.2 0.7 3.0
Right boundary 10.0 2.66 0.8 1.3 15.0

Table 3.1: The prior range of model parameters in the FLORIS model.

After determining the center of the wake location, the wake region behind the turbine

is divided into three zones and the diameters of each zone are given by

Dw,q(x) = max(D + 2keme,q[x�X], 0), x > X, (3.12)

where the index q represents the di↵erent zones. The three zones are the ‘near wake’

(q = 1), ‘far wake’ (q = 2), and ‘mixing zone’ (q = 3). ke, me,1, me,2 and me,3 are

the four empirical parameters involved in this wake expansion model. The velocity

profile within zone q is then modelled as

Uw,q(x) = U [1� 2acq(x)] (3.13)

where U is the freestream wind speed, and

cq(x) =


D

D + 2ke[x�X]MU,q/cos(aU + bU�)

�2
. (3.14)

Five empirical parameters, aU , bU , MU,1, MU,2, and MU,3, are used in calculating the

wake profile. From the formulation above, it can be seen that the FLORIS model

predicts the velocity profile at a specific downwind location as a piecewise constant

function.

In total, there are 12 empirical model parameters in the FLORIS model. For

Bayesian calibration, the prior distributions of these parameters, i.e. p(z), need to

be specified. In this work, the uniform distribution is used and their prior ranges

are given in Table 3.1. They are determined by trial and error and are kept as large

as possible so that the posterior is mainly determined by the likelihood.

3.3.2 High-Fidelity Data Generation

SOWFA is employed here to generate high-fidelity CFD data for Bayesian calibration

of the FLORIS model described in Subsection 3.3.1. SOWFA is a numerical solver
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developed based on OpenFOAM for the 3D LES of wind flow around wind turbine

array in the atmospheric boundary layer, where the turbine rotors are represented

by ADM or ALM. The detailed implementations and validations of SOWFA can be

found in [57, 161]. First, a precursor simulation of neutral atmospheric boundary

layer is carried out to obtain the initial flow field and inflow boundary conditions.

The employed turbulent inflow has a mean hub-height freestream wind velocity of

around 8m/s and a freestream turbulence intensity (FSTI) of 6%. For the subsequent

wind farm simulations, wind turbines are modelled using ALM and the baseline

pitch and torque control are defined as in [165]. A top view of the simulation

domain at hub height is shown in Figure 3.1. The size of the simulation domain is

3000⇥3000⇥1000m, with the inflow wind coming from southwest direction. For the

mesh generation, a two-level local mesh refinement is used, as is suggested in [35].

The outer mesh dimension is 12⇥12⇥12m, the inner mesh dimension is 3⇥3⇥3m,

and the dimension of the mesh in-between is 6⇥ 6⇥ 6m. The total number of cells

is 1.8 ⇥ 107. In this way, the mesh size around the turbine rotors is 3 meters so

that the simulation can capture the detailed turbine wake dynamics. An NREL 5-

MW baseline turbine is positioned in the simulation domain. For each turbine yaw

angle, 1000-second simulations are carried out with a time step of 0.02s. The mean

velocity field is then obtained by averaging the instantaneous flow field from 400s

to 900s. Each high-fidelity simulation by SOWFA requires around 30 hours using

256 processors. The generated LES data is then used to carry out the Bayesian

calibration in the next section.

3.4 Results

3.4.1 Model Calibration

In order to calculate the likelihood, the stochastic model is constructed according

to Section 3.2. Since the parameter uncertainty is the main focus of the current

investigation, the model inadequacy term is ignored in the remaining part of this

chapter. SOWFA is employed for generating high-fidelity flow field data for three

scenarios, i.e. � = �40�, � = 0�, and � = 40�. Then the hub-height velocity

profile at 5 rotor diameters downstream behind the wind turbine is extracted to

calibrate the FLORIS model, as the wind farm with downwind spacing of 5 rotor

diameters is of great practical interests and has been studied previously for wake

modelling and wind farm control [40]. The measurement error is estimated as the

zero-mean Gaussian with �e = FSTI ⇥ U1. 12000 MCMC samples of the model

parameters are generated with a burn-in length (i.e. the length of the samples that
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Figure 3.1: A top view of the simulation domain at turbine hub height. The contour
shows the instantaneous flow field at 400s for the case with turbine yaw angle � equal
to �40�.

are discarded) set to 2000. The kernel estimation is used to estimate the posterior

PDF from the MCMC samples. The results are shown in Figure 3.2, 3.3, and

3.4. For simplicity, the posterior distributions of the model parameters arising from

modelling wake deflection, wake expansion and wake velocity are shown in di↵erent

figures. As can be seen from Figure 3.2, 3.3, and 3.4, most of the model parameters

are well identified. Among them, the correlation between ad and bd is strong, which

agrees with the design of the wake deflection. In fact, both parameters intend to

capture the same aspect of the wake flow, i.e., the rotation-induced lateral o↵set

of the turbine wake. The nominal values of the model parameters reported in [40]

are also shown in Figure 3.2, 3.3, and 3.4. They are the optimal values determined

by matching the turbine power with the SOWFA results for a wind farm with 7
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Figure 3.2: The posterior distribution of the model parameters arising from mod-
elling wake deflection. The square points represent the nominal values of the model
parameters reported in [40].

rotor diameters’ downwind spacing. The Maximum A Posteriori (MAP) values of

the calibration in this work are slightly di↵erent from their reported values, which

is reasonable as the downwind spacing of the calibration cases in this work (5 rotor

diameters) is slightly di↵erent from theirs. More importantly, the yaw angles of the

calibration cases in this work are di↵erent from the ones in [40].

The posterior model check is then carried out by propagating the posterior

PDFs of the model parameters through the FLORIS model. The predictions with

quantified uncertainty for the velocity profiles at 5 rotor diameters downstream are

shown in Figure 3.5. The results with nominal and MAP model parameters are also

shown for comparison. As can be seen, the predicted velocity profile with quantified
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Figure 3.3: The posterior distribution of the model parameters arising from mod-
elling wake expansion. The square points represent the nominal values of the model
parameters reported in [40].

uncertainty matches well with SOWFA results, indicating the Bayesian calibration

is done successfully. It is observed that the predictions match with SOWFA results

much better in yawed cases than the non-yaw case (where a moderate discrepancy

is observed), which indicates that the calibration focuses more on yawed conditions,

as more high-fidelity data is used at yawed cases (including � = �40� and � = 40�).

In addition, since the FLORIS model divides the wake into three distinct zones

and the velocity is determined separately in each zone as a constant function of

the crosswind coordinate y, the velocity profile predicted with nominal/MAP model

parameters is discontinuous at the zone boundary, while in reality the wake profile

should be continuous. In this sense, the predicted mean value of the velocity profile
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Figure 3.4: The posterior distribution of the model parameters arising from mod-
elling wake velocity. The square points represent the nominal values of the model
parameters reported in [40].

matches much better with SOWFA results than the nominal/MAP predictions.

3.4.2 Evaluation of the Stochastic FLORIS Model

After model calibration, the FLORIS model with its parameters specified by their

posterior distributions can be used to predict the statistics of the flow field, tur-

bine power generation, turbine torque, etc. Hereby the FLORIS with uncertain

model parameters is denoted as the stochastic FLORIS model, as the Bayesian cal-

ibration relies on the construction of the stochastic model described by Equation

3.2. However, it is worth noting that the stochastic FLORIS model is based on

FLORIS (which is deterministic) and the prediction uncertainty is taken into ac-
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(a) � = �40�

(b) � = 0�

(c) � = 40�

Figure 3.5: The predictions of the velocity profiles at 5 rotor diameters downstream
for three di↵erent yaw angles (� = �40�, 0�, 40�). The high-fidelity SOWFA results
are also included.
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count only through parameter uncertainty. In the following parts, the stochastic

FLORIS model’s performance is evaluated in terms of predicting wind farm flow

field and turbine power generation.

Flow Field Prediction

The posterior distributions of the 2D flow field at hub height are obtained by prop-

agating the PDFs of the model parameters through FLORIS model. The mean

value and standard deviation of the flow field are given in Figure 3.6 for the case of

turbine yaw equal to �40�. The analysis for 0� and 40� turbine yaws are similar,

thus omitted. For comparison, the FLORIS prediction with MAP model parameters

is also included in Figure 3.6. The mean and standard deviation of the unsteady

SOWFA results are given in Figure 3.7. As can be seen, the mean flow field given

by stochastic FLORIS matches better with SOWFA than the MAP results. Fur-

thermore, the standard deviation of SOWFA and stochastic FLORIS results shares

a similar qualitative feature: the largest unsteadiness/uncertainty is in the ‘mixing

zone’.

Turbine Power Generation Prediction

In order to evaluate the stochastic FLORIS model’s performance in predicting tur-

bine power generation, a series of high-fidelity simulations are carried out for the

case of two turbines operating in a row. The simulation domain and mesh configura-

tion of these two-turbine cases are the same as the one-turbine cases shown in Figure

3.1. The only di↵erence is that another NREL 5-MW turbine is added in the flow

domain located at 5 rotor diameter downstream of the first turbine. 30 samples of

turbine yaw angles are generated by Latin Hypercube Sampling and the yaw angles

are reported in Table 3.2. SOWFA is then employed to generate the high-fidelity

data for the 30 cases and each SOWFA simulation requires around 30 hours using

256 processors. The turbine power generation is recorded for the simulation period

of 500 seconds (from 400s to 900s). The turbine power generation is one of the

primary concerns in wind farm design and control, thus the following parts focus

on the evaluation of FLORIS and stochastic FLORIS in terms of predicting turbine

power generation.

In order to obtain a better prediction of the turbine power generation, the

input (inflow wind speed) uncertainty is also considered in the FLORIS and stochas-

tic FLORIS prediction. The inflow wind speed is simply assumed as a Gaussian, i.e.

u1 ⇠ N (µu,�
2
u) (µu = 7.83 and �u = 0.276). The mean value and the standard
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(a) Mean value predicted by stochastic FLORIS

(b) Standard deviation predicted by stochastic FLORIS

(c) FLORIS with MAP model parameters

Figure 3.6: The prediction of the flow field by the stochastic FLORIS model and
FLORIS with MAP model parameters, for the case of turbine yaw equal to �40�.
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(a) Mean value predicted by SOWFA

(b) Standard deviation predicted by SOWFA

Figure 3.7: The prediction of the flow field by SOWFA for the case of turbine
yaw equal to �40�. The mean and standard deviation are calculated based on the
instantaneous flow field from 400s to 900s.

Case No. 1 2 3 4 5 6 7 8 9 10
�1 16.5 0.1 12.7 2.3 -23.9 21.0 -6.7 -17.3 -3.1 -4.5
�2 4.7 -1.0 24.8 8.7 -5.1 1.7 7.8 18.6 -21.8 21.2

continued 11 12 13 14 15 16 17 18 19 20
�1 -14.1 -24.2 -14.0 8.1 24.4 -19.2 22.3 -9.6 -11.5 -28.4
�2 -14.3 -26.4 -8.2 17.2 -2.6 -28.6 -19.4 -23.9 13.4 -17.0

continued 21 22 23 24 25 26 27 28 29 30
�1 28.6 15.4 6.7 -1.5 5.2 19.8 -27.3 27.5 -20.7 11.1
�2 -10.5 10.1 -24.2 28.0 -7.5 -13.9 14.9 3.1 27.0 22.6

Table 3.2: The samples of turbine yaw angles generated by Latin Hypercube Sam-
pling. �1 represents the front turbine yaw and �2 represents the rear turbine yaw.
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deviation are estimated from the unsteady inflow boundary condition of SOWFA

simulations so that all the predictions are carried out with the same inflow wind

condition.

First, the distributions of power generation predicted by SOWFA and by

FLORIS are compared. Three typical cases are shown in Figure 3.8, where the

front turbine is in the condition of no yaw, negative yaw, and positive yaw re-

spectively. The results predicted by FLORIS with MAP model parameters and

stochastic FLORIS are both included. For all three cases, FLORIS and stochas-

tic FLORIS get the same results for predictions of power generation of the front

turbine, as the inclusion of parameter uncertainty only introduces uncertainty to

the downstream wake flow (thus only a↵ecting the rear turbine’s power generation).

For the rear turbine, stochastic FLORIS predicts similar power fluctuations as the

ones given by SOWFA, while FLORIS with only input uncertainty predicts much

smaller power fluctuations. It is clear that stochastic FLORIS results match with

SOWFA results much better than FLORIS. The FLORIS can be employed as an

internal model for wind farm control to maximise the power generation, e.g. in [40].

Because the stochastic FLORIS can predict the distribution of power generation, it

can be used for more purposes, such as maximising the average power, minimising

the power fluctuation, guaranteeing certain amount of power generation with certain

confidence level, etc.

To further evaluate the performance of the stochastic FLORIS model, the

predictions of turbine average powers and power fluctuations for all the 30 cases are

given in Figures 3.9 and 3.10. The FLORIS and stochastic FLORIS get same results

for the power predictions of the front turbine. They di↵er slightly in the predictions

of rear turbine’s average power, and their performances are similar compared to

SOWFA results. However, compared with FLORIS, the power fluctuation prediction

ability of the stochastic FLORIS is improved dramatically in all the 30 cases due to

the inclusion of parameter uncertainty.

3.5 Conclusions

The parameter uncertainty of FLORIS model has been investigated in this work.

LES of wind farm wakes was carried out with di↵erent turbine yaw angles and the

generated high-fidelity flow field data was used to infer the model parameters. Af-

ter model calibration, the posterior model check showed that the predicted mean

velocity profile with the quantified uncertainty improved agreement with SOWFA

relative to the standard FLORIS model. The predictions matched with SOWFA
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(a) �1 = 0.1�, �2 = �1.0�

(b) �1 = �24.2�, �2 = �26.4�

(c) �1 = 24.4�, �2 = �2.6�

Figure 3.8: The distribution of power generation predicted by SOWFA, FLORIS,
and Stochastic-FLORIS. Three cases with di↵erent yaw angles are included.
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(a) Power generation average value

(b) Power generation standard deviation

Figure 3.9: Front turbine power generation predicted by SOWFA, FLORIS, and
Stochastic-FLORIS.

(a) Power generation average value

(b) Power generation standard deviation

Figure 3.10: Rear turbine power generation predicted by SOWFA, FLORIS, and
Stochastic-FLORIS.
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results much better in yawed cases than the non-yaw case (where a moderate dis-

crepancy was observed), indicating that the calibration was biased towards yawed

conditions, as more high-fidelity data was used at these conditions. The prediction

of other wind farm quantities, such as the hub-height flow field and the turbine

power generation, was then carried out. The results showed that the inclusion of

parameter uncertainty improved the flow field prediction compared to the predic-

tions using point calibration such as maximum likelihood estimate, and a correct

characteristic of uncertainty in the ‘mixing zone’ was predicted (see Figure 3.6),

which agreed with the high-fidelity SOWFA results. As for the power generation,

the inflow wind speed uncertainty was also included and the stochastic FLORIS

performed similarly as the FLORIS model in terms of predicting average turbine

power, but it performed much better in terms of predicting the turbine power fluc-

tuation in all the test cases. As most of the existing analytical wake models are

static with deterministic model parameters, the resulting stochastic model shows a

great advantage over the original model, as it can give not only the static wind farm

properties but also their statistical distributions.

Future research may involve the UQ of other wake models in order to reveal

further insight in wake modelling and to improve the reliability of wind farm wake

predictions. Another important research direction is the application of the resulting

stochastic wake model in wind farm optimal design and control.
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Chapter 4

Machine Learning Based

Surrogate Modelling of Fluid

Flows around Distributed

Structures

4.1 Introduction

This chapter investigates the ML-based surrogate modelling of fluid flows around

distributed structures and its application on wind farm wake modelling. The general

framework of the developed surrogate modelling method is shown in Figure 4.1,

where

{µ0, µ1, ..., µN}, {U0,U1, ...,UN} and {U r

0 ,U
r

1 , ...,U
r

N}

represent the training samples of the input parameters, the corresponding CFD flow

fields and the reduced coe�cients of the flow fields, and µtest, U r
test and Ûtest rep-

resent the input parameter of interest, the predicted reduced coe�cients of the flow

and the full flow field prediction. Various dimensionality reduction techniques can

be used in this framework as long as both the forward and the inverse transforms

are available. The surrogate modelling framework consists of the o✏ine and online

stages. In the o✏ine stage, as shown by the solid arrowed lines, multiple CFD simu-

lations are carried out to generate the flow field data, using a set of input parameters

obtained by a sampling strategy (e.g. Latin hypercube sampling). The generated

flow fields are then reduced to their low-dimension representations by a dimension-
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Figure 4.1: The general framework of the ML-based surrogate modelling.

ality reduction technique, and a regression model is constructed to approximate

the mapping from the input parameters to the reduced coe�cients. The regression

model can be a simple curve fitting or a complex supervised ML model. As for

the dimensionality reduction, it can be achieved by either traditional reduced basis

methods or ML techniques. In fact, dimensionality reduction in ML shares a lot

of similarities with model reduction in scientific computing. For example, principal

component analysis (PCA) in ML is equivalent to POD in scientific computing in

certain senses [124]. Once the o✏ine stage is completed, the online stage, as shown

by the dashed arrowed lines, is carried out by propagating the input parameter of

interest to the reduced coe�cients through the regression model and then predicting

the flow field by the inverse transform of the dimensionality reduction process. In

this chapter three dimensionality reduction techniques arising from both scientific

computing and ML are investigated, including POD, ICA [166], and AE [167].

Another novelty of this work is that it extends the proposed surrogate mod-

elling method to tackle distributed flow problems. Distributed fluid systems are

quite common in daily life and industrial applications, such as the natural con-

vection of heater array in heat exchangers [168, 169], the distributed roughness

elements in boundary layer control [170], the heat transfer of building array in tur-

bulent boundary layer [171], and the wake interactions of wind turbines within a

wind farm [52–54]. The numerical simulation of such systems usually requires a lot

of computational resources, and the optimisation/control of such systems is very

di�cult as the repetitive evaluations of CFD models with distributed flow parame-

ters are needed. This motivates the work in this chapter on the surrogate modelling

of distributed systems, which has not been investigated yet in the literature. A suit-

able surrogate modelling method for distributed systems should have the following

features: (i) the surrogate model can simulate the fluid system with di↵erent flow

parameters and preferably di↵erent layout; (ii) the method should be scalable such

that the surrogate model can simulate the distributed system of di↵erent scales. In

this chapter, a scalable surrogate modelling method for distributed fluid systems

is proposed, where the whole fluid domain is first decomposed into subdomains,
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then the surrogate modelling for each subdomain is carried out by treating both the

boundary information and the distributed flow parameters as the input parameters,

and finally the whole flow field is obtained by coupling the flow field of each subdo-

main altogether with the consideration of the matching condition at the subdomain

interface. The information exchange at the subdomain interface needs to be tack-

led specifically according to the types of the problems. Here, an iterative updating

process is introduced for di↵usion-dominant problems since each subdomain has an

impact on all the other subdomains, while a sequential prediction process is su�-

cient for convection-dominant problems as the impact of the downstream structures

on the upstream flow can be ignored.

Two test cases are used to demonstrate the e�ciency, accuracy, and scalabil-

ity of the proposed surrogate modelling method. The first one is the 1D Poisson’s

equation which is used to represent the application of the proposed method to dif-

fusion problems. Then a large-scale industrial application, the surrogate modelling

of wind farms, is investigated. SOWFA [160], an LES solver developed for the 3D

flow simulation around wind turbine array, is used to generate the high-fidelity data.

The application in wind farms aims at capturing the wake interactions between wind

turbines, which have a large impact on the plant’s overall performance. In order to

retain the reliability of the high-fidelity model while achieving much faster predic-

tions, data-driven surrogate modelling provides a promising direction for wind farm

modelling. The surrogate modelling of a single turbine was studied in [172, 173],

where the wake prediction was presented. In [174], the surrogate modelling of two

turbine cases was investigated, but the scalability to the wind farm was not consid-

ered. In this chapter, the proposed surrogate modelling approach is applied for the

challenging issue of wind farm wake modelling.

The remaining part of this chapter is organised as follows: the ML-based

surrogate modelling method for distributed fluid systems is described in Section

4.2. The proposed method is applied to a di↵usion-dominant problem (more specifi-

cally, 1D Poisson’s equation) and a convection-dominant problem (more specifically,

wind farm simulations) in Section 4.3 to demonstrate its scalability, e�ciency, and

accuracy. Finally the conclusions are drawn in Section 4.4.

4.2 Machine Learning Based Surrogate Modelling of

Distributed Fluid Systems

In ML, dimensionality reduction is usually used to reduce high-dimension train-

ing input into its low-dimension representation before feeding it into a regres-
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sion/classification model. For surrogate modelling of fluid systems, however, the

goal is to predict the high-dimension flow field giving a few input parameters. The

direct construction of a regression model to predict the high-dimension flow field is

prone to overfitting, especially when there are not enough training data available.

Therefore, the idea of surrogate modelling for fluid systems is to first reduce the

high-dimension flow field into their low-dimension representation, then predict the

reduced coe�cients from the input parameters, and finally reconstruct the flow field

based on the reduced coe�cients. One way to achieve this is the use of reduced

basis methods, e.g. POD, as is done in [125–128].

Here the reduced basis method is briefly described and then the equivalence of

reduced basis method and other ML-based dimensionality reduction technique in the

context of surrogate modelling is illustrated. Given N samples of input parameters

[µ0, µ1, ..., µN ] and the corresponding CFD flow fields Z = [U0,U1, ...,UN ], the

POD basis {⌫1,⌫2, ...,⌫k, ...} can be constructed by the singular value decomposition

(SVD)

Z = V⌃W
T (4.1)

where ⌫k is the k
th column vector of V. Then after choosing the number of the

POD basis as Nr, the flow field can be approximated by

Ũ(µi) =
NrX

k=1

↵k(µi)⌫k (4.2)

where the POD coe�cients ↵(µi) = [↵1(µi),↵2(µi), ...,↵Nr(µi)] are the reduced coef-

ficients of the original flow field Ui. Then a regression model M can be trained based

on the training input [µ0, µ1, ..., µN ] and the training target [↵(µ0),↵(µ1), ...↵(µN )]

such that

M (µi) ⇡ ↵(µi) (4.3)

After training, the prediction of the flow field can then be given by

Û(µtest) =
NrX

k=1

[M (µtest)]k⌫k (4.4)

where µtest is the input parameter of interest. In fact, the reduced basis method here

can be viewed as a dimensionality reduction technique in ML, where the forward
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Algorithm 2 The surrogate modelling method using machine learning

1: % O✏ine process

2: Generate N samples of the input parameters: [µ0, µ1, ..., µN ].
3: Run the high-fidelity CFD solver N times to generate the flow field Z =

[U0,U1, ...,UN ].
4: Use a chosen dimensionality reduction technique to obtain the reduced coe�-

cients [U r
0 ,U

r
1 , ...,U

r

N
] and the corresponding forward and inverse transforms g

and ĝ
�1.

5: Train the regression model M using the training input [µ0, µ1, ..., µN ] and the
training target [U r

0 ,U
r
1 , ...,U

r

N
].

6: % Online process

7: Set the input parameter of interest µtest.
8: Predict the flow field as ĝ�1(M (µtest)).

transform g and the inverse transform ĝ
�1 are defined as:

[g(U )]k =< U ,⌫k >, 1  k  Nr (4.5)

ĝ
�1(↵) =

NrX

k=1

↵k⌫k (4.6)

where <> denotes the inner product. From the above formulation, it is clear that

the use of reduced basis methods in surrogate modelling can be replaced by any

other dimensionality reduction techniques in ML as long as there exist both the

forward transform g which maps the flow field into the reduced coe�cients, and the

inverse transform ĝ
�1 which maps the reduced coe�cients to the approximation of

the flow field. After dimensionality reduction and regression model training, the

flow field can then be predicted by

Û(µtest) = ĝ
�1(M (µtest)) (4.7)

The proposed surrogate modelling procedure is summarised as Algorithm 2. In

this work, the fully-connected NN with one hidden layer is chosen as the regression

model. POD, ICA, and AE are employed for dimensionality reduction. Hereby

these methods are referred as POD-NN, ICA-NN, and AE-NN. The ML packages

Scikit-learn [175] and Keras [176] are used to facilitate the implementation of the

proposed algorithm.
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Figure 4.2: The illustration
of a fully-connected NN with
one hidden layer.

Figure 4.3: The illustration of an auto-encoder with
three hidden layers in the whole neural network
structure.

4.2.1 Regression Model

The regression model used in this work is a fully-connected NN with one hidden

layer, as illustrated in Figure 4.2, and the corresponding input-output relation can

be expressed as

h = �(w1x+ b1),

y = w2h+ b2 (4.8)

where w1, b1, w2 and b2 are the training variables, and � is the activation func-

tion. N1, N2, and N3 in Figure 4.2 represent the input dimension, the hidden-layer

neuron number and the output dimension. The NN training process involves the

updating of the training variables wij based on the gradient @J/@wij , where J is

the objective function to be minimised. Automatic di↵erentiation is employed to

calculate the gradients. The MSE between the target and the NN output is chosen

as the objective function where a L2 regularisation term is further added in order to

tackle overfitting. The Adam optimisation algorithm [158] is used for NN training

in this work.

4.2.2 Dimensionality Reduction

Three types of dimensionality reduction techniques (i.e., POD, ICA, and AE) are

employed in this work, to demonstrate the feasibility of using any dimensionality

reduction technique with an inverse transform in the proposed surrogate modelling
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framework. As most of previous studies were based on POD, this work investigates

the use of ICA and AE as the alternative dimensionality reduction technique in the

context of surrogate modelling. ICA is a popular technique first developed for signal

processing and it can also be used for general purpose dimensionality reduction. The

interested readers may refer to [177] for more details. AE is an ML technique that

makes use of NN to encode a high-dimension input to a low-dimension latent space

and then decode it back. It consists of an encoder NN and a decoder NN, and

is trained in a self-supervised manner. The AE used in this work is illustrated in

Figure 4.3, where three hidden layers are included in the NN structure. The encoder

part can be expressed as

e = �(v1x+ a1),

z = v2e+ a2 (4.9)

where v1, a1, v2 and a2 are the training variables of the encoder, while the decoder

part can be expressed as

d = �(v3z+ a3),

x
⇤ = v4d+ a4 (4.10)

where v3, a3, v4 and a4 are the training variables of the decoder. M1, M2, and

M3 in Figure 4.3 represent the original data dimension, the hidden-layer neuron

number and the reduced data dimension. In this work, for simplicity, the hidden-

layer neuron number of the encoder and the decoder is assumed to be the same and

is set as twice of the reduced dimension. The NN training is carried out using Adam

optimisation algorithm to minimise the MSE between the NN output and its target

value. The target value is the same as the input of the training dataset, thus it is

termed as self-supervised training.

4.2.3 Extension to Distributed Flow Problems

The surrogate modelling method is extended to tackle distributed flow problems

here. A typical example of a distributed fluid system is illustrated in Figure 4.4,

where M cylinders of diameters {d1, d2, ..., dM} are positioned in a rectangular flow

domain. The cylinder diameter is the distributed parameter in this example and in

fact the distributed parameter can be an array of any other properties of the struc-

tures (the surface roughness, thermal conductivity, etc.). The surrogate modelling

of this problem is formulated as how to construct a model to predict the whole
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Figure 4.4: The illustration of a general distributed fluid system.

flow field around the cylinder array given the values of d1, d2, ..., dM . The method

proposed in the previous section can be used directly by treating [d1, d2, ..., dM ] as

the input parameter µ. However, this approach has two fundamental flaws: (i) the

training of the surrogate model requires a significant number of CFD evaluations,

as the whole flow domain simulation is regarded as a single training sample and the

dimension of µ is very high such that a large sample size is required in order to cover

the input parameter space. (ii) the so-constructed surrogate model is not scalable

that it can only be used to simulate the distributed system of the same scale as the

training samples.

The scalable surrogate modelling method proposed in this chapter can solve

these issues. First, the whole flow domain is decomposed into subdomains with

each subdomain containing one distributed structure, as illustrated by the dashed

rectangular in Figure 4.4. Then the surrogate modelling is carried out for each

subdomain by treating both the distributed parameter of the structure inside the

subdomain and the boundary information as the input parameter µ. Finally the

flow fields of all the subdomains are combined together with the consideration of the

matching condition at the subdomain interface. The proposed approach is inspired

naturally by the domain decomposition in high-performance computing in CFD,

where the whole domain/mesh is divided into subdomains/blocks and each MPI

thread handles only its assigned subdomain with the interface information exchange

between MPI threads. The approach can be viewed as employing the surrogate

model of individual subdomain to replace the task of each MPI thread, thus greatly

reducing the online prediction time. The whole surrogate modelling procedure is

summarised as Algorithm 3, where an iterative process is introduced to update

the flow quantities at the interface in order to enforce the physical constraints at
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Algorithm 3 The surrogate modelling method for distributed flow problems

1: % O✏ine process

2: Generate N samples of the input parameters: [µ0, µ1, ..., µN ], where µi = [di, Ii].
di represents the distributed parameters of a single structure and Ii represents
the flow quantities at the subdomain boundary.

3: Run the high-fidelity CFD solver multiple times to obtain the flow fields in a
single subdomain [U0,U1, ...,UN ], where Ui is generated with the distributed
parameter di and the boundary condition given by Ii.

4: Carry out surrogate modelling using Algorithm 2. Then the flow field in a single
subdomain Ûtest can be predicted by the surrogate model given [dtest, Itest].

5: % Online process

6: Set the distributed parameters of all the K structures: [d̃1, d̃2, ..., d̃K ].
7: Initialise the flow quantities at the boundary of each subdomain [Ĩ1, Ĩ2, ..., ĨK ].
8: while True do

9: for j = 1 to K do

10: Predict the flow field Ũj in j
th subdomain given the input parameter d̃j

and boundary information Ĩj .
11: end for

12: Update [Ĩ1, Ĩ2, ..., ĨK ] based on the surrogate model prediction from both
sides of the interfaces.

13: if the changes of [Ĩ1, Ĩ2, ..., ĨK ] are very subtle. then
14: The updating process converges. Break.
15: end if

16: end while

17: Combine [Ũ1, Ũ2, ..., ŨK ] to obtain the prediction of the whole flow field.

the interface. The detailed updating rule in Line 12 of Algorithm 3 is problem-

dependent. Two numerical examples are given in the rest of the chapter with the

detailed implementation of the updating rules. As the iterative updating at all

subdomain boundaries is very challenging for the wind farm case and the wake

interactions take place mainly in the downstream direction, this work only considers

the impact of the upstream subdomains on downstream subdomains, ignoring the

interactions in the lateral directions and in the upstream direction.

4.3 Numerical Results

The application of the proposed method on 1D Poisson’s equation and on wind

farm wake modelling is described in this section. The first test case demonstrates

the accuracy, e�ciency, and scalability of the proposed surrogate modelling method

in di↵usion-dominant problems. The second test case further demonstrates the

ability of the proposed method in modelling large-scale fluid systems.

61



Figure 4.5: The 1D steady-state heat transfer problem under consideration.

4.3.1 Application on 1D Poisson’s Equation

Problem Setup

The 1D steady-state heat transfer with distributed heat sources under consideration

is illustrated in Figure 4.5, where a 1D domain of length l is shown withK uniformly-

distributed heat sources of magnitudes [S1, S2, ..., SK ]. It can be described by the

following equation

��
@
2
T

@x2
= q(x) (4.11)

where the heat source term is defined as

q =
KX

i=1

SiI(i� 2
3 )

l
K<x<(i� 1

3 )
l
K

(4.12)

and the boundary condition is given as T (0) = T0 and T (l) = Tl. Here I represents
the indicator function. The surrogate modelling of this problem aims at predicting

the temperature field e�ciently given the boundary conditions (T0 and Tl) and the

distributed parameters [S1, S2, ..., SK ].

In the following, the length of each subdomain l/K is set as 1 and the thermal

di↵usivity � is set as 1. The FTCS (forward-time central-space) scheme is imple-

mented for numerically solving the equation. The mesh-dependence study shows

that a uniform mesh of size 1/80 is su�cient. All calculations are deemed conver-

gent when the RMSE of the temperature profiles between two consecutive time steps

is less than 10�6.

Results

First the surrogate modelling of a subdomain with a single heat source is carried

out. Four hundred samples of the input parameters [µ0, µ1, ..., µ400] in the parameter

space ⌦ = [�5.0, 5.0]⇥ [�5.0, 5.0]⇥ [�5.0, 5.0] are generated using Latin hypercube
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Method Nr Nh Activation ↵NN ✏mr ✏all

POD-NN 3 10 relu 10�6 2.47⇥ 10�5 2.68⇥ 10�3

ICA-NN 3 12 relu 10�1 2.47⇥ 10�5 5.86⇥ 10�2

AE-NN 3 8 relu 10�2 2.41⇥ 10�3 9.30⇥ 10�3

Table 4.1: The optimal hyper-parameters of the three surrogate modelling methods
for the 1D Poisson case.

sampling, where µi = [Si, TLi, TRi] with Si, TLi and TRi representing the magnitude

of the heat source, the temperature at the left boundary and the temperature at the

right boundary of the ith sample. Then the Poisson’s equation in a domain of length

l/K is solved numerically for each sample of the input parameters to generate the

temperature profiles. The generated data is then split into two parts, 320 training

and validation samples and 80 test samples.

Three surrogate modelling methods, i.e. POD-NN, ICA-NN, AE-NN, are

employed to build surrogate models to predict the temperature profile with the

magnitude of the heat source, the temperature at the left boundary and the tem-

perature at the right boundary as the model input. The temperatures at both

boundaries and heat sources are scaled to zero mean and unit variance separately

before feeding into the NN for training. The learning rate is set as 10�3. A grid-

search procedure is carried out to determine the optimal hyper-parameters in the

dimensionality reduction and regression models, based on 4-fold cross-validation er-

rors. The optimal hyper-parameters, the dimensionality reduction errors, and the

prediction errors are given in Table 4.1 for all the three methods, where Nr repre-

sents the dimension of the reduced coe�cient, Nh represents the hidden-layer neuron

number of the NN regressor, and ↵NN represents the L2 regularisation coe�cient

of the NN regressor. The optimal hyper-parameter is chosen from the parame-

ter space ⌦Nr⇥Nh⇥ActFun⇥↵NN = {2, 3, 4, 5, 6, 7} ⇥ {4, 6, 8, 10, 12} ⇥ {tanh, relu} ⇥

{10�6
, 10�5

, 10�4
, 10�3

, 10�2
, 10�1

}. The dimensionality reduction error ✏mr is de-

fined as the RMSE between ĝ
�1(g(Utest)) and Utest and the prediction error ✏all is

defined as the RMSE between ĝ
�1(M (µtest)) and Utest, where µtest is the set of test

parameters and Utest is the corresponding temperature profiles obtained by the nu-

merical solver. The comparisons of the temperature profiles between the surrogate

model predictions and numerical solutions for 4 randomly-selected test cases are

shown in Figure 4.6, including the results given by POD-NN, ICA-NN, and AE-NN.

As can be seen, the temperature profiles given by POD-NN match perfectly with

the ones given by the numerical solver. Therefore, POD-NN is used in the following

for the surrogate modelling of the distributed systems.
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(a) (S, TL, TR) = (�0.641, 1.07,�3.46) (b) (S, TL, TR) = (3.05,�1.43,�1.82)

(c) (S, TL, TR) = (2.66,�3.82,�2.46) (d) (S, TL, TR) = (�0.697,�4.81, 3.58)

Figure 4.6: The prediction results of a subdomain with a single heat source.

For the prediction of the temperature profile of a whole domain with dis-

tributed heat sources, the initialisation and updating of the temperature at the

subdomain boundary need to be specified. Here the temperatures are initialised

randomly between T0 and Tl for the internal subdomain interfaces and the boundary

conditions T0 and Tl are imposed for the most left and the most right subdomains.

Then the updating process aims at matching T and @T/@x at the subdomain inter-

face, as it can be derived that the temperature and the first-order derivative of the

temperature need to be continuous at the interface.

The results for the case of the domain length l = 5 with K = 5 heat sources

are given here to illustrate the surrogate model’s scalability. 100 samples of the

distributed parameters and the corresponding numerical solutions are generated in

order to assess the accuracy of the surrogate model. The comparisons of the tem-

perature profiles between the surrogate model predictions and numerical solutions

for 4 randomly-selected test cases are shown in Figure 4.7. The RMSE of the tem-

perature profiles predicted by the surrogate model compared to the high-fidelity

numerical solutions averaged over all the test samples is 3.77 ⇥ 10�2. The results

clearly demonstrate that the proposed surrogate model (i.e. POD-NN in this case)

predicts the distributed heat transfer problem e�ciently and accurately.
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(a) S1, S2, S3, S4, S5 = 0.508, 2.08,�2.09, 0.108, 3.93

(b) S1, S2, S3, S4, S5 = 3.96,�3.74,�2.93,�4.49,�0.592

(c) S1, S2, S3, S4, S5 = �4.70,�0.432, 1.49,�2.22, 1.76

(d) S1, S2, S3, S4, S5 = 0.909,�4.76, 0.589,�2.41,�0.849

Figure 4.7: The prediction results of a domain with 5 uniformly-distributed heat
sources.
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4.3.2 Surrogate Modelling of Wind Farms

Wind Farm Model

The high-fidelity flow field data are needed for the surrogate modelling of wind

farms. In this work, the LES flow solver SOWFA [160] is employed for CFD data

generation. For wind farm simulations, a precursor simulation of neutral atmo-

spheric boundary layer is first carried out to obtain the initial flow field and inflow

boundary conditions, then wind farms are simulated using the ALM. The simulation

domain considered in this work is illustrated in Figure 4.8 where a typical instanta-

neous flow field visualisation is also shown. The corresponding hub-height horizontal

plane is extracted and shown in Figure 4.9. The size of the simulation domain is

3000⇥3000⇥1000m, with the inflow wind coming from southwest direction. For the

mesh generation, a two-level local mesh refinement is used, as is suggested in [35].

The outer mesh dimension is 12⇥12⇥12m, the inner mesh dimension is 3⇥3⇥3m,

and the dimension of the mesh in-between is 6⇥ 6⇥ 6m. The total number of cells

is 1.8⇥ 107. Three NREL 5-MW baseline turbines are positioned in the simulation

domain with a 5 rotor diameter spacing in the downstream direction. The rotor

diameter of this baseline turbine (denoted as D hereafter) is 126.4m. For each simu-

lation case, 1500-second simulations are carried out with a time step of 0.02s. Each

case requires around 44 hours using 256 processors in the local HPC clusters. After

LES simulations, the mean velocity field is obtained by averaging the instantaneous

flow field from 400s to 1400s. The surrogate modelling in the following part aims

at predicting the 2D mean velocity field at turbine hub height e�ciently given the

inflow conditions and the yaw angles of all the turbines [�1, �2, ..., �K ] for a wind

farm consisting of K turbines.

Results

First, the surrogate modelling of a subdomain containing a single turbine is carried

out. For the high-fidelity data generation, the wind farm simulation is carried out

for the case with 3 turbines in a row, as is illustrated in Figure 4.9. Three inflow

wind velocities (i.e., 8m/s, 9m/s, and 10m/s) are considered with a FSTI of 6%. For

each wind velocity, 30 samples of turbine yaw angles [�0, �1, ..., �30] in the parameter

space ⌦ = [�30.0�, 30.0�]⇥[�30.0�, 30.0�]⇥[�30.0�, 30.0�] are generated using Latin

hypercube sampling, where �i = [�1
i
, �

2
i
, �

3
i
] with �1

i
, �2

i
and �3

i
representing the yaw

angles of the 1st, 2nd, and 3rd turbines of the i
th sample. Then SOWFA is used for

generating the flow field for each yaw setting. In total, 90 simulations are carried

out. The flow field of each subdomain containing one turbine is then extracted as
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Figure 4.8: The illustration of the 3D simulation domain. A typical instantaneous
vorticity contour coloured by velocity magnitude is shown.

Figure 4.9: A top view of the simulation domain at turbine hub height. The contour
shows the instantaneous flow velocity magnitude.
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Method Nr Nh Activation ↵NN ✏mr ✏all

POD-NN 15 50 relu 10�5 5.35⇥ 10�2 1.67⇥ 10�1

ICA-NN 20 50 tanh 10�1 4.45⇥ 10�2 1.29⇥ 10�1

AE-NN 15 50 relu 10�4 7.74⇥ 10�2 1.64⇥ 10�1

Table 4.2: The optimal hyper-parameters of the three surrogate modelling methods
for the wind farm case.

a single data sample. One such subdomain is shown in Figure 4.9. Therefore, 270

data samples are available for the surrogate modelling of the flow field around one

turbine. The data samples are then split into two parts, 216 training and validation

samples and 54 test samples.

After completing o✏ine data generation, three surrogate modelling methods,

i.e. POD-NN, ICA-NN, AE-NN, are employed to build surrogate models to predict

the flow field in a single subdomain with the turbine yaw angle and the wind speeds

at 30 uniformly-distributed discrete points along the inflow boundary as the model

input. The yaw angles and the inflow velocity profiles are scaled to zero mean

and unit variance separately before feeding into the NN for training. The learning

rate is set as 10�3. A grid-search procedure is carried out to determine the opti-

mal hyper-parameters in the dimensionality reduction and regression models, based

on 4-fold cross-validation errors. The optimal hyper-parameters, the dimensional-

ity reduction errors, and the prediction errors are given in Table 4.2 for all three

methods, where the optimal hyper-parameter is chosen from the parameter space

⌦Nr⇥Nh⇥ActFun⇥↵NN = {5, 10, 15, 20, 25, 30} ⇥ {10, 20, 30, 40, 50} ⇥ {tanh, relu} ⇥

{10�6
, 10�5

, 10�4
, 10�3

, 10�2
, 10�1

}. The dimensionality reduction error ✏mr is de-

fined as the RMSE between ĝ
�1(g(Utest)) and Utest and the prediction error ✏all is

defined as the RMSE between ĝ
�1(M (µtest)) and Utest, where µtest is the set of test

inflow conditions and yaw angles and Utest is the corresponding 2D velocity fields

obtained by SOWFA.

After NN training, the predictions of single turbine wakes are carried out

and the results are compared with the SOWFA results for all the 54 test cases.

Two typical test cases, the first one with the turbine operating in freestream inflow

and the second one with the turbine operating in upstream wake, are shown in

Figure 4.10, 4.11 and 4.12, where the flow fields are predicted by ICA-NN, POD-

NN and AE-NN respectively. The relative error is defined as the absolute error

of the surrogate model prediction divided by the inflow mean velocity. As can be

seen, the overall flow fields predicted by all three methods match with the SOWFA

results quite well. As the turbine wake evolves from upstream to downstream, the
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(a) � = 16.5�, freestream inflow

(b) � = 11.6�, upstream wake

Figure 4.10: The comparisons between ICA-NN predictions and high-fidelity sim-
ulations.

(a) � = 16.5�, freestream inflow

(b) � = 11.6�, upstream wake

Figure 4.11: The comparisons between POD-NN predictions and high-fidelity sim-
ulations.
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(a) � = 16.5�, freestream inflow

(b) � = 11.6�, upstream wake

Figure 4.12: The comparisons between AE-NN predictions and high-fidelity simu-
lations.

wake profiles at di↵erent streamwise locations, from one rotor diameter (X = �1D)

in front of the turbine to four rotor diameter (X = 4D) behind the turbine, are

investigated in order to further examine the prediction performance. As shown in

Figure 4.13(a), a freestream inflow at X = �1D travels downstream and hits the

turbine rotor at X = 0D. The generated wake then travels from X = 1D to X = 4D

in the deflected direction caused by the yaw e↵ects, while slowly recovering toward

the freestream conditions and reaching a Gaussian-shape profile at X = 4D. At the

same time, the wake expands in the spanwise direction as the wake deficit decreases.

As for the case shown in Figure 4.13(b), the inflow at X = �1D is of Gaussian-

shape which is generated by the upstream turbines, and the wake development from

X = 0D to X = 4D shows similar features as in the freestream case. In summary,

the velocity profile predictions match perfectly with the high-fidelity simulation

results at all streamwise locations, and all the main flow features such as the wake

recovery, the wake deflection and the wake expansion are captured very well by the

surrogate model under various turbine yaw and inflow conditions. As ICA-NN is

the best among all three methods in terms of prediction error as shown in Table

4.2, it is used in the following for the surrogate modelling of wind turbine arrays.

It is worth mentioning that for the 1D Poisson case, POD is the best among all

three dimensionality reduction techniques in terms of prediction errors, while in

this case ICA is the best choice. In this work, the choice of the dimensionality

reduction technique is treated similarly as the tuning of the hyper-parameters, i.e.

the technique with the smallest RMSE is chosen for the predictions of the flow field
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(a) � = 16.5�, freestream inflow

(b) � = 11.6�, upstream wake

Figure 4.13: The velocity profiles for the 1-turbine cases, by ICA-NN (dashed) and
high-fidelity simulations (solid).

around distributed structures.

The prediction of the flow field around distributed wind turbines follows from

Algorithm 3. As the problem here is convection-dominant, the iterative updating

process in Algorithm 3 is ignored and the flow quantities at the subdomain bound-

ary are directly imposed according to the upstream surrogate model predictions.

Specifically, the turbines’ relative positions are first determined according to the

wind direction and turbine coordinates. Then the wind fields around the front tur-

bines are predicted by surrogate model with their yaw angles and the freestream

inflow profile as the model input. Next, the flow fields around subsequent turbines

are predicted similarly, but with the inflow profile extracted from the surrogate

model prediction of the corresponding upstream subdomains. In this way, the flow

field in the whole wind farm can be obtained.

The results of a wind farm with 3 turbines in a row are given here to test
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the surrogate model’s accuracy, e�ciency, and scalability. 20 samples of turbine

yaw angles are generated and SOWFA is employed to generate the high-fidelity

test data in order to assess the accuracy of the surrogate model. The surrogate

model predictions and the SOWFA results are only based on the same distributed

yaw angles and the same freestream inflow profile. The results of 3 typical test

cases are given in Figure 4.14 where the mean freestream wind speeds are 8m/s,

9m/s and 10m/s respectively. As shown, the prediction errors are quite small in

the whole domain, where the maximum value of the relative errors is within 10%

for all the test cases. To further examine the surrogate model’s performance, the

corresponding velocity profiles at various locations from X = �1D to X = 14D are

given in Figure 4.15. As can be seen, the wake deficits generated by the turbines

at X = 0D, X = 5D and X = 10D, the wake development including deflection,

recovery and expansion behind each turbine, and the wake interactions between

turbines are all successfully predicted. The predicted profiles at all the locations

match very well with the corresponding high-fidelity simulation results. Also, the

average RMSE of the surrogate model predictions compared to SOWFA results for

all 20 test cases is 1.60⇥ 10�1 m/s, which is just 2% of the freestream wind speed,

and the online run time of the surrogate model is negligible (around 9⇥10�4s using

one core) compared to SOWFA which requires around 44 hours using 256 cores for

each case. Therefore, it is concluded that the surrogate model predicts the wind

farm flow field e�ciently and accurately.

To further illustrate the scalability of the surrogate model, the prediction of

a wind farm with 5 ⇥ 5 wind turbines is carried out and the results are given in

Figure 4.16. The inflow velocity is set as 9m/s and the turbine yaw angles from left

to right are set as [28.4�, 13.3�, -7.63�, -8.50�, -28.1�] for the 1st row, [27.9�, 8.50�,

21.4�, -29.4�, 25.1�] for the 2nd row, [19.5�,16.5�,-26.5�,-9.15�, -10.8�] for the 3rd

row, [-15.7�, 6.54�, -12.1�, -14.6�, -16.9�] for the 4th row, and [16.7�, -2.79�, -27.9�,

10.8�, 26.9�] for the 5th row. The lateral distance between wind turbines is three

rotor diameters and the downstream distance is five rotor diameters. As can be

seen, the wake interactions and the yaw e↵ects are both captured satisfactorily by

the surrogate model. Because the so-constructed surrogate model can achieve fast

approximation of the original high-fidelity LES model, it can be used directly for

the control design of large-scale wind farms.
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(a) 8m/s. � = (16.5�, 4.69�,�22.9�) (b) 9m/s. � = (2.56�, 15.7�, 4.11�)

(c) 10m/s. � = (�6.98�,�15.4�,�23.4�)

Figure 4.14: The comparisons between ICA-NN predictions and high-fidelity sim-
ulations for 3-turbine cases.
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(a) 8m/s. � = (16.5�, 4.69�,�22.9�)

(b) 9m/s. � = (2.56�, 15.7�, 4.11�)

(c) 10m/s. � = (�6.98�,�15.4�,�23.4�)

Figure 4.15: The velocity profiles for the 3-turbine cases, by ICA-NN (dashed) and
high-fidelity simulations (solid).
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Figure 4.16: The wake prediction of a wind farm with 5⇥ 5 wind turbines.

4.4 Conclusions

In this chapter, an ML-based surrogate modelling method was proposed, where three

dimensionality reduction techniques (i.e. POD, ICA, AE) were investigated for re-

ducing the flow field dimension and the fully-connected NN was used to predict the

reduced coe�cients from the input parameters. The surrogate modelling method

was specifically designed to tackle distributed fluid systems, by carrying out surro-

gate modelling for each subdomain and combining the flow field of each subdomain

with the consideration of the matching condition at the interface. The applications

to a di↵usion-dominant problem (more specifically, 1D Poisson’s equation) and a

convection-dominant problem (more specifically, wind farm simulations) demon-

strated the e�ciency, accuracy, and scalability of the proposed surrogate modelling

method. In particular, the surrogate model of wind farm wakes predicted the wind

farm velocity field very accurately with an average RMSE (compared to high-fidelity

results) being 2% of the freestream wind speed, while the online prediction time is

negligible (around 9 ⇥ 10�4s using one core) compared to high-fidelity simulation

which requires around 44 hours using 256 cores for each case. The wake features

including wake deflection, recovery, and expansion behind each wind turbine, and

the wake interactions through the upstream interface, have been captured well. This

demonstrated the ability of the proposed method in modelling large-scale distributed

fluid systems. However, the developed data-based wind farm wake model has only
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considered the upstream flow’s impact on the downstream turbines, ignoring the

interactions in the lateral and upstream directions. As shown in Figure 4.16, there

exist lateral discontinuities in the predicted wind farm flow field. This issue may

be solved by considering all the subdomain boundary conditions as the input of the

machine learning model (similarly as in the Poisson case). However, this task is not

trivial and needs further investigations regarding the method design and the need

for more training data.

Future research may involve the application of the proposed surrogate mod-

elling to other flow problems, such as the flow field around heater arrays in heat

exchangers and the distributed roughness elements in boundary layer flow. The

optimal design using the constructed surrogate model is also of great interest. For

example, it can be used as an internal model for wind farm yaw optimisation. An-

other research direction is the surrogate modelling of unsteady distributed systems

and the optimal control design based on such surrogate models.
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Chapter 5

Wind Farm Wake Modelling

Based on Deep Convolutional

Conditional Generative

Adversarial Network

5.1 Introdution

In this chapter, to avoid the explicit dimensionality reduction errors and meanwhile

mitigate the overfitting issues in predicting high-dimensional target in supervised

manner, a novel surrogate modelling method is proposed based on one of the most

recent advancements in the field of deep learning i.e. the GAN framework [154].

It is then applied to build an e�cient, accurate, and robust data-based wind farm

wake model.

Specifically, the surrogate modelling method proposed in this chapter follows

the DC-CGAN, which can take advantage of both the deep convolutional network’s

ability in image processing and the CGAN’s ability in generating high-dimensional

content according to specific labels/images. In order to build a robust and flexible

surrogate model for fluid systems, (i) the conditional GAN framework instead of

the original GAN is employed so that the generator will generate the ‘realistic’

flow field according to the corresponding flow parameters; (ii) the flow parameters

are embedded through a fully-connected embedding layer before concatenated with

the flow field and fed to the discriminator. In this way, the flow parameters from

various sources can be accommodated such as the parameters defining the governing

equations and boundary conditions; (iii) the noise prior and the batch normalisation
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[178] that are usually present in GAN models are excluded, as the considered fluid

systems are deterministic and the surrogate model should not rely on the batch

information such as the batch mean and standard deviation.

The proposed surrogate modelling method is then applied to wind farm wake

modelling. Specifically, a CFD database of wind turbine wakes is first generated

[179]. Then the CGAN-based wake model is trained to take the inflow wind profiles

and the yaw conditions as the model input and to predict the multi-channel flow

field (i.e. both streamwise and spanwise velocity fields) as the model output. After

training, the prediction results are first validated against high-fidelity simulations.

A comprehensive parametric study is then carried out to evaluate the generalisation

performance of the developed model to the flow scenarios that are not present in

the training dataset.

To further demonstrate the use of the developed CGAN-based wake model

in wind farm applications, a case study for a small wind farm is carried out. For

comparison purpose, the corresponding high-fidelity simulations are also carried out

using the LES flow solver SOWFA [160].

This chapter is organised as follows: the proposed deep learning based sur-

rogate modelling method is described in Section 5.2, where the NN structure and

generative adversarial training process are explained in detail. It is then applied to

the development of a novel wind farm wake model in Section 5.3, where the vali-

dation and generalisation performance of the developed model are evaluated first,

then a case study for a small wind farm is presented including the results from both

the developed model and the high-fidelity LES model. Finally the conclusions are

drawn in Section 5.4.

5.2 DC-CGAN Based Surrogate Modelling Method

A general steady-state parametrised fluid system can be described by

Pµp [u] = 0, x 2 ⌦µ! ;

Bµb [u] = 0, x 2 @⌦µ! (5.1)

where u is the state of the system while the di↵erential operator P (parametrised

by µp), the di↵erential operator B (parametrised by µb) and ⌦ (parametrised by

µ!) represent the PDEs describing the fluid systems, the boundary conditions and

the flow domain respectively. Hereby the flow parameters arising from the governing

equations, the domain geometry and the boundary conditions are denoted as µ =
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[µp, µ!, µb]. Given a specific value of µ, the flow field in the domain ⌦, hereby

denoted as U , can be obtained by solving Equation 5.1 numerically. However, this

usually requires a lot of computational resources and is time-consuming, as the DoF

of the discretised PDEs is usually very high. This section is devoted to developing a

surrogate modelling method to approximate the mapping between µ and U so that

fast and accurate predictions of U can be achieved. The proposed method is based

on the state-of-the-art deep learning technique DC-CGAN. It is illustrated in Figure

5.1, including the generation of training data in Figure 5.1(A), the GAN structure

and training in Figure 5.1(B), and the online prediction in Figure 5.1(C). They are

detailed as below.

5.2.1 Training Dataset

The surrogate model is trained based on a set of samples where each sample consists

of the flow parameter µ and the corresponding flow field U , as shown in Figure

5.1(A). In order to generate the training dataset, a sampling method is usually

employed to generate a set of flow parameters [µ1
, µ

2
, ..., µ

N ] where N represents

the sample size and µ
i represents the flow parameters arising from the governing

equation, the domain geometry and the boundary conditions (i.e. µi = [µi
p, µ

i
!, µ

i

b
]).

Then a set of CFD simulations are carried out for each flow parameter µi so that the

corresponding flow field U
i can be obtained, as shown in Figure 5.1 (A). After data

generation, all the flow parameters are collected as the training input matrix X of

shape [N,Nµ] whereNµ is the dimension of the flow parameter and each row contains

a sample of the flow parameter. All the corresponding high-fidelity flow field data

are collected as the training target matrix Y of shape [N,N1, ..., Nd, C] where [N1,

..., Nd] is the spatial resolution of the d-dimension flow domain, C is the number

of the channels of the flow field data, and each row contains a sample of the flow

field in the d-dimension domain with C channels. Each channel usually represents

a colour such as red, green or blue of an RBG image in image processing while it is

used to represent a flow quantity such as streamwise velocity or spanwise velocity in

this work. It is worth noting that the dimensions of both the training input µ and

the training target U are typically very high as the former can include the boundary

conditions (such as the inflow velocity) at discrete points while the latter can include

multi-channel flow field on a grid of high dimension. It is this high-dimensionality

that makes the surrogate modelling of such systems very challenging.
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Figure 5.1: The flowchart illustrating the proposed DC-CGAN based surrogate
modelling method. The dashed lines illustrate the directions of the backpropagation
in the generator and discriminator trainings.

5.2.2 GAN Structure

After obtaining the training dataset, the DC-CGAN based surrogate model is con-

structed, which is illustrated in Figure 5.1 (B). It consists of a generator and a

discriminator. The generator, as shown in shaded blue in Figure 5.1 (B), takes the

flow parameters as the input, processes it through a dense layer and a reshape layer

which are then followed by a series of transposed convolution layers, and finally

returns the flow field prediction Û as the output. The input-output mapping of the
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generator, denoted as G , can be expressed as

G (µ) = (� �Tg)
Lg �R �Ng(µ) (5.2)

where � represents the function composition, Lg represents the number of transposed

convolution layers, and N , R, T and � represent the mappings of the dense layer,

the reshape layer, the transposed convolution layer, and the activation respectively.

In this work, as shown in Figure 5.1 (B), LeakyReLU is used for the activations

in the intermediate layers and the hyperbolic tangent function is used for the last

layer. The subscript g in Equation 5.2 indicates the corresponding mappings rely

on the trainable weights which will be updated during the generator training.

The discriminator, as shown in shaded orange in Figure 5.1 (B), takes the

data pair of the embedded flow parameter Z and the corresponding flow field U

or Û (real or generated) as the input, processes it through a series of convolution

layers, and finally returns a single classification indicator (i.e. fake or real) as the

output. The main di↵erence between CGAN and GAN is that the labels (here the

flow parameters) are combined with the corresponding flow field for the examination

by the discriminator, while GAN only distinguishes the generated flow field from the

real flow field without the labelling information. Therefore, the CGAN structure is

more suitable for the surrogate modelling of parametrised fluid flows, as the unique

correspondence between the flow parameter and the flow field can be established.

Here in the proposed discriminator structure, an embedding layer which consists of

a dense and a reshape layer (as shown in shaded green in Figure 5.1 (B)) is employed

to map the flow parameters to the same shape as the flow field so that it can be

concatenated with the flow field and fed to the discriminator. The input-output

mapping of the discriminator including the embedding part can be expressed as

D([Ũ , µ]) = � �Nd �F � (� � Cd)
Ld([Ũ ,R �Ne(µ)]) (5.3)

where Ũ can be the real flow field U or the generated flow field Û , Ld represents

the number of convolution layers, and F and C represent the mappings of the

flatten layer and the convolution layer respectively. As shown in Figure 5.1 (B),

LeakyReLU is used for the activation in the intermediate layers while the sigmoid

function is used for the last layer so that a value between 0 and 1 can be returned

as the output for the binary classification. The subscripts d and e in Equation 5.3

indicate the corresponding mappings in the discriminator and embedding part rely

on the trainable weights which will be updated during the discriminator training.
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5.2.3 GAN Training

The discriminator is trained to distinguish the pair of real flow field and flow param-

eter from the pair of generated flow field and flow parameter, while the generator

is trained to generate realistic flow field such that the generated data pair is not

distinguishable from the real data pair. Specifically, the discriminator is trained to

minimise the classification error defined as

✏D =
1

Nb

NbX

i=1

� logD([U i
, µ

i]) +
1

Nb

NbX

i=1

� log(1�D([Û i
, µ

i])) (5.4)

where {[U i
, µ

i], 1  i  Nb} is a batch of training samples consisting of the real flow

field and the corresponding flow parameters, and {[Û i
, µ

i], 1  i  Nb} is a batch

of training samples consisting of the fake flow field generated by the generator and

the corresponding flow parameters. The data batches are fed into the discriminator

network to minimise ✏D , so that the generated and real data pair can be classified as

fake (i.e. 0 ) and real (i.e. 1) by the discriminator after training. The discriminator

training is illustrated by the dashed line coloured in orange in Figure 5.1 (B).

The generator is trained to minimise the classification error defined as

✏G =
1

Nb

NbX

i=1

� logD([G (µi), µi]) (5.5)

Here {µi
, 1  i  Nb} is a batch of flow parameters which are fed into the generator

to generate flow field that is then examined by the discriminator. The minimisation

of the classification error ✏G thus guides the generator to produce data pairs which

are likely to be classified as real by the discriminator. As can be seen from Equation

5.5, the generator training involves the whole CGAN network including the generator

and the discriminator. It is worth noting that the trainable weights within the

discriminator network are kept frozen during the training process while the trainable

weights inside the generator are trained to minimise ✏G . The generator training is

illustrated by the dashed line coloured in blue in Figure 5.1 (B).

The discriminator training and the generator training are carried out alterna-

tively until the generator can produce realistic flow field that is not distinguishable

from the real flow field obtained by the high-fidelity simulations. All the training

data including the training input and the training target are standardised before

fed into the NN for training. The Adam optimisation algorithm [158] is used for the

NN training and the model is implemented based on the ML package Keras [176]

with Tensorflow [155] backend. The training is carried out using NVIDIA Tesla
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Algorithm 4 Surrogate modelling of parametrised fluid flows based on DC-CGAN

1: % The o✏ine training

2: Generate N samples of the flow parameters: [µ1
, µ

2
, ..., µ

N ].
3: Run CFD simulations to generate the corresponding flow field data

[U1
, U

2
, ..., U

N ].
4: Preprocess the flow parameters and the flow field data by MinMaxScalers.
5: Set the batch size Nb; Set the total number of training iterations Ntr.
6: for j = 1 to Ntr do

7: Sample a random batch of training data: {[U i
, µ

i], 1  i  Nb}.
8: Generate the flow field predictions {[Û i], 1  i  Nb} by propagating

{[µi], 1  i  Nb} through the generator.
9: Train the discriminator to minimise ✏D by feeding {[U i

, µ
i], 1  i  Nb} and

{[Û i
, µ

i], 1  i  Nb} to the discriminator.
10: Train the generator to minimise ✏G by feeding {µ

i], 1  i  Nb} to the whole
network. Only the trainable weights inside the generator are trained while the
trainable weights in the discriminator (including the embedding part) are kept
frozen.

11: end for

12: % The online prediction

13: Set the test flow parameter µ⇤ and process it through the MinMaxScaler.
14: Predict the scaled flow field by propagating the scaled flow parameter through

the generator network.
15: Obtain the final flow field prediction by scaling back the generator output.

K80 GPU. After training, the generator can be used as the surrogate model of the

parametrised fluid systems for the online prediction of the flow field with flow pa-

rameters as the model input, see Figure 5.1 (C). The overall process including both

the o✏ine training and the online prediction is summarised as Algorithm 4.

5.3 Application to Wind Farm Wake Modelling

This section is devoted to the development of an accurate and e�cient data-based

model of wind farm wakes, by employing the surrogate modelling method proposed

in Section 5.2. In particular, this work focuses on the prediction of the wind velocity

field (including the streamwise and spanwise velocity fields) around the wind turbine

with the inflow wind profile Uin and the turbine yaw angle � as the model input.

The flow domain and the input flow parameter are illustrated in Figure 5.2. In

the rest part of this section, the training data, which is generated by high-fidelity

CFD simulations, is described in Section 5.3.1. The model training and validation

are then presented in detail in Section 5.3.2. Next, a parametric study is carried

out in Section 5.3.3 to systematically evaluate the generalisation performance of the
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Figure 5.2: The illustration of the flow domain and the input flow parameter in-
cluding the inflow wind profile Uin and the turbine yaw angle �.

developed CGAN wake model. Finally a case study is investigated in Section 5.3.4

to fully demonstrate the use of the developed model in wind farm applications.

5.3.1 High-Fidelity Data

To generate the training dataset, the high-fidelity LES flow solver SOWFA [160] is

employed to solve the filtered NS equations where the turbine rotors are modelled as

actuator lines. In this work, in order to capture the wake interactions in the training

dataset, the cases of three turbines operating in a row are simulated and then the

2D mean velocity field around each turbine at the turbine hub height is extracted

from the simulation data. Thus each simulation can generate three training samples

i.e. the flow field around the 1st, the 2nd and the 3rd turbines. In order to cover a

wide range of inflow conditions, three groups of LESs are carried out where di↵erent

freestream mean wind speeds at 8m/s, 9m/s and 10m/s are used for di↵erent groups.

An illustration of the inflow wind profiles is given in Figure 5.3, where Group#1,

Group#2 and Group#3 correspond to the simulation groups with the freestream

mean wind speed of 8m/s, 9m/s and 10m/s respectively. As shown in Figure 5.3,

for each group, the inflow wind profiles include the ‘flat’ profiles representing the

freestream wind conditions and the ‘bell-shape’ profiles representing the incoming

wind conditions induced by the upstream turbine wakes. Furthermore, in order to

capture the yaw e↵ects in the training dataset, 30 simulations have been carried out

for each simulation group, where the turbine yaw angles are randomly sampled in

the interval [�30�, 30�] for each simulation case. Therefore, in total, 90 LESs have

been carried out and 270 training samples are finally generated, which used around

one million CPU hours on HPC clusters. This high-fidelity database is used in this
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Figure 5.3: The illustration of the inflow wind profiles for selected samples that are
representatives of the training dataset.

section to build an accurate and e�cient surrogate model to predict the wind flow

around wind turbine with the inflow wind profile Uin and the turbine yaw angle �

as the model input. The interested reader can refer to [179] for the further details

such as the mesh generation, the atmospheric boundary layer simulation, and the

parametrisations of the NREL 5MW wind turbine (with a rotor diameter of 126m)

considered in this work.

Specifically, the model input µ is specified as the combination of the wind

speed at 32 uniformly-distributed points along the inflow boundary and the value

of turbine yaw angle. Thus the dimension of µ is 33. The flow field U is specified as

the combination of the streamwise velocity field Ux and spanwise velocity field Uy

at the 32 ⇥ 32 uniform grid points in the flow domain shown in Figure 5.2. Thus

the dimension of U is 32 ⇥ 32 ⇥ 2. It is worth noting that the considered fluid

system is governed by the NS equations where the turbine rotors are modelled as

actuator lines in the momentum equations. Thus the turbine parameters such as

� appear in the governing equations. Therefore, this case demonstrates that the

proposed surrogate modelling method can accommodate flow parameters arising

from di↵erent sources (here boundary conditions and governing equations) and can

be used for the prediction of multi-channel (here both streamwise and spanwise
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velocity components) flow fields.

5.3.2 Model Training and Validation

All the high-fidelity CFD data are first divided into 216 training samples and 54

test samples, then the surrogate model is trained based on the flow field data in

the training samples. After training, its performance is evaluated by comparing the

flow field predictions with the corresponding CFD data in the test samples which

are assumed unavailable during the training process. The results for four randomly-

selected test cases are shown in Figure 5.4 and 5.5. The flow conditions for these

four cases are: � = �13.6� and the upstream wake inflow (Case#1); � = 16.5� and

the freestream inflow (Case#2); � = �26.1� and the freestream inflow (Case#3);

� = �1.1� and the upstream wake inflow (Case#4). As can be seen, the flow

field predictions, including both the streamwise velocity field Ux and the spanwise

velocity field Uy, match with the corresponding LES results very well for all the

cases. The main features of the flow field are captured accurately, such as the

wake deflection with the turbine yaw angle, the wake recovery in the streamwise

direction, the wake expansion in the spanwise direction, and the upstream wake’s

impact on the downstream flow field. The flow details are also predicted such as

the fluctuations in the incoming wind, the flow acceleration on both sides of the

turbines, the turbines’ blockage e↵ects on the upstream flow, and the yaw-induced

spanwise velocity in the wake regions.

To further quantify the prediction accuracy, the RMSEs of the CGAN model

predictions for all the 54 test cases are calculated, which are defined as

✏Ux =

vuuut 1

NtestNgrd

NtestX

j=1

NgrdX

i=1

(U j

xi
� Û

j

xi
)2 (5.6)

and

✏Uy =

vuuut 1

NtestNgrd

NtestX

j=1

NgrdX

i=1

(U j

yi
� Û

j

yi
)2 (5.7)

for the streamwise and spanwise velocity field respectively. Here Ntest is the total

number of test cases, Ngrd is the dimension of the grid, U j

xi
and Û

j

xi
represent the

true and predicted values of the streamwise velocity at the i
th grid point for the j

th

test case, and U
j

yi
and Û

j

yi
represent the true and predicted values of the spanwise

velocity at the i
th grid point for the j

th test case. The RMSEs of the streamwise
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(a) Case#1, Ux (b) Case#1, Uy

(c) Case#2, Ux (d) Case#2, Uy

(e) Case#3, Ux (f) Case#3, Uy

(g) Case#4, Ux (h) Case#4, Uy

Figure 5.4: The comparisons between the predictions by the developed CGAN
model and the corresponding true values for four randomly-selected test cases.

(a) Case#1, Ux (b) Case#1, Uy (c) Case#2, Ux (d) Case#2, Uy

(e) Case#3, Ux (f) Case#3, Uy (g) Case#4, Ux (h) Case#4, Uy

Figure 5.5: The di↵erence between the flow field predicted by the developed CGAN
model and the corresponding true values for four randomly-selected test cases.
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Figure 5.6: The flow fields predicted by the developed CGAN model for a series of
turbine yaw angles and freestream wind speeds.

and spanwise velocity field predictions are 0.10m/s and 0.18m/s respectively, which

are just 1.1% and 4.1% of the corresponding value ranges. It is worth noting that

the wake prediction with such accuracy is achieved with an online prediction time of

just 0.002s, which is negligible compared to large-scale numerical simulations which

will require several thousand CPU hours. It is concluded that the developed CGAN

model is able to predict the wind turbine wake flows e�ciently and accurately.

5.3.3 Generalisation Performance

To systematically evaluate the generalisation performance of the developed CGAN

model, in this subsection, a series of flow field predictions (including the flow sce-

narios that are distinct from the training dataset) are carried out. In particular, the

parametric study considers a series of turbine yaw angles, freestream wind speeds,
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Figure 5.7: The flow fields predicted by the developed CGAN model for a series of
upstream wake magnitudes and freestream wind speeds.

and upstream wake magnitudes.

First, a series of turbine yaw angles and freestream wind speeds are consid-

ered. For this set of predictions, the inflow wind profile Uin is specified as constant

values (i.e. the freestream wind speed) along the inflow boundary. The prediction

results are given in Figure 5.6. Each column in Figure 5.6 shows the flow field

predicted with the same inflow profiles and di↵erent yaw angles i.e. [�30�, �20�,

�10�, 0�, 10�, 20�, 30�], while each row shows the flow field predicted with the same

yaw angle and di↵erent freestream wind speeds i.e. [7, 8, 9, 10] m/s. As can be

seen, the trend of wake deflection is captured with the change of the turbine yaw

angle, and the qualitative feature of the velocity magnitude in the whole domain

is captured with the change of the freestream wind speed. It is worth mentioning

that the training dataset, as described in Section 5.3.1, includes only the cases with

the freestream wind speed of 8m/s, 9m/s and 10m/s. Thus the prediction of the
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Figure 5.8: The flow fields predicted by the developed CGAN model for a series of
turbine yaw angles and upstream wake magnitudes.

7m/s cases, i.e. the first column of Figure 5.6, demonstrates that the CGAN wake

model captures the qualitative flow features (such as yaw e↵ects) successfully even

for unknown flow scenarios.

Next, a series of upstream wake inflows are considered. Specifically, the

Gaussian profile, one of the most popular wake profiles in analytical wake modelling,

is used to specify the inflow wind profile Uin as

Uin = U0 � dU exp (�
y
2

2�2g
), (5.8)

where U0 represents the freestream wind speed, dU represents the magnitude of

the upstream wake, y is the spanwise coordinate, and �g characterises the wake

width. The value of �g is set as 50m in the following predictions, which leads to
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a reasonable wake width. The prediction results are given in Figure 5.7, where

each column shows the flow field predicted with the same freestream wind speed

U0 and di↵erent upstream wake magnitudes dU i.e. [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]

m/s, while each row shows the flow field predicted with the same upstream wake

magnitude dU and di↵erent freestream wind speed U0 i.e. [7, 8, 9, 10] m/s. As can

be seen, the main features of the flow field are captured successfully, where the far

field is mainly influenced by the freestream wind speed and the wake regions are

clearly influenced by the upstream wake magnitudes. It is worth mentioning that

the training dataset only includes the cases where the upstream wake magnitude is

around 3-4m/s, while the CGAN wake model is shown to be able to predict the flow

field with various upstream wake magnitudes. In addition, the ‘bell-shape’ inflow

profiles in the training dataset are not Gaussian but the results shown in Figure 5.7

are predicted with Gaussian profiles as the model input. This set of predictions thus

demonstrate that the developed CGAN model generalises well to the inflow wind

profiles that are not present in the training dataset.

Last but not least, to complete this parametric study, the predictions for a

series of turbine yaw angles and upstream wake magnitudes are carried out. The

results are shown in Figure 5.8, where the freestream wind speed is set as 8m/s. As

can be seen, the trend of the wake deflection and the wake deficit is captured with

respect to the turbine yaw angles and the upstream wake magnitudes.

In summary, the results in Figure 5.6, 5.7, and 5.8 fully demonstrate that the

developed CGAN wake model generalises well to unknown flow scenarios and learns

the qualitative features of wind turbine wake flows successfully. It is concluded that

the developed model can achieve e�cient and robust predictions of wind turbine

wakes.

5.3.4 A Case Study

To further demonstrate the use of the developed CGAN wake model for wind farm

applications, a case study for a small wind farm is carried out in this subsection.

The considered wind farm consists of six NREL 5-MW wind turbines and the tur-

bine layout is illustrated in Figure 5.9. For comparison purpose, the high-fidelity

simulations using SOWFA are also carried out for this wind farm. The correspond-

ing mesh configuration is shown in Figure 5.9 where two-level mesh refinement is

applied so that the mesh size in the turbine wake region is 3m. The total number of

mesh is around 2.6⇥ 107. The SOWFA simulations are carried out with a precursor

atmospheric boundary layer simulations where the mean wind speed at hub height

is set as 10m/s and the free-stream turbulence intensity (FSTI) is set as 6%. After
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Figure 5.9: The illustration of the considered wind farm layout and the mesh con-
figuration for high-fidelity simulations.

wind farm simulations, the mean flow field in the 2D horizontal plane at turbine hub

height is extracted. In order to compare the CGAN model predictions with SOWFA

results at the same wind conditions, the freestream wind profile is extracted from

SOWFA and then used as the inflow wind conditions for the CGAN model.

The prediction of single turbine wakes has been demonstrated in previous

subsections. The extension to wind farm wake prediction in this subsection follows

the method proposed in Chapter 4. Specifically, it is carried out by predicting

single turbine wakes from upstream to downstream locations, where the inflow wind

profiles for the downstream turbines are specified by the prediction results of the

upstream turbine wakes. The flow field of the whole wind farm is finally obtained by

combining the prediction results of all the single turbine wakes with the consideration

of the matching conditions at the upstream boundary (all the other boundaries are

not considered in this work). Further details can be referred to Chapter 4.

Two yaw control strategies are considered in this case study, i.e. the greedy

case and the wake-steering case. The wind velocity fields, including both the stream-

wise and spanwise velocity, are predicted using both SOWFA and the developed

CGAN model. For the greedy case, the yaw angles of all the wind turbines are set

as 0�. The results are given in Figure 5.10 and 5.11. As shown, the streamwise and

spanwise velocity fields predicted by the CGAN model match well with SOWFA

results. It is observed that the rear turbines operate in the full wakes generated by

the upstream turbines. Then the wake-steering case is investigated, where the yaw

angles of all the wind turbines are specified according to the optimised yaw angles
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(a) Ux (b) Uy

Figure 5.10: The prediction results by the developed CGAN model and SOWFA for
the greedy case.

(a) Ux (b) Uy

Figure 5.11: The di↵erence between the flow field predicted by the developed CGAN
model and SOWFA for the greedy case.

reported in [40]. The yaw angles for T1, T2, T3, T4, T5 and T6 are [25.85�, 25.15�,

39.80�, 39.75�, 0.35�, 0.45�] respectively. The results are given in Figure 5.12 and

5.13. A great match is observed between the SOWFA and CGAN predictions, such

as the yaw-induced wake deflections (see Figure 5.12(a)) and the yaw-induced span-

wise wind speed magnitudes (see Figure 5.12(b)). As expected, the wakes generated

by the front turbines are steered away from the rear turbines (i.e. T5 and T6) in

this wake-steering case. The predictions in the wake regions show a small level of

discrepancy with the SOWFA results. It is worth mentioning that the data used for

training the CGAN model only includes the yaw angles in the range of [�30�, 30�],

while the yaw angles of T3 and T4 in this case largely exceed this range. Therefore,

the wake-steering case further demonstrates the robustness of the developed CGAN

wake model in the scenarios of extrapolated turbine yaw angles.
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(a) Ux (b) Uy

Figure 5.12: The prediction results by the developed CGAN model and SOWFA for
the wake-steering case.

(a) Ux (b) Uy

Figure 5.13: The di↵erence between the flow field predicted by the developed CGAN
model and SOWFA for the wake-steering case.
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5.4 Conclusions

In this work, a surrogate modelling method for general fluid flows was proposed

based on the DC-CGAN. The proposed method was then applied to develop a novel

wind farm wake model for the wake predictions under various inflow conditions and

turbine yaw settings. The results showed that the developed model was able to

predict the multi-channel (i.e. both streamwise and spanwise velocity fields) wind

turbine wake flows accurately and e�ciently. In particular, the prediction RMSEs

for the streamwise and spanwise velocity fields were just 0.10m/s and 0.18m/s re-

spectively which were just 1.1% and 4.1% of the corresponding value ranges, while

the online computation time was only 0.002s. Also, the main features of turbine

wakes were predicted very well, including both the overall features (such as the wake

deflection with the turbine yaw angle, the wake recovery in the streamwise direc-

tion, the wake expansion in the spanwise direction) and the detailed features (such

as the fluctuations in the freestream wind, the flow acceleration on both sides of the

turbines, the turbines’ blockage e↵ects on the upstream flow, and the yaw-induced

spanwise velocity in the wake regions). In addition, a parametric study was carried

out to systematically evaluate the generalisation performance of the developed wake

model. The results showed that the model generalised well to the flow scenarios that

were not present in the training dataset, and that the developed model successfully

learned the qualitative features of wakes of yawed wind turbines over a range of ve-

locities, including the change of the wake deficit with upstream inflow profiles, wake

deflection with turbine yaw angles, yaw-induced spanwise velocity, and wake inter-

actions through the upstream interface. It is concluded that the developed model

achieved accurate and robust real-time predictions of static wind farm wakes.

Furthermore, a case study for a small wind farm was carried out using both

the developed model and the high-fidelity LES model. The comparison study showed

a good agreement between the developed model and the LES model, including the

predictions for both the streamwise and the spanwise velocity fields. This case study

fully demonstrated the performance of the developed model in predicting wind farm

wake flows. However, as the developed wake model only considers the impact of

the upstream flow on the downstream turbine through the upstream interface, it

cannot be used (yet) for multiple adjacent wakes since lateral boundaries are not

coupled. In addition, this chapter still focused on static wake modelling. Thus the

dynamic features of wind farm wakes are still missing. The dynamic wind farm wake

modelling will be investigated in the next chapter.

95



Chapter 6

A Novel Dynamic Wind Farm

Wake Model Based on Deep

Learning

6.1 Introduction

In this chapter, a surrogate modelling method for unsteady distributed fluid systems

is proposed to build a novel dynamic wind farm wake model. In the proposed

method, the high-dimensional flow field data is first reduced to low-dimensional

coe�cients by POD [123]. Then a deep recurrent neural network (RNN), called

LSTM [14,180], is employed to predict the reduced coe�cients at current time step

based on the reduced coe�cients in the previous time steps. POD is chosen as

it can capture the main flow features according to the flow field’s energy content

while LSTM is chosen as it is very powerful in handling time-series predictions. The

proposed method is hereby referred as POD-LSTM. It is then employed for wind

farm wake modelling. First, a series of LESs are carried out with wind turbine

rotors operating in di↵erent yaw conditions under di↵erent turbulent inflows. Then

the generated LES database is used to train the ML model.

The main contributions of this chapter are summarised as follows:

(1) A novel data-based dynamic wind farm wake model is developed and

validated through a series of simulation tests including single turbine wakes, multiple

turbine wakes, yawed wakes, and wake interactions within a large wind farm. As the

existing wake models in the literature are either unable to predict unsteady wake

details (low-fidelity models) or too time-consuming to run (high-fidelity models),

this work bridges the research gap by developing a wake model that can predict
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Type Analytical Numerical Machine learning
Models Jensen, Frandsen,

FLORIS, 3D
wake, ...

PALM, UTDWF,
Nalu-Wind,
SOWFA, ...

The model devel-
oped in this chap-
ter

Based on flow observations NS equations LES database
Method flow analysis CFD deep learning
Speed fast slow fast
Accuracy low high moderate/high
Flow details no yes yes

Table 6.1: The comparison of the developed ML-based wake model with existing
wake models.

unsteady wind turbine wakes similarly as high-fidelity wake models while running

as fast as the low-fidelity static wake models. The comparison of the developed

model with existing wake models is summarised in Table 6.1.

(2) A deep learning based surrogate modelling method, called POD-LSTM,

is proposed to build this novel dynamic wake model. The proposed method is

generic and can also be used to model other unsteady fluid flows around distributed

structures, such as tidal farms and building arrays in the atmospheric boundary

layer.

(3) A high-fidelity CFD database of wind flow around turbine rotors is gen-

erated, through a series of CFD simulations which takes around 7⇥105 CPU hours’

run time on local HPC clusters. The above deep learning based dynamic wind farm

wake model is then trained to learn the complex wind farm wake dynamics from

this valuable database.

The remaining part of this chapter is organised as follows: the proposed deep

learning based surrogate modelling method is described in Section 6.2. Its appli-

cation on wind farm wake modelling is described in Section 6.3. After developing

the wake model, the model validation and prediction are carried out in Section 6.4,

where the prediction results on wakes behind a turbine with changing yaw and wake

interactions in a 9-turbine wind farm are demonstrated. Finally, the conclusions are

drawn in Section 6.5.

6.2 Methodology

An example distributed fluid system, a wind farm, is illustrated in Figure 6.1, where

M distributed structures (wind turbines in this example) with distributed control

parameters [d1, d2, ..., dM ] (such as the yaw angle and blade pitch angle for a wind
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Figure 6.1: The illustration of a typical distributed fluid system, where a subdomain
containing one distributed structure is illustrated by the dashed rectangular. The
information exchange in this work only includes the upstream subdomain’s impact
on the adjacent downstream subdomain.

turbine) are shown in the rectangular flow domain. With a CFD approach, a mesh is

first generated for the whole flow domain and then the discretised governing equation

(such as the NS equations) is solved on the mesh. This approach is usually costly as

the DoF (the number of cells) is very high. In this section, an ML-based surrogate

modelling approach is developed to build a surrogate model that can predict the

flow field e�ciently given the distributed control parameters (wind turbines’ operat-

ing parameters [d1, d2, ..., dM ] in this example). The proposed surrogate modelling

procedure includes four steps as shown below.

6.2.1 Design of Experiments

This step serves to generate/collect high-fidelity training data. For a system with

M distibuted structures as in Figure 6.1, a set of design input variables, denoted

as D , are generated according to a sampling strategy (such as Latin hypercube

sampling), where D is a matrix of shape [M ,Nt,P ] with Dm,it,p representing the

design value of the pth control parameter of themth distributed structure at time step

it. Nt is the total number of time steps and P is the dimension of each distributed

control parameter (for example, P = 2 for the wind turbine case if two control

parameters, e.g., turbine yaw angle and turbine blade pitch angle, are considered).

The corresponding output variables, the flow field data U , are obtained by running

CFD or wind tunnel experiment with the designed input D . Here U is a matrix of

shape [M ,Nt,Nx] with Um,it,ix representing the value of the flow velocity magnitude
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in the m
th subdomain at spatial coordinate indexed by ix at time step it. Nx is

the total number of grid points in each subdomain. A matrix X of shape [Nx,

d] is used to record the location of all the grid points within a subdomain relative

to the corresponding distributed structure location, where Xix,1:d represents the

d-dimension spatial coordinate (for example d = 2 for 2-D plane) indexed by ix.

In order to expand the training dataset to include more scenarios, a set of

CFD/experiments can be carried out with di↵erent inflow conditions and design

input variables. All the resulting data can then be collected and reshaped together

as the final training dataset. If in total S simulations/experiments are carried out,

the final design input matrix D is of shape [M ⇥ S,Nt,P ] and the design output

matrix U containing all the flow field data is of shape [M ⇥ S,Nt,Nx].

6.2.2 Dimensionality Reduction

Here, the design output matrix U obtained in previous step is first reshaped into a

matrix U of shape [M ⇥ S ⇥Nt,Nx], with each row in U representing a snapshot of

the flow field. The POD as in [123] is done by SVD as

U
T = V ⌃W T

, (6.1)

where the k
th column vector of V , denoted as vk, is the k

th POD basis. Setting the

total number of POD basis as R, each snapshot of the flow field, ũ, can then be

approximated by

û =
RX

k=1

↵kvk, (6.2)

where the reduced coe�cients ↵k are calculated by

↵k =< ũ, vk >, 1  k  R. (6.3)

In this way, the output matrix U can be reduced into its reduced representation U r

of shape [M ⇥ S,Nt,R], where U r

m,it,r
represents the r

th reduced coe�cient of the

flow field Um,it,1:Nx . This dimensionality reduction process thus reduces the original

flow field dimension from Nx to R. It is worth noting that other dimensionality

reduction techniques can also be used. The ICA [166] and the AE [167] have been

implemented and tested for the work in this chapter, and the results are omitted

here as their performances are not as good as POD.
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6.2.3 Neural Network Training

After dimensionality reduction, a supervised ML problem is formulated to predict

the reduced coe�cients at the current time step based on historical data of the

flow. The LSTM network, which is particularly powerful in time-series predictions,

is employed here.

The overall data pipeline is illustrated in Figure 6.2, where the flow field, the

inflow velocity, and the distributed control parameters from time steps 1 to T are

required as the input in order to predict the flow field at time step T + 1. The flow

fields from 1 to T are first reduced to their POD coe�cients, which are then fed into

the LSTM network along with the inflow and distributed control parameter history

to predict the POD coe�cients at time step T +1. Finally the flow field at time step

T+1 is reconstructed based on the predicted POD coe�cients according to Equation

6.2. The LSTM network in Figure 6.2 is detailed in Figure 6.3 which shows that the

POD coe�cients, the inflow velocity, and the distributed control parameters’ value

are standardised by the standard scalers before being fed into the LSTM cells. The

scalers (denoted as Scaler1 and Scaler2 respectively in Figure 6.3) standardise the

input features (the POD coe�cients and the rest features respectively) by removing

their mean and scaling to unit variance. A dense layer is stacked on top of the

LSTM cells to predict the standardised POD coe�cients at the next time step,

which is then scaled back to obtain the POD coe�cient predictions through the

inverse transform of the Scaler1.

For the model training, a data generator is implemented which extracts the

training input and corresponding training target by mini-batches from the database

D and U , and then feeds them to the LSTM network. The LSTM network is

trained to minimise the MSE between the network output and the training target.

The Adam optimisation algorithm [158] is used with a learning rate of 0.001 for the

NN training in this chapter. The model is implemented based on the ML package

Keras [176] with Tensorflow backend [155].

After training, the POD-LSTM model can predict the flow field at time

step T + 1 (i.e. ûT+1), given the history of the flow field data (i.e. [ũ1, ũ2, ...ũT ]),

inflow velocity (i.e. [u01, u
0
2, ...u

0
T
]), and the distributed control parameters’ value

(i.e. [d1, d2, ...dT ] ). For the prediction of the flow field at time step T + 2 (i.e.

ûT+2), the predicted flow field at time step T +1 (i.e. ûT+1), the user-defined inflow

velocity at time step T + 1 (i.e. u
0
T+1 ), and the user-defined distributed control

parameter’s value at time step T + 1 (i.e. dT+1 ) along with the history data (i.e.,

[ũ2, ...ũT ], [u02, ...u
0
T
], [d2, ...dT ]) are fed into the data pipeline. In this way, all future

flow fields can be predicted iteratively. It is worth noting that the prediction error
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Figure 6.2: An illustration of the data pipeline of the proposed POD-LSTM method.

will accumulate in the iterative prediction procedure. Therefore, for the long-term

flow field prediction, it is more interesting to analyse the results qualitatively instead

of quantitatively.

6.2.4 Prediction of the Whole Flow Field

The POD-LSTM model developed above can predict the flow field in a single sub-

domain at all future time steps given the history of the flow field and the future

inflow velocity and distributed control parameters’ value. For the prediction of the

whole flow field, the trained POD-LSTM model is used to predict the flow field in

each subdomain sequentially from upstream to downstream, and then the whole
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Figure 6.3: The detailed illustration of the LSTM network in Figure 6.2. The scalers
at the input of the LSTM cells represent the forward transforms of the scalers while
the scaler at the output of the LSTM cell represents the corresponding inverse
transform.

flow field is obtained by combining all the subdomains’ predictions with the con-

sideration of the upstream flow’s impact on the downstream subdomain through

the domain interface in the streamwise direction. It is worth mentioning that the

information exchange in the lateral boundaries is not considered in this work, which

could improve the developed wake model’s performance by the inclusion of lateral

interactions. However, this will require much more training data characterizing the

lateral interactions and also new method to tackle the two-way coupling at these

interfaces. Therefore, it is not investigated in this thesis and is treated as a future

work. The detailed procedure for predicting the flow field around multiple wind

turbines is summarised below as Algorithm 5.
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Algorithm 5 The prediction of the whole flow field

1: Divide the whole flow domain into M subdomains (as illustrated in Figure 6.1)
and number them from upstream to downstream as [1, 2, ...,M ].

2: Initialize the flow field history in all subdomains: {[ũ1,i, ũ2,i, ...ũT,i], 1  i M}.
3: Initialize the inflow velocity history in all subdomains: {[u01,i, u

0
2,i, ...u

0
T,i

], 1 
i M}.

4: Initialize the distributed control parameters’ history in all subdomains:
{[d1,i, d2,i, ...dT,i], 1  i M}.

5: Set total prediction step Ttot.
6: k  1.
7: while k  Ttot do

8: for i in [1, 2, ...,M ] do
9: Propagate the input [ũk,i, ũk+1,i, ...ũT+k�1,i], [u0

k,i
, u

0
k+1,i, ...u

0
T+k�1,i],

[dk,i, dk+1,i, ...dT+k�1,i] through the data pipeline shown in Figure 6.2 to obtain
the flow field in the i

th subdomain at time step T + k: ũT+k,i.
10: end for

11: Obtain the inflow velocity at time step T + k: u0
T+k,i

, 1  i M , by setting
it directly from the user-defined boundary condition for the most upstream sub-
domains, while for the downstream subdomains, extracting the inflow velocity
from the neighbouring upstream subdomains’ flow field predictions.

12: Set the distributed control parameters’ value at time step T + k from user-
defined values: dT+k,i, 1  i M .

13: Output the whole flow field at time step T + k by combining
ũT+k,1, ũT+k,2, ..., ũT+k,M together.

14: k  k + 1
15: end while

16: The unsteady flow fields for the whole domain from time T + 1 to T + Ttot are
obtained.

6.3 Development of a Novel Dynamic Wind Farm Wake

Model

The POD-LSTM method developed above is employed to build a novel dynamic

wake model in this section.

6.3.1 High-Fidelity Data Generation

The high-fidelity flow field data is generated using the LES flow solver SOWFA

[160]. The turbine rotors are modelled as actuator lines in this work. The mesh

generation and the simulation domain in this chapter are the same as in Chapter

4, which are illustrated in Figure 4.8 and 4.9. For turbine wake simulations, a

precursor simulation of the atmospheric boundary layer is first carried out to obtain
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Figure 6.4: An example of the designed yaw angles in a simulation case. The yaw
angles of all the three turbines are included.

the initial flow field and the inflow boundary condition, and then three NREL 5-MW

wind turbines with the baseline turbine pitch and torque control [165] are added in

the simulation domain with a downstream spacing of 5 rotor diameters. For each

simulated case, 1110s simulations are carried out with a time step of 0.02s.

Three inflow conditions with average wind speeds of 8m/s, 9m/s, and 10m/s

and an FSTI of 6%, are considered. Twenty simulations are carried out for each

inflow condition, with di↵erent yaw angles for each simulation case. The yaw angles

are designed by random initial yaw and random yaw changes of less than 3� every

second during the whole simulation period. The yaw angles are limited to the range

[�30�, 30�]. By these settings, the generated LES data covers a wider flow speed

range and turbine yaw range. An example of the designed yaw angles in a simulation

case is shown in Figure 6.4, where random yaw changes are applied at each time

step. After CFD simulations, the flow fields at turbine hub-height are sampled every

second to extract the training data. The first 400s simulation results are discarded

as the turbine wakes have not been well established during this period. Therefore,

710 snapshots of the flow field are recorded for each case. Then the flow field in

each subdomain containing one turbine (as shown in Figure 4.9) is extracted and

interpolated into a uniform grid of 50 ⇥ 30. All the generated flow field data is

collected together to form the training dataset U . The shape of the final training

matrix U is [180,710,1500], with Us,it,1:1500 representing a snapshot of the flow field

in one subdomain at time step it for the scenario indexed by s. All the designed

yaw angles are collected as the design input matrix D of shape [180, 1110, 1], where

Ds,it,1 represents the yaw angle at time step it for the scenario indexed by s. Here

a scenario designates the unsteady flow fields in one subdomain of one simulation

case. The whole data generation process takes around 7 ⇥ 105 CPU hours where
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each simulation requires around 46 hours’ computation on a local cluster with 256

CPUs.

6.3.2 Model Training

The generated LES data contains 180 flow scenarios with each scenario consisting of

the unsteady flow fields at 710 discrete time instants. For model training purpose,

the whole dataset is divided into a training dataset (the first 64% time instants), a

validation dataset (the 64% ⇠ 85% time instants), and a test dataset (the last 15%

time instants). The training dataset is fed into the POD-LSTM network by mini-

batches with a batch size of 1024 while the validation dataset is used to evaluate

the model after each training epoch. The test dataset is not used in the training

process but only for model testing after training.

Dropout, including the input dropout and the recurrent dropout, is an ef-

ficient technique to tackle overfitting. The LSTM networks with and without the

input and recurrent dropout are both tested. It turns out that the one with dropout

performs much better, thus it is used in this chapter. The stack of multiple LSTM

layers does not further increase the model performance thus only one LSTM layer,

as illustrated in Figure 6.3, is included in the POD-LSTM model. There are still a

few hyper-parameters not yet determined in the POD-LSTM network, i.e., the total

lookback time step of the flow history, the number of POD basis, and the output

features’ dimension of the LSTM cell. The validation errors are used to determine

these hyper-parameters’ empirical values, by a grid-search procedure. The final

hyper-parameters’ values are given in Table 6.2, along with the evaluations of the

POD-LSTM model’s performance by using the test dataset. Here T represents the

total lookback time step of the flow history in order to predict the current flow field,

R represents the number of the POD basis, Nh represents the output features’ di-

mension of the LSTM cell, and ↵ represents the dropout rate of both input dropout

and recurrent dropout. The model reduction error ✏POD (m/s) and the total pre-

diction error ✏total (m/s) are also included in Table 6.2 for model evaluations. The

POD model reduction error is defined as the mean value of the RMSEs between the

reconstructed flow fields from the exact POD coe�cients and the exact flow fields:

✏POD =
1

180⇥ 102

180X

s=1

710X

it=609

RMSE(Us,it,1:1500,U
POD

s,it,1:1500), (6.4)

where

U POD

s,it,1:1500 =
RX

k=1

< Us,it,1:1500, vk > vk. (6.5)
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T R Nh ↵ ✏POD ✏total

5 350 350 0.2 0.328 0.428

Table 6.2: The hyper-parameters in the POD-LSTM model and the model evalua-
tions.

And the POD-LSTM model prediction error is defined as the mean value of the

RMSEs between the flow fields predicted by the POD-LSTM model and the exact

flow fields:

✏total =
1

180⇥ 102

180X

s=1

710X

it=609

RMSE(Us,it,1:1500, Ûs,it,1:1500). (6.6)

where Ûs,it,1:1500 represents the POD-LSTM predictions. As shown in Table 6.2, the

POD-LSTM prediction error arises from both the representation of the flow field

by the reduced coe�cients, which is characterised by ✏POD, and the di↵erence of

the exact POD coe�cients and the ones predicted by the LSTM network, which is

characterised by ✏total� ✏POD. The overall prediction error ✏total is 0.428m/s, which

is just 4.8% with respect to the freestream wind speed.

After training, the POD-LSTM model can be used for the prediction of the

flow field of the next second given the flow history in the past five seconds. This

prediction process can be carried out iteratively so that all the future flow fields can

be predicted with a time step of 1s.

6.4 Results and Discussions

The flow field predictions, including both the single-turbine wake and multiple-

turbine wake predictions, are carried out using the above developed dynamic wake

model. The results are compared with the high-fidelity SOWFA simulation results

for model validations. After that, two simulation case studies are carried out to

demonstrate the model’s ability in capturing the yaw e↵ect on turbine wakes and in

simulating large-scale wind farms.

6.4.1 Model Validations

Single-Turbine Wake Predictions

The single-turbine wake predictions are carried out and compared with the test

dataset. The POD-LSTM model is used to predict both the flow field in one time

step directly and the flow fields in all future time steps iteratively. To predict the
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(a) Time step: T

(b) Time step: T + 10

(c) Time step: T + 20

Figure 6.5: An example case of the single-turbine wake prediction with the turbine
operating in freestream condition. The results include the SOWFA predictions, the
flow field reconstructions from exact POD coe�cients, and the POD-LSTM model
predictions at time step (a) T , (b) T + 10, and (c) T + 20. The turbine rotor is
located at (0, 0)m of the 2D plane.

flow fields from time step T to T + Ttot, the calculation by the POD-LSTM model

uses the same initial flow fields as SOWFA only from time step T � 5 to T � 1, the

same inflow conditions as SOWFA from time step T to T + Ttot, and the same yaw

angles as SOWFA from time step T to T + Ttot.

The predictions are carried out for all the cases in the test dataset. Two

typical cases are chosen to demonstrate the model’s performance, including one

with the turbine operating in freestream condition and the other with the turbine

operating in the front turbine’s wake. The results are shown in Figure 6.5 and 6.6,

including the SOWFA predictions, the flow field reconstructions from exact POD

coe�cients and the POD-LSTM model predictions, at time step T , T + 10 and

T + 20. The corresponding error distributions are shown in Figure 6.7 and 6.8.

As can be seen, the reconstructions from exact POD coe�cients match with
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(a) Time step: T

(b) Time step: T + 10

(c) Time step: T + 20

Figure 6.6: An example case of the single-turbine wake prediction with the turbine
operating in the front turbine’s wake. The results include the SOWFA predictions,
the flow field reconstructions from exact POD coe�cients, and the POD-LSTM
model predictions at time step (a) T , (b) T +10, and (c) T +20. The turbine rotor
is located at (0, 0)m of the 2D plane.

SOWFA results quite well for all time steps in both cases, which illustrates that

the chosen POD basis captures the main flow dynamics very well thus this dimen-

sionality reduction process can be combined with the subsequent ML model for the

accurate flow field predictions, as in [118, 125]. The direct and iterative flow field

predictions at time step T , T + 10 and T + 20 by the POD-LSTM model match

with the POD reconstruction results very well in both cases, which demonstrates

that the LSTM network can predict the POD coe�cients accurately. The overall

prediction error is small (as shown in Figure 6.7 and 6.8), considering the chaotic

nature of the turbulent wakes and limited information used for these predictions.
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(a) Time step: T (b) Time step: T + 10

(c) Time step: T + 20

Figure 6.7: An example case of the single-turbine wake prediction with the turbine
operating in freestream condition. The figures show the di↵erence between the
POD-LSTM model predictions and the SOWFA predictions at time step (a) T , (b)
T + 10, and (c) T + 20. The turbine rotor is located at (0, 0)m of the 2D plane.

Multiple-Turbine Wake Predictions

The multiple-turbine wake predictions are carried out in this subsection to demon-

strate the POD-LSTM model’s ability in capturing wake interactions. The case of

two turbines in a row with a downstream spacing of 5 rotor diameters is considered.

The POD-LSTM model is used to predict the flow field in one time step directly

and the flow fields in all future time steps iteratively. To predict the flow fields from

time step T to T + Ttot, the calculation by the POD-LSTM model uses the same

initial flow fields as SOWFA only from time step T �5 to T �1, the same freestream

conditions (that is, the inflow conditions for the front turbine) as SOWFA from time

step T to T + Ttot, and the same yaw angles as SOWFA for all the turbines from

time step T to T + Ttot.

The predictions are carried out for all the flow conditions in the test dataset.

An example case is chosen to demonstrate the model’s performance in capturing

the wake interactions. The results are shown in Figure 6.9 and 6.10, including the

SOWFA predictions, the POD-LSTM model predictions and the prediction errors

at time step T , T + 10, and T + 20. As can be seen, the direct and iterative flow

field predictions at time step T , T +10 and T +20 by the POD-LSTM model match

with SOWFA simulation results quite well for both the front turbine’s and the rear
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(a) Time step: T (b) Time step: T + 10

(c) Time step: T + 20

Figure 6.8: An example case of the single-turbine wake prediction with the turbine
operating in the front turbine’s wake. The figures show the di↵erence between the
POD-LSTM model predictions and the SOWFA predictions at time step (a) T , (b)
T + 10, and (c) T + 20. The turbine rotor is located at (0, 0)m of the 2D plane.

turbine’s wake, which demonstrates that the proposed model can predict the wake

flow around multiple wind turbines with the consideration of the impact of the

upstream flow on the downstream turbine. It is worth noting that the impact of the

upstream turbine on the downstream turbine is well captured in all the prediction

time steps, which is essential in guaranteeing the performance of the developed

model in large-scale wind farm predictions.

6.4.2 Model Predictions - Two Case Studies

The Yaw E↵ect on Turbine Wakes

A single-turbine case with designed yaw change is investigated using the developed

model to demonstrate its ability in capturing the yaw e↵ect on turbine wakes. The

single-turbine wake is predicted for a simulation time of 300s, with the yaw angle

being �20� for the first 100s, then increasing linearly from �20� to 20� in the next

100s, and staying at 20� for the last 100s. The snapshots at 100s and 300s are shown

in Figure 6.11. As can be seen, the impact of turbine yaw on unsteady turbine wakes

is captured, where the wake deflection is predicted successfully.

The video showing the unsteady flow field visualisation is available online in

the supporting materials of the published paper. As can be seen from the video,
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(a) Time step: T

(b) Time step: T + 10

(c) Time step: T + 20

Figure 6.9: An example case of the multiple-turbine wake predictions with two
turbines in a row. The results include the SOWFA predictions and the POD-LSTM
model predictions at time step (a) T , (b) T +10, and (c) T +20. The front and the
rear turbine rotors are located at (0, 0)m and (632, 0)m of the 2D plane respectively.

the main feature of the unsteady turbine wake, such as the streamwise convection

of flow structures, the wake’s crosswind meandering, and the wake’s deflection with

changing yaw are captured clearly by the developed model during the whole sim-

ulation duration. This further validates the developed model’s ability in capturing

main flow features for long time simulations. To the best of the author’s knowl-

edge, there are no existing wake models that can achieve fast predictions of these

unsteady flow features. It is worth mentioning that the successful prediction of the

streamwise convection and crosswind meandering of flow structures is not trivial, as

the LSTM network is not trained to predict the velocity at specific locations but the

POD coe�cients which do not directly reflect the spatial convection of the flow. The

POD only serves as the dimensionality reduction technique and the POD basis does

not characterise the coherent structures as in [181], because the flow field snapshots

in the training dataset are collected from di↵erent simulations under random flow

parameters. In addition, this case also demonstrates the generalisation performance
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(a) Time step: T

(b) Time step: T + 10

(c) Time step: T + 20

Figure 6.10: An example case of the multiple-turbine wake predictions with two
turbines in a row. The figures show the di↵erence between the POD-LSTM model
predictions and the SOWFA predictions at time step (a) T , (b) T + 10, and (c)
T + 20. The front and the rear turbine rotors are located at (0, 0)m and (632, 0)m
of the 2D plane respectively.

of the developed model, as the model has not encountered the designed yaw patterns

(constant yaw and linear yaw change) during training.

A 9-Turbine Test Case

The simulation of a 3 ⇥ 3 wind turbine array is carried out to illustrate the use

of the developed model for the fast simulations of large-scale wind farm wakes.

The lateral distance between adjacent wind turbines is three rotor diameters and

the downstream distance is five rotor diameters. The freestream condition with the

average wind speed of 9m/s and FSTI of 6% is used. The turbine yaw angles are kept

constant for the simulation time of 300s, with the front turbine yaw angle being 20�,

0�, �20� respectively and the yaw angles of the rest turbines being 0�. The snapshots

at 180s, 190s, and 200s are shown in Figure 6.12. As can be seen, both the front

turbines’ wake deflections and the wake interactions between turbines are captured
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(a) t = 100s

(b) t = 300s

Figure 6.11: The snapshots of the flow field around a single turbine predicted by
the POD-LSTM model with designed yaw change, at time steps (a) 100s and (b)
300s. The turbine rotor is located at (0, 0)m of the 2D plane.

successfully. However, as can be seen, there are discontinuities in the predicted

flow fields at the interface between di↵erent rows of wind turbines. This is because

the current model only considers the interactions between subdomains through the

upstream boundary, which is enough in capturing the main wake interactions. This

discontinuity issue may be solved by including all the boundary conditions of each

subdomain as the input in the POD-LSTM model. However, the consideration of

the interactions at all the subdomain boundaries is not trivial and needs further

investigation regarding the generation of the training dataset and the numerical

stability. In this thesis, the wake modelling only considers the upstream flow’s

impact on the flow field in the downstream subdomains.

The unsteady flow field visualisation is available online in the supporting

materials of the published paper. As can be seen from the video, the POD-LSTM

model predictions show similar qualitative flow features seen in the LES of wind

farms, such as the wake meandering and the streamwise convection of flow struc-
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(a) t = 180s

(b) t = 190s

(c) t = 200s

Figure 6.12: The snapshots of the flow field around a 3 ⇥ 3 wind turbine array
predicted by the POD-LSTM model, at time steps (a) 180s, (b) 190s, and (c) 200s.
The 9 turbines are located at the grid points of [0, 632, 1264]⇥ [0, 379.2, 758.4]m of
the 2D plane.

tures. The simulations by the POD-LSTM model require negligible computational

time (several seconds) on a standard desktop, while LES of such system requires

tens of thousands of CPU hours on an HPC cluster. This 9-turbine test case demon-

strates the full potential of the developed model in the fast simulation, prediction
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and control design of utility-scale wind farms.

6.5 Conclusions

In this work, a deep learning based surrogate modelling method for distributed

unsteady fluid systems was proposed, which was then applied to build a novel data-

based dynamic wind farm wake model. A valuable high-fidelity LES database was

first generated, which took around 7 ⇥ 105 CPU hours using HPC clusters. Based

on the generated LES database, the deep learning based dynamic wake model was

trained to capture the complex wind farm wake dynamics. The results showed that

the developed wake model was able to capture the main unsteady flow features (such

as the streamwise convection of flow structures, the wake meandering, the wake’s

deflection with changing yaw, and the wake interactions between wind turbines)

similarly as high-fidelity wake models while running as fast as the low-fidelity static

wake models. The model’s performance was validated against high-fidelity LES

results and the overall prediction error was just 4.8% with respect to the freestream

wind speed. After validating the developed wake model, two test cases were carried

out, and the results demonstrated that the model was able to capture the yaw e↵ect

on turbine wakes and was able to achieve fast simulations of large-scale wind farms.

In particular, the results of the 9-turbine test case showed that the developed model

was able to predict the unsteady turbine wakes in several seconds on a standard

desktop while it requires tens of thousands of CPU hours on an HPC cluster if a

high-fidelity model is used. As the existing wake models in the literature are either

too time-consuming or unable to capture detailed wake dynamics, the developed

model brings a step change in fast and accurate simulations, predictions, and control

designs of wind farms. This work also paves the way for developing novel wake

models using advanced ML techniques. The proposed surrogate modelling method

can also be applied to other distributed fluid systems to build surrogate models

based on which optimal designs can be achieved with much less computation cost

than based on high-fidelity models. As the proposed approach only considers the

interactions between subdomains through the upstream boundary, future works may

include further method development to take account of the interactions at all the

subdomain interfaces so that flow interactions in the lateral direction (such as wake

merging) can be captured as well. In addition, more works are needed to further

improve the long-term prediction accuracy of the proposed method.

Future work may also include applying this novel wind farm wake model

in wake control in order to reduce wind turbine load, maximise the wind power
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harvesting, and support the electricity grid. This can be done by either using the

developed model as an internal model in the control design or using it as a fast

simulation model to design and test control strategies. As the developed model is

fast to evaluate and can capture the yaw e↵ect and wake interactions, it can be used

to facilitate the exploration of new wake (or wake interaction) patterns through

fast simulations. Another possible research direction is to incorporate the 3D wake

dynamics in the ML models.
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Chapter 7

Spatiotemporal Wind Field

Prediction Based on

Physics-Informed Deep

Learning and LIDAR

Measurements

7.1 Introduction

In this chapter, a deep learning based method is proposed for the predictions of spa-

tiotemporal wind field using only LIDAR measurements at sparse locations. Specif-

ically, the NS equations are encoded in the deep NN following the PINNs frame-

work [145] and an observation process is embedded into the NN which maps the full

flow state to LIDAR observations. The NN training is then carried out to minimise

both the functional loss (which encodes the NS equations) and the measurement

loss (which is based on LIDAR observations). After training, the prediction of the

spatiotemporal wind field in the whole domain in front of the wind turbine can be

achieved.

The method developed in this chapter is di↵erent from traditional numerical

methods and existing ML-based wind prediction methods as follows: (1) Various

numerical models are widely used for wind simulations and the detailed wind field

can be obtained by solving the NS equations numerically with properly-defined

boundary conditions or the input conditions estimated from measurement data [182].

However, these models are mainly designed for forward simulations of wind flows.
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It is extremely challenging to incorporate real-time scattered measurement data in

these models because it involves solving the inverse problem, which would require a

formidable number of time-consuming simulations to calibrate the model parameters

and the input conditions against the measurement data. In contrast, the PINNs

framework is specifically designed to incorporate data and PDEs in a unified manner

which makes it very powerful in solving inverse problems governed by PDEs. (2)

Previous ML-based wind prediction studies e.g. [87, 183, 184] treat ML models as

‘black-box’ and require the corresponding input and target values for training. Then

they can predict the wind patterns which are present in the training dataset. It is

worth mentioning that the paper [184] did explore to involve physics in the form of

simple analytical relations in the design of the ML on the wind farm modelling, which

showed very promising results. However, all these studies followed the traditional

supervised ML, thus can not discover the wind patterns that are not present in the

measurement data. In summary, the work presented in this chapter, which fuses

physics in terms of PDEs and data in the deep learning training process for wind

applications for the first time, can achieve the predictions of spatiotemporal wind

field in the whole domain based on only LoS LIDAR measurements at sparse spatial

locations, which is not achievable by either traditional numerical models or existing

ML-based models in the literature.

The method proposed in this chapter is tested and validated using large-scale

numerical simulations based on SOWFA [160]. SOWFA is used in this chapter as the

high-fidelity numerical experiment platform to simulate the real-world wind flows

in the atmospheric boundary layer. The LIDAR measurement and the turbulent

wind field are extracted from SOWFA simulations as the model training data and

the ground truth (for model validation) respectively.

The main contributions of this chapter are summarised as follows:

(1) The prediction of spatiotemporal wind velocity field in the whole flow

domain based on LoS wind speed at only a few sparse locations measured by LIDAR

is achieved, which is of great importance for developing advanced approaches for the

wind resource assessment and for the monitoring and control of wind turbine/farm.

The developed method can achieve: (i) the prediction of flow dynamics over the

whole domain of interest, including the spatial locations where no measurements are

available; (ii) great performance in wind field estimation, because the spatiotemporal

correlations between measurements are taken into account implicitly through NS

equations without model reduction; (iii) robust wind estimation in the scenarios of

both ‘small’ and ‘big’ data, as the issue of overfitting commonly encountered in deep

learning is tackled by enforcing the physical constraints.
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(2) To the best of the author’s knowledge, this is for the first time that

physical laws (in terms of PDEs) and data are fused in the training of deep learning

models for wind applications. Specifically a deep NN with a large DoF is constructed

and then the NS equations (which provide a good description of atmospheric flows)

are incorporated directly in the deep NN. After that, the deep NN is trained to

minimise the errors from both fitting the LIDAR measurements and enforcing the

NS equations. Because the existing wind prediction studies are either purely data-

driven [86, 87] or based on low-fidelity/reduced order models [89, 90], they can not

take full advantage of both physical laws in terms of PDEs and data.

(3) The developed method is validated through high-fidelity LES wind farm

simulations and its robustness is verified under a wide range of scenarios. A short-

term wind forecasting is also achieved which does not rely on the Taylor’s frozen

turbulence hypothesis [185], as the NN learns the dynamics of the evolving wind

field from NS equations.

The remaining part of this chapter is organised as follows: the deep learning

based method for the spatiotemporal wind field predictions is described in Section

7.2. Then the performance of the proposed method is tested by using an LES wind

farm simulator as the experimental platform in Section 7.3, where a wide range of

scenarios are considered to verify the robustness of the proposed method. Finally

the conclusions are drawn in Section 7.4.

7.2 Methodology

This chapter addresses the problem of predicting the spatiotemporal wind veloc-

ity field in the whole flow domain by physics-informed deep learning and LIDAR

measurements at sparse spatial locations. The considered LIDAR configuration is

illustrated in Figure 7.1(A), where two laser beams in the horizontal hub-height 2D

plane (shown as the shaded blue area) are used to measure the LoS wind speed in

the laser beam directions at a frequency of 1s at discrete spatial locations along

the beams (marked as cross signs in Figure 7.1(A)). The half-angle of the beams is

15�. An example of the wind speed measurements by the left and right beams at

these discrete locations during a time period from 0 to T is shown in Figure 7.1(B).

The wind field prediction problem thus states as how to predict the spatiotempo-

ral velocity (including both the downwind and crosswind components) field in the

domain of interest (i.e. the whole hub-height 2D flow domain coloured in blue in

Figure 7.1(A) ) from time 0 to T based on only the LoS wind speed measurements

at a few sparse locations marked as cross signs in Figure 7.1(A).
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Figure 7.1: The flowchart illustrating the proposed spatiotemporal wind field pre-
diction method. (A) LIDAR configuration. (B) The LoS wind speed measured by
the left and right laser beams during a certain period. (C) The deep learning model
which incorporates the NS equations and LIDAR measurements. (D) The predic-
tion of wind velocity at a given time instant and a given location after NN training.
(E) The wind field prediction in the whole domain at a given time instant.

120



This task is not achievable by using the traditional supervised ML framework

with whether simple NN such as multi-layer perceptions or complex NN such as

convolution NN and recurrent NN, because the traditional framework requires the

information on the whole spatiotemporal wind field as training data, but in reality

only the LoS wind speed data at sparse locations is available. In order to reconstruct

the spatiotemporal wind field based on only sparse measurement data, this work

employs the novel PINNs framework, where the incompressible NS equations, which

provides a very good description for many fluid flows such as atmospheric boundary

layer flows, are fused with LIDAR data in the training of the deep learning model.

The overall flowchart illustrating the proposed method is shown in Figure

7.1, where the training dataset collection, the deep NN structure and training, and

the model prediction are illustrated in Figure 7.1(A-B), Figure 7.1(C), and Figure

7.1(D-E) respectively. The detailed training and prediction process is described in

the rest part of this section.

7.2.1 Training Dataset

The training dataset in this work is the LoS wind speed values at sparse spatial

locations measured by LIDAR beams. The data measured by the left and right

beams are collected separately as the observation process (i.e. the function that

maps the flow states to the measurement values ) depends on the beam direction.

Denote the spatial coordinate of the i
th measurement point in the right beam as

[x̃r
i
, ỹ

r

i
], the spatial coordinate of the i

th measurement point in the left beam as

[x̃l
i
, ỹ

l

i
], and the LIDAR measurement values at these coordinates at t̃

th second as

ũ
x̃r
i ,ỹ

r
i ,t̃

and ũ
x̃l
i,ỹ

l
i,t̃

respectively. All the LIDAR measurements by the right beam

during a time period of T seconds are then collected as the data matrix Ũ r of

shape [N r
⇥ T, 4], where N

r represents the total number of discrete points in the

right beam and each row of Ũ r consists of the spatiotemporal coordinate [x̃r
i
, ỹ

r

i
, t̃]

and the corresponding measurement value ũ
x̃r
i ,ỹ

r
i ,t̃
. The measurements by the left

beam are collected in the same way as Ũ l of shape [N l
⇥T, 4] with N

l representing

the total number of discrete points in the left beam. These data matrices are then

nondimensionalised by the characteristic length D, the characteristic time D/U1,

and the characteristic velocity U1, where D represents the turbine rotor diameter

and U1 represents the average freestream wind speed. The nondimensionalised data

matrices, which are the only wind data required for the NN training, are hereby

denoted as U r and U l. In order to evaluate the trained ML model, the test dataset

is specified as the spatiotemporal flow field in the whole domain in front of the

wind turbine during the same time period T . To avoid confusion, it is worth noting
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that the training and test dataset in this work are totally di↵erent, with the former

consisting of the LoS wind speed data at sparse locations and the latter consisting

of the wind velocity vectors at every locations in the 2D plane in front of the wind

turbine, while in the supervised ML they are generally of the same data structure

and are usually obtained by dividing the same dataset.

7.2.2 Neural Network Structure

After collecting the training dataset, a fully-connected deep NN is constructed,

which is illustrated in shaded grey and denoted as DNN1 in Figure 7.1(C). This

deep NN takes the nondimensional spatiotemporal coordinate (i.e. [t, x, y]) as the

input and returns the nondimensional stream function [186] and the pressure as the

output (i.e. [ , p]). It is used to approximate the mapping between the continuous

spatiotemporal coordinate and the corresponding quantities, such that given any

time instant ti and any location [xi, yi] the deep NN is trained to return  (ti, xi, yi)

and p(ti, xi, yi) as the output. However, no data about p and  is needed for training

this NN because these quantities are just auxiliary quantities used for deriving the

velocity and encoding NS equations. This fully-connected NN can be expressed in

recursive form as

H0 = [t, x, y],

Hi = �(Hi�1 ·Wi +Bi), 1  i  L, (7.1)

HL = [ , p],

where L+ 1 represents the total number of layers in this deep NN, {Wi, 1  i  L}

and {Bi, 1  i  L} represent all the training variables in this NN, and � represents

the activation function. The shapes of the weight matrix W1, {Wi, 1 < i < L} and

WL are [3, Nh], [Nh, Nh] and [Nh, 2] respectively, where Nh represents the neuron

number of the hidden layers. The shapes of the bias term {Bi, 1  i < L} and BL

are [1, Nh] and [1, 2] respectively. The total DoF of this deep NN (i.e. the total

number of training variables) can then be calculated as

Ndof = 3Nh + (L� 2)NhNh + 2Nh + (L� 1)Nh + 2. (7.2)

The hyperbolic tangent function is used for all the hidden layers in this work and

the activation is not applied for the output layer. It is worth mentioning that L is

typically very large. Thus the NN is termed ‘deep’ and it is this deep structure that

enhances the ability of the NN in capturing very complex nonlinear dynamics. Fully-
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connected NN with such large DoF is generally not used in traditional supervised

ML as the issue of overfitting is hard to tackle, while it can be used in this work

as overfitting is constrained by the encoded PDEs in the physics-informed deep

learning framework.

After constructing this deep NN, a second NN, as shown in shaded green and

denoted as DNN2 in Figure 7.1(C), is constructed which takes the nondimensional

spatiotemporal coordinate (i.e. [t, x, y]) as the input and returns the nondimensional

downwind velocity u, crosswind velocity v and pressure p as the output. This second

NN is derived based on the first NN, by taking the derivative of the NN output of

the first NN with respect to the NN input using automatic di↵erentiation. Thus it

shares the same training variables with the first NN and no new training variables

are created. The output of this second NN is derived by

@ /@y = u,�@ /@x = v. (7.3)

Therefore, the continuity equation

@u

@x
+
@v

@y
= 0, (7.4)

is satisfied automatically. As LIDAR can only measure the LoS wind speed, no data

about u or v is available for the NN training. To train the NN with the LIDAR data,

an observation process that maps the flow state (i.e. [u, v, p]) to LIDAR observations

(i.e. [ur
los

, u
l

los
]) is embedded to the second NN, which is shaded in light red in Figure

7.1(C). The functions f1 and f2 in Figure 7.1(C) represent the right and left beam

observation processes respectively, which are expressed as

f1(u, v) = ucos(15�)� vsin(15�) (7.5)

f2(u, v) = ucos(�15�)� vsin(�15�) (7.6)

The inclusion of more LIDAR beams and/or other types of flow sensors such as

pressure sensors, is straightforward by embedding the corresponding observation

processes in this second NN. In this work, only f1 and f2 are embedded as only the

measurements from the left and right LIDAR beams are used for the NN training.

Next, a third NN, as shown in shaded pink and denoted as DNN3 in Figure

7.1(C), is constructed based on the second NN by taking the derivative of the NN

output with respect to the NN input using automatic di↵erentiation. This NN,

which is the physics-informed part, takes the nondimensional spatiotemporal coor-

dinate (i.e. [t, x, y]) as the input and returns the NS residue terms (i.e. [eu, ev])
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as the output. The NS residue terms are defined by reformulating the following

nondimensional 2D NS equations
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as
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Here Re = (U1D)/⌫ with ⌫ representing the kinematic viscosity of air.

In summary, there are three deep NNs constructed in the whole NN structure.

However, they are essentially just one NN in terms of training, as all of them share

exactly the same training variables and only one loss function will be defined to

train these training variables. The NN training and prediction details are described

in the next subsection.

7.2.3 NN Training and Prediction

The deep NN is trained to minimise the loss arising from both the NS residue terms

and LIDAR observations. The loss arising from NS residue terms is defined as

L1 =
1

Nns

NnsX

i=1

|eu(x
ns

i , y
ns

i , t
ns

i )|2 +
1

Nns

NnsX

i=1

|ev(x
ns

i , y
ns

i , t
ns

i )|2 (7.11)

where {[xns
i
, y

ns
i
, t

ns
i
], 1  i  Nns} is a batch of test points which is fed to the deep

NN to evaluate eu and ev. In practice, a set of test points in the spatiotemporal do-

main of interest are first collected in a data matrix D̃ of shape [Ntest, 3], where Ntest

is the total number of test points and each row of D̃ contains one spatiotemporal

coordinate. Then {[xns
i
, y

ns

i
, t

ns

i
], 1  i  Nns} is generated by randomly sampling

from the data matrix D , which is the data matrix D̃ nondimensionalised by the

characteristic scale D and D/U1. In this work, a 81⇥ 41⇥ 101 uniform grid points

in the domain [�240, 0]m⇥ [�60, 60]m⇥ [0, 100]s are used to generate D̃ .
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The loss arising from LIDAR observations is defined as
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where {[xr
i
, y

r

i
, t

r

i
, u

r

i
], 1  i  Nd1} is a batch of right beam measurement data

which are randomly-sampled from the matrix U r, and {[xl
i
, y

l

i
, t

l

i
, u

l

i
], 1  i  Nd2}

is a batch of left beam measurement data which are randomly-sampled from the

matrix U l.

Finally, the deep NN is trained to minimise the total loss defined as

L = L1 + L2, (7.13)

by feeding the data batches {[xns
i
, y

ns

i
, t

ns

i
], 1  i  Nns}, {[xri , y

r

i
, t

r

i
, u

r

i
], 1  i 

Nd1} and {[xl
i
, y

l

i
, t

l

i
, u

l

i
], 1  i  Nd2} to the NN simultaneously during each training

iteration. The Adam optimisation algorithm [158] is employed in this work for the

NN training.

After training, the spatiotemporal flow field in the whole flow domain, in-

cluding both the downwind and crosswind velocity components, can be predicted.

Specifically, given any time coordinate ti and space coordinate [xi, yi], the corre-

sponding wind speed ui and vi can be predicted through the second NN, as shown

in Figure 7.1(D). The prediction of the flow field in the whole domain at a given

time instant, as shown in Figure 7.1(E), can be achieved by propagating the given

time coordinate and the space coordinates of all the mesh points in the domain of

interest through the second NN. The whole training and prediction procedure is

summarised as Algorithm 6. In addition, after training, the short-term flow field

forecasting can also be carried out in a straightforward manner by simply specifying

the time t in Line 11 of Algorithm 6 as the time coordinate of interest in the future.

7.3 Numerical Results

The wind field prediction method developed above is evaluated in this section, by

using the LES wind farm simulator SOWFA as the experimental platform. The

simulation setups are described first, then the spatiotemporal flow field prediction

is carried out and the results of the time-varying velocity fields are validated with
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Algorithm 6 The NN training and prediction procedure

1: % The NN training
2: Load LIDAR measurement data, i.e. U r and U l.
3: Load the time and space coordinates of NS test points D .
4: Set training iteration number Niter.
5: Set the batch size Nns, Nd1 , Nd2 .
6: for i in [1, 2, ..., Niter] do
7: Generate data batches of size Nd1 , Nd2 and Nns from U r, U l and D respec-

tively.
8: Train the deep NN by feeding these data batches to minimise the total loss

L .
9: end for

10: % The NN prediction
11: Set any time coordinate of interest t.
12: Set a mesh of dimension Nmesh for the whole 2D domain.
13: for i in [1,2,...,Nmesh] do
14: Set [xi, yi] by the location of the i

th mesh point.
15: Propagate [xi, yi, t] through DNN2 to predict u and v at the i

th mesh point.
16: end for

17: The wind field in the whole domain at time t is obtained by combining the u

and v predictions at all the mesh points.

the corresponding true values (i.e. the SOWFA simulation results).

7.3.1 Simulation Setups

The LES wind farm solver SOWFA is employed here to simulate the turbulent

atmospheric boundary layer. For the mesh generation, as suggested by [35], a uni-

form mesh of size 12 ⇥ 12 ⇥ 12m is used in the whole simulation domain of size

3000⇥ 3000⇥ 1000m, which is illustrated in Figure 7.2. The total number of cells is

about 5.2⇥106. 400s simulations are carried out with a time step of 0.02s. From the

last 100s simulations, the left and right LIDAR measurements are collected, and the

corresponding wind field data at turbine hub-height is recorded for validation. In

particular, the LIDAR measurement process is simulated by extracting the velocity

vectors at the corresponding spatial locations, and then projecting them onto the

LIDAR beam directions to obtain the LoS wind speed measurements. The turbine

rotor dynamics is excluded in this work, similarly as previous studies [89, 90]. It is

worth mentioning that the rotor’s blockage e↵ects have impacts on the flow field in

the vicinity of the wind turbine [187,188], but the impacts become negligible in the

freestream flow further upstream which is the main interested region for this work.
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Figure 7.2: A top view of the simulation domain at the turbine hub height. The
contour shows the instantaneous flow velocity magnitude.

The simulation in this work is carried out in local HPC clusters, which takes around

2 hours’ computational time using 256 processors.

7.3.2 Performance Evaluation

A baseline case is used here to test the performance of the proposed method. For the

turbulent atmospheric boundary layer simulations, an average freestream wind speed

of 8m/s with an FSTI level of 6% is considered. For the LIDAR configurations, the

range of the LIDAR beams is 220m and the distance between discrete measurement

points is 20m. There are a total of 11 spatial measurement points per LIDAR beams.

The LIDAR measurement is carried out every second during the whole period of

100 seconds and the measurement noise is excluded. Since the wind turbine usually

operates with a yaw angle equal to 0�, the LIDAR look direction is set as the mean

wind direction in this baseline case.

There are still some hyper-parameters in the NN structure and the NN train-

ing procedure to be determined. The tuning of the hyper-parameters is carried out

by trying a set of configurations and comparing their training losses. The hyper-

parameters’ values used in this work are given in Table 7.1. As can be seen, the

final NN used in this work has a total of 12 layers (L+ 1) and the neuron numbers

of the hidden layers are 128. This results in a total DoF of 149378. This deep
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L Nh Nns Nd1 Nd2 lr

11 128 1000 1100 1100 10�4

Table 7.1: The hyper-parameters in the NN structure and the NN training proce-
dure. Here lr represents the learning rate.

structure with such a large DoF enables the NN to accurately approximate complex

nonlinear PDE systems such as the NS systems in this work. The further increase

of the layer number and the neuron number is tested, which has little impact on

the NN’s performance. Thus the parameters given in Table 7.1 are used. The NN

training is carried out using the NVIDIA Tesla K80 GPU in this work with each

training iteration requiring about 0.17s. After training, the prediction of the flow

field at any time instant of interest requires about 0.012s. These demonstrate that

the proposed method can meet real-time control requirement by pre-training and

online updating. It is worth noting that training schemes based on transfer learning

could possibly decrease the computation time, which needs further investigations

and is outside the scope of the current work.

After the NN training, the unsteady velocity field during the considered pe-

riod of 100s is predicted by the deep NN. Three predicted snapshots, at time t = 50s,

t = 60s and t = 70s, along with the corresponding true snapshots (i.e. the snapshots

obtained by SOWFA), are shown in Figure 7.3. The corresponding error distribu-

tions are shown in Figure 7.4. As can be seen, all the predicted snapshots agree

with the true snapshots very well (the quantitative evaluation of the accuracy is

given further in Table 7.2). The wind direction and magnitude have been well re-

solved (Cyclops’ dilemma), which is achieved because the correlations between the

LoS wind speed measured at di↵erent locations are taken into account implicitly

through NS residue terms in the NN training procedure. Also, the downstream con-

vection of flow structures in the incoming wind is clearly captured. As shown from

the predicted flow fields in Figure 7.3(a, c, e), a high-speed flow structure enters the

considered flow domain from the left at t = 50s, travels to the middle at t = 60s,

and hits the wind turbine at the right side of the domain at t = 70s. This successful

identification of the flow structure and its downstream convection are of great inter-

est. For example it can be used for wind turbine control to mitigate the structural

loads. In [77], it was shown that significant wind turbine blade load reduction was

achievable by taking the coherent flow structures into account in the wind turbine

control design. The paper [77] assumed that the coherent structures were known
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(a) t = 50s, prediction (b) t = 50s, true

(c) t = 60s, prediction (d) t = 60s, true

(e) t = 70s, prediction (f) t = 70s, true

Figure 7.3: The velocity field predicted by the proposed method at the baseline
case, at time (a) t = 50s, (c) t = 60s and (e) t = 70s. The corresponding true values
are also shown for comparisons (b, d, f).

and fully measurable, and pointed out that the prediction of the detailed incom-

ing wind information would play an important role in the level of load mitigation.

Therefore, the prediction results in this work fill the research gap by providing an

e↵ective way for detailed flow predictions and flow structure detection.

The unsteady wind field visualisation is available online in the supporting

materials of the published paper, including both the prediction results and the true

results given by SOWFA. As shown in the video, the unsteady flow details such as

the convections of high-speed/low-speed flow structures, are predicted accurately,

which demonstrates the great performance of the proposed prediction method.

To further quantify the accuracy of the proposed method, the mean value of

the root mean-squared errors (MRMSE) between the predicted and the true wind

speed fields during the whole time period is given in Table 7.2, which is defined as

✏u =
1

T

TX

t=1

vuut 1

Ntest

NtestX

i=1

(u⇤
xi,yi,t

� ûxi,yi,t)
2, (7.14)
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(a) t = 50s (b) t = 60s

(c) t = 70s

Figure 7.4: The di↵erence between the velocity field predicted by the proposed
method and the corresponding true values, at the baseline case.

where the total time T is 100, the total number of test pointsNtest is 3321, {[xi, yi], 1 

i  Ntest} is the 81 ⇥ 41 uniform-grid test points in the considered domain, and

ûxi,yi,t and u
⇤
xi,yi,t

represent the corresponding wind speed predictions and true val-

ues. Similarly, the MRMSE between the predicted and true wind direction fields is

defined as

✏� =
1

T

TX

t=1

vuut 1

Ntest

NtestX

i=1

(�⇤
xi,yi,t

� �̂xi,yi,t)
2, (7.15)

where �̂xi,yi,t and �
⇤
xi,yi,t

represent the corresponding wind direction predictions and

true values. As shown in Table 7.2, the prediction performance is quite satisfactory.

The MRMSE is just 7.0% of the freestream wind speed range at this baseline case.

The following part demonstrates the potential use of the proposed prediction

method for wind turbine control. First the e↵ective wind speed can be extracted

from the predicted spatiotemporal wind field, which is defined as the wind speed

averaged over the rotor plane and calculated by

Ūx,t =
1

Ny

NyX

i=1

ûx,yi,t, (7.16)

where {[x, yi], 1  i  Ny} is a set of spatial points at a fixed distance before

the turbine location and uniformly distributed from �D/2 to D/2 in the spanwise

direction. Figure 7.5 shows the e↵ective wind speed averaged over y direction at

130



Case Quantity (units) Range MRMSE

(A)
Magnitude (m/s) [6.71, 9.52] 0.198

Direction (�) [-6.03, 8.28] 2.77

(B1)
Magnitude (m/s) [6.71, 9.52] 0.208

Direction (�) [-6.03, 8.28] 2.75

(B2)
Magnitude (m/s) [6.71, 9.52] 0.236

Direction (�) [-6.03, 8.28] 3.32

(B3)
Magnitude (m/s) [6.71, 9.52] 0.387

Direction (�) [-6.03, 8.28] 3.73

(B4)
Magnitude (m/s) [6.71, 9.52] 0.523

Direction (�) [-6.03, 8.28] 4.35

(C)
Magnitude (m/s) [6.71, 9.52] 0.212

Direction (�) [-6.03, 8.28] 2.85

(D)
Magnitude (m/s) [6.71, 9.52] 0.222

Direction (�) [-6.03, 8.28] 2.66

(E)
Magnitude (m/s) [6.70, 9.73] 0.281

Direction (�) [11.4, 27.8] 2.46

(F)
Magnitude (m/s) [6.71, 8.96] 0.204

Direction (�) [-6.37, 6.13] 2.69

Table 7.2: The MRMSE between the predicted and the true flow fields during the
whole time period, for all the scenarios considered in this work, including (A) the
baseline case, (B1-B4) LIDAR measurements with various levels of noise, (C) half
spatial resolution, (D) half temporal resolution, (E) 20� LIDAR look direction, and
(F) FSTI level of 1%.
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(a) x = -130m (b) x = -90m

(c) x = -50m (d) x = -10m

Figure 7.5: The e↵ective wind speed predicted by the proposed method for the
baseline case at distances of 120m, 80m, 40m, and 0m before the turbine location.
The corresponding true values are also shown for comparisons.

x = �130m, x = �90m, x = �50m and x = �10m, which correspond to 120m,

80m, 40m and 0m before the turbine location respectively. The corresponding true

values extracted from SOWFA results are also shown. The RMSEs between the

predictions and true values are calculated and given in Table 7.3. As can be seen,

the predicted e↵ective wind speed matches with its true value very well. It is worth

noting that the accurate prediction of the e↵ective wind speed is not unexpected as

it is calculated based on the accurately-predicted spatiotemporal wind information.

This can help wind turbine control e.g. on power regulation and load reduction.

Second, the proposed method can predict the instantaneous wind speed at

various turbine locations. As shown in Figure 7.6, three spanwise locations, includ-

ing 0m, 15m, and 30m, are considered, which correspond to the turbine blade root,

1/2 chord length, and turbine blade tip locations. The true values are also shown

in Figure 7.6 for comparisons. The corresponding RMSEs between the predictions

and true values are also calculated and given in Table 7.4. As can be seen, the
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(a) y = 0m (b) y = 15m

(c) y = 30m

Figure 7.6: The instantaneous wind speed at turbine location predicted by the
proposed method at the baseline case, at spanwise locations of 0m, 15m, and 30m
respectively. The corresponding true values are also shown for comparisons.

predicted instantaneous wind speed matches with its true value quite well. This

illustrates the great potential of the proposed prediction method in the control of

smart rotors [189]. It is worth noting that the wind speed of the onset flow relative

to the turbine blade, which is responsible for the turbine loading, is closely related

to the instantaneous wind speed shown in Figure 7.6. However, it is not investigated

here as the wind field prediction in this chapter is limited to two-dimensional space.

More results are given in the next chapter where the full three-dimensional flow field

is predicted.

Last but not least, the proposed method can achieve short-term wind fore-

casting. The extrapolation of the proposed method to future time instants is exam-

ined. In particular, the time coordinates from 100s to 115s are fed to the deep NN

for predicting the 15-second ahead preview flow information. In order to test the

proposed method’s performance, another 15s SOWFA simulations are carried out

and the wind field data are recorded. The prediction and the corresponding true
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Case x = �130m x = �90m x = �50m x = �10m

(A) 0.086 0.055 0.052 0.079

(B1) 0.119 0.083 0.080 0.118

(B2) 0.182 0.137 0.092 0.128

(B3) 0.180 0.138 0.137 0.144

(B4) 0.289 0.200 0.195 0.256

(C) 0.113 0.063 0.069 0.125

(D) 0.102 0.061 0.063 0.144

(E) 0.135 0.091 0.061 0.086

(F) 0.117 0.069 0.038 0.086

Table 7.3: The RMSEs between the predicted and the true e↵ective wind speed at
several streamwise locations, for all the scenarios considered in this work, including
(A) the baseline case, (B1-B4) LIDAR measurements with various levels of noise, (C)
half spatial resolution, (D) half temporal resolution, (E) 20� LIDAR look direction,
and (F) FSTI level of 1%.

Case y = 0m y = 15m y = 30m

(A) 0.051 0.148 0.285

(B1) 0.151 0.162 0.264

(B2) 0.175 0.169 0.223

(B3) 0.244 0.313 0.773

(B4) 0.401 0.512 0.748

(C) 0.092 0.199 0.327

(D) 0.084 0.202 0.359

(E) 0.082 0.099 0.136

(F) 0.056 0.168 0.222

Table 7.4: The RMSEs between the predicted and the true instantaneous wind
speed at several turbine locations, for all the scenarios considered in this work,
including (A) the baseline case, (B1-B4) LIDAR measurements with various levels
of noise, (C) half spatial resolution, (D) half temporal resolution, (E) 20� LIDAR
look direction, and (F) FSTI level of 1%.
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results from 100s to 115s are included in Figure 7.6. As can be seen, the overall

instantaneous wind speed is predicted at satisfactory accuracy. This is because the

deep NN learns the dynamics of the evolving wind field from NS equations during the

training, and the learnt dynamics is retained which enables the deep NN for short-

term wind forecasting without using Taylor’s frozen turbulence hypothesis [185]. As

the ML model in this work is continuous in time, any future time coordinate can be

fed into the NN for prediction. Thus it avoids the tedious tuning of time steps, time

horizons and single-step/multiple-step settings in discrete-time models. However, it

is worth mentioning that as in all other wind prediction models, the prediction time

horizon is still limited by the correlations between the data used for predictions and

the quantities to be predicted.

7.3.3 Sensitivity Analysis

The robustness of the proposed method is further verified by considering a wide

range of scenarios including LIDAR measurements with various levels of noise and

under di↵erent LIDAR spatial/temporal resolutions, di↵erent LIDAR look directions

and di↵erent FSTI levels. The prediction accuracy for the whole flow field, the

e↵ective wind speed and the instantaneous wind speed at specific locations is given

in Table 7.2, 7.3, and 7.4 for all the considered scenarios.

Since LIDAR measurements are subject to various error sources such as range

weighting, the measurement noise must be considered in real-world applications.

Here, the spatiotemporal wind field reconstruction from noisy LIDAR measurements

is investigated, where random noise is added to the LoS wind speed value measured

by the LIDAR at each measurement location at each time instant. The noise is

drawn from the range [�e, e] uniformly and independently, where a set of values of

e are considered including 0.025m/s, 0.05m/s, 0.1m/s, and 0.2m/s. These cases are

denoted as Case B1, Case B2, Case B3, and Case B4 respectively. For each case, the

deep NN is trained with the noisy measurement data and then used for predicting the

spatiotemporal wind field. The prediction MRMSEs for all the four cases are given in

Table 7.2. As expected, the prediction becomes less accurate when the measurement

noise increases. However, for all the cases, the errors remain quite small compared

to the wind speed range, which demonstrates the method’s robustness against noisy

measurements. As suggested in [89], Case B3 here represents the typical noise of the

commercially available pulsed LIDAR instruments. Similar measurement accuracy

has been reported in the product guide of the continuous wave LIDAR devices by

ZXLidars. The predicted spatiotemporal flow field for Case B3 is shown in Figure 7.7

and 7.8. As can be seen, the unsteady flow field is successfully predicted with main
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(a) t = 50s, prediction (b) t = 50s, true

(c) t = 60s, prediction (d) t = 60s, true

(e) t = 70s, prediction (f) t = 70s, true

Figure 7.7: The velocity field predicted by the proposed method for the case where
the measurement noise is of typical commercial LIDAR devices, at time (a) t = 50s,
(c) t = 60s and (e) t = 70s. The corresponding true values are also shown for
comparisons (b, d, f).

flow structures identified correctly and the MRMSE remains quite small as shown

in Table 7.2, which indicate that the proposed method works well with commercial

LIDAR devices. Furthermore, it is worth noting that new methods such as Bayesian

PINNs [150] are under active development, which might o↵er new opportunities for

the predictions with lower-quality measurements.

To further illustrate the proposed method’s great performance in predicting

the spatiotemporal information from very sparse measurements, the cases with only

half spatial/temporal LIDAR measurement resolutions are investigated. For the

case with half spatial resolution, the distance between the measurement points is

set as 40m and only 6 measurement points per LIDAR beam are used in the pre-

diction. For the case with half temporal resolution, the measurement frequency of

the LIDAR beams is set as 2s. The prediction results are given in Figure 7.9, 7.10,

7.11, and 7.12. As can be seen, the flow field predictions are similar as in the base-

line case, which demonstrates the method’s robustness with various spatiotemporal
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(a) t = 50s (b) t = 60s

(c) t = 70s

Figure 7.8: The di↵erence between the velocity field predicted by the proposed
method and the corresponding true values, for the case where the measurement
noise is of typical commercial LIDAR devices.

measurement resolutions. In addition, it is worth noting that the predictions here

are based on the measurements at as few as 6 spatial locations per LIDAR beam,

while most existing works which follow the PINNs framework have used a much

larger set of measurement points. Thus the results here also demonstrate the full

potential of PINNs in handling the situations of very sparse data. In addition, the

prediction accuracy for the half-spatial case and half-temporal case is just slightly

lower than the baseline case, which indicates the existence of data redundancy in

the space and time domain for the baseline case. This problem might be solved

by designing novel data acquisition strategies for the PINNs to optimally place the

measurement locations, which can further increase the data quality and/or reduce

the data redundancy. Such strategies might lead to the design of the optimal LIDAR

configurations in wind industry, such as optimal half-angles, resolutions, scanning

patterns, and even the optimal coordination among LIDAR beams. This task, how-

ever, is not trivial and requires extensive studies on the problem formulation and

the method development, thus is out of the scope of the current work.

In addition, as LIDAR can only measure the LoS wind speed, the wind direc-

tion needs to be estimated (Cyclops’ dilemma). A di↵erent LIDAR look direction is

also considered here to further demonstrate the proposed method’s ability in iden-

tifying the incoming wind direction. The incoming wind’s mean direction is set as

20� from the turbine facing direction. The results are given in Figure 7.13 and 7.14.

As can be seen, the incoming wind direction is correctly identified, overcoming the
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(a) t = 50s, prediction (b) t = 50s, true

(c) t = 60s, prediction (d) t = 60s, true

(e) t = 70s, prediction (f) t = 70s, true

Figure 7.9: The velocity field predicted by the proposed method for the case with
half spatial measurement resolution, at time (a) t = 50s, (c) t = 60s and (e) t = 70s.
The corresponding true values are also shown for comparisons (b, d, f).

(a) t = 50s (b) t = 60s

(c) t = 70s

Figure 7.10: The di↵erence between the velocity field predicted by the proposed
method and the corresponding true values, for the case with half spatial measure-
ment resolution.
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(a) t = 50s, prediction (b) t = 50s, true

(c) t = 60s, prediction (d) t = 60s, true

(e) t = 70s, prediction (f) t = 70s, true

Figure 7.11: The velocity field predicted by the proposed method for the case with
half temporal measurement resolution, at time (a) t = 50s, (c) t = 60s and (e)
t = 70s. The corresponding true values are also shown for comparisons (b, d, f).

(a) t = 50s (b) t = 60s

(c) t = 70s

Figure 7.12: The di↵erence between the velocity field predicted by the proposed
method and the corresponding true values, for the case with half temporal measure-
ment resolution.
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(a) t = 50s, prediction (b) t = 50s, true

(c) t = 60s, prediction (d) t = 60s, true

(e) t = 70s, prediction (f) t = 70s, true

Figure 7.13: The velocity field predicted by the proposed method for the case where
the LIDAR look direction is 20�, at time (a) t = 50s, (c) t = 60s and (e) t = 70s.
The corresponding true values are also shown for comparisons (b, d, f).

(a) t = 50s (b) t = 60s

(c) t = 70s

Figure 7.14: The di↵erence between the velocity field predicted by the proposed
method and the corresponding true values, for the case where the LIDAR look
direction is 20�.
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(a) t = 50s, prediction (b) t = 50s, true

(c) t = 60s, prediction (d) t = 60s, true

(e) t = 70s, prediction (f) t = 70s, true

Figure 7.15: The velocity field predicted by the proposed method for the case where
the FSTI level is 1% , at time (a) t = 50s, (c) t = 60s and (e) t = 70s. The
corresponding true values are also shown for comparisons (b, d, f).

(a) t = 50s (b) t = 60s

(c) t = 70s

Figure 7.16: The di↵erence between the velocity field predicted by the proposed
method and the corresponding true values, for the case where the FSTI level is 1%.
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di�culties of estimating wind direction from only LoS wind speed data. The pre-

diction MRMSE given in Table 7.2 shows that the prediction errors for both wind

magnitude and direction remain very small.

Furthermore a di↵erent turbulence level is considered, where the FSTI of the

turbulent atmospheric boundary layer is set as 1%. The prediction results are given

in Figure 7.15 and 7.16. As can be seen, the predictions match well with the true

flow fields. The MRMSE given in Table 7.2 also shows that the proposed method

performs very well in this case, similarly as all the other considered cases.

7.4 Conclusions

In this chapter, the prediction of the spatiotemporal wind field based on sparse

LIDAR wind speed measurements was investigated by using physics-incorporated

deep learning techniques. In order to achieve this, a deep fully-connected NN (which

has a total of 12 layers with the hidden-layer neuron number of 128) was first

constructed, and then the NS equations (which provide a very good description of

atmospheric boundary layer flows) were incorporated in the NN structure. The deep

NN structure with a total degree of freedom of 149378 can approximate complex

nonlinear systems governed by PDEs (such as the NS system in this work), while

the incorporation of NS equations in the NN training empowers the deep NN with

the ability to learn the dynamics of the evolving flow field over the whole domain of

interest, even though the LIDAR measurements are only available at a few sparse

spatial locations. To the best of the author’s knowledge, this is for the first time

that physical laws and data are fused in a unified manner in the training of deep

learning models for wind applications.

The proposed method was evaluated based on the high-fidelity wind farm

simulator SOWFA. The results showed that both the wind magnitude and direc-

tion were predicted accurately, overcoming the Cyclops’ dilemma. This is because

the correlations between the LoS wind speed measured at di↵erent locations were

taken into account implicitly through the NS residue terms. The unsteady wind

field predictions were compared with the corresponding true values. The results

showed that the wind field predictions were very accurate, with the MRMSE being

only 0.198m/s for wind magnitude prediction and 2.77� for wind direction predic-

tions at the baseline case, which were just 7.0% and 19.4% of the corresponding

value ranges respectively. In particular, the flow details such as the propagation of

the high-speed/low-speed flow structures were captured by the proposed method.

Thus it is expected that the proposed method can lead to a significant reduction
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of turbine blade structural loads through advanced blade control techniques which

take these predicted flow details as control input, especially under the smart rotor

concept [189]. To further demonstrate the potential use of the proposed method in

wind turbine control, the predictions of the averaged and instantaneous wind speeds

were examined. The results showed very good matches between the prediction and

true values. In addition, they showed that the proposed method could achieve de-

tailed short-term wind forecasting. These results are apparently also very useful for

wind farm control and wind resource assessment. Furthermore, a wide range of sce-

narios were investigated to demonstrate the proposed method’s robustness, which

included the LIDAR measurements with various levels of noise and under di↵erent

LIDAR spatial/temporal resolutions, di↵erent LIDAR look directions and di↵erent

turbulence levels. The results showed that the proposed method performed very

well in all these scenarios.

By fusing LIDAR measurements and NS equations, the proposed method

achieved the accurate predictions of the full spatiotemporal wind field in the 2D do-

main in front of wind turbines. However, it is worth mentioning that its performance

is still limited by the underlying physical law’s ability in capturing the full dynamics

of the evolving wind. For example, the 3D flow structures and the thermal e↵ects

are not captured by the current studies because the employed NS equations are 2D.

Therefore, future studies considering more accurate physical models (e.g. 3D NS

equations) are needed to improve the prediction performance. In addition, the wind

prediction is also limited by the LIDAR measurement data’s ability in characterising

the essential wind information. Therefore, it is of great interest to investigate the

optimal data acquisition design for the proposed method. It is expected that the

data quality will increase using an optimised data acquisition design, which, in turn,

will increase the prediction accuracy further. Equal weights have been applied to

the training loss arising from the NS residue terms (i.e. L1) and LIDAR measure-

ments (i.e. L2). Future works may include the investigation of the weights’ impact

on the training convergence and the prediction performance. Future research may

also include the real-world LIDAR measurement campaign to further validate the

proposed method.

As the predicted spatiotemporal flow field contains much more information

about the incoming wind than the original LIDAR measurements, it is greatly use-

ful in developing advanced strategies for the wind resource assessment and for the

monitoring and control of wind turbine/farm, by using such rich flow information.

This may include the usage of the predicted spatiotemporal data for wind power pre-

diction, turbine load evaluation, extreme event forecasting, maintenance scheduling,
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etc. As the developed method is generic, another research direction is the application

of the developed method in the state estimation and forecasting of other systems

governed by PDEs such as wave/tide energy systems and other flow configurations

such as wind over complex terrains.
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Chapter 8

Three-Dimensional

Spatiotemporal Wind Field

Reconstruction Based on

Physics-Informed Deep

Learning

8.1 Introduction

This chapter extends the work presented in Chapter 7 to the prediction of 3D

spatiotemporal wind field in front of a wind turbine, through combining the 3D

NS equations and the scanning LIDAR measurements into physics-informed deep

learning. In particular, a deep NN is first constructed, then the 3D NS equations

are encoded into the deep NN to form the NS residue terms, by using automatic

di↵erentiation. Next, the measurement process of the scanning LIDAR is encoded

into the deep NN to map the full flow state and the real-time LIDAR beam directions

to LIDAR observations. The NN training is finally carried out to minimise the

LIDAR observation errors and the NS residues simultaneously. Because the 3D NS

equations can describe the 3D unsteady wind very well while the scanning LIDAR

provides sparse yet valuable information about the incoming 3D wind, the whole 3D

spatiotemporal wind field can be predicted after training. To the best of the author’s

knowledge, this is for the first time that the prediction of 3D spatiotemporal wind

field is achieved based on real-time scattered measurements and physics. From the

predicted spatiotemporal flow field, the mean wind quantities (such as the e↵ective
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wind speed at di↵erent heights) and the instantaneous wind quantities (such as the

wind speed at specific turbine blade locations) can be extracted.

In addition, the present work further improves the wind field reconstruction

performance by taking full advantage of the physics-informed deep learning frame-

work’s ability in solving inverse problems. In particular, instead of incorporating

the NS equations with pre-determined parameters (i.e the air viscosity in the trans-

port terms), as was done in [190], the present work treats the parameters in the NS

equations (i.e. the e↵ective viscosity which is the sum of the air viscosity and tur-

bulent viscosity) as training variables. Therefore, this work achieves the inference of

the turbulent viscosity and the reconstruction of the 3D wind field simultaneously.

The benefits of solving the inverse problem instead of directly specifying the NS

equations with the air viscosity are two-fold. First, the accuracy of reconstructing

the 3D wind field is improved, as in this way the turbulence e↵ects are taken into

account. Second, the turbulent viscosity is obtained after training, which can be

used for characterising the turbulence intensity in other applications such as the

modelling and numerical simulation of turbulent wind.

To evaluate the performance of the proposed method, the LES flow solver

SOWFA [160] is employed to carry out high-fidelity numerical experiments. SOWFA

can simulate the atmospheric boundary layer flows under various conditions and

has been widely validated in many studies e.g. on the turbine dynamics [57], the

control of wind farms [35] and the wind turbine load in atmospheric flows [191].

During SOWFA simulations, the LoS scalar wind speed at specific spatial locations

are extracted to simulate the measurement process of the scanning LIDAR beams,

while the 3D flow fields are recorded to provide ground truth for method validations.

The main contributions of this chapter are summarised as follows:

(1) The prediction of 3D spatiotemporal wind field in front of a wind turbine

is achieved for the first time, by combing 3D NS equations and scanning LIDAR

measurements via physics-informed deep learning. In particular, the whole 3D dy-

namic wind vector field is reconstructed using only the LoS LIDAR measurements

at sparse spatial locations. Because LIDAR devices are becoming widely available

for modern wind turbines, and, to the best of the author’s knowledge, no other

works can achieve similar 3D wind predictions, this work is very useful in advancing

other research fields including wind turbine control & monitoring, wind resource

assessment, and wind power & load forecasting.

(2) Instead of using pre-determined parameters for the NS equations [190],

the proposed method treats the unknown parameters (i.e. the turbulent viscosity)

in the NS equations as training variables. In this way, the inference of the turbulent

146



viscosity is achieved which is very useful for other wind applications such as wind

modelling and simulations. It also further improves the performance of wind field

reconstruction, as the turbulence e↵ects have been taken into account through the

turbulent viscosity.

(3) The proposed method is validated using large-scale high-fidelity numerical

experiments, where its accuracy is evaluated in terms of predicting the whole 3D

flow field as well as the main wind quantities that are closely related to wind turbine

loading, to demonstrate its great importance for various wind applications [83,189,

192].

The remaining part of this chapter is organised as follows: the spatiotem-

poral wind field reconstruction problem is formulated in Section 8.2. The physics-

informed deep learning based method which combines the 3D NS equations and

the LIDAR measurements is described in Section 8.3, where the deep NN structure

and its training are given in detail. The prediction performance of the developed

method is evaluated in Section 8.4, using high-fidelity CFD simulations. Finally the

conclusions are drawn in Section 8.5.

8.2 Problem Formulation

Currently, LIDAR devices are becoming widely available for modern wind turbines.

However, LIDAR can only measure the LoS wind speed in the laser beam direction

at sparse spatial locations along the laser beams. As the incoming wind in real-world

condition is not uniform, the whole 3D wind field in front of wind turbines remains

unknown. In order to bridge the gap between the limitation of the current sensor

technology and the need of detailed wind field information, this work develops a

method to achieve the reconstruction of the whole 3D spatiotemporal wind field in

front of a wind turbine, based on LIDAR measurements and 3D NS equations.

An illustration of LIDAR measurements is given in Figure 8.1, where the

LIDAR beams (coloured in red) are shown in front of a wind turbine. At a given

time instant, the LIDAR beams can measure the LoS wind speed at the discrete

spatial locations (which are illustrated as the cross signs in Figure 8.1). The 3D

spatiotemporal wind field reconstruction problem considered in this work states as,

based on the LIDAR measurements at these sparse locations during certain time

period T , how to predict the wind velocity (including the wind velocity components

in downwind, crosswind, and vertical directions) at every locations in the 3D spatial

domain in front of the wind turbine at every time instant. It is worth noting that

this task is not achievable without taking flow physics into account, as only scalar
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Figure 8.1: The illustration of LIDAR measurements in front of a wind turbine.

measurements (i.e. the LoS wind speed) at sparse locations are available.

8.3 3D Wind Field Reconstruction Method

A 3D spatiotemporal wind field reconstruction method is proposed in this section,

where LIDAR measurements and 3D NS equations are combined via the physics-

informed deep learning technique. The whole reconstruction framework is demon-

strated in Figure 8.2. The NN structure and its training are described in detail in

the remainder of this section.

8.3.1 Neural Network Structure

The whole NN structure includes three sub NNs i.e. the Base-NN, the LIDAR-NN

and the NS-NN, as shown in Figure 8.2. The Base-NN is first constructed, based

on which the LIDAR-NN and the NS-NN are then derived to incorporate LIDAR

measurements and NS equations respectively.

The Base-NN is constructed to approximate the mapping between the spa-

tiotemporal coordinates and the flow state variables. Denote the spatiotemporal

coordinates as X = [t, x, y, z] (representing the time coordinate and the space co-

ordinate in the 3D Cartesian coordinate system) and the flow state variables as

Y = [u, v, w, p] (representing the velocity components in the x, y, z directions and

the air pressure, respectively), then the Base-NN, denoted as F , can be expressed

as

Y = F (X;W ) (8.1)

where W represents all the training variables in the Base-NN.
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Figure 8.2: The demonstration of the proposed 3D spatiotemporal wind field recon-
struction method based on the physics-informed deep learning technique.

As the LIDAR can only measure the LoS wind speed in the LIDAR beam

direction, no training target of Y is available. The LIDAR-NN, denoted as Fµ, is

constructed to incorporate the LIDAR measurements. As the mapping between

the flow state variables to the LoS LIDAR measurements depends on the direction

of the LIDAR beam (which depends on the LIDAR configurations and can also

change with time in the case of the scanning LIDAR), the LIDAR-NN takes two

additional NN inputs i.e. the elevation angle ✓ and the azimuth angle � of the

LIDAR beam. Denote the NN input of Fµ as Xµ = [X, ✓,�]. Denote the NN output

of Fµ as Yµ = [ulos] which represents the projection of the wind velocity vector in

the LIDAR beam direction. Then the LIDAR-NN can be expressed as

Yµ =Fµ(Xµ;W )

=F (X;W )[1]cos(✓)� F (X;W )[2]sin(✓)sin(�)

� F (X;W )[3]sin(✓)cos(�). (8.2)
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As LIDAR only measures the wind information at sparse locations, the whole

3D dynamic flow field in front of the wind turbine remains unknown. Here the NS-

NN, denoted as Fns, is derived based on the Base-NN to incorporate the NS equa-

tions which provide a very good description of the wind dynamics. The derivation

is based on the physics-informed deep learning framework, a novel framework for

solving forward and inverse problems involving nonlinear PDEs [145]. The applica-

tions of physics-informed deep learning in various research domains have seen great

successes recently, which demonstrates the great advantage of combining physics

(in terms of PDEs) and data in various scenarios. In this work, for the wind field

reconstruction, the 3D NS equations
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Here Re is defined as U1D/⌫eff with D, U1, and ⌫eff representing the turbine

rotor diameter, the average freestream wind speed, and the total e↵ective viscosity

respectively. The e↵ective viscosity is defined as ⌫eff = ⌫air + ⌫t, where ⌫air and ⌫t

are the kinematic viscosity of air and the turbulent viscosity respectively. As the

e↵ective viscosity ⌫eff (thus Re) is not known, it is treated as training variables

and is inferred through the training process. The NS equations are then used to

form the NS residue terms in the NS-NN. In particular, the di↵erential terms in

the NS equations are derived based on the Base-NN using automatic di↵erentiation
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[146]. For example, to incorporate the term @u/@x in the NS-NN, the gradient

of F (X;W )[1] with respect to X[2], denoted as @F1(X,W )/@X2, is derived using

automatic di↵erentiation. Other first-order terms are obtained similarly. Then the

higher-order terms are obtained by the automatic di↵erentiation of the lower-order

terms. For example, to incorporate the term @
2
u/@x

2 in the NS-NN, the gradient

of @F1(X,W )/@X2 with respect to X[2] is derived. All the terms are finally added

to form the NS residue terms eu(X; [W, 1/Re]), ev(X; [W, 1/Re]), ew(X; [W, 1/Re])

and ediv(X;W ). Denote the NN input and the NN output of Fns as Xns = [t, x, y, z]

and Yns = [eu, ev, ew, ediv], the NS-NN can then be expressed as

Yns =Fns(Xns; [W, 1/Re]). (8.3)

As can be seen from the above construction process, the Base-NN, the LIDAR-NN

and the NS-NN share the same training variables W . The training of the whole NN

involves the updating of W and 1/Re to minimise the NN loss function, which will

be described in detail in the next subsection.

8.3.2 Neural Network Training

After constructing the whole NN structure, the loss function needs to be specified

for the NN training. In order to train the NN such that it satisfies the constraints

imposed by the NS residue terms and fits the LIDAR measurements simultaneously,

the loss function is specified to consist of two parts. The first part is defined as
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], 1  i  Nµ} are the LIDAR measurement data

with each sample consisting of the time coordinate, the measurement location, the

elevation angle, the azimuth angle, and the corresponding value of the LoS wind

speed measured by LIDAR. The second part is defined as
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1
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where {[tns
i
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, y

ns

i
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i
], 1  i  Nns} are the randomly-sampled spatiotemporal

coordinates corresponding to the spatial domain in front of the wind turbine. It is

at these spatiotemporal coordinates that the NS constraints are enforced. The loss
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function is then defined as

L(W, 1/Re) = L1(W ) + L2(W, 1/Re). (8.6)

Finally, the proposed NN structure is trained to minimise the loss function L(W, 1/Re),

by updating the training variables W and 1/Re. In this work, the Adam algo-

rithm [158] is employed for the NN training.

After the NN training, 1/Re (thus the e↵ective viscosity ⌫eff ) can be ob-

tained and the Base-NN can be used for the prediction of the wind velocity vector

at a given location in front of the wind turbine and a given time instant. The whole

wind field at a given time instant can thus be obtained by first generating a 3D

mesh corresponding to the flow domain in front of the turbine and then propagating

the 3D mesh through the Base-NN. Furthermore, because the deep learning model

learnt the spatiotemporal correlation of the wind field from the NS equations, fu-

ture time instant can be directly fed into the Base-NN for predictions. Therefore,

the proposed method can also achieve a short-term wind forecasting without the

commonly-used Taylor’s frozen turbulence hypothesis.

8.4 Results

The proposed wind field reconstruction method is evaluated in this section, by us-

ing high-fidelity numerical experiments. The simulation details and the prediction

results are presented in the following subsections.

8.4.1 Simulation Setups

The numerical experiments are carried out using the high-fidelity LES solver SOWFA

[160]. For the simulations in this work, a 3D mesh of 250⇥ 250⇥ 83 is generated in

a 3⇥3⇥1km flow domain. Simulations of 400s are carried out where the freestream

wind speed is set as 8m/s and the FSTI is set as 6%. During the last 100s simu-

lations, the whole 3D wind velocity field (including the wind speed in the x, y, z

directions at every spatial location) is recorded which is used as the ground truth

for evaluating the proposed wind field reconstruction method. The simulations are

carried out using 256 CPU cores on local HPC clusters and require around 2 hours

to complete.

In addition, a virtual LIDAR device is added to extract the LoS wind speed

at the LIDAR measurement locations. In particular, five LIDAR beams, with the

measurement frequency of 1s, the spatial resolution of 20m and the measurement
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E↵ective viscosity Turbulent viscosity ratio
0.2m2

/s 2.0⇥ 104

Table 8.1: The estimation of the e↵ective viscosity by the proposed method.

range of 220m, are included in the virtual measurement process. One of five beams

is configured towards the turbine yaw direction i.e. the elevation angle equal to

0�. The other four are configured with an elevation angle of 15� and uniformly-

distributed azimuth angles (i.e. the four beams are uniformly distributed in the

cone surface as illustrated by the red lines in Figure 8.1). Furthermore, the virtual

LIDAR beams are designed to scan over the azimuth direction in order to provide

the wind information with better spatial coverage.

8.4.2 Prediction Results and Discussions

The LIDAR measurement data, which is described in Section 8.4.1, is used to train

the proposed deep learning model. In this work, the structure of the Base-NN is set

as 4-128-128-128-128-128-128-128-4 with the hyperbolic tangent activation for the

intermediate layers and the linear activation for the last layer. The learning rate of

the Adam optimiser is set as 10�4. The training is carried out using NVIDIA Tesla

K80 GPU and each training iteration requires around 0.14s, which illustrates the

ability of the proposed approach for real-time 3D dynamic wind field reconstruction

through o✏ine training and online updating. The scanning speed of the LIDAR

beams in the azimuth direction still needs to be specified. In this work, the scanning

speed is set as a constant value of 15�/s, which is determined by trying out a set of

di↵erent values and choosing the value with the smallest prediction RMSE.

After training, the e↵ective viscosity is obtained. The results are given in Ta-

ble 8.1, along with the turbulent viscosity ratio i.e. the ratio between the turbulent

viscosity and the air viscosity. The results clearly show that the turbulent wind is

characterised primarily by the turbulent viscosity, as the e↵ective viscosity is much

larger than the air viscosity. As the turbulent viscosity can be used to describe the

wind turbulence, it is very useful for other wind applications such as wind mod-

elling and simulations. For example, it can be used to specify the turbulent inflow

conditions for numerical simulations of wind turbine wakes.

Next, the whole spatiotemporal 3D flow field is predicted. The results for

three typical time instants are given in Figure 8.3 and 8.4, where the ground truth

is also included for comparisons. The corresponding error distributions are shown

in Figure 8.5 and Figure 8.6. Figure 8.3 shows the visualisations of the wind speed
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magnitude in the x-y plane at the hub height and in the x-z plane, while Figure

8.4 shows the flow visualisations in the y-z plane at various streamwise locations.

As can be seen from Figure 8.3, the flow structures (e.g. the high-speed/low-speed

flow zones) in both x-y and x-z planes are predicted very accurately. The wind

features in the vertical direction, such as the wind shear (e.g. the increase of the

wind speed with height), are also captured very well. As can be seen from Figure

8.4, the flow fields in the 2-D domain parallel to the rotor plane are predicted very

accurately at various streamwise locations before the turbine. This demonstrates

that the proposed method can provide detailed preview wind information for the

whole 2-D rotor plane, which is of great importance for the control of wind turbines

especially in the case of smart rotors [189]. In addition, the unsteady flow visualisa-

tions including both the ground truth and the prediction results are available online

in the supporting materials of the published paper. As shown in the videos, the

predicted flow field matches with the ground truth very well, demonstrating that

the proposed approach captures the 3D spatial variation and the temporal evolu-

tion of the incoming turbulent wind successfully. The results fully reveal the great

performance of the proposed approach.

To further quantify the prediction accuracy, the RMSE of the flow field pre-

diction is calculated, which is defined as

✏q =
1

T

TX

t=1

vuut 1

Ntest

NtestX

i=1

(q⇤
xi,yi,zi,t

� q̂xi,yi,zi,t)
2. (8.7)

Here the total time T is 100, {[xi, yi, zi], 1  i  Ntest} is the grid points correspond-

ing to the 12⇥ 12⇥ 12m uniform mesh in the 3D flow domain in front of the wind

turbine, and q represents the flow quantity such as the wind velocity components

in x, y and z directions (i.e. u, v, w). q
⇤ and q̂ represent the true value and the

corresponding predicted value of q. The results are given in Table 8.2. As can be

seen, the predictions for the streamwise velocity u, the spanwise velocity v and the

vertical velocity w are all quite accurate, with the RMSEs equal to 6.5%, 11.9%, and

12.7% of the corresponding value ranges. Furthermore, the directional information

of the wind velocity can also be predicted, by first projecting the 3D velocity vector

to the 2-D plane and then calculating the angle between the 2-D vector and the

reference direction. The directions of the wind vector projected in x� y and x� z

planes, at any given location, can be calculated by

�y = arctan(v/u) (8.8)
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(a) t = 60s, prediction (b) t = 60s, true

(c) t = 70s, prediction (d) t = 70s, true

(e) t = 80s, prediction (f) t = 80s, true

Figure 8.3: The 3D velocity field (visualised in x-y and x-z planes) predicted by the
proposed method at time (a) t = 60s, (c) t = 70s and (e) t = 80s. The corresponding
ground truth is also shown for comparisons (b, d, f).

and

�z = arctan(w/u). (8.9)

The RMSEs of the �y and �z fields are also included in Table 8.2. As shown,

�y, which is actually the conventional wind direction, is predicted correctly. This

demonstrates that the proposed approach can be used for tackling the yaw mis-

alignment which is of great importance for improving the e�ciency of wind power

generations [193]. The vertical wind direction �z is also predicted correctly, which
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(a) t = 60s, prediction (b) t = 60s, true

(c) t = 70s, prediction (d) t = 70s, true

(e) t = 80s, prediction (f) t = 80s, true

Figure 8.4: The 3D velocity field (visualised in y-z planes) predicted by the proposed
method at time (a) t = 60s, (c) t = 70s and (e) t = 80s. The corresponding true
values are also shown for comparisons (b, d, f).

shows that the proposed approach can be used for the control of turbine tilt an-

gles [194]. It is concluded that the proposed method predicts the directional wind

information very well, given that only scalar information is available in the original

LIDAR measurements.

In addition, the 3D spatiotemporal wind field reconstruction is also carried

out by using the pre-determined viscosity in the NS equations. The prediction

RMSEs are given in Table 8.3. The results in Table 8.2 and 8.3 clearly demonstrate

that by including and inferring the e↵ective viscosity in the proposed model, the

present work achieves better accuracy for all the flow quantities.
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(a) t = 60s (b) t = 70s

(c) t = 80s

Figure 8.5: The di↵erence between the 3D velocity field (visualised in x-y and x-z
planes) predicted by the proposed method and the corresponding ground truth, at
time (a) t = 60s, (b) t = 70s and (c) t = 80s.

Quantity (units) Value range RMSE (% of range)

u (m/s) [6.08, 10.11] 0.263 (6.5%)

v (m/s) [-1.82, 1.53] 0.397 (11.9%)

w (m/s) [-1.48, 1.36] 0.361(12.7%)

�y (�) [-11.4, 11.8] 2.84 (12.2%)

�z (�) [-10.1, 9.77] 2.58(13.0%)

Table 8.2: The RMSEs of the 3D flow field predictions by the method proposed in
this chapter.

To further evaluate the prediction performance and to illustrate the use of

the proposed method for wind turbine control and wind power & load forecasting,

the e↵ective wind speed and the instantaneous wind speed at specific turbine blade

locations are extracted from the predicted full spatiotemporal wind field and then

compared with the corresponding true values in the following parts.

First, the e↵ective wind speed, which is defined here as the wind speed av-
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(a) t = 60s (b) t = 70s

(c) t = 80s

Figure 8.6: The di↵erence between the 3D velocity field (visualised in y-z planes)
predicted by the proposed method and the corresponding ground truth, at time (a)
t = 60s, (b) t = 70s and (c) t = 80s.

Quantity (units) Value range RMSE (% of range)

u (m/s) [6.08, 10.11] 0.276 (6.8%)

v (m/s) [-1.82, 1.53] 0.457 (13.6%)

w (m/s) [-1.48, 1.36] 0.364(12.8%)

�y (�) [-11.4, 11.8] 3.25 (14.0%)

�z (�) [-10.1, 9.77] 2.61(13.1%)

Table 8.3: The RMSEs of the 3D flow field predictions by using the pre-determined
viscosity.

eraged over the y direction, is calculated as

Ūx0,t(z) =
1

Ny

NyX

i=1

ûx0,yi,z,t, (8.10)

where {yi, 1  i  Ny} is a set of uniformly-distributed y coordinates in the interval

[�30, 30]m. The e↵ective wind speed is defined here as the wind speed averaged only
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over the y direction instead of over the y-z rotor plane, because in this way the wind

speed variation in vertical direction can be shown clearly. The results are given

in Figure 8.7 for several streamwise locations i.e. x0 = [�50,�10, 30, 70, 110]m.

The corresponding RMSEs are [0.082, 0.086, 0.102, 0.133, 0.173]m/s for x0 =

[�50,�10, 30, 70, 110]m, respectively. As shown, the profiles of the e↵ective wind

speed are predicted accurately at all the streamwise locations and all time instants.

The wind shear, i.e. the increase of the wind speed magnitude with height, is cap-

tured very well.

Second, the instantaneous wind speeds at the turbine blade root, 1/4 chord

length, 1/2 chord length, 3/4 chord length and the blade tip are predicted and

compared with the corresponding ground truth. For illustration purpose, here the

rotational speed of the wind turbine is set as 60�/s, and the variable rotational speed

can be applied in the same way. The results are given in Figure 8.8. As shown, the

time series of the wind speed are predicted very accurately, including both the slow

variations due to the freestream flow structures and the fast variations due to the

turbine rotations. In particular, the e↵ect of the wind shear increases clearly from

the blade root to the blade tip location, as shown by the increase of the oscillation

magnitudes from Figure 8.8(a) to 8.8(e). The magnitudes of wind speed oscillations,

which are modulated by the incoming turbulent wind and di↵er for each turbine

rotation period, are also predicted accurately. To further illustrate the use of the

proposed approach in wind turbine load evaluations, the wind velocity relative to the

rotating turbine blade is extracted and the results are given in Figure 8.9 and 8.10,

where the velocity components in the axial direction and in the tangential direction

are shown respectively. The corresponding RMSEs at 1/4 chord length, 1/2 chord

length, 3/4 chord length and the blade tip are [0.115, 0.183, 0.241, 0.251]m/s and

[0.340, 0.359, 0.359, 0.372]m/s for axial velocity and tangential velocity respectively.

As shown, the axial wind velocity is predicted very accurately while the prediction

for tangential wind velocity is less accurate. This is because LIDAR mainly measures

the wind velocity component in the axial direction, providing much less information

in the tangential direction.

Next, as the proposed deep learning model learns the temporal correlations

of the wind field from the NS equations, it can be used directly for short-term wind

forecasting. This is achieved by directly feeding future time coordinates to the Base-

NN. The results for 15s-ahead wind speed forecasting are included in Figure 8.8, 8.9

and 8.10. Another 15s numerical simulations are also carried out by SOWFA to

obtain the corresponding ground truth for comparisons. As shown by the last 15s

time series in Figure 8.8, 8.9 and 8.10, the forecasting results match with the true
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(a) x0 = -50m (b) x0 = -10m

(c) x0 = 30m (d) x0 = 70m

(e) x0 = 110m

Figure 8.7: The profile of the e↵ective wind speed predicted by the proposed method
(the dashed lines) at x0 = [�50,�10, 30, 70, 110]m and various time instants. The
corresponding true values (the solid lines) are also shown for comparisons.

values quite well. It is worth mentioning that the proposed method does not need any

prior parameter tunings to determine the forecasting time horizon. The forecasting

can be achieved with good accuracy as long as the wind speed at the location and

the time instant of interest is correlated with the available LIDAR measurement

data. In practice, the maximum forecasting time horizon can be estimated as the

virtual time of the flow convection from the upstream measurement points to the

turbine location.
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(a) blade root (b) 1/4 chord length

(c) 1/2 chord length (d) 3/4 chord length

(e) blade tip

Figure 8.8: The instantaneous wind speeds predicted by the proposed method at
the turbine blade root, 1/4 chord length, 1/2 chord length, 3/4 chord length, and
the blade tip. The corresponding true values are also shown for comparisons.
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(a) 1/4 chord length (b) 1/2 chord length

(c) 3/4 chord length (d) blade tip

Figure 8.9: The instantaneous axial wind speeds relative to the rotating turbine
blade, predicted by the proposed method at 1/4 chord length, 1/2 chord length, 3/4
chord length, and the blade tip. The corresponding true values are also shown for
comparisons.

8.5 Conclusions

The 3D spatiotemporal wind field reconstruction was investigated in this chapter,

where a physics-informed deep learning based method was proposed to combine the

3D NS equations and the scanning LIDAR measurements. The results showed that,

by combining the physics and data, the whole 3D dynamic wind velocity vector field

(including the velocity components in x, y, and z directions ) in front of the wind

turbine was predicted very accurately based on only the limited scalar information at

very sparse spatial locations (i.e. the LoS wind speed measured by LIDAR beams).

In particular, only 11 measurement points per LIDAR beam were used for the

predictions. In addition, the inference of the turbulent viscosity was also achieved,

which can be used for characterising the wind turbulence in other applications such
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(a) 1/4 chord length (b) 1/2 chord length

(c) 3/4 chord length (d) blade tip

Figure 8.10: The instantaneous tangential wind speeds relative to the rotating tur-
bine blade, predicted by the proposed method at 1/4 chord length, 1/2 chord length,
3/4 chord length, and the blade tip. The corresponding true values are also shown
for comparisons.

as wind modelling and numerical simulations of wind turbine wakes.

The 3D wind field predictions were first examined by visualising the flow

fields in x-y, x-z, and y-z planes. The results showed that the spatiotemporal flow

field predicted by the proposed approach matched with the corresponding ground

truth very well, where the 3D spatial variation of the incoming wind (such as the

evolving flow structures and the vertical wind shear) was successfully predicted.

The prediction accuracy was then quantified by the RMSEs of the reconstructed

spatiotemporal wind fields. The results showed that the RMSEs were only 0.263m/s,

0.397m/s, 0.361m/s for the streamwise velocity u, the spanwise velocity v, and the

vertical velocity w which were only 6.5%, 11.9%, and 12.7% of the corresponding

value ranges, demonstrating the great accuracy of the proposed method. To the

best of the author’s knowledge, this is for the first time that this type of accurate
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and detailed predictions of the unsteady 3D wind field in front of a wind turbine is

achieved. Furthermore, the directional wind information, including the conventional

wind direction (i.e. the wind direction in the x � y plane) and the vertical wind

direction ( i.e. the wind direction in the x�z plane), was also predicted. The results

showed that the RMSEs were only 2.84� and 2.58� respectively, demonstrating the

great potential of the proposed method in tackling yaw misalignment and turbine

tilt control, which are of great interest in improving the energy capture e�ciency of

wind turbines. For example, the field test in [195] showed that the annual energy

production can be increased by 2.4% by applying yaw corrections, and the study

in [194] showed that turbine tilt control has a great impact on the power generation

of wind farms.

The predicted wind field is of vital importance for wind energy applications

e.g. wind turbine control design to further increase the power generation e�ciency,

accurate forecasting of wind power to aid its grid integration, and detailed and

reliable wind resource assessments. To illustrate these points, the e↵ective wind

speeds at various streamwise locations and the instantaneous wind speeds at vari-

ous turbine blade locations were extracted from the predicted wind field and then

compared with the corresponding ground truth. The results showed that the e↵ec-

tive and instantaneous wind speeds were both predicted very accurately at all the

considered locations. In particular, the wind speed oscillations due to the blade ro-

tations and the variations of the oscillation magnitudes at each rotation period due

to the freestream turbulent wind were both captured very well. The vertical wind

shear was also predicted accurately. Furthermore, a short-term wind forecasting

was carried out and the results showed that the accurate forecasting of the wind

speeds at various locations ranging from the turbine blade root to the blade tip was

achieved without the commonly-used Taylor’s frozen turbulence hypothesis [185].

To further improve the prediction performance, future works include the

design of the LIDAR configuration and its scanning pattern to optimally arrange

the measurement points, and the incorporation of other flow sensors in the proposed

method to provide more versatile flow measurements.
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Chapter 9

Conclusions and Future Works

9.1 Conclusions

In this Thesis, ML-based approaches have been proposed to tackle the challenges

arising from the modelling and control of wind turbine structures and wind farm

wakes. First, the RL-based approach was investigated for the structural control of

floating wind turbines. Then the research moved to the farm level, focusing on the

ML-based modelling of wind farm wakes. Next, the prediction of the spatiotemporal

wind field in front of wind turbines was investigated based on the physics-informed

deep learning. The works presented in this thesis showed very promising results

in the interdisciplinary research field involving high-fidelity numerical simulations

(including high-fidelity structural models and CFD models), physical laws in terms

of PDEs (i.e. the NS equations), and ML (including RL, supervised ML, dimen-

sionality reduction, GAN, physics-informed deep learning).

Chapter 2 investigated the RL-based structural control of floating wind tur-

bines, where an active TMD was installed on the floating platform to suppress the

vibration of the structural system. In particular, the ADP algorithm was employed

to derive the optimal control law based on the nonlinear structural dynamics, and a

NN structure consisting of three sub-networks (i.e. the plant network, critic network,

and action network) was designed and implemented to realise the ADP algorithm.

Numerical simulations were carried out using the floating wind turbine model within

FAST to evaluate the proposed RL-based controllers. The results showed that the

proposed controller achieved great performance (e.g. the standard deviation of the

platform pitch displacement being reduced by around 40%) for the load mitigation

of floating wind turbine structures in a wide range of wave and wind conditions.

A clear advantage of the developed controllers over traditional approaches was ob-
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served, especially for extreme conditions - the scenarios that must be considered

seriously in o↵shore wind technology. Moreover, the tradeo↵ between the control

performance and power consumption was systematically investigated.

Chapter 3 investigated the quantification of parameter uncertainty in wind

farm wake models using the Bayesian UQ framework. High-fidelity CFD simulations

of wind farms were first carried out using the LES flow solver SOWFA and then the

generated flow field data was used to infer the posterior distributions of the param-

eters in the widely-used wake model FLORIS. The results showed that by taking

parameter uncertainty into account, the flow field prediction was improved and a

correct characteristic of uncertainty in the ‘mixing zone’ was captured. In addition,

the predictions of the turbine power generations were improved. In particular, the

FLORIS model with parameter uncertainty (called stochastic FLORIS) can predict

the turbine power fluctuation much better than the original FLORIS. This demon-

strates that the stochastic FLORIS model can be used to not only maximise the

average power but also minimise the power fluctuation.

Chapter 4 proposed an ML-based surrogate modelling method for distributed

fluid systems and then applied it to wind farm wake modelling. In the proposed

surrogate modelling procedure, various dimensionality reduction techniques (e.g.

POD, ICA, AE) were employed for reducing the flow field dimension and the fully-

connected NN was employed for predicting the reduced representations of the flow

field with the flow parameters as the input. The proposed method was designed

specifically to tackle the fluid flows over distributed structures, by carrying out sur-

rogate modelling for each subdomain and combining the flow field of each subdomain

with the consideration of the matching condition at the interface. Its e�ciency, ac-

curacy, and scalability were first demonstrated by a 1-D Poisson equation case, then

it was applied to build a data-based wind farm wake model. The results showed that

the developed surrogate model was able to achieve accurate and real-time prediction

of wind farm wakes, with the prediction RMSE for the velocity field in the whole

domain being only 2% of the freestream wind speed.

Chapter 5 improved the work presented in Chapter 4, by proposing a novel

ML-based surrogate modelling method based on the state-of-the-art deep learning

framework DC-CGAN. The proposed method was applied to developing a novel

data-based wake model. The developed wake model (called the CGAN model) was

first validated against high-fidelity data and the results showed that the CGAN

model was able to predict the multi-channel wind turbine wake flows (both stream-

wise and spanwise velocity fields) very accurately and e�ciently. In particular, the

prediction RMSEs for the streamwise and spanwise velocity fields were just 0.10m/s
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and 0.18m/s respectively which were just 1.1% and 4.1% of the corresponding value

ranges. Then a comprehensive parametric study was carried out and the results

showed that the CGAN model learned the qualitative features of wind turbine wake

flows and generalised well to the flow scenarios that were not present in the training

dataset. Furthermore, a case study for a small wind farm was carried out and the

results showed that the CGAN model was able to achieve accurate, robust, and

real-time predictions of wind farm wake flows.

Chapter 6 further improved the works in previous chapters on static wake

modelling, by developing a novel dynamic wind farm wake model. First, a set of

LES simulations were carried out to generate a high-fidelity flow field database with

designed wind conditions and yaw changes. Then a deep learning model, called

POD-LSTM, was trained to learn the wake dynamics from this valuable database.

The POD was employed for reducing the flow field dimension and the LSTM was

employed for predicting future flow fields with the historical data as the input. The

results showed that the developed model was able to capture the main unsteady flow

features (such as the streamwise convection of flow structures, the wake meandering,

the wake’s deflection with changing yaw, and the wake interactions between wind

turbines) similarly as high-fidelity wake models while running as fast as the low-

fidelity static wake models. The results of a 9-turbine test case further showed

that the developed model was able to predict the unsteady turbine wakes in several

seconds on a standard desktop while it would require tens of thousands of CPU

hours on an HPC cluster if a high-fidelity model is used. As the existing wake models

in the literature are either too time-consuming or unable to capture detailed wake

dynamics, the developed model brings a step change in fast and accurate simulations,

predictions, and control designs of wind farms. However, as the developed model

only considers the interactions between subdomains through the upstream boundary

(which is enough in capturing the main wake interactions), there exist discontinuities

in the predicted flow fields at the interface between di↵erent rows of wind turbines.

This discontinuity issue may be solved by including all the boundary conditions of

each subdomain as the input in the POD-LSTM model. However, the consideration

of the interactions at all the subdomain boundaries is not trivial and needs further

investigation regarding the generation of the training dataset and the numerical

stability. Future works may include the development of new approaches to tackle

this issue.

Chapter 7 investigated the spatiotemporal wind field predictions in front of

a wind turbine, based on the physics informed deep learning framework and LIDAR

measurements. The deep learning model in this chapter fused data (i.e. the LIDAR
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measurements data) and physics (i.e. the NS equations) in the training process in a

unified manner. Therefore it can predict the spatiotemporal wind information that

is not present in the training data, which is not achievable using traditional ML

methods. The prediction performance was evaluated based on the high-fidelity flow

solver SOWFA. The results showed that the spatiotemporal wind field (including

both wind speed and direction fields) in the whole domain in front of the wind

turbine was predicted very accurately for a wide range of scenarios (including various

measurement noises, resolutions, LIDAR look directions, and turbulence levels),

based on only LoS wind speed measurements at sparse locations. In particular, the

MRMSE of wind field prediction was only 0.198m/s for wind magnitude prediction

and 2.77� for wind direction predictions at the baseline case, which were just 7.0%

and 19.4% of the corresponding value ranges. The averaged and instantaneous wind

speeds were also predicted and the results showed the e↵ective wind speed at various

streamwise locations and the instantaneous wind speed at turbine blade locations

were all predicted very well. In addition, the detailed short-term wind forecasting

was also achieved without relying on the widely-used Taylor’s frozen turbulence

hypothesis.

Chapter 8 extended the work presented in Chapter 7 to three-dimensional

spatiotemporal wind field predictions, by combining the scanning LIDAR measure-

ments and the 3D NS equations. To further improve the prediction performance,

instead of incorporating the NS equations with pre-determined parameters (i.e. the

air viscosity in the transport terms) as in Chapter 7, this chapter treated the pa-

rameters in the NS equations (i.e. the e↵ective viscosity) as training variables. The

results showed that the whole 3D dynamic wind velocity vector field (including the

velocity components in x, y, and z directions ) in front of the wind turbine was pre-

dicted very accurately based on only the limited scalar LoS wind speed measured

at very sparse spatial locations by LIDAR. The RMSEs of the 3D flow field pre-

dictions were only 0.263m/s, 0.397m/s, 0.361m/s for the streamwise velocity u, the

spanwise velocity v, and the vertical velocity w which were only 6.5%, 11.9%, and

12.7% of the corresponding value ranges. The main wind features were correctly

captured including the turbulent viscosity, the wind directions (both the conven-

tional and vertical wind directions), the evolving flow structures, and the vertical

wind shear. In addition, the predictions of the e↵ective and instantaneous wind

speeds were examined and the results showed that the wind speed oscillations at

specific turbine blade locations due to the blade rotations and the variations of the

oscillation magnitudes at each rotation period due to the freestream turbulent wind

were both captured very well. The prediction RMSEs for the relative wind speed at
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1/4 chord length, 1/2 chord length, 3/4 chord length and the blade tip were [0.115,

0.183, 0.241, 0.251]m/s and [0.340, 0.359, 0.359, 0.372]m/s for axial and tangen-

tial velocity respectively. The predicted 3D spatiotemporal wind field (which is not

available with current sensor and prediction technologies) is very useful in advanc-

ing other wind energy research fields e.g. wind turbine control & monitoring, power

forecasting, and resource assessments.

9.2 Future Works

The works presented in this thesis involve control engineering, structural mechanics,

fluid dynamics, scientific computing, machine learning, and their applications in

renewable energy systems (in particular wind turbine/farm systems). The field is

just emerging and large research gaps still exist for both method developments and

applications. A few important research directions are discussed below.

• More research e↵orts on the control of wind turbines and wind farms are

needed in order to mitigate the fatigue load of the turbine structures, maximise

the power capturing e�ciency of wind farms, and facilitate the integration of

wind power into the power grid. Both model-based and model-free control

approaches need to be explored. The former may include the use of traditional

models and the ML-based models developed in this thesis in the control design

process, while the latter may include model-free RL approaches which are

developing fast in ML and control communities. The development of novel ML-

based models for wind turbine/farm systems is needed to further improve the

model accuracy, e�ciency, and robustness. Such models are of great interests

for both model-based control design as internal models and the model-free

control design as fast simulation tools. As only the wake interaction in the

upstream direction is considered in the wake models developed throughout

this thesis, more works are needed to take account of the interactions between

wind turbines in the lateral directions.

• To improve the performance of the ML-based models, it is very important to

develop novel ML approaches that can combine domain knowledge with data.

This is especially suitable for physical systems, as the underlying physics are

usually known & well studied and the consideration of physics in the ML

model is extremely beneficial. Furthermore, the ML field itself is developing

fast. Therefore, more works are needed to take advantage of the latest develop-

ment of the ML hardware (such as multi-GPU clusters), software (such as the
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further development of the deep learning platform including Tensorflow [155]

and Pytorch [196]), and algorithms (including the ML algorithms arising from

computer science, control engineering, and scientific computing fields).

• The works presented in this thesis, including the structural control of float-

ing wind turbines, the ML-based modelling of wind farm wakes and the spa-

tiotemporal wind predictions using physic-informed deep learning, have been

extensively validated with high-fidelity numerical models. To further evalu-

ate the proposed control and modelling methods and to further demonstrate

their values in wind energy applications, future works may include experimen-

tal studies (including the structural and flow dynamics in wave tank and wind

tunnel experiments) and the corresponding real-world measurement campaign.

• It is also of great interests to apply the surrogate modelling methods proposed

in this thesis to other fluid flows and renewable energy systems. For exam-

ple, ML-based wave models may be developed using the proposed methods

based on the wave data generated by numerical simulations or experiments.

In addition, it is very interesting to explore the spatiotemporal flow field re-

construction in other renewable energy systems (such as wave energy and

tidal energy systems) based on physics-informed deep learning and scattered

measurements, where the proximity to bounding surfaces will need further

investigations.
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[67] A. Peña, P.-E. Réthoré, and M. P. van der Laan, “On the application of the

jensen wake model using a turbulence-dependent wake decay coe�cient: the

sexbierum case,” Wind Energy, vol. 19, no. 4, pp. 763–776, 2016.

[68] J. Quick, J. Annoni, R. King, K. Dykes, P. Fleming, and A. Ning, “Optimiza-

tion under uncertainty for wake steering strategies,” in Journal of Physics:

Conference Series, vol. 854, p. 012036, IOP Publishing, 2017.

[69] A. Rott, B. Doekemeijer, J. K. Seifert, J.-W. v. Wingerden, and M. Kühn,
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