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Abstract
We derive Onsager–Machlup functionals for countable product measures on
weighted �p subspaces of the sequence space RN. Each measure in the prod-
uct is a shifted and scaled copy of a reference probability measure on R that
admits a sufficiently regular Lebesgue density. We study the equicoercivity
and Γ-convergence of sequences of Onsager–Machlup functionals associated
to convergent sequences of measures within this class. We use these results to
establish analogous results for probability measures on separable Banach or
Hilbert spaces, including Gaussian, Cauchy, and Besov measures with summa-
bility parameter 1 � p � 2. Together with part I of this paper, this provides a
basis for analysis of the convergence of maximum a posteriori estimators in
Bayesian inverse problems and most likely paths in transition path theory.
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1. Introduction

A maximum a posteriori (MAP) estimator is an important feature of a Bayesian inverse
problem (BIP) because of its interpretation as a mode of the posterior distribution, i.e. as a
point in parameter space X to which the posterior assigns the most mass, relative to other points.
This interpretation is only heuristic, because even in the straightforward case that the parameter
space has finite dimension and the posterior admits a Lebesgue density, every point will have
measure zero. To make the interpretation rigorous, one can consider—for a given probability
measure μ on X—the behaviour of ratios of small ball probabilities μ(Br(x1))

μ(Br(x2)) for infinitesimally
small r and for any two parameters x1, x2 ∈ X. Intuitively, if x2 is a mode of μ, then, for any
x1, the limit superior of this ratio must be less than or equal to 1.

In part I of this paper (Ayanbayev et al 2021), we called any x2 that satisfies the limit superior
inequality in the previous paragraph a global weak mode of μ, and showed that, under certain
assumptions, a point is a global weak mode if and only if it minimises an Onsager–Machlup
(OM) functional Iμ : X → R of μ. In practice, the full posterior is not accessible and must be
approximated, and we also analysed the convergence behaviour of the modes associated to an
arbitrary collection {μ(n) | n ∈ N ∪ {∞}} of measures defined on a metric space X, where μ(∞)

plays the role of the full posterior and (μ(n))n∈N plays the role of a sequence of approximate
posteriors. Our findings were as follows:

(a) If (extended) OM functionals Iμ(n) : X → R exist for each n ∈ N ∪ {∞} and
(Iμ(n))n∈N is an equicoercive sequence with Γ- limn→∞ Iμ(n) = Iμ(∞) , then minimisers of
Iμ(n) converge (up to taking subsequences) to a minimiser of Iμ(∞) (Ayanbayev et al 2021,
section 4).

(b) Since modes ofμ(n) are minimisers of their OM functionals, it follows that modes converge
(up to taking subsequences) to a mode of μ(∞) (Ayanbayev et al 2021, section 4).

(c) Suppose that the measures μ(n), n ∈ N ∪ {∞}, are posteriors given by Radon–Nikodym
derivatives (cf Stuart 2010)

dμ(n)

dμ(n)
0

∝ exp(−Φ(n)),

where Φ(n) : X → R are the potentials (negative log-likelihoods) and μ(n)
0 are the priors,

n ∈ N ∪ {∞}. Under rather weak assumptions on the Φ(n), if the conditions in (a) hold
for the priors, then they also hold for the posteriors. In particular, the existence of the OM
functionals Iμ(n) for the posteriors follows from the existence of the OM functionals for
the priors (Ayanbayev et al 2021, section 6).

In principle, establishing Γ-convergence and equicoercivity would require explicit formulae
for the OM functionals of the posteriors, and such formulae can be difficult to obtain. Fortu-
nately, by (c), we only need to proveΓ-convergence and equicoercivity for the OM functionals
of the priors and continuous convergence of the potentials. Indeed, for some commonly-used
priors, the OM functionals of the priors have a simple form and the requisite Γ-convergence
and equicoercivity calculations can be performed more-or-less explicitly.

In part I of this paper (Ayanbayev et al 2021), we determined OM functionals and proved
(a) for possibly degenerate Gaussian measures, as well as for Besov-1 measures. In this paper,
we aim to do the same for a rather large class of countable product measures defined on
weighted sequence spaces. This class of measures consists of countable products of scaled and
shifted copies of a reference probability measureμ0 onR, whereμ0 admits a sufficiently regular
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Lebesgue density. The class includes Gaussian measures, Cauchy measures, and Besov-p
measures for 1 � p � 2. The precise description of this class is given in assumption 4.1.

The first main contribution of this paper, theorem 4.10, shows the existence of and derives
an explicit formula for OM functionals of measures in this class under another technical
assumption. The second main contribution is to prove equicoercivity and Γ-convergence of
OM functionals associated to a convergent sequence in this class, where convergence is meant
in the sense of convergence of the scale and shift sequences, and convergence of the Lebesgue
densities of the reference probability measures: see theorems 4.13 and 4.14. As concrete exam-
ples, we consider Besov-p measures for 1 � p � 2, and Cauchy measures. Since Bayesian
inference is often performed on infinite-dimensional separable Banach or Hilbert spaces, we
also translate the results from the weighted sequence space setting to the separable Banach or
Hilbert space setting.

The main challenge in this work is proving the existence of the extended OM function-
als. In this paper, we consider two approaches for this. The first approach, which we call
the continuity approach, considers shifted measures μh(·) :=μ(· − h) and the corresponding
Radon–Nikodym derivatives rμh := dμh

dμ , whenever they exist. The main idea of this approach,
which has previously been used by Helin and Burger (2015) and Agapiou et al (2018), is to
consider the negative logarithm of the function E � h 	→ rμ−h(u∗), where u∗ is some suitable
reference point, and E ⊆ X is a subset on which rμh is continuous and may depend on the ref-
erence point u∗. We make some contributions to this approach. Ultimately, we do not use it
for the derivation of our main results, because proving continuity on a sufficiently large subset
E ⊆ X turns out to be more challenging than using a different approach.

The second approach, which we call the direct approach, avoids considering continuity of
rμ−h, and directly addresses the limit of the ratio μ(Br(x1))

μ(Br(x2)) as r ↘ 0 to derive the OM functional
of μ on a sufficiently large subset E ⊆ X. By removing the constraint on E that rμ−h must be
continuous on E, we can prove a formula for the OM functional using this direct approach, for
the class of probability measures mentioned above.

We emphasise, however, that in both approaches it is important to consider points in X\E
with great care. In the direct approach, we achieve this by proving a property M(μ, E) which
guarantees that we do not miss any modes outside of E.

The structure of the paper is as follows. In section 2 we discuss related work. Section 3
introduces key notation and concepts, including the formal definition of the OM functional.
In section 4, we present the main results of this paper, namely the derivation of OM function-
als of certain product measures on the sequence space RN as well as the Γ-convergence and
equicoercivity properties of sequences of such measures (and the images of such measures in
Hilbert and Banach spaces). In section 5, we summarise the results of the paper and suggest
some directions for future work. We collect auxiliary results in appendix A and state technical
proofs in appendix B.

2. Overview of related work

OM functionals have been extensively studied in the context of stochastic processes defined by
stochastic differential equations; see e.g. (Ledoux 1996, chapter 7) and the references therein.
However,Γ-convergence does not appear to have been considered in this context until the work
of Pinski et al (2012). In their work, Γ-convergence tools were used to study the minimisers
of OM functionals in the zero temperature limit. Lu et al (2017a) considered optimal Gaus-
sian approximations of the law of a diffusion process with respect to the Kullback–Leibler
divergence using Γ-convergence, and studied the relationship between the OM functional and
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the so-called Freidlin–Wentzell rate functional. Some examples of recent work that further
investigate this relationship include (Du et al 2021, Li and Li 2021).

OM functionals have only recently been studied in the context of BIPs and their MAP
estimators, beginning with the seminal work of Dashti et al (2013), and continuing with
(Clason et al 2019, Dunlop and Stuart 2016, Helin and Burger 2015), for example. The
importance of the OM functional in this context is that its minimisers are the modes (MAP
estimators) of the posterior measure. However, these works establish OM functionals only
for very few measures and do not consider Γ-convergence, as they only study a single fixed
posterior measure instead of a sequence of such measures. As far as we are aware, the only
application of Γ-convergence tools in the context of BIPs appears to be the work of Lu et al
(2017b), where, the goal is to find optimal Gaussian approximations of non-Gaussian proba-
bility measures on Rd with respect to the Kullback–Leiber divergence. The Γ-limits of interest
are specified in terms of increasing quantity of data or decreasing amplitude of noise in the
data. The Γ-limit is used to characterise frequentist consistency properties of the measure,
including a Bernstein–von Mises result. However, Lu et al (2017b) do not mention OM
functionals.

3. Preliminaries and notation

Throughout this article, X will denote a topological space, which in many cases will be a metric,
normed, Banach or Hilbert space. When thought of as a measurable space, X will be equipped
with its Borel σ-algebra B(X), which is generated by the collection of all open sets. If X is a
metric space, then we write Br(x) for the open ball in X of radius r centred on x, in which case
B(X) is generated by the collection of all open balls. The most prominent spaces considered
in this manuscript are the real sequence spaces �p := �p(N) of pth-power summable sequences,
1 � p < ∞, as well as the α-weighted �p spaces defined by

�p
α :=

{
x ∈ RN | (xk/αk)k∈N ∈ �p

}
, ‖x‖�p

α
:= ‖(xk/αk)k∈N‖�p, (3.1)

where α = (αk)k∈N ∈ RN

>0. The �p and α-weighted �p spaces are separable Banach spaces.
In many cases, we will first define the measure μ on (RN,B(RN)), where RN is equipped

with the product topology, show that μ(X) = 1 for X = �p
α for some 1 � p < ∞ and α ∈ RN

>0,
and then view μ as a measure on (X,B(X)). For this purpose, it is important to note that the
Borel σ-algebra B(X) is contained in the Borel σ-algebra B(RN); see lemma B.1.

The set of all probability measures on (X,B(X)) will be denoted P(X). We denote its ele-
ments by μ, ν, μ0, μ(n), n ∈ N ∪ {∞}, etc. The topological support of a measure μ ∈ P(X) on
a metric space X is

supp(μ) := {x ∈ X | for all r > 0,μ(Br(x)) > 0}, (3.2)

which is always a closed subset of X.
We write R for the extended real line R ∪ {±∞}, i.e. the two-point compactification of

R, and R�0 :=R�0 ∪ {∞}. We denote the absolute continuity of μ with respect to ν by μ 
ν, their equivalence (i.e. mutual absolute continuity) by μ ∼ ν, and their mutual singularity
by μ⊥ ν.
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As motivated in section 1, we now introduce the term ‘OM functional’ of a measure μ, the
minimisers of which correspond exactly to global weak modes of μ under certain assumptions
(Ayanbayev et al 2021, proposition 4.1).

Definition 3.1. Let X be a metric space and let μ ∈ P(X). We say that I = Iμ = Iμ,E : E → R,
with E ⊆ supp(μ) ⊆ X, is an Onsager–Machlup functional (OM functional) for μ if

lim
r↘0

μ(Br(x1))
μ(Br(x2))

= exp(I(x2) − I(x1)) for all x1, x2 ∈ E. (3.3)

We say that property M(μ, E) is satisfied if, for some x� ∈ E,

x ∈ X \ E ⇒ lim
r↘0

μ(Br(x))
μ(Br(x�))

= 0, (3.4)

and in this situation we extend I to a function I : X → R with I(x) := +∞ for x ∈ X\E.

As we remark in part I of this paper (Ayanbayev et al 2021, section 3), property M(μ, E) does
not depend on the choice of x� in (3.4). The importance of property M(μ, E) is that it guarantees
that we only need to look for global weak modes of μ within E and may freely ignore points in
X\E. This also justifies setting I := +∞ outside E. However, in order for this property to hold,
the subset E on which an OM functional can be defined needs to be chosen to be as large as
possible. On the other hand, any measure has an OM functional on sufficiently small E (such
as a singleton set), and so there is a certain tension between existence of an OM functional
and the M-property. We recall also that OM functionals are at best unique up to the addition
of real constants (Ayanbayev et al 2021, remark 3.4). Whenever we prove Γ-convergence and
equicoercivity, we use the same version of the OM functional.

The following terminology will be necessary for the continuity approach mentioned in
section 1.

Definition 3.2. When X is a linear topological space, μ ∈ P(X), and h ∈ X, we write μh for
the shifted measure

μh(A) :=μ(A − h) = μ({a − h | a ∈ A}) for each A ∈ B(X). (3.5)

That is, μh is the push-forward of μ via the translation map x 	→ x + h. The measure μ is called
quasi-invariant along h, if, for all t ∈ R, μth ∼ μ. We define

Q(μ) := {h ∈ X |μ is quasi-invariant a long h}. (3.6)

For h ∈ Q(μ), we define the shift density rμh := dμh
dμ ∈ L1(μ) as the Radon–Nikodym derivative

of μh with respect to μ, i.e.

μh(A) =
∫

A
rμh (x)μ(dx) for each A ∈ B(X). (3.7)

Remark 3.3. Note that, in contrast to OM functionals, the shift-quasi-invariance space Q(μ)
and the shift density rμh do not depend on a particular metric.

4. OM functionals for product measures; equicoercivity and Γ-convergence

Determining the shift-quasi-invariance space Q(μ), the shift density rμh and the OM func-
tional Iμ for a general measure μ on an infinite-dimensional space is a challenging task,

5



Inverse Problems 38 (2022) 025006 B Ayanbayev et al

as is establishing Γ-convergence and equicoercivity for such OM functionals. In the fol-
lowing, we describe two approaches that apply to a class of shifted product measures
μ =

⊗
k∈N μk, μk(·) :=μ0(γ−1

k (· − mk)). This class includes many of the classical prior mea-
sures that arise in the study of inverse problems, such as Gaussian, Besov, and Cauchy mea-
sures. Their common structure is summarised by the following assumptions on μ, where
(A1)–(A3) should be seen as common basic assumptions, while (A4)–(A6) are technical
assumptions that will be used individually in specific settings.

Assumption 4.1. We introduce the following assumptions on the countable product measure
μ :=

⊗
k∈N μk ∈ P(RN):

(A1) Support in �p
α: μ(X) = 1 where (X, ‖·‖X) = (�p

α, ‖·‖�p
α
) for some α ∈ RN

>0 and
1 � p < ∞. Consider μ as a measure on the Banach space X.

(A2) Continuous, symmetric reference density: μ0 ∈ P(R) is a probability measure on
(R,B(R)) with continuous and symmetric Lebesgue probability density ρ such that
ρ|R�0 is strictly monotonically decreasing.

(A3) Affine change of variables: μk(A) :=μ0(γ−1
k (A − mk)), A ∈ B(R), where γ ∈ RN

>0,
m ∈ X.

(A4) Finite Fisher information:ρ is Lebesgue-a.e. positive, locally absolutely continuous and∫
R

(ρ′(u))2/ρ(u) du < ∞.
(A5) Smooth reference density: ρ ∈ C2(R) and ρ′′ ∈ L1(R).
(A6) Besov measure: μ = Bs

p is a Besov measure with 1 � p � 2 and α = δ. For a definition
of Bs

p and δ, see section 4.3.

Remark 4.2. While many product measures satisfy (A5), the Besov measure μ = Bs
p with

1 � p < 2 does not have a sufficiently smooth probability density ρ. This is why we treat this
case separately, via (A6).

Note also that, since the shift-quasi-invariance space Q(μ) and the shift density rμh do not
depend on the particular metric (cf remark 3.3), the corresponding results hold on all of RN

and do not require (A1).

Many prior measures of interest, such as Gaussian, Cauchy and Besov measures, are often
defined on Banach or Hilbert spaces Z that are not subspaces of RN. Thus, we introduce the
following notation, which will allow us to translate the results from �p

α ⊆ RN to Z:

Notation 4.3. Let X = �p
α for some 1 � p < ∞ and α ∈ RN

>0. Let Z denote a separable
Banach space with Schauder basis ψ = (ψk)k∈N such that the synthesis operator

Sψ : X → Z, x = (xk)k∈N 	→
∑
k∈N

xkψk,

and the coordinate operator

Tψ : Z → RN, z =
∑
k∈N

vkψk 	→ (vk)k∈N,

are well defined and Sψ is a continuous embedding. Note that Tψ ◦ Sψ = IdX. For a probability
measure μ ∈ P(X), we denote by μψ := (Sψ)#μ the push-forward of μ under Sψ. If instead
of μ ∈ P(X) we have μ ∈ P(RN) and μ(X) = 1, then μψ denotes the push-forward of the
restriction of μ to (X,B(X)).
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Example 4.4. The standard example of the setup described by notation 4.3 is to consider
(ψk)k∈N to be the standard Fourier basis of the space Z = L2(Td;R) of square-integrable peri-
odic functions in d variables. Taking p = 2 and α = (1, 1, . . .), the operators Tψ and Sψ are
isometries—they are the Fourier transform and its inverse, respectively. By way of contrast,
taking αn ∼ ns for s > 0 yields a Sobolev space as Z, and further taking p �= 2 yields a Besov
space.

Most of our results on X = �p
α can be transferred to the Banach space Z via Sψ. However, for

the statements concerning OM functionals, we will assume in addition that Sψ is an isometry,
i.e. that ‖x‖X = ‖Sψx‖Z for every x ∈ X. This is because the definition of the OM functional
depends strongly on the metric, and because even equivalent norms can yield different OM
functionals (Ayanbayev et al 2021, example B.4).

Lemma 4.5. Suppose that assumption 4.1(A1)–(A3) hold. If Sψ in notation 4.3 is an isometry,
then

μψ(Br(h)) =

{
μ(Br(Tψh)) if h ∈ ran Sψ = Sψ(�p

α),

0 otherwise.
(4.1)

Hence, if Iμ : X → R is an OM functional for μ, then

Iμψ : Z →R, Iμψ (h) =

{
Iμ(Tψh) if h ∈ ran Sψ ,

+∞ otherwise,
(4.2)

defines an OM functional for μψ. Similarly, if Iμψ : X → R is an OM functional for μψ , then

Iμ := Iμψ ◦ Sψ : X → R defines an OM functional for μ.

Proof. If Sψ from notation 4.3 is an isometry, then for any h ∈ ran Sψ,

μψ(Br(h)) = μ(S−1
ψ (Br(h))) = μ(Br(Tψh)).

Note that ran Sψ is complete and therefore closed in Z. Hence, for h /∈ ran Sψ = Sψ(�p
α), there

exists r0 > 0 such that Br0 (h) ∩ ran Sψ = ∅. Thus, for any 0 < r < r0,

μψ(Br(h)) = μ(S−1
ψ (Br(h))) = μ(∅) = 0,

proving (4.1). The second-last and last statements follow from definition 3.1 by choosing
Eψ := {Sψx | x ∈ X, Iμ(x) < ∞} and proving property M(μψ , Eψ) via (4.1), and by choosing
E := {x ∈ X | Iμψ (Sψx) < ∞} and proving property M(μ, E) via (4.2) respectively. �

The two approaches that we consider for establishing OM functionals consist of the conti-
nuity approach, which we present in section 4.1, and the direct approach, which we present
in section 4.2. In the literature on MAP estimators, the continuity approach appears to have
been first proposed by Helin and Burger (2015). The approach connects the OM functional
for μ with the continuity of the shift density rμh from definition 3.2. In contrast, the direct
approach considers the ratio of small ball probabilities directly, and does not require continuity
of the shift density rμh .

4.1. Continuity approach

We present some results that are related to the approach from (Helin and Burger 2015), i.e. the
approach of using continuity of the shift density rμh . The results lemma 4.6 and corollary 4.7 do
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not require the product structure of the measure as formulated in assumption 4.1. Theorem 4.8
derives the shift-quasi-invariance spaces Q(μ) and shift densities4 rμh specifically for product
measures fulfilling assumption 4.1(A2)–(A4). These assumptions refer to the continuity and
symmetry of the reference density ρ, the affine transformation relationship between the μk and
μ0, and the finite Fisher information condition. One of the key disadvantages of this approach
is that it requires the existence of representatives of shift densities or logarithmic derivatives
that are continuous on sets of full measure, see e.g. (Helin and Burger 2015, assumption (A1)).
This is the reason why we do not use either lemma 4.6 or corollary 4.7 to derive OM functionals.

Lemma 4.6. Let X be a vector space with a metric and μ ∈ P(X). Let A ∈ B(X) be a bounded
neighbourhood of the origin. Let μ(F) = 1 for some F ∈ B(X), and h ∈ Q(μ). Assume that the
shift density rμh has a representative r̃μh (i.e. rμh − r̃μh = 0 in L1(μ)) such that r̃μh |F : F → R�0 is
continuous5. Then, for all x ∈ F ∩ supp(μ), the limit below exists and

lim
ε↘0

μh(εA + x)
μ(εA + x)

= r̃μh (x). (4.3)

Proof. Let x ∈ X and ε > 0 be arbitrary. By definition of the shift density rμh ,

μh(εA + x) =
∫
εA+x

rμh dμ =

∫
εA+x

r̃μh dμ =

∫
(εA+x)∩F

r̃μh dμ.

By the hypotheses on A and x, μ(εA + x) > 0 for every ε > 0, and thus

inf
y∈(εA+x)∩F

r̃μh (y) � μh(εA + x)
μ(εA + x)

� sup
y∈(εA+x)∩F

r̃μh (y).

Next, we will use the continuity of r̃μh |F on F to show that as ε ↘ 0, the upper and lower bounds
coincide. This will yield (4.3). Let x ∈ F and η > 0. By continuity of r̃μh |F, there exists δ > 0
such that, for all y ∈ Bδ(x) ∩ F,

|̃rμh (x) − r̃μh (y)| < η. (4.4)

Since A is bounded, there exists ε0 > 0 such that, for all 0 < ε < ε0, x + εA ⊆ Bδ(x). Hence,
(4.4) holds for all 0 < ε < ε0 and y ∈ (εA + x) ∩ F. Since η > 0 is arbitrary, this finishes the
proof. �

Lemma 4.6 generalises (Agapiou et al 2018, lemma 2.3) in two ways: it does not require
symmetry or convexity of A, and it requires the continuity of the restriction of r̃μh to some
set of full measure F, instead of continuity of r̃μh on the whole space X. Continuity on X was
also assumed in (Helin and Burger 2015, lemma 2). On the other hand, (Agapiou et al 2018,
lemma 2.3) does not assume A to be a bounded neighbourhood of the origin. However, the frac-
tion of small ball probabilities on the left-hand side of (4.3) may be ill defined even if supp(μ) =
X and A is symmetric and convex. For example, if μ is an absolutely continuous measure on
(R2,B(R2)) and A = {0} × [−1, 1] is a line segment, then μ(εA + x) = 0 for every x and ε.

4 We wish to highlight the case of Besov-p measures: in previous work (Agapiou et al 2018), formulas for Q(μ) and
rμh could only be derived for p = 1 by a considerable amount of work, while our results include the cases 1 � p < ∞
and the proof is a rather simple application of theorems A.1 and A.2.
5 This is a much weaker assumption than continuity of r̃μh on F, which would mean that r̃μh is continuous at each point of
F as a function on X. See also (Lie and Sullivan 2018a, lemma 4.6) for a result that only requires local continuity.
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If A is a bounded neighbourhood of the origin, then the expression on the left-hand side of (4.3)
is well defined if and only if x ∈ supp(μ). In this case, we obtain the following result.

Corollary 4.7. Let X be a vector space with a metric, μ ∈ P(X) and F ∈ B(X) be a set of full
measure. Assume that, for some h ∈ Q(μ), the shift density rμh has a representative r̃μh such that
r̃μh |F : F → R�0 is continuous. Then, for all x∗ ∈ F ∩ supp(μ),

lim
ε↘0

μ(Bε(x∗ + h))
μ(Bε(x∗))

= r̃μ−h(x∗). (4.5)

Assume that the above condition holds for any h ∈ Q(μ), let x∗ ∈ F ∩ supp(μ) be arbitrary
and E(x∗) := x∗ +

{
h ∈ Q(μ) | r̃μ−h(x∗) �= 0

}
. Then

Iμ,x∗ : E(x∗) → R, Iμ,x∗(x) = − log rμx∗−x(x∗), (4.6)

defines an OM functional for μ on E(x∗).

Proof. Recall that (3.5) defines μh(A) :=μ(A − h) for each A ∈ B(X). From this definition,
it follows that μ(A + h) = μ−h(A) and we obtain (4.5). Next, recall that (3.7) states that
μh(A) =

∫
A rμh (x)μ(dx) for each A ∈ B(X). This implies that rμ0 = 1 μ-a.s. Hence Iμ,x∗(x∗) = 0.

Now let x ∈ E(x∗), i.e. x = x∗ + h with h ∈ Q(μ) and r̃μ−h(x∗) �= 0. Then (4.6) follows from

lim
ε↘0

μ(Bε(x))
μ(Bε(x∗))

= lim
ε↘0

μ(Bε(x∗ + h))
μ(Bε(x∗))

= r̃μ−h(x∗) = exp(log r̃μx∗−x(x∗))

= exp(Iμ,x∗(x∗) − Iμ,x∗(x)).

�
The derivation of Q(μ) and rμh for product measures μ that satisfy assumption 4.1(A2)–(A4)

relies on a theorem of Kakutani (1948) and a consequence of this theorem, due to Shepp (1965).
Therefore, we state both in appendix A. Below,

H(μ, ν) :=
∫
Ω

√
dμ
dλ

dν
dλ

dλ (4.7)

denotes the Hellinger integral of two probability measures μ and ν on the same measurable
space (Ω,F ), where λ is another measure on (Ω,F ) with μ, ν  λ. Note that the value of
H(μ, ν) is independent of the choice of λ; see e.g. (Jacod and Shiryaev 2003, chapter IV,
section 1.A, lemma 1.8).

Theorem 4.8 (Shift-quasi-invariance space and shift density rμh of certain product
measures). Let μ satisfy assumption 4.1(A2)–(A4). Then the shift-quasi-invariance space
of μ is Q(μ) = �2

γ and, for any h ∈ Q(μ) and x ∈ RN,

rμh (x) =
∞∏

k=1

ρ
(
γ−1

k (xk − mk − hk)
)

ρ
(
γ−1

k (xk − mk)
) . (4.8)

Further, if assumption 4.1(A1) is satisfied, then the objects μψ , Sψ and Tψ defined in notation

4.3 satisfy Q(μψ) = Sψ(�2
γ), and, for any h ∈ Q(μψ) and z ∈ Z, r

μψ
h (z) = rμTψ (h)(Tψ(z)).

Proof. For k ∈ N, let νk :=μk(· − hk), μ̃k :=μ0, ν̃k := μ̃k(· − h̃k), where h̃ = (h̃k)k∈N :=
(γ−1

k hk)k∈N, and define

9
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μ :=
⊗
k∈N

μk, ν :=
⊗
k∈N

νk = μ(· − h), μ̃ :=
⊗
k∈N

μ̃k, ν̃ :=
⊗
k∈N

ν̃k = μ̃(· − h̃).

From the definition of μk above, (A2) and (A3), we have dμk(x) = γ−1
k ρ

(
γ−1

k (x − mk)
)

dx.
Using the definition of νk and the a.e. positivity of ρ in (A4), it follows that μk ∼ νk and
μ̃k ∼ ν̃k for all k ∈ N. Using the change of variables formula,

H(μk, νk) = γ−1
k

∫
R

ρ
(
γ−1

k (u − mk)
) 1

2 ρ
(
γ−1

k (u − mk − hk)
) 1

2 du

=

∫
R

ρ(u)
1
2 ρ(u − h̃k)

1
2 du

= H(μ̃k, ν̃k).

Hence, by Kakutani’s theorem (theorem A.1), μ ∼ ν if and only if μ̃ ∼ ν̃, and similarly
μ⊥ ν if and only if μ̃⊥ ν̃. Finally, Shepp’s theorem (theorem A.2) implies the following:

• If
∑

k∈N h̃2
k =

∑
k∈N (hk/γk)2 < ∞, then μ̃ ∼ ν̃.

• If
∑

k∈N h̃2
k =

∑
k∈N (hk/γk)2 = ∞, then μ̃⊥ ν̃.

This proves Q(μ) = �2
γ , where we used that �2

γ ⊆ X by corollary B.5, while (4.8) follows
directly from theorem A.1. For the final statement first note that, sinceμ(X) = 1 by assumption,
we have, for any B ∈ B(Z) and h ∈ Z,

μψ(B) = μ(S−1
ψ (B)) = μ(Tψ(B) ∩ X) = μ(Tψ(B)),

μψ(B − h) = μ(Tψ(B) − Tψ(h)).

Hence, for h ∈ Z, the shift density r
μψ
h on Z exists if and only if the shift density rμTψ (h) on RN

exists, in which case r
μψ
h (z) = rμTψ (h)(Tψ(z)). �

Having identified the shift-quasi-invariance space Q(μ) and the shift density rμh , the second
step in the continuity approach involves finding a representative r̃μh and a sufficiently large
subset F of X such that the restriction of r̃μh to F is continuous. The third step is then to apply
either lemma 4.6 or corollary 4.7. We do not pursue the continuity approach further because
the second step is difficult to carry out and because a more direct approach yielded the desired
results. We describe the direct approach in the next section.

4.2. Direct approach

The following definition and theorem provide the basis for establishing the OM functional
for the product measures defined in assumption 4.1. We demonstrate this by applying both
to the Cauchy measure in corollary 4.28, and to the Besov-p measure with 1 � p � 2 in
corollary 4.21.

Recall that (A2) assumes that the reference measure μ0 on R has a continuous, symmetric
density ρ decreasing on R�0, and (A3) assumes that each measure μk on R is obtained from
μ0 by an affine change of variables.

10
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Definition 4.9. Under assumption 4.1(A2) and (A3) we define the negative log-density q :
R→ R�0 by

q(u) := −log
ρ(u)
ρ(0)

= log ρ(0) − log ρ(u), (4.9)

and the formal negative log-density qγ,m : X → R�0 by

qγ,m(h) :=
∑
k∈N

q(γ−1
k (hk − mk)). (4.10)

Further, we set Eγ,m := {h ∈ X | qγ,m(h) < ∞}. Similarly, using notation 4.3, we define the
formal negative log-density qγ,m : Z → R�0 by

qγ,m,ψ(h) :=

{
qγ,m(Tψ(h)) if Tψ(h) ∈ X,

+∞ otherwise,

and Eγ,m,ψ := {h ∈ Z | qγ,m,ψ(h) < ∞} = Sψ(Eγ,m).

Note that, by assumption 4.1(A2), q|R�0 : R�0 → R�0 is a strictly monotonically increasing
bijection.

Recall that assumption 4.1(A1) refers to the assumption that X = �p
α and μ(X) = 1, (A5)

assumes that the reference measure μ0 has density ρ ∈ C2(R) such that ρ′′ ∈ L1(R), and (A6)
assumes that μ = Bs

p is a Besov measure with 1 � p � 2 and α = δ.

Theorem 4.10. Under assumption 4.1(A1)–(A3),

lim
r↘0

μ(Br(h))
μ(Br(m))

�
{

exp
(
−qγ,m(h)

)
if h ∈ Eγ,m,

0 if h /∈ Eγ,m.
(4.11)

In particular, property M(μ, Eγ,m) is satisfied and, if Iμ : X → R is an (extended) OM func-
tional for μ with Iμ(m) = 0, then Iμ � qγ,m. If, in addition, either assumption 4.1(A5) or (A6)
is satisfied, then

lim
r↘0

μ(Br(h))
μ(Br(m))

� exp
(
−qγ,m(h)

)
if h ∈ Eγ,m ∩ (m + �2

γ). (4.12)

In particular, in this case and under the additional assumption that Eγ,m ⊆ m + �2
γ , Iμ = qγ,m :

X → R is an (extended) OM functional for μ.

Proof. The technical proof is given in appendix B.1. �
Similar statements follow for the Banach space Z in notation 4.3 under the assumption that

Sψ is an isometry.

Corollary 4.11. Using notation 4.3, assuming Sψ to be an isometry, and assuming that
assumption 4.1(A1)–(A3) hold,

11
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lim
r↘0

μψ(Br(h))
μψ(Br(Sψm))

�
{

exp
(
−qγ,m,ψ(h)

)
if h ∈ Eγ,m,ψ ,

0 if h /∈ Eγ,m,ψ.
(4.13)

In particular, property M(μψ , Eγ,m,ψ) is satisfied and, if Iμψ : Z → R is an OM functional for
μψ with Iμψ (Tψ(m)) = 0, then Iμψ � qγ,m,ψ . If, in addition, either assumption 4.1(A5) or (A6)
is satisfied, then

lim
r↘0

μψ(Br(h))
μψ(Br(Sψm))

� exp
(
−qγ,m,ψ(h)

)
if h ∈ Eγ,m,ψ ∩ Sψ(m + �2

γ). (4.14)

In particular, in this case and under the additional assumption that Eγ,m ⊆ m + �2
γ ,

Iμψ = qγ,m,ψ : Z → R is an (extended) OM functional for μψ.

Proof. By lemma 4.5, (4.13) and (4.14) follow directly from (4.11) and (4.12). �

Theorem 4.10 yields the full OM functional for a limited class of product measures. We
conjecture that the conclusions of theorem 4.10 hold for a larger class of product measures.

Conjecture 4.12 (OM functional of product measures). Under assumption 4.1(A1)–
(A3),

lim
r↘0

μ(Br(h))
μ(Br(m))

=

{
exp

(
−qγ,m(h)

)
if h ∈ Eγ,m,

0 if h /∈ Eγ,m.
(4.15)

In particular, property M(μ, Eγ,m) is satisfied and Iμ : X → R with Iμ = qγ,m defines an OM
functional for μ.

The following two theorems refer to (4.2), which we recall below:

Iμψ : Z →R, Iμψ (h) =

{
Iμ(Tψh) if h ∈ ran Sψ,

+∞ otherwise.

The following result concerns equicoercivity of a sequence of OM functionals. It assumes
that one is given a sequence of probability measures, where each probability measure μ(n) ∈
P(RN) is defined by, in the sense of assumption 4.1(A1)–(A3), an absolutely continuous ref-
erence measure μ(n)

0 ∈ P(R), a shift vector m(n) ∈ X = �p
α, and a scaling vector γ(n) ∈ RN

>0,
n ∈ N ∪ {∞} (note that γ(n) ∈ X by lemma B.3). Furthermore, it assumes that each probabil-
ity measure has an OM functional. The result states that if the sequence of probability measures
μ(n) converges to μ(∞) in the sense that both the sequence of shift vectors and the sequence of
scaling vectors converge in X to the corresponding pair of shift and scaling vectors, and if
the sequence of Lebesgue densities of the reference measures converges pointwise, then the
sequence of OM functionals is equicoercive.

Theorem 4.13 (Equicoercivity for product measures). For n ∈ N ∪ {∞}, let μ(n) ∈
P(X) be probability measures on the same space X = �p

α that satisfy assumption 4.1(A1)–(A3)
with shift parameters m(n) ∈ X, scale parameters γ(n) ∈ RN

>0 and probability densities ρ(n) of
the measures μ(n)

0 ∈ P(R). If OM functionals Iμ(n) : X → R with Iμ(n) (m(n)) = 0 exist for all
n ∈ N ∪ {∞} and if

∥∥m(n) − m(∞)
∥∥

X → 0,
∥∥γ(n) − γ(∞)

∥∥
X → 0 and ρ(n) → ρ(∞) ( pointwise) as

12
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n →∞, then the sequence (Iμ(n) )n∈N is equicoercive. Further, using notation 4.3 and assuming
Sψ to be an isometry, the sequence (I

μ(n)
ψ

)n∈N defined by (4.2) is equicoercive.

Proof. By assumption 4.1(A2), the negative log-densities q(n) : R→R�0 are symmetric and
their restrictions q(n)|R�0 : R�0 → R�0 are strictly monotonically increasing bijections. Let
t � 0 and an := (q(n)|R�0 )−1(t). Since ρ(n) converges pointwise to ρ(∞) by assumption, an → a∞
as n →∞. Further, by theorem 4.10,

Iμ(n) (x) � q
(n)
γ(n),m(n) (x) =

∑
k∈N

q(n)
(

(γ(n)
k )−1(xk − m(n)

k )
)

, x ∈ X. (4.16)

The proof is structured around the following four steps, of which the second and fourth are
straightforward.

Step 1. The operators

T (n) : �∞ → �p
α, (vk)k∈N 	→ (γ(n)

k vk)k∈N, n ∈ N ∪ {∞},

are well defined, compact and
∥∥anT (n) − a∞T (∞)

∥∥→ 0 as n →∞.
Step 2. It follows that the sets

K(n)
t :=m(n) + an T (n)B̄�∞

1 (0) =
∏
k∈N

[m(n)
k − γ(n)

k an, m(n)
k + γ(n)

k an]

are pre-compact and, by (4.16),

I−1
μ(n) ([−∞, t]) ⊆

{
x ∈ X

∣∣∣∣q(n)
(

(γ(n)
k )−1(xk − m(n)

k )
)
� t for each k ∈ N

}

=

{
x ∈ X

∣∣∣∣ |xk − m(n)
k | � γ(n)

k an for each k ∈ N
}

= K(n)
t .

Step 3. Kt
◦ :=

⋃
n∈N K(n)

t is sequentially pre-compact. Hence Kt :=Kt
◦ is compact, which

proves equicoercivity of (Iμ(n) )n∈N. Note that for t < 0 there is nothing to prove, since
I−1
μ(n) ([−∞, t]) = ∅ for each n ∈ N ∪ {∞} in this case.

Step 4. Equicoercivity of (I
μ(n)
ψ

)n∈N follows directly from lemma 4.5. Recall that this lemma

transforms an OM functional on the sequence space X into an OM functional on the separable
Banach space Z, where X and Z are related by the synthesis operator Sψ : X → Z and coordinate
operator TΨ : Z → RN.

We now give the proofs of the non-trivial first and third steps.
Proof of step 1. Let n ∈ N ∪ {∞}. Since γ(n) ∈ �p

α by lemma B.3, Hölder’s inequality
implies, for any v ∈ �∞,∥∥T (n)v

∥∥p

�
p
α
=
∑
k∈N

|α−1
k γ(n)

k vk|p �
∥∥γ(n)

∥∥p

�
p
α
‖v‖p

�∞ < ∞,

proving well-definedness of T (n). Consider the finite-rank operators

T (n)
m : �∞ → �p

α, (vk)k∈N 	→ (γ(n)
k vk)k=1,...,m, m ∈ N.

13



Inverse Problems 38 (2022) 025006 B Ayanbayev et al

Then
∥∥T (n)

m − T (n)
∥∥→ 0 as m →∞, since Hölder’s inequality implies, for any v ∈ �∞ with

‖v‖�∞ � 1, ∥∥(T (n)
m − T (n)) v

∥∥p

�
p
α
=
∑
k>m

|α−1
k γ(n)

k vk|p � ‖v‖p
�∞

∑
k>m

|α−1
k γ(n)

k |p

�
∑
k>m

|α−1
k γ(n)

k |p,

where the last term is independent of v and goes to 0 as m →∞ since γ(n) ∈ �p
α. Hence, T (n) is

a compact operator. Finally,
∥∥T (n) − T (∞)

∥∥→ 0 as n →∞, since Hölder’s inequality implies,
for any v ∈ �∞ with ‖v‖�∞ � 1,∥∥(T (n) − T (∞)) v

∥∥p

�
p
α
=
∑
k∈N

∣∣∣α−1
k (γ(n)

k − γ(∞)
k )vk

∣∣∣p � ∥∥γ(n) − γ(∞)
∥∥p

�
p
α
‖v‖p

�∞

�
∥∥γ(n) − γ(∞)

∥∥p

�
p
α
,

where the last term is independent of v and goes to 0 as n →∞ by assumption. It follows that∥∥anT (n) − a∞T (∞)
∥∥ �

∥∥an(T (n) − T (∞))
∥∥+ ∥∥(an − a∞)T (∞)

∥∥
� (sup

n∈N
|an|)

∥∥(T (n) − T (∞))
∥∥︸ ︷︷ ︸

→ 0

+ |an − a∞|︸ ︷︷ ︸
→ 0

∥∥T (∞)
∥∥

−−−→
n→∞

0.

Proof of step 3. Let (x(ν))ν∈N be a sequence in K◦
t . If there exists n ∈ N such that x(ν) ∈ K(n)

t

infinitely often, then there is nothing to show, since K(n)
t is pre-compact. Otherwise, there exist

subsequences (x(ν j)) j∈N and (K
(n j)
t ) j∈N such that x(ν j) ∈ K

(n j)
t for each j ∈ N. By the definition of

K(n)
t , there exist v( j) ∈ B̄�∞

1 (0) such that an jT
(n j)v( j) = x(ν j) − m(n j). Since K(∞)

t is pre-compact,

the sequence (w( j)) j∈N given by w( j) :=m(∞) + a∞T (∞)v( j) ∈ K(∞)
t has a subsequence—which

for simplicity we also denote by (w( j)) j∈N—that converges to some element w ∈ X. It follows
that, as j →∞,∥∥x(ν j) − w

∥∥
X �

∥∥(x(ν j) − m(n j)) − (w( j) − m(∞))
∥∥

X +
∥∥m(n j) − m(∞)

∥∥
X

+
∥∥w( j) − w

∥∥
X

�
∥∥an jT

(n j) − a∞T (∞)
∥∥︸ ︷︷ ︸

→0

∥∥v( j)
∥∥
�∞︸ ︷︷ ︸

�1

+
∥∥m(n j) − m(∞)

∥∥
X︸ ︷︷ ︸

→0

+
∥∥w( j) − w

∥∥
X︸ ︷︷ ︸

→0

→ 0,

and thus (x(ν))ν∈N has a convergent subsequence and K◦
t is sequentially pre-compact. �

The following result concerns Γ-convergence of OM functionals. As in theorem 4.13, one
is given a sequence of probability measures, where each probability measure μ(n) is defined
by an absolutely continuous reference measure μ(n)

0 , a shift vector m(n), and a scaling vector
γ(n), and each probability measure has an OM functional. Again, we assume convergence in X
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of the sequence of shift vectors and the sequence of scaling vectors. However, we replace the
assumption of pointwise convergence of the sequence of Lebesgue densities in theorem 4.13
with the assumption of local uniform convergence from below of the negative log-densities and
assume the OM functionals to have the specific form Iμ(n) = q

(n)
γ(n),m(n) . Under these assumptions,

we obtain Γ-convergence of the OM functionals.

Theorem 4.14 (Γ-convergence for product measures). For n ∈ N ∪ {∞}, let μ(n) ∈
P(X) be probability measures on the same space X = �p

α that satisfy assumption 4.1(A1)–(A3)
with shift parameters m(n) ∈ X, scale parameters γ(n) ∈ RN

>0 and probability densities ρ(n) of
the measures μ(n)

0 ∈ P(R). Let q(n) : R→ R�0 and q
(n)
γ(n),m(n) : X → R denote the correspond-

ing ( formal) negative log-densities (see definition 4.9). Assume that
∥∥m(n) − m(∞)

∥∥
X
→ 0,∥∥γ(n) − γ(∞)

∥∥
X
→ 0, that q(n) → q(∞) locally uniformly as n →∞, that q(n) � q(∞) for all but

finitely many n ∈ N and that Iμ(n) : X → R with Iμ(n) = q
(n)
γ(n),m(n) defines an OM functional for

μ(n) for each n ∈ N ∪ {∞}. Then Iμ(n)
Γ−→

n−→∞
Iμ(∞) . Further, using notation 4.3 and assuming Sψ

to be an isometry, I
μ(n)
ψ

Γ−→
n−→∞

I
μ(∞)
ψ

where I
μ(n)
ψ

, n ∈ N, are defined by (4.2).

Proof. For the Γ-lim inf inequality, let (x(n))n∈N be a sequence in X that converges to x ∈ X
as n →∞. Then, by Fatou’s lemma,

Iμ(∞) (x) =
∑
k∈N

q(∞)
(

(γ(∞)
k )−1(xk − m(∞)

k )
)

by assumption

=
∑
k∈N

lim
n→∞

q(n)
(

(γ(n)
k )−1(x(n)

k − m(n)
k )
)

since q(n) → q(∞) locally uniformly

� lim inf
n→∞

∑
k∈N

q(n)
(

(γ(n)
k )−1(x(n)

k − m(n)
k )
)

by Fatou’s lemma

= lim inf
n→∞

Iμ(n) (x(n)) by assumption.

Note that Fatou’s lemma is general enough to handle extended real-valued sequences, so we do
not need to treat cases such as Iμ(∞) (x) = ∞ separately. For the Γ-lim sup inequality, let x ∈ X
and choose the sequence (x(n))n∈N in X by

x(n)
k :=m(n)

k +
γ(n)

k

γ(∞)
k

(xk − m(∞)
k ). (4.17)

If Iμ(∞) (x) = q
(∞)
γ(∞),m(∞) (x) = ∞, then there is nothing to show (simply choose x(n) := x for all

n ∈ N). Now suppose that Iμ(∞)(x) = q
(∞)
γ(∞),m(∞) (x) is finite. By (A2)—the assumption that the

reference density ρ is continuous, symmetric, and monotonically decreasing—and the for-
mula (4.9)—which states that q(u) := −log ρ(u)

ρ(0) = log ρ(0) − log ρ(u)—it follows that q(∞) is

monotonically increasing, with q(∞)(x) →∞ as |x| →∞. If the terms
xk−m(∞)

k

γ(∞)
k

are unbounded,

then this implies that the q(∞)(
xk−m(∞)

k

γ(∞)
k

) are unbounded, and hence that Iμ(∞) (x) is not finite. By

taking the contrapositive, it follows that if Iμ(∞) (x) = q
(∞)
γ(∞),m(∞) (x) is finite, then

S := sup
k∈N

∣∣∣∣∣ xk − m(∞)
k

γ(∞)
k

∣∣∣∣∣ < ∞.
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By lemma B.3, γ(n) ∈ �p
α. By (4.17), (x(n)

k − m(n)
k ) − (xk − m(∞)

k ) = (xk − m(∞)
k )(1 − γ(n)

k

γ
(∞)
k

).

Thus,

∥∥(x(n) − m(n)) − (x − m(∞))
∥∥p

X
=
∑
k∈N

∣∣∣∣∣ (x
(n)
k − m(n)

k ) − (xk − m(∞)
k )

αk

∣∣∣∣∣
p

=
∑
k∈N

∣∣∣∣∣ xk − m(∞)
k

γ(∞)
k

∣∣∣∣∣
p∣∣∣∣∣γ

(n)
k − γ(∞)

k

αk

∣∣∣∣∣
p

� Sp
∥∥γ(n) − γ(∞)

∥∥p

�
p
α

−−−→
n→∞

0.

It follows that ∥∥x(n) − x
∥∥p

X �
∥∥(x(n) − m(n)) − (x − m(∞))

∥∥p

X +
∥∥m(n) − m(∞)

∥∥p

X −−−−→
n→∞

0.

Using the reverse Fatou lemma and that q(n) � q(∞) for all but finitely many n ∈ N,

Iμ(∞) (x) =
∑
k∈N

q(∞)
(

(γ(∞)
k )−1(xk − m(∞)

k )
)

by assumption

=
∑
k∈N

lim
n→∞

q(n)
(

(γ(∞)
k )−1(xk − m(∞)

k )
)

since q(n) → q(∞) pointwise

� lim sup
n→∞

∑
k∈N

q(n)
(

(γ(∞)
k )−1(xk − m(∞)

k )
)

by the reverse Fatou lemma

= lim sup
n→∞

∑
k∈N

q
(n)
(

(γ(n)
k )−1(x(n)

k − m(n)
k )
)

by (4.17)

= lim sup
n→∞

Iμ(n) (x(n)) by assumption.

I
μ(n)
ψ

Γ−→
n−→∞

I
μ(∞)
ψ

follows directly from lemma 4.5. For the Γ-lim inf inequality, we additionally

use that ran Sψ is complete and therefore closed in Z. �

While the proof of equicoercivity (theorem 4.13) only uses the inequality Iμ(n) � q
(n)
γ(n),m(n) ,

which holds by theorem 4.10, the Γ-convergence of the corresponding OM functionals relies
on the complete knowledge of the OM functionals which are assumed to be given by
Iμ(n) = q

(n)
γ(n),m(n) . This assumption is proven in theorem 4.10 only for certain product measures.

For example, theorem 4.10 applies to Cauchy measures and Besov-p measures with p ∈ [1, 2]
(cf corollaries 4.21 and 4.28), but does not apply for Besov-p measures with p > 2, because
m + �2

γ � Eγ,m in this case. Therefore, conjecture 4.12 remains an important open problem.

4.3. Application to Besov measures

This section considers the Γ-convergence of OM functionals of Besov measures as introduced
by Lassas et al (2009) and Dashti et al (2012).6 We will consider Besov Bs

p measures with

6 We are slightly more general in that we consider shifted Besov measures.
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integrability parameter 1 � p � 2 and smoothness s ∈ R, in contrast to the analysis of part
I of this paper (Ayanbayev et al 2021, sections 5.1 and 5.2), which was limited to the cases
p ∈ {1, 2}.

Throughout this subsection, we make use of the following notation:

Notation 4.15. Let s ∈ R, d ∈ N, 1 � p � 2, η > 0, t := s − p−1d(1 + η) and assume that
τ := (s/d + 1/2)−1 > 0. Define γ0 := 1 and γ, δ ∈ RN by

γk := k−
1
τ +

1
p , δk := k−

1
τ +

2+η
p , k ∈ N,

as well as the probability measures μk, k ∈ N ∪ {0}, on R with probability densities

dμk

du
(u) =

1
2γkΓ(1 + 1/p)

exp

(
−
∣∣∣∣u − mk

γk

∣∣∣∣p
)

,

where m ∈ �p
δ is some fixed shift. Further, let Z0 be a separable Hilbert space7 with complete

orthonormal basis ψ = (ψk)k∈N and Sψ : RN →
∏

k∈N spanψk, c 	→
∑

k∈N ckψk. We emphasise
that the direct product

∏
k∈N spanψk is neither spanψ nor Z0. In corollary 4.20, we state how

Sψ here is related to the synthesis operator Sψ : X → Z from notation 4.3.

The role of η, t and δ will be explained in remark 4.19, where we discuss normed spaces of
full Besov measure. We define (shifted) Besov measures as follows, using notation that is an
adaptation of that of Dashti et al (2012):

Definition 4.16 (Sequence space Besov measures and Besov spaces). Using
notation 4.15, we call μ :=

⊗
k∈N μk a (sequence space) Besov measure on RN and

write Bs
p :=Bs,m,d

p :=μ. The corresponding Besov space is the weighted sequence space
(Xs

p, ‖·‖Xs
p
) := (�p

γ , ‖·‖�p
γ
).

Definition 4.17 (Hilbert space Besov measures and Besov spaces). Using nota-
tion 4.15, if vk ∼ μk are independent random variables, then we call u :=

∑
k∈N vkψk a Besov-

distributed random variable and its law a Besov measure, denoted by Bs
p(ψ) :=Bs,m,d

p (ψ).
Furthermore, let

X̃s
p := Sψ(�p

γ),
∥∥Sψ(c)

∥∥
Xs

p
:= ‖c‖�p

γ
, c ∈ �p

γ ,

and define the Besov space Xs
p = Xs

p(ψ) as the completion of X̃s
p with respect to ‖·‖Xs

p
. By

Parseval’s identity, the initial space Z0 coincides with the Besov space X0
2.

Remark 4.18. Since it is the parameter p that most strongly affects the qualitative proper-
ties of the measure, we often refer simply to a ‘Besov-p measure’ for any measure in the above
class, regardless of the values of s, d, etc. The scaling of the Besov-2 measure corresponds to
the ‘physicist’s Gaussian distribution’ rather than the ‘probabilist’s Gaussian distribution’. In
particular, for p = 2, vk ∼ μk has variance 1

2γ
2
k . A consequence of this is that the OM func-

tional of the Besov-p measure will be ‖·‖p
Xs

p
, i.e. appears to lack a prefactor of 1

p relative to
the Gaussian OM functional—one half of the square of the Cameron–Martin norm—given by
Ayanbayev et al (2021), section 5.1.

7 Typically, Besov measures are introduced on the space Z0 = L2(Td) with an orthonormal wavelet basis ψ of sufficient
regularity, in which case Xs

p coincides with the Besov space Bs
pp(Td)—as defined by Triebel (1983)—and Xs

2 coincides
with the Sobolev space Hs(Td). In our more general definition, the dimension d becomes superfluous and one could
work with s̃ := s/d, but we continue to use the classical notation in order to reduce confusion.
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Remark 4.19. Note that the random variable u =
∑

k∈N vkψk in definition 4.17 takes values
in a space Z that may be larger than Z0. It has already been shown in (Lassas et al 2009,
lemma 2) that, for t̃ ∈ R,∥∥u − Sψ(m)

∥∥
X̃t

p
< ∞ a.s. ⇐⇒ E

[
exp(α

∥∥u − Sψ(m)
∥∥p

Xt̃
p
)
]
< ∞

for all α ∈
(

0,
1
2

]
⇐⇒ t̃ < s − d

p
.

Hence, using the choice t := s − p−1d(1 + η) in notation 4.15, Z can be chosen as the Besov
space Xt

p(ψ) = Sψ(�p
δ), i.e. ‘just a bit larger than’ Xs−d/p

p (ψ) = Sψ(�p
γ). The shift by m ∈ �p

δ does
not cause problems, since Sψ(m) ∈ Xt

p(ψ). For the sequence space Besov measure μ = Bs
p on

RN, the space Xt
p = �p

δ has full μ-measure.

Given remark 4.19, we will from now on consider the Besov measures μ = Bs
p and

μ = Bs
p(ψ) as measures on the normed spaces X = Xt

p and Z = Xt
p(ψ), respectively.

Apart from the different degree of summability (2 in place of p), the next result can be
interpreted as saying that the shifts h with respect to which the Bs

p measure is quasi-invariant
are d

2 degrees smoother than the typical draws from that measure. For p = 1, the corresponding
result was obtained in (Agapiou et al 2018, lemma 3.5), without using Shepp’s theorem.

In preparation for the next two results, we recall notation 4.3: X = �p
α for some 1 � p < ∞

and α ∈ RN

>0, Z is a separable Banach space with Schauder basis ψ = (ψk)k∈N, the syn-
thesis operator Sψ : X → Z satisfies x = (xk)k∈N 	→

∑
k∈N xkψk, and the coordinate operator

Tψ : Z → RN satisfies z =
∑

k∈N vkψk 	→ (vk)k∈N. If μ ∈ P(X), then μψ := (Sψ)#μ is the
push-forward of μ under Sψ . For the following result, Xt

p(ψ) and Bs
p(ψ) are given in

definition 4.17.

Corollary 4.20 (Shift-quasi-invariance space and shift density of a Besov
measure). Let μ = Bs

p be the sequence space Besov measure on RN or on X = Xt
p = �p

δ .

Then Q(μ) = �2
γ = X

s+ d
2−

d
p

2 and, for any h ∈ Q(μ) and x ∈ RN (respectively x ∈ X),

rμh (x) = exp

(∑
k∈N

γ−p
k

(
|xk − mk|p − |xk − mk − hk|p

))
. (4.18)

Further, using notation 4.3 with α = δ and Z = Xt
p(ψ) = Sψ(�p

δ), we have Sψ = Sψ|�p
δ

and

μψ = Bs
p(ψ). Then Q(μψ) = Sψ(�2

γ) = X
s+ d

2−
d
p

2 (ψ) and, for any h ∈ Q(μψ) and z ∈ Z, r
μψ
h (z) =

rμTψ (h)(Tψ(z)).

Proof. Assumption 4.1(A2) and (A3), which concern the continuity and symmetry of the ref-
erence density ρ and the assumption that each μk is related to μ0 by an affine transformation
respectively, are satisfied by virtue of definition 4.16. Assumption 4.1(A1), which concerns the
assumption that X = �p

α and μ(X) = 1, follows from remark 4.19, while (A4), which states that
the reference density ρ has finite Fisher information, follows from a straightforward computa-
tion. Theorem 4.8 yields the formula (4.18) for rμh , the spaces Q(μ), Q(μψ), and the equation
for r

μψ
h . �

The following corollary is an application of theorems 4.10, 4.13 and 4.14 to Besov-p mea-
sures μ,μ(n), n ∈ N, 1 � p � 2, with different smoothness parameters s, s(n) and shifts m, m(n)

such that s(n) → s and m(n) → m as n →∞. Note that it is not entirely clear on which space X to
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consider equicoercivity and Γ-convergence, since the measures μ,μ(n) seem to live on different
spaces X = �p

δ , X(n) = �p
δ(n) with

δk = k−
s
d −

1
2+

2+η
p , δ(n)

k = k−
s(n)

d − 1
2+

2+η(n)
p , η, η(n) > 0, n ∈ N.

After all, theorems 4.13 and 4.14 explicitly demand all measures μ,μ(n) to be defined on the
same space X = �p

α. However, as we will see, the assumed convergence s(n) → s guarantees the
existence of such a common space X of full μ(n)-measure for all but finitely many n ∈ N.

In preparation for the following corollary, we recall formula (4.2):

Iμψ : Z →R, Iμψ (h) =

{
Iμ(Tψh) if h ∈ ran Sψ,

+∞ otherwise.

Corollary 4.21 (OM functional, equicoercivity and Γ-convergence for Besov-p
measure, 1 � p � 2). Using notation 4.15, the OM functional Iμ : X → R of μ = Bs

p =

Bs,m,d
p on X = Xt

p = �p
δ is given by

Iμ(h) =

{‖h − m‖p
Xs

p
= ‖h − m‖p

�
p
γ

if h − m ∈ Xs
p = �p

γ ,

∞ otherwise.
(4.19)

Further, let μ(n) :=Bs(n)

p = Bs(n),m(n) ,d
p , n ∈ N, be Besov measures such that s(n) → s,∥∥m(n) − m

∥∥
X
→ 0 as n →∞ and 1

τ
− 1

p = s
d + 1

2 − 1
p > 0. Then there exists n0 ∈ N such

that, for each n � n0, μ(n)(X) = 1 and we therefore consider these measures on the same
space X = Xt

p = �p
δ . Then the sequence (Iμ(n) )n�n0 of OM functionals of μ(n) given by Iμ(n) =∥∥· − m(n)

∥∥p

Xs(n)
p

: X → R is equicoercive and Iμ = Γ- limn→∞ Iμ(n) . Similarly, using notation 4.3

and assuming Sψ to be an isometry, Iμψ and I
μ

(n)
ψ

, n ∈ N, defined by (4.2) constitute OM func-

tionals for μψ = Bs,m,d
p (ψ) and μ(n)

ψ = Bs(n),m(n) ,d
p (ψ), respectively, and (I

μ
(n)
ψ

)n�n0 is equicoercive

with I
μ

(n)
ψ

Γ−→
n−→∞

I
μ

(∞)
ψ

.

Proof. Assumption 4.1(A1)–(A3) and (A6)—i.e. the support condition on μ, continuity and
symmetry of the reference density ρ, affine transformation property and Besov property—are
satisfied by definition 4.16 and remark 4.19 with

q(u) = |u|p, qγ,m(h) = ‖h − m‖p
�

p
γ
, Eγ,m = m + �p

γ ⊆ m + �2
γ ,

hence (4.19) follows directly from theorem 4.10. In other words, the result in conjecture 4.12
holds for the Besov measures μ and μ(n):

lim
r↘0

μ(Br(h))
μ(Br(m))

=

{
exp

(
−qγ,m(h)

)
if h ∈ Eγ,m,

0 if h /∈ Eγ,m,

and a similar result holds with μ replaced by μ(n). The analogous statement for Iμψ and
I
μ(n)
ψ

, n ∈ N, follows from lemma 4.5. Recall that this lemma transforms an OM functional

on the sequence space X into an OM functional on the separable Banach space Z, where X and
Z are related by the synthesis operator Sψ : X → Z and coordinate operator TΨ : Z → RN.
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Since s(n) → s, there exists n0 ∈ N such that, for n � n0, |s(n) − s | � dη
2p . Therefore, for

n � n0, t = s − p−1d(1 + η) < s(n) − p−1d and μ(n)(X) = 1 for X = Xt
p = �p

δ by remark 4.19.

Further, for n � n0, the sequences a(n) = (k−1−η |k p
d (s−s(n)) − 1|)k∈N are (uniformly) bounded

by the summable sequence a = (2k−1−η/2)k∈N and the reverse Fatou lemma implies

lim sup
n→∞

∥∥γ(n) − γ
∥∥p

�
p
δ
= lim sup

n→∞

∑
k∈N

k−1−η
∣∣∣k p

d (s−s(n)) − 1
∣∣∣

�
∑
k∈N

lim sup
n→∞

k−1−η
∣∣∣ k

p
d (s−s(n)) − 1

∣∣∣ = 0,

proving
∥∥γ(n) − γ

∥∥
X
→ 0. Equicoercivity and Γ-convergence of the sequences (Iμ(n) )n∈N and

(I
μ(n)
ψ

)n∈N directly follow from theorems 4.13 and 4.14 respectively. �

4.4. Application to Cauchy measures

This section considers infinite-dimensional Cauchy measures in the sense of infinite products
of one-dimensional Cauchy distributions, as used by e.g. Sullivan (2017) and Lie and Sullivan
(2018b). We note that there is another class of ‘Cauchy measures’ in the literature, namely the
class of stochastic processes with Cauchy-distributed increments, as used by e.g. Markkanen
et al (2019) and Chada et al (2021).

Definition 4.22. We define the Cauchy measure C(m, γ) :=
⊗

k∈N C(mk, γk) on RN with
shift parameter m ∈ RN and scale parameter γ ∈ RN

>0 as the product measure of one-
dimensional Cauchy measures on R with shift parameter mk and scale parameter γk, k ∈ N,
i.e. with probability densities

dC(mk, γk)
du

(u) :=

(
πγk

(
1 +

∣∣∣∣u − mk

γk

∣∣∣∣2
))−1

=
1
πγk

γ2
k

γ2
k + |u − mk|2

.

Assumption 4.23. X = �q for some q � 1, m ∈ �q, γ ∈ �1(N) ∩ RN

>0. In addition, if q = 1,
then γ satisfies

∑
k∈N |γk log |γk|| < ∞.

Recall notation 4.3: X = �p
α for some 1 � p < ∞ and α ∈ RN

>0, Z is a separable
Banach space with Schauder basis ψ = (ψk)k∈N, the synthesis operator Sψ : X → Z satisfies
x = (xk)k∈N 	→

∑
k∈N xkψk, and the coordinate operator Tψ : Z → RN satisfies

z =
∑

k∈N vkψk 	→ (vk)k∈N. If μ ∈ P(X), then μψ := (Sψ)#μ is the push-forward of μ
under Sψ.

Definition 4.24 (Sullivan 2017, definition 3.2, assumption 3.3). Under assumption
4.23 and using notation 4.3 with α ≡ 1, we call u := Sψ(v) =

∑
k vkψk, where v ∼ C(m, γ),

a Cauchy-distributed random variable in Z and write u ∼ Cq,ψ(m, γ). In other words,
Cq,ψ(m, γ) = μψ for μ = C(m, γ).

The following theorem guarantees the well-definedness of the random variable u above:

Theorem 4.25 (Sullivan 2017, theorem 3.4). Under assumption 4.23, the Cauchy mea-
sure μ = C(m, γ) on RN from definition 4.22 satisfies μ(X) = 1. Similarly, under the assump-
tions of definition 4.24, u ∈ Z a.s.

Lemma 4.26. The Cauchy measure μ = C(m, γ) on RN satisfies assumption 4.1(A2)–(A5).
Further, under assumption 4.23, (A1) is fulfilled for X = �q.
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Proof. The support condition (A1) follows from theorem 4.25; the continuity and symmetry
of the reference density ρ (A2) and the affine transformation property of the (μk)k∈N (A3)
follow from definition 4.22; the finite Fisher information (A4) and smoothness assumptions on
the reference density ρ (A5) can be verified by straightforward computations. �

The following theorem characterises the shift-quasi-invariance space Q(μ) of the Cauchy
measure μ = C(m, γ) as well as the corresponding shift density rμh :

Corollary4.27 (Shift-quasi-invariance space and shift density of a Cauchy
measure). If μ = C(m, γ) is the Cauchy measure on RN, then Q(μ) = �2

γ . In particular, if

γ ∈ �1, then Q(μ) ⊆ �2/3 ⊆ �1. In addition, for any h ∈ Q(μ) and x ∈ RN,

rμh (x) = lim
N→∞

N∏
n=1

(xk − mk)2 + γ2
k

(xk − mk − hk)2 + γ2
k

. (4.20)

Further, under assumption 4.23 and using notation 4.3 with α ≡ 1, we have μψ = Cq,ψ(m, γ).
Then Q(μψ) = Sψ(�2

γ) and, for any h ∈ Q(μψ) and z ∈ Z, r
μψ
h (z) = rμTψ (h)(Tψ(z)).

Proof. Assumption 4.1(A1)–(A4) are satisfied by lemma 4.26. Theorem 4.8 yields the for-
mula (4.18) for rμh , the spaces Q(μ), Q(μψ), and the equation for r

μψ
h . Proposition B.4 yields

the containment relation Q(μ) ⊆ �2/3. �

Corollary 4.28 (OM functional, equicoercivity and Γ-convergence for Cauchy
measure). Under assumption 4.23, an OM functional Iμ : X → R of μ = C(m, γ) is given
by

Iμ(h) =

⎧⎨
⎩
∑
k∈N

log
(
1 + γ−2

k (hk − mk)2
)

if h ∈ m + �2
γ ,

∞ otherwise.

Further, for n ∈ N, let μ(n) = C(m(n), γ(n)) be Cauchy measures such that m(n) and γ(n) satisfy
assumption 4.23 for the same q � 1 as above and

∥∥m(n) − m
∥∥

X
→ 0 and

∥∥γ(n) − γ
∥∥

X
→ 0 as

n →∞. Then the sequence (Iμ(n))n∈N is equicoercive and Iμ = Γ- limn→∞ Iμ(n) . Similarly, using
notation 4.3 with α ≡ 1 and assuming Sψ to be an isometry, Iμψ and I

μ(n)
ψ

, n ∈ N, defined by

(4.2) constitute OM functionals for μψ = Cq,ψ(m, γ) and μ(n)
ψ = Cq,ψ(m(n), γ(n)), respectively,

and (I
μ(n)
ψ

)n∈N is equicoercive with I
μ(n)
ψ

Γ−→
n−→∞

I
μ(∞)
ψ

.

Proof. Assumption 4.1(A1)–(A5) are satisfied by lemma 4.26. We have

q(u) = log(1 + u2), qγ,m(h) =
∑
k∈N

log
(
1 + γ−2

k (hk − mk)2
)

,

Eγ,m = m + �2
γ ,

where we used that
∑

k∈N log
(
1 + γ−2

k (hk − mk)2
)

is finite if and only if h − m ∈ �2
γ , as well

as corollary B.5 to guarantee that �2
γ ⊆ X. Thus, the first statement follows from theorem 4.10,

i.e. the result in conjecture 4.12 holds for the Cauchy measures μ and μ(n), n ∈ N:
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lim
r↘0

μ(Br(h))
μ(Br(m))

=

{
exp

(
−qγ,m(h)

)
if h ∈ Eγ,m,

0 if h /∈ Eγ,m,

and a similar result holds with μ replaced by μ(n). The analogous statement for Iμψ and
I
μ(n)
ψ

, n ∈ N, follows from lemma 4.5. Recall that this lemma shows that an OM functional

on the sequence space X yields an OM functional on the separable Banach space Z, where X
and Z are related by the synthesis operator Sψ : X → Z. The equicoercivity and Γ-convergence
of the sequences (Iμ(n) )n∈N and (I

μ(n)
ψ

)n∈N now follow directly from theorems 4.13 and 4.14

respectively. �

5. Closing remarks

In this paper, our first main contribution is to obtain a formula for the OM functionals of a
class of probability measures on a weighted sequence space X = �p

α. This class is defined using
assumption 4.1, and the key result that we used to obtain these formulas is theorem 4.10. In
addition, we considered collections of measures in this class that converge to a limiting measure
in the sense that the collections of shift and scale sequences converge to a limiting pair of shift
and scale sequences, and convergence of the Lebesgue densities of the associated reference
measures. Our second main contribution is to state sufficient conditions for equicoercivity and
Γ-convergence of the corresponding sequence of OM functionals. For this, we relied on theo-
rems 4.13 and 4.14. In addition, we applied these results to Cauchy and Besov-p measures for
1 � p � 2. We used the results in the weighted sequence space setting to prove the analogous
results for measures on separable Banach or Hilbert spaces.

In the context of BIPs, the Besov, Cauchy, and more general product measures considered
in this paper arise most naturally as prior distributions. The results of this paper therefore
provide a convergence theory for the corresponding prior OM functionals. Since these priors
are unimodal, this convergence theory would appear to be surplus to requirements; it is in some
sense ‘obvious’ how the modes of sequences of such measures ought to converge. However,
the importance of this paper’s results is that prior Γ-convergence and equicoercivity can be
transferred to the posterior using the results of part I of this paper (Ayanbayev et al 2021,
section 6), and understanding the convergence of posterior modes (i.e. MAP estimators) is a
non-trivial and novel contribution.

An important open problem raised in this paper is conjecture 4.12. Proving this conjecture
would significantly enhance the applicability of our results. In addition, it would be of inter-
est to study equicoercivity and Γ-convergence of so-called ‘generalised OM functionals’ as
introduced by Clason et al (2019).
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Appendix A. Equivalence of product measures

The following two dichotomies on the equivalence or mutual singularity of certain infinite
product measures are classical results. Here, H(μ, ν) denotes the Hellinger integral defined in
(4.7).

Theorem A.1 (Kakutani 1948). Let (μk)k∈N and (νk)k∈N be sequences in P(R) such that
μk ∼ νk for all k ∈ N, and let μ :=

⊗
k∈N μk and ν :=

⊗
k∈N νk. Then precisely one of the

following alternatives holds true:

(a) H(μ, ν) =
∏

k∈N H(μk, νk) > 0 and μ ∼ ν, with density

dν
dμ

(u) = lim
K→∞

K∏
k=1

dνk

dμk
(uk) in L1(RN,μ). (A.1)

(b) H(μ, ν) =
∏

k∈N H(μk, νk) = 0 and μ⊥ ν.

Theorem A.2 (Shepp 1965). Let μ0 ∈ P(R) have a Lebesgue probability density ρ that
satisfies assumption 4.1(A4). Further, let h = (hk)k∈N ∈ RN, μ :=

⊗
k∈N μ0, and ν :=

⊗
k∈N

μ0(· − hk). Then precisely one of the following alternatives holds true:

(a)
∑

k∈N h2
k < ∞ and μ ∼ ν.

(b)
∑

k∈N h2
k = ∞ and μ⊥ ν.

Appendix B. Technical supporting results

Lemma B.1. Let X = �p
α for some 1 � p < ∞ and α ∈ RN

>0 and let Y = RN be equipped
with the product topology and the corresponding Borel σ-algebra B(Y). Then B(X) ⊆ B(Y).

Proof. By definition of the product topology, for i ∈ N, the projections πi(y) = yi, y ∈ Y , are
continuous and so are the functions f i(y) = | yi−zi

αi
|p, where z ∈ Y is any fixed sequence. Hence,

the ( f i)i∈N are Borel measurable, and so is the function f (y) = ‖y − z‖p
�

p
α

as a countable sum

of non-negative measurable functions. Therefore each open ball Br(z) = f −1((−∞, rp)) lies in
B(Y), and we have shown that B(X) ⊆ B(Y). �
Remark B.2. In fact, B(X) = {B ∩ X |B ∈ B(Y)}. This can seen by considering sets of the
form π−1

i ((a, b)) ∩ �p
α, a, b ∈ R. The collection of these sets forms a generator of B(RN) ∩ �p

α.
The sets belong to B(�p

α), since they are open in �p
α.

Lemma B.3. Let assumption 4.1(A1)–(A3) hold. Then:

(a) γ ∈ �p
α.

(b) γ ∈ �τα for some 0 < τ < ∞, if the following condition is fulfilled:

∃C > 0∃x0 > 0 : x � x0 =⇒
∫ ∞

x
ρ(y) dy � Cx−τ . (B.1)
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Proof. Let m = 0 and v = (vk)k∈N ∼ μ, i.e. vk = γkuk with uk
i.i.d.∼ μ0. Note that we may

assume m = 0 without loss of generality since m ∈ X and therefore v ∈ X if and only
if v + m ∈ X. Let wk := | γk

αk
uk|p. Since μ(�p

α) = 1, ‖v‖p
�

p
α
=
∑

k∈N wk < ∞ a.s., which, by
(Kallenberg 2021, theorem 5.18), implies:

(a) For any A > 0,
∑

k∈N P(|wk| > A) < ∞ and
(b)

∑
k∈N E

[
wk 1{|wk |�1}

]
< ∞.

First note that (a) implies γk/αk → 0 as k →∞. Hence, c :=mink∈N ck is strictly positive,
where

ck :=
∫ αk/γk

−αk/γk

|y|p ρ(y) dy.

Since |wk| < 1 if and only if |uk| < αk
γk

, it follows from (b) that

∞ >
∑
k∈N

E
[
wk 1{|wk |�1}

]
�
∑
k∈N

∫ αk/γk

−αk/γk

∣∣∣∣ γk

αk
y

∣∣∣∣p ρ(y) dy =
∑
k∈N

ck

∣∣∣∣ γk

αk

∣∣∣∣p � c
∑
k∈N

∣∣∣∣ γk

αk

∣∣∣∣ p,

proving (a). If condition (B.1) is fulfilled, then there exists K ∈ N such that, for all k � K,
αk
γk

� x0 and thereby

P[|wk| > 1] =
∫ ∞

1

αk

γk
ρ

(
αk

γk
y

)
dy =

∫ ∞

αk/γk

ρ(y) dy � C

∣∣∣∣ γk

αk

∣∣∣∣τ .
Hence, condition (a) implies (b). �
Proposition B.4. Let p, q ∈ [1,∞) and α, γ ∈ RN

>0. Then �q
γ ⊆ �p

α,

• If p < q and γ ∈ �
qp

q−p
α (in particular, if p < q and γ ∈ �p

α ⊆ �
qp

q−p
α ); or

• If p � q and γ ∈ �∞α .

Proof. Let p < q and h ∈ �q
γ . By Hölder’s inequality,

∑
k∈N

∣∣∣∣ hk

αk

∣∣∣∣p =∑
k∈N

∣∣∣∣hk

γk

∣∣∣∣p ·
∣∣∣∣ γk

αk

∣∣∣∣p

�
∥∥∥∥
(∣∣∣∣hk

γk

∣∣∣∣p
)

k∈N

∥∥∥∥
�

q
p

·
∥∥∥∥
(∣∣∣∣ γk

αk

∣∣∣∣p
)

k∈N

∥∥∥∥
�

q
q−p

= ‖h‖p
�

q
γ
· ‖γ‖p

�

qp
q−p
α

< ∞.

Now let p � q and h ∈ �q
γ . Then there exists some constant M > 0 such that for all k, |hk/γk| �

M. Hence, ∑
k∈N

∣∣∣∣ hk

αk

∣∣∣∣p =∑
k∈N

∣∣∣∣hk

γk

∣∣∣∣q · |hk|p−qγq
k

αp
k

� Mp−q
∑
k∈N

∣∣∣∣hk

γk

∣∣∣∣q ·
∣∣∣∣ γk

αk

∣∣∣∣p
= Mp−q‖h‖q

�
q
γ
· ‖γ‖p

�∞α
< ∞.

�
Corollary B.5. Under assumption 4.1(A1)–(A3), �2

γ ⊆ �p
α.

Proof. Since γ ∈ �p
α ⊆ �∞α by lemma B.3, the claim follows directly by considering the first

and second alternatives in proposition B.4 for the case where p < 2 and p � 2 respectively. �
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B.1. Proof of theorem 4.10
In this section we give the proof of theorem 4.10 which is technical and requires additional
notation and lemmas:

Definition B.6. A non-negative function f : Rd → R�0, d ∈ N, has the symmetric decay
property if

• d = 1 and f is symmetric, i.e. f (x) = f (−x) for every x ∈ R, and the restriction f |R�0 is
monotonically decreasing;

• d > 1 and f has the symmetric decay property ‘along each coordinate’, i.e., for any
u ∈ Rd , the functions f (·, u2, . . . , ud), f (u1, ·, u3, . . . , ud), . . . , f (u1, . . . , ud−1, ·) have the
symmetric decay property.

Lemma B.7. Let d ∈ N \ {1}, let both s : Rd−1 → R�0 and f : Rd → R�0 have the symmet-
ric decay property and let g : R→ R�0. Then h : Rd−1 → R�0 also has the symmetric decay
property, where

h(u) :=
∫ s(u)

−s(u)
f (u, v) g(v) dv.

Proof. We will show that h has the symmetric decay property along the first coordinate. The
proofs for the other coordinates proceed analogously. For any u = (u2, . . . , ud−1) ∈ Rd−2 and
any u1, u′

1 ∈ R with |u1| � |u′
1|, it holds that s(u1, u) � s(u′

1, u), and therefore

h(u1, u) =
∫ s(u1,u)

−s(u1,u)
f (u1, u, v) g(v) dv

�
∫ s(u′1,u)

−s(u′1,u)
f (u′

1, u, v) g(v) dv = h(u′
1, u).

The symmetry of h follows directly from the symmetry of s and f . �

Lemma B.8. Let s > 0 and f , g : [−s, s] → R both have the symmetric decay property and
v ∈ R. Then ∫ s

−s
f (u + v) g(u) du �

∫ s

−s
f (u) g(u) du.

Proof. Due to symmetry, we only need to consider v � 0, and we split this into two cases,
according to whether or not v � 2s.

We first consider the case that v ∈ [0, 2s]. First note that g(u + v) � g(u) for any u ∈
[− v

2 , s − v]. For u � 0, this follows from the symmetric decay property. For u ∈ [− v
2 , 0], it

holds that u + v � v
2 , and thus g(u + v) � g( v2 ) = g(− v

2 ) � g(u). Using the transformation
u 	→ −u − v we obtain∫ −v/2

−s
( f (u + v) − f (u)) g(u) du =

∫ s−v

−v/2
( f (−u) − f (−u − v)) g(−u − v) du

=

∫ s−v

−v/2
( f (u) − f (u + v)) g(u + v) du

� −
∫ s−v

−v/2
( f (u + v) − f (u)) g(u) du.
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Further, for any u ∈ [s − v, s], u + v � s, and thus f (u + v) � f (s) � f (u). Therefore,∫ s

−s
( f (u + v) − f (u)) g(u) du

=

∫ −v/2

−s
( f (u + v) − f (u)) g(u) du +

∫ s−v

−v/2
( f (u + v) − f (u)) g(u) du︸ ︷︷ ︸

� 0

+

∫ s

s−v

( f (u + v) − f (u))︸ ︷︷ ︸
� 0

g(u)︸︷︷︸
� 0

du

� 0.

Secondly, we consider the case that v > 2s. For any u ∈ [−s, s], u + v > s and thus f (u +
v) � f (s) � f (u). Therefore,∫ s

−s
( f (u + v) − f (u))︸ ︷︷ ︸

� 0

g(u)︸︷︷︸
� 0

du � 0.

�

Lemma B.9. Under assumption 4.1(A2) and (A5), there exists M > 0 such that, for any
s > 0, any Λ : R→ R�0 with the symmetric decay property, and any v ∈ R with |v| � 1,

(a)
∣∣∫ s

−s ρ
′′(u + v)Λ(u) du

∣∣ � M
∫ s
−s ρ(u)Λ(u) du;

(b) There exists ζ = ζ(s,Λ, v) ∈ [−M
2 , M

2 ] such that∫ s

−s
ρ(u + v)Λ(u) du =

(
1 + ζ v2

) ∫ s

−s
ρ(u)Λ(u) du.

Proof. Since ρ is a probability density and ρ′′ ∈ L1(R) by (A5), we can choose s∗ > 0 such
that ∫

S∗
ρ(u) du � 1

2
,

∫
R\S̃∗

|ρ′′(u)| du � 1
2

,

where S∗ := [−s∗, s∗] and S̃∗ := [−s∗ − 1, s∗ + 1]. Hence, for any v ∈ R with |v| � 1, it follows
that

∫
R\S∗

|ρ′′(u + v)| du � 1
2 . Since S̃∗ is compact, ρ and ρ′′ are continuous and ρ is strictly

positive by assumption 4.1(A2), there exists M > 1 such that, for any u1, u2 ∈ S̃∗,∣∣∣∣ρ′′(u1)
ρ(u2)

∣∣∣∣ � M − 1.

Now let s > 0, S := [−s, s], Λ : R→ R�0 be any function with the symmetric decay property
and v ∈ R with |v| � 1. By the mean value theorem for definite integrals, there exists for any
closed interval A ⊆ S∗ some uA = uA(Λ, v) ∈ S∗ such that∣∣∣∣
∫

A
ρ′′(u + v)Λ(u) du

∣∣∣∣ �
∣∣∣∣ρ′′(uA + v)

ρ(uA)

∣∣∣∣
∫

A
ρ(u)Λ(u) du � (M − 1)

∫
A
ρ(u)Λ(u) du. (B.2)
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If s � s∗, then S ⊆ S∗ and the proof of (a) is finished. Otherwise, since Λ has the symmetric
decay property,∣∣∣∣

∫
S\S∗

ρ′′(u + v)Λ(u) du

∣∣∣∣ � Λ(s∗)
∫

S\S∗
|ρ′′(u + v)| du � Λ(s∗)

1
2
� Λ(s∗)

∫
S∗
ρ(u) du

�
∫

S∗
ρ(u)Λ(u) du. (B.3)

Hence, combining (B.2) and (B.3) and using S∗ ⊂ S,∣∣∣∣
∫

S
ρ′′(u + v)Λ(u) du

∣∣∣∣ �
∣∣∣∣
∫

S∗
ρ′′(u + v)Λ(u) du

∣∣∣∣+
∣∣∣∣
∫

S\S∗
ρ′′(u + v)Λ(u) du

∣∣∣∣
� M

∫
S
ρ(u)Λ(u) du,

proving (a). Now let Fs(t) :=
∫ s
−sρ(u + t)Λ(u) du. Since ρ ∈ C2(R),

F′
s(t) :=

∫ s

−s
ρ′(u + t)Λ(u) du, F′′

s (t) :=
∫ s

−s
ρ′′(u + t)Λ(u) du.

By symmetry of ρ and Λ, F′
s(0) = 0 and, if |t| � 1, (a) implies

|F′′
s (t)| � M

∫ s

−s
ρ(u)Λ(u) du = MFs(0).

Hence, by Taylor’s theorem, there exists ξ ∈ [−v, v] ⊆ [−1, 1] and ζ = ζ(s,Λ, v) ∈ [−M
2 , M

2 ]
such that

Fs(v) = Fs(0) + F′
s(0) v + F′′

s (ξ)
v2

2
= Fs(0) (1 + ζ v2),

proving (b). �

Lemma B.10. For p ∈ [1, 2], s > 0, any symmetric function Λ : R→ R�0 and any v ∈ R,∫ s

−s
e−|u+v|p Λ(u) du � e−|v|p

∫ s

−s
e−|u|p Λ(u) du.

Proof. If 1 < p � 2, then (Clarkson 1936, theorem 2) yields, for any x, y ∈ R,

|x + y|p + |x − y|p � 2p−1(|x|p + |y|p).

Using the transformation x = u + v, y = u − v proves

2(|u|p + |v|p) � |u + v|p + |u − v|p (B.4)

for any u, v ∈ R, whenever 1 < p � 2, while for p = 1 the inequality (B.4) follows directly
from the triangle inequality. Using the inequality ex � 1 + x, x ∈ R, it follows that

e−|u+v|p+|u|p+|v|p + e−|u−v|p+|u|p+|v|p � 2 − |u + v|p − |u − v|p + 2|u|p + 2|v|p � 2

and therefore
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e−|u+v|p + e−|u−v|p � 2e−|u|p−|v|p.

Since Λ : R→ R�0 is even and non-negative, we obtain∫ s

−s
e−|u+v|p Λ(u) du =

∫ s

0

(
e−|u+v|p + e−|u−v|p

)
Λ(u) du

�
∫ s

0
2e−|v|p−|u|p Λ(u) du

= e−|v|p
∫ s

−s
e−|u|p Λ(u) du.

�

Notation B.11. Under assumption 4.1(A1)–(A3), we introduce the following notation for any
r > 0 and any a, b ∈ N:

• [a : b] := {a, . . . , b}.
• For x ∈ RN define x[a:b] := (xi)i∈[a:b].
• B[a:b]

r (x) :=
{

y ∈ R[a:b]
∣∣ ‖y − x‖�p

α([a:b]) =
(∑

k∈[a:b]|α−1
k (yk − xk)|p

)1/p
< r
}

for x ∈
R[a:b].

• B[1:a]
r (x | z) :=B[1:a]

r(z) (x), where r(z) :=
(

rp − ‖z‖p
�

p
α([a+1:b])

)1/p
, for x ∈ R[1:a] and z ∈

B[a+1:b]
r (0).

• λ[a:b] denotes the Lebesgue measure on R[a:b].
• μ[a:b] =

⊗
k∈[a:b] μk is the probability measure on (R[a:b],B(R[a:b])) given by the density

ρ[a:b](x) :=
∏

k∈[a:b]

γ−1
k ρ(γ−1

k xk), x ∈ R[a:b].

• Let q, qγ,m and Eγ,m be defined as in definition 4.9. Recall that q is continuous and q(0) = 0.
Thus, for any ε > 0 and u ∈ R, there exists δu(ε) > 0 such that

|v | < δu(ε) =⇒ |q(u + v) − q(u)| � ε, |q(v)| � ε.

• Vr(h, a, b) :=
∫

B[a+1:b]
r (0) ρ

[a+1:b](u + h[a+1:b])λ[1:a](B[1:a]
r (0|u)) du, h ∈ X.

• γ[a:b] � u := (γkuk)k∈[a:b], γ−1
[a:b] � A :=

{
u ∈ R[a:b] | γ[a:b] � u ∈ A

}
, u ∈ R[a:b], A ⊆

R[a:b];
• For u ∈ γ−1

[a+1:b] � B[a+1:b]
r (0), we define

s[a+1:k]
r (u[a+1:k]) :=

αk+1

γk+1

⎛
⎝rp −

k∑
j=a+1

∣∣∣∣γ ju j

α j

∣∣∣∣p
⎞
⎠1/p

, a � k < b,

Λ[a+1:b]
b,r (u[a+1:b]) :=λ[1:a]

(
B[1:a]

r (0|γ[a+1:b] � u)
)

,

Λ[a+1:k]
b,r (u[a+1:k]) :=

∫ s[a+1:k]
r (u[a+1:k])

−s[a+1:k]
r (u[a+1:k])

ρ(uk+1)Λ[a+1:k+1]
b,r (u[a+1:k+1]) duk+1, a � k < b.

For k = a, we use the convention that the empty sum in the parentheses is zero. Hence,
we define sa

r := s[a+1:a]
r (u[a+1:a]) := αa+1

γa+1
r in this case.
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Lemma B.12. For any a � k < b and u ∈ γ−1
[a+1:b] � B[a+1:b]

r (0), the functions s[a+1:k]
r and

Λ[a+1:k+1]
b,r satisfy the symmetric decay property, where we extend them to the corresponding

Euclidean space by setting them to zero outside their domain. Further, Λ[a+1:a]
b,r = Vr(0, a, b).

Proof. The symmetric decay properties of s[a+1:k]
r , a � k < b, and Λ[a+1:b]

b,r follow directly

from the definitions. The symmetric decay property of Λ[a+1:k]
b,r , a < k < b, then follows

recursively by consecutive application of lemma B.7 with g = ρ. The statement Λ[a+1:a]
b,r =

Vr(0, a, b) follows from the definitions of ρ[a:b], Vr(0, a, b), s[a+1:k]
r and Λ[a+1:k]

b,r , a � k � b. �

Lemma B.13. Let assumption 4.1(A1)–(A3) hold with m = 0. Then, using notation B.11, for
any r > 0, a, b ∈ N and h ∈ X,

λ[1:a](B[1:a]
r (0)) � Vr(m, a, b) = Vr(0, a, b) � Vr(h, a, b).

If, in addition, either assumption 4.1(A5) or (A6) is satisfied, then for any h ∈ Eγ,m ∩ �2
γ with

γ−1
k |hk| � 1, k ∈ [a + 1 : b],

Vr(h, a, b) � Vr(0, a, b)
∏
k∈J

ck, ck =

⎧⎪⎪⎨
⎪⎪⎩

1 + ζk

∣∣∣∣hk

γk

∣∣∣∣2 if (A5) holds,

exp

(
−
∣∣∣∣hk

γk

∣∣∣∣p
)

if (A6) holds,

for certain ζk ∈ [−M
2 , M

2 ] with M > 1 as in lemma B.9.

Proof. Since ρ[a+1:b](·+ h[a+1:b]) integrates to 1 as a probability density, and since for any
u ∈ R[a+1:b] it holds that B[1:a]

r (0|u) ⊆ B[1:a]
r (0), the first inequality follows. Let h̃k := γ−1

k hk.
The second inequality follows by applying lemma B.8 and by using Λ[a+1:a]

b,r = Vr(0, a, b) (cf
lemma B.12):

Vr(h, a, b) =
∫

B[a+1:b]
r (0)

ρ[a+1:b](u + h[a+1:b])λ[1:a](B[1:a]
r (0|u)) du

=

∫
γ−1

[a+1:b]�B[a+1:b]
r (0)

(
b∏

k=a+1

ρ(uk + h̃k)

)
λ[1:a]

(
B[1:a]

r (0|γ[a+1:b] � u)
)

du

=

∫ sa
r

−sa
r

ρ(ua+1 + h̃a+1)
∫ s[a+1:a+1]

r (ua+1)

−s[a+1:a+1]
r (ua+1)

ρ(ua+2 + h̃a+2) . . .

×
∫ s[a+1:b−1]

r (u[a+1:b−1])

−s[a+1:b−1]
r (u[a+1:b−1])

ρ(ub + h̃b)Λ[a+1:b]
b,r (u[a+1:b]) dub︸ ︷︷ ︸

� Λ[a+1:b−1]
b,r (u[a+1:b−1]) by Lemmas B.8 and B.12

. . . dua+2 dua+1

�
∫ sa

r

−sa
r

ρ(ua+1 + h̃a+1)
∫ s[a+1:a+1]

r (ua+1)

−s[a+1:a+1]
r (ua+1)

ρ(ua+2 + h̃a+2) . . .

×
∫ s[a+1:b−2]

r (u[a+1:b−2])

−s[a+1:b−2]
r (u[a+1:b−2])

ρ(ub−1 + h̃b−1)Λ[a+1:b−1]
b,r (u[a+1:b−1]) dub−1︸ ︷︷ ︸

� Λ[a+1:b−2]
b,r (u[a+1:b−2]) by Lemmas B.8 and B.12

. . . dua+2 dua+1
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...

� Λ[a+1:a]
b,r = Vr(0, a, b).

Now let in addition assumption 4.1(A5) hold, h ∈ Eγ,m ∩ �2
γ and M > 1 as in lemma B.9.

Then, for k = a + 1, . . . , b, there exist values ζk(u[a+1:k−1]) ∈ [−M
2 , M

2 ] by lemma B.9 and ζk ∈
[−M

2 , M
2 ] by the mean value theorem for definite integrals, such that

Vr(h, a, b) =
∫

B[a+1:b]
r (0)

ρ[a+1:b](u + h[a+1:b])λ[1:a](B
[1:a]
r (0|u)) du

=

∫
γ−1

[a+1:b]�B[a+1:b]
r (0)

(
b∏

k=a+1

ρ(uk + h̃k)

)
λ[1:a]

(
B[1:a]

r (0|γ[a+1:b] � u)
)

du

=

∫ sa
r

−sa
r

ρ(ua+1 + h̃a+1)
∫ s[a+1:a+1]

r (ua+1)

−s[a+1:a+1]
r (ua+1)

ρ(ua+2 + h̃a+2) . . .

×
∫ s[a+1:b−1]

r (u[a+1:b−1])

−s[a+1:b−1]
r (u[a+1:b−1])

ρ(ub + h̃b)Λ[a+1:b]
b,r (u[a+1:b]) dub︸ ︷︷ ︸

�(1+ζb(u[a+1:b−1]) |h̃b|2)Λ[a+1:b−1]
b,r (u[a+1:b−1]) by Lemmas B.9 and B.12

. . . dua+2 dua+1

�
(

1 + ζb |h̃b|2
) ∫ sa

r

−sa
r

ρ(ua+1 + h̃a+1)
∫ s[a+1:a+1]

r (ua+1)

−s[a+1:a+1]
r (ua+1)

ρ(ua+2 + h̃a+2) . . .

×
∫ s[a+1:b−2]

r (u[a+1:b−2])

−s[a+1:b−2]
r (u[a+1:b−2])

ρ(ub−1 + h̃b−1)Λ[a+1:b−1]
b,r (u[a+1:b−1]) dub−1︸ ︷︷ ︸

�
(

1+ζb−1(ua+1,...,ub−2) h̃2
b−1

)
Λ[a+1:b−2]

b,r (u[a+1:b−2]) by Lemmas B.9 and B.12

. . . dua+2 dua+1

and iterating this process yields

Vr(h, a, b) � Λ[a+1:a]
b,r

b∏
k=a+1

(
1 + ζk h̃2

k

)
= Vr(0, a, b)

b∏
k=a+1

(
1 + ζk h̃2

k

)
,

proving the first formula for ck. Now, let assumption 4.1(A6) be satisfied instead of (A5).
Then ρ(uk + h̃k) ∝ exp(−|uk + h̃k|p). Using lemma B.10 instead of lemma B.9 and replacing(

1 + ζk(u[a+1:k−1]) |h̃k|2
)

and
(

1 + ζk h̃2
k

)
by exp

(
−|h̃k|p

)
in the above derivation, we obtain

the second formula for ck. Note that, in the case that (A5) holds, all � inequalities in the above
derivation are actually equalities. We stated them as inequalities such that the proof can be
transferred to the case where (A6) is satisfied. �

Lemma B.14. Under assumption 4.1(A1)–(A3) and using notation B.11, for any r > 0,
a, b ∈ N and h ∈ X,

μ[1:b](B[1:b]
r (h[1:b])) � Vr(h, a, b) inf

v∈B[1:a]
r (0)

ρ[1:a](v + h[1:a]),

μ[1:b](B[1:b]
r (h[1:b])) � Vr(h, a, b) sup

v∈B[1:a]
r (0)

ρ[1:a](v + h[1:a]).
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Proof. For any u ∈ R[a+1:b], B[1:a]
r (0|u) ⊆ B[1:a]

r (0). In addition, B[1:b]
r (0) =⊎

u∈B[a+1:b]
r (0)B

[1:a]
r (0|u) × {u}, where � indicates a disjoint union. This is because every

y ∈ B[1:b]
r (0) satisfies y = (y[1:a], y[a+1:b]) ∈ R[1:b], where y[1:a] ∈ B[1:a]

r (0|y[a+1:b]) and
y[a+1:b] ∈ B[a+1:b]

r (0) are unique. This partition of the domain of integration yields

μ[1:b](B[1:b]
r (h[1:b])) =

∫
B[1:b]

r (0)
ρ[1:b](y + h[1:b]) dy

=

∫
B[a+1:b]

r (0)
ρ[a+1:b](u + h[a+1:b])

∫
B[1:a]

r (0|u)
ρ[1:a](v + h[1:a]) dv du

�
∫

B[a+1:b]
r (0)

ρ[a+1:b](u + h[a+1:b]) λ[1:a](B[1:a]
r (0|u)) inf

v∈B[1:a]
r (0|u)

ρ[1:a](v + h[1:a]) du

� Vr(h, a, b) inf
v∈B[1:a]

r (0)
ρ[1:a](v + h[1:a]).

A similar argument yields the second inequality. �

Proof of Theorem 4.10 Since ‖·‖X = ‖·‖�p
α
, we have that, for any r > 0 and h ∈ X,

Br(h) =
⋂

K∈N
(
B[1:K]

r (h) × RN\[1:K]
)
. Thus, by the continuity of probability measures,

μ(Br(h)) = lim
K→∞

μ
(

B[1:K]
r (h[1:K]) × RN\[1:K]

)
= lim

K→∞
μ[1:K]

(
B[1:K]

r (h[1:K])
)

and thereby

μ(Br(h))
μ(Br(m))

= lim
K→∞

μ[1:K](B[1:K]
r (h[1:K]))

μ[1:K](B[1:K]
r (m[1:K]))

.

The proof will now be established using the following three steps, of which the third is
straightforward:

Step 1. Let m = 0. For every h ∈ X, N > 0 and 0 < ε < 1 there exist r∗ > 0 and K∗ ∈ N
such that for any 0 < r < r∗ and K > K∗,

− log
μ[1:K](B[1:K]

r (h[1:K]))

μ[1:K](B[1:K]
r (m[1:K]))

�
{

(1 − ε) qγ,m(h) − ε if h ∈ Eγ,m,

N if h /∈ Eγ,m.

Since the right-hand side does not depend on r and K and since N, ε > 0 are arbitrary, this
proves (4.11) for m = 0.

Step 2. Let m = 0. If either assumption 4.1(A5) or (A6) is satisfied, there exist, for every
h ∈ Eγ,m ∩ �2

γ and 0 < ε < 1, values r∗ > 0 and K∗ ∈ N such that, for any 0 < r < r∗ and
K > K∗,

− log
μ[1:K](B[1:K]

r (h[1:K]))

μ[1:K](B[1:K]
r (m[1:K]))

� qγ,m(h) + ε.

Since the right-hand side does not depend on r and K and since ε > 0 is arbitrary, this proves
(4.12) for m = 0.

Step 3. For arbitrary m ∈ X, (4.11) and (4.12) follow directly from
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qγ,m(·) = qγ,0(· − m), Eγ,m = m + Eγ,0,

finalizing the proof.
We now give the proofs of the non-trivial first and second steps.
Proof of step 1. Let m = 0, h ∈ X, N > 0 and 0 < ε < 1 and denote h̃k := γ−1

k hk. Choose
K∗ such that

K∗∑
k=1

q(h̃k) �
{

(1 − ε) qγ,m(h) if h ∈ Eγ,m,

N + ε if h /∈ Eγ,m,
(B.5)

where qγ,m(h) =
∑

k∈N q(h̃k) by (4.10) and the assumption that m = 0. Recall the definition of
δu(ε) in notation B.11. Choose

r∗ := min
k=1,...,K∗

γk

αk
δh̃k

(
ε

2K∗

)
> 0,

which implies the following inequalities for any 0 < r � r∗, v ∈ B[1:K∗]
r (0) and k ∈ [1 : K∗]:

|γ−1
k vk| � δh̃k

(
ε

2K∗

)
, q(γ−1

k vk + h̃k) � q(h̃k) − ε

2K∗
, q(γ−1

k vk) � ε

2K∗
.

(B.6)

It follows for any 0 < r � r∗, K � K∗ that

− log
μ[1:K](B[1:K]

r (h[1:K]))

μ[1:K](B[1:K]
r (0[1:K]))

� − log
Vr(h, K∗, K) sup

v∈B[1:K∗]
r (0)ρ

[1:K∗](v + h[1:K∗])

Vr(0, K∗, K) inf
v∈B[1:K∗]

r (0)ρ
[1:K∗](v),

by Lemma B.14

� inf
v∈B[1:K∗]

r (0)

K∗∑
k=1

q(γ−1
k (vk + hk)) − sup

v∈B[1:K∗]
r (0)

K∗∑
k=1

q(γ−1
k vk) by Lemma B.13

�
K∗∑

k=1

(
q(h̃k) − ε

2K∗
− ε

2K∗

)
by (B.6)

� −ε+

K∗∑
k=1

q

(
h̃k

)

�

⎧⎪⎨
⎪⎩

(1 − ε) qγ,m(h) − ε if h ∈ Eγ,m,

N if h /∈ Eγ,m,
by (B.5).

Proof of step 2. Let m = 0, h ∈ Eγ,m ∩ �2
γ and 0 < ε < 1 and denote

h̃ := (h̃k)k∈N := (γ−1
k hk)k∈N.

First let the additional assumption 4.1(A5) hold. Since h̃ ∈ �2, we can choose K∗ ∈ N such
that

∑∞
k=K∗+1 h̃2

k <
ε

2M , where M > 1 is chosen as in lemma B.9. In particular, |h̃k| � 1 for
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all k > K∗. Let r > 0 and K � K∗ + 1 be arbitrary. It follows from the second conclusion of
lemma B.13 that

log
Vr(h, K∗, K)
Vr(0, K∗, K)

�
K∑

k=K∗+1

log

(
1 − M

2
h̃2

k

)
� −M

K∑
k=K∗+1

h̃2
k � −ε

2
, (B.7)

where we used that 0 � M
2 h̃2

k < 1
4 and log(1 − x) � − x

1−x � −2x for 0 � x � 1
2 .

Similarly, if assumption 4.1(A6) holds in place of (A5), then h ∈ Eγ,m = �p
γ implies the exis-

tence of K∗ ∈ N such that
∑∞

k=K∗+1|h̃k|p < ε/2. In particular, |h̃k| � 1 for all k > K∗. Again,
for any r > 0 and K � K∗ + 1 it follows from the second conclusion of lemma B.13 that

log
Vr(h, K∗, K)
Vr(0, K∗, K)

� −
K∑

k=K∗+1

|h̃k|p � −ε

2
. (B.8)

The rest of the proof is identical for both assumption 4.1(A5) and (A6). Recall the definition
of δu(ε) in notation B.11 and choose

r∗ := min
k=1,...,K∗

γk

αk
δh̃k

(
ε

2K∗

)
> 0,

which implies the following inequalities for any 0 < r � r∗, v ∈ B[1:K∗]
r (0) and k ∈ [1 : K∗]:

|γ−1
k vk| � δh̃k

(
ε

2K∗

)
, q(γ−1

k vk + h̃k) � q(h̃k) +
ε

2K∗
. (B.9)

Since ρ is symmetric and ρ|R�0 is monotonically decreasing, it follows that q is symmetric and
nonnegative on R, and q|R�0 is monotonically increasing, with q(0) = 0. It follows for any
0 < r � r∗ and K � K∗ that

− log
μ[1:K](B[1:K]

r (h[1:K]))

μ[1:K](B[1:K]
r (0[1:K]))

� − log

Vr(h, K∗, K) inf
v∈B[1:K∗]

r (0)
ρ[1:K∗](v + h[1:K∗])

Vr(0, K∗, K) sup
v∈B[1:K∗]

r (0)

ρ[1:K∗](v),
by Lemma B.14

� ε

2
+ sup

v∈B[1:K∗]
r (0)

K∗∑
k=1

q(γ−1
k (vk + hk))

− inf
v∈B[1:K∗]

r (0)

K∗∑
k=1

q(γ−1
k vk)

︸ ︷︷ ︸
= 0

by (B.7) and (B.8)

� ε

2
+

K∗∑
k=1

(
q

(
h̃k

)
+

ε

2K∗

)
by (B.9)

� qγ,m(h) + ε,

where inf
v∈B[1:K∗]

r (0)

∑K∗
k=1 q(γ−1

k vk) = 0 follows from the nonnegativity of q on R. �
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