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ABSTRACT
Linear regression models which account for skewed error distributions with fat tails
have been previously studied. These two important features, skewness and fat tails,
are often observed in real data analyses. Covariates measured with an error also
happen frequently in the observational data set-up. As a motivating example, wind
speed as a covariate is usually used, among other covariates, to estimate the par-
ticulate matter (PM) which is one of the most critical air pollutants and has a
major impact on human health and on the environment. However, the wind speed is
measured with error and the distribution of PM is neither symmetric nor normally
distributed (see Section 4 for more details). Ignoring the issue of measurement error
in covariates may produce bias in model parameters estimate and lead to wrong
conclusions. In this paper, we propose an approach to study properly linear regres-
sion models where the covariates are measured with error and the error distribution
of model is skewed with fat tails. We use a hierarchical Bayesian approach for infer-
ence, addressing also sensitivity of the results to priors. Performance of the proposed
approach is evaluated through a simulation study and also by a real data application
(PM in Canada).
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1. Introduction

Linear regression models have has been subject to extensive research in the literature.
In many of its real applications, the response variable does not follow nice properties
of symmetry and/or normality. Asymmetry in the distribution of the response may
be caused by skewness. The presence of skewness arises in many studies including
problems in linear regression, estimation, and prediction. In such a setting, an initial
strategy is to transfer the data. make data transformation. However, an appropriate
transformation may not exist or may be difficult to find. Also, this approach can raise
interpretation issues. To address the issues associated with the transformation method,
considerable attention has been devoted in the literature to introducing introduce a
more suitable theoretical strategy based on the skew-normal (SN) distribution (Azza-
lini 2013). There is a large number of such distributions sometime making it hard to
decide which class of SN model needs to be used. With this in mind, Arellano-Valle
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et al. (2006) introduced a SN model and named it unified skew-normal which also
includes the normal density and has very similar properties as the normal density.

On the other hand, in order also to circumvent the problem of departure from
normality in the context of linear regression model, there is limited research to address
two pervasive features of empirical data (skewness and fat tails) in statistical modeling
and inference. Under a classical perspective, there are some works to modeling skewness
and heavy-tail in linear regression models (Zeller, Lachos, and Vilca-Labra 2011;
Fernandez, Lachos, and Bolfarine 2015; Ferreira and Arellano-Valle 2018). In addition,
Buckle (1995) provided a Bayesian analysis using stable laws. In addition, There is
also some frequentist research in that direction: the use of distributions by Badrinath
and Chatterjee (1991) through matching percentiles; partially adaptive estimation of
generalized beta distributions of the second kind of McDonald and Nelson (1993);
and approximate maximum likelihood estimation (MLE) of generalized exponential
distributions of Lye and Martin (1993)., Fernandez and Steel (1998) and Juarez and
Steel (2010) argued that all of these solutions seem quite complicated to implement
numerically and seem to lack the flexibility and ease of interpretation that an applied
statistician would typically require. To address these difficulties, they introduced a
class of sampling models that can simultaneously account for both skewness and fat
tails, and conducted Bayesian inference in the context of a regression model with
unknown scale. In the following, we briefly explain the idea of Fernandez and Steel
(1998) work.

Consider the following linear regression model:

yi = xTi β + ei, i = 1, ..., n, (1)

where yi is the response variable, xi and β are p−dimensional covariates with cor-
responding regression coefficients, and ei is the residual term of the ith observation.
Fernandez and Steel (1998) generated a “skewed Student” distribution to deal with
skewed error distributions having fat tails in the context of linear regression model (1).
Because of the particular skewness-generating mechanism used, this class of skewed
distributions is also sometimes referred to as “two-piece Student” as in Fernandez and
Steel (1998) and Rubio and Steel (2020). They first introduced skewness into sym-
metric distributions and then used the Student distribution to deal with the fat tails.
Assume that f(s) = f(|s|) which is decreasing in |s|, and f(·) is a univariate pdf which
is unimodal and symmetric around 0. The skewed distribution of the residual term ei
in (1) is then generated as follows:

g(ei | γ) =
2

γ + 1
γ

{
f

(
ei
γ

)
I[0,∞)(ei) + f (γei) I(−∞,0)(ei)

}
, (2)

where γ ∈ (0,∞) is the parameter which determines the allocation of mass to each
side of the mode (Fernandez and Steel 1998). Note that (2) has the unique mode at
0 but loses symmetry whenever γ 6= 1. They then chose Student’s t-distribution for
f(·) in the skewed distribution (2) to manage the tail behavior. The skewed Student
distribution of the response variable yi in (1) is then defined as

f(yi|µi, σ, ν, γ) =
2

γ + 1
γ

Γ(ν+1
2 )

Γ(ν2 )
√
πνσ

[
1 +

(yi − µi)2

νσ2

(
1

γ2
I[yi≥µi] + γ2I[yi<µi]

)]− ν+1

2

,

(3)
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with location µi = xTi β, scale σ, skewness parameter γ, and degrees of freedom ν. The
thickness of the tails is controlled by ν ∈ R+. This distribution displays both flexible
tails and possible skewness with two clearly interpretable respective parameters ν and
γ. Fernandez and Steel (1998) proposed a Bayesian method for inference with these
distributions. analyzing data for skewed error distributions with fat tails.

It is important to note that in the model (3) it is assumed that the covariates xi
are perfectly measured for the validity of inferential methods, but for various reasons
such as the measurement techniques or instruments used, uncertainty is inherent in
observational data and so these data are susceptible to measurement error in the co-
variates of interest (Fuller 1987; Arellano-Valle et al. 2005; Rodrigues and Bolfarine
2007; Cabral, Lachos, and Zeller 2014). Hence, observational data are prone to be
not perfect and results may be seriously biased if one ignores this issue. Covariate
measurement error is a common typical aspect of cross-sectional and/or longitudi-
nal studies (Fuller 1987; Carrol et al. 2006). Recently, Arellano-Valle et al. (2020)
proposed a model to cover measurement error in a covariate with an SN distribution
using Expectation-Maximization technique for the inference. As a motivating example,
researchers have used linear regression models for the estimation/prediction of partic-
ulate matter (PM) concentrations using data of meteorological parameters including
wind speed (WS) and temperature (Roy and Adhikari 2009). However, it appears
that measuring WS is associated with an error and the distribution of PM is neither
symmetric nor normally distributed (see Section 4).

The aim of this paper is to provide a proper modeling framework for fat tails and
skewed errors wherein the covariates of interest cannot be observed precisely. In other
words, the proposed model provides flexibility in capturing the effects of skewness and
heavy tail behavior of the data and simultaneously facilitates analyzing by representing
and taking fuller account of the susceptibility of measurement error in covariates. As
measurement error (ME) is commonly due solely to instrument or laboratory-analysis
error in our PM data, the classical measurement error model appears appropriate for
this situation as we would expect the surrogate measure to be symmetrically randomly
distributed around the true value. We will provide a hierarchical Bayesian approach
to study the proposed model.

The rest of the paper is organized as follows. In Section 2, a linear model for non-
Gaussian data with ME covariates is proposed using the Bayesian approach. Perfor-
mance of the proposed approach is evaluated through a simulation study (Section 3)
and also by a real data application (PM in Canada) (Section 4). Concluding remarks
are given in Section 5. Technical details are deferred to the Appendix.

2. Measurement error model with skewed student errors

Recall the linear regression model (1) where yi is the observed response variable but
now xi is the p−dimensional unobserved but fixed true covariate variable correspond-
ing to the observed explanatory variable wi. It means that in reality we do not observe
xi, but instead wi are observed. The basic measurement error model is then given by

yi = xTi β + ei, wi = xi + ui, i = 1, . . . , n, (4)

where the residual term ei and the measurement error ui are assumed to be indepen-

dent. The normality assumptions are usually made for ei and ui, namely ei
iid∼ N(0, σ2)
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and ui
iid∼ Np(0, τ

2Ip) with known τ2. Note that we assume τ2 is known to make sure
our model is identifiable. This is also a reasonable assumption since we know something
about the measurement error mechanism.

We assume that the measurement errors occur at random. This implies that the
observed measurement wi is modeled as a random variable whose mean is equal to
the fixed true (unobserved) auxiliary variable xi and its variance is fixed equal to τ2.

We propose a measurement error model with a skewed Student distribution to
account for fat tails and skewed errors, instead of assuming the normality of error
terms. For i = 1, . . . , n, we assume n independent samples from a skewed Student
distribution (3) with µi = xTi β, scale parameter σ, a scalar parameter γ ∈ (0,∞), and
ν ∈ R+.

f(yi|xi,β, σ2, γ, ν) =
2

(γ + 1
γ )

Γ(ν+1
2 )

Γ(ν2 )
√
πνσ

[
1 +

(yi − xTi β)2

νσ2

(
1

γ2
I[yi≥xTi β] + γ2I[yi<xTi β]

)]− ν+1

2

,

where ν ∈ R+. Also, we assume that

wi | xi
ind∼ Np(xi, τ

2Ip), τ2 known positive definite, i = 1, . . . , n.

To do a Bayesian analysis, we assign the prior distributions for all unknown param-
eters to find the posterior distribution of the parameters given the data. We take the
following prior distribution:

π(β, σ2, γ, ν) ∝
[
(σ2)−

a1
2
−1exp

(
− a2

2σ2

)]
PγPν , (5)

where Pγ and Pν are proper distributions, and a1, a2 are positive real numbers. Note
that we use non-informative priors for β and σ2 independently as follows: π(β) ∝ 1
and π(σ2) ∼ IG

(
a1

2 ,
a2

2

)
, where IG stands for the inverse gamma distribution.

Before we investigate the propriety of the posterior, it is convenient to introduce
independent latent variables λ1, . . . , λn in (3) as follows:

f(yi|xi, λi,β, σ2, γ, ν) =
2

(γ + 1
γ )

√
λi√

2πσ
exp

[
−λi(yi − x

T
i β)2

2σ2

(
1

γ2
I[yi≥xTi β] + γ2I[yi<xTi β]

)]
and f(λi | ν) =

(ν
2

) ν
2

Γ
(ν

2

)−1
λ
ν

2
−1

i exp
(
−ν

2
λi

)
, i = 1, . . . , n.

This enables us to represent student’s t-distribution as scale mixtures of normal distri-
butions. Let y = (y1, . . . , yn)T and w = (w1, . . . ,wn)T . By combining the likelihood
of the model and the prior (5), the posterior distribution is

π(x1, . . . ,xn,λ1, . . . , λn,β, σ
2, γ, ν | y,w)

∝
(
γ +

1

γ

)−n
(σ2)−

n

2

n∏
i=1

[
λ
ν+1

2
−1

i exp
(
−ν

2
λi

)](ν
2

)nν
2

Γ
(ν

2

)−n
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×
n∏
i=1

{
exp

[
−λi(yi − x

T
i β)2

2σ2

(
1

γ2
I[yi≥xTi β] + γ2I[yi<xTi β]

)]}

× (τ2)−
np

2 exp

[
− 1

2τ2

n∑
i=1

‖wi − xi‖2
]

(σ2)−
a1
2
−1exp

(
− a2

2σ2

)
PγPν .

(6)

We first state our main result, which provides a sufficient condition for the propriety of
the posterior distribution that results from the aforementioned hierarchical Bayesian
model (6).

Theorem 1. The posterior density π(x1, . . . ,xn,λ1, . . . , λn,β, σ
2, γ, ν | y,w) is

proper if n ≥ p. and also all the model parameters (λ1, . . . , λn,β, σ
2, γ, ν) have finite

variances.

The proof of Theorem 1 is deferred to the Appendix A.

We obtain hierarchical Bayes predictors of model parameters using Gibbs sampling
and Metropolis-Hastings. Full conditional distributions to implement the Gibbs
samplers and Metropolis-Hastings are provided in the Appendix B.

In terms of priors used in the succeeding sections (simulation study and data appli-
cation), we used non-informative prior for β as π(β) ∝ 1. For the inverse of variance
component σ2, we used the gamma distribution prior with shape and rate parameters
0.5. For the parameter ν, we used the exponential distribution prior with mean 10,
and for the skewness parameter γ, we used the gamma distribution prior with shape
and rate parameters 0.5 for γ2. Note that the all model parameters in the simulation
study and data application converged successfully.

3. Simulation study

In this section, we carry out a simulation study to evaluate the performance of the
proposed model. We consider the following linear model:

yi = β0 + β1xi + ei, i = 1, ..., n,

wi = xi + ui, (7)

where n = 50, ei has a skewed t-distribution with parameters (0, σ2, γ, ν), and ui has
a Normal distribution with mean 0 and variance τ2. We generate xi from a Normal
distribution with mean 5 and variance 9 and keep them fixed during the simulation
study. Then, yi given xi is generated from a skewed t-distribution with parameters
(β0 + β1xi, σ

2, γ, ν), and wi given xi is generated from a Normal distribution with
mean xi and variance τ2. We choose the true parameters as β0 = 1, β1 = 3, σ2 = 1,
and different sets of values for τ2 (= 1, 3, 10), γ (= 0.7, 1.6) and ν (= 3, 5, 10, 20). We
run R = 1, 000 simulations to estimate the model parameters and to also provide the
corresponding posterior variances.

We also consider different models to evaluate their performances in this set-up. In
particular, we consider the following models: skewed t-distribution, skewed Normal,
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t-distribution, and Normal distribution, noting that the last three models are special
cases of skewed t-distribution (3). The bias of parameters estimate and their corre-
sponding mean squared error (MSE) defined as MSE = bias2 + var are calculated to
evaluate the bias and relative efficiency of the model parameters estimate using dif-
ferent models. We may note that the bias is based on the average of posterior means
of R = 1, 000 replications subtracted from the true value, and var is the average of
posterior variances of R = 1, 000 replications. The results are shown in Tables 1 to 3.
As shown in the Tables, the estimate of model parameters in the case of skewed-t dis-
tribution are fairly unbiased and the corresponding MSEs are more efficient than other
models in most parameters. We observe that with increasing ν, for a given skewness
parameter γ, the MSEs of parameter estimators of σ2 and ν increase for the skewed-t
model while the MSE of parameter estimator of σ2 decreases for the skewed Normal
model, although the parameter σ2 is not directly comparable for the skewed-t and
skewed Normal models. Note that the MSE value of σ̂2 for the skewed Normal is much
larger than the corresponding value of the skewed-t which shows that the skewed Nor-
mal model can not properly capture the variation of the dispersion parameter when
the data are generated from the skewed-t model. We also observe even worse behav-
ior for the Normal model. Obviously, with increasing the skewness parameter γ, we
observe larger MSE of parameter estimator of γ in the cases of skewed-t and skewed
Normal models. We also observe that with increasing measurement error variance τ2,
the MSE of parameter estimator of σ2 increases for the all models.

Also to evaluate the impact of the measurement error on different models, we con-
sider a similar simulation set-up as above, but ignoring measurement error variance. In
particular, we generate the data from skewed-t model with the same set-up as above
(including the measurement error variances), but fit the models with ignoring the
measurement error variance, to be referred to as called the naive models. The results
are shown in Tables C1 to C3 in Appendix C. As expected, ignoring the measurement
error variance has a big impact on the performance of model parameters for the all
models in terms of bias and corresponding MSEs. Especially, we have large bias and
MSE for the parameter estimate σ̂2 and in particular when the measurement error
variance τ2 increases.

We also conduct employ a sensitivity analysis for the skewed-t model by considering
different hyperparameter values for the all priors and observe that the results are not
sensitive to the priors (not shown here).

4. PM data application in Canada

In this section, we analyze the PM data in Canada using our proposed approach. Re-
cently, there has been an increasing attention to air population around the world due
to its impact on human health and on the environment. Forecasting of the airborne
PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 µm) con-
centrations is of particular interest due to its well known adverse health impact to
humans (Paschalidou et al. 2011). It is well known that potential risk factors for the
PM2.5 are meteorological data including wind speed (WS) and temperature (Roy and
Adhikari 2009).

We use the PM data from Environment and Climate Change Canada website
(https://www.canada.ca/en/environment-climate-change.html) in 2012. We use the
annual maximum daily PM2.5 concentration as our outcome from 21 major cities in
Canada. It is well known that the potential risk factors of PM2.5 are WS and tem-
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Table 1. Bias and corresponding mean squared error (MSE) of the estimates parameters for different models
(skewed t, skewed Normal, t, and Normal) in the case of τ2 = 1 based on 1000 simulated datasets.

Skewed t Skewed Normal t-distribution Normal distribution
True parameter Bias MSE Bias MSE Bias MSE Bias MSE

β0=1 0.17 1.34 0.50 1.98 -0.65 1.47 -0.83 1.84
β1=3 -0.02 0.03 -0.02 0.03 -0.02 0.03 0.01 0.03
σ2=1 0.34 0.19 1.04 3.32 0.74 0.72 12.42 272.20
γ=0.7 0.05 0.02 -0.02 0.02 – - – –
ν=3 1.91 4.29 – – 1.59 3.25 – –
β0=1 0.15 1.21 0.32 1.32 -0.59 1.28 -0.70 1.43
β1=3 -0.02 0.03 -0.02 0.03 -0.02 0.03 0.00 0.03
σ2=1 0.38 0.20 0.80 0.77 0.78 0.73 10.19 110.35
γ=0.7 0.07 0.02 0.02 0.01 – - – –
ν=5 2.40 6.35 – – 1.99 4.62 – –
β0=1 0.20 1.16 0.31 1.23 -0.53 1.19 -0.63 1.28
β1=3 -0.02 0.03 -0.02 0.03 -0.02 0.03 0.00 0.03
σ2=1 0.47 0.28 0.74 0.65 0.91 0.93 9.60 96.94
γ=0.7 0.07 0.02 0.03 0.01 – - – –
ν=10 2.88 9.26 – – 2.29 6.41 – –
β0=1 0.24 1.17 0.32 1.20 -0.51 1.15 -0.60 1.23
β1=3 -0.02 0.03 -0.02 0.03 -0.02 0.03 0.00 0.03
σ2=1 0.54 0.37 0.73 0.64 1.05 1.25 9.41 93.10
γ=0.7 0.06 0.02 0.04 0.01 – - – –
ν=20 3.31 13.10 – – 2.46 8.80 – –
β0=1 0.66 1.96 0.62 2.40 1.13 2.36 1.07 2.26
β1=3 -0.02 0.03 -0.02 0.04 -0.02 0.03 0.00 0.03
σ2=1 0.42 0.30 1.39 12.41 0.78 0.79 13.46 1360.38
γ=1.6 -0.17 0.13 -0.10 0.18 – - – –
ν=3 1.83 3.99 – – 1.53 3.08 – –
β0=1 0.73 1.89 0.74 2.02 1.02 2.03 0.93 1.81
β1=3 -0.02 0.03 -0.02 0.03 -0.02 0.03 0.00 0.03
σ2=1 0.42 0.26 0.94 1.24 0.81 0.78 10.49 119.07
γ=1.6 -0.24 0.14 -0.22 0.14 – - – –
ν=5 2.33 6.03 – – 1.94 4.45 – –
β0=1 0.72 1.80 0.73 1.84 0.95 1.82 0.84 1.61
β1=3 -0.02 0.03 -0.02 0.03 -0.02 0.03 0.00 0.03
σ2=1 0.50 0.34 0.82 0.84 0.94 1.01 9.80 101.24
γ=1.6 -0.27 0.15 -0.25 0.14 – - – –
ν=10 2.79 8.90 – – 2.26 6.34 – –
β0=1 0.71 1.81 0.73 1.82 0.92 1.73 0.81 1.54
β1=3 -0.02 0.03 -0.02 0.03 -0.02 0.03 0.00 0.03
σ2=1 0.58 0.44 0.80 0.79 1.08 1.30 9.59 96.76
γ=1.6 -0.27 0.15 -0.27 0.15 – - – –
ν=20 3.21 12.80 – – 2.41 8.68 – –
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Table 2. Bias and corresponding mean squared error (MSE) of the estimates parameters for different models
(skewed t, skewed Normal, t, and Normal) in the case of τ2 = 3 based on 1000 simulated datasets.

Skewed t Skewed Normal t-distribution Normal distribution
True parameter Bias MSE Bias MSE Bias MSE Bias MSE

β0=1 0.57 3.44 0.98 4.62 -0.50 2.96 -0.82 3.36
β1=3 -0.05 0.09 -0.06 0.09 -0.05 0.09 0.01 0.08
σ2=1 1.02 1.27 2.14 10.17 1.69 3.35 30.58 1099.21
γ=0.7 0.04 0.02 -0.03 0.02 – - – –
ν=3 1.82 3.61 – – 1.52 2.63 – –
β0=1 0.64 3.42 0.90 3.77 -0.42 2.75 -0.70 2.91
β1=3 -0.05 0.08 -0.05 0.08 -0.05 0.08 0.01 0.08
σ2=1 1.16 1.58 1.95 4.36 1.56 2.82 28.32 839.19
γ=0.7 0.04 0.01 -0.01 0.01 – - – –
ν=5 2.11 4.75 – – -0.39 0.30 – –
β0=1 0.75 3.44 0.94 3.85 -0.34 2.62 -0.63 2.76
β1=3 -0.05 0.08 -0.05 0.08 -0.05 0.08 0.01 0.07
σ2=1 1.40 2.28 1.91 4.21 2.28 5.81 27.72 802.46
γ=0.7 0.03 0.01 -0.01 0.01 – - – –
ν=10 2.41 6.48 – – 1.85 4.16 – –
β0=1 0.85 3.67 0.99 3.92 -0.33 2.55 -0.60 2.70
β1=3 -0.05 0.08 -0.05 0.08 -0.05 0.08 0.00 0.07
σ2=1 1.58 2.87 1.89 4.15 2.60 7.35 27.54 792.22
γ=0.7 0.01 0.01 -0.01 0.01 – - – –
ν=20 2.75 9.19 – – 1.95 5.54 – –
β0=1 1.04 4.58 1.06 4.96 1.36 4.55 1.08 3.78
β1=3 -0.06 0.09 -0.06 0.09 -0.06 0.09 0.00 0.08
σ2=1 1.12 1.62 2.54 23.44 1.73 3.52 31.65 2294.30
γ=1.6 -0.25 0.14 -0.22 0.14 – - – –
ν=3 1.76 3.40 – – 1.49 2.56 – –
β0=1 0.98 4.18 1.03 4.50 1.21 3.98 0.93 3.32
β1=3 -0.05 0.08 -0.05 0.08 -0.05 0.08 0.00 0.08
σ2=1 1.24 1.86 2.18 6.07 1.93 4.23 28.64 861.35
γ=1.6 -0.27 0.14 -0.26 0.14 – - – –
ν=5 2.05 4.53 – – 1.70 3.22 – –
β0=1 0.94 4.07 1.01 4.20 1.12 3.79 0.85 3.11
β1=3 -0.05 0.08 -0.06 0.08 -0.05 0.08 0.00 0.08
σ2=1 1.47 2.57 2.08 5.08 2.33 6.01 27.94 815.60
γ=1.6 -0.28 0.14 -0.28 0.14 – - – –
ν=10 2.29 5.99 – – 1.84 4.16 – –
β0=1 0.92 4.16 0.97 4.23 1.09 3.67 0.82 3.03
β1=3 -0.05 0.08 -0.05 0.08 -0.05 0.08 0.00 0.08
σ2=1 1.68 3.33 2.11 5.33 2.60 7.47 27.72 803.01
γ=1.6 -0.27 0.14 -0.28 0.15 – - – –
ν=20 2.55 8.31 – – 1.94 5.48 – –
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Table 3. Bias and corresponding mean squared error (MSE) of the estimates parameters for different models
(skewed t, skewed Normal, t, and Normal) in the case of τ2 = 10 based on 1000 simulated datasets.

Skewed t Skewed Normal t-distribution Normal distribution
True parameter Bias MSE Bias MSE Bias MSE Bias MSE

β0=1 1.68 12.37 2.13 15.51 0.06 9.07 -0.81 8.52
β1=3 -0.16 0.31 -0.15 0.31 -0.16 0.32 0.01 0.25
σ2=1 2.35 6.77 4.36 25.56 3.71 16.54 94.13 9373.15
γ=0.7 0.01 0.01 -0.06 0.01 – - – –
ν=3 1.61 2.75 – – 1.32 1.91 – –
β0=1 1.83 13.37 1.70 12.83 0.17 8.47 -0.67 8.05
β1=3 -0.16 0.31 -0.48 0.28 -0.16 0.31 0.01 0.24
σ2=1 2.71 8.86 3.58 18.75 4.31 21.68 91.83 8788.53
γ=0.7 0.00 0.01 -0.13 0.01 – - – –
ν=5 1.78 3.35 – – 1.40 2.17 – –
β0=1 2.05 14.16 2.32 15.13 0.21 8.34 -0.61 7.85
β1=3 -0.17 0.33 -0.16 0.31 -0.16 0.30 0.01 0.24
σ2=1 3.21 12.29 4.30 21.86 5.14 30.20 91.26 8676.81
γ=0.7 -0.02 0.01 -0.06 0.01 – - – –
ν=10 2.01 4.55 – – 1.47 2.65 – –
β0=1 2.09 14.22 2.17 14.54 0.24 8.36 -0.59 7.85
β1=3 -0.16 0.32 -0.15 0.29 -0.16 0.30 0.01 0.24
σ2=1 3.65 15.93 4.25 21.48 5.71 37.14 91.07 8641.32
γ=0.7 -0.03 0.01 -0.05 0.01 – - – –
ν=20 2.18 6.00 – – 1.53 3.59 – –
β0=1 1.55 13.12 1.74 14.31 1.94 12.76 1.09 8.99
β1=3 -0.15 0.32 -0.17 0.33 -0.17 0.32 0.01 0.25
σ2=1 2.54 8.00 5.26 76.68 3.72 16.44 95.30 10877.01
γ=1.6 -0.25 0.13 -0.26 0.14 – - – –
ν=3 1.54 2.53 – – 1.32 1.89 – –
β0=1 1.64 13.20 1.65 13.29 1.78 11.91 0.95 8.52
β1=3 -0.17 0.33 -0.16 0.32 -0.16 0.32 0.01 0.24
σ2=1 3.01 11.13 4.89 30.81 4.38 22.00 92.23 8869.82
γ=1.6 -0.28 0.14 -0.27 0.14 – - – –
ν=5 1.70 3.13 – – 1.40 2.21 – –
β0=1 1.56 12.66 1.61 13.13 1.78 12.11 0.87 8.31
β1=3 -0.16 0.31 -0.15 0.31 -0.17 0.32 0.01 0.24
σ2=1 3.47 14.91 4.76 28.18 5.23 31.85 91.52 8728.72
γ=1.6 -0.27 0.13 -0.29 0.14 – - – –
ν=10 1.85 4.03 – – 1.49 2.75 – –
β0=1 1.50 13.28 1.50 13.44 1.68 11.45 0.83 8.21
β1=3 -0.15 0.32 -0.14 0.32 -0.16 0.31 0.01 0.24
σ2=1 4.04 20.32 4.89 32.40 5.85 39.04 91.24 8673.59
γ=1.6 -0.28 0.14 -0.27 0.14 – - – –
ν=20 1.98 5.53 – – 1.54 3.63 – –
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Table 4. Bayesian mean and 95% credible interval of model parameters estimates; data on particulate matter

in Canada.

Parameter Bayesian estimation Bayesian estimation
Skewed t Skewed Normal

Without ME With ME With ME Without ME

Mean 95% Credible Interval Mean 95% Credible Interval Mean 95% Credible Interval Mean 95% Credible Interval
β0 14.05 (-22.16, 56.74) 12.17 (-20.53, 44.87) 13.65 (-28.45 , 52.94) 14.14 (-27.41 , 55.04)
β1 0.28 (-2.60, 3.00) 0.36 (-1.83 , 2.72) 0.28 (-2.40 , 3.35) 0.29 (-2.42 , 3.23)
β2 0.03 (-0.56, 0.54) 0.06 (-0.46 , 0.47 ) 0.01 (-0.52 , 0.47) 0.01 (-0.55 , 0.52)
σ2 215.52 (49.52, 574.55) 197.49 (36.64, 507.66) 301.81 (88.96 , 703.47) 311.75 (100.11 , 724.06)
ν 9.73 (1.47, 33.00) 9.73 (1.42 , 33.36) – – – –
γ 1.85 (0.90, 3.13) 1.92 (0.97 , 3.24) 1.92 (1.00 , 3.16) 1.86 (0.97 , 3.02)

perate, among other covariates such as dust, oil combustion, and wood combustion.
However, we only have access to PM2.5, WS, and temperature. We obtain mean WS
(by averaging over the observed values during the day the corresponding values) and
temperature while the PM2.5 concentration was in the highest level at each location.

In the previous studies, multiple linear regression models have been used for the
prediction of PM2.5. However, it is known from the literature that the covariate WS is
measured with error (Danish Wind Turbine Manufacturers Association). The outcome
PM2.5 is also neither symmetric nor normally distributed (Figure 1). Figure 1 shows
histogram of the maximum PM2.5 concentration of 21 sites in Canada. As shown in
Figure 1, the histogram suggests induces a non-Gaussian feature which needs further
investigation for more precise understanding of this feature.

Figure 1. Histogram, normal density (blue), and kernel density (black) estimates of
the maximum PM2.5 concentration of 21 major cities in Canada in 2012.

The Bayesian analysis of the data, assuming the covariate WS is measured with
error, using skewed t- and skewed Normal distribution is provided in Table 4. We also
analyze the data using skewed t- and skewed Normal distribution without assuming
the measurement error in the covariate WS to evaluate the impact of measurement

10



error in the results. Note that β1 and β2 refer to the covariates WS and temperature,
respectively.

As shown in Table 4, the parameter β1 has a smaller credible interval for the skewed
t- distribution with the ME compared with the corresponding interval without the ME.
Similar behaviour is also observed for the σ2. The df of t-distribution also explains
the difference between the posterior mean of σ2 in the skewed t- and skewed Normal
distribution. In terms of measurement error variation, we assume τ2 = 12.94 (which is
the variance of monthly wind speed values) to avoid identifiability issue in the model.
The skewness parameter γ also suggests a large degree of non-symmetry in the ob-
served data. To evaluate the impact of the measurement error in the covariate WS,
we compare the skewed t- and skewed Normal distribution with and without measure-
ment error. To evaluate which model performs better to fit the data, we employ the
Deviance Information Criterion (DIC). We observe that these values for the skewed t-
and skewed Normal, with measurement error in covariate WS, are 419720 and 419780,
respectively, which is also another indication that the skewed t distribution fits the
data slightly better than the skewed Normal distribution. Note that the DIC values
for the skewed t- and skewed Normal distribution in the case of without measurement
error in covariate WS are 419799 and 419860, respectively. We also use the Bayes
factor (Kass and Raftery 1995) to compare different models. The Bayes factor is the
ratio of the predictive probability of the data under the compared models. To compare
the ME skewed t- with other models, we calculate the corresponding Bayes factors.
In particular, these ratios for the ME skewed Normal, skewed t-, and skewed Normal
are 8.4, 17.3, and 24.1. As indicated by Kass and Raftery (1995), the ratios which are
bigger than 3 provide strong evidence that the model defined in the numerator of the
Bayes factor (ME skewed t-) performs a better fit to much better to fit the data.

5. Concluding remarks

In this paper, we have proposed a Bayesian approach to linear regression models
with fat tails and skewed errors in response variable when auxiliary information is
measured with error. We have used appropriate prior distributions on the parameters
of the model, and we have shown, under a mild condition, that the resulting posterior
distribution is proper with finite variances of the model parameters. We have compared
the proposed model with various versions of the linear regression models with the
measurement error in covariates (Normal, t-distribution, and skewed Normal) through
a simulation study. The proposed approach has also been also applied to analyze
a motivating data application where covariates wind speed (measured with error)
and temperature are used for the prediction of particulate matter (which is neither
symmetric nor normally distributed) in Canada.

In this paper, we have assumed that the outcomes (response variables) are inde-
pendent from each other. It would be interesting to study the proposed model in the
context of linear mixed models where the outcomes are dependent. We have also as-
sumed that the measurement error variation is normally distributed. One can also
study the robustness of the results in terms of misspecification of error distribution.
These are some of the topics for future study.
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Supplementary materials

The supplementary materials contain R codes and corresponding “readme” files for
the simulations and real data application conducted in this paper.
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Appendix A. Proof of Theorem 1

Theorem 1. The posterior density π(x1, . . . ,xn,λ1, . . . , λn,β, σ
2, γ, ν | y,w) is proper if

n ≥ p. and also all the model parameters (λ1, . . . , λn,β, σ
2, γ, ν) have finite variances.

Proof: Let h(γ) = max(γ2, γ−2) where γ ∈ (0,∞). Note that

n∏
i=1

{
exp

[
−λi(yi − x

T
i β)2

2σ2

(
1

γ2
I[yi≥xTi β] + γ2I[yi<xTi β]

)]}
≤ exp

[
− 1

2σ2h(γ)

n∑
i=1

λi(yi − xTi β)2

]
,

(A1)

and also,

n∑
i=1

λi(yi − xTi β)2 = (y −Xβ)TΛ(y −Xβ)

= [β − (XTΛX)−1XTΛy]T (XTΛX)[β − (XTΛX)−1XTΛy]

+ yT [Λ−ΛX(XTΛX)−1XTΛ]y,

where Λ = diag(λ1, . . . , λn) and X = (x1, . . . ,xn)T . We assume n ≥ p to ensure full
column rank of the matrix X. First, by integrating out with respect to β, the right
side of (A1) has an upper bound such as

∫
exp

[
− 1

2σ2h(γ)

n∑
i=1

λi(yi − xTi β)2

]
dβ ≤ (2π)

p

2

[
σ2h(γ)

] p
2 |XTΛX|−

1

2 .

Note that yT [Λ − ΛX(XTΛX)−1XTΛ]y > 0 is nonnegative definite. Thus, for a
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generic constant K(> 0), we have

π(x1, . . . ,xn,λ1, . . . , λn, σ
2, γ, ν | y,w)

≤ K|XTΛX|−
1

2 (σ2)−
n−p

2 h(γ)
p

2

(
γ +

1

γ

)−n n∏
i=1

[
λ
ν+1

2
−1

i exp
(
−ν

2
λi

)](ν
2

)nν
2

Γ
(ν

2

)−n
× exp

[
− 1

2τ2

n∑
i=1

‖wi − xi‖2
]

(σ2)−
a1
2
−1exp

(
− a2

2σ2

)
PγPν .

Next observe that

h(γ)
p

2

(
γ +

1

γ

)−n
≤ h(γ)

p

2

(
γ2 +

1

γ2

)−n
2

≤ h(γ)
p

2h(γ)−
n

2 ≤ 1,

since h(γ) ≥ (γ2 · γ−2)
1

2 = 1 and n ≥ p. Hence, for proper Pγ , integrating out with
respect to γ,

π(x1, . . . ,xn,λ1, . . . , λn, σ
2, ν | y,w)

≤ K|XTΛX|−
1

2 (σ2)−
n−p

2

n∏
i=1

[
λ
ν+1

2
−1

i exp
(
−ν

2
λi

)](ν
2

)nν
2

Γ
(ν

2

)−n
× exp

[
− 1

2τ2

n∑
i=1

‖wi − xi‖2
]

(σ2)−
a1
2
−1exp

(
− a2

2σ2

)
Pν .

Noting that n− p+ a1 > 0 and a2 > 0. The integration with respect to σ2 yields

π(x1, . . . ,xn,λ1, . . . , λn, ν | y,w)

≤ K|XTΛX|−
1

2

n∏
i=1

[
λ
ν+1

2
−1

i exp
(
−ν

2
λi

)](ν
2

)nν
2

Γ
(ν

2

)−n
× exp

[
− 1

2τ2

n∑
i=1

‖wi − xi‖2
]
Pν .

Define λ(1) ≤ . . . ≤ λ(n) to be the ordered λi and de-
fine {λm1

, . . . , λmp
} as the set of λi’s that satisfy

∏p
i=1 λmi

=
min

{∏p
i=1 λsi : 1 ≤ s1 < . . . < sp ≤ n and Det(xs1 , . . . ,xsp) 6= 0

}
, where

Det(xs1 , . . . ,xsp) denotes the determinant of the submatrix of X. By the Cauchy-
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Binet Formula, writing G = τ2Ip,

∣∣XTΛX
∣∣− 1

2 =

 ∑
1≤s1<...<sp≤n

(
p∏
i=1

λsi

)
Det2(xs1 , . . . ,xsp)

− 1

2

≤

[
p∏
i=1

λmi

]− 1

2 ∣∣XTX
∣∣− 1

2 =

[
p∏
i=1

λmi

]− 1

2

∣∣∣∣∣
n∑
i=1

xix
T
i

∣∣∣∣∣
− 1

2

=

[
p∏
i=1

λmi

]− 1

2

∣∣∣∣∣G 1

2

n∑
i=1

(
G−

1

2xi

)(
G−

1

2xi

)T
G

1

2

∣∣∣∣∣
− 1

2

=

[
p∏
i=1

λmi

]− 1

2

|G|−
1

2

∣∣∣∣∣
n∑
i=1

(
G−

1

2xi

)(
G−

1

2xi

)T ∣∣∣∣∣
− 1

2

≤ Kτ−1

[
p∏
i=1

λmi

]− 1

2

.

where G = τ2Ip. Consider

[
p∏
i=1

λmi

]− 1

2 n∏
i=1

[
λ
ν+1

2
−1

i exp
(
−ν

2
λi

)]
=

∏
i∈{m1,...,mp}

[
λ
ν

2
−1

i exp
(
−ν

2
λi

)] ∏
i∈{m1,...,mp}c

[
λ
ν+1

2
−1

i exp
(
−ν

2
λi

)]
.

Now integrating out with respect to λ1, . . . , λn,

π(ν | y,w)

≤ K
[(ν

2

)− ν
2

Γ
(ν

2

)]p [(ν
2

)− ν+1

2

Γ

(
ν + 1

2

)]n−p (ν
2

)nν
2

Γ
(ν

2

)−n
Pν

= K

[
ν−

n−p
2 Γ

(
ν + 1

2

)n−p
Γ
(ν

2

)−(n−p)
Pν

]
.

Note that

Γ

(
ν + 1

2

)
=

∫ ∞
0

x
ν

2
− 1

2 e−xdx =

∫ ∞
0

x
ν

4
− 1

2 e−
x

2 x
ν

4 e−
x

2 dx

≤
[∫ ∞

0
x
ν

2
−1e−xxdx

] 1

2
[∫ ∞

0
x
ν

2 e−xdx

] 1

2

=
[
Γ
(ν

2

)] 1

2
[
Γ
(ν

2
+ 1
)] 1

2

= Γ
(ν

2

)(ν
2

) 1

2

.

Hence,

ν−
n−p

2 Γ

(
ν + 1

2

)n−p
Γ
(ν

2

)−(n−p)
≤ ν−

n−p
2 2−

n−p
2 ν

n−p
2 = 2−

n−p
2 . (A2)

Since Pν is proper, then, the posterior is proper for n ≥ p. It is sufficient to note that
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in order to have finite variance for model parameters (λ1, . . . , λn,β, σ
2, γ, ν), we need

n ≥ p from (A2). Note that to have finite variance we need to have second moment of
the distribution of model parameters bounded; for example, for ν which is obvious from
(A2) under n ≥ p. The same argument will follow similarly for other model parameters.
This completes the proof of Theorem 1.

Appendix B. Computational issues

The posterior distribution in (3) cannot be obtained in closed form. The implementa-
tion of the Bayesian procedure is greatly facilitated by the Markov chain Monte Carlo
technique, in particular the Gibbs sampler and Metropolis-Hastings. These techniques
require generating samples from the full conditionals of each of λi, σ

2,xi,β, γ, and ν
given the remaining parameters and the data (y,w). We note that x = (x1, ...,xn)T

is of full-column rank with probability 1 (with respect to the posterior distribution).
The full conditional distributions are specified as follows:

λi | · ∼ G

(
ν + 1

2
,

1

2

[
ν +

(yi − xTi β)2

σ2γ2
I[yi≥xTi β] +

(yi − xTi β)2γ2

σ2
I[yi<xTi β]

])
σ2 | · ∼ IG

(
n+ a1

2
,

1

2

[
a2 +

1

γ2

n∑
i=1

λi(yi − xTi β)2I[yi≥xTi β] + γ2
n∑
i=1

λi(yi − xTi β)2I[yi<xTi β]

])

π(xi | ·) ∝
{

exp

[
−λi(yi − x

T
i β)2

2σ2γ2

]
I[yi≥xTi β] + exp

[
−λi(yi − x

T
i β)2γ2

2σ2

]
I[yi<xTi β]

}
× exp

(
− 1

2τ2
‖wi − xi‖2

)
π(β | ·) ∝

n∏
i=1

{
exp

[
−λi(yi − x

T
i β)2

2σ2γ2

]
I[yi≥xTi β] + exp

[
−λi(yi − x

T
i β)2γ2

2σ2

]
I[yi<xTi β]

}

π(γ | ·) ∝
(
γ +

1

γ

)−n
exp

{
− 1

2σ2

[
1

γ2

n∑
i=1

λi(yi − xTi β)2I[yi≥xTi β] + γ2
n∑
i=1

λi(yi − xTi β)2I[yi<xTi β]

]}
Pγ

π(ν | ·) ∝

{
n∏
i=1

[
λ
ν

2

i exp
(
−ν

2
λi

)]}(ν
2

)nν
2

Γ
(ν

2

)−n
Pν

We use the Gibbs sampling technique to draw samples from the first three parameters
which have standard distributions. To generate samples from the full conditional of β,
we can generate samples from truncated normal random variates by the mixed rejection
algorithm of Geweke (1991). The conditional posterior pdf of βj for j = 1, . . . , p is
then

π(βj | β(−j), ·) ∝ exp

[
− 1

2σ2

n∑
i=1

λi(yi − xTi β)2

{
1

γ2
I[yi≥xTi β] + γ2I[yi<xTi β]

}]
, (B1)

where the suffix (−j) denote the vector without the j−th component (Fernandez

and Steel 1998). Define wji = (yi − xTi β + xijβj)/xij . Ordering the observations as

wj(1) < wj(2) < . . . < wj(n) and partitioning R, the domain of βj , into the sets Sj0 =
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(
−∞, wj(1)

]
, Sj1 =

(
wj(1), w

j
(2)

]
, . . . , Sjn =

(
wj(n),∞

)
, equation (B1) can be rewritten

as

π(βj | β(−j), ·) ∝
n∑
h=0

{pjh}
−1/2

exp

(
−
ljh

2σ2

)
f1
N

(
βj

∣∣∣∣µjh, σ2

pjh

)
ISjh(βj),

with f1
N (·|t, v) the pdf of a univariate normal distribution with mean t and variance

v, IS(·) is the indicator function of the set S, and

pjh =

h∑
i=1

ρji1 +

n∑
i=h+1

ρji2,

pjhµ
j
h =

h∑
i=1

ρji1w
j
(i) +

n∑
i=h+1

ρji2w
j
(i),

ljh =

h∑
i=1

ρji1{w
j
(i)}

2 +

n∑
i=h+1

ρji2{w
j
(i)}

2 − pjh{µ
j
h}

2,

where

ρji1 = λixij

{
1

γ2
I(−∞,0)(xij) + γ2I(0,∞)(xij)

}
,

ρji2 = λixij

{
γ2I(−∞,0)(xij) +

1

γ2
I(0,∞)(xij)

}
.

Truncated univariate normal random variates are generated through the mixed rejec-
tion algorithm proposed by Li and Ghosh (2015).
Next we discuss how to generate samples from the conditional distribution of ν. After
choosing Pν as an exponential distribution,

Pν = k exp(−kν),

the posterior conditional distribution of ν becomes

π(ν | ·) ∝
(ν

2

)nν
2

Γ
(ν

2

)−n
exp

[
−ν

{
k +

1

2

n∑
i=1

(λi − logλi)

}]
.

We draw samples from the posterior conditional distribution by efficient rejection
sampling using exponential source density as described in Geweke (1992). The target
distribution has kernel density

f(ν | n, η) =
(ν

2

)nν
2

Γ
(ν

2

)−n
exp(−νη),

where η = k + 1
2

∑n
i=1(λi − logλi) and η ≥ n

2 + k > n
2 . The sampling distribution is
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exponential with kernel density function g(ν | α) = αexp(−αν). Consider the function

Q
let
= log

{
f(ν | n, η)

g(ν | α)

}
=
nν

2
log
(ν

2

)
− nlog

{
Γ
(ν

2

)}
+ (α− η)ν − logα,

and their partial derivatives are

∂Q

∂ν
=
n

2
log
(ν

2

)
+
n

2
− n

2
Ψ
(ν

2

)
+ (α− η), and

∂Q

∂α
= ν − 1

α
,

where Ψ(·) being digamma function. Since log
(
ν
2

)
+ 1−Ψ

(
ν
2

)
is monotone decreasing

function and η > n
2 , Q has a unique regular maximum defined by solving ∂Q

∂ν = 0 and
∂Q
∂α = 0. Let ν∗ be the solution of

n

2

{
log

(
ν∗

2

)
+ 1−Ψ

(
ν∗

2

)}
+

1

ν∗
− η = 0.

Hence, one can draw from the exponential distribution with density function
1
ν∗ exp

(
− ν
ν∗

)
and retains the draw with probability

[
Γ

(
ν∗

2

)]n [
Γ
(ν

2

)]−n(ν∗
2

)−nν∗
2
(ν

2

)nν
2

exp [(1/ν∗ − η)(ν − ν∗)] ,

with the Geweke retention probability[
Γ

(
ν∗

2

)]n [
Γ
(ν

2

)]−n ( ν
ν∗

)nν
2

exp [(1/ν∗ − η)(ν − ν∗)] .

Now turn to how to generate samples from the conditional distribution of γ. With a
gamma (a, b) on ϕ ≡ γ2, the conditional posterior distribution of ϕ is

π(ϕ | ·) ∝ ϕ
n

2
+a−1(ϕ+ 1)−nexp

{
−
(
ϑ

ϕ
+ κϕ

)}
,

where ϑ = 1
2σ2

∑n
i=1 λi(yi − xTi β)2I[yi≥xTi β] ≥ 0 and κ = b + 1

2σ2

∑n
i=1 λi(yi −

xTi β)2I[yi<xTi β] > 0.

Using the result of Chib (1995), since exp
{
−
(
ϑ
ϕ + κϕ

)}
is uniformly bounded by 1,

the target density comes from the part ϕ
n

2
+a−1(ϕ+ 1)−n. By taking a transformation

u = ϕ
1+ϕ , we have

π(u | ·) ∝ u
n

2
+a−1(1− u)

n

2
−a−1exp

{
−
(
ϑ(1− u)

u
+

κu

1− u

)}
,

where ϑ = 1
2σ2

∑n
i=1 λi(yi − xTi β)2I[yi≥xTi β] ≥ 0 and κ = b + 1

2σ2

∑n
i=1 λi(yi −

xTi β)2I[yi<xTi β] > 0.

Again, exp
{
−
(
ϑ(1−u)

u + κu
1−u

)}
is uniformly bounded by 1, and the target density is
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h(u) ∼ Beta
(
n
2 + a, n2 − a

)
.

Finally, we now turn to generate samples from the conditional dis-
tribution of xi. Using the result of Chib (1995), we can set the
target density as N

(
wi, τ

2I
)

and the uniformly bounded part as{
exp

[
−λi(yi−xTi β)2

2σ2γ2

]
I[yi≥xTi β] + exp

[
−λi(yi−xTi β)2γ2

2σ2

]
I[yi<xTi β]

}
which is bounded

by 1 with the exponential function.

Appendix C. Simulation study–more results
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Table C1. Bias and corresponding mean squared error (MSE) of the estimates parameters for different models

(skewed t, skewed Normal, t, and Normal) for τ2 = 1 based on 1000 simulated datasets in the case of naive

model (ignoring measurement error variance).

Skewed t Skewed Normal t-distribution Normal distribution
True parameter Bias MSE Bias MSE Bias MSE Bias MSE

β0=1 -0.03 2.48 0.17 3.20 -0.72 1.62 -0.83 1.84
β1=3 0.00 0.04 0.01 0.04 0.00 0.03 0.01 0.03
σ2=1 6.57 47.39 9.68 105.19 7.66 63.28 12.45 274.90
γ=0.7 0.20 0.09 0.17 0.09 – - – –
ν=3 3.13 11.35 – – 3.09 11.22 – –
β0=1 -0.12 2.34 -0.06 2.47 -0.66 1.44 -0.70 1.44
β1=3 0.00 0.03 0.01 0.03 0.00 0.03 0.00 0.03
σ2=1 6.62 47.74 8.81 84.51 7.64 62.92 10.21 110.71
γ=0.7 0.23 0.10 0.22 0.10 – - – –
ν=5 3.84 17.32 – – -3.83 17.39 – –
β0=1 -0.15 2.31 -0.12 2.42 -0.62 1.30 -0.63 1.28
β1=3 0.00 0.03 0.01 0.03 0.00 0.03 0.00 0.03
σ2=1 6.86 51.04 8.37 75.82 7.88 65.96 9.62 97.42
γ=0.7 0.24 0.11 0.24 0.12 – - – –
ν=10 4.56 27.42 – – 4.52 27.33 – –
β0=1 -0.15 2.30 -0.13 2.38 -0.60 1.24 -0.60 1.23
β1=3 0.00 0.03 0.01 0.03 0.00 0.03 0.00 0.03
σ2=1 7.15 55.31 8.23 73.15 8.20 71.14 9.43 93.53
γ=0.7 0.25 0.12 0.25 0.12 – - – –
ν=20 4.99 43.14 – – 4.86 43.20 – –
β0=1 0.33 2.94 0.13 3.58 0.98 2.08 1.07 2.26
β1=3 0.00 0.04 0.00 0.04 0.00 0.03 0.00 0.04
σ2=1 6.64 48.36 9.95 115.78 7.90 67.24 13.49 1373.35
γ=1.6 -0.34 0.26 -0.28 0.29 – - – –
ν=3 3.06 10.79 – – 2.99 10.52 – –
β0=1 0.50 3.08 0.45 3.32 0.90 1.82 0.92 1.81
β1=3 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03
σ2=1 6.61 47.47 8.77 83.57 7.82 65.43 10.51 119.49
γ=1.6 -0.41 0.30 -0.40 0.31 – - – –
ν=5 3.81 17.00 – – 3.77 16.87 – –
β0=1 0.60 3.30 0.54 3.34 0.84 1.64 0.85 1.62
β1=3 0.00 0.04 0.00 0.03 0.00 0.03 0.00 0.03
σ2=1 2.24 5.88 8.30 74.84 8.03 68.50 9.82 101.65
γ=1.6 -0.43 0.32 -0.44 0.34 – - – –
ν=10 -8.95 80.14 – – 4.46 26.86 – –
β0=1 0.55 3.15 0.55 3.27 0.81 1.55 0.81 1.54
β1=3 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03
σ2=1 7.06 53.98 8.14 71.80 8.34 73.67 9.60 97.09
γ=1.6 -0.44 0.34 -0.44 0.34 – - – –
ν=20 4.95 43.34 – – 4.79 42.71 – –
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Table C2. Bias and corresponding mean squared error (MSE) of the estimates parameters for different models

(skewed t, skewed Normal, t, and Normal) for τ2 = 3 based on 1000 simulated datasets in the case of naive

model (ignoring measurement error variance).

Skewed t Skewed Normal t-distribution Normal distribution
True parameter Bias MSE Bias MSE Bias MSE Bias MSE

β0=1 0.08 6.45 0.28 7.74 -0.76 3.27 -0.82 3.33
β1=3 0.01 0.09 0.00 0.09 0.00 0.08 0.01 0.08
σ2=1 18.70 376.89 26.00 732.32 21.37 483.97 21.63 1102.33
γ=0.7 0.24 0.11 0.23 0.12 – - – –
ν=3 3.38 12.68 – – 3.38 12.71 – –
β0=1 0.05 6.16 0.18 6.76 -0.68 3.01 -0.69 2.91
β1=3 0.01 0.09 0.00 0.08 0.00 0.08 0.01 0.08
σ2=1 19.32 400.30 24.94 666.23 21.96 509.67 28.36 841.55
γ=0.7 0.25 0.12 0.25 0.12 – - – –
ν=5 3.96 17.97 – – 3.96 18.10 – –
β0=1 0.09 6.15 0.12 6.55 -0.62 2.84 -0.63 2.75
β1=3 0.01 0.08 0.01 0.08 0.00 0.08 0.01 0.07
σ2=1 20.32 442.20 24.42 637.88 23.07 560.89 27.76 805.28
γ=0.7 0.26 0.12 0.26 0.13 – - – –
ν=10 4.55 27.41 – – 4.54 27.49 – –
β0=1 0.10 6.25 0.12 6.52 -0.59 2.74 -0.60 2.70
β1=3 0.01 0.08 0.01 0.08 0.00 0.08 0.00 0.07
σ2=1 21.30 485.46 24.30 631.02 24.19 614.77 27.57 794.27
γ=0.7 0.26 0.12 0.26 0.13 – - – –
ν=20 4.94 43.63 – – 4.82 43.08 – –
β0=1 0.50 8.09 0.39 9.29 1.03 3.84 1.08 3.78
β1=3 0.00 0.09 0.00 0.09 0.00 0.09 0.00 0.08
σ2=1 18.46 366.52 25.85 727.12 21.66 498.49 31.69 2258.02
γ=1.6 -0.42 0.32 -0.41 0.34 – - – –
ν=3 3.34 12.40 – – 3.34 12.42 – –
β0=1 0.58 8.16 0.56 8.75 0.93 3.44 0.94 3.31
β1=3 0.00 0.09 0.00 0.09 0.00 0.08 0.00 0.08
σ2=1 18.90 383.67 24.48 643.85 22.14 518.54 28.67 863.23
γ=1.6 -0.46 0.34 -0.45 0.36 – - – –
ν=5 3.92 17.82 – – 3.94 17.90 – –
β0=1 0.58 8.57 0.56 8.56 0.86 3.20 0.85 3.11
β1=3 0.00 0.09 0.00 0.08 0.00 0.08 0.00 0.08
σ2=1 20.16 435.44 23.94 614.62 23.22 568.39 27.99 818.48
γ=1.6 -0.46 0.36 -0.46 0.37 – - – –
ν=10 4.62 27.92 – – 4.50 27.28 – –
β0=1 0.57 7.97 0.55 8.50 0.82 3.08 0.82 3.04
β1=3 -0.01 0.08 0.00 0.08 0.00 0.08 0.00 0.08
σ2=1 20.72 461.77 23.77 605.82 24.34 622.45 27.76 805.23
γ=1.6 -0.46 0.35 -0.47 0.37 – - – –
ν=20 4.77 42.52 – – 4.77 42.93 – –
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Table C3. Bias and corresponding mean squared error (MSE) of the estimates parameters for different models

(skewed t, skewed Normal, t, and Normal) for τ2 = 10 based on 1000 simulated datasets in the case of naive

model (ignoring measurement error variance).

Skewed t Skewed Normal t-distribution Normal distribution
True parameter Bias MSE Bias MSE Bias MSE Bias MSE

β0=1 0.63 19.10 0.69 22.93 -0.77 8.97 -0.81 8.50
β1=3 0.02 0.30 0.02 0.27 0.01 0.27 0.01 0.25
σ2=1 61.58 4012.07 82.27 7259.70 68.78 4997.85 94.23 9394.25
γ=0.7 0.25 0.11 0.25 0.12 – - – –
ν=3 3.53 13.51 – – 3.49 13.29 – –
β0=1 0.51 18.87 0.68 22.02 -0.67 8.45 -0.68 8.05
β1=3 0.01 0.27 0.01 0.27 0.01 0.26 0.01 0.24
σ2=1 62.93 4242.94 80.90 6996.57 71.92 5451.09 91.91 8804.12
γ=0.7 0.26 0.12 0.26 0.13 – - – –
ν=5 3.90 17.65 – – 3.98 18.19 – –
β0=1 0.64 20.20 0.73 21.89 -0.61 8.13 -0.61 7.88
β1=3 0.01 0.27 0.01 0.26 0.01 0.25 0.01 0.24
σ2=1 67.34 4847.11 80.36 6900.12 76.29 6114.40 91.35 8694.65
γ=0.7 0.26 0.12 0.26 0.13 – - – –
ν=10 4.55 27.52 – – 4.52 27.38 – –
β0=1 0.69 20.75 0.76 22.03 -0.58 7.97 -0.58 7.82
β1=3 0.01 0.27 0.01 0.26 0.01 0.24 0.01 0.23
σ2=1 70.81 5353.37 80.18 6867.24 80.22 6744.18 91.14 8655.48
γ=0.7 0.26 0.13 0.26 0.13 – - – –
ν=20 4.90 42.87 – – 4.77 42.60 – –
β0=1 0.54 25.10 0.50 27.79 1.08 9.56 1.10 9.02
β1=3 0.00 0.29 0.01 0.28 0.00 0.27 0.01 0.25
σ2=1 59.13 3748.30 80.82 7000.18 69.07 5042.69 95.38 1087.06
γ=1.6 0.14 0.35 -0.46 0.37 – - – –
ν=3 3.45 12.98 – – 3.48 13.18 – –
β0=1 0.50 24.18 0.53 26.70 0.96 8.99 0.94 8.50
β1=3 0.01 0.28 0.01 0.27 0.00 0.26 0.01 0.24
σ2=1 62.00 4106.49 79.24 6710.10 72.07 5473.74 92.29 8882.76
γ=1.6 -0.47 0.35 -0.47 0.37 – - – –
ν=5 3.96 18.02 – – 3.95 18.00 – –
β0=1 0.45 24.32 0.47 26.15 0.87 8.54 0.87 8.28
β1=3 0.01 0.27 0.01 0.27 0.01 0.25 0.01 0.24
σ2=1 67.87 4636.50 78.78 6630.68 76.46 6142.32 91.60 8742.74
γ=1.6 -0.47 0.36 -0.48 0.37 – - – –
ν=10 4.54 27.35 – – 4.50 27.23 – –
β0=1 0.33 23.27 0.43 26.15 0.83 8.35 0.84 8.22
β1=3 0.02 0.27 0.01 0.27 0.01 0.25 0.01 0.24
σ2=1 68.81 5057.00 78.51 6590.02 80.36 6767.46 91.37 8698.90
γ=1.6 -0.47 0.35 -0.47 0.37 – - – –
ν=20 4.68 41.99 – – 4.79 42.98 – –
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