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Abstract

The coherent structures in turbulent pipe flows of Newtonian and non-
Newtonian fluids are investigated using direct numerical simulation data for the
coherent structure organisation, statistical characteristics, evolution and interplay.

The uniform-momentum zones (UMZ) and UMZ interfaces, namely the in-
ternal shear layers (ISL) are investigated. The UMZs are large separate regions
travelling at relatively constant streamwise velocities, and are demarcated by the
thin high-shear layers clustered with spanwise vortices. The UMZs and ISLs are
identified by using four different identification methods, three from the literature
and a new method which has no ad-hoc parameters applied for UMZ selection. The
UMZs identified from using different methods show qualitatively consistent charac-
teristics. The UMZ characteristics observed in the literature have been successfully
captured without the use of ad-hoc parameters. The characteristics and dynam-
ics of the UMZs show similarities to both turbulent boundary layer and channel
flows. The hierarchical structural distribution of UMZs matches the hierarchy of
multi-scaled eddies in Townsend’s attached eddy hypothesis. Conditional average
quantities revealed the abrupt jump of the streamwise velocity when passing the
UMZ interfaces, accompanied with rapid decrease in turbulent intensity. The ve-
locity jump across the ISLs is more abrupt across ISLs residing closer to the wall.
The level of contortion of the ISLs intensifies when moving away from the wall, and
is always more tortuous in the azimuthal direction than the streamwise direction.
The local imbalance between sweep and ejection events are quantified by the skew-
ness of the wall-normal location fluctuation of the contorted UMZ interfaces. The
UMZ interfaces in the near-wall region show asymmetric modulation on ejections
over sweeps, i.e., the ejections are predominantly stronger than sweeps near the wall
with frequently observed bursting. In the pipe centre, the flow has local predom-
inantly stronger sweeps than ejections. The location of locally balanced ejections
and sweeps is found approximately at half of the pipe radius.

The DNS data of shear-thinning non-Newtonian pipe flows are examined
with the power-law rheology model using three power-law indices. The flow starts to
show regions of local laminarisation as the flow becomes more shear-thinning. In the
shear-thinning fluids, the off-axis fluctuations are critically lowered, particularly in
the wall-normal direction. At the highest level of shear-thinning examined, the flow
is already transitional, showing turbulent spots and large regions of pre-transition
laminar fluctuations. These laminar fluctuations are revealed by proper orthogonal

x



decomposition as very-large-scale cross-flow instabilities. While the off-axis fluctu-
ations are significantly weakened, the root-mean-square streamwise fluctuation is
marginally higher than the Newtonian flow due to the streamwise acceleration in
the upstream and downstream of the turbulent spots. The vortical structures are
much more organised in the shear-thinning fluids compared with the Newtonian
flow. The near-wall streaks are wider in the shear-thinning fluids, and the spanwise
streak spacing increases as the flow becomes more shear-thinning. The fine-scale
flow topology is interpreted from the joint PDFs of the velocity-gradient tensor in-
variants. The universal ‘tear drop’ shape of the Q − R distribution is obtained in
the most inhomogeneous shear-thinning fluid, even in the pseudo-laminar regions.
Hence, the universality of the classical ‘tear drop’-shaped Q −R distribution is not
limited to fully-developed inhomogeneous turbulence.
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Nomenclature

The notation used in this thesis is presented in the following order: Greek, Roman,

symbols, and abbreviations, each alphabetically ordered.

Greek

γ intermittency factor

γ̇ shear rate, γ̇ =
√
2SijSij

δ boundary layer thickness, half-height of channel (δ = h) and radius of pipe

(δ = R)

δω UMZ interface thickness

∆ change in variable, e.g., grid spacing ∆xi, change in velocity magnitude ∆U

∇ vector differential operator, ∇ = ∂
∂x i +

∂
∂y j +

∂
∂zk

∇2 Laplacian operator, ∇2 = ∇ ⋅ ∇ = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2

ε energy dissipation

ζ skewness

θ azimuthal/spanwise direction of the cylindrical coordinates

λθ Streak spacing in the θ−direction

µ dynamic viscosity

µw mean wall viscosity

xii



µ0 viscosity at zero shear rate

µ∞ viscosity at infinite shear rate

ν kinematic viscosity, ν = µ/ρ

ξ distance to shear layer

ρ fluid density

σ standard deviation

τ shear stress

τw wall shear stress

τy yield stress

τ , τij viscous stress tensor

Φ POD modes

χ tangential direction along contorted UMZ interface

Ωij rate-of-rotation tensor, Ωij = 1
2(∇U −∇U

T )

ω vorticity, ω = ∇ ×U

Roman

Aij velocity-gradient tensor, Aij = ∂Ui/∂xj

B histogram bin width

D pipe diameter

dp
dx axial pressure gradient

f external body force

h channel half height, bandwidth of KDE functions

xiii



K fluid consistency coefficient

K kurtosis

Lx pipe length, streamwise length of the computational domain

Lx streamwise window size

lx length of 2-D interface on streamwise-wall-normal (x − y) planes

lθ length of 2-D interface on cross-stream (r − θ) planes

Mi UMZ groups based on modal velocity Um

N sampling size

Nκ number of ISL

NUMZ number of UMZ

n flow index/power-law index

p pressure

Q the second invariants of the velocity-gradient tensor

R pipe radius, or the third invariant of velocity-gradient tensor

Re Reynolds number based on the pipe radius, Re = ρUbR/µ = UbR/ν

ReD Reynolds number based on the pipe diameter, ReD = ρUbD/µ = UbD/ν

Reτ Reynolds number based on friction velocity, Reτ = uτδ/ν

Reg generalised Reynolds number of non-Newtonian fluids, Reg = ρUbD/µw

Recr critical Reynolds number for turbulence transition

Rs ISL groups based on the ISL shear strength ∂u/∂y

Ry ISL groups based on the ISL wall-normal location yκ

xiv



r, θ, x radial, azimuthal and axial directions in the cylindrical coordinates

rκ radial location of ISL, rκ = 1 − yκ

Sij rate-of-strain tensor, Sij = 1
2(∇U +∇U

T ) = 1
2(∂Ui/∂xj + ∂Uj/∂xi)

Sκ surface area of an interface

t time

U(x, t) Eulerian velocity

u(x, t) velocity fluctuations

urms root-mean-square velocity fluctuations

U,Ux, Uy velocity in the axial (streamwise), horizontal and vertical directions of the

Cartesian coordinates

U,Vr,W streamwise, radial and azimuthal velocity in the axial, radial and azimuthal

directions of the cylindrical coordinates

UCL centreline velocity of channel and pipe

Ub a constant bulk mean velocity in channel and pipe

U mean streamwise velocity in the wall-normal direction

U+ streamwise velocity in wall units, U+ = U/uτ

Um UMZ modal velocity at the peaks on the PDF of U

Uz the average streamwise velocity in a UMZ

Uκ threshold velocity of UMZ interface and ISL

Uy peaks on the profiles of velocity gradient ∂u/∂y

u, v,w streamwise, wall-normal and azimuthal/spanwise velocity fluctuations

−uv Reynolds shear stress

xv



uτ friction velocity, uτ =
√
τw/ρ

V wall-normal velocity, defined positive away from the wall

Vr radial velocity, Vr = −V

V volume of the pipe, V = πR2Lx

VL volume of laminar flow

VT volume of turbulent flow

x location

xc, yc, x horizontal, vertical and axial directions in the Cartesian coordinates

xκ, yκ, θκ axial, wall-normal and azimuthal location of ISL

x∗, y∗, θ∗ axial, wall-normal and azimuthal location of turbulent spots

y wall-normal distance, y = R − r

y+ wall-normal distance y in wall units, y+ = yuτ /ν

yκ wall-normal location of ISL, yκ = 1 − rκ

y′κ fluctuation of the wall-normal location of ISL, y′κ = yκ − ⟨yκ⟩

Abbreviations

CFD computational fluid dynamics

CFL Courant-Friedrichs-Lewy

DNS direct numerical simulation

EMD empirical mode decomposition

FDM finite difference method
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Chapter 1

Introduction

Turbulence is perhaps the most curious subject in fluid mechanics. Within many

different types of turbulent flows (e.g., homogeneous turbulence, magnetohydrody-

namic turbulence (MHD), free shear flows, wakes), the topic of wall-bounded tur-

bulent flows is of great interest because of their common appearance in nature and

widely-ranged applications in engineering. Fundamental research on wall turbulence

has been focused on the Reynolds number dependence, the scaling of the turbulence

statistics, the self sustainment of near-wall cycles, the evolution of energy spectra,

and the organised coherent motions at various scales. Progress in these areas were

reviewed by Cantwell (1981), Robinson (1991), Panton (2001), Klewicki et al. (2010)

and Smits et al. (2011).

The development in HPC facilities and numerical methods enabled the direct

numerical simulation (DNS) to be a powerful tool in turbulence research (Moin and

Mahesh (1998)). The current computational power limits the DNS of wall-bounded

flows at friction Reynolds numbers Reτ below O(104) whereas experiments can

achieve up to O(106). However, DNS has advantages in capturing the very-fine-

scale physics of the flow by gaining full 3D high-resolution data which is difficult

to be obtained in experiments. DNS of wall-bounded flows has been performed at

increasingly higher Reynolds numbers with advances in computational power. Table

1.1 lists the DNS of turbulent boundary layers (TBL), channel and pipe flows. The

highest-Reynolds-number data is available up to Reτ = 5200 (Lee and Moser (2015))

and 8000 (Yamamoto and Tsuji (2018)) for the channel, and up to Reτ ≈ 3000 for

the pipe (Ahn et al. (2015)).
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Geometry Highest Reτ Lx/δ
Boundary layer Spalart (1988)

Jiménez et al. (2010) 692 20π
Schlatter et al. (2009) 900 21π
Schlatter et al. (2010) 1370 21π
Lee and Sung (2011) 1000 5π
Sillero et al. (2013) 2000 21π

Channel Kim et al. (1987) 180 4π
Antonia et al. (1992) 300 4π
Moser et al. (1999) 590 2.8π
Abe et al. (2001) 640 2π
Iwamoto et al. (2002) 650 2.5π

del Álamo and Jiménez (2003) 550 8π

del Álamo et al. (2004) 934 8π
Hoyas and Jiménez (2006) 2003 8π
Bernardini et al. (2014) 4000 6π
Lozano-Durán and Jiménez (2014) 4200 5π
Lee and Moser (2015) 5200 10π
Yamamoto and Tsuji (2018) 8000 16

Pipe Eggels et al. (1994) 180 10
Akselvoll and Moin (1996) 180 30
Loulou et al. (1997) 190 10
Wagner et al. (2001) 320 10
Wu and Moin (2008) 1142 15
Chin et al. (2010) 500 20π
Wu et al. (2012) 685 30
Ahn et al. (2013) 934 30
El Khoury et al. (2013) 1000 25
Chin et al. (2014) 2003 3π
Ahn et al. (2015) 3008 30
Chen et al. (2021) 1000 30

Table 1.1: DNS studies of turbulent channel and pipe flows. Lx indicates the
streamwise computational domain in terms of the boundary layer thickness δ. δ
is equivalent to the pipe radius R and channel half height h.
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1.1 Motivation

Our understanding in wall turbulence fuels the development of turbulence models

which greatly relies on accurate characterisation of turbulence structures. The high

resolution of DNS enables us to resolve the fine-scale turbulent motions and coherent

structures which are crucial for turbulence modelling because they are self-similar

and less flow dependent. Self-similar small-scale structures were found in flows

including a variety of free shear flows (mixing layers, wakes and jets) and wall-

bounded flows (turbulent boundary layers, channels and pipes). The small-scale

universality serves as the foundation of many sub-grid-scale (SGS) models. As

the smallest scales decrease with increasing Reynolds numbers, these structures are

very difficult to obtain in laboratories at very fine scales, and is especially difficult

for opaque non-Newtonian fluids. Self-similar coherent structures were observed

at varying scales in all types of wall-bounded flows, for instance, the large- and

very large-scale motions, superstructures, organised quasi-streamwise vortex loops

travelling in packets, and uniform-momentum zones (UMZ) and the internal shear

layers (ISL) bounding the zones.

The first part of this work investigates the UMZs in Newtonian fluid flows in

the pipe. Since the first report on the existence of the UMZs in a turbulent boundary

layer (Meinhart and Adrian (1995)), numerous studies on their structural organi-

sation have been documented in the recent decades. The UMZs are large regions

of relatively uniform streamwise velocities in the flow, while most of the velocity

changes from the wall to the centreline take place over very thin internal shear lay-

ers between the UMZs. The concept of multiple UMZs is similar to the hierarchical

distribution of eddies of growing size in the attached eddy model (Townsend (1976);

Perry and Chong (1982)). The characteristics of multiple UMZs and their interfaces

have been studied only in turbulent boundary layers (de Silva et al. (2016, 2017);

Laskari et al. (2018)) and channels (Kwon et al. (2014); Yang et al. (2016)). In

the present study, the characteristics of multiple UMZs at multiple Reynolds num-

bers are investigated. This study first confirms their statistical behaviours found in

the channel and TBL in the present pipe flow, and then extend to new unknown

characteristics of the UMZ and their interfaces. Different methods and parameters

were used in the identification of UMZs, and the identified UMZs are well-known to

be sensitive to the user-defined parameters (Fan et al. (2019); Chen et al. (2021)).

Therefore, this study aims to compare and validate the UMZ characteristics reported

from using different methods. Four identification methods including a new method

which requires no ad-hoc filters on the UMZ identification are used to reproduce
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qualitatively consistent statistics to studies using varying methods and parameters.

The second part of this work investigates the turbulence structures in non-

Newtonian fluid flows in the pipe. Applications of non-Newtonian fluids, particu-

larly in pipes are ranged widely, from oil pipeline design to blood flow modelling

and turbulent drag reduction. There is only a handful of DNS studies on shear-

thinning fluids, and in-depth analyses of the flow structures are very limited. There

is no study on the fine-scale topology of shear-thinning fluids. The present work

aims to explore the fine-scale topology of an increasingly shear-thinning turbulent

pipe flow of power-law fluids. Visualization of the velocity fluctuation fields and

Q−criterion are used to show the change in the flow structures when the power-law

index decreases. The PDF distribution of the invariants of the velocity gradient,

strain-rate, and rotation tensors are examined. To the author’s best of knowledge,

this is the first DNS study on the velocity-gradient tensor invariants for pipe flows

of non-Newtonian fluids.

1.2 Thesis outline

This thesis is composed of 6 chapters. The introduction in Chapter 1 establishes

the importance of studying wall turbulence, and the impact of DNS performed at

increasingly higher Reynolds numbers. The motivation of the present study followed.

Chapter 2 gives a theoretical background of this research including a compre-

hensive literature review. The first part of the literature review revises the historical

findings and models for the small-scale and large-scale coherent structures in wall

turbulence. The second part focuses on the large-scale coherent structures, namely

the uniform-momentum zones and the internal shear layers. The third part focuses

on the progress on the understanding of pipe flow of non-Newtonian fluids. The last

part explains the physical meaning of the velocity-gradient, strain-rate and rotation

tensors and their invariants which are investigated for the non-Newtonian pipe flow

in chapter 5.

The methodology section in Chapter 3 starts with the numerical method,

i.e., the DNS configuration of the present pipe flow. The computational approaches,

set-ups and spatial discretisation are presented. In this chapter, the coordinate

transformation applied to the data in post-processing and the proper orthogonal

decomposition used in data analysis are documented.

The results and discussion are divided in Chapters 4 and 5 for Newtonian and

non-Newtonian fluids flow in the pipe, respectively. Both chapters begin with the

mean flow statistics which are carefully validated with DNS results in the literature.
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In Chapter 4, the DNS data of Newtonian pipe flow at four Reynolds numbers are

investigated for the coherent structures, UMZs and ISLs. Four different methods in

the two general approaches adopted in the literature are used for the identification

of UMZs and ISLs. Extensive statistical analyses are performed to investigate the

characteristics of the UMZs and ISLs, which are compared to the results of the

channels and turbulent boundary layers.

In Chapter 5, the non-Newtonian fluid flows in the pipe are examined for

three shear-thinning fluids at Reτ ≈ 180. Visualisations, mean flow statistics and

correlations of the streamwise velocity reveal the intermittent turbulence transition

and the change in turbulence structures as the flow become more shear-thinning.

The flow topology is investigated by the evolution of the invariants of the velocity-

gradient, strain-rate, and rotation tensors as the flow become shear-thinning. These

joint PDFs of the invariants for both the Newtonian and non-Newtonian fluids for

the DNS data of pipe are presented. The turbulent spots are separated from the

pseudo-laminar regions in the pipe. The universality of the famous ‘Vieillefosse’ tail

of the Q −R map is discussed for the transitional flow regime. In the most shear-

thinning case, the instability wave a prior to the turbulence transition is extracted

by means of volumetric conditional averaging and proper orthogonal decomposition

(POD).

The results and discussion in Chapters 4 and 5 are each followed by a sum-

mary of the key findings. An overall conclusion of the present work is last placed in

Chapter 6 where the contribution of this work in the understanding of wall turbu-

lence is summarised.

5



Chapter 2

Background and literature

review

2.1 Coherent structures in wall turbulence

The essential feature of turbulence is the chaotic three-dimensional energy-containing

motions, i.e., eddies. Wall-bounded flows are particularly complex due to the pres-

ence of the wall which induces turbulent motions in multi-scales with scale interac-

tion. The multi-scale interaction was described as a hierarchy of eddies with size

growth from the wall towards the outer region in the attached eddy model (AEM)

developed from Townsend’s attached eddy hypothesis (Townsend (1976)). The co-

herence of such organised eddy structures was reviewed by Robinson (1991), Adrian

(2007), Jiménez (2012) and Marusic and Monty (2019). The hierarchical scaling

of eddies was conceptually illustrated by Perry and Chong (1982), Hwang (2015)

and Marusic and Monty (2019), as reproduced in figure 2.1. In the diagram, small

self-similar inner-scaled eddies populated near the wall are attached to the wall.

These eddy structures grow in size towards the outer region and eventually become

detached away from the wall. The attached and detached eddies correspond to the

small-scale near-wall structures and the large-scale coherent structures namely the

large- and very-large-scale motions (LSM/VLSM), respectively.

The coherent structures near the wall are well-known to be associated to

quasi-streamwise vortices. In the near-wall region of wall turbulence, counter-

rotating streamwise vortex pairs have been observed by Kline et al. (1967), Bakewell

and Lumley (1967), Blackwelder and Eckelmann (1979), Head and Bandyopadhyay

(1981), Smith and Metzler (1983), Kim et al. (1987). As in figure 2.2, these vortex

pairs sweep and eject high- and low-speed fluid up and down, forming near-wall
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Figure 2.1: Schematic representation of Townsend’s attached eddy hypothesis on
the spanwise-wall-normal plane for a hierarchical distribution of eddies with size
growth proportional to the distance from the wall. The drawing is the same as in
Hwang (2015), similar to the hierarchy in Perry and Chong (1982).

steaks of high- and low-momentum pathways. The non-dimensional spanwise spac-

ing of these streaks was found to be an invariant of the Reynolds number, approx-

imately 100 wall units from both experiments (Kline et al. (1967); Nakagawa and

Nezu (1981); Smith and Metzler (1983); Metzger and Klewicki (2001)) and DNS

(Kim et al. (1987); Ahn et al. (2013)). The streak spacing increases when departing

away from the wall. Smith and Metzler (1983) suggested that this is due to a merg-

ing (coalescence) process in the buffer layer. Above the buffer layer, the coalescence

becomes highly 3D so that the flow pattern becomes too complex for deterministic

streak identification. The vortex pairs are elongated from the wall, reinforcing the

near-wall streaks to be streamwise elongated structures (Hinze (1975)) which can be

up to several times longer than the boundary layer thickness δ (Hunt and Morrison

(2000)) where δ is the TBL thickness, channel half height, and pipe radius. The

near-wall streaks in turn, lift the vortices up to be inclined (Jiménez and Pinelli

(1999)). The inclined vortices, originating from the wall and extending beyond the

log-law region, correspond to the hierarchy of eddies of Townsend’s attached eddy

hypothesis. Adrian et al. (2000) described these streamwise vortex pairs as legs of

hairpin/horse-shoe vortices.

The breakdown of the near-wall streaks was believed to be caused by outer-

scale flow structures, i.e., LSMs (Smith and Metzler (1983)). The existence of LSM

and VLSM was first found in the wall-bounded flows by Townsend (1951, 1976).
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Figure 2.2: Conceptual illustration of the organised vortical structures near the wall:
the counter-rotating streamwise vortex pairs and low- and high-momentum path-
ways induced by the ejections and sweeps between these structures. The contour of
the streamwise velocity fluctuation shows the low- and high-speed streaks elongated
in the streamwise direction in the pipe at Reτ = 180.

Correlations of the streamwise velocity revealed long coherent structures existing

from the buffer layer to the lower outer region of the TBL (Kline et al. (1967);

Falco (1977)). Kim and Adrian (1999) observed LSMs in a turbulent pipe flow

over a wide range of Reynolds numbers. The LSMs are very energetic, carrying

substantial portions of the streamwise turbulent kinetic energy (TKE) and Reynold

shear stress (RSS) (Jiménez (1998); Marusic (2001)). The LSMs were found to be

contributing nearly half of the total TKE and RSS in the channel (Liu et al. (2001)),

pipe (Guala et al. (2006); Hellström and Smits (2014)), TBL (Lee and Sung (2011))

and Couette flows (Lee and Moser (2018)).

The role of LSMs in wall-bounded flows has drawn great attention; majority

agreed on that the origin of LSM and VLSM is associated with the near-wall region

(Kim and Adrian (1999); Hutchins and Marusic (2007b); Wu et al. (2012); Lee

and Moser (2015)), as a bottom-up mechanism. Ganapathisubramani et al. (2003)

suggested that the LSM originates from the attached eddies near the wall which

convect into the log region and become detached in the outer region with coherent

alignment. Recent studies believed that the LSM and VLSMs also modulate the

near-wall small-scale turbulent activities as a top-down mechanism, known as large-

scale modulation. LSMs and VLSMs can penetrate to the very-near-vicinity of

the wall, leaving large-scale and low-frequency footprint in the near-wall region and
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influence the small-scale turbulence (Rao et al. (1971); Metzger and Klewicki (2001);

Jiménez et al. (2004)). The LSMs excite the near-wall ejections and sweeps (Falco

(1977)). The strong near-wall Q2 ejection events known as bursting is linked with

the outer-scale flow (Wark and Nagib (1991)). In Wang et al. (2017), the low-speed

VLSMs suppressed near-wall ejections while the high-speed VLSMs enhanced the

near-wall ejections with acceleration of the near-wall flow. Wu et al. (2012) reported

that the VLSMs convect at approximately the bulk velocity even in the near-wall

region and accelerate the near-wall flow while the small-scale structures near the

wall decelerate the flow. Ahn et al. (2017) reported that this acceleration force of

the VLSMs is balanced by the deceleration force of the near-wall structures.

Numerous studies focused on the interaction mechanism between the inner

structures and outer LSMs. Results from filtering by Metzger and Klewicki (2001)

showed that the influence of LSM on the near-wall structures is not simple superpo-

sitioning. Hutchins and Marusic (2007a,b) reported that the interaction between the

LSMs and the near-wall flow is an amplitude modulation effect in which the LSMs

modulate the small-scale activities near the wall (Marusic and Hutchins (2008)).

Mathis et al. (2009a,b) applied Hilbert transformation on the streamwise velocity

fluctuation to show the high-degree amplitude modulation of LSMs on the near-wall

flow. The superimposition of large-scale energy on the near-wall cycle found in the

experimental results by Marusic et al. (2010) was explained by the amplitude mod-

ulation effect. This amplitude modulation effect from LSM to the near-wall flow is

well agreed by McKeon and Sharma (2010); Chung and McKeon (2010); Ahn et al.

(2013) and Baars et al. (2017). Agostini and Leschziner (2014) reported that the

modulation on near-wall streaks by LSM is asymmetric, which corresponds to the

observations by Nakagawa and Nezu (1981) and Wark and Nagib (1991) where the

near-wall streaks were found asymmetric. The modulation from the negative and

positive streaks of low-frequency LSM on the near-wall high-frequency streaks is

different and cause asymmetric response. This may explain the finding by Metzger

and Klewicki (2001) who found that sweeps are larger than ejections near the wall.

Yoon et al. (2016) found the streamwise vorticities around the low-speed near-wall

streaks being attenuated more than the high-speed streaks. Agostini and Leschziner

(2014, 2016) used the empirical mode decomposition (EMD) rather than Hilbert

transformation without arbitrary cut-off wavelength to separate the LSM and near-

wall structures. The EMD removed the LSM effect on the near-wall small-scale

structures by removing large-scale footprints such as the convective displacement

due to the large-scale acceleration, amplitude modulation and distortion caused by

sweep-induced splatting.
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Figure 2.3: (a) Contour of the instantaneous streamwise velocity U of the present
pipe DNS at Reτ = 1000. (b) Profiles of U at the streamwise location of the dashed
line in (a). The uniform-momentum zones in this particular snapshot are shown: the
horizontal dashed lines represent the internal shear layers demarcating the uniform-
momentum zones 1 and 2; the vertical dashed lines mark the average U in each
zone, namely the UMZ modal velocity.

2.1.1 Uniform-momentum zones and internal shear layers

Recent attentions on the coherent structures in wall turbulence have been focused

on the uniform-momentum zones (UMZ), an instantaneous phenomenon first found

in the experiment of a TBL by Meinhart and Adrian (1995). They observed separate

large irregularly-shaped regions convecting at relatively uniform streamwise veloci-

ties. These regions, namely the UMZs were demarcated by thin high-shear regions

with clustered spanwise vortices. Adrian et al. (2000) reported that the TBL was

densely populated by thin structures with high vortical density which enveloped the

UMZs. The streamwise velocity jumps abruptly across these thin regions. These

thin high-shear structures have been referred as the internal shear layer (ISL), UMZ

interface and the internal interfacial layer (IIL) in different studies (Priyadarshana

et al. (2007); de Silva et al. (2017); Fan et al. (2019)) and are responsible for the

internal transport of mass, momentum and heat in shear flows. The UMZs bounded

between the ISLs are large-scale coherent structures, carrying a substantial amount

of energy extracted from the mean flow by the ISL. Such zonal structural organi-

sation is illustrated in figure 2.3. The contour of the streamwise velocity U from

a random snapshot of the DNS of the present pipe flow is shown in figure 2.3(a),

and the instantaneous velocity profile U at the streamwise location marked by the

dashed line is plotted in figure 2.3(b). It can be clearly seen that the velocities are

relatively uniform inside each zone where U fluctuates mildly around the average
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velocity of each zone: the zone modal velocity. U exhibits a step-like profile, in

which the velocity changes sharply when entering from one to another UMZ across

the ISLs marked by dashed lines in figure 2.3(b).

The UMZs and ISLs were found in presence in all canonical wall-bounded

flows. Kwon et al. (2014); Eisma et al. (2015); Yang et al. (2016); de Silva et al.

(2016) and Chen et al. (2020) have shown that the TBL, channel and pipe flows

exhibit a similar UMZ structural organisation. Across the ISL, step-like abrupt

jumps in the streamwise velocity U , locally peaked spanwise vorticity, and local

minimum of turbulent intensity were observed in the channel (Kwon et al. (2014);

Yang et al. (2016)), pipe (Kwon (2016); Yang et al. (2017); Chen et al. (2020, 2021))

and TBL (de Silva et al. (2016, 2017)). Kwon et al. (2014), Yang et al. (2016) and

Chen et al. (2019b) studied the innermost UMZ in the channel and pipe, called the

quiescent core. The quiescent core region in the turbulent channel flow was defined

at a velocity threshold of 95% of the centreline streamwise velocity UCL by Kwon

et al. (2014) and Yang et al. (2016). Inside the quiescent core, turbulence intensity

is very low. In Kwon et al. (2014), the quiescent core of the channel was found to be

very large which can occupy more than half of the channel height on average. The

quiescent core displayed significant meandering, thickening and thinning behaviours,

and can penetrate very close to the walls, matching the observations by Antonia et al.

(1992) where traced flow element originated from the channel wall could penetrate

to the near-wall region of the opposite wall. The core is bounded by thin interface of

strong shear. Yang et al. (2016) observed a strong distribution density of prograde

vortices accompanied by locally minimised retrograde vortices across the quiescent

core boundary.

de Silva et al. (2016) investigated multiple UMZs in the TBL. The number of

UMZs increased log-linearly with the Reynolds number. The thickness of the UMZ

increased as a function of the wall-distance, forming a hierarchical distribution of

UMZs in the boundary layer. The hierarchical structural arrangement matched the

scaling model by Perry and Chong (1982) in figure 2.1. The subsequent study by

de Silva et al. (2017) found the velocity jump across the ISL to be inversely propor-

tional to the wall-distance, being more abrupt when closer the wall. The thickness

of the ISLs was also a function of the wall-distance, being thicker when moving

away from the wall. The dynamical evolution of UMZ investigated by Laskari et al.

(2018) showed that when the number of UMZ increases, all existing UMZs become

thinner and move away from the wall with a higher modal velocity to compensate

for the new zones. The hierarchical scaling of the UMZs, i.e., thinner zones and

sharper velocity jumps across thinner ISLs nearer the wall, formed the basis of a
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Figure 2.4: Schematic illustration of ISL (UMZ interface) contortion associated to
LSMs.

UMZ-vortical fissure model by Bautista et al. (2019). Turbulence statistics were

reproduced using a step-like initial velocity profile resembling the hierarchical UMZ

behaviour of the flow in a TBL.

The ISLs are very tortuous, with bulges and valleys similar to the large-scale

engulfment feature of the turbulent/non-turbulent interface (TNTI). In Kwon et al.

(2014), the ISL bounding the channel quiescent core showed significant meandering

in the wall-normal direction on the streamwise-wall-normal plane. The contortion

of the ISLs defined as iso-contours or iso-surfaces of the streamwise velocity, i.e., the

wall-normal fluctuation of the ISL location, manifests the LSMs in wall turbulence

(Yang et al. (2017)). Figure 2.4 schematically shows the bulges and valleys on the

contorted ISL associated to the LSMs. Bulges and valleys on the ISL are induced

by the ejections of low-speed fluids up away from the wall and the sweeping of high-

speed fluids towards the wall, respectively. The clustered vortical structures along

the ISL are responsible for Q2 ejections and Q4 sweeps around the ISL (Tomkins

and Adrian (2003); Ganapathisubramani et al. (2003)). The reconstructed velocity

field using an LSM model by Saxton-Fox and McKeon (2017) largely reproduced

the classical features of UMZs including the large-scale bulges on the ISLs. The

level of contortion (tortuosity) of the 2D ISLs was quantified by Yang et al. (2016)

by measuring the length of ISL per unit length in the streamwise and the spanwise

directions of the channel. The ISL tortuosity was found higher in the spanwise

direction compared to the streamwise direction. de Silva et al. (2017) found that

the ISLs are more tortuous when being further away from the wall. Kevin et al.

(2019) confirmed that the ISL contortion intensifies with increasing distance from

the wall.

On the detection of UMZ

The UMZ identification technique varies across studies, which may be classified

into two general categories: the PDF-based methods and the ISL-based methods.
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Study Reτ Identification Quantity Threshold

Eisma et al. (2015) 2053 Triple decomposition ωSH Composite criterion
Gul et al. (2020) 340 − 1259 Extraction of vortex-sheets [Aij]+ 1.5 × local mean [Aij]+

Table 2.1: ISL-based identification methods and user-defined parameters used in
the ISL-based studies. ωSH is the shear component of vorticity obtained from the
shear component of the velocity-gradient tensor; [Aij]+ is the largest eigenvalue of
Aij = Sikωkj + SjkΩki.

Study Reτ Identification Lx/δ B/U∞(%)
Adrian et al. (2000) 358, 831, 2022 1.2 3.0, 2.5, 0.9
Kwon et al. (2014) 1000−4000 Double-pdf 1.2 1.25
Yang et al. (2017) 930 Double-pdf 2.0 –
de Silva et al. (2016) 103 − 104 Peak detection 2.0 1.5
de Silva et al. (2017) 103 − 104 Peak detection 2.0 2.0
Heisel et al. (2020) 3800 − 106 Peak detection 0.1 2.0
Laskari et al. (2018) 5300 Constrained peak detection 0.5 1.5
Chen et al. (2020) 500 Constrained peak detection 0.2 1.0
Fan et al. (2019) 550−5186 Kernel density estimation

Table 2.2: PDF-based identification methods and user-defined parameters used in
the PDF-based studies.
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Figure 2.5: Illustration of (a) PDF-based and (c) ISL-based identification method
for UMZs and ISLs. The velocity profile in (b) is the same as in figure 2.3(b).
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The PDF-based methods seek for large regions of similar instantaneous streamwise

velocity U (modal velocity), which result in distinct peaks on the probability density

function (PDF) of U (Adrian et al. (2000)). This is demonstrated in figure 2.5(a)

for the same snapshot used in figure 2.3. The peaks on the PDF of U represent large

regions travelling at similar velocities, i.e., modal velocities at the peaks. The UMZ

interface are then identified between the adjacent peaks. The ISL-based methods

directly seek for the location of ISL/UMZ interface as thin regions of high shear,

and then identify the UMZs as regions bounded between the ISLs as illustrated in

figure 2.5(c). Studies using the ISL-based and the PDF-based methods are listed

in table 2.1 and 2.2, respectively. The recent ISL-based experimental study by Gul

et al. (2020) identified the ISLs as sheet-like vortex structures in regions with highly

correlated strain-rate and vorticity. Most of the UMZ studies (Kwon et al. (2014);

de Silva et al. (2016, 2017); Yang et al. (2017); Laskari et al. (2018); Fan et al.

(2019); Chen et al. (2020) adopted the PDF methods following Adrian et al. (2000)

to identify the UMZs from the PDF of U . de Silva et al. (2016, 2017) defined the

ISLs in the middle between two adjacent peaks and Chen et al. (2020) defined the

ISLs at the minimum bin between the neighbouring peaks. The PDF-based studies

themselves differ in the constraints when sampling for the PDF peaks. Kwon et al.

(2014) and Yang et al. (2017) used a double-histogram method, all the peaks (modal

velocities) on the instantaneous histograms of U (such as the peaks on figure 2.5(a))

are collected; a secondary histogram of all the modal velocities revealed the most

frequently-occurred UMZ, i.e., the quiescent core. Majority of the local UMZs and

their modal velocities at the PDF peaks would not be persistent enough to survive

in the secondary PDF. de Silva et al. (2016, 2017); Chen et al. (2020) kept all the

instantaneous local UMZ recognised in their peak detection process and grouped

them based on their modal velocities.

The number of UMZ and ISL identified in a flow depends on the detection

method, and is sensitive to the parameters used in each method. The key limitation

of the PDF-based methods is that the PDF must be computed in a small domain.

A sampling domain being too large is equivalent to spatial averaging in which the

peaks on the PDF of U will diminish. The streamwise sub-domain length Lx used

in each study is listed in table 2.2. In Kwon et al. (2014); de Silva et al. (2016) and

de Silva et al. (2017), the histograms of U were computed from a 2D subdomain

with Lx = 2δ. In Chen et al. (2020), the histograms were computed by using 3D

snapshots with a much shorter streamwise length Lx = 0.2R to compensate the

spanwise averaging of U . The bin size B of the histograms also affects the PDF

peak detection for UMZ identification. A bin size being too small would results in
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spurious PDF peaks, whereas a bin size too large may be incapable to show distinct

peaks. Laskari et al. (2018) and Chen et al. (2020) used constraints for spurious peak

filtering. Laskari et al. (2018) additionally used a temporal filter to remove UMZs

lived too short for the analysis on the UMZ temporal evolution. Fan et al. (2019)

replaced the discrete histogram with continuous kernel density estimation (KDE)

functions of U with a bandwidth h = 4
3

1.5
σN−1.5 (σ is the standard deviation of U

and N is the sample size of U used for a KDE) which self-adjusts with the sample

size of U . The KDE algorithm is insensitive to Lx and suggested a lower number

of recognised UMZ on average than the traditional PDF-based studies. The PDF-

based methods including Fan et al. (2019)’s KDE method, although differ in the

number of recognised UMZ, reported qualitatively consistent UMZ characteristics.

The ISL-based studies in table 2.1 directly detect the ISLs by extracting high

shear regions, the ISLs were defined by setting thresholds on the shear strength.

The user-defined parameters decide which UMZ or ISL to be collected. A stricter

constraint or threshold trims the sample of local UMZs in which the PDF-based and

the ISL-based methods will preferentially preserve the relatively large UMZs (higher

peaks in the PDF of U) and strong ISLs (higher local shear strength), respectively.
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2.2 Non-Newtonian pipe flow

The fundamental difference between a Newtonian and a non-Newtonian fluid is

that the viscosity of a non-Newtonian fluid changes with the shear stress, i.e., the

relationship between the shear stress and the shear rate is non-linear due to variable

viscosity. The non-Newtonian fluids with variable viscosity may be classified into two

types: one with time-dependent viscosity and the other one with time-independent

viscosity. The latter type of non-Newtonian fluids can be further categorised as

viscoplastic fluids and viscoelastic fluids. In viscoplastic fluids, the viscosity and

shear-rate are functions of shear stress only.

Non-Newtonian fluids

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Time-dependent

⎧⎪⎪⎨⎪⎪⎩

Thixotropic

Rheopectic

Time-independent

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Shear-thinning

Shear-thickening

Bingham

Figure 2.6 shows the general functions of shear stress versus shear-rate for different

kinds of viscoplastic fluids. This study is limited to shear-thinning fluids which

exhibit decreased viscosity with increasing shear rate. An example of such nature is

ground liquefaction during earthquakes when massive shear results in dramatically

decreased material viscosity and turns clay to liquid. In reality, most industrial

fluids and body fluids are non-Newtonian, and many of them are shear-thinning,

e.g., oil and slurries. The number of studies on wall-bounded flow of shear-thinning

fluids are very limited compared to Newtonian flows. The experimental studies on

shear-thinning fluid flows in the pipe are listed in table 2.4. Table 2.3 lists the

rheology models of the non-Newtonian fluids. The experiments of shear-thinning

fluids without yield-stress behaviour, fitted by the power-law model rather than the

Herschel-Bulkley model are more relating to this study. The power-law rheology

describes shear-thinning (n < 1), shear-thickening (n > 1) and Newtonian fluids

(n = 1).
Fitz-Gerald (1974) used the power-law rheology in the numerical model of

glandular secretion in pipes, below a certain power-law exponent n, laminar and

turbulent flows co-existed. In the experiments by Pinho and Whitelaw (1990) and

Draad et al. (1998), turbulent transition was delayed in shear-thinning fluids, the

critical Reynolds number Recr for transition increased, the flow was still not fully

turbulent at ReD ≈ 7700 for n = 0.56. In the experiment by Biswas et al. (2016)
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Shear rate ሶ𝜸

shear
stress

𝝉

𝝉𝒚

� Shear-thinning:
the apparent viscosity decreases
with increasing shear rate

� Shear-thickening:
the apparent viscosity increases
with increasing shear rate

� Bingham:
the fluid behaves like a rigid body
for τ < τy (τy is the yield stress)

Figure 2.6: Relationship between the shear rate and shear stress for different types
of time-independent non-Newtonian fluids.

Model

Generalised models Power-law µ =Kγ̇n−1

Cross power-law µ = µ∞ + µ0−µ∞
1+(Kγ̇)n

Carreau µ = µ∞ + µ0−µ∞
(1+(λcγ̇)2)n/2

Carreau-Yasuda µ = µ∞ + µ0−µ∞
(1+(λcγ̇)a)n/a

Yield-stress models Herschel-Bulkley µ = τy/γ̇ +Kγ̇n−1

Casson
√
τ = √τy +

√
µ∞γ̇

Quemada µ = µ0(1 − 1
2H

k0−k∞
√

γ̇
1+
√

γ̇
)

Table 2.3: Rheology models for non-Newtonian fluids. µ is the apparent viscosity
as function of shear-rate. K (fluid consistency coefficient), n (power-law index),
µ0 (viscosity at zero shear rate), µ∞ (viscosity at infinite shear rate) and τy (yield
stress) are constant. λc, H, k0 and k∞ are empirical constant parameters of the
models.

17



of blood flow as a shear-thinning fluid in a rigid pipe, Recr was delayed in blood

compared to a Newtonian fluid so that using a Newtonian model for blood in the

transition regime of the flow may leads to wrong medical predictions. Pinho and

Whitelaw (1990) quantified the delay of turbulence transition and the suppression of

turbulent fluctuations particularly in the radial and azimuthal directions of the pipe

due to the shear-thinning effect. Stability analysis by Draad et al. (1998) suggested

that the delay in turbulence transition is caused by the elongated polymers which

stabilise the flow by increasing the critical disturbance velocity. The relationship be-

tween the critical velocity for turbulence transition in shear-thinning fluids in pipes

and the pipe diameter were determined by Mitchell and Myers (2007). Peixinho

et al. (2005) investigated laminar, transitional and fully-turbulent flows in the pipe

of shear-thinning fluids with a yield stress (Herschel-Bulkley rheology) and without

a yield stress (power-law rheology). The turbulence transition of shear-thinning

fluids showed an increase of the root mean square (RMS) of the axial velocity. The

RMS axial velocity in shear-thinning fluids was found larger than the Newtonian

flow in the near-wall region.

The experiment by Nouri et al. (1993) for concentric and eccentric annuli of

shear-thinning fluids suggested that the turbulent fluctuation is lowered in all three

(axial, azimuthal and radial) directions, but is more significantly in the off-axial

directions. Escudier and Presti (1996) measured velocity fluctuations in the flow of

clay which fitted accurately to the Herschel-Bulkley rheology. They confirmed the

suppression of off-axis turbulence intensities in the shear-thinning fluid while the

axial turbulence intensity was found similar to the Newtonian case. The reduction

of off-axis turbulent intensities leads to drag reduction. Nouri et al. (1993) reported

that the drag reduction in shear-thinning pipe flow can achieve above 60%. In Draad

et al. (1998), a reduction over 20% in the turbulent intensity compared to Newtonian

fluids were found in the radial and the azimuthal directions which was explained

by the suppression on small-scale turbulence. Escudier et al. (1999) suggested that

the drag reduction from the lowered turbulence intensity occurs beyond the viscous

sublayer in the buffer layer and can expand into the log-law region.

Peixinho et al. (2005) and Escudier et al. (2005, 2009) also investigated on

the asymmetric mean axial velocity profile in transitional shear-thinning fluid flow

in the pipe reported by Escudier and Presti (1996). Such asymmetry only appears

in the transitional regime, the mean velocity profiles in laminar and fully-turbulent

flows of non-Newtonian fluids are axisymmetric, similar as in Newtonian fluids.

The asymmetry was found to be apparent during the whole stage of transition

and was time-varying (Benslimane et al. (2016)). The greater the shear-thinning
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characteristics, the stronger the fluid asymmetry appears (Wen (2016)). In the

transitional regime, the degree of asymmetry approximately grows with the square

root of Reynolds number. Esmael and Nouar (2008) and Esmael et al. (2010) studied

the three-dimensional features associated to the asymmetric mean axial velocity

profile in transitional shear-thinning pipe flow. Large-scale coherent structures of

two counter-rotating longitudinal vortices were observed which were responsible for

the turbulent transition to a weak turbulence.

The DNS studies of shear-thinning fluids using the power-law rheology model

(including cross power-law) are listed in table 2.5. Rudman et al. (2001) conducted

experiments and DNS of a weakly turbulent flow of a thixotropic fluid in the pipe

using the power-law rheology. The simulation results using the power-law rheology

showed significant discrepancy with the experimental results by under-predicting

the superficial flow velocity by approximately 30%. The results suggested that

time-dependent thixotropic fluids cannot be modelled by the simple power-law. The

essential difference between a shear-thinning fluid and a thixotropic fluid is whether

it is time-dependent. A shear-thinning fluid has a variable viscosity which is solely

dependent on the shear rate, and the viscosity changes instantly with the shear

rate. Thixotropic fluids are similarly to shear-thinning fluids but the behaviour is

time-dependent; when shear rate increases, the viscosity decreases gradually with

a delayed response. Therefore, the change in rheology and flow structures in a

thixotropic fluid is relatively slow compared to shear-thinning fluid when subjected

to immediate change in the shear rate.

The DNS results by Rudman et al. (2001) suggested that the axial turbulent

intensity is marginally higher in non-Newtonian fluids. Rudman et al. (2004) ex-

amined the effect of different parameters in the power-law and the Herschel-Bulkley

rheology on shear-thinning fluids in the pipe. The flow was not fully-developed at all

three indices investigated from n = 0.5 up to n = 0.75. As the flow index decreases,

the near-wall streaks which is a universal feature of wall-bounded flows (Kline et al.

(1967)) became less homogeneous and the turbulent flow became intermittent. The

temporal signals of velocity and pressure near the wall at different index suggested

that the most shear-thinning case (n = 0.5) is significantly different than the flows

at higher indices. The 2D contours of the streamwise velocity suggested that the

flow at n = 0.5 is transitional with self-sustaining structures similar to the turbulent

slugs in transitioning flow of Newtonian fluids.

Zhen et al. (2013) performed DNS of three shear-thinning fluids using the

power-law model and particularly analysed the most shear-thinning case (n = 0.7)
with comparison to the Newtonian fluid. The effect of shear-thinning on the evo-
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lution of a hairpin vortex was investigated in a channel. The turbulent energy

dissipation was found higher in the more shear-thinning flows with lower n. A

possible mechanism for the delay of turbulence transition in shear-thinning fluids

was suggested to be associated to the weakening of hairpin vortices which is be-

lieved to be the topological building blocks of wall turbulence in many studies.

While the hairpin vortices are relatively intact in the Newtonian case, as the flow

becomes shear-thinning, the vortices started to lose coherence and broke up into

smaller-scale structures due to strong vortex instability. The weakening of vortices

in purely shear-thinning (viscoplastic rather than viscoelastic) flows was believed

to be associated with an instability of the vortices which leads to increased viscous

dissipation.

Singh et al. (2017) investigated the turbulent kinetic energy budget of shear-

thinning pipe flow using the DNS data of power-law fluids. The effect of shear-

thinning on the turbulent kinetic energy production, transport and dissipation was

evaluated. The shear-thinning effect suppressed the overall turbulent kinetic energy

production. The shear-thinning effect on the turbulent kinetic energy budget was

found to be confined approximately within y+ < 60. Additional terms in the mean

momentum equation and dissipation terms are introduced by variable viscosity. The

additional negative term in the mean momentum equation increases in magnitude as

n decreases and results in increasing mean velocity gradient in a more shear-thinning

fluid. The additional dissipation term in the kinetic energy budget equation results

in a net decrease in the total viscous dissipation.

Gavrilov and Rudyak (2016, 2017) investigated power-law shear-thinning flu-

ids in the pipe at higher Reynolds numbers. The reduction of off-axis fluctuations

was linked to the suppression of energy transport from axial streamwise component

to off-axis components. This suppression on off-axis turbulent activities leads to a

strong axial velocity pulsation. As the flow became more shear-thinning, the tur-

bulent momentum transfer between near-wall region and the outer region reduced.

The increase of viscosity away from the wall due to decreasing shear rate leads to

the damping of the wall-normal velocity pulsations. The damped wall-normal fluc-

tuation is responsible for the reduction of the momentum transport from the pipe

core toward the wall.
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2.3 Invariants of the velocity-gradient tensors

The turbulent structures in fine scales can be characterised by the invariants of

the velocity-gradient tensor. For incompressible flow, the velocity-gradient tensor

(VGT) Aij = ∂Ui/∂xj can be decomposed into symmetric part and antisymmetric

part as Aij = Sij +Ωij , where the symmetric strain-rate tensor

Sij =
1

2
(∂Ui

∂xj
+ ∂Uj

∂xi
), (2.1)

and the anti-symmetric rate-of-rotation tensor

Ωij =
1

2
(∂Ui

∂xj
− ∂Uj

∂xi
). (2.2)

Ωij can be expressed by components of vorticity ω = ∇ ×U as

Ω = 1

2

⎡⎢⎢⎢⎢⎢⎢⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤⎥⎥⎥⎥⎥⎥⎦

.

The vorticity (curl of the velocity field) in the Cartesian coordinates and the cylin-

drical coordinates has

ω = (∂vz
∂y
− ∂vy

∂z
)ex + (

∂vx
∂z
− ∂vz

∂x
)ey + (

∂vy

∂x
− ∂vx

∂y
)ez, (2.3)

and

ω = (1
r

∂vz
∂θ
− ∂vθ

∂z
)er + (

∂vr
∂z
− ∂vz

∂r
)eθ +

1

r
(∂(rvθ)

∂r
− ∂vr

∂θ
)ez, (2.4)

respectively. The characteristics equation of Aij ,

λ3 + Pλ2 +Qλ +R = 0 (2.5)

has three invariants. The first invariant P is the negative trace of Aij . Thus, for

incompressible flows, P = −Aii = 0.

Q = 1

4
(ωiωi − 2SijSij) (2.6)

R = −1
3
(SijSjkSki +

3

4
ωiSijωj) (2.7)
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The second and third invariants, Q and R in equations (2.6) and (2.7) can each be

decomposed to constituent strain-rate and rotation part, which are the invariants

of the strain-rate and rotation tensors: Qω is half the enstrophy; Qs is proportional

to the rate of dissipation, ε, as Qs = −ε/4ν; Rs represents strain skewness; Rω is the

enstrophy production.

Qω =
1

4
ωiωi (2.8)

Qs = −
1

2
SijSij (2.9)

Rs = −
1

3
SijSjkSki (2.10)

Rω = −
1

4
ωiSijωj (2.11)

The physical interpretation for these invariants was extensively reviewed by Chong

et al. (1990), Cantwell (1993), Soria et al. (1994), Blackburn et al. (1996) and

Tsinober (2009). The sign of Q represents the local dominance between Qω and

Qs, between rotation and strain, and between enstrophy and dissipation, i.e., Q > 0
represents excess of enstrophy over strain product and Q < 0 represents regions

where viscous dissipation of kinetic energy dominates. Regions of strong Qω (Q > 0)
are occupied by tube-like structures and regions of strong Qs are concentrated with

sheet- or ribbon-like structures (da Silva and Pereira (2008)).

These invariants are often plotted as joint PDFs in the Q−R, Qs−Qω, Qs−Rs

and Qω −Rω space. Figure 2.7 shows the physical interpretations of the PDFs. The

Q−R space is divided into four sectors by the line of discriminant D = (27/4)R2+Q3.

The physical meaning of Q−R distributions depends on the signs of R and D. When

D > 0, the local flow is predominantly swirling (high enstrophy); sector I (R > 0)

implies predominant vortex compression over stretching and sector II (R < 0) implies

the opposite. When D < 0, the local flow is predominantly straining; sector III

(R < 0) indicates tube-like structures and sector IV (R > 0) sheet-like structures. The
Q−R joint PDF exhibited a preferential distribution - a upturned ‘tear drop’ shape in

a vast group of turbulence. The ‘tear drop’ shape is formed by the ‘Vieillefosse tail’

(Vieillefosse (1982)) of high rate of kinetic energy dissipation along D = 0 in R > 0
and enlarged sector II over sector I, i.e., vortex stretching over vortex compression

(Cantwell (1993)). Figure 2.7 shows the physical interpretation for the Qω − Qs

and Qω −Rω space similar to Soria et al. (1994), da Silva and Pereira (2008) and

Buchner et al. (2016). In the Qω −Qs space, the line of Qω = −Qs indicates vortex
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sheet structures with balanced enstrophy and kinetic energy dissipation. Unlike the

ubiquity of the Q − R distribution, the Qs − Qω joint PDF in wall-bounded flows

is very different from the free shear flows and homogeneous isotropic turbulence.

Wall-bounded flows are inhomogeneous due to the mean shear and the presence of

self-similar hierarchical-scaled vortices originated from the wall. The mean shear

which fuels turbulence production in shear flows is exerted (steered) by the viscous

force from the wall, and results in a more complex topology of the multi-scaled

turbulent motions. In the viscous sublayer of the channel flow by Blackburn et al.

(1996) and Couette-Poiseuille flow by Wu et al. (2019), the joint PDF of Qs −Qω

was found to be nearly aligned along Qω = −Qs because of the superior mean shear

near the wall where enstrophy and dissipation are both very strong. Blackburn

et al. (1996) also reported that the influence of the presence of the wall gradually

disappeared from the PDFs beyond buffer layer in which the PDFs in the outer

region became ubiquitous to free shear flows.
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Chapter 3

Methodology

3.1 Direct numerical simulation

The present study investigates fully-developed turbulent pipe flows at Reynolds

numbers up to Reτ = 1000 by means of direct numerical simulation (DNS). The

three-dimensional incompressible Navier-Stokes equations are solved for fields of

fluid velocity u and pressure p by a massively parallelized MPI (Message Passing

Interface) solver, Nek5000 (Fischer et al. (2008)). Nek5000 is extensively used in

the research group for simulations of turbulent flows in pipes, channels, annulus,

and jets. The continuity equation of mass conservation (zero divergence of u for

incompressibility),

∇ ⋅ u = 0, (3.1)

and the equations of momentum conservation,

ρ
Du

Dt
= ρ(∂u

∂t
+ u ⋅ ∇u) = −∇p +∇ ⋅ τ + f (3.2)

are solved by using the high-order spectral element method (SEM) which is a

weighted residual method. The simulations of flows at high Reynolds numbers

benefit from the reduced numerical dispersion and dissipation of the SEM with

spectral accuracy. In the simulation, the fluid density is kept as ρ = 1, and no

external force f is applied. The flow is driven by the pressure force, −∇p, i.e., an
axial pressure gradient ∂p/∂x. For incompressible flows, the general viscous stress

tensor, τ = µ(∇u + (∇u)T ) − 2
3µ(∇ ⋅ u)I where I is the identity matrix is reduced

to τ = ∇ ⋅ (µ(∇u + (∇u)T ). For Newtonian fluids with a constant viscosity µ, the

viscous force, ∇ ⋅ τ is simplified as ∇ ⋅ τ = µ∇2u (∇2 is the Laplacian operator),

and the full stress tensor is only solved in simulations of non-Newtonian fluids with
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variable viscosity. Nek5000 adopts a semi-implicit time scheme, in which the viscous

terms are solved implicitly by a third-order backward differentiation (BDF3) while

the non-linear terms are solved by a third-order extrapolation (EXT3).

The boundary condition of the pipe is set as no-slip at the wall, and the

periodic condition is applied in the streamwise direction, at the inlet and outlet of

the pipe. In this study, the radial, azimuthal and axial/streamwise directions of the

pipe are denoted as r, θ and x, respectively. The wall-normal location y = R − r
where R is the pipe radius. The solutions are solved in the Cartesian coordinates

without encountering the singularity associated with the cylindrical coordinates at

the pipe centreline (Jung and Chung (2012); Wang et al. (2018)). The horizontal

and the vertical directions in the Cartesian coordinates are denoted as xc and yc,

respectively in order to differ from the notation of the streamwise direction, x,

and the wall-normal direction, y. The velocity components in the horizontal and

vertical directions of the Cartesian coordinates are Ux and Uy, respectively. The

velocity components U , V and W are in the streamwise, wall-normal and azimuthal

directions of the cylindrical coordinates. The radial and azimuthal velocities, Vr

and W are obtained via vector rotation as

Vr = Ux cos(θ) +Uy sin(θ),

W = −Ux sin(θ) +Uy cos(θ),

where θ = arctan(y/x). The wall-normal velocity V is defined as positive away from

the wall as V = −Vr. The instantaneous velocities are denoted by capital letters and

the fluctuating velocities are in lower cases. The velocity gradients are obtained in

the wavenumber space during the simulation, which are transformed to the physical

space by inverse Fourier transformation.

The pipe length is 30R for all the four Reynolds numbers studied, which is

chosen to be longer than the maximum wavelength of VLSMs and superstructures

reported for pipes (Eggels et al. (1994); Morrison et al. (2004); Guala et al. (2006);

Hutchins and Marusic (2007b); Monty et al. (2007); Wu and Moin (2008); Wu et al.

(2012); Baltzer et al. (2013)). In SEM, each hexahedral element in the computa-

tional domain is refined by Gauss-Lobatto-Legendre (GLL) nodes with Lagrange

polynomial order of N for the velocity field and N − 2 for the pressure field. This

arrangement is known as PN − PN−2 (Maday and Patera (1989); El Khoury et al.

(2013)). The computational mesh is unstructured on the cross-stream (r−θ) planes
and uniform in the streamwise direction. Figure 3.1 shows the unstructured mesh

on a cross-stream plane. The computational grids for different Reynolds numbers
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ReD Reτ Elements Grid points ∆x+ ∆r+ R∆θ+

5300 180 49248 25.2 × 106 [3.03, 9.93] [0.14, 4.36] [1.52, 4.96]
11700 360 350208 179 × 106 [3.02, 9.99] [0.16, 4.07] [1.52, 4.94]
17000 500 832728 426 × 106 [3.05, 9.95] [0.16, 4.24] [1.48, 4.83]
37700 1000 6089952 3.12 × 109 [3.00, 9.99] [0.16, 4.31] [1.53 ,4.75]

Table 3.1: DNS parameters and spatial resolution of the present turbulent pipe flow
at different Reynolds numbers.

are shown in quarters. The element boundaries are highlighted in red. The mesh

in 3D is shown in figure 3.2 for the lowest Reynolds number. The GLL points in

polynomial distribution inside each element is clearly visible. The grid is refined

near the wall and is the finest when nearest to the wall. The parameters of the

spatial discretisation of the pipe at different Reynolds numbers are shown in table

3.1. The grid resolution is shown in wall units as ∆x+, ∆r+ and R∆θ+. A grid inde-

pendence test for the computational mesh of the pipe using different order or GLL

nodes was reported by Wang (2017) where the cross-stream mesh is adopted from.

The 2D cross-stream mesh of the pipe at each Reynolds number has been used in

the DNS performed in the research group of turbulent flow in straight pipes, bend

pipes (Wang (2017), Wang et al. (2018)) and round jets (Dunstan (2020)). The

present DNS of pipe flow at Reτ = 1000 is one of the largest simulations performed

using Nek5000 and on the UK national supercomputing system, ARCHER. The

simulation is by far the largest case performed in the research group which has over

three billion computational grid points and requires over 104 processors. For such

petascale simulations, a preconditioner, i.e., an algebraic multigrid (AMG) solver

is applied once at the initial stage of the simulation to speed up and improve the

scalability of the simulation.

Transformation of the DNS data from the original unstructured mesh to

structured uniform mesh is required for data post-processing in order to produce

turbulence statistics. The data are remapped on a uniform polar mesh when com-

puting turbulent statistics, for instance, probability density functions.

3.2 Vector and tensor transformation

For pipe flows, the solutions of the Navier-Stokes equations in the Cartesian coordi-

nates often require transformation to the cylindrical coordinates. The vectors (e.g.,

velocity) are transformed by a transformation matrix B as V(r,θ,z) = BV(x,y,z) for a
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(a) (b)

(c) (d)

Figure 3.1: Cross-stream (r − θ) view of the computational mesh for simulation at
(a) Reτ = 180, (b) Reτ = 360, (c) Reτ = 500 and (d) Reτ = 1000.
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Figure 3.2: 3D view of the computational mesh of one-third of the pipe for simulation
at Reτ = 180.

vector V :
⎡⎢⎢⎢⎢⎢⎢⎣

vr

vθ

vz

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

vx

vy

vz

⎤⎥⎥⎥⎥⎥⎥⎦

. (3.3)

The tensors (e.g., Sij , Ωij) are transformed using the same transformation matrix

as A(r,θ,z) = BA(x,y,z)B
−1 for a tensor A:

⎡⎢⎢⎢⎢⎢⎢⎣

srr srθ srz

sθr sθθ sθz

szr szθ szz

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

sxx sxy sxz

syx syy syz

szx szy szz

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

cos(−θ) sin(−θ) 0

− sin(−θ) cos(−θ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

.

(3.4)

3.3 Proper orthogonal decomposition

Proper orthogonal decomposition (POD) is a linear modal decomposition technique

(Berkooz et al. (1993)) which was shown to be effective in extracting coherent ac-

tivities with large energy contribution in turbulent flows (Buxton et al. (2017)). In

this study, 2D snapshot POD is applied as follows.

A velocity field with M total spatial data points and N available snapshots
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forms a snapshots matrix V with rank (2M ×N) where

V = [u1,u2⋯uN ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11 u21 ⋯ uN1
u12 u22 ⋯ uN2
⋮ ⋮ ⋮ ⋮

u1M u2M ⋯ uNM
v11 v21 ⋯ vN1
⋮ ⋮ ⋮ ⋮

v1M v2M ⋯ vNM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.5)

The auto-covariance matrix C =VTV with rank (N×N) is solved for its eigenvalues

and eigenvectors from CA = λA. The eigenvectors A(N ×N) and the eigenvalues

λ(1 ×N) are sorted for a descending order of λ1 > λ2 > ⋯ > λN .

The N POD modes in Φ = [ϕ1, ϕ2,⋯, ϕN ] are calculated as

ϕi =
VAi

∥VAi∥
, i = 1,2,⋯,N,

where the rank of Φ is (N ×N).

The POD mode coefficient a is calculated as

a =ΦTU.

The original snapshot can be reconstructed from using all modes as

U =Φa.

A snapshot can also be reconstructed from using a collection of selected modes, Φ̂

as

Û = Φ̂â.
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Chapter 4

DNS of turbulent pipe flow

This chapter investigates viscous Newtonian fluid flows in a straight circular pipe.

DNS is performed at four Reynolds numbers, Reτ = 180, 360, 500 and 1000 with

computational parameters shown in table 3.1. The Navier-Stokes equations are

solved in the non-dimensional form. Equations 3.1 and 3.2 are non-dimensionalised

by a characteristic length, i.e., the pipe radius R, and a characteristic speed, i.e., the

bulk mean velocity Ub. For incompressible Newtonian fluids, equation 3.2 is solved

as
∂ui
∂t
+ uj

∂ui
∂xj
= − ∂p

∂xi
+ 1

Re

∂2ui
∂x2j

(4.1)

where the Reynolds number Re = ρUbR/µ.
In this chapter, the instantaneous fields and the turbulence statistics are

represented first to evaluate the quality of the DNS data. The turbulence statistics

are compared with historical DNS data of the pipe from the literature. The main

body of this chapter investigates the large-scale coherent structure, i.e., the uniform-

momentum zones (UMZ) and the internal shear layers (ISL) in the pipe. Three

UMZ/ISL identification methods are used, which are each placed in a separate

subsection with the characteristics of the UMZs and ISLs identified by each of the

identification methods.

4.1 Instantaneous fields of velocity and vorticity

The circular contours in figure 4.1 show the instantaneous streamwise velocity U and

the streamwise fluctuation u in a cross-stream plane for the four Reynolds numbers.

The scale increase from the wall to the pipe centre at each Reynolds number is clear.

The contours in the right-hand-side column are plotted on wall-parallel (x−θ) planes
at y+ ≈ 10. The increasingly more complex flow and wider range of scales at higher
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(a)

(b)

(c)

(d)

Figure 4.1: Contours of the instantaneous streamwise velocity U (the left column)
and streamwise fluctuation u (the middle and the right columns) for the pipe flow
at (a) Reτ = 180, Reτ = 360, Reτ = 500 and Reτ = 1000.
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(a) (b)

(c) (d)

Figure 4.2: Cross-stream contours of the instantaneous streamwise vorticity ωx for
(a) Reτ = 180, (b) Reτ = 360, (c) Reτ = 500 and (d) Reτ = 1000. The contours are
shown in quarters, overlaid with the computational grids shown in figure 3.1.
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(a)

(b)

(c)

(d)

Figure 4.3: Iso-surfaces of Q for (a) Reτ = 180, (b) Reτ = 360, (c) Reτ = 500 and (d)
Reτ = 1000. The iso-surfaces are shown in the first 1/3 of the streamwise domain.
The pipe is unwrapped in the right column.
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Reynolds numbers are apparent, especially in the near-wall region. The pattern of

the streamwise elongated high- and low-speed streaks near the wall are clear. The

average spanwise spacing between the adjacent high- or low-speed streaks near the

wall is approximately 100 wall units, which implies there should be roughly 11, 23,

31 and 63 high-speed streaks at Reτ = 180, 360, 500 and 1000, respectively in figure

4.1.

Figure 4.2 shows the contours of the streamwise vorticity ωx for each Reynolds

number with their spectral element grid. It is clear that the vortical structures are

stronger nearer the wall. The small-scale counter-rotating vortices in figure 2.2 ap-

pear next to the wall. These vortices are significantly smaller at high Reynolds

number, confined in a closer vicinity of the wall. The overlaid mesh provides a

visual evaluation on the grid resolution. The vortical structures which scale with

the Reynolds number, are well-resolved. There is no visible discontinuity in ωx from

spatial discretisation. The three-dimensional view of the vortical structures is shown

by Q−criterion in figure 4.3. The iso-surfaces of Q show the densely populated quasi-

streamwise vortical structures near the wall. The decrease in the smallest structure

scale is apparent. The vortical structures become more complex as Reynolds num-

ber increases. The well-defined and smooth worm-like vortical structures indicate

that the present DNS of the pipe flows is sufficiently resolved at all four Reynolds

numbers.

4.2 Mean flow statistics

The profile of the mean streamwise velocity at the four Reynolds numbers are shown

in figure 4.4(a). In the viscous sublayer (y+ < 5), all the profiles of the inner-scaled

U collapse to the linear part of the law of the wall, U+ = y+. Away from the wall

(y+ > 20), U no longer scales with the wall unit, the profiles of U+ at different

Reynolds numbers do not collapse. It is clear that the profiles of U+ show better

agreement with the log-law at higher Reynolds numbers. The logarithmic region is

not observed at the lowest Reynolds number Reτ = 180; U+ deviates from the log-

law, U+ = κ−1ln(y+)+B substantially, which have been reported as the low-Reynolds

number effect on the turbulence statistics by Eggels et al. (1994) in the pipe, Moser

et al. (1999) and Antonia and Kim (1994) in the channel. Very far from the wall,

the deviation of the profiles from the log-law with an increase in U indicates the

wake region in the pipe centre.

The inner-scaled root-mean-square (RMS) velocities are shown in figures

4.4(b-d). The profiles of urms and vrms collapse well with the inner scaling in the
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Figure 4.4: (a) Mean streamwise velocity profile, U . The log-law, U+ = κ−1ln(y+)+B
(‘−−−’) is plotted for κ = 0.41 and B = 5.2. Root-mean-square velocity fluctuations
in (b) the streamwise direction, urms, (c) the wall-normal direction, vrms, and (d)
the azimuthal direction, wrms. (e) The mean Reynolds shear stress −uv. The DNS
results from the literature are overlaid by symbols.
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viscous sublayer whereas they start to separate for y+ > 20. The peaks of urms

and vrms increase with the Reynolds number. The maximum of urms is roughly

located at y+ = 15 as was found by Moser et al. (1999); Abe et al. (2001); Hutchins

et al. (2009); Monty et al. (2009); Jiménez et al. (2010); El Khoury et al. (2013)

and Chin et al. (2014). The increase in maximum urms is believed to be induced by

the fast-travelling large-scale structures, leaving their footprints in an increasingly

closer proximity to the wall at higher Reynolds numbers (del Álamo and Jiménez

(2003); El Khoury et al. (2013)).

The maximum of RMS velocity in the wall-normal direction, vrms shows a

much more substantial increase with Reτ than urms. The location of the maximum

of vrms shift away from the wall as Reτ increases, and is further away from the wall

than the location of maximum urms at each Reynolds number. In figure 4.4(d), the

profiles of the RMS velocity in the azimuthal direction, wrms clearly does not hold

with inner scaling, where substantial discrepancies are found even in the near-wall

region. Similar to vrms, the location of maximum wrms show Reynolds number de-

pendence which moves further away from the wall with increasing Reynolds number

(Buschmann et al. (2009)). The non-vanishing Reynolds stress term, uv, is shown

in figure 4.4(e). The Reynolds shear stress −uv is responsible for momentum trans-

port in wall turbulence. The profiles of −uv is similar to urms and vrms in terms

of inner scaling, which collapse well for y+ < 10. The profiles of −uv show a clear

low-Reynolds number effect at Reτ = 180. The profile of −uv at Reτ = 180 deviates

from the profiles at higher Reynolds numbers which overlap in the viscous sublayer.

Turbulent statistics are compared with the DNS results from the literature

which are listed in table 4.1. The present data shows an excellent agreement with

the previous DNS of the pipe. The data is used in the study of coherent structures,

i.e., the uniform-momentum zones (UMZ) and the internal shear layers (ISL) in

turbulent pipe flows.
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4.3 The quiescent core of the pipe

In this section, the quiescent core in the pipe is investigated using the DNS data of

a single Reynolds number at Reτ = 500. The quiescent core region in channels is

bounded by two ISLs: an upper and a lower interface defined at a single velocity

threshold Uκ. In pipe, the core is bounded by a continuous boundary, circumferen-

tially enclosed in the azimuthal direction.

The results in this section were previously published in Chen et al. (2019b).

4.3.1 Identification of the quiescent core

The quiescent core of the pipe is identified by using the double-PDF method (table

2.2) following Kwon et al. (2014) and Yang et al. (2016). Numerous instantaneous

PDFs of the streamwise velocity U are computed from a subdomain with streamwise

window size of Lx/R = 0.2 in all the snapshots. The PDFs are sampled from a

uniform cylindrical grid because for pipe, the uniform polar mesh on the circular

cross-stream (r − θ) planes is more equivalent to the channel and TBL which have

uniform grids in the Cartesian coordinates, i.e., the sampling is uniform in the wall-

parallel and wall-normal directions regardless of the coordinate system.

Figure 4.5(a) shows an example of the instantaneous PDF of U in the 3D

subdomain. 110 bins are used in the PDF of U/UCL ∈ [0,1.1] with a bin width

B = 1% of UCL. The peaks on the PDF are detected using a constrained peak

detection scheme following Laskari et al. (2018). Three constraints are applied in

the detection scheme: (i) a minimum distance between two adjacent peaks, Fd = 3%
of UCL so that two peaks being too close to each other are seen to be spurious

and treated as one local UMZ, (ii) a minimum height of peaks, Fh = 0.5% so that

peaks with a bin count less than 0.5% of the total count are ignored, and (iii) a

minimum prominence of the peak, Fp = 25% which requires a recognised peak to

be 25% higher than the average bin count of its neighbouring bins. On the PDF

in figure 4.5(a), there are three recognised peaks, i.e., three local UMZs travelling

at three modal velocities, Um under the constrained peak detection scheme. These

three local UMZs are shown on the cross-stream contour of U in figure 4.5(d) by

the thin blue contours defined at velocity thresholds marked by ‘▲’. The modal

velocities of the local UMZs at the peaks on each instantaneous PDF are collected

from all available snapshots.

A secondary PDF is computed for all the collected Um, shown in figure

4.5(b). The PDF distribution is very similar to the DNS results by Kwon et al.

(2014) and Yang et al. (2016). The dominant peak marked by ‘▼’ indicates the
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Figure 4.5: (a) PDF of the instantaneous streamwise velocity, U , constructed using
the 3D subdomain with a streamwise length of Lx = 0.2R from a snapshot. The
recognised peaks from the peak detection scheme are marked by ‘▼’, which indicate
local UMZs with modal velocity Um. (b) PDF of the modal velocities Um collected
from all the PDF of U in all subdomains from all available snapshots over time. The
threshold velocity Uκ for the quiescent core is marked by the blue dashed line. (c,d)
Coloured contours of U from the same snapshot used in (a), on (c) a streamwise-
wall-normal (x−y) plane and (d) the cross-stream (r−θ) plane within the subdomain
where the PDF in (a) was computed from. The white dashed line in (c) indicates
the pipe centreline. The thick black contours in (c,d) indicate the quiescent core
boundary defined by Uκ/UCL = 0.9. The two blue contours in (d) show the local
UMZs defined at threshold velocities marked by ‘▲’ in (a).
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(a)

(b) (c)

Figure 4.6: Visualisation of the quiescent core in 3D: (a) iso-surface of the stream-
wise velocity at U/UCL = 0.9. The core is unwrapped to a sheet by mapped to the
cylindrical coordinates in (b,c). (b) shows the side of the core interface facing the
wall and (c) shows the core interface facing the pipe centreline. The interfaces in
(b,c) are coloured by the radial extent of the interface, so that the bulges and the
valleys in figure 2.4 are in blue and red, respectively.

Figure 4.7: The quiescent core as contour of the streamwise velocity at U/UCL = 0.9
(black) and the quiescent core after eliminating the islands outside the main enclosed
core region.
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most likely modal velocity for the quiescent core region in the pipe. In other words,

the appearance of local UMZs travelling at this velocity is the most frequent. On

this secondary PDF of Um, the less-dominant peaks were seen as spurious peaks by

Kwon et al. (2014). The core boundary is defined by a threshold velocity Uκ at the

local maximum between the dominant peak and its adjacent peak as marked by ‘●’.

The PDF of Um suggests that Uκ ≈ 0.9UCL in the pipe at Reτ = 500.
The quiescent core is enclosed by the continuous core boundary shown by

the black contour of U/UCL = 0.9 in figures 4.5(c,d). The pipe core shows similar

thinning, thickening, and wall-normal meandering behaviours to the cores in chan-

nels. The 3D view of the core is shown in figure 4.6 for a half of the streamwise

computational domain. The core is very contorted in 3D which shows large-scale

streaky features in figures 4.6(b,c). The core is unwrapped by transforming to the

cylindrical coordinates. The core interface is shown with the sides facing the pipe

centreline and facing the wall, respectively. The interface is coloured by the radial

location of the iso-surface, so that the bulges and valleys on the interface are indi-

cated by blue and red, respectively, similar to figure 2.4. The blue bulges are caused

by lower-speed fluid ejected up from the wall, and the red valleys are caused by the

faster-speed fluid sweep closer to the wall.

The small islands outside the main core region with U/UCL ≥ Uκ and inside

the main core with U/UCL < Uκ are ignored in Kwon et al. (2014) via inner en-

veloping. Similarly, in order to define the core boundary as continuous ISL, these

islands are eliminated in this study by removing enclosed contours of significantly

shortened length. As figure 4.7 shows, the islands are excluded in the continuous

core boundary highlighted in white.

4.3.2 Meandering and intermittency of the core

The meandering with the thinning of the quiescent core can cause the core to ap-

proach significantly close to the wall and leaves the pipe centreline outside (Kwon

et al. (2014)). The chance of the core leaving the centreline outside was measured

by an intermittency factor γ(y) by Kwon et al. (2014) in the channel, similar to

the intermittency of turbulent/non-turbulent interface (TNTI) in TBL. γ as a func-

tion of wall-normal location is the proportion of time a wall-normal location is left

outside the core. A higher γ indicates less chance for a wall-normal location to be

included inside the core.

Figure 4.8 shows γ of the quiescent core of the pipe. The results by Kwon

et al. (2014) for a channel core defined at a higher Uκ at 0.95UCL are overlaid. γ for a

pipe core defined at an arbitrary velocity at Uκ = 0.95UCL is plotted for comparison.
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Figure 4.8: The quiescent core intermittency, γ at different wall-distance. The
results from Kwon et al. (2014) for a quiescent core defined at Uκ/UCL = 0.95 in
TBL at Reτ ≈ 1000 (‘◯’), 2000 (‘◻’) and 4000 (‘▽’) are shown.

The profiles of γ exhibit similar trend and always have γ = 1 at the pipe wall which

is never bounded inside the core. The profiles of the channel show a dependence on

the Reynolds number, the profiles shift to the left so that more flows stay in the core

when Reynolds number increases. This corresponds to that the cores defined at a

fixed velocity threshold are thicker at higher Reynolds number because the location

of U reaching a certain Uκ is closer to the wall at a higher Reynolds number. At the

centreline, γ > 0 indicates that the quiescent core can leave the centreline outside

as observed. By comparing the centreline intermittency (γ at y/R = 1) of the

cores in the channel and pipe at two different velocity thresholds, the centreline

intermittency mostly depends on Uκ rather than Reynolds number or the geometry.

The cores defined at Uκ/UCL = 0.95 spend approximately 6.6% of the time away

from the centreline for channels at Reτ = 1000 to 4000 and for the present pipe flow

at Reτ = 500. The quiescent core of the pipe defined at Uκ/UCL = 0.9 spends only

0.2% of the time excluding the centreline because it is naturally thicker. A core

defined at any arbitrary velocity threshold lower than this would have γ = 0 at the

pipe centreline.

4.3.3 Conditional average properties across the core boundary

Conditional averaged streamwise velocity U and azimuthal vorticity Ωθ = ∂V /∂x −
∂U/∂r are computed around the quiescent core interface, as functions of the wall-

normal distance from the core interface, ξ. The conditional averaged quantities

are denoted as ⟨⋅⟩. ⟨U⟩ and ⟨Ωθ⟩ are computed in a region with a wall-normal

span of 0.3R, centring the core interface as shown in figure 4.9. Figure 4.12 shows

the profiles of ⟨U⟩, velocity gradient of ⟨U⟩, and ⟨Ωθ⟩ as functions of the wall-
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Figure 4.9: Illustration of the wall-normal span around the quiescent core interface
for conditional averaging.
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Figure 4.10: Schematic illustration of coordinate transformation from axial direction
to the direction tangential to the interface used by the present study.

normal distance from the core interface, ξ. The conditional averaging is computed

essentially by taking average in the tangential direction χ along the core interface,

the transformation from x to χ is schematically shown in figure 4.10. The direction

ξ is always normal to the wall. Another coordinates transformation for computing

averages along a tortuous interface used in Kankanwadi and Buxton (2020) is shown

in figure 4.11 where the χ − ξ axes are orthogonal and ξ is normal to the interface.

In this study, we use the transformation in figure 4.10.

Figures 4.12(a) and (b) show the profiles of ⟨U⟩ across the interface. The dot-
dashed lines at ξ = 0 are virtually the interface. The well-known streamwise velocity

jump in the vicinity of the interface is clear. With positive ξ representing locations
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Figure 4.11: Schematic illustration of coordinates transformation from orthogonal
axes to axes tangential and normal to the quiescent core interface by Kankanwadi
and Buxton (2020).

-0.1 0 0.1

0.8

0.9

1

-0.1 0 0.1

-0.15

-0.1

-0.05

0

0.05

(a) (b)

-0.1 0 0.1

0

1

2

3

-0.1 0 0.1

0

0.5

1

1.5

(c) (d)

Figure 4.12: Conditional average of (a,b) the streamwise velocity U , (c) velocity
gradient of U and (d) the azimuthal vorticity Ωθ across the core interface as functions
of the distance to the core boundary, xi. ξ > 0 indicates inside of the core region.
Symbols are the results of the quiescent core defined at Uκ/UCL = 0.95 in TBL at
Reτ ≈ 1030 by Kwon et al. (2014) and the channel at Reτ = 930 by Yang et al.
(2016).
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inside the core, ⟨U⟩ exhibit a suddenly steeper increase across the interface and

stays relatively constant in the core region. The cores defined at a higher velocity

threshold of Uκ/UCL = 0.95 in the present pipe and the channel by Yang et al. (2016)

are overlaid with lines and symbols in blue. The quiescent cores defined at higher

Uκ show smaller increases in U which is clearer in figure 4.12(b) with ⟨U⟩−Uκ. This

should be expected because the core interface defined at a higher Uκ resides further

away from the wall where velocity changes less abruptly. The profiles of the velocity

gradient of ⟨U⟩ over ξ in figure 4.12(c) suggest consistent results. The peaks in

∂⟨U⟩/∂ξ at the interface correspond to the step-like jump in ⟨U⟩. The peak of the

cores defined at higher Uκ exhibit lower velocity gradients since velocity changes

less abruptly across them.

The abrupt jumps of U across the interface lead to the peaks of azimuthal

vorticity, Ωθ around the interface in figure4.12(d). The profiles of ⟨Ωθ⟩ reach a local

maximum slightly before entering the core region and stay relatively low inside the

core. The conditional averaged results in figure 4.12 paint a consistent picture of the

large-scale structural distribution of the UMZs and ISLs in the pipe to the channel

(Kwon et al. (2014); Yang et al. (2016)). The quiescent core of the pipe showed

complex contortion in 3D. The step-like jump in the streamwise velocity across the

interface is associated with the concentrated vorticity along the core interface which

is essentially an ISL.
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4.4 Uniform-momentum zones

In this section, multiple UMZs and the UMZ interfaces (ISL) are investigated us-

ing the DNS data of the pipe at a single Reynolds number, Reτ = 500. The first

part of this section investigates the statistical characteristics of the UMZ and UMZ

interfaces. The similarities and differences in different wall-bounded flows are dis-

cussed via comparison with the results of multiple UMZs in the TBL by de Silva

et al. (2016, 2017). The second part of this section investigates the contortion of

the UMZ interface in 3D. The role of the spanwise vortices clustering along the

UMZ interface (Adrian et al. (2000)) is investigated, and the coupled dynamics of

the vortical structures and the ISLs are revealed. The footprints of the LSM (Rao

et al. (1971); Metzger and Klewicki (2001); Jiménez et al. (2004)) on the near-

wall cycle and the large-scale modulation of the near-wall bursting events by the

LSM (Hutchins and Marusic (2007a,b); Marusic and Hutchins (2008); McKeon and

Sharma (2010); Chung and McKeon (2010); Baars et al. (2017)) are investigated

in the UMZ aspect. The asymmetry of the large-scale modulation (Agostini and

Leschziner (2014, 2016)) is quantified.

The results in this section were previously published in Chen et al. (2020).

4.4.1 Identification of multiple UMZs

The identification of multiple UMZs in the pipe adopts the PDF method used by

Adrian et al. (2000); de Silva et al. (2017) and Laskari et al. (2018). The identifi-

cation of the local UMZs is very similar to the process discussed in section 4.3.1.

The local UMZs are detected from the instantaneous PDFs of U with a bin size of

B = 1%UCL. Each PDF of U is computed from a 3D subdomain with streamwise

window size of Lx/R = 0.2. The sampled data points are uniform in the cylindrical

coordinates. Figure 4.13 shows an example of the UMZ detection which is very

similar to figure 4.5. The PDF method collects all the local UMZs on each PDF

of U instead of filtering them by a secondary PDF for the modal velocity Um on

the peaks. The peaks are detected by a similar constrained peak detection scheme

used in section 4.3.1 following Laskari et al. (2018). The constrained peak detection

scheme is composed of (i) a minimum distance between two adjacent peaks, Fd = 3%

of UCL so that spurious peaks being too close to each other are treated as one UMZ;

(ii) a minimum height of peaks, Fh = 0.5% so that peaks with a bin count less than

0.5% of the total PDF bin count are ignored; and (iii) a minimum prominence of the

peak, Fp = 25% which requires a recognised peak to be 25% higher than the average

bin count of its neighbouring bins. In the snapshot used in figure 4.13, three local
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Figure 4.13: (a) PDF of the instantaneous streamwise velocity, U , constructed using
the 3D subdomain with a streamwise length of Lx = 0.2R from a snapshot. The
recognised peaks from the peak detection scheme are marked by ‘▼’, which indi-
cate local UMZs with modal velocity Um. The velocity thresholds Uκ of the UMZ
interfaces are marked by the ‘∎’ at the minimum bin between adjacent peaks. (b)
Coloured contours of U from the same snapshot and subdomain used in the PDF in
(a) on the cross-stream (r − θ) plane. The contour is also shown unwrapped in (c).
The two contour lines are defined at Uκ and demarcate the three identified local
UMZs.

UMZs (‘▼’) are identified by the peak detection scheme. Each of the local UMZs

travels approximately at a modal velocity Um (‘●’), and are demarcated by two

interfaces defined by velocity thresholds Uκ (‘∎’) at the minimum bins between each

two adjacent peaks on the PDF. The UMZs and UMZ interfaces are shown in the

cross-stream contour of U . The two iso-contour defined at Uκ separate the three

zones in the flow region. The UMZ and UMZ interfaces defined at lower thresholds

are naturally closer to the wall.

As discussed in section 2.1.1, the number of UMZ detected on each PDF,

NUMZ is sensitive to the constraints applied in the peak detection. Stricter condi-

tions will largely reduce NUMZ . Laskari et al. (2018) adjusted their constraints with

a targeting average NUMZ ≈ 4.5 estimated from the Reynolds number dependency of

NUMZ in TBL by de Silva et al. (2016). The trend suggests NUMZ ≈ 2.5 at Reτ = 500.
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Figure 4.14: PDF of the number of UMZs identified on each instantaneous PDF of
U .

This is found to be underestimating for the present pipe flow at Reτ = 500 because

many well-distinct peaks are seen to be neglected. This suggests that for a TBL and

a pipe flow at a similar Reynolds number, there are potentially more UMZs in the

pipe due to the full circumferential wall confinement. Therefore, no targeting NUMZ

is pre-defined. The constraints are chosen only for a robust combination which pre-

serves the well-defined peaks on the PDFs. Figure 4.14 shows the PDF of NUMZ

of all the PDFs of U using all available snapshots. The PDF is at its maximum

at NUMZ = 5, suggesting that there are five UMZs in the pipe flow at Reτ = 500

on average. The PDF agrees with the normal distribution found by de Silva et al.

(2016) and Laskari et al. (2018), indicating that a sufficient number of instantaneous

UMZs have been obtained for statistical analysis.

4.4.2 The grouping of UMZs

The local UMZs collected from all the snapshots are classified into a few groups

based on their zone modal velocities Um. The UMZs are grouped by the magnitude

of Um similar to de Silva et al. (2016, 2017). Six Um groups denoted asMi are defined

by uniform ranges of Um listed in table 4.2. The UMZs in group M6 travelling at

the lowest Um on average are naturally the closest to the wall, and the UMZs in

group M1 with Um/UCL ∈ [1.0,1.1) are the innermost UMZs in the pipe, travelling

above the centreline velocity. Figure 4.15 shows the PDF of the number of UMZs

categorised in each Um group. The distribution of NUMZ in Um groups follows the

time-averaged PDF of U (dashed line). Group M6 with the lowest modal velocity

range has the lowest UMZ count, and group M2 has the highest number of UMZ.
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Group Mi Um/UCL Colour Symbol

1 [1.0,1.1) blue ●

2 [0.9,1.0) red ▲
3 [0.8,0.9) green ∎
4 [0.7,0.8) magenta ×
5 [0.6,0.7) cyan ◆

6 [0.5,0.6) yellow ◀

Table 4.2: The range of modal velocity Um, symbols and colours for UMZ groups
Mi grouped by Um.
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Figure 4.15: PDF of the number of UMZs categorised in each Um group Mi (bars).
The time-average PDF of the streamwise velocity U in the present pipe flow (−−−)
and the PDF of Um in TBL at Reτ = 8000 (◯) by de Silva et al. (2016) are overlaid.

The number of UMZs travelling above the centreline velocity in group M1 is also

relatively low as expected. The distribution agrees well with the distribution of

UMZ count in Um groups in TBL by de Silva et al. (2016) shown by ‘◯’.

4.4.3 The statistical characteristics of UMZ and UMZ interface

Wall-normal distribution of the UMZ and UMZ interfaces

Figures 4.16(a) and (b) show two UMZ interfaces at Um/UCL ≈ 0.9 and 0.6, be-

longed in the highest-counting and the lowest-counting UMZ group, M2 and M6,

respectively. The UMZ interface folds three-dimensionally due to the local ejection

and sweep events around the interface. The group averaged interface wall-normal

location for the UMZs in different Um groups, ⟨yκ⟩ is shown in figure 4.17. The

angle brackets ⟨⋅⟩ indicate averages of each group. For a given UMZ, its wall-normal

location is defined from its lower-bounding interface to the wall, as illustrated in

figure 4.13(b). In figure 4.17, the UMZs in group M6 travelling at Um < 0.6UCL are
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Figure 4.16: Visualisation of UMZ interfaces in 3D: iso-surface of the instantaneous
streamwise velocity at (a) U/UCL = 0.9 and (b) U/UCL = 0.59. The interfaces are
unwrapped and show the side facing the pipe centreline. The interfaces are coloured
by the radial extent of the interface, the bulges and the valleys in 2.4 are in blue
and red, respectively.
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Figure 4.17: Group averaged UMZ interface wall-normal location, yκ, for UMZs
grouped by modal velocity Um. The dashed line is the mean velocity profile of U in
figure 4.4(a), plotted as y(U).

very close to the wall with ⟨yκ⟩ almost equal to zero. ⟨yκ⟩ gradually increases from

group M6 to M1, the trend of ⟨yκ⟩ follows the mean profile of U plotted as y(U).
The non-linear increase of ⟨yκ⟩ for UMZs departing away from the wall from group

M6 to M1 indicates that the UMZs are more closely distributed nearer the wall, and

the faster-travelling UMZs in groups M1∶3 are further apart from each other, being

thicker. The results of ⟨yκ⟩ indicate that the multiple UMZs in the pipe are not

uniformly distributed in the wall-normal direction but in a hierarchical distribution

where zones near the wall are more densely populated, similar to TBL (de Silva

et al. (2016, 2017)).
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Zonal mean velocity profiles inside and outside the UMZs

The zonal mean streamwise velocity and streamwise turbulent fluctuation are com-

puted inside and outside the UMZs following Kwon et al. (2014). The zonal means

inside a UMZ is averaged in the region between the centreline and the UMZ lower-

bounding interface closer to the wall where its yκ is measured from, in other words,

over its radial extent from the pipe centre. The zonal means outside a UMZ is

averaged over the region between its lower interface and the wall. Means inside the

UMZ are denoted with a hat (Û , û2); means outside the UMZ are denoted with a

tilde (Ũ , ũ2) similar to Kwon et al. (2014). Figure 4.18 shows the zonal means inside

with dot-dashed lines and zonal means outside with dashed lines. The time-average

profiles U and u2 (solid lines) are shown as references.

In figure 4.18(a), the zonal mean profiles of U inside and outside the UMZs

in different Um groups are plotted. The mean streamwise velocity inside the UMZ,

Û is always higher than U whereas the mean outside the UMZ, Ũ is always lower

than U . The profiles of Ũ collapse with U in the near-wall region, and start to

deviate from U away from the wall. This should be expected since in the concept

of UMZ, the velocity develops in a step-like fashion from the wall to the pipe centre

and most of the velocity changes happen across very thin spans (ISL) in the wall-

normal direction. Therefore, the velocity difference between Û and Ũ for each Um

group indicates the average velocity jump across the UMZ interfaces which will be

quantified in later analyses. Û data is available in a large range of wall-normal

locations, which can extend very close to the wall at y/R ≈ 0.01 for group M5.

This well illustrates the large meandering nature of the UMZs. To measure the

meandering of the UMZs in terms of how far they can reach close to the wall in

extreme cases, figure 4.18(b) shows the minimum wall-normal location, ŷ where the

UMZ can extend, in other words, where Û is last available near the wall. ŷ increases

steadily for UMZs near the wall to the pipe centre, from ŷ/R ≈ 0.01 to 0.05 from

group M5 to M2, whereas the innermost UMZs in group M1, travelling beyond UCL

with ŷ/R ≈ 0.22 is significantly less close to the wall.

Figures 4.18(c,d) show the zonal mean profiles of U and u2 for UMZs in group

M2 only. The results are compared to a single UMZ, namely the quiescent core in

the channel defined at Uκ/UCL = 0.95 by Kwon et al. (2014). In figure 4.18(c), Û

in the pipe can extend further towards the wall due to the grouping: the profile is

averaged with other UMZs in group M2, defined at lower Uκ than the channel core,

naturally being closer to the wall. The differences between the pipe profiles and

the channel profiles are mainly caused by the difference in U due to the Reynolds

number difference. Higher Reynolds number of the channel (Reτ = 1000) has U
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Figure 4.18: Profiles of zonal averaged streamwise velocity U for UMZs in different
Um groups: (a) groups M1∶5 with colours defined in table 4.2 and (c) group M2

(red), overlaid with channel flow results by Kwon et al. (2014) (black). (b) The
wall-normal location of the most near-wall data of zonal mean U of each Um group
in (a), ŷ (Symbols as in table 4.2). (d) The zonal mean streamwise fluctuation u2

for group M2 only. The solid lines (—–) in (a,c,d) are the time-average U and u2.

The dot-dashed lines (− ⋅ −) are the zonal means inside the UMZ, Û and û2; the

dashed lines (− − −) are the zonal means outside the UMZ, Ũ and ũ2.
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developing faster nearer the wall. Otherwise, the trend between Û , Ũ and U is very

similar in pipe and channel.

Figure 4.18(d) shows the zonal mean streamwise fluctuation u2, which is

computed relative to zonal means of U as in equation (4.2) following Kwon et al.

(2014).

û2 = (U − Û)2, ũ2 = (U − Ũ)2 (4.2)

The turbulent intensity inside the UMZ, û2, is much lower than the turbulent inten-

sity outside the zone, ũ2. The difference between û2 and ũ2 becomes smaller towards

the centreline. û2 and ũ2 cross over at y/R ≈ 0.74 where û2 starts to be larger than

ũ2 until the centreline (see the zoomed subset in figure 4.18(d)). A similar behaviour

of û2 and ũ2 was reported for the channel by Kwon et al. (2014), the crossover point

for ũ2 > û2 was also found at y/h ≈ 0.74 (h is the channel half height). Therefore,

despite the Reynolds number effect, the quiescent core of channel and the UMZs of

the pipe in group M2 are very similar.

Conditional averages across the UMZ interface

Conditional averaged flow properties are computed across the UMZ interfaces as

functions of the distance from the interface, ξ, similar to figure 4.12 in section 4.3.3.

Figure 4.19(a) shows the group average streamwise velocity ⟨U⟩ against ξ for a

single Um group, M2, overlaid with channel flow results by Yang et al. (2016). The

angle brackets ⟨⋅⟩ in this section indicate conditional averaging across the interface

for UMZs in a Um group with respect to ξ. ξ > 0 represents regions inside the

radial extent of the UMZ. In figure 4.19(a), the abrupt jump in ⟨U⟩ across the UMZ

interface is similar between UMZs in group M2 and the quiescent core boundary

in the channel: before entering the zone from the wall (ξ < 0), ⟨U⟩ develops fairly

slow until the near vicinity of the interface where ⟨U⟩ exhibits a sharp change in

the rate. The velocity gradient ∂⟨U⟩/∂ξ for group M2 is shown in figure 4.19(c),

overlaid with the channel flow results by Kwon et al. (2014) and Yang et al. (2016).

A local maximum of velocity gradient at the interface corresponds to the abrupt

jump in ⟨U⟩.
Figures 4.19(e,f) show the streamwise fluctuation u2 across the UMZ inter-

face. In figure 4.19(e), the profiles of u2 of the present pipe flow and the channel core

of are very similar, the streamwise fluctuation decreases dramatically when passing

the interface from the wall where the fluctuation level is high; u2 reaches a local

minimum approximately at the interface, and then remains much lower inside the

UMZ. In figure 4.19(f), the u2 profiles for groups M3 and M4 are noticeably different
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Figure 4.19: Conditional averages as functions of the distance from the lower-
bounding UMZ interface, ξ for (a) the streamwise velocity U for Um group M2,
(b) U for groups M1∶4, (c) velocity gradient ∂U/∂ξ for group M2, (d) ∂U/∂ξ for
groups M1∶4, (e) streamwise fluctuation u∗2 for group M2, and (f) u∗2 for groups
M1∶4. The legends in (e) and (f) apply to (a,c,e) and (b,d,f), respectively. (g) The
magnitude of velocity jump in U across the UMZ interface, ∆U for groups M1∶4.
(h) The UMZ interface thickness δω calculated from equation (3.1) for groups M1∶4.
(g,h) are overlaid with TBL results by de Silva et al. (2017) at Reτ = 14500 (×),
Reτ = 8000 (◯), Reτ = 2800 (+) and Reτ = 1200 (△).
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from groups M1 and M2. This is because that the UMZs in groups M3,4 are much

closer to the wall (see figure 4.17), close enough to capture the rapid increase of u2

in the near-wall region.

Figure 4.19(b) shows ⟨U⟩ against ξ for Um groups M1∶4. The increase in

U across the UMZ interface is larger (higher magnitude) and more abrupt (higher

velocity gradient) for interfaces closer to the wall as found in TBL by de Silva et al.

(2017). Figure 4.19(d) corresponds to figure 4.19(b), showing the increase in the

maximum velocity gradient at the interface for the slower-travelling UMZs residing

closer to the wall. The magnitude of the velocity jump across the UMZ interfaces,

∆U is defined similarly as in Yang et al. (2016), and is illustrated in figure 4.19(a).

The average ∆U for UMZs in each group is shown in figure 4.19(g) together with

the TBL results by de Silva et al. (2017) at Reτ = 8000 and 14500. ∆U in both

pipe and TBL are found to be larger for UMZs travelling at lower Um nearer the

wall. It is clear that ∆U in pipe is significantly larger than TBL. This maybe partly

caused by the lower Reynolds number in pipe: the number of UMZs is generally

lower at lower Reynolds number so that U jumps across fewer interfaces with larger

∆U to achieve the centreline velocity. The increase in ∆U with decreasing Reynolds

number is shown by the TBL results where the Reτ = 8000 case (‘◯’) has higher

∆U than Reτ = 14500 (‘×’). However, this increase in ∆U with lowering Reynolds

number is not as significant as the difference in ∆U between pipe and TBL.

In figures 4.19(a-d), the sharp velocity jumps and the peaked velocity gradi-

ents at the UMZ interface take place over a visibly small distance over ξ, indicating

that the UMZ interfaces themselves have a thickness as reported by de Silva et al.

(2017). The thickness of the interfaces is estimated by

δω =
∆⟨U⟩

∂⟨U⟩/∂y ∣max
(4.3)

following Kwon et al. (2014) and de Silva et al. (2017). Figure 4.19(h) shows the

group average UMZ interface thickness δω. δω is lower for UMZs closer to the wall

as found in TBL, so that the thinner UMZs nearer the wall are also bounded by

thinner interfaces, which are accompanied with sharper and larger jumps of U . The

UMZ interfaces being thinner nearer the wall is consistent to de Silva et al. (2017).

The hierarchical distribution of UMZs, UMZ interfaces, and ∆U together suggest

a discrete step-like instantaneous velocity profile in wall-bounded flows, which was

used as an initial velocity profile in the modelling of a TBL by Bautista et al. (2019)

The overlaid TBL results of δω at Reτ = 1200−14500 is comparable to group

M3 of the pipe. The interface thickness in TBL increases when Reτ decreases as
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Figure 4.20: (a) Conditionally averaged azimuthal vorticity Ωθ as functions to the
distance from the lower-bounding UMZ interface, ξ for Um groups M1∶4. (b) The
local maximum Ωθ in (a) and the local maximum ∂U/∂ξ in figure 4.19(d) at the
UMZ interface (ξ ≈ 0).

expected since there are less UMZs in larger scales at lower Reynolds numbers. The

UMZ interface in pipe at a much lower Reynolds number, Reτ = 500, has δω laid

between the Reτ = 1200 and 2800 cases of TBL, indicating that the UMZ interfaces

are, on average, thinner in pipe than TBL. This supports the results of ∆U where

the velocity jump in U was found stronger in pipe. The UMZ interfaces are found

to be thinner in the DNS data of pipe than the experimental data of TBL which

may due to the limited spatial resolution in the experiments.

Figure 4.20(a) shows the conditional average of the azimuthal vorticity, ⟨Ωθ⟩
against ξ. ⟨Ωθ⟩ peaks at the proximity of the interface similar to ∂⟨U⟩/∂ξ in figure

4.19(d). The magnitude of ⟨Ωθ⟩ away from the interface at ξ/R = −0.2 is increasingly

higher for the groups of UMZs residing closer to the wall because vorticities are

stronger nearer the wall. The local maximum of ⟨Ωθ⟩ at ξ = 0 in figure 4.20(a) and

∂⟨U⟩/∂ξ in figure 4.19(d) are plotted in figure 4.20(b). The peak azimuthal vorticity

and streamwise velocity gradient exhibit very similar trends: ⟨Ωθ⟩ and ∂⟨U⟩/∂ξ at

the interface decrease almost log-linearly from the wall (M4) towards the centre

(M2), though the innermost UMZs in group M1 show a slightly lowered rate of

decrease.
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(a)

(b)

Figure 4.21: Contours of the azimuthal vorticity Ωθ on a x−y plane, superpositioned
with instantaneous UMZ interfaces defined at (a) Uκ/UCL = 0.9 and (b) Uκ/UCL =
0.8. The background contours of Ωθ differ in the range of the colour axis.

(a) (b) (c)

Figure 4.22: Contours of Ωθ and a UMZ interface defined at Uκ/UCL = 0.9 on a
streamwise moving frame approximately at the bulk mean velocity, moving down-
stream with time from (a) to (c). The time gap between each two snapshots shown
is uniform. Label A in (a,b) marks a prograde vortex which is weakened (b), and
merged with nearby vortices at A′ in (c). Label B marks a strong retrograde vortex
on the interface. The vectors are the in-plane streamwise and wall-normal velocity
fluctuations, u and v.
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4.4.4 The vortex clusters on UMZ interfaces

Dynamics of the UMZ interface-azimuthal vortex attachment

The local peaks of the azimuthal vorticity at the UMZ interfaces in figure 4.20(a)

suggests a strong correlation between the UMZ interfaces and the vortical structures.

This matches the observation of clustered spanwise vortices along the UMZ interfaces

in TBL by Adrian et al. (2000). Figure 4.21 shows two UMZ interfaces defined at

Uκ/UCL = 0.9 and 0.8 from the same snapshot and on the same x − y plane. The

interfaces are plotted on the top of the contour of Ωθ, in which the prograde vortices

are in red and the retrograde vortices are in blue. Different colour scales are used in

figures 4.21(a) and (b) to improve the clarity of the surrounding vortical structures

at different vortical strengths. On this x−y plane, the interface continuously follows

the azimuthal vortices with similar strength, so that the interface of the lower-

travelling UMZ in figure 4.21(b) is on average, much closer to the wall, and is

attached to visibly stronger vortices nearer the wall. This is consistent with the

observations by Adrian et al. (2000) where patches of spanwise vortices were found

aligned along the strong shear layers inside TBL. In figure 4.21, the UMZ interface

threads through the azimuthal vortices and folds into bulges and valleys to form a

persistent vortex-interface attachment.

The dynamics of this attachment between the UMZ interfaces and surround-

ing vortical structures is investigated. Movies of the temporal evolution of the

attachment in both fixed and moving frames are available at https://doi.org/10.

1017/jfm.2019.947. Figure 4.22 shows three snapshots with a constant time gap in

a streamwise-moving frame travelling downstream approximately at the bulk mean

velocity Ub. In the moving frame, the inclined trains of eddies from the wall towards

the pipe centre, marked by the dashed lines are visibly stationary. The interface

contorts to follow the surrounding azimuthal vortices. In figure 4.22(a), the inter-

face initially attached to vortex A distorts when vortex A deforms and moves with

the flow in figure 4.22(b). In figure 4.22(c), when vortex A is weakened and merged

with other nearby eddies, the local shape of the interface changes significantly to

reattach to a nearby vortex at A′ to maintain the desirable vortical strength along

the interface.

The three-dimensional attachment

Figure 4.23 shows the vortex-interface attachment on a cross-stream plane of the

pipe with the same two UMZ interfaces shown in figure 4.21. The azimuthal vortices

are elongated in the azimuthal direction. The vortices at similar vortical strength
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(a) (b)

Figure 4.23: Contours of the azimuthal vorticity Ωθ on a r−θ plane, superpositioned
with instantaneous UMZ interfaces defined at (a) Uκ/UCL = 0.9 and (b) Uκ/UCL =
0.8. The background contours of Ωθ differ in the range of the colour axis.

reside at varying wall-normal locations. Similar to the attachment shown in the

streamwise direction in figure 4.21, the UMZ interfaces contort to maintain a per-

sistent attachment to individual vortices, twitch at the gaps between separate az-

imuthal vortices, and attach to the next nearby vortex at desired strength. The

attachment in 3D is shown in figure 4.24 with UMZ interfaces as iso-surfaces of Uκ,

coloured by the azimuthal vorticity on the surface. The attachment of the UMZ

interface to vortical structures is visibly biased to red prograde vortices, whereas

the blue retrograde vortices appear significantly less on the interface surface. The

interfaces are coloured by ωθ instead of Ωθ where ωθ = ∂v/∂x − ∂u/∂r, because for

the interface at Uκ/UCL = 0.6 residing in the proximity of the wall, the mean shear

∂U/∂y is too strong and the whole interface would appear in red.

To quantify the attachment, figure 4.25(a) shows the time-average PDFs of

Ωθ on the 3D interface of UMZs in different Um groups. Through group M1 to M5,

from the centre to the wall, the PDFs are increasingly skewed for stronger prograde

vortices defined as positive Ωθ. The prograde vortices are denoted as Ωp
θ and the

retrograde vortices are denoted as Ωr
θ. Ωr

θ is always negative, so that the strength

of the retrograde vortices is ∣ Ωr
θ ∣. Ωp

θ is stronger when being closer to the wall as

expected for wall-bounded flows. The negative ends of the PDFs which represents

the retrograde vortices on the UMZ interface show very small changes compared

with Ωp
θ. The magnitudes of Ωp

θ at fixed PDF levels of 10−2, 10−3 and 10−4 for each

group (marked by ‘×’) are shown in figure 4.25(b). The increase in Ωp
θ against Um

is almost linear.
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(a) (b)

(c) (d)

Figure 4.24: Iso-surfaces of the instantaneous streamwise velocity at (a,b) U/UCL =
0.9 and (c,d) U/UCL = 0.6, coloured by the azimuthal vorticity ωθ = ∂v/∂x − ∂u/∂r
on the surface. The prograde vortices are in red. The iso-surfaces are unwrapped
in (b,d), showing the sides facing the pipe centre.
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Figure 4.25: (a) PDF of the azimuthal vorticity Ωθ on the UMZ interfaces for
Um groups Mi=1∶5. Ωθ is defined as positive for prograde vortices and negative
for retrograde vortices. (b) The magnitude of prograde azimuthal vorticity, Ωp

θ at
probability density of 10−2, 10−3 and 10−4 for groups as marked by ‘×’ in (a).
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Figure 4.26: Conditionally averaged azimuthal vorticity Ωθ, prograde vorticity Ωp
θ

and retrograde vorticity Ωr
θ as functions of the distance from the UMZ interface, ξ

for UMZs in Um group M2. The total azimuthal vorticity Ωθ = Ωp
θ +Ω

r
θ = Ω

p
θ− ∣ Ω

r
θ ∣.

The inset shows the ratio between Ωp
θ and ∣ Ωr

θ ∣ against ξ.

Figure 4.26 shows the conditionally averaged profiles of the total azimuthal

vorticity, the prograde vorticity, and the retrograde vorticity for UMZs in a single

Um group, M2 against ξ. At the interface (ξ = 0) where the total Ωθ peaks in figure

4.20(a), here it shows that nearly all the total vorticity Ωθ at the interface is con-

tributed by the prograde vortices Ωp
θ while ∣ Ωr

θ ∣ decreases to a local minimum. The

distribution of Ωp
θ and ∣ Ωr

θ ∣ for group M2 is very similar to the quiescent core in the

channel (Yang et al. (2016)). Inside figure 4.26, the ratio between the prograde and

retrograde vorticity on the interfaces of UMZs in group M2 peaks at the interface,

achieving Ωp
θ/∣ Ω

r
θ ∣ ≈ 25. Results in this section suggest that the three-dimensional

contortion of the UMZ interfaces is a consequence of the irregularly distributed az-

imuthal/spanwise vortices which move three-dimensionally with varying wall-normal

locations. Additionally, the attachment is predominantly to prograde vortices.

4.4.5 The contortion of UMZ interface

The contortion of the UMZ interfaces forms bulges and valleys similar to the en-

gulfment of TNTI. The interface contortion is essentially a different way of viewing

the streaky feature of the streamwise velocity fluctuation. Figure 4.27 shows an

instantaneous UMZ interface from group M2 defined at Uκ/UCL = 0.9, coloured by

the interface radial location similar to figure 4.16. The valleys in red are induced by

high-speed fluids sweep closer towards the wall, and the bulges in blue are induced

by the low-speed fluids ejected away from the wall. The contorted interface residing

away from the wall largely represents the LSM.
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(a)

(b)

(c)

Figure 4.27: A 3D UMZ interface as iso-surface defined at Uκ/UCL = 0.9, coloured
by the interface radial elevation. The bulges of low-speed fluid ejected away from
the wall are in blue, the valleys of high-speed fluid sweeping towards the wall are
in red. The interface is unwrapped in the azimuthal direction, showing the side
facing the wall in (b) and the side facing the pipe centre in (c). The interface 2D
projections are plotted on the x − y plane at θ = π and the cross-stream r − θ plane
at x/R = 10. 65



(a) (b)

Figure 4.28: Schematic illustration of the definition of UMZ interface tortuosity,
calculated as the length of interface per unit length in the streamwise and azimuthal
directions.

The UMZ interface is unwrapped along the azimuthal direction in figure

4.27(b) and (c), showing the outer surface of the interface facing the pipe wall

and the inside of the interface facing the pipe centre, respectively. The streaks of

the high- and low-momentum pathways are very clear and are similar to interface

visualised in a channel by Kwon et al. (2014) (see their figure 5). The inner surface

in figure 4.27(c) is not visible without unwrapping. The inner face of the UMZ

interface shows some significantly amplified bulges (blue), for example, at θ = 0

and x/R ≈ 8, which was not evident for the channel results. This particular UMZ

interface in the figure is located relatively in the centre of the pipe (⟨yκ⟩ ≈ 0.5R)

where the features of the LSM are visibly evident, and bears a clear similarity to

those in the channel flow (Monty et al. (2007); Illingworth et al. (2018)).

The 2D contortion

The level of contortion (tortuosity) of the UMZ interfaces in the streamwise and the

azimuthal directions are investigated. The length of the 2D UMZ interfaces on the

x − y planes and the r − θ planes are denoted as lx and lθ, respectively. In figures

4.27(b,c), the projections on the streamwise and cross-stream planes show examples

for lx and lθ, respectively. Figure 4.28 shows the definition of lx and lθ which are

computed by an algorithm that calculate the exact length of the interface using

the high-resolution data. The lengths of the islands isolated from the continuous

main part of the interface on 2D planes are preserved because it is found that the

frequently observed islands are often connected to the main interface in 3D, as a

feature of the three-dimensional interface contortion.
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The tortuosity of the UMZ interface is defined as the interface length per

unit length in the streamwise and azimuthal directions, lx/Lx and lθ/Lθ as shown

in figure 4.28. lx is normalised by the fixed streamwise extent of the pipe Lx = 30R
while lθ is normalised by the perimeter of a circle with a radius equals to the interface

average radius, ⟨rκ⟩. Because ⟨rκ⟩ varies for UMZs in different Um groups, the unit

length in the azimuthal direction Lθ is not constant, being longer nearer the wall.

In figure 4.29(a), the group average lx/Lx and lθ/Lθ increase as UMZs move away

from the wall towards pipe centre, so that the level of UMZ interface contortion

intensifies for interfaces further away from the wall in both directions. The UMZ

interface is always more contorted in the azimuthal direction than in the streamwise

direction with lθ/Lθ always higher than lx/Lx in all Um groups. This was found

the same in the channel by Yang et al. (2016) which has lx/Lx overlaid in the

figure as ‘◻’ and lθ/Lθ by ‘☆’. The increase of both lx/Lx and lθ/Lθ is rather slow

initially near the wall. However, away from the wall, lθ/Lθ shows a significantly more

rapid increase towards to the pipe centre whereas lx/Lx increases much more slowly

than lθ/Lθ. The 2D azimuthal contortion lθ/Lθ shows a very strong wall-distance

dependence compared to lx/Lx since Lθ increases in the radial direction with ⟨rκ⟩.
A constant unit azimuthal length L′θ = 2πR is also used for normalisation, which is

more comparable to the channel with a fixed spanwise extent. lθ/L′θ (represented

by colour-filled symbols) still increases as UMZs move away from the wall but much

more slowly with a very similar trend to lx/Lx. Importantly, lθ/L′θ is still always

higher than lx/Lx as found in the channel, suggesting that the contortion of the UMZ

interface is stronger in the azimuthal direction than in the streamwise direction in

both channel and pipe.

The 2D contortion in the streamwise direction lx/Lx from TBL by de Silva

et al. (2016) of Reτ = 1200−14500 is also overlaid on the pipe results in figure 4.29(a).

There is a clear increase in lx/Lx when Reynolds number increases in TBL. For UMZs

in Um groups M3 and M4, the streamwise tortuosity of their interfaces in pipe at

Reτ = 500 is quantitatively similar to the TBL results at a roughly doubled Reynolds

number Reτ = 1200. This supports the previous findings in figures 4.19(g,h) where

UMZs in pipe at a lower Reynolds number are quantitatively more similar to TBL

at higher Reynolds numbers.

The 3D contortion

The 3D contortion of the UMZ interface is measured by the surface area of the

interface Sκ per unit area LxLθ. LxLθ is essentially the area of a smooth tube with

a radius equals to the average radial location of an UMZ, ⟨rκ⟩ as illustrated in figure
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Figure 4.29: (a) The tortuosity of the 2D UMZ interface: the average length of UMZ
interfaces per unit length in the streamwise direction, lx/Lx and the in azimuthal
direction, lθ/Lθ for Um groupsM1∶5. Lx = 30R is the constant pipe streamwise extent
whereas the azimuthal extent Lθ = 2π⟨rκ⟩ varies for UMZ interfaces with varying
radial locations ⟨rκ⟩. The colour-filled markers are lθ/L′θ, normalised by a constant
azimuthal extent L′θ = πR. The results in TBL at Reτ = 14500 (×), Reτ = 8000 (◯),
Reτ = 2800 (+) and Reτ = 1200 (△) de Silva et al. (2017) are overlaid for lx/Lx. The
channel flow results at Reτ = 1000 by Yang et al. (2016) has lx/Lx (◻) and lθ/Lθ

(☆). (b) The tortuosity of the 3D UMZ interface: the average surface area of 3D
UMZ interfaces, Sκ, per unit area LxLz.

Figure 4.30: Illustration of measuring the 3D tortuosity of a UMZ interface by
normalising the surface area of the interface Sκ with a unit area of a smooth tube
defined by the average radius of the interface.
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4.30. Figure 4.29(b) shows Sκ/LxLθ for Um groups M1∶6. Sκ/LxLθ shows a very

similar trend to lθ/Lθ in which the increase is rather slow initially in groupsM6∶4 with

UMZ interface area roughly twice the unit area (Sκ/LxLθ ≈ 2). The 3D contortion is

the lowest for UMZs closest to the wall (M6) and achieve the highest Sκ/LxLθ ≈ 11
in group M1. Importantly, Sκ of the inner most UMZ interfaces (M1) is over 10

times the non-contorted reference area on average, indicating extremely large-scale

engulfment of the interface of UMZs travelling above the centreline velocity. The

contortion of the UMZ interfaces behaves as a function of the wall-distance, both the

2D and 3D contortion of UMZ interfaces intensify when departing away from the

wall. This may be partly due to the suppression from the wall where interfaces are

less free to meander and also because that the streamwise fluctuation is in smaller

scales nearer the wall. The increase in UMZ interface contortion with distance from

the wall shows the increase in meandering of the LSMs with wall-distance (Kevin

et al. (2019)).

4.4.6 UMZ interface asymmetry

The symmetry/asymmetry between local Q2 ejections (bulges) and Q4 sweeps (val-

leys) on the UMZ interfaces is investigated over a wide range of scales in the pipe

along the wall-normal direction. Figure 4.31 shows an unwrapped 3D UMZ interface

in Um group M2 in (a), residing away from the wall, and another UMZ interface

in group M6 in (b), residing extremely close to the wall. The fluctuation of the

wall-normal location of the UMZ interface is defined as y′κ = yκ − ⟨yκ⟩. y′κ is plotted

on the cross-stream plane at x/R = 5. Positive y′κ corresponds to the bulges on UMZ

interfaces while negative y′κ represents the valleys. In figure 4.31(a), y′κ of the inter-

face approximately at the half of the pipe radius shows no clear bias, whereas the

interface near the wall in figure 4.31(b) is clearly skewed towards positive y′κ, indicat-

ing amplified ejections over sweeps. This matches the findings in channel and TBL

where the amplified near-wall activities as footprint of the large-scale structures

(Marusic (2001); Jiménez et al. (2004); Hutchins and Marusic (2007b,a); Mathis

et al. (2009a,b)) were found asymmetric towards ejections into bursting (Agostini

and Leschziner (2014)).

The asymmetry between bulges and valleys, ejections and sweeps are mea-

sured by the skewness of y′κ as a function of the wall-distance using in 3D volumetric

data. The skewness of y′κ is computed as ζ = y′3κ /σ3 where σ is the standard deviation

of y′κ. Positive ζ indicates asymmetry with biased ejection over sweep; negative ζ

indicates sweep over ejection; and ζ = 0 indicate locally balanced ejection and sweep.

Figure 4.32 shows the average skewness ⟨ζ⟩ for UMZs in Um groups. The UMZs
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Figure 4.31: A 3D UMZ interface at (a) Uκ/UCL ≈ 0.9 and (b) Uκ/UCL ≈ 0.6. The
colour axes are always centring the average wall-normal location of the interface
⟨yκ⟩. The 2D projections of the interfaces are plotted at x/R = 5. The fluctuation
of the interface wall-normal location, y′κ = yκ − ⟨yκ⟩.
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Figure 4.32: The average skewness of the UMZ interface wall-normal location fluc-
tuation, ζ, around the average interface location, y′κ = yκ − ⟨yκ⟩ of UMZs in each
Um group. Positive ζ indicates that the interface is skewed towards the pipe centre,
and vice versa. ζ = 0 indicates an overall balance between bulges and valleys on the
interface. (b) The average kurtosis K of the positive (Q2 ejection) part and negative
(Q4 sweep) part of the UMZ interface fluctuation y′κ for UMZs in each Um group.

closest to the wall in group M6 show the highest asymmetry towards Q2 ejections.

The level of asymmetry biased to ejection events decreases for UMZs departing away

from the wall towards the pipe centre. For the UMZs in group M2 which are the

most comparable to the quiescent core in channel (Kwon et al. (2014); Yang et al.

(2016)), ζ ≈ 0, indicating that the UMZs in this group have fairly balanced sweep

and ejection. The innermost UMZ group M1 is the only group with negative average

ζ, so that these innermost UMZs travelling above the centreline velocity exhibit op-

posite asymmetry between local sweeps and ejections. The gradient of the decrease

in asymmetry level, ∂ζ/∂Um is plotted on the right-hand-side y-axis.

Another observed feature of the UMZ interfaces in figure 4.31 is that the

UMZ interface closer to the wall in figure 4.31(b) is spikier for Q2 ejections (y′κ > 0)
whereas the Q4 sweep regions are relatively smooth and flat. Away from the wall,

the interface in figure 4.31(a) shows the opposite, in which the sweeps towards the

wall are spikier than ejections. Figure 4.32 shows the statistical measurement of the

spikiness of the UMZ interfaces by computing the kurtosis K = y′4κ /σ4 separately

for the ejection part (y′κ > 0) and the sweep part (y′κ > 0) of the UMZ interfaces.

The spikiness of the ejection part of the UMZ interface decreases monotonically

with wall-distance whereas K of the sweep region increases towards the pipe centre.

K ∣ y′κ > 0 and K ∣ y′κ < 0 cross over between groups M2 and M3, the UMZ interfaces

in groups M1,2 (which occupy the centred half of the pipe on average) have opposite

spikiness between ejection and sweep structures from all the other UMZs residing

closer to the wall. The UMZs closest to the wall in group M6 has ejection regions
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Figure 4.33: A schematic drawing of the reversed structure of ejections and sweeps

nearly twice sharper than the sweeps (K ∣ y′κ > 0/K ∣ y′κ < 0 ≈ 1.93) whereas the inner
most UMZs has ejections 25% less sharp than the sweeps. The spiky upper part of

the near-wall UMZ interfaces and the lower part of the centre interfaces show an

interlocking structural arrangement between the near-wall ejections and the large-

scale sweeps from the centre, illustrated by figure 4.33. The flatness of the near-wall

sweeps and centre ejections on the UMZ interface is possibly due to the suppression

from the wall and the congested pipe centre with flow coming in from the opposing

walls, respectively.

4.4.7 Statistics of UMZs detected from KDE

As shown in table 2.2, in the list of all the UMZ studies identifying the UMZs

from the PDF of U , Fan et al. (2019) replaced the PDF with the kernel density

estimation (KDE) without the requirement of multiple user-defined constraints but

a single KDE bandwidth h. Here, part of the statistical characteristics of the UMZs

shown in previous sections are reproduced for UMZs identified from using their

KDE approach. A consistent algorithm to Fan et al. (2019) is used: a Gaussian

KDE with bandwidth h = σ(4/3)1/5N−1/5 where σ is the standard deviation of U

from the snapshot and N is the sample size of U .

Figure 4.34(a) shows the histogram of U from an instantaneous snapshot

where the kernel function and the peak detection agree to each other on the well-

distinctive peaks. The KDE algorithm suggests fewer number of UMZs NUMZ ≈ 3
on average than the PDF method (figure 4.14), but NUMZ is still higher in pipe

than channel (Fan et al. (2019)) when both using KDE for UMZ detection. Figure

4.34(b) shows the PDF of the number of UMZs detected from KDE in each of the

modal velocity groups used in this study. The KDE bandwidth filters away many

of the slower-travelling UMZs in the lower Um groups but the distribution is very
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similar to the result from using the peak detection scheme (figure 4.15. In figures

4.34(a,b) show the average wall-normal location and the 2D contortion of UMZ

interfaces in the higher Um groups M1∶4 and correspond to figure 4.17(a) and 4.29(a)

respectively. The change of detection scheme alters the group average but the trend

of yκ and lθ/Lθ is consistent: the UMZs are thicker away from the wall, forming a

hierarchical distribution and the UMZ interfaces are wavier when departing away

from the wall. The replicated results using KDE instead of PDF peak detection

show that the statistical behaviours of the UMZ are reasonably insensitive to the

detection scheme.
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Figure 4.34: Results of UMZs detected from using the KDE method. (a) An instan-
taneous PDF of U . The red line is the kernel estimation function of the PDF with
bandwidth h = σ(4/3)1/5N−1/5; the peaks on the KDE representing the local UMZs
are marked by ‘▼’. (b) PDF of UMZs in each Um group of M1∶6 as in table 4.2 for
UMZs detected from KDE. (c) Conditional average interface wall-normal location
yκ for UMZs detected from KDE in Um groups M1∶4. (d) 2D UMZ interface folding
intensity in the azimuthal direction, lθ/Lθ for each Um group. The KDE results in
(a,b,c,d) correspond to figures 4.5(a), 4.15, 4.17 and 4.29(a), respectively.
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4.5 Internal shear layer

This section investigates the characteristics of the internal shear layers/UMZ inter-

faces, and the large-scale coherent structures around the ISLs in the present pipe

using DNS data at all four Reynolds numbers, Reτ = 180, 360, 500 and 1000. The

ISLs are identified from using a unique method using the peaks on the velocity gra-

dients with no ad-hoc filter applied on the ISL selection. This is different from all

the previous UMZ and ISL studies in tables 2.2 and 2.1 in a way that no constraints,

thresholds or filters are applied in the identification scheme.

In this study, ISLs are ranked by both their shear strength and wall-distance.

As an extension of the UMZ results at a single Reynolds number Reτ = 500 in section

4.4, the signature behaviours of the ISL including an abrupt streamwise velocity

jump and a sharp decrease in velocity fluctuation across the ISL are first validated

across Reynolds numbers in this section. The local imbalance between ejections and

sweeps observed in section 4.4 are evident. In the last part, the 3D picture of flow

structures around an ISL are obtained via volumetric conditional sampling.

Part of the results in this section were previously published in Chen et al.

(2021).

4.5.1 Identification of ISL

Figure 4.35(a) shows the profiles of the instantaneous streamwise velocity U at

several equally-spaced streamwise locations in the pipe at Reτ = 1000, which is

the highest Reynolds number of our dataset. The signatures of the UMZ where U

changes sharply at several high-shear locations (in regions highlighted in magenta)

between large regions of relatively constant U (highlighted in green) are clear. The

red dotted lines are the streamwise cumulative averages from the pipe inlet to the

x−location of each instantaneous profile. While averaging, the cumulative average

profile of U rapidly converges to the mean velocity profile U (blue dashed lines). The

corresponding profiles of the velocity gradient ∂u/∂y are shown in figure 4.35(b).

The wall-normal locations of the locally peaked shear are represented by the peaks

on the velocity gradient profiles, marked by ‘◀’.
The number of UMZs and ISLs is well known to be sensitive to the de-

tection methods and user-defined parameters. The user-defined parameters decide

which UMZ or ISL to be collected. Stricter conditions reduce the sample size where

the PDF- and ISL-based methods will preferentially preserve the larger UMZs and

stronger ISLs, respectively. The sample of UMZs and ISLs for statistical analysis

is therefore, more or less, biased. In the present study, all ∂u/∂y peaks are used
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Figure 4.35: (a) Instantaneous velocity profiles U at ten equal-spaced streamwise
location x from a snapshot at Reτ = 1000 with gap x/R ≈ 3. The blue dashed
lines are the mean velocity profile U and the red dotted lines are the cumulative
streamwise averages from the pipe inlet up to the x−location of each instantaneous
profile. (b) Profiles of the velocity gradient ∂u/∂y, corresponding to each profile of
U in (a). The local maxima (peaks) of ∂u/∂y are marked by ‘◀’.
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Figure 4.36: (a) An instantaneous profile of ∂u/∂y at Reτ = 180 (black), 360 (green),
500 (blue) and 1000 (red). The peaks on ∂u/∂y are marked by ‘◀’. (b) An idealised
instantaneous ∂u/∂y profile to illustrate the definition of the shear strength at the
∂u/∂y peaks, Uy and the wall-normal location of the locally peaked shear, yκ.

without any ad-hoc filter to compute the statistics of the local high-shear regions.

In this approach, the relatively weak ISLs and the ISLs bounding a very small UMZ

which may have been neglected in the previous ISL-based and PDF-based methods

will be included in the statistics. Figure 4.36(a) shows an ∂u/∂y profile at each of

the four Reynolds numbers. There are clearly more peaks of high shear at higher

Reynolds numbers as expected because of its wider range of scales. This is consis-

tent with the observation of increasing number of UMZs with increasing Reynolds

number (de Silva et al. (2016, 2017)).

The ∂u/∂y profiles in the whole 3D pipe domain over time are computed

using a nth-order centred finite difference scheme where n is the number of neigh-

bouring data point available up to a limit of n = 8. As illustrated in figure 4.36(b),

from each instantaneous ∂u/∂y profile, the number of peaks Nκ, the shear strength

at the peaks Uy, and the wall-distance of the peaks yκ are collected. The ISLs

identified on a 2D cross-stream plane of the pipe at Reτ = 180 are shown in figure

4.37. On the r − θ plane, the points detected with local peak shears connect and

form numerous contorted ISL filaments. The ISL filaments are visibly located in

the middle of the red strong shear regions on the contour.

Figure 4.38(a) shows the PDFs of the number of peaks on the instantaneous

∂u/∂y profiles, Nκ. The number of ISL increases with the Reynolds number, con-

sistent with de Silva et al. (2016) and Fan et al. (2019). The PDFs also increase in

span with increasing Reynolds number so that the number of ISLs in the flow varies
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Figure 4.37: Contour of ∂u/∂y on a cross-stream plane in the pipe at Reτ = 180,
superpositioned with the ISLs detected from ∂u/∂y peaks.
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Figure 4.38: (a) PDF of the number of peaks detected from each ∂u/∂y profile,
Nκ for Reτ = 180 (black), Reτ = 360 (green), Reτ = 500 (blue) and Reτ = 1000
(red). (b) Average number of peaks on a ∂u/∂y profile, Nκ with a fitting function
of Nκ = 0.1Re0.74τ .
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more largely at higher Reynolds numbers. The average number of ISL, Nκ, for each

Reynolds number is shown in figure 4.38(b). The fitting function Nκ = 0.1Re0.74τ

show an excellent agreement with the data, which suggests a power-law scaling of

the average number of ISL with the Reynolds number. This provides a prediction

on the number of hierarchical UMZs in a pipe flow at any Reynolds number lied

in the range of Reτ < 1000. However, the fitting function needs to be tested on

much higher Reynolds numbers (O(104)) to validates its universality. Note that the

results in later sections are computed from ∂u/∂y profiles with Nκ = Nκ only, in

which Nκ = 5, 8, 10 and 16 at Reτ = 180, 360, 500 and 1000, respectively, by taking

the nearest integer.

Grouping of the ISL

The statistics of the ISLs are computed by group averaging. The group averaged

quantities are denoted as ⟨⋅⟩. The ∂u/∂y peaks are categorised into different groups

based on their certain properties. Two grouping schemes are used for the ISLs: the

ISLs are grouped based on their shear strength, Uy in section 4.5.2, and their wall-

distance, yκ in section 4.5.3. More importantly, instead of using user-defined ranges

of Uy and yκ for the grouping, the rankings of these two quantities are used. For

groups based on the shear strength, on each profile of ∂u/∂y along the wall-normal

direction, the peak with the highest Uy is ranked as 1, and the other peaks follow in

a descending order of Uy. For instance, the ∂u/∂y profile in figure 4.36(b) has four

peaks, p1 to p4, which would be ranked as 1, 3, 2 and 4, respectively based on their

Uy values. For groups based on the shear layer wall-distance, the peak being the

closest to the wall is ranked as 1 and the others follow in an ascending order of yκ so

that p1 to p4 in figure 4.36(b) would be ranked as 1, 2, 3 and 4. In this study, the

groups ranked by Uy are called the shear-strength group Rs
i and the groups ranked

by yκ are called the wall-distance group Ry
i , where i denotes the rank. The group

Rs
1 consists of the strongest positive shears on each ∂u/∂y profile, while group Ry

1

includes the most near-wall shear layer on each ∂u/∂y profile.

4.5.2 ISL properties as functions of shear strength

In this section, group averages are computed for the shear-strength groups Rs. The

average strength of the ISLs in each Rs group, ⟨Uy⟩, is shown in figure 4.39(a) in

wall units. As expected, group Rs
1 with the highest shear from each ∂u/∂y profile

naturally has the highest average shear strength, and the shear strength decreases

rapidly as the rank increases. At all four Reynolds numbers, the average shear
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Figure 4.39: (a) Local maximum shear Uy at the peaks on ∂u/∂y, (b) Wall-normal
location of the peaks, yκ in wall units, (c) ⟨yκ⟩ against ⟨Uy⟩ and (d) standard de-
viation of yκ, σ(yκ); averaged within each shear-strength group Rs based on the
ranking of Uy. The colours and symbols for different Reynolds numbers follow fig-
ure 4.38(a). The solid symbol at each Reynolds number is the lowest rank with Uy
remaining positive in (a).
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Figure 4.40: (a) Zonal mean velocity Uz (solid lines) and shear layer velocity Uκ

(dashed lines), averaged within each shear-strength group Rs based on the ranking
of Uy. (d) Illustration of the definition of shear layer velocity Uκ at each ∂u/∂y peak
and the zonal mean velocity Uz computed in the region between each ∂u/∂y peak
and its adjacent peak closer to the wall.

strength becomes negative at a certain rank, which suggests that the majority of

the shear layers in the groups with ⟨Uy⟩ < 0 are negative shears (∂u/∂y < 0). The

lowest rank with positive ⟨Uy⟩ is denoted as Rs
∗
, and is marked by solid symbols in

figure 4.39 and figure 4.40. For Reτ = 180, 360, 500 and 1000, Rs
∗
is Rs

4, R
s
6, R

s
7 and

Rs
11, respectively. Figure 4.39(b) shows the average wall-normal location of the ISLs

in each Rs group. The strongest shear layers in Rs
1 are located closest to the wall as

expected. It is interesting to note that group Rs
∗
is located furthest from the wall

for all Reynolds numbers. The ISLs in the groups ranked lower than Rs
∗
move closer

to the wall as the rank increases, so that the stronger negative shear layers reside

closer to the wall where the positive shear layers are also stronger. In figure 4.39(c),

the group average wall-distance is plotted against the group average shear strength.

The magnitude of shear strength ∣ Uy ∣ being stronger towards the wall is true for

both the positive and negative shears. Figure 4.39(d) shows the standard deviation

of the wall-distance fluctuation of the shear layers σ(yκ) in each Rs group. A high

σ(yκ) indicates that the wall-normal location of the ISLs belonged to a Rs group

varies largely. As the ISLs are grouped by the ranking of their shear strength here,

a high σ(yκ) does not necessarily indicate large meandering of a continuous ISL

but may simply represents the range of wall-distance that an ISL of a given shear

strength tends to reside in. While σ(yκ) remains quite large for all other ranks, Rs
1

has a small σ(yκ), indicating the relative stability of the ISLs in group Rs
1. There
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is a small increase in σ(yκ) for ranks larger than Rs
∗
(solid symbols) for all four

Reynolds numbers, suggesting that the negative shear layers reside, on average, in

a wider wall-normal span.

Figure 4.40 shows the group averages of the streamwise velocity at ∂u/∂y
peaks, Uκ, and the zonal mean velocity Uz of the region bounded between a ∂u/∂y
peak and its adjacent peak closer to the wall. For p1, its ‘adjacent peak’ is defined

at the wall. The definitions of Uκ and Uz are illustrated in figure 4.40(b). Uz is

equivalent to the modal velocity of the corresponding UMZ. Uκ is always higher

than Uz as expected. The difference between Uκ and Uz is smaller at lower ranks

of Rs groups, and is smaller at higher Reynolds numbers because the ISLs are more

densely distributed at higher Reynolds numbers.

Conditional average velocities are computed across the ISLs as functions

of the wall-normal distance from the interface, ξ. By remapping the ISLs in the

wall-normal direction, the ISLs are positioned at ξ = 0. ξ is defined as positive

in the direction towards the pipe centre and negative ξ is pointing towards the

wall. Figure 4.41 shows the average streamwise velocity, streamwise fluctuation,

and velocity gradient in a wall-normal extent of ±0.1R around the ISLs in group Rs
1.

The ISLs in this group are the strongest positive shear layers residing the closest to

the wall on average. In figure 4.41(a), the shear layer velocity is subtracted from

the streamwise velocity. At all Reynolds numbers, the streamwise velocity increases

abruptly in the near-vicinity of the ISL. The velocity jumps are steeper around

the ISLs at higher Reynolds numbers because the shear layers are thinner at higher

Reynolds numbers (de Silva et al. (2017)). These velocity profiles at higher Reynolds

numbers are very similar to de Silva et al. (2017) at Reτ = 1200 − 14500, suggesting
that the coherent structures are increasingly similar when the Reynolds number is

high. The sudden velocity jump is shown by the velocity gradient against ξ in figure

4.41(c,d). The peak of ∂U/∂ξ around ξ ≈ 0 corresponds to the abrupt jump of U

across the shear layer. In figure 4.41(c), as the Reynolds number increases, the

velocity gradient peaks become higher and sharper for shear layers being stronger

and thinner. However, in wall units, the velocity gradients in figure 4.41(d) show

that the ISL thickness in group Rs
1 is similar at ξ+ = ±15 for all four Reynolds

numbers.

The streamwise velocity fluctuation u∗ = U − ⟨U⟩, denoted with a ‘∗’ is com-

puted in a different manner from the conventional Reynolds decomposition following

Kwon et al. (2014) (their equation (5.2)). The total velocity is subtracted with the

conditional averaged U in figure 4.41(a) instead of U to show the relative turbulent

fluctuation in the frame of reference with respect to the ISLs. In figure 4.41(b),
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Figure 4.41: Conditional averages as functions of the distance to the internal shear
layer at the ∂u/∂y peaks ξ for (a) streamwise velocity U − Uκ where Uκ is the
streamwise velocity at the shear layer, (b) streamwise fluctuation u∗2 where u∗ =
U − ⟨U⟩, (c) velocity gradient of U in (a), ∂U/∂ξ and (d) ∂U/∂ξ in wall units for
instantaneous internal shear layers in a shear-strength group Rs

1.
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the streamwise velocity fluctuation decreases dramatically across the ISLs. The de-

cline of u∗2 is steeper at higher Reynolds numbers but the difference in velocity

fluctuation between the two adjacent UMZs is larger at lower Reynolds numbers.

Additionally, for Reτ ≥ 360, u∗2 shows an increase in the near-wall side (ξ < 0) of

the ISL before a sudden decrease across the shear layer. This is due to the fact

that the Rs
1 shear layers at higher Reynolds numbers are located closer to the wall

and can capture a sharp increase in u2 in the very-near-wall region. This has been

observed by Chen et al. (2020) with the UMZ edges residing very close to the wall

at Reτ = 500.

4.5.3 ISL properties as functions of wall-distance

In this section, group averages are computed for the wall-distance group, Ry, where

ISLs are ranked by their wall-distance, yκ. Figure 4.42(a) shows the average wall-

distance of the shear layers in each wall-distance group. Group Ry
1 has the shear

layers closest to the wall and the inset shows that Ry
1 is located closer to the wall

at higher Reynolds numbers (de Silva et al. (2017)). The skewness of the shear

layer wall-distance fluctuation, ⟨ζ(yκ)⟩, is shown in figure 4.42(b). Please note that

the skewness was computed with the group mean ⟨yκ⟩. Positive ζ is defined as

skewness towards larger yκ, which represents large local ejections, while negative ζ

represents large sweeps. The highest skewness towards ejection is exhibited by the

most near-wall group Ry
1. The local ejections and sweeps are gradually balanced

(ζ = 0) when moving away from the wall, and stronger sweeps over ejections (ζ < 0)
are observed further away from the wall. The changeover from ejection-dominance

(positive skewness) to sweep-dominance (negative skewness) when moving away from

the wall towards the pipe centre is consistent with Chen et al. (2020). The maximum

positive skewness, ζ(yκ)max, at R
y
1 and the minimum negative skewness, ζ(yκ)min,

at the last rank (Ry
Nκ

) are summarised in table 4.3. ζ(yκ)max is always larger than

∣ ζ(yκ)min ∣ for all four Reynolds numbers. As the Reynolds number increases, both

ζ(yκ)max and ∣ ζ(yκ)min ∣ increase. At Reτ = 180, ζ(yκ)max is over 60% stronger

than ∣ ζ(yκ)min ∣, whereas it is only 30% stronger at Reτ = 1000. This suggests that
the local dominance of large-scale sweep in the pipe centre becomes increasingly

stronger at higher Reynolds numbers. The rank with ζ(yκ) ≈ 0 which indicates a

local balance between ejections and sweeps is highlighted in green in figure 4.42(a-

c) from which the wall-normal location of local blowing-sweep balance, yζ=0, in

figure 4.42(c) is estimated. In figure 4.42(c), yζ=0 fits to a linear relationship with

the friction Reynolds number. This suggests that the location where the near-wall

ejections and the large-scale sweeping balance with each other is linear to the friction
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Figure 4.42: (a) Wall-normal location of the peaks on ∂u/∂y, yκ, (b) skewness of
yκ, ζ(yκ), (d) standard deviation of yκ fluctuation, σ(yκ), (e) local maximum shear
Uy at the peaks on ∂u/∂y and (f) zone thickness tz of the region between a ∂u/∂y
peak and its adjacent peak closer to the wall; averaged within each wall-distance
group Ry based on the ranking of yκ. (c) The average wall-normal location for ISLs
with wall-distance fluctuation balanced between ejections and sweeps, yζ=0 estimated
from figure 4.42(a,b) and listed in table 4.3. The symbol highlighted in green at
each Reynolds number is the lowest rank with ζ(yκ) remaining positive in (b). The
colours and symbols for different Reynolds numbers follow figure 4.38(a).
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Reτ ζ(yκ)max ζ(yκ)min ζmax/(−ζmin) yζ=0/R y+ζ=0
180 1.17 -0.72 1.63 0.61 109
360 1.33 -0.93 1.43 0.59 211
500 1.39 -1.06 1.31 0.57 283
1000 1.42 -1.10 1.29 0.57 566

Table 4.3: The maximum skewness of yκ fluctuation towards ejections, ζ(yκ)max

and towards sweeps, ζ(yκ)min and the wall-normal location of balanced ejection
and sweep (ζ(yκ) = 0), estimated from figure 4.42(a,b).

Reynolds number.

Figure 4.42(d) shows the standard deviation of yκ in each Ry group. σ(yκ) is
lower at higher Reynolds numbers since there is a larger number of ISLs in the pipe

with less free space to contort. σ(yκ) is at the lowest for ISLs closest to the wall

and increases monotonically up to the ranks with ζ(yκ) ≈ 0, highlighted in green.

Beyond yζ=0 towards the pipe centre, σ(yκ) decreases with increasingly stronger

local sweeps over ejections. A large σ(yκ) indicates that the wall-normal location

of the shear layers in a Ry group can vary in a larger wall-normal range. Figure

4.42(e) shows the group average shear strength of the shear layers ranked by their

wall-distance. By comparing to the group average Uy of the shear layers ranked by

Uy (figure 4.39(a)), the shear strength is always positive. This matches with the

results in figure 4.39(a) in which the stronger negative shears on average, reside

closer to the wall accompanied by positive shears with comparable strength. In

a wall-distance group, the relatively rare negative shears are compensated by the

positive shears for ⟨Uy⟩ > 0. Figure 4.42(f) shows the average distance tz from a

shear layer peak to its adjacent shear layer towards the wall. This is equivalent to

the thickness of the adjacent UMZ. The definition of tz is illustrated in figure 4.40(b)

for peaks p1 and p5. As the number of ISL increases with the Reynolds number,

the ISLs are more densely distributed at higher Reynolds numbers (de Silva et al.

(2016); Fan et al. (2019)) and also move closer to each other to compensate the new

ISLs developed from the near-wall region (Laskari et al. (2018)). This is equivalent

to the UMZs demarcated by the ISLs being thinner at higher Reynolds numbers.

⟨tz⟩ increases monotonically from the wall towards the pipe centre, consistent with

the hierarchical distribution of UMZ found in the TBL (de Silva et al. (2016, 2017))

and pipe (Chen et al. (2020)).
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4.5.4 Three-dimensional structural organisation of ISL

The 3D flow fields around the ISLs are computed by volumetric conditional averag-

ing to investigate the large-scale coherent structures around the ISLs. In this section,

similar to Gul et al. (2020), only the ISLs in a near-wall region with 0.15 ≤ yκ/R ≤ 0.2
are considered. Figures 4.43 and 4.44 show the flow structures at Reτ = 180 and

1000, respectively. Only the ISLs with shear strength Uy > 1.5⟨Uy⟩ are sampled

following Gul et al. (2020). ⟨Uy⟩ is the mean shear strength in the selected region

which is positive, hence the conditional averaged results are around a positive ISL.

Results computed from all ISLs without conditional sampling on Uy are qualitatively
similar, albeit much weaker, to the conditional sampling results.

Figures 4.43(a) and (b) show the iso-surfaces of the streamwise and wall-

normal velocity fluctuations and the azimuthal and streamwise vorticities around the

average ISL. The location of the ISL in the streamwise and the azimuthal direction

is denoted similar to yκ in the wall-normal direction as xκ and θκ, respectively.

The streamwise distance x− xκ from the ISL at (xκ, θκ, yκ) is defined as positive in

the downstream of the ISL. In figure 4.43(a), the streamwise high- and low-speed

structures and their 2D projections are displayed in red and blue, respectively. The

wall-normal velocity fluctuations (v) in yellow and green indicate regions of sweep

(v < 0) and ejection (v > 0), respectively. The contours of u, v and ωx on the cross-

stream plane at the ISL (the dashed plane in figure 4.43(a,b)) are shown in figure

4.43(c-f). The positive ISLs are bounded between a high-speed streak above and a

very strong low-speed streak beneath the shear layer in the wall-normal direction.

There is a streamwise elongated prograde azimuthal vortex attached at the bottom

of the high-speed streak around the ISL. The low-speed streak is accompanied by

another pair of strong high-speed streaks on both sides, which form a triangle of

high-speed pathways around the low-speed streak and the ISL. The regions of strong

sweep (v < 0) also show a triangle distribution surrounding the strong ejection region

around the ISL as shown in figure 4.43(f). The top sweep region above the ISL is

removed from figure 4.43(a) for a clearer view of all the other structures beneath

it. The strong ejection region centred at θκ is associated with a pair of counter-

rotating streamwise vortices on the sides of the ISL, pumping low-speed fluid from

the wall towards the ISL. The organisation of the coherent structures around the ISL

is consistent with Gul et al. (2020). Figure 4.44 shows the iso-surfaces and contours

of u, v, ωx and ωθ at thresholds halved from the Reτ = 180 case in figure 4.43.

A similar organisation of coherent structures around a positive ISL is observed at

Reτ = 1000. The difference is that the pair of high-speed streaks on the sides of the

low-speed streak beneath the ISL atReτ = 180 disappeared in the figure because they
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Figure 4.43: Iso-surfaces of (a) the streamwise and wall-normal velocity fluctuations,
u and v and (b) the streamwise and azimuthal vorticity, ωx and ωθ at Reτ = 180.
The iso-surfaces are plotted in a conditional averaged 3D field around the locations
with peaked shear in which x−xκ < 0 is the upstream of the peaked shear. Contours
of (c) u, (d) v and (e) ωx are plotted on the cross-stream plane at the ISL (dashed
plane in (a,b)). (f) shows the contours of u, v and ωx at the same thresholds and
colours as in (a,b) where the arrows on the white contours of ∣ ωx ∣ indicate the
swirling direction. Only the shear layers within y/R = 0.15 − 0.2 with Uy > 1.5 times
the mean Uy of ISLs in this region are considered.
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Figure 4.44: (a) Iso-surfaces of the streamwise and wall-normal velocity fluctuations,
u and v at Reτ = 1000 similar to figure 4.43(a). (b) Contours of u, v, ωx and ωθ at
the same thresholds and colours as in figure 4.43(a). Only the shear layers within
y/R = 0.15 − 0.2 with Uy > 1.5 times the mean Uy of ISLs in this region are considered.

are significantly weakened. The high-speed streak on the top of the ISL becomes

much stronger at Reτ = 1000. This high-speed streak is also significantly more

elongated in the streamwise direction at Reτ = 1000, shown by its 2D projections.

Comparing figure 4.43(f) and figure 4.44(b), the strong sweep region above the ISL

becomes significantly larger than the sweep regions on the sides of the ISL at higher

Reynolds numbers.

To investigate the negative shear layers, conditional averaged 3D fields are

computed around the ISLs with Uy < 0. The layout of figure 4.45 is similar to figure

4.43. The results show that an average negative ISL is formed with a opposite

structural organisation compared with the positive shears. Around a negative shear

layer, the high- and low-speed streaks, the sweeps and ejections are exchanged in

position; the negative ISL and the strong sweeping at the ISL are surrounded by

triangles of low-momentum pathways and ejections. The region of strong prograde

vorticity below the high-speed streak in Fig. 4.43(f) is shifted away from the ISL

towards the wall with the high-speed streak. The swirling direction of the vortex

pair on the sides of the ISL is also reversed which results in a strong sweeping region

around the ISL. The reversed flow mechanism around the positive and the negative

shear layers is shown in a schematic drawing in Fig. 4.46(a). The positive shear

layer is ejected to a bulge shape and the negative shear layers is at the valley due

to the sweeping at the ISL.

The thickness of the ISLs is measured by the width of the ∂u/∂y peaks, pw

of which definition is illustrated in Fig. 4.46(b). The width of a ∂u/∂y peak is
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Figure 4.45: Iso-surface and contours of u, v, ωx and ωθ in the 3D conditional
average field around the negative ISLs, arranged similar to figure 4.43. Only the
negative shear layers (Uy < 0) within y/R = 0.15 − 0.2 are considered.
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Figure 4.46: (a) Schematic cross-stream structure organisation around a positive and
a negative internal shear layer. (b) Illustration for the definition of the prominence
and width pw at the half-prominence of ∂u/∂y peaks.
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Figure 4.47: (a) Average width pw of ∂u/∂y peaks at the peaks’ half prominence
against the wall-distance, for positive shears (solid symbols) and negative shears
(empty symbols). (b) The average ratio of pw of the positive shear layers to pw of
the negative shear layers.
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measured at the middle of the peak’s prominence which is defined from the peak

to its nearest local minimum towards the wall. pw is similar to the UMZ interface

thickness estimated as ∆U/Uy at the interface in Kwon et al. (2014) which represent

the abruptness of the streamwise velocity jump across the shear layer. Fig. 4.47(a)

shows pw as functions of the wall-distance for ISLs averaged in regions with an

increment of 0.1R from y/R = 0.05 to 0.95, computed for the positive and negative

shears separately. The shear layers are always thinner at higher Reynolds numbers

naturally because the number of ISL increases with Reynolds number. The positive

ISLs increase in thickness with increasing wall-distance until reaching close to the

centreline where pw starts to decrease. The wall-normal location for positive ISLs

being the thickest on average is approximately at y/R = 0.7. The negative shear

layers at all wall-distance are significantly thinner than the positive shear layer at

all Reynolds numbers. The average ratio of the positive shear layer thickness to

negative shear layers in Fig. 4.47(b) shows that the negative shear layers are more

than two times thinner than the positive shears on average, and is increasingly

thinner at higher Reynolds numbers.
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4.6 Summary

In this chapter, the large-scale coherent structure, the quiescent core, the uniform-

momentum zones (UMZ) and the internal shear layers (ISL) in turbulent pipe flow

were investigated for four Reynolds numbers, Reτ = 180, 360, 500 and 1000. The

UMZs and ISLs were identified using three PDF-based methods in table 2.2: double-

PDF, constrained peak detection and kernel density estimation; and a new ISL-based

method which direct seek for locally peaked shears without any ad-hoc filter. The

number of UMZs and ISLs in the flow fluctuates increasingly with Reynolds num-

ber. The average number of UMZs increases with Reynolds number and shows an

excellent fitting to 0.1Re0.74τ . The UMZs identified by the four different method

showed consistent characteristics. The characteristics are also qualitatively similar

to the UMZs reported for the channels and TBL: the UMZs and the ISLs demar-

cating them form a hierarchical distribution, being thinner when nearer the wall;

the step-like velocity jump and concentrated azimuthal/spanwise vortices at the ISL

were observed in conditional average results. The conditional averaged results also

suggest that the flows in the pipe are quantitatively more similar to the channel

than to TBL.

The contortion of the continuous ISLs, i.e., UMZ interfaces manifests of the

high- and low-momentum streaks of the streamwise velocity fluctuation. The faster-

travelling UMZs away from the wall is representative for the LSMs while the UMZs

in the near-wall region captures the small-scale velocity fluctuation of the near-

wall cycle. The level of ISL contortion in the wall-normal direction increases with

increasing wall-distance in both 2D (the streamwise and spanwise directions) and

3D. The 2D meandering of the UMZ interface in the azimuthal direction is found

to be always more intense than in the streamwise direction.

The skewness between the bulges and the valleys on the 3D UMZ inter-

face manifests the local imbalance between upward ejections of low-speed fluids and

downward sweeps of high-speed fluids. Near the wall, the interface is significantly

biased to the bulges, matching the asymmetry of the large-scale modulation on the

near-wall activities reported by Agostini and Leschziner (2014). When the interface

departs away from the wall, the asymmetry decreases to a local balance between

ejections and sweeps. The UMZs distant from the wall, travelling faster than the

centreline velocity even show opposite asymmetry for locally more amplified sweeps

over ejections. The wall-normal location of the local balance between ejections and

sweeps, i.e., minimum interface skewness showed no clear Reynolds number depen-

dence, located at y/δ ≈ 0.55 − 0.6 at all four Reynolds numbers. The fourth-order
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kurtosis of the fluctuating interface wall-normal location are computed separately

for the bulge and the valley part of the UMZ interfaces. The small-scale near-wall

ejections can achieve twice spikier than the sweeps. This becomes the opposite in

the centre half of the pipe where the sweeps are found spikier than the ejections.

The biased skewness and kurtosis between ejections and sweeps show the difference

between the large-scale and the small-scale structures.

There exists a non-negligible amount of negative shear layers in the flow with

adverse velocity gradients (∂u/∂y < 0). The shear strength of both the positive and

the negative shear layers increases towards the wall. The 3D coherent structures

around the ISLs in the near-wall region is obtained via volumetric conditional av-

eraging. A positive shear layer is located between a high-speed streak above and a

strong low-speed streak beneath the shear layer on average. The low-speed streak

is associated with a pair of counter-rotating streamwise vortices which results in

a large region of strong ejection of low-speed fluid around the ISL. Additionally,

there is concentrated azimuthal rotation elongated in the azimuthal direction be-

low the high-speed streak around the shear layer. The structure distribution is

reversed around the average negative shear layer. The high- and low-speed streaks,

and the ejections and sweeps are exchanged in position. The elongated azimuthal

swirling at the bottom of the high-speed streak shifts away from the shear layer.

The swirling direction of the vortex pair are reversed so that the negative shear layer

is surrounded by a large sweep region. With the same wall-distance, the average

thickness of the positive shear layers is significantly larger than the negative shear

layers and the positive shear layers are increasingly thicker than the negative shear

layers on average when Reynolds number increases.
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Chapter 5

DNS of non-Newtonian

turbulent pipe flow

This chapter investigates shear-thinning non-Newtonian fluids flow in the pipe at a

low Reynolds number, Reτ ≈ 180. The DNS shares the same computational set-up

of the Newtonian pipe flow at Reτ = 180 in table 3.1. For incompressible non-

Newtonian fluids with variable viscosity µ and ∇ ⋅ u = 0, the viscous force, ∇ ⋅ τ in

the momentum equation is solved as

∇ ⋅ τ = ∂τij

∂xj
= ∂

∂xj

⎛
⎝
µ(∂ui

∂xj
+ ∂uj

∂xi
)
⎞
⎠
. (5.1)

5.1 Modelling of shear-thinning fluids

The shear-thinning behaviour of the fluid is modelled by the power-law rheology in

equation (5.2) where µ is the apparent viscosity, K is the flow consistency, n is the

power-law index and γ̇ in equation (5.3) is the shear rate. When n = 1, the fluid is

Newtonian; n < 1 indicates shear-thinning and n > 1 indicates shear-thickening.

µ =Kγ̇n−1 (5.2)

γ̇ =
√
2SijSij (5.3)

With variable viscosity, the flow cannot be characterised by a constant Reynolds

number. In the simulation, a generalised Reynolds number in equation (5.4) is
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n Reτ Reg
0.5 180 5339
0.69 185 5501
0.75 186 5514

Table 5.1: DNS parameters of present non-Newtonian pipe flow using the power-law
rheology model.

applied to the near-wall region.

Reg =
ρUbD

µw
(5.4)

µw =K1/n τw

τ
1/n
w

(5.5)

The iterative procedure of the simulation is illustrated in figure 5.1. By setting the

near-wall Reynolds number Reg, the bulk mean velocity Ub, the wall shear stress

τw, the near-wall viscosity µw in equation (5.5), the axial pressure gradient dp/dx
and K are updated at each time-step to maintain the flow at Reg. Table 5.1 shows

the parameters of the three power-law shear-thinning cases with n = 0.5, 0.69, 0.75.
These three power-law indices were also used in Rudman et al. (2004). The data

of the Newtonian pipe flow (n = 1) at Reτ = 180 is also investigated with the non-

Newtonian cases for comparison.

5.2 Turbulent statistics and flow structure

5.2.1 The mean flow statistics

Figure 5.2 shows the inner-scaled mean velocity profile of U . All three non-Newtonian

cases show good agreement to the DNS results by Rudman et al. (2004) using the

same rheology model. The results generally agree with Bogue and Metzner (1963)

which showed that the deviation of turbulent profiles of non-Newtonian fluids from

Newtonian fluids with an inverse proportion to n. In the viscous sublayer, all the

mean velocity profiles obey U+ = y+ as expected since the near-wall Reynolds num-

ber is maintained throughout the simulation. The non-Newtonian mean velocity

profiles only start to show difference from the Newtonian case above y+ > 20. As n
decreases, the profiles of U further deviate from the Newtonian case. For the most

shear-thinning case of n = 0.5, U is developing to a parabola laminar profile because

the flow is no longer fully turbulent, which will be discussed in the later results.
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Figure 5.1: DNS iteration procedure for maintaining generalised Reynolds number
Reg near the wall in non-Newtonian fluids.
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Figure 5.2: Mean velocity profiles U of the present pipe flow at power-law index
n = 0.5, 0.69, 0.75 and 1 (Newtonian). Symbols are the corresponding results by
Rudman et al. (2004) as listed in table 2.5: ‘△’, n = 0.5; ‘◯’, n = 0.69; ‘◻’, n = 0.75.
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Figure 5.3: Root-mean-square of (a) the streamwise fluctuation u, (b) the wall-
normal fluctuation v and (c) the azimuthal fluctuation w. (d) The mean Reynolds
shear stress −uv. The legend follows figure 5.2.
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Figure 5.4: Joint PDF of the velocity fluctuations for the Newtonian (n = 1, black)
and non-Newtonian fluid (n = 0.5, red) on the u− v plane with quadrant turbulence
structure classification.
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Figure 5.3 shows the inner-scaled root-mean-square (RMS) velocities and

Reynolds shear stress, −uv of the four cases. The RMS velocities of different cases

show more substantial discrepancies in the wall-normal and azimuthal directions.

In figures 5.3(b) and (c), the peaks of vrms and wrms decrease with smaller n. The

lowering of off-axis fluctuation as the flow becomes more shear-thinning has been

reported by Pinho and Whitelaw (1990); Nouri et al. (1993); Escudier and Presti

(1996); Draad et al. (1998); Rudman et al. (2004) and Gavrilov and Rudyak (2016).

The two relatively less shear-thinning cases of n = 0.75 and 0.69 are statistically

very similar especially for urms and −uv. The streamwise RMS velocity of the non-

Newtonian cases can exceed the non-Newtonian case, even the most non-Newtonian

case (n = 0.5) has urms marginally higher than the n = 1 case for y+ > 30, matching

the observations by Peixinho et al. (2005) and Rudman et al. (2004). Mathematical

explanation for the excess in urms is that as the flow becomes more shear-thinning,

the streamwise fluctuation u has a larger standard deviation, i.e., the occurrence

of extreme outliers in u increases. For further investigation, figure 5.4 shows the

joint PDF of the streamwise and wall-normal velocity fluctuations, u and v for the

Newtonian and the most non-Newtonian (n = 0.5) case. The quadrants categorize

the Reynolds stress activities as labelled in figure 5.4 based on the sign of u and v

(Wallace et al. (1972); Lu and Willmarth (1973)). The PDF indicates strong Q2

ejection and Q4 sweep events with positive contribution to Reynolds shear stress

than the Q1 inward and Q3 outward motions which contribute negative Reynolds

shear stress (Lozano-Durán et al. (2012)). The contours of the non-Newtonian

case are stretched along v = 0 towards u >> 0, so the range of u is larger and the

range of v is smaller as n decreases. The increase in the extremely large streamwise

fluctuations is accompanied with lowered wall-normal fluctuations, which correspond

to the results in figure 5.3 and explains the marginal excess in the streamwise RMS

velocity in non-Newtonian fluids.

The results so far suggest that the non-Newtonian flows have some high-

speed streamwise surge with local acceleration which may be more clearly observed

in the contours of u. Figure 5.5 shows the wall-parallel contours of u at y/R = 0.1,
roughly where the urms peaks are located. The top contour of the Newtonian fluid

shows a fully-developed turbulence with the signature near-wall streaks of high-

and low-momentum pathways in a homogeneous distribution. As n decreases, the

streaks become flatter, longer and wider. These turbulent structures become less

homogeneous, weaken and even disappear in some regions. At n = 0.69, there are

regions (circled regions) where the flow is clearly on the verge of local laminarisation

and can hardly be fully-developed. Such local laminarisation is more obvious in the
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Figure 5.5: Contours of the streamwise velocity fluctuation u on a streamwise-
azimuthal plane at a fixed wall distance of y = 0.1 for flows with power-law index
(a) n = 1 (Newtonian), (b) n = 0.75, (c) n = 0.69 and (d) n = 0.5.
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Figure 5.6: Contours of the wall-normal velocity fluctuation v on a streamwise-
azimuthal plane at a fixed wall distance of y = 0.1 for flows with power-law index
(a) n = 1 (Newtonian), (b) n = 0.75, (c) n = 0.69 and (d) n = 0.5.
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Figure 5.7: Contours of the azimuthal velocity fluctuation w on a streamwise-
azimuthal plane at a fixed wall distance of y = 0.1 for flows with power-law index
(a) n = 1 (Newtonian), (b) n = 0.75, (c) n = 0.69 and (d) n = 0.5.
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contours of the off-axis fluctuations in figures 5.6 and 5.7. In these regions, the off-

axis fluctuations are critically lowered, particularly for the wall-normal fluctuation v,

so that the three-dimensional nature of turbulent activities is vanishing. The velocity

fluctuations in these regions may be more appropriate to be characterised by the

pre-transition laminar fluctuations by Mayle and Schulz (1997) which were found

almost all contained in the streamwise component, rather than fully 3D turbulent

fluctuations.

The bottom contours in figures 5.5, 5.6 and 5.7 for case n = 0.5 show a

fundamental difference from the other non-Newtonian cases. The flow is spatially

inhomogeneous which is an important feature of turbulent transition (Tuckerman

et al. (2020)). The flow is already intermittent, showing features of turbulent spots

which are indicative of transitional flow (Wygnanski and Champagne (1973); Hof

et al. (2005)). The outline of the turbulent spot approximately extracted from

the off-axis fluctuation using v in figure 5.6 is mapped on the streamwise fluctuation

contour in figure 5.5(d), and there is a clear strong low-speed streak in the upstream

and downstream of the turbulent spot. This feature (also found to be presence

in other snapshots) resembles the wavy instability in the early stage of turbulent

transition which was observed as transient unstable travelling waves in front of

the trailing laminar/turbulent interface of the turbulent slugs. These laminarising

regions in the non-Newtonian cases are referred as pseudo-laminar region in the later

part of this study.

Cross-stream contours of the instantaneous streamwise velocity U and its

derivative ∂U/∂y, the streamwise fluctuation u, and Q in equation 2.6 are plotted

for the n = 0.5 case in figure 5.8, using the same snapshot as in figures 5.5-5.7.

Three streamwise locations were selected: x = 0 where the flow is very quiescent,

x/R = 10 where the flow is intensively turbulent and x/R = 20 for a mixture of both.

The difference between the pseudo-laminar region and the turbulent region is very

distinguishable; the pseudo-laminar flow at x = 0 shows remarkably uniform U and

∂U/∂y in the azimuthal direction and hardly shows any intense vortical structures

in Q. In the contours of Q at x/R = 10 and 20, the majority of the strong vortical

structures are confined near the wall while the flow is rather quiescent in the pipe

core where viscosity is higher for shear-thinning fluids. The results in general, agree

with that transition is delayed in shear-thinning fluids (Pinho and Whitelaw (1990);

Draad et al. (1998)). The n = 0.5 case was intentionally run for a very long time

compared to the other cases and it was found that the flow was never fully-developed

or fully laminarised.
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Figure 5.8: Cross-stream contours of (a) the streamwise velocity U , (b) the velocity
gradient ∂U/∂y, (c) the streamwise fluctuation u and (d) scaler Q as in equation
(2.6) for the non-Newtonian case of n = 0.5. The contours are plotted at three
streamwise location: x = 0, 10 and 20. Each contour corresponds to the colour axis
on its right-hand side.
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Figure 5.9: Iso-surfaces of Q in 1/3 of the streamwise pipe domain for flows with
power-law index (a) n = 1, (b) n = 0.75, (c) n = 0.69 and (d) n = 0.5. The threshold
used is Q = 0.5 for the non-Newtonian cases in (b-c) and Q = 2 for the Newtonian
case in (a). Case n = 0.5 is additionally shown with the wrapped view in the pipe.
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5.2.2 Hairpin vortices in non-Newtonian fluids

Figure 5.9 shows the 3D tube- or worm-like vortical structures in the pipe using

the Q-criterion. The iso-surfaces of Q in equation (2.6) represent regions with local

excess of swirling over straining. The structures are coloured by their wall-normal

elevation, so that one can observe the blue small-scale near-wall structures and the

red large-scale structures away from the wall. The difference in the turbulence

structures between Newtonian and non-Newtonian fluids reported in the literature

is apparent. Since the turbulent structures are weakened and two- or even one-

dimensionalised as n decreases, it is expected that the Q-space is increasingly filled

by regions absent of vortical structures.

In the Newtonian case, as it has been suggested by many studies of wall-

bounded flows (Theodorsen (1952); Kline et al. (1967); Townsend (1976); Head and

Bandyopadhyay (1981)), the near-wall quasi-streamwise vortices are inclined and

attached to the wall, forming trains of eddies. Zhou et al. (1999) and Adrian et al.

(2000) reported that these vortices, known as the horse-shoe or hairpin vortices,

travel in packets in which the leading vortices regenerate new hairpins downstream.

However, in reality, these vortical structures and their packets can rarely sustain the

idealised quasi-streamwise symmetry due to the complex multi-scale interactions.

Figure 5.9(a) indeed shows that these quasi-streamwise vortices are predominantly

asymmetric in a cane-like form in the Newtonian fluid. The most intact hairpin-form

structures (highlighted in figure 5.9(a)) are confined relatively near the wall, whereas

in the outer region where large scales dominate, the vortex loops are shattered and

becomes very irregular. Once the large-scale turbulent motions away from the wall

gradually vanish in the shear-thinning fluids, the vortical structures instantly show

a very different profile. At n = 0.75, majority of the vortex loops are preserved in

the outer region and the overall structural organisation is remarkably less scattered.

However, there is no clearly identifiable separate packets at n ≥ 0.69. In figure 5.9(d)

for the most shear-thinning case of n = 0.5, there is a clear packet of four intact and

highly symmetric vortex loops, streamwise aligned, exceedingly well-preserved to

resemble the model of an ideal vortex packet with streamwise size growth by Adrian

et al. (2000). We believe that the wholeness of the packet is because of that it is

unobstructed due to that the pseudo-laminar regions near the packet have no strong

turbulence structures for structure interaction. The observations in figure 5.9 are the

opposite to Zhen et al. (2013) who suggested that the delay in turbulence transition

in shear-thinning fluids flow in the channel was caused by the breaking down and

weakening of hairpin vortices.
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5.2.3 Streamwise streaks spacing

It is also observed from figures 5.5 and 5.9 that the streamwise streaks are wider

and the vortex tubes are thicker in the shear-thinning fluids. For Newtonian fluids,

the average spacing is approximately 100 wall units between two neighbouring high-

or low-momentum streaks (Kim et al. (1987)). Figure 5.10(a) shows the spanwise

two-point correlation of the streamwise velocity near the wall at y+ = 10,

Ruu =
∑N−k

i=1 (ui − u)(ui+k − u)
∑N

i=1(ui − u)2
, (5.6)

where N is the signal length and k is the lag. The separation between adjacent high-

or low-speed streaks, λθ are estimated by the distance between the two minima of

Ruu at the sides of Rθ = 0. For the n = 0.69 and n = 0.5 case, as the organised

structures become less dominant, Ruu is ‘corrupted’ by the large regions of pseudo-

laminar flow and decreased population of streaks. Thus, instead of the minimum

of Ruu, λθ for case n = 0.69 and n = 0.5 is estimated by the distance between the

nearest local minima of Ruu on the sides of Rθ = 0.
The average streak spacing is plotted as a function of the wall-distance up

to half of the pipe radius in figure 5.10(b). The streak spacing increases with the

distance from the wall. Results of the Newtonian case are in accordance with the

experimental results by Smith and Metzler (1983) and the DNS results by Kim

et al. (1987). In the viscous sublayer, λθ is almost equal for n = 0.69 and n = 0.75
and gradually differentiate from the buffer layer to the outer region. The n = 0.5

case is distinguished with a larger streak spacing throughout the viscous wall region

to the outer region, which again, indicates the fundamental difference between the

n = 0.5 case and the other two shear-thinning cases. As the flow becomes more

shear-thinning, the near-wall streaks have azimuthal spacing increase as reported

by Singh et al. (2017).

5.3 Topology of non-Newtonian pipe flow

The joint PDFs of the velocity-gradient tensor (VGT) invariants in the Q − R,

Qω − Qs, Qs − Rs and Qω − Rω space are computed for the whole domain and in

separate regions: the viscous sublayer (y+ ≤ 5), the buffer layer (5 < y+ < 30) and

the outer region (y+ > 50). For flows at such a low Reynolds number, strictly there

is no logarithmic region as the mean velocity profiles (figure 5.2) do not converge

to the log law (Moser et al. (1999); Ahn et al. (2013)), and is even more so for

the shear-thinning cases. Therefore, the three defined regions may only provide an
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Figure 5.10: (a) Spanwise two-point correlation of the streamwise velocity at y+ = 10.
(b) The mean spanwise spacing of the streamwise streaks, estimated from (a). The
colours for different case of n follow figure 5.2. The legend follows figure 5.2.
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Figure 5.11: Profiles of mean Qω at different power-law indices, n. The legend
follows figure 5.2.

approximate classification. The mean Qω as a function of wall-distance is shown in

figure 5.11, and the invariants are normalised by the mean Qω in the region where

the PDF is computed. The contours range in three decades at 10−1, 10−2 and 10−3

except in the viscous sublayer where 101, 100 and 10−1 are plotted for smoother

contours. The physical meanings of the joint PDF distributions are in figure 2.7.

The Q − R distribution in figure 5.12(a) for the whole pipe domain shows

a well-defined ‘tear drop’ shape, contracted in sector I and enlarged in sector II.

Such distribution indicates a preference of vortex stretching over vortex compression

(figure 2.7(a)). The ‘tear drop’ shape with a tail extending along D = 0 towards

R >> 0 indicates an anti-correlation between Q and R so that when Q > 0, it is

more likely for R < 0 and vice versa. That is in regions where enstrophy dominates
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Figure 5.12: Contours of joint PDFs between Q and R in (a) the whole pipe domain,
(b) the viscous sublayer, (c) the buffer layer and (d) the outer region. The contours
are plotted at 10−1, 10−2 and 10−3 in (a,c,d) and 101, 100 and 10−1 in (b). The
legend for the four different power-law indices follows figure 5.2.
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(Q >> 0), vortex stretching is predominant over vortex compression; in regions

dominated by dissipation (Q << 0), the flow is predominantly concentrated with

sheet-like over tube-like structures (da Silva and Pereira (2008)). By comparing the

joint PDF of the whole domain and the separate regions, the ‘tear drop’ shape of

the Q −R joint PDFs for the whole pipe is predominantly due to the outer region

turbulence. It should be noted that the joint PDFs are computed from each point of

a uniform cylindrical grid which is comparable to the other wall-bounded flows (TBL

and channel) once unwrapped, but in physical space, this means that the sampling

in the pipe centre is weighted higher. In figures 5.12(b-d), the anti-correlation is

gradually developed when moving away from the wall, the tail is more well-defined

away from the wall. In the viscous sublayer, the Vieillefosse tail is less apparent and

the ‘tear drop’ shape is in a transitional state (Gomes-Fernandes et al. (2014)), i.e.,

the anti-correlation of Q and R is less explicit. In the buffer layer, the ‘tear drop’

shape is clearer in a sense that the preference for vortex stretching (sector II) over

vortex compression (sector I) is much more pronounced than in the viscous sublayer.

In the outer region, the tail of Q − R anti-correlation becomes more unambiguous

for the preference on sheet-like structures. The above observations apply to all four

fluids at varying degrees of shear-thinning. The evolution of the Q −R distribution

from the wall to the centreline of the pipe is qualitatively similar to the results of

channel flows by Blackburn et al. (1996).

Comparing the Q−R distributions for different fluids, in the viscous sublayer,

the contours of case n = 0.75 and n = 0.69 almost coincide with the Newtonian case,

despite that the flow already showed noticeably difference in the turbulent struc-

tures and regions of significantly weakened off-axis turbulent motions. The sustain

of the universality of the ‘tear drop’-shaped Q − R distribution in inhomogeneous

flows was also reported by Buxton et al. (2017) in the near-field of cylinder wakes.

The contours of case n = 0.5 show an increase in the normalised magnitude of the

invariants while the early form of the ‘tear drop’ shaped is preserved despite the

large absence of turbulent structures.

The effect of the wall is more apparent in the joint PDFs of Qω and −Qs.

The unique spike along the 45○ in wall-bounded flows is entirely due to the presence

of the wall. In the extreme vicinity of the wall, ∂U/∂y and ∂W /∂y are the only two

non-zero terms of the VGT (Blackburn et al. (1996)) so that

Sij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 ∂U
∂y 0

∂U
∂y 0 ∂W

∂y

0 ∂W
∂y 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,Ωij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −∂U
∂y 0

∂U
∂y 0 ∂W

∂y

0 −∂W
∂y 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(5.7)
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and hence Qω = −Qs = (∂U2/∂2y + ∂W 2/∂2y)/4 and Rs = Rω = 0. This leads

to the results in figure 5.13(b) in which the joint PDF is nearly aligned on the

diagonal line of Qω = −Qs as an indicator for vortex sheet structures (figure 2.7(b)).

The influence of the wall decreases towards the outer region yet it can extend well

beyond the buffer region; in fact, the clam-shaped distribution observed in free

shear flows (Soria et al. (1994); Buxton et al. (2017)) are not obtained, and there

is a visible residual of Qω = −Qs even for the Newtonian case in figure 5.13(d).

The Qω −Qs joint PDFs show a slight preference towards predominant dissipation

over enstrophy in the viscous sublayer (clearer in the zoomed view in figure 5.13(b))

whereas in the buffer layer and outer region, the contours extend along the Qω axis

for locally higher enstrophy. Comparing the contours of different cases, the effect of

the wall, i.e., the spike along Qω = −Qs can survive further away from the wall as

the flow becomes more shear-thinning, which is contrary to the initial guess since

turbulent energy is toned down near the wall as n decreases. This is perhaps because

that turbulent structures originated from the wall can survive in an attached form

(Townsend (1976)) and extend higher away from the wall (discussion of figure 5.9).

The influence of the wall is similarly manifested by the joint PDFs of the

strain-rate tensor invariants, Qs and Rs in figure 5.14. The Qs − Rs distribution

was found to be tilted towards Rs > 0 in a broom shape in many fully-developed

homogeneous turbulence. For the whole pipe domain, the preference for sheet-like

structures over tube-like structures (as labelled on the diagram) is only adequate

and is a lot less explicit than the strong preference along Rs = 0. The extension along

Rs = 0 is unique for wall-bounded flows (equation (5.7)). In figure 5.14(b), the almost

vertical distribution for very high dissipation (−Qs >> 0) along Rs = 0 indicates that

the local flow is highly 2D. Similar to the Qω −Qs maps, the influence of the wall,

i.e., the high dissipation and local two-dimensionalisation persist further towards

the pipe centre for the non-Newtonian fluids. In the outer region, the contours of

case n = 0.75 and n = 0.69 show no extension along Rs = 0 and converge to the

Newtonian case whereas case n = 0.5 still shows residual of the highly 2D near-wall

dissipation.

Figure 5.15 shows the joint PDFs of the invariants of the rotation tensor, Qω

and Rω. The −Rω < 0 and the −Rω > 0 side corresponds to vortex compressing and

vortex stretching, respectively (figure 2.7(c)). The Qω − Rω distribution appears

in a triangular shape, indicating larger range of vortex deformation in regions of

lower enstrophy. The spike along Rω = 0 due to the presence of the wall gradually

diminishes when moving away from the wall. Apart from the viscous sublayer,
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Figure 5.13: Contours of joint PDFs between Qs and Qω, arranged similarly as in
figure 5.12.
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Figure 5.14: Contours of joint PDFs between Qs and Rs, arranged similarly as in
figure 5.12.
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Figure 5.15: Contours of joint PDFs between Qω and Rω, arranged similarly as in
figure 5.12.
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there is a clear preference of vortex stretching over vortex compression, particularly

in the outer region. In the viscous sublayer, for the Newtonian case and all non-

Newtonian cases, the joint PDFs show a slight bias towards vortex compression

at very low enstrophy while the preference for vortex stretching takes over as Qω

increases. In addition, the viscous sublayer exhibits the most apparent difference

in the contours between the Newtonian and non-Newtonian cases; the preference of

vortex compression at low Qω and the opposite preference of vortex stretching at

high Qω is more pronounced in the Newtonian fluid.

5.4 Turbulent spots

While all three non-Newtonian cases are not fully-developed, the n = 0.5 case showed
the least homogeneity where one may assume that it is already transitional. The

results in section 5.2 showed that there is a large portion of the flow with significantly

lowered off-axis fluctuations, i.e., the pseudo-laminar regions. The regions remaining

highly turbulent ensembles the turbulent slugs in transitional flow. The recent

study by Cerbus et al. (2020) confirmed Wygnanski and Champagne (1973) with

further evidence that flow in the turbulent slugs surrounded by laminar flow during

turbulent transition is statistically identical to fully-developed turbulence.

The turbulent regions and the pseudo-laminar regions are separated by a

threshold of the wall-normal fluctuation ∣ v ∣= 0.5vrms which self-adjusts with the

wall-distance. The wall-normal component is chosen because it weakened the first

when a flow region laminarise, so that putting a threshold on v guarantees that the

turbulent regions have sufficiently 3D turbulent fluctuations. Figure 5.16 shows the

contour of v at three different wall-distance, y+ = 5, y+ = 30 and y/R = 0.5. The

turbulent regions enclosed by the black solid contour of ∣ v/vrms ∣= 0.5 are separated

from the pseudo-laminar regions. The threshold affects how strictly a turbulent

region is defined, yet the threshold has a very low sensitivity on differentiating

the pseudo-laminar region and the turbulent region because the difference in the

turbulent level between the pseudo-laminar region and the turbulent region is so

large. In figure 5.16(a), the contours of ∣ v/vrms ∣= 0.2 ∼ 0.8 can all accurately

recognise the turbulent regions. It is also worth mentioning that this method does

not suggest 100% of turbulent region for the fully-developed Newtonian flow.

In the following part, the terminology ‘pseudo-laminar region’ refers to re-

gions with ∣ v/vrms ∣< 0.5. Figure 5.17(a) shows the average fraction of the turbu-

lent region and the pseudo-laminar region, VT and VL in the whole pipe volume,

V = 30πR3 as functions of wall-distance. As a reference, the Newtonian case (n = 1)
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Figure 5.16: Contours of the wall-normal velocity fluctuation v at a fixed wall
distance of (a) y+ = 5, (b) y+ = 30, (c) y/R = 0.5 and (d) y/R = 0.8 for flows
with power-law index n = 0.5. The black lines are the contours of ∣ v/vrms ∣= 0.2
(− ⋅ −), 0.5 (—–) and 0.8 (− − −).
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Figure 5.17: (a) Fraction of the turbulent volume and pseudo-laminar volume, VT
and VL to the total pipe domain as functions to the wall-distance. (b) The location
of ⟨VL⟩ = ⟨VT ⟩ in (a). (c) The average turbulent and pseudo-laminar volume in the
whole pipe. (d) The mean velocity profile of the turbulent region.
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Figure 5.18: Joint PDFs of Q−R for the turbulent region (purple) and the pseudo-
laminar region (green) of case n = 0.5, overlaid with the PDFs of the whole domain
of case n = 0.5 (red) and the Newtonian case (black). The contours are at 10−2.

never has VL > VT and is roughly 1 ∶ 1 at the wall for this particular threshold used.

For all cases, most of the variations in VT and VL take place in the near-wall half

of the pipe. All three non-Newtonian fluids have VL exceeding VT at a point when

approaching towards the wall. The location of ⟨VT ⟩ = ⟨VL⟩, y∗ is plotted in figure

5.17(b); y∗ increases as n decreases, hence the near-wall region where pseudo-laminar

flow can balance with the turbulent flow becomes thicker as the flow becomes more

shear-thinning, and is much thicker at n = 0.5 where y∗ increases more rapidly with

decreasing n. Figure 5.17(c) shows the global average VT and VL. For the Newto-

nian case, there is 35% of the pipe counted into the pseudo-laminar region. As n

decreases, the turbulent volume decreases and the pseudo-laminar volume increases

steadily, matching the visualisations in section 5.2. VT and VL exhibit a jump at

n = 0.5, the fraction of pseudo-laminar flow increases rapidly at n = 0.5. The results

are consistent with section 5.2 in which the case n = 0.5 exhibits a fundamental

difference from the other two shear-thinning case. It seems sensible to conclude

that the power-law shear-thinning fluid has somehow a yielding behaviour between

n = 0.5 and n = 0.69, the flow experiences intensified non-Newtonian effect for n

lower than such a threshold of n.

The mean velocity profile from the turbulent region only is plotted in figure

5.17(d) (purple). Comparing to U of n = 0.5, the profile of n = 0.5T is significantly

lowered above the viscous sublayer, and the centreline velocity is much closer to the

fully-developed Newtonian flow. However, the turbulent profile (buffer layer and

log-law behaviour) cannot be obtained and may require a more sophisticated veloc-
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Figure 5.19: Iso-surface of the azimuthal fluctuation, w in the conditional averaged
3D fields around the locations with ∣ v/vrms ∣> 0.5 at y+ = 5. The locations with
±v/vrms > 0.5 in the turbulent region are indicated by (x∗, y∗, θ∗). Negative x − x∗
indicates the upstream locations of the turbulent regions.

ity decomposition. The joint PDFs of the VGT invariants are plotted separately for

the pseudo-laminar region and the turbulent region in figure 5.18. After the separa-

tion, the turbulent region has the Q −R distribution similar to the fully-developed

homogeneous Newtonian flow. Although the magnitude of the Q and R decreased

significantly in the pseudo-laminar region, the ‘tear drop’ shape is surprisingly pro-

nounced despite that the flow in the pseudo-laminar region are laminarising.

5.5 Large-scale motions

To investigate the large-scale coherent motions associated with the turbulent spots,

conditional averaged streamwise and azimuthal velocity fluctuations, u and w are

computed around turbulent regions at different wall-normal locations. The volumet-

ric conditional averaged fields are centred at the points with ∣ v/vrms ∣> 0.5, denoted
as x∗i so that the location (x∗, y∗, θ∗) represents the turbulent spots, and x − x∗ < 0
indicates the upstream locations of the turbulent spots.

Figure 5.19 shows the 3D iso-surface of w in the conditional averaged field

centring turbulent regions near the wall at y+ ≈ 5. The 2D contours of u and w at

y∗ = 0 in the same conditional average velocity field are shown in figures 5.20(a,c).

In figure 5.20(a), the large-scale streamwise acceleration around the turbulent spot

is revealed. This supports the findings in section 5.2 where the streamwise acceler-

ation at the leading and trailing edge of the turbulent spot were used to explain the

increase of streamwise fluctuation in the non-Newtonian fluids (discussion of figures
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Figure 5.20: (a,b) the streamwise fluctuation, u and (c,d) the azimuthal fluctuation,
w in the conditional averaged fields around locations with ∣ v/vrms ∣> 0.5 at (a,c)
y+ = 5 and (b,d) y/R = 0.5.

5.3, 5.4 and 5.5). In figure 5.19 and figure 5.20(c), the azimuthal velocity clearly

shows a large-scale wavy instability which is typically found in turbulent transition.

The coherent motions suggested by these conditional averaged results and the ob-

servations in section 5.2 support each other. Figure 5.20(b,d) shows the contours

of u and w in the 3D conditional average field around turbulent spots away from

the wall at y/R ≈ 0.5. The large-scale streamwise acceleration around the turbulent

spot and the wavy instability around the turbulent spots are not observed away

from the wall. In fact, the large-scale coherent structures of u and v are found to be

only persisting up to y+ = 30, which indicates that the streamwise acceleration and

spanwise wavy instability are large-scale phenomenon only existing in the near-wall

region of shear-thinning wall-bounded flows.

Proper orthogonal decomposition (POD) in section 3.3 is applied to the az-

imuthal velocity fluctuation field. Although POD is unsatisfactory in decomposing

complex multi-scaled turbulent flows (Baj et al. (2015)), it can be used to extract

large energy-containing coherent structures in the flow (Buxton et al. (2017)), for

this case, the large-scale instability around the turbulent spots. The POD modes ϕi

are ranked by their kinetic energy content in a descending order. Figure 5.21 shows

the relative kinetic energy content in each of the first 100 modes which contribute

approximately 77.5% of the total kinetic energy of all resolved POD modes for case

n = 0.5. The energy is much more concentrated in the higher ranked modes in a

more shear-thinning fluid because of the growing dominance of large-scale coherent

motions and reduction of small-scale random turbulent motions. For case n = 0.5,
the first two modes contain a significant portion (≈ 9%) of the total kinetic energy
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Figure 5.21: Relative kinetic energy content in the POD modes of the azimuthal
velocity w for case n = 0.5, n = 0.69 and n = 1 (Newtonian).

which are associated to the large-scale wavy structures in figures 5.20 and 5.19.

Figure 5.22 shows the most energy-containing mode ϕ1 of the most shear-

thinning and the Newtonian cases. Mode ϕ1 has the largest-scaled structures com-

pared to all other modes which are not shown for brevity. The difference in the

scale of structures in ϕ1 is enormous. The patterns of ϕ1 in figure 5.22(a) resembles

the conditional averaged field of w around the near-wall turbulent spots with large-

scale wavy structures. Such organised structures are absence in the fully-developed

non-Newtonian flow which is filled by homogeneous small-scale structures. The re-

constructed instantaneous field of w using the first m POD modes is denoted as

Pm[wϕ]. Wall-parallel contours at y/R = 0.1 of fields P2[wϕ], P10[wϕ] and P50[wϕ]
for case n = 0.5 and n = 1 are shown in figure 5.23. The contours in the left column

for case n = 0.5 reconstruct the snapshot shown in figure 5.7(d). P2[wϕ] is mainly

constructed with the large-scale wavy structures, where the original field of w is still

unclear. The field of w is gradually resembled as more modes are used for recon-

struction, P50[wϕ] is very similar to the targeting original field in figure 5.23(g). In

the right-hand side contours of the fully-developed Newtonian flow case, the original

field of w in figure 5.23(h) is also sufficiently resembled by P50[wϕ] using the first 50

modes in figure 5.23(f). These reconstructed fields of the Newtonian fluid are much

more homogeneous compared to case n = 0.5 and show no such large-scale modes as

expected.
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Figure 5.22: The first POD mode, ϕ1 of the azimuthal velocity w for case (a)
n = 0.5 and (b) n = 1. homogeneous small block-like structure v.s. large-scale wavy
structure
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Figure 5.23: Wall-parallel contours at y/R = 0.1 in the reconstructed field of the
azimuthal velocity w, using POD modes (a,b) ϕ1 − ϕ2, (c,d) ϕ1 − ϕ10, (e,f) ϕ1 − ϕ50.
The original field being reconstructed is in (g) for case n = 0.5 (left column) and (h)
for case n = 1 (right column).
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5.6 Summary

In this chapter, an increasingly shear-thinning pipe flow modelled by the

power-law rheology at Reτ = 180 is investigated by means of DNS. Three power-law

indices (n < 1) were examined. The first part of this chapter focuses on confirming

the classical shear-thinning behaviours in turbulent flows reported in the litera-

ture. As the flow becomes more shear-thinning, the flow is less homogeneous and

shows regions of local laminarisation. In these regions, the off-axis fluctuations are

critically lowered, particularly in the wall-normal direction. As n decreases, the tur-

bulent region reduces and the pseudo-laminar region increases. At n = 0.5, the flow

is already transitional, showing turbulent spots and large regions of pre-transition

laminar fluctuations. While the off-axis fluctuations are significantly weakened, the

root-mean-square streamwise fluctuation is marginally higher than the Newtonian

fluid. By extending the existing analyses on shear-thinning wall turbulence, we

found that this is due to the streamwise acceleration in the upstream and down-

stream of the turbulent spots, which is revealed via conditional averaging around

the turbulent spots. Near the wall, the turbulent spots experience strong cross-flow

instability. The streaks of streamwise low- and high-momentum pathways are wider

in the non-Newtonian fluids, the spanwise streak spacing λθ increases with decreas-

ing n. As n decreases, the vortical structures, i.e., hairpin vortex packets become

more intact and organised, which is the opposite to Zhen et al. (2013).

The flow topology was interpreted from the joint PDFs of the invariants of

the velocity-gradient tensor, the strain-rate tensor and the rotation tensor. These

joint PDFs have not been represented before for Newtonian or non-Newtonian pipe

flow using DNS data. The PDF distributions of the Newtonian case of the pipe

are qualitatively similar to the channel (Blackburn et al. (1996)). The preference

of vortex stretching over vortex compression, and predominant sheet-like structures

over tube-like structures are more pronounced in the outer region where the flow

is closer to free shear flows. The classical ‘tear drop’-shaped Q − R joint PDF

distribution is obtained in the most inhomogeneous shear-thinning fluid, even in the

pseudo-laminar regions. Hence, the universality of the Q − R ‘tear drop’ shape is

not only for fully-developed turbulence.
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Chapter 6

Conclusions

The present study investigated turbulent pipe flows of Newtonian and non-Newtonian

fluids by means of direct numerical simulations (DNS). The coherent structures,

large-scale motions (LSM) and near-wall bursting were investigated regarding to

their structural organisation, temporal evolution, topological evolution, and inter-

play. The DNS was carried out at four Reynolds numbers, Reτ = 180, 360, 500

and 1000 for the Newtonian fluids. Non-Newtonian fluids at Reτ ≈ 180 with three

different levels of shear-thinning were modelled by the power-law rheology.

The first part of this work investigated the uniform-momentum zones (UMZ)

and internal shear layers (ISL) in the pipe. Four UMZ and ISL identification meth-

ods were used and compared in order to address the sensitivity of UMZ character-

istics reported by studies using different methods. Qualitatively consistent results

on the UMZ and ISL characteristics were produced by using different identification

methods, and similar characteristics reported for the turbulent boundary layers and

channel flows were confirmed in the present pipe flow. The flows were demarcated

by more UMZs which were thinner at higher Reynolds numbers. The wall-normal

distribution of the UMZs showed that the UMZs were more densely populated nearer

the wall, which formed a hierarchical distribution of UMZs in wall-bounded flows.

The hierarchical scaling of UMZs and UMZ interfaces, being thinner nearer the wall

is consistent with the hierarchy of multi-scaled eddies in Townsend’s attached eddy

hypothesis. Conditional averages as functions of the wall-normal distance from the

UMZ interfaces showed that velocity jumps sharply when passing UMZ interfaces

and stays relatively uniform inside each zone. This resembles a step-like instanta-

neous velocity profile in wall-bounded flows. Across the interface, there were also
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a rapid decrease of the streamwise turbulent intensity and azimuthal/spanwise vor-

ticity induced by the local high shear.

The UMZ interfaces showed large wall-normal meanderings and are con-

torted three-dimensionally, manifesting the streaky features of local ejection and

sweep events around the interfaces. The level of the UMZ interface contortion, i.e.,

interface tortuosity was quantified in both 2D and 3D. The interface contortion in

both 2D and 3D is intensified with increasing wall-distance. The interface contor-

tion was found to be more intense in the azimuthal direction than the streamwise

direction on average. The interface contortion is a result of the persistent attach-

ment between UMZ interfaces to nearby vortical structures at a desired strength.

The UMZ interfaces evolve with the spanwise vortices clustered along the interfaces.

The UMZ interfaces residing away from the wall are representative of the

LSMs whereas the UMZ interfaces in the near-wall region can capture the small-

scale velocity fluctuation of the near-wall cycle. The third-order skewness between

bulges and valleys on the 3D UMZ interfaces showed that the large-scale modula-

tion on the near-wall activities is asymmetric to ejections over sweeps. The skewness

of the variation of the interface wall-normal location manifests the local imbalance

between ejections and sweeps. Near the wall, the velocity fluctuations are biased

to significantly stronger ejection events. When departing away from the wall, this

asymmetry between ejection and sweep structures gradually restored to a point of

locally balanced ejections and sweeps. The location of this change-over from local

ejection-dominance to local sweep-dominance showed very weak Reynolds number

dependence, roughly R/2 away from the wall for all four Reynolds numbers investi-

gated. Further away from the wall, there is a inverse asymmetry of local predomi-

nance of stronger sweeps than ejections. The fourth-order kurtosis of the ejections

and sweep part of the UMZ interfaces showed an inverse structural organisation in

the pipe. Near the wall where the structures are in small scales, the ejections are

much spikier than the sweeps; away from the wall where large scales dominate, the

ejections become flatter and the large-scale sweeps become very pointy.

The second part of this study investigated the flow statistics and the structure

evolution in an increasingly shear-thinning fluids. Three power-law indices were

examined. As the flow became shear-thinning, the flow was less homogeneous and

started to show regions of local laminarisation. In the pseudo-laminar regions, the

off-axis fluctuations were critically lowered, particularly in the wall-normal direction.

When the flow became more shear-thinning, the flow was indicatively transitional,
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showing turbulent spots surrounded by pre-transition laminar fluctuations. While

the off-axis fluctuations were significantly weakened in the non-Newtonian flows, the

streamwise fluctuation was found marginally higher than the Newtonian flows due to

the streamwise acceleration in the upstream and downstream of the turbulent spots.

Near the wall, the turbulent spots experienced strong cross-flow instability. The

signature turbulence structure in wall-bounded flows, i.e., the streaks of streamwise

low- and high-momentum pathways were wider and flatter as the flow became more

shear-thinning, and their spanwise spacing became larger. In the shear-thinning

fluids, the quasi-streamwise (hairpin) vortices were remarkably more intact and

organised.

The topological flow structures were interpreted from the joint PDF of the

velocity-gradient tensor (VGT) invariants. For both the Newtonian and non-Newtonian

fluids, the preference of vortex stretching over vortex compression, and predominant

sheet-like structures over tube-like structures were more pronounced in the outer

region where the flow is closer to free shear flows. The classical Q −R ‘tear drop’

distribution was obtained in the most inhomogeneous shear-thinning case, and even

in the separated pseudo-laminar regions. Therefore, the universality of the Q − R
‘tear drop’ is evidently not only for fully-developed turbulence. The presence of the

wall resulted in a highly 2D flow topology in the viscous wall region, shown by the

joint PDFs of the invariants of the strain-rate and rotation tensors. The influence of

the wall gradually diminished when moving away from the wall, yet it can survive

beyond the buffer layer in both Newtonian and non-Newtonian fluids. The wall

effects can penetrate further into the outer region in shear-thinning flows, possibly

due to that the turbulence structures originated from the wall can and extend well

beyond the near-wall region while remaining attached to the wall in non-Newtonian

shear-thinning fluids.
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J. Sillero, J. Jiménez, and R. D. Moser. One-point statistics for turbulent wall-

bounded flows at Reynolds numbers up to δ+ ≈ 2000. Physics of Fluids, 25:

105102, 2013.

J. Singh, M. Rudman, and H. M. Blackburn. The influence of shear-dependent

rheology on turbulent pipe flow. Journal of Fluid Mechanics, 822:848–879, 2017.

C. R. Smith and S. P. Metzler. The characteristics of low-speed streaks in the near-

wall region of a turbulent boundary layer. Journal of Fluid Mechanics, 129:27–54,

1983.

A. J. Smits, B. J. McKeon, and I. Marusic. High-Reynolds number wall turbulence.

Annual Review of Fluid Mechanics, 43:353–375, 2011.

J. Soria, R. Sondergaard, B. J. Cantwell, M. S. Chong, and A. E. Perry. A study of

the fine-scale motions of incompressible time-developing mixing layers. Physics

of Fluids, 6(2):871–884, 1994.

P. R. Spalart. Direct simulation of a turbulent boundary layer up to Reθ = 1410.

Journal of Fluid Mechanics, 187:61–98, 1988.

T. Theodorsen. Mechanism of turbulence. In Proc. Second Midwestern Conference

on Fluid Mechanics, Mar. 17-19, pages Ohio state University, Columbus, Ohio.,

1952.

C. D. Tomkins and R. J. Adrian. Spanwise structure and scale growth in turbulent

boundary layer. Journal of Fluid Mechanics, 490:37–74, 2003.

A. A. Townsend. The structure of the turbulent boundary layer. Math. Proc. Camb.

Philos. Soc., 47:375–395, 1951.

A. A. Townsend. The Structure of Turbulent Shear Flow. Cambridge University

Press, 2nd edition, 1976.

A. Tsinober. An Informal Conceptual Introduction to Turbulence. Springer, 2nd

edition, 2009.

L. S. Tuckerman, M. Chantry, and D. Barkley. Patterns in wall-bounded shear flows.

Annual Review of Fluid Mechanics, 52:343–67, 2020.

P. Vieillefosse. Local interaction between vorticity and shear in a perfect incom-

pressible fluid. J. Phys. (Paris), 43(6):837–842, 1982.

138



C. Wagner, T. J. Huttl, and R. Friedrich. Low-Reynolds-number effects derived

from direct numerical simulations of turbulent pipe flow. Computers and Fluids,

30(5):581–590, 2001.

J. M. Wallace, H. Eckelman, and R. S. Brodkey. The wall region in turbulent shear

flow. Journal of Fluid Mechanics, 54:39–48, 1972.

G. Wang, X. Zheng, and J. Tao. Very large scale motions and pm10 concentration

in a high-Re boundary layer. Physics of Fluids, 29:061701, 2017.

Z. Wang. A numerical investigation of unsteady turbulence in straight and curved

pipes. PhD thesis, School of Engineering, University of Warwick, UK, September

2017.

Z. Wang, R. Orlu, P. Schlatter, and Y. M. Chung. Direct numerical simulation of

a turbulent 90 degrees bend pipe flow. International Journal of Heat and Fluid

Flow, 73:199–208, 2018.

C. E. Wark and H. M. Nagib. Experimental investigation of coherent structures in

turbulent boundary layers. Journal of Fluid Mechanics, 230:183–208, 1991.

C. Wen. The transition to asymmetry in pipe flow of shear-thinning fluids. PhD

thesis, University of Liverpool, September 2016.

X. Wu and P. Moin. A direct numerical simulation study on the mean velocity

characteristics in turbulent pipe flow. Journal of Fluid Mechanics, 608:81–112,

2008.

X. Wu, J. R. Baltzer, and R. J. Adrian. Direct numerical simulation of a 30R long

turbulent pipe flow at R+ = 685: large- and very-large-scale motions. Journal of

Fluid Mechanics, 698:235–281, 2012.

Z. Wu, C. Atkinson, and J. Soria. The three-dimensional structures in turbulent

Couette-Poiseuille flows on the verge of separation. In Turbulence and Shear Flow

Phenomena -11, Southampton, UK, 2019.

I. J. Wygnanski and F. H. Champagne. On transition in a pipe. part 1. the origin

of puffs and slugs and the flow in a turbulent slug. Journal of Fluid Mechanics,

59(part 2):281–335, 1973.

Y. Yamamoto and Y. Tsuji. Numerical evidence of logarithmic regions in channel

flow at Reτ = 8000. Physical Review Fluids, 3:012602, 2018.

139



J. Yang, J. Hwang, and H. J. Sung. Structural organization of the quiescent core

region in a turbulent channel flow. International Journal of Heat and Fluid Flow,

27:055103, 2016.

J. Yang, J. Hwang, and H. J. Sung. Influence of low- and high-speed structures

on the quiescent core region in a turbulent pipe flow. Proceedings of the Tenth

International Symposium on Turbulent and Shear Flow Phenomena, 2017. URL

"http://tsfp10.org/TSFP10_program/2/330.pdf".

M. Yoon, J. Hwang, J. Lee, H. J. Sung, and J. Kim. Large-scale motions in a

turbulent channel flow with the slip boundary condition. International Journal

of Heat and Fluid Flow, 61:96–107, 2016.

N. Zhen, R. A. Handler, Q. Zhang, and C. Oeth. Evolution of a hairpin vortex

in a shear-thinning fluid governed by a power-law model. Physics of Fluids, 25:

101703, 2013.

J. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall. Mechanisms for gen-

erating coherent packets of hairpin vortices in channel flow. Journal of Fluid

Mechanics, 387:353–396, 1999.

140

"http://tsfp10.org/TSFP10_program/2/330.pdf"

	List of Tables
	List of Figures
	Acknowledgments
	Declarations
	Abstract
	Nomenclature
	Chapter Introduction
	Motivation
	Thesis outline

	Chapter Background and literature review
	Coherent structures in wall turbulence
	Uniform-momentum zones and internal shear layers

	Non-Newtonian pipe flow
	Invariants of the velocity-gradient tensors

	Chapter Methodology
	Direct numerical simulation
	Vector and tensor transformation
	Proper orthogonal decomposition

	Chapter DNS of turbulent pipe flow
	Instantaneous fields of velocity and vorticity
	Mean flow statistics
	The quiescent core of the pipe
	Identification of the quiescent core
	Meandering and intermittency of the core
	Conditional average properties across the core boundary

	Uniform-momentum zones
	Identification of multiple UMZs
	The grouping of UMZs
	The statistical characteristics of UMZ and UMZ interface
	The vortex clusters on UMZ interfaces
	The contortion of UMZ interface
	UMZ interface asymmetry
	Statistics of UMZs detected from KDE

	Internal shear layer
	Identification of ISL
	ISL properties as functions of shear strength
	ISL properties as functions of wall-distance
	Three-dimensional structural organisation of ISL

	Summary

	Chapter DNS of non-Newtonian turbulent pipe flow
	Modelling of shear-thinning fluids
	Turbulent statistics and flow structure
	The mean flow statistics
	Hairpin vortices in non-Newtonian fluids
	Streamwise streaks spacing

	Topology of non-Newtonian pipe flow
	Turbulent spots
	Large-scale motions
	Summary

	Chapter Conclusions
	Insert from: "WRAP_Coversheet_Theses_new.pdf"
	http://wrap.warwick.ac.uk/161741


