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Abstract

This chapter focuses on the mathematical modelling of active particles (or agents) in crowded envi-
ronments. We discuss several microscopic models found in literature and the derivation of the respective
macroscopic partial differential equations for the particle density. The macroscopic models share common
features, such as cross diffusion or degenerate mobilities. We then take the diversity of macroscopic models
to a uniform structure and work out potential similarities and differences. Moreover, we discuss boundary
effects and possible applications in life and social sciences. This is complemented by numerical simulations
that highlight the effects of different boundary conditions.

1 Introduction

The mathematical modelling of active matter has received growing interest recently, motivated by novel struc-
tures in physics and biology on the one hand (cf. [7, 34, 38, 40, 60, 66, 69]), but also active matter in a wider
sense of agent systems like humans or robots (cf. [8, 22, 29, 30, 54, 53, 37]). In many of these systems a key issue
is the interplay of the particles’ own activity with crowding effects, which leads to the formation of complex and
interesting patterns. In this chapter we aim at unifying a variety of models proposed for such systems, discuss
the derivation of macroscopic equations from different microscopic paradigms, and highlight some of their main
properties.

First we would like to emphasise that the definition of active particles varies in the literature e.g. between
condensed matter, life sciences and engineering and we that will adopt a generous point of view in this chapter.
We will discuss models for actual active matter systems, but also systems that might be considered passive (or
force-driven) in the physics literature but have been used to model active matter systems. A common feature
of these models is that the particles have a preferred direction of motion and can use energy to move there; the
preferred direction can however change in time. This setting includes models for multiple species (with fixed
directions or biases) and systems with boundary conditions that impose steady currents. From a mathematical
point of view we can distinguish whether models exhibit a gradient-flow structure (cf. [4]) or not, respectively
whether there are stationary solutions with vanishing flux. In the case of a gradient-flow structure there is a
natural entropy-energy functional to be dissipated (cf. [25]), in the other cases such functionals may increase
(linearly) in time or it is not apparent what the correct choice of the functional is. We shall see in particular
that gradient-flow structures are destroyed if particles change directions completely randomly, while there is an
active transport in that direction.

In the following we will consider models with a finite number of preferred directions or a continuum of it.
While the former has been proposed and investigated in many applications like pedestrian dynamics or cell
motility, continuum directions received far less attention in the mathematical literature. In the continuum case
one can consider angular diffusion and derive an equation for the density of particles in the phase-space of spatial
and angular variables. We discuss different microscopic models, either based on Brownian motions with hard
sphere potentials or on lattice based models with size exclusion, which allow to derive appropriate macroscopic
partial differential equations (PDEs) for the phase-space density. These PDEs have a rather similar structure
- all have a nonlinear transport term and additional diffusion terms in space and angle (or possibly nonlocal
diffusion for the latter). This general structure allows us to define a general entropy functional and investigate
the long time behaviour.

This chapter is organised as follows: We present several microscopic models for active particles and their
corresponding mean-field limits using different coarse-graining procedures in Section 2. Section 3 discusses the
respective modelling approaches and limiting equations for externally activated particles (systems that would

1



be considered passive in the physics literature). We then present a general formulation of all these models and
state their underlying properties, such as energy dissipation or a possible underlying gradient-flow structure in
Section 4. The important role of boundary conditions on the behaviour of these systems is discussed in Section
5. Section 6 presents several examples of active and externally activated particle models in the life and social
sciences. Numerical experiments illustrating the dynamics and behaviour of the respective models are presented
in Section 7.

Throughout this chapter we use the notion of particles or agents interchangeably. Furthermore we discuss
the respective models on the line or in R2, with the obvious generalisation to three dimensions. We will keep
the presentation informal, assuming that all functions satisfy the necessary requirements to perform all limits
and calculations.

2 Models for active particles

Here we discuss microscopic models for active particles and their corresponding macroscopic kinetic models
using different coarse-graining procedures. The key ingredients of active particles is that, in addition to their
positions, they have an orientation that determines the self-propulsion direction. We subdivide these models
into continuous, discrete or hybrid random walks depending on how the position and the orientation of each
particle is represented.

2.1 Continuous random walks

We consider N identical Brownian particles with free translational diffusion coefficient DT moving in a periodic
box Ω ⊂ R2 with unit area. Each particle has a position Xi(t) and an orientation Θi(t) with t > 0, i = 1, . . . , N ,
that determines the direction e(Θi) = (cos Θi, sin Θi) of self-propulsion at constant speed v0. The orientation
Θi also undergoes free rotational diffusion with diffusion coefficient DR. In its more general form, particles
interact through a pair potential u(r, ϕ) which implies the total potential energy

U = χ
∑

1≤i<j≤N

u(|Xi −Xj |/`, |Θi −Θj |), (1)

where χ and ` represent the strength and the range in space of the potential u, respectively. The coupled
equations of motion are:

dXi =
√

2DTdWi −∇xiUdt+ v0e(Θi)dt, (2a)

dΘi =
√

2DRdWi − ∂θiUdt. (2b)

We note that isotropic pair potentials (u = u(r) only) are more commonly used in the literature [10, 46]. Equa-
tions (2) are complemented with identically and independently distributed initial conditions, (Xi(0),Θi(0)) ∼
f0(x, θ) and periodic boundary conditions on Υ = Ω× [0, 2π) (we will discuss alternative boundary conditions
later in section 5).

The starting point for all is to define the joint probability density for N particles evolving according to the
SDEs (2), that is FN (~ξ, t) with ~ξ = (ξ1, . . . , ξN ) and ξi = (xi, θi). Using the Chapman–Kolmogorov equation,
we obtain

∂tFN (~ξ, t) =

N∑
i=1

∇xi ·
[
DT∇xiFN − v0e(θi)FN +∇xiU(~ξ)FN

]
+ ∂θi

[
DR∂θiFN + ∂θiU(~ξ)FN

]
, (3)

for t ≥ 0, ~ξ ∈ Ῡ, where Ῡ ⊆ ΥN is the domain of allowed configurations (more on this below).
The goal is to obtain a macroscopic model for the one-particle density f(ξ, t), that we can describe by picking

the first particle since all particles are identical, i.e.

f(ξ1, t) =

∫
ΥN

FN (~ξ)δ(ξ − ξ1)d~ξ. (4)

To this end, keeping in mind all the particles are indistinguishable, we integrate (3) with respect to ξ2, . . . , ξN .
Using periodicity, all the terms for i ≥ 2 in the right-hand side of (3) vanish, and we are left with:

∂tf(ξ1, t) = ∇x1
· [DT∇x1

f − v0e(θ1)f + UT (ξ1, t)] + ∂θ1 [DR∂θ1f + UR(ξ1, t)] , (5a)
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with

UT (ξ1, t) = χ

∫
ΥN−1

FN (~ξ, t)

N∑
i=2

∇x1u(|x1 − xi|/`, |θ1 − θi|)dξ2, . . . ,dξN

= χ(N − 1)

∫
Υ

F2(ξ1, ξ2, t)∇x1
u(|x1 − x2|/`, |θ1 − θ2|)dξ2,

(5b)

UR(ξ1, t) = χ

∫
ΥN−1

FN (~ξ, t)

N∑
i=2

∂θ1u(|x1 − xi|/`, |θ1 − θi|)dξ2, . . . ,dξN

= χ(N − 1)

∫
Υ

F2(ξ1, ξ2, t)∂θ1u(|x1 − x2|/`, |θ1 − θ2|)dξ2,

(5c)

using that particles are undistinguishable, where F2 is the two-particle density

F2(ξ1, ξ2, t) =

∫
ΥN−2

FN (~ξ, t)dξ3 . . . dξN .

Depending on the scalings χ, ` of the interaction potential u, we can expect different macroscopic limits of (2).
On the one end we can consider long-range weak repulsive interactions, and obtain a mean-field limit equation.
On the other extreme, we can consider short and strong repulsive interactions (even hard-core interactions such
as u(r) = +∞ if r < 1, and 0 otherwise), which lead to local nonlinear PDE models.

2.1.1 Mean-field scaling

The mean-field scaling corresponds to χ = 1/N and ` = O(1) so that we have a weak and long range interaction
in the limit of N →∞. In this limit, one expects propagation of chaos leading to

F2(ξ1, ξ2, t) ≈ f(ξ1, t)f(ξ2, t).

Substituting this into (5) we arrive at

∂tf(ξ1, t) = ∇x1
· [DT∇x1

f − v0e(θ1)f + f∇x1
U ] + ∂θ1 [DR∂θ1f + ∂θ1U ] , (6a)

with interaction term, taking N →∞,

U(f) =

∫
Υ

f(ξ2, t)u(|x1 − x2|/`, |θ1 − θ2|)dξ2. (6b)

In the case of an isotropic interaction potential, the term ∂θ1U in (6a) drops and the interaction term (6b)
can be simplified to

U(f) =

∫
Ω

ρ(x2, t)u(|x1 − x2|/`)dx2, (7)

where ρ is the spatial (macroscopic) density

ρ(x, t) =

∫ 2π

0

f(x, θ, t) dθ. (8)

The spatial density describes the probability that a particle is at position x at time t irrespective of its orienta-
tion. We obtain the following equation for ρ by integrating (6a) with the potential (7) with respect to θ ∈ [0, 2π)
and using periodicity:

∂tρ(x1, t) = ∇x1
· [DT∇x1

ρ− v0p + ρ∇x1
U ] . (9)

This equation is not closed as it depends on the polarisation p (also known as the order parameter):

p(x, t) =

∫ 2π

0

e(θ)f(x, θ, t) dθ. (10)

The polarisation gives the average orientation of particles at position x at any given time t.
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2.1.2 Excluded-volume interactions

Excluded-volume interactions are very common in biological applications and arise from the impenetrability
between cells, bacteria, animals, etc. These are very strong and short-range interactions, whereby an individual
only interacts locally in the range of its body size. For these reasons, the mean-field scaling is not suitable
to model such interactions, which are often modelled using singular short-range potentials (` � 1 in (1)) or
even hard-core potentials. Examples of interactions potentials used in the literature to model excluded-volume
interactions include inverse power-law potentials (such as the Lennard-Jones potentials), exponential potentials
(e.g. the Morse potential), or the Yukawa potential.

The following model, proposed by [65], includes excluded-volume interactions via a short-range interaction
potential u(r):

∂tf +∇ · (ve(ρ)fe(θ)) = De(φ)∆f +DR∂
2
θf, (11)

where f = f(r, θ, t), De(φ) is an effective diffusion depending on how crowded the system is (given by φ), and
ve = v0(1 − φρ) is a nonlinear effective speed. The hydrodynamic equations for the spatial density ρ and the
polarisation p are obtained by integrating (11),

∂tρ+∇ · (ve(ρ)p) = De(φ)∆ρ, (12)

∂tp +∇P (ρ) = De(φ)∆p− p, (13)

with so-called pressure P (ρ) = ve(ρ)ρ/2. This model displays a motility-induced phase transition [65]: at low
densities (φρ small), the effective swimming speed is close to the free speed v0, whereas at high densities, the
effective swimming goes to zero. The result is a phase separation, which regions of high density where particles
are trapped and do not move, and very dilute areas with fast speeds. This is shown via a linear stability
analysis as well as numerical simulations of the microscopic system using the repulsive Weeks-Chandler-Andersen
(WCA) potential (which corresponds to a truncated and shifted upwards Lennard–Jones potential). Through
an adiabatic approximation, they cast equation (12) into a gradient-flow of an effective free energy of the form
of a conventional Ginzburg-Landau function. According to [65], this is consistent with “the mapping of active
phase separation onto that of passive fluids with attractive interactions through a global effective free energy”.

An alternative derivation of a macroscopic model for active Brownian particles is considered in [16] using
the hard-core interaction potential, u(r) = +∞ for r < ε and 0 otherwise. In this case, the microscopic model
changes from (2) to

dXi =
√

2DTdWi + v0e(Θi)dt, |Xi −Xi| > ε,∀j 6= i, (14a)

dΘi =
√

2DRdWi. (14b)

This represents particles as hard disks of diameter ε: particles only sense each other when they come into
contact, and they are not allowed to get closer than ε to each other (mutual impenetrability condition). In
comparison with the mean-field scaling, here instead the scaling is χ = 1, ` = ε � 1 so that each particle only
interacts with the few particles that are within a distance O(ε), the interaction is very strong. Using the method
of matched asymptotics, from (14) one obtains to order φ the following model:

∂tf + v0∇ · [f(1− φρ)e(θ) + φpf ] = DT∇ · [(1− φρ)∇f + 3φf∇ρ] +DR∂
2
θf. (15)

Here φ is the effective occupied area φ = (N − 1)ε2π/2. Model (15) is obtained formally in the limit of ε and φ
small. Note that this equation is consistent with the case N = 1: if there is only one particle, then φ = 0 and
we recover a linear PDE (no interactions). The equation for the spatial density is

∂tρ+ v0∇ · p = DT∇ · [(1 + 2φρ)∇ρ] , (16)

which indicates the collective diffusion effect: the higher the occupied fraction φ, the higher the effective
diffusion coefficient. We note that, due to the nature of the excluded-volume interactions, models (11) and (15)
are obtained via approximations (closure at the pair correlation function and matched asymptotic expansions,
respectively) and no rigorous results are available. A nice exposition of the difficulties of going from micro to
macro in the presence of hard-core non-overlapping constraints is given in [52]. In particular, they consider
hard-core interacting particles in the context of congestion handling in crowd motion. In contrast to (14), the
dynamics involve only position and are deterministic. Collisions can then be handled via the projection of
velocities onto the set of feasible velocities. In [52] they do not attempt to derive a macroscopic model from the
microscopic dynamics but instead propose a PDE model for the population density ρ(x, t) that expresses the
congestion assumption by setting the velocity to zero whenever ρ attains a saturation value (which they set to
one).
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2.2 Discrete random walks

Next we discuss fully discrete models for active particles with size exclusion effects. We start by considering
a simple exclusion model for active particles on a one-dimensional lattice, which has been investigated in [48].
The brief description of the microscopic lattice model is as follows: N particles of size ε evolve on a discrete
ring of 1/ε sites, with occupancy φ = εN ≤ 1. Each lattice is occupied by at most one particle (thus modelling
a size exclusion), and particles can either be moving left (− particles) or right (+ particles). The configuration
can be represented using occupation numbers σi at site i with values in {−1, 0, 1}. The dynamics combine three
mechanisms:

(a) Diffusive motion: for each bond (i, i+ 1), σi and σi+1 are exchanged at rate DT \ε2.

(b) Self-propulsion and size exclusion: for each bond (i, i+ 1), a + particle in i jumps to i+ 1 if σi+1 = 0; or
a − particle in i+ 1 jumps to i if σi = 0, both at rate εv0.

(c) Tumbling: particles switch direction σi → −σi at rate ε2λ,

see Figure 1 for an illustration of these effects. Rescaling space and time as εi and ε2t respectively, and a smooth
initial condition, the macroscopic equations can be derived exactly as [48]

∂tf+ + v0∂x[f+(1− φρ)] = DT∂xxf+ + λ(f− − f+),

∂tf− − v0∂x[f−(1− φρ)] = DT∂xxf− + λ(f+ − f−),
(17)

where f+ and f− are the probability densities corresponding to the + and − particles, respectively, and ρ =
f+ + f−. Introducing the number densities

r(x, t) = Nf+(x, t), b(x, t) = Nf−(x, t), (18)

which integrate to N1 and N2 respectively, we can rewrite (17) as

∂tr + v0∂x[r(1− ρ̄)] = DT∂xxr + λ(b− r),
∂tb− v0∂x[b(1− ρ̄)] = DT∂xxb+ λ(r − b),

(19)

with ρ̄ = ε(r+ b). One can also consider the same process in higher dimensions with a finite set of orientations
ek, k = 1, . . . ,m. The most straightforward generalisation of (17) is to consider a two-dimensional square lattice
with m = 4 directions, namely e1 = (1, 0), e2 = (0, 1), e3 = (−1, 0), e4 = (0,−1) (see Fig. 1 in [48]). In this case,
the configuration would take five possible values, σi = {−1,−i, 0, i, 1} and the resulting macroscopic model
would consist of a system of four equations for the densities of each subpopulations

∂tfk + v0∇ · [fk(1− φρ)ek] = DT∆fk + λ(fk+1 + fk−1 − 2fk), k = 1, . . . , 4 (20)

where now φ = ε2N , fk(x, t) stands for the probability density of particles going in the ek direction, and
ρ =

∑
k fk. Periodicity in angle implies that f5 = f1, f−1 = f4.

Note how the model in [48] differs from an asymmetric simple exclusion processes (ASEP) in that particles
are allowed to swap places in the diffusive step (see (a) above). As a result, the macroscopic models (17) and
(20) lack any cross-diffusion terms. We can also consider an actual ASEP process, in which simple exclusion is
also added to the diffusive step, that is, point (a) above is replaced by

(a’) Diffusive motion: a particle in i jumps to i+ 1 at rate DT \ε2 if σi+1 = 0 (and similarly to i− 1).

In this case, the resulting macroscopic model is

∂tfk + v0∇ · [fk(1− φρ)ek] = DT∇ · [(1− φρ)∇fk + φfk∇ρ] + λ(fk+1 + fk−1 − 2fk), k = 1, . . . , 4. (21)

2.3 Hybrid random walks

In the previous two subsections we have discussed models that consider both the position and the orientation
as continuous, or discrete. Here we discuss hybrid random walks, that is, when positions are continuous and
orientations finite, or vice-versa.

The first hybrid model we consider is an active exclusion process whereby the orientation is a continuous
process in [0, 2π) evolving according to a Brownian motion with diffusion DR, (2b), while keeping the position
evolving according to a discrete asymmetric exclusion process (ASEP) [16]. The advantage of this approach
is to avoid the anisotropy imposed by the underlying lattice. Here we present the model in two-dimensions so
that we can compare it to the models presented above.
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(a)

(b)

(c)

(a’)

Figure 1: Sketch illustrating the update steps for + (right moving) and − (left moving) particles outlined in
Section 2.2. The left column shows the initial setup, the right one the configuration after a single time step.

We consider a square lattice with spacing ε and orientations ek, k = 1, . . . , 4 as given above. A particle at
lattice site x can jump to neighbouring sites x + εek if the latter is empty at a rate πk(θ) that depends on its
orientation θ, namely

πk(θ) = αε exp(βεe(θ) · ek),

where αε = DT /ε
2 and βε = v0ε/(2DT ). Therefore, the diffusive and self-propulsion mechanisms in (17) are now

accounted for together: jumping in the direction opposite to your orientation reduces the rate to ∼ αε(1− βε),
whereas the there is a positive bias ∼ αε(1 + βε) towards jumps in the direction pointed to by e(θ), see Figure
2 The tumbling (point 3 above) is replaced by a rotational Brownian motion.

Figure 2: Sketch of the 2D hybrid random walk outlined in Section 2.3. The arrow within each particle
corresponds to its orientation, the colour of the neigneighbouringhboring sites relate to πk. The darker the
color, the greater the likelihood to jump into the cell.

Taking the limit ε → 0 while keeping the occupied fraction φ = Nε2 finite one obtains the following
macroscopic model for f = f(x, θ, t)

∂tf + v0∇ · [f(1− φρ)e(θ)] = DT∇ · ((1− φρ)∇f + φf∇ρ) +DR∂
2
θf. (22)

This model can be directly related to the fully discrete model (21): they are exactly the same if one considers
(21) as the discretised-in-angle version of (22) by identifying

DR∂
2
θfk ≈ DR

fk+1 + fk−1 − 2fk
(2π/m)2

,
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that is, λ = DRm
2/(2π2), where m is the number of orientations in the fully discrete model.

The other possible hybrid model is to consider a continuous random walk with interactions in space (2a),
while only allowing a finite number of orientations, Θi ∈ {θ1, . . . , θm}. In its simplest setting, we can consider
that θk are equally spaced in [0, 2π) and a constant switching rate λ between the neighbouring angles. The N
particles evolve according to the stochastic model:

dXi =
√

2DTdWi −∇xi
Udt+ v0e(Θi)dt, (23a)

Θi = {θk}mk=1, θk
λ−−→ θk+1 (mod 2π), θk

λ−−→ θk−1 (mod 2π). (23b)

If we assume excluded-volume interactions through a hard-core potential, the resulting model is [67]

∂tfk + v0∇ · [fk(1− φρ)ek + φpfk] = DT∇ · [(1− φρ)∇fk + 3φfk∇ρ] + λ (fk+1 + fk−1 − 2fk) , (24)

where ρ =
∑m
k=1 fk, p =

∑m
k=1 fke(θk), and ek = e(θk). The density fk(x, t) represents the probability of

finding a particle at position x at time t with orientation θk (naturally, we identify fm+1 = f1 and f−1 = fm).
Here φ = (N −1)ε2π/2 represents the effective excluded region as in (15). We note how this model is consistent
with the continuous model (15), in that if we had discretised angle in (15) we would arrive at the cross-diffusion
reaction model (24).

A variant of the hybrid model (23) is to allow for jumps to arbitrary orientations instead of rotations of
2π/m, namely, from θk to θj (mod 2π), j 6= k, at a constant rate λ independent of the rotation. This is a
convenient way to model the tumbles of a run-and-tumble process, such as the one used to describe the motion
of E. Coli [9], see also section 6.2. In this case, the reaction term in (24) changes to

∂tfk + v0∇ · [fk(1− φρ)e(θk) + φpfk] = DT∇ · [(1− φρ)∇fk + 3φfk∇ρ] + λ
∑
j 6=k

(fj − fk) . (25)

We may generalise the jumps in orientation by introducing a turning kernel T (θ, θ′) as the probability density
function for a rotation from θ′ to θ. That is, if Θi(t) is the orientation of the ith particle at time t and the jump
occurs at t∗,

T (θ, θ′)dθ = P
({
θ ≤ Θi(t

∗
+) ≤ θ + dθ | Θi(t

∗
−) = θ′

})
.

Clearly for mass conservation we require that
∫
T (θ, θ′)dθ = 1. The jumps may only depend on the relative

orientation θ − θ′ in the case of a homogeneous and isotropic medium, in which case T (θ, θ′) ≡ T (θ − θ′). This
is the case of the two particular examples above: in (24), the kernel is

T (θ, θ′) =
1

2
[δ(θ − θ′ −∆) + δ(θ − θ′ + ∆)] , ∆ =

2π

m
,

whereas the rotation kernel in (25) is

T (θ, θ′) =
1

m− 1

m−1∑
k=1

δ(θ − θ′ + k∆), ∆ =
2π

m
,

where the argument of the delta function is taken to be 2π-periodic. If the turning times t∗ are distributed
according to a Poisson process with intensity λ, the resulting macroscopic model for the phase density f =
f(x, θ, t) with a general turning kernel T becomes

∂tf + v0∇ · [f(1− φρ)e(θ) + φpf ] = DT∇ · [(1− φρ)∇f + 3φf∇ρ]− λf + λ

∫ 2π

0

T (θ, θ′)f(x, θ′, t)dθ′. (26)

We note that the microscopic process associated with (26) is continuous (and not hybrid) if the support of T
has positive measure.

3 Models for externally activated particles

In this section we go from active to passive particles and consider models with time reversal at the microscopic
level. As mentioned in the introduction, the defining factor of active matter models is the self-propulsion
term, which makes them out-of-equilibrium. Mathematically, this can be expressed by saying that even the
microscopic model lacks a gradient-flow structure (either due to the term e(θ) in the transport term, see (15),
or the reaction terms in (17), (20), see section 4).

In the previous section we have seen the role the orientation θ plays. If it is kept continuous, the resulting
macroscopic model is of kinetic type for the density f(x, θ, t). If instead only a fixed number m of orientations

7



are allowed, then these define a set of m species, whereby all the particles in the same species have the same
drift term. This motivates the connection to cross-diffusion systems for passive particles, which are obtained by
turning off the active change in directions in the models of section 2 and look at the resulting special cases. This
is a relevant limit in many applications, such as in pedestrian dynamics (see section 6.1). Once the orientations
are fixed, we are left with two possible passive systems: either originating from a spatial Brownian motion or a
spatial ASEP discrete process.

3.1 Continuous models

The starting point is the microscopic model (2) taking the limit DR → 0. We could still keep the interaction
potential as depending on the relative orientations, which would lead to different self- and cross-interactions
(which might be useful in certain applications). Here for simplicity we assume interactions are all the same
regardless of the orientations:

dXi =
√

2DTdWi −∇xiUdt+ v0e(Θi)dt, (27a)

Θi(t) = θk, if i ∈ Ik, k = 1, . . . ,m, (27b)

where Ik is the set of particles belonging to species k. The number of particles in each species is |Ik| = Nk.
The mean-field limit of (27) is given by (taking N =

∑
kNk →∞ as in (6a))

∂tfk(x, t) = ∇x · [DT∇xfk − v0e(θk)fk + fk∇x(u ∗ ρ)] , (28)

and ρ(x, t) =
∑
k fk. For consistency with the active models, here we do not take fk to be probability densities

but to integrate to the relative species fraction, whereas as before the total density ρ has unit mass:∫
Ω

fk(x, t)dx =
Nk
N
,

∫
Ω

ρ(x, t)dx = 1. (29)

Thus fk = fk(x, t) describes the probability that a particle is at position x at time t, and is in the Ik set.
The microscopic model (27) with the interaction term U replaced by a hard-core potential for particles with

diameter ε can be dealt with via the method of matched asymptotics. In this case, the resulting cross-diffusion
model is

∂tfk + v0∇ · [fkek + φkl(el − ek)fkfl] = DT∇ · [(1 + φkkfk)∇fk + φkl(3fk∇fl − fl∇fk)] , l 6= k, (30)

where φkk = (Nk − 1)N/Nkε
2π, φkl = Nε2π/2 for l 6= k, and fk(x, t) are defined as above. This model was first

derived in [14] for just two species but in a slightly more general context, whereby particles many have different
sizes and diffusion coefficients (also, note that in [14], (30) appears written in terms of probability densities).
Equation (30) can be directly related to model (24) with λ = 0 if in both models we assume Nk large enough
such that Nk − 1 ≈ Nk, N − 1 ≈ N :

∂tfk + v0∇ · [fk(1− φρ)e(θk) + φpfk] = DT∇ · [(1− φρ)∇fk + 3φfk∇ρ] , (31)

where φ = Nε2π/2, ρ =
∑
k fk, and p =

∑
k fke(θk). Model (31) is the cross-diffusion system for red and blue

particles studied in [15] in disguise. First, set the number of species to m = 2 and define the number densities

r(x, t) = Nf1(x, t), b(x, t) = Nf2(x, t), (32)

which integrate to N1 and N2 respectively. Then define the potentials Vr = −(v0/DT )e(θ1) · x and Vb =
−(v0/DT )e(θ2) · x. In terms of these new quantities, system (31) becomes

∂tr = DT∇ · [(1 + 2ϕr − ϕb)∇r + 3ϕr∇b+ r∇Vr + ϕrb∇(Vb − Vr)] , (33a)

∂tb = DT∇ · [(1 + 2ϕb− ϕr)∇b+ 3ϕb∇r + b∇Vb + ϕrb∇(Vr − Vb)] , (33b)

where ϕ = ε2π/2. This is exactly the cross-diffusion system for particles of the same size and diffusivity studied
in [15] for d = 2 (see Eqs. (11) in [15]).1

3.2 Discrete models

In this category there are discrete processes in space without changes in orientations. The most well-known
model in the context of excluded-volume interactions is ASEP, which was used above in combination of either

1We note a typo in [15]: the coefficient β below system (11) should have read β = (2d− 1)γ.
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continuous change in angle, see (22), or discrete jumps, see (21). We obtain the corresponding passive process
by either setting DR or λ to zero, respectively. The resulting model in either case is

∂tfk + v0∇ · [fk(1− φρ)e(θk)] = DT∇ · [(1− φρ)∇fk + φfk∇ρ], k = 1, . . . ,m, (34)

where fk satisfy (29) as before, and φ = Nε2. We notice three differences with its continuous passive counterpart
(31): in the latter, the effective occupied fraction φ has a factor of π/2, the coefficient in the cross-diffusion
term fkρ has a factor of three, and the transport term has an additional nonlinearity that depends on the
polarisation. The cross-diffusion system (34) was derived in [63] and analysed in [24] for two species (m = 2).
Specifically, if we introduce the number densities r, b and general potentials Vr, Vb as above, it reads

∂tr = DT∇ · [(1− ρ̄)∇r + r∇ρ̄+ r(1− ρ̄)∇Vr] (35a)

∂tb = DT∇ · [(1− ρ̄)∇b+ b∇ρ̄+ b(1− ρ̄)∇Vb] , (35b)

where ρ̄ = ε2(r + b) = ε2(N1f1 +N2f2) (compare with (3.7)-(3.8) in [24]).2

4 General model structure

We now put the models presented in the previous sections into a more general picture. We assume that
f = f(x, θ, t), where θ is a continuous variable taking values in [0, 2π) or a discrete variable taking values θk
for k = 1, . . . ,m (ordered increasingly on [0, 2π)). For now on, we consider the density rescaled by φ instead
of a probability density. This implies that φ disappears from the equations and enters the mass condition as∫∫

f =
∫
ρ = φ. In the latter case we shall also use the notation fk(x, t) = f(x, θk, t). We also recall the

definition of the space density ρ and the polarisation p:

ρ(x, t) =

∫ 2π

0

f(x, θ, t) dµ(θ) and p(x, t) =

∫ 2π

0

e(θ)f(x, θ, t) dµ(θ),

where the integral in θ is either with respect to the Lebesgue measure for continuum angles or with respect to
a discrete measure (a finite sum) for discrete angles.

The models presented have the following general model structure:

∂tf + v0∇ · (f(1− ρ)e(θ) + aφpf) = DT∇ · (B1(ρ)∇f + B2(f)∇ρ) + c∆θf. (36)

with a ∈ {0, 1}. In (36) the derivative operator ∇ is the standard gradient with respect to the spatial variable
x, while the Laplacian ∆θ is either

• the second derivative ∂θθf in the Brownian case,

• the second-order difference or discrete Laplacian

D2f = (fk+1 + fk−1 − 2fk),

with cyclic extension of the index k, in the case of fixed discrete rotations (or in one spatial dimension
where there are only two possible orientations),

• the graph Laplacian with uniform weights

DGf =
∑
j 6=k

(fj − fk),

in the run-and-tumble case (25) where arbitrary rotations are allowed.

Let us mention that similar structures and results hold true for graph Laplacians with other non-negative
weights. We provide an overview of the respective differential operators and constants for most of the presented
models in Table 1.

2In the system (3.7)-(3.8) of [24], r and b are volume concentrations, thus having a factor of ε2 compared to those used in (35),
and the diffusivities of the two species are 1 and D instead of DT for both.
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Eq. Nr. ∆θ a B1 B2 c

(11) ∂θθ 0 1 0 DR

(15) ∂θθ 1 (1− ρ) 3f DR

(20) D2 0 1 0 λ

(21) D2 0 (1− ρ) f λ

(22) ∂θθ 0 (1− ρ) f DR

(24) D2 1 (1− ρ) 3f DR

(25) DG 1 (1− ρ) 3f DR

(30) None 0 (1− ρ) 3f 0

(34) None 0 (1− ρ) f 0

Table 1: Table recasting most models in the general form of (36).

Small and large speed Natural scaling limits for the general system (36) are the ones for small and large
speed, i.e. v0 → 0 and v0 → ∞, respectively. The first case is rather obvious, since at v0 = 0 the model is
purely diffusive, i.e.

∂tf = DT∇ · (B1(ρ)∇f + B2(f)∇ρ) + c∆θf.

The model can then be written as a gradient-flow structure (or a generalised gradient structure in the case of
discrete angles, see for example [50, 55]) for an entropy of the form

E(f) =

∫∫
f log f dx dθ + b2

∫
(1− ρ) log(1− ρ) dx, (37)

with b2 ∈ {0, 1, 3} corresponding to the coefficients of B2. In the case v0 small but finite, the gradient-flow
structure is broken but we still expect the diffusive part to dominate. In particular, we expect long-time
convergence to a unique stationary solution.

In the case v0 → ∞ there are two relevant time scales. At a small time scale L/v0, where L is a typical
length scale, the evolution is governed by the first-order equation

∂τf +∇ · (f(1− φρ)e(θ) + aφpf) = 0,

where τ = tv0/L. The divergence of the corresponding velocity field u = (1− φρ)e(θ) + aφp is given by

∇ · u = −φ∇ρ · e(θ) + aφ∇ · p.

In particular in the case of a = 0 we see that the question of expansion or compression of the velocity field is
determined by the angle between ∇ρ and the unit vector e(θ). Unless ∇ρ = 0, the velocity field is compressible
for a part of the directions and expansive for the opposite directions. A consequence to be expected is the
appearance of patterns with almost piecewise constant densities (see, for example, Figures 8 and 9). Inside
the structures with constant densities (∇ρ = 0) the velocity field is incompressible, while the compression or
expansion arises at the boundaries of such regions. This is rather described by a large time scale, i.e. the
equation without time rescaling. Then one expects a slow interface motion, which is also observed in numerical
simulations. In a simple case with only one direction this has been made precise in [18].

Small and large rotational diffusion The limit of small rotations rate c → 0 corresponds to a more
standard nonlinear Fokker-Planck system with a given linear potential,

∂tf + v0∇ · (f((1− φρ)e(θ) + aφp)) = DT∇ · (B1(ρ)∇f + B2(f)∇ρ),

as describe in section 3. Models of this kind have been investigated previously, see for example [24, 23]. They
tend to develop patterns such as jams or lanes, depending on the initial condition. This happens in particular
for large speeds v0 (see Figures 11 and 13).

The case of large rotational diffusion c → ∞ will formally lead to f being constant with respect to θ at
leading order. The corresponding equation at leading order can thus be obtained by averaging (36) in θ. Since
f does not depend on θ, the polarisation is zero, that is

p =

∫ 2π

0

fe(θ) dθ = 0,

and the transport term drops out in all the models. Indeed, the nonlinear diffusion terms in any case average
to linear diffusion with respect to x. Hence, the evolution of f at leading order is governed by a linear diffusion
equation.
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4.1 Wasserstein gradient flows

We have seen above that microscopic models for externally activated particle have an underlying gradient-flow
structure, which should ideally be maintained in the macroscopic limit. Adams et al. [1] showed in their
seminal work that then the Wasserstein metric arises naturally in the mean-field limit (under suitable scaling
assumptions). However, this limit is only well understood in a few cases (for example for point particles) and
rigorous results are often missing. In case of excluded-volume effects, as discussed in subsections 2.1.2 and 2.3,
the only known rigorous continuum models are derived in 1D [59, 11, 39], with only approximate models for
higher space dimension. We see that these approximate limits often lack a full gradient-flow structure, but are
sufficiently close to it. In the following we give a brief overview on how Wasserstein gradient flows and energy
dissipation provides useful a-priori estimates that can be used in existence proofs or when studying the long
time behaviour of solutions. These techniques are particularly useful for systems with cross-diffusion terms, for
which standard existence results do not necessarily hold.

We will outline the main ideas for functions f = f(x, θ, t) where θ is either continuous or taking discrete
values θk with k = 1, . . .m. As before, we use ξ = (x, θ). We say that a macroscopic model has a Wasserstein
gradient-flow structure if it can be written as

∂tf(x, θ, t) = ∇ξ · (M(f)∇ξw) , (38)

where M is the mobility operator and w = δfE the variational derivative of an entropy/energy functional E
with respect to f . Note that for discrete θk, k = 1, . . .m the mobility M is a positive definite matrix in Rm×m
and δfE is replaced by the vector δfkE . We have seen a possible candidate for energies in (37); they usually
comprise negative logarithmic entropy terms of the particle distribution and the total density (corresponding
to linear and non-linear diffusion relating to the operators B1 and B2) as well as potentials.

If the system has a Wasserstein gradient-flow structure (38) then the entropy E changes in time as

dE
dt

=

∫∫
∂tfw dxdθ = −

∫∫
M̄(w)|∇ξw|2 dxdθ, (39)

where M̄ is the mobility matrix M written in terms of the entropy variable w. If M̄ is positive definite, then
the energy is dissipated. In the next subsection we will define an entropy for the general model (36) and show
that the system is dissipative for several of the operator choices listed in Table 1.

Note that these entropy dissipation arguments are mostly restricted to unbounded domains and bounded
domains with no-flux or Dirichlet boundary conditions. It is possible to generalise them in the case of non-
equilibrium boundary conditions, as such discussed in Section 5, but a general theory is not available yet. We
will see in the next subsection that entropy dissipation may also hold for systems, which do not have a full
gradient-flow structure.

Since system (38) is dissipative, we expect long time convergence to an equilibrium solution. The respec-
tive equilibrium solutions f∞ to (38) then correspond to minimisers of the entropy E . To show exponential
convergence towards equilibrium it is often helpful to study the evolution of the so-called relative entropy, that
is

RE(f, f∞) := E(f)− E(f∞)− 〈E ′(f∞), f − f∞〉.

In general one wishes the establish so-called entropy-entropy dissipation inequalities for the relative entropy

dRE
dt
≤ −CRE ,

with C > 0. Then Gronwall’s lemma gives desired exponential convergence. This approach is also known as
the Bakry–Emery method, see [6].

We discussed the challenges in the rigorous derivation of continuum models in the previous sections and
how often only formal or approximate limiting results are available. These approximate models are often ’close’
to a full gradient flow, meaning that they only differ by higher order terms (which were neglected in the
approximation). This closeness motivated the definition of so-called asymptotic gradient flow, see [15, 17]. A
dynamical system of the form

∂tz = F(z; ε) (40)

has a an asymptotic gradient-flow structure of order k if

F(z; ε) +

2k∑
j=k+1

εjGj(z) = −M(z; ε)E ′(z, ε),

for some parametric energy functional E . For example, (30) exhibits a GF structure if the red and blue particles
have the same size and diffusivity, but lacks it for differently sized particles (a variation of the model not
discussed here). The closeness of AGF to GF can be used to study for example its stationary solutions and the
behaviour of solution close to equilibrium, see [3, 2, 15].
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4.2 Entropy dissipation

Next we investigate the (approximate) dissipation of an appropriate energy for the general formulation (36). The
considered energy functional is motivated by the entropies of the scaling limits considered before. In particular
we consider

E(f) =

∫∫
f log f + V (x, θ)f dx dµ(θ) + b2

∫
(1− ρ) log(1− ρ) dx, (41)

for which the models can be formulated as gradient flows in the case c = 0 (no active self-propulsion) with
b2 ∈ {0, 1, 3} chosen appropriately. For simplicity we set φ = 1 as well as DT = 1 in the following. As before,
we interpret integrals in θ with respect to the Lebesgue measure for continuum angles and with respect to the
discrete measure (sum) in case of a finite number of directions. We recall that the potential V is given by

V (x, θ) = −v0 e(θ) · x = −v0 (cos θx+ sin θy).

In the following we provide a formal computation assuming sufficient regularity of all solutions. We have

dE
dt

=

∫∫
∂tf(log f + V − b2 log(1− ρ)) dx dθ

= −
∫∫
∇ [log f + V − b2 log(1− ρ)] {−v0f [(1− ρ)e(θ) + ap] + B1(f, ρ)∇f + B2(f, ρ)∇ρ} dx dθ

+ c

∫∫
(log f + V − b2 log(1− ρ))∆θf dx dθ.

Let us first investigate the last term. Since ρ is independent of θ, using the properties of the generalised
Laplacian ∆θ with periodic boundary conditions we have∫

log(1− ρ)∆θf dθ = log(1− ρ)

∫
∆θf dθ = 0.

Using the fact that ∆θe(θ) is uniformly bounded in all cases, we find∫∫
[log f + V − b2 log(1− ρ)]∆θf dx dθ = −

∫∫
Fθ(f)− v0∆θe(θ) · xf dx dθ,

≤ C|v0|
∫
|x|f dx dθ = C|v0|

∫
|x|ρ dx,

where Fθ(f) ≥ 0 is the Fisher information with respect to the generalised Laplacian ∆θ

Fθ(f) =



|∂θf |2

f
for ∆θ = ∂θθ,

|fk+1 − fk|2

M(fk, fk+1)
for ∆θ = D2,∑

j

|fj − fk|2

M(fj , fk)
for ∆θ = DG,

where

M(f, g) =
f − g

log(f)− log(g)

is the logarithmic mean.
Now we further investigate the first term for the models with a = 0 (no p term in the equation for f), where,

for the respective b2 we obtain∫∫
∇[log f + V − b2 log(1− ρ)] [v0f(1− ρ)e(θ)− B1(f, ρ)∇f − B2(f, ρ)∇ρ] dx dθ

= −
∫∫

f(1− ρ)|∇[log f + V − b2 log(1− ρ)]|2 dx dθ ≤ 0.

Overall we finally find

dE
dt
≤ C |v0|

∫
|x|ρ dx ≤ C |v0|

√∫
|x|2ρ dx.

Thus, the growth of the entropy in time is limited by the second moment. Note that for a = 1 one can employ
analogous reasoning to obtain the above negative term. However it is unclear how to control the additional
term

∫∫
∇[log f + V − c log(1 − ρ)]v0pf dx dθ. The bounds obtained provide useful a-priori estimates, which

can be used in existence results and to study the long-time behaviour, see for example [21, 45].
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5 Boundary effects

So far, we have focused on domains with periodic boundary conditions. In this section we discuss non-zero flux
boundary conditions, which can be used to impose non-zero steady currents and externally-activate or force the
passive models described in section 3 out of equilibrium [27]. We remark that the in-flux boundary conditions
are difficult to deal with in the case of interacting continuous random walks. Thus we only mention a few
aspects and comment in more detail on the time-discrete situation which is easier to tackle, see remark 5.1.

Mass conserving boundary conditions

We first discuss conditions (other than periodic boundaries) that conserve the total mass, i.e., the total number
of particles in the microscopic models, or the integral of the density φ in the macroscopic models. In case of the
coupled SDE model (2), we are interested in conditions that ensure that particles remain inside the domain.
Intuitively, particles need to be reflected whenever they hit the boundary. However, as we are dealing with
a problem that is continuous in time, we have to ensure that the particle path remains continuous. In his
seminal paper [64] Skorokhod solved this problem by introducing an additional process that increases whenever
the original process hits the boundary, see [57] for a detailed discussion. For the microscopic models on a
lattice, such boundary conditions correspond to aborting any jumps that would lead a particle outside of the
domain. For the macroscopic models, mass conservation corresponds to no-flux boundary conditions that are
implemented by setting the normal flux over the boundary to zero, i.e.

J · n = 0 a.e. in Υ× (0, T ), (42)

where, using the general form (36), the flux density is given as

J = v0(f((1− φρ)e(θ) + aφp))−DT (B1(ρ)∇f + B2(f)∇ρ). (43)

Flux boundary conditions

Apart from periodic or no-flux boundary conditions, there is also the possibility for boundary conditions that
allow for the in- or outflow of particles (mass) via the boundary. Such effects are of particular interest in the
context of this chapter, since they yield an out-of-equilibrium system even if the motion of the particles within
the domain is purely passive (i.e. due to diffusion).

For the SDE model (2), such boundary conditions correspond to partially reflecting or radiation conditions.
Intuitively, once a particle reaches the boundary it is, with a certain probability, either removed or otherwise
reflected, see [41] and [49, Section 4]. For the discrete models of section 2.2, let us consider first the special case of
a single species in two dimensions with two open and to closed boundaries. This corresponds to the asymmetric
simple exclusion process (ASEP) with open boundary conditions, the paradigmatic models in non-equilibrium
thermodynamics, [28]. The dynamics of such a process is well understood and can be solved explicitly [33, 32]
(see also [68]). We denote by α and β the rates by which particles enter (at the left boundary) and exit (at the
right boundary) the lattice. Then, the key observation here is that in the steady state, system can be in one of
three distinct states, characterised by the value of the one-dimensional current and the density as follows

• Low density or influx limited (α < min{β, 1/2}): the density takes the value α and the flux α(1− α).

• High density or outflux limited (β < min{α, 1/2}): the density is 1− β and the flux β(1− β).

• Maximal current (α, β > 1/2): the density is 1/2 and the flux 1/4.

A similar behaviour can be verified for the macroscopic passive model (35) (or also (19) with λ = 0) for a single
species on the domain Ω = [0, L], which reduces to a single equation for the unknown density r, i.e.,

∂tr + ∂xj = 0 with j = −DT∂xr + r(1− r)∂xV.

We supplement the equation with the flux boundary conditions

−j · n = α(1− r) at x = 0 and j · n = βr at x = 1, (44)

see [20]. Indeed, one can show that for positive DT > 0, stationary solutions are close to one of the regimes
and as DT → 0, these attain the exact values for flux and density. Interestingly, for positive DT it is possible
to enter the maximal current regime for values of α and β strictly less than 1/2. The long time behaviour of
these equations, using entropy–entropy-dissipation inequalities, has been studied in [20].

For the macroscopic active models (15) and (22), a similar condition can be formulated for the unknown
quantity f . However, as f depends not only on x and t but also on the angle θ, the coefficients may also depend
on it. In the most general situation we obtain

J · n = −α(θ,n)(1− φρ) + β(θ,n)f, (45)
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with J defined in (43). Here, the choice of the functions α and β is subject to modelling assumptions or
properties of microscopic stochastic models for the in- and outflow. Typically one has a separation into inflow-
and outflow regions, which means that α is supported on inward pointing directions e(θ) · n > 0, while β is
supported outward pointing directions e(θ) · n > 0.

Other boundary conditions

Let us also discuss other types of boundary conditions. Homogeneous Dirichlet boundary conditions can be
applied to all types of models: for the SDE (2), one has to remove a particle once it reaches the boundary.
The same holds for the discrete random walk models. For the macroscopic models, one sets the trace at the
boundary to zero. Finally, also mixed boundary conditions are possible, combining the effects described above
on different parts of the boundary. Another type of boundary condition useful in the context of self-propelled
organisms are no-slip or alignment type boundary conditions, whereby the particles align their orientations with
the boundary (e(θ) ·n = 0). A notable example of this can be seen in ant foraging networks and lab experiments
with ants walking on bridges [36, 35].

Remark 5.1 (Boundary conditions for discrete time random walks). We briefly comment on the situation for
time-discrete random walks, that is when the SDE (2) is replaced by the time-discrete system

Xi(t+ ∆t) = Xi(t) + ∆t
√

2DT ζi −∆t∇xi
U + ∆tv0e(Θi), (46a)

Θi(t+ ∆t) = Θi(t) + ∆t
√

2DRζ̄i −∆t∂θiU, (46b)

for some time step size ∆t > 0 and where ζi, ζ̄i are normally distributed random variables with zero mean and
unit variance. To implement boundary conditions, one has to calculate the probability that Xi(t + ∆t) /∈ Ω
(considering also the case that the particles leaves the domain but moves back into it within the time interval
[t, t + ∆t]), see [5] for detailed calculations in the case of pure diffusion. If a particle is found to have left
the domain, it can either be removed with probability one (corresponding to homogeneous Dirichlet boundary
conditions) or less than one, called a partially reflective boundary condition (corresponding to Robin boundary
conditions). In our setting, this probability can depend on the current angle of the particle, Θi(t), allowing
for additional modelling. It is also possible to add a reservoir of particles at the boundary to implement flux
boundary conditions in the spirit of (45) by prescribing a probability to enter the domain. In the case of excluded
volume, the probability to enter will depend on the number of particles close to the entrance.

6 Active crowds in the life and social science

6.1 Pedestrian dynamics

A prominent example of active and externally activated dynamics in the context of socio-economic applications
is the motion of large pedestrian crowds. There is an extensive literature on mathematical modelling for
pedestrians in the physics and the transportation community, which is beyond the scope of this paper. We will
therefore review the relevant models in the context of active crowds only and refer for a more comprehensive
overview to [30, 51].

Microscopic models for pedestrian flows Microscopic off-lattice models are the most popular approach
in the engineering and transportation research literature. Most software packages and simulations are based on
the so called social force model by Helbing [43, 42]. The social force model is a second order SDE model, which
does not take the form of active models considered here. However, it is easy to formulate models for pedestrians
in the context of active particles satisfying (2). For example, assume that all pedestrians move with the same
constant speed in a desired direction Θd avoiding collisions with others. Then their dynamics can be described
by the following second order system:

dXi = −∇Xi
Udt+ v0

e(Θi)−Θd

τ
dt+

√
2DT dWi (47a)

dΘi = −∂Θi
Udt+

√
2DR dWi. (47b)

The potential U takes the form (1), where the pairwise interactions u should be related to the likelihood of a
collision. One could for example consider

u(|Xi −Xj |/`,Θi −Θj) = C
Θi −Θj

|Xi −Xj |
,
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where C ∈ R+ and ` relates to the personal comfort zone. Another possibility corresponds to a Lennard Jones
type potential to model short range repulsion and long range attraction. Another popular microscopic approach
are so-called cellular automata, which correspond to the discrete active and externally activated models discussed
before. In cellular automata a certain number of pedestrians can occupy discrete lattice sites and individuals
move to available (not fully occupied) neighbouring sites, with transition rates. These transition rates may
depend on given potentials, as discussed in the previous sections, which relate to the preferred direction.

There is also a large class of microscopic on-lattice models, so called cellular automata, see [47], which relate
to the microscopic discussed in Section 3.2. In cellular automata pedestrians move to neighbouring sites at given
rates, if these sites are not already occupied. Their rates often depend on an external given potential, which
relates to the desired direction Θd. Cellular automata often serve as the basis for the macroscopic pedestrian
models, which will be discussed in the next paragraph, see for example [19, 22].

Macroscopic models for pedestrian flows Mean field models derived from microscopic off-lattice ap-
proaches have been used successfully to analyse the formation of directional lanes or aggregates in bi-directional
pedestrian flows. This segregation behaviour has been observed in many experimental and real-life situations.
Several models, which fall into the category of externally activated particles introduced in section 3.2, were
proposed and investigated in this context. These models take the form (35), in which the densities r and b
relate to different directions of motion. For example in the case of bi-directional flows in a straight corridor
’red particles’ correspond to individuals moving to the right, while blue ones move to the left. We will see in
subsection 7.1 that we can observe temporal as well as stationary segregated states. Depending on the initial
and inflow conditions directional lanes or jams occur. Then the gradient-flow structure can then be used to
investigate the stability of stationary states using for example the respective entropy functionals. Due to the
segregated structure of stationary solutions, one can also use linear stability analysis around constant steady
states to understand for example the formation of lanes, see [56].

More pronounced segregated states and lanes can be observed when allowing for side-stepping. In the
respective microscopic on lattice models, individuals step aside when approached by a member of the other
species. The respective formally derived mean-field model has a perturbed gradient-flow structure, which can
be used to show existence of solutions, see [22]. More recently, a model containing both and active and a passive
species has been studied in [29].

6.2 Transport in biological systems

Another example where active particles play an important role are transport process in biological systems. We
will discuss two important types of such processes in the following - chemotaxis and transport in neurones.

Chemotaxis

We consider bacteria in a given domain that aim to move along the gradient of a given chemical substance, called
chemo-attractant and modelled by a function c : Ω → R+. Due to their size, bacteria cannot sense a gradient
by, say, comparing the value of c at their head with that at their tail. Thus, they use a different mechanism
based on comparing values of c at different time instances and different points in space, called run-and-tumble.
In a first step, they perform a directed motion into a fixed direction (run), then rotate randomly (tumble).
These two steps are repeated, however, the probability of tumbling depends on c as follows: If the value of c is
decreasing in time, bacteria tumble more frequently as they are not moving up the gradient. If the value of c
increased, they turn less often. Roughly speaking, this mechanism reduces the amount of diffusion depending
on the gradient of c. Here, we consider a slightly different idea that fits into the hybrid random walk model
introduced in (23), assuming DT to be small (run) and the rate of change for the angle depends on c. To this
end λ is taken different for each angle (thus denoted by λk) and is assumed to depend on the difference of
the external signal c at the current and past positions, only. Denoting by tk, k = 1, 2, . . . the times at which
the angle changes, at time tn we have λk = λk((c(Xi(tn)) − c(Xi(tn−1)). Additionally, we introduce a fixed
base-line turning frequency λ̄, and consider

λk = λ̄+ (c(Xk(tn−1))− c(Xk(tn))),

Now going from discrete to time-continuous jumps, i.e. tn− tn−1 → 0, and appropriate rescaling, we obtain via
the chain rule

λk = λ̄− Ẋk · ∇c(Xi).

However, due to the stochastic nature of the equation governing the evolution Xk, its time derivative is not
defined. Thus, as a modelling choice, we replace this velocity vector by v0e(θk), i.e. the direction of the active
motion of the respective particle. This is also motivated by the fact that for DT = 0 and U = 0 in (23a), this
is exact. We obtain

λk = λ̄− v0e(θk) · ∇c(Xi).
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In the particular case on one spatial dimension with only two possible angles (denoted by + and −) and for
v0 = 1 this reduces to

λ± = λ̄∓ ∂xc,

which is exactly the model analysed in [58]. There, it was also shown that using an appropriate parabolic
scaling, one can obtain a Chemotaxis-like model with linear transport but non-linear diffusion in the diffusive
limit.

Transport in neurones

Another interesting example are transport processes within cells and we focus on the example of vesicles in
neurones. Vesicles are small bubbles of cell membrane that are produced in the cell body (soma) and are then
transported along extensions of the cell called axons. The transport itself is carried out by motor proteins
that move along microtubules and are allowed to change their direction of motion. This situation can be
modelled using the discrete random walks from section 2.2 by considering the one-dimensional case which, in
the macroscopic limit, yields equations (17). Since we are now dealing with two species f− and f+, denoting
left- and right-moving complexes, we also have to adopt our boundary conditions as follows: Denoting by j+
and j− the respective fluxes,

−j+ = α+(1− φρ), j− = β−f− at x = 0,

−j− = α−(1− φρ), j+ = β+f+ at x = 1.

System (17) has, to the best of our knowledge, not yet been considered with these boundary conditions. From
an application point of view, it is relevant to study whether these models are able to reproduce the almost
uniform distribution of motor complexes observed in experiments, see [13, 12] for an analysis.

More recently, the influence of transport in developing neurites has been studied in [44] with an emphasis
on the mechanism that decides which of the growing neurites becomes an axon. To model this situation, the
concentration of vesicles at some and growth cones is modelled separately by ordinary differential equations
which are connected to to instances of (35) via flux boundary conditions.

7 Numerical simulations

7.1 One spatial dimension

In the following, we present numerical examples in one spatial dimension comparing a subset of models presented
above. All simulations in this subsection are based on a finite element discretisation in space (using P1 elements).
The time discretisation is based on the following implicit-explicit (IMEX) scheme

fn+1 − fn

τ
+ v0∇ · [f(1− φρn)e(θ) + aφpf ] = DT∇ · (B1(ρn)∇fn+1 + B2(fn)∇ρn+1) + c∆θf

n,

in which the superscript index n refers to the nth time step, that is tn = nτ , τ > 0. Here transport and rotational
diffusion are taken explicitly, while in the diffusive part terms of second order are treated implicitly. Thus, in
every time step, a linear system has to be solved. All schemes were implemented using the finite element library
NgSolve, see [62].

We will illustrate the behaviour of solutions for models (19), (33), (35), in case of in- and outflux (44), no-flux
(42) or periodic boundary conditions in case of two species, referred to as red r and blue b particles. We use
subscript r and b, when referring to their respective in- and outflow rates as well as diffusion coefficients. Note
that while for the models (19), (35), the one-dimensional setting is meaningful, for model (33), the simulations
are to be understood as two-dimensional but with a potential that is constant in the second dimension. For all
simulations, we discretised the unit interval into 150 elements and chose time steps of size τ = 0.01.

Flux boundary conditions

Figures 3 and 4 show density profiles for the respective models at time t = 0.5, 2, 3, 30. In figure 3, we chose
rather low rates (in particular below 1/2) and with αr > βr as well as αb < βb which resulted in species r being
in a outflux limited and species b an influx limited phase. We observe that for these low rates, all models are
quite close to one another, yet with different shapes of the boundary layers. Model (19), having a linear diffusion
term, showing a different slope as (35) where cross-diffusion seems to play a role an (33) being in between.

In figure 4 we chose rates above 1/2 to obtain the maximal-current phase. There, interestingly, it turns our
that the dynamics of model (33) shows a completely different behaviour. This constitutes an interesting starting
point for further analytical considerations on the phase behaviour. Figure 5 displays the evolution of the total
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Figure 3: Flux boundary conditions with: λ = 0.01, Dr = 0.1, Db = 0.1, αr = 0.02, βr = 0.01, αb = 0.01, βb =
0.02 which yields the influx-limited phase for species r and outflux-limited for b.

mass of the respective species for different in- and outflow rates. We observe that the reaction-diffusion (19) and
the lattice based cross diffusion system (35) show a similar quantitative behaviour in several in- and outflow
regimes, while the cross-diffusion system obtained via asymptotic expansion (33) behaves only qualitatively
similar.

Periodic boundary conditions

For periodic boundary conditions, noting that the velocity is constant, thus periodic, we expect constant sta-
tionary solutions whose value is determined by the initial mass. This is indeed observed in figure 6. However, for
earlier times, their dynamics differs substantially, in particular for (35), the influence of cross-diffusion (”jams”)
is most pronounced.

Confining potential

Finally in figure 7, we consider the situation of no-flux conditions together with a confining potential V (x) =
(x − 1

2 )2. Here we observe very similar behaviour for all models, probably due to the fact that the transport
term dominates the dynamics.

7.2 Two spatial dimensions

In this subsection we reproduce numerical examples in two spatial dimensions from [16]. In particular, we
show examples of the active continuous model (15), the active hybrid model (22) and the passive version of
the latter, (35), which corresponds to setting DR = 0 in (22) and choosing an initial condition in angle of the
form δ(θ − θ1) + δ(θ − θ2) with θi such that Vr = −(v0/DT )e(θ1) · x and Vb = −(v0/DT )e(θ2) · x. Throughout
this subsection we use periodic boundary conditions in the spatial domain Ω = [0, 1]2, as well as in the angular
domain [0, 2π] for the active models (15) and (22). We use the first-order finite-volume scheme of [16], which is
based on [26, 61]. The scheme is implemented in Julia. We use a discretisation with 21 points in each direction
and a time-step ∆t ≤ 10−5 satisfying the CFL condition given by Theorem 3.2 in [26].

Figures 8 and 9 show the outputs of the two active models (15) and (22) using the same parameters, DT =
DR = 1, v0 = 60, φ = 0.7. In both case, we observe the formation of motility-induced phased separation (MIPS),
namely a separation into dilute and dense regions and a polarisation of particles in the boundary between these
two regions pointing towards the dense region. We show the rescaled spatial density ρ(x, t) = φ

∫
fdθ as well

as the mean direction

q(x, t) :=

∫
feθdθ∫
fdθ

. (48)
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Figure 4: Flux boundary conditions with: λ = 0.01, Dr = 0.1, Db = 0.1, αr = 0.6, βr = 0.8, αb = 0.7, βb = 0.9
which yields the maximal current phase.
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Figure 5: Evolution of the total mass for different flux boundary conditions and with Dr = Db = 0.1 and
λ = 0.01 in all cases.
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Figure 6: Periodic boundary conditions with Dr = Db = 0.01 and λ = 0.01. All models converge to constant
stationary solution.
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Figure 7: No flux boundary conditions with Dr = Db = 0.1, λ = 0.01 and an confining potential Vr = Vb =
5(x− 0.5)2.
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Figure 8: Hybrid model for active particles (22) with periodic boundary conditions in [0, 1]2× [0, 2π] at different
times, starting from a 3d-random perturbation around the homogeneous solution. The first row shows the total
density ρ(x, t) with mass φ and the second row the mean direction q(x, t) (48). Parameters used: DT = DR = 1,
v0 = 60, φ = 0.7.
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Figure 9: Hybrid model for active particles (22) with periodic boundary conditions in [0, 1]2× [0, 2π] at different
times, starting from a 3d-random perturbation around the homogeneous solution. The first row shows the total
density ρ(x, t) with mass φ and the second row the mean direction q(x, t). Parameters used: DT = DR = 1,
v0 = 60, φ = 0.7.
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Figure 10: Hybrid model for active particles (22) with periodic boundary conditions in [0, 1]2×[0, 2π] at different
times, starting from a 3d-random perturbation around the homogeneous solution. The first row shows the total
density ρ(x, t) with mass φ and the second row the mean direction q(x, t) (48). Parameters used: DT = DR = 1,
v0 = 60, φ = 0.6.

Figures 10 and 11 show a comparison between the active hybrid model (22) and its corresponding passive
model (30), which we obtain by setting DR = 1 and a discretisation in angle with only two grid points (which
define the two species r and b with respective travel directions θ1 = −π/2 and θ2 = π/2). We observe different
types of segregation in each case. In the active case, we observe a blob with high density that is well-mixed in
its centre (namely, orientations are uncorrelated as it corresponds to q small, see bottom right plot in figure
10). In contrast, in the passive case, in addition to the separation into dilute and dense regions (see first row in
figure 11), we observe a segregation of the two species within the dense phase: the red particles, which want to
move downwards, are met below by a layer of blue particles, which want to move upwards (see second and third
rows in figure 11). A similar structure in the active model (22) can be observed if the final pattern is mappable
to a one-dimensional pattern, as in the case shown in figure 12 (which corresponds to different values of φ
and v0 and a different initial condition). In this case, “left”-moving particles concentrate at one boundary and
“right”-moving particles at the other. For this same parameters, the passive model (30) displays four instead
of two lanes (see figure 13).

Finally, we show simulation examples of the stochastic models corresponding to the active (22) and the
passive (30) macroscopic models. Simulations are performed using the agent-based modelling package Agents.jl
[31] in Julia and as described in [16]. In both cases, N particles perform an ASEP ((a’), (b) and (c) mechanisms
of subsection 2.2) on a square lattice with M lattice sites such that the occupied fraction is φ = N/M . In
the former case, particles orientation diffuses with DR in [0, 2π], so that the direction of the asymmetric jump
process for each particle changes in time. In the latter case, particles are initialised as either red (pointing
downwards) or blue (pointing upwards) and their orientations are fixed over time. We observe MIPS in all
four cases shown in Figure 14, with the active system displaying either a strip or blob pattern (left column)
and the passive system having dilute-dense boundaries and red-blue boundaries running left to right as we had
already seen in the PDE simulations (right column). The colormap in the figure shows the absolute value of the
mean orientation q in (48) computed using a Moore neighbourhood in each lattice: |q| = 0 in purely isotropic
regions (and in empty regions) and |q| = 1 in regions with perfectly aligned particles, which happens within
each segregated region of blue and red particles in the passive case and, to a lesser extent, in the boundary
between dilute and dense regions in the active case.
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