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In this note we present an algorithm to obtain a uniform 
lower bound on Hausdorff dimension of the stationary measure 
of an affine iterated function scheme with similarities, the 
best known example of which is Bernoulli convolution. The 
Bernoulli convolution measure μλ is the probability measure 
corresponding to the law of the random variable

ξ =
∞∑

k=0

ξkλ
k,

where ξk are i.i.d. random variables assuming values −1
and 1 with equal probability and 1

2 < λ < 1. In particular, 
for Bernoulli convolutions we give a uniform lower bound 
dimH(μλ) ≥ 0.96399 for all 1

2 < λ < 1.
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1. Introduction

In this note we will study stationary measures for certain types of iterated function 
schemes. We begin with an important example.

1.1. Bernoulli convolutions

The study of the properties of Bernoulli convolutions was greatly advanced by two 
influential papers of Paul Erdös from 1939 [5] and 1940 [6] and has remained an active 
area of research ever since. We briefly recall the definition: given 0 < λ < 1 we can 
associate the Bernoulli convolution measure μλ on the real line corresponding to the 
distribution of the series

ξ =
∞∑
k=0

ξkλ
k (1)

where (ξk)∞k=1 are independent random variables assuming values ±1 with equal proba-
bility. Equivalently, this is the probability measure given by the weak-star limit of the 
measures

μλ = lim
n→+∞

1
2n

∑
i0,··· ,in−1∈{0,1}

δ

⎛⎝n−1∑
j=0

(−1)ijλj

⎞⎠ ,

where δ(y) is the Dirac delta probability measure supported on y. The properties of 
these measures have been studied in great detail. We refer the reader to recent surveys 
by Gouëzel [13] and Hochman [18] for an overview of existing results.

The properties of the measure μλ are very sensitive to the choice of λ. For example, if 
0 < λ < 1

2 then μλ is supported on a Cantor set and is singular with respect to Lebesgue 
measure, but if λ = 1

2 then the measure μ1/2 equals the normalized Lebesgue measure 
on [−2, 2]. For 1

2 < λ < 1 the situation is more subtle. In this case the measure μλ is 
supported on the closed interval 

[
− 1

1−λ ,
1

1−λ

]
. It was conjectured by Erdös in 1940 [6], 

and proved by Solomyak in 1995 [35], that for almost all λ ∈ (1 , 1) (with respect to 
2
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Lebesgue measure) the measure μλ is absolutely continuous. Recently Shmerkin [30], [31], 
developing the method of Hochman [17], improved this result to show that the set of 
1
2 < λ < 1 for which μλ is not absolutely continuous has zero Hausdorff dimension. 
On the other hand, it was shown by Erdös in [5] that this exceptional set of values is 
non-empty.

We will be concerned with another, though related, aspect of the Bernoulli convolu-
tions μλ, namely their Hausdorff dimension.

Definition 1.1. The Hausdorff dimension of a probability measure μ is defined by

dimH(μ) := inf{dimH(X) | X is a Borel set with μ(X) = 1}, (2)

where dimH(X) stands for the Hausdorff dimension of a set X, see Section 2.1 for 
definition.

Any measure μ which is absolutely continuous with respect to Lebesgue measure 
automatically satisfies dimH(μ) = 1, and therefore the result of Shmerkin implies that 
dimH(μλ) = 1 for all but an exceptional set of parameters λ of zero Hausdorff dimension. 
Furthermore, Varjú [36] recently proved a stronger result that dimH(μλ) = 1 for all 
transcendental λ.

Therefore, it remains to consider the set of algebraic parameter values. It turned out 
that for certain class of algebraic numbers, namely, for the reciprocals of Pisot numbers, 
it is possible to compute Hausdorff dimension dimH(μλ) explicitly, subject to computer 
resources. We briefly recall the definition.

Definition 1.2. Pisot number β is an algebraic number strictly greater than one all of 
whose (Galois) conjugates, excluding itself, lie strictly inside the unit circle.

The Pisot numbers form a closed subset of R and have Hausdorff dimension strictly 
less than 1. The smallest Pisot number is βmin = 1.3247 . . . (a root of x3 − x − 1 = 0).

The first progress on dimension of Bernoulli convolutions was made by Erdös in [5], 
where he showed that if λ is the reciprocal of a Pisot number, then μλ is not absolutely 
continuous. Garsia [11] improved on the Erdös result by showing that dimH(μλ) < 1
whenever λ is the reciprocal of a Pisot number. This phenomenon is called dimension 
drop and it remains unknown whether Pisot numbers are the only numbers with this 
property.

Alexander and Zagier estimated dimH(μλ) in the case that λ = 2
1+

√
5 was the recip-

rocal of the Golden mean and Grabner, Kirschenhofer and Tichy [12] gave examples of 
explicit algebraic numbers λ, the so-called “multinacci” numbers for which the dimension 
drop takes place. The values they computed are amongst the smallest known values for 
the dimension of Bernoulli convolutions. For example, they estimated that

when λ3 − λ2 − λ− 1 = 0, then dimH(μλ) = 0.980409319534731 . . .
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when λ4 − λ3 − λ2 − λ− 1 = 0, then dimH(μλ) = 0.986926474333800 . . . .

The technique developed in [12] has been subsequently extended to a wider class of 
algebraic parameter values cf. [1] and [15], however, the limitation of this method is that 
it requires studying each parameter value independently.

It is therefore a basic problem to get a uniform lower bound on dimH μλ for 12 < λ < 1
and to identify possible dimension drops. A simplifying observation is that

dimH(μλ) ≥ dimH(μλ2) (3)

and thus if suffices to get a lower bound for 1
2 < λ < 1√

2 .

Remark 1.3. The inequality (3) is established, in particular, in [14, Proposition 2.1] for 
algebraic parameter values λ, but it is easy to see that it holds for all 1

2 ≤ λ ≤ 1, since 
for any probability measure μ we have that dimH μ ∗ μ ≥ dimH μ.

Our first main result on the dimension of Bernoulli convolutions is a collection of 
piecewise-constant uniform lower bounds over increasingly finer partitions of the param-
eter space.

Theorem 1.4. 

(i) The dimension of Bernoulli convolutions μλ for any 1
2 < λ < 1 satisfies

dimH μλ ≥ G0 := 0.96399.

(ii) Moreover, the dimension of Bernoulli convolutions μλ is roughly bounded from be-
low by a piecewise-constant function G1 with 8 intervals of continuity, dimH μλ ≥
G1(λ), where the values of G1 are given in Table 1 for 0.5 ≤ λ ≤ 0.8.

(iii) The previous bound can be further refined. The dimension of Bernoulli convolutions 
μλ is bounded from below by a piecewise-constant function G2 corresponding to 
approximately 10000 intervals dimH μλ ≥ G2(λ), where the graph of the function G2
is presented in Fig. 8, with the particularly interesting region 0.5 < λ < 0.575
presented in Fig. 1.

In the proof, we derive (ii) from (iii) and (i) from (ii), rather than establishing each 
estimate independently. We choose to give the statement in three parts for the clarity of 
exposition.

Remark 1.5. Our proof is computer assisted and these bounds are not sharp, at least in 
the following sense: using a finer partition of the parameter space one could obtain even 
better lower bounds. This of course requires more computer time.
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Table 1
Values of G1.

Interval G1

[0.5000, 0.5037) 0.9900
[0.5037, 0.5181) 0.9800
[0.5181, 0.5200) 0.9700
[0.5200, 0.5430) 0.9785
[0.5430, 0.5451) 0.9639
[0.5451, 0.5527) 0.9785
[0.5527, 0.5703) 0.9850
[0.5703, 0.8000) 0.9900

Fig. 1. Plots of G0, G1 and G2.

The behaviour of the lower bound function G2 appears to be quite intriguing, in 
particular, the largest dimension drops seem to correspond to the reciprocals of the limit 
points of the set of Pisot numbers, see Section 3.4 for further discussion and Fig. 8, for 
detailed plots.

To the best of our knowledge, the best result to date is due Feng and Feng [9]; 
they obtained a global lower bound of dimH(μλ) ≥ 0.9804085. They give an alternative 
approach for computing a lower bound for dimH(μλ), which uses the conditional entropy. 
Three years earlier Hare and Sidorov [14] showed that dimH(μλ) ≥ 0.82. Their method 
depends on a result of Hochman and uses the fact that the dimension of μλ can be 
expressed in terms of the Garsia entropy and most advances on this problem are based 
on this idea.

Our approach is different to both and is rooted in connection between iterated function 
schemes and random processes. In addition to uniform estimates, it allows us to compute 
good lower bounds on dimH(μλ) for individual values λ.

The following set of algebraic numbers, intimately related to Pisot numbers, is also 
extensively studied.

Definition 1.6. A Salem number is an algebraic integer σ > 1 of degree at least 4, 
conjugate to σ−1, all of whose conjugates, excluding σ and σ−1, lie on the unit circle.

We refer to a survey by Smyth [34] for an introduction to the topic. The set of limit 
points of Salem numbers contains the Pisot numbers. We have computed the lower bound 
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for the reciprocals of Salem numbers, thus providing partial supporting evidence that 
there is no dimension drop for these parameter values.

Theorem 1.7. 

(i) For every one of the 99 values 1
2 < λ < 1 which is the reciprocal of a Salem number 

of degree at most 10 one has that dimH(μλ) ≥ 0.98546875. Detailed estimates are 
tabled in Appendix A.1.

(ii) One can also consider the 47 known so called small Salem numbers 10
13 < λ < 1

and show that dimH(μλ) ≥ 0.999453125. Lower bounds on the dimensions of the 
Bernoulli convolutions for the reciprocals of small Salem numbers are presented in 
Appendix A.2.

Another conjecture suggests that there exists ε > 0 such that for any λ ∈ (1 − ε, 1)
the dimension of the measure μλ equals 1. In particular, Breuillard—Varjú [2] showed 
that there exists ε > 0 so that dimH(μλ) = 1 for 1 − ε < λ < 1 under the assumption 
that Lehmer conjecture holds. Lehmer conjecture states that the Mahler measure of any 
nonzero noncyclotomic irreducible polynomial with integer coefficients is bounded below 
by some constant c > 1. It implies, in particular, that there exists a smallest Salem 
number.

As another application of our method, we give an asymptotic for the lower bound of 
dimH μλ as λ → 1 in Section 4. More precisely, we establish the following result.

Theorem 1.8. There exist c > 0 and ε > 0 so that dimH(μλ) ≥ 1 − c(1 − λ) for 1 − ε <
λ < 1.

The Bernoulli convolutions are a special case of a far more general construction of 
self-similar measures, which we describe next.

1.2. Iterated function schemes with similarities

Let k be fixed. Given 0 < λ < 1 and c̄ = (c1, . . . , ck) ∈ Rk, consider a collection 
S = {fj , j = 1, . . . , k} of k contraction similarities defined by

fj : R → R; fj(x) = λx + cj , for 1 ≤ j ≤ k.

Let p̄ = (p1, · · · , pk) be a probability vector where 0 < pj < 1 and 
k∑

j=1
pj = 1.

Definition 1.9. We call a triple S(λ, ̄c, p̄) an iterated function scheme of similarities. We 
will omit the dependence on c̄ and p̄ in the sequel when it leads to no confusion.
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Definition 1.10. A probability measure μ is called a stationary measure for the contrac-
tions f1, · · · , fk and the probability vector p̄ if it satisfies

μ =
k∑

j=1
pj(fj)∗μ,

i.e., 
´
F (x)dμ(x) =

k∑
j=1

pj
´
F (fjx)dμ(x), for all bounded continuous functions F .

The existence and the uniqueness of stationary measures in this setting follows from 
the work of Hutchinson [19].

In this note we are particularly concerned with the following two systems. The first 
one has a Bernoulli convolution as the stationary measure.

Example 1.11 (Function scheme for Bernoulli convolutions). Given a real number 1
2 <

λ < 1 consider the iterated function scheme of two maps f0, f1 given by fj(x) = λx +
j, j = 0, 1 and probability vector p̄ =

( 1
2 ,

1
2
)
. Then the stationary measure μ = μλ

corresponds to the distribution of the random variable

∞∑
k=0

ηkλ
k,

where ηk are i.i.d. assuming values 0 and 1 with equal probability. This agrees with 
formula (1) up to the change of variables ξk = 2ηk − 1.

Example 1.12 ({0, 1, 3}-system). We can consider the contractions f1, f2, f3 : R → R

defined by

f1(x) = λx, f2(x) = λx + 1, f3(x) = λx + 3,

and the probability vector p = (1
3 , 

1
3 , 

1
3 ). For the corresponding stationary measure μ0,1,3

λ

it is known that for almost all 1
4 ≤ λ ≤ 1

3 with respect to Lebesgue measure we have

dimH(μ0,1,3
λ ) = log 3

log λ−1

(this equality also holds for all λ < 1
4 ) and for almost all 1

3 ≤ λ ≤ 2
5 with respect to 

Lebesgue measure we have dimH(μ0,1,3
λ ) = 1; see [20], [28].

The next theorem provides a lower bound for dimH(μ0,1,3
λ ).

Theorem 1.13. The dimension of the stationary measure μ0,1,3
λ for the {0, 1, 3}-system 

has the lower bounds
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(i) For any λ ∈ [ 14 , 
2
5 ] we have that dimH(μ0,1,3

λ ) ≥ G0,1,3
0 := min

{
log 3

logλ−1 , 1
}
− 0.2.

(ii) Moreover, dimH(μλ) is bounded from below by a piecewise-continuous function

G0,1,3
1 (λ)|Ik = min

{
log 3

log λ−1 , 1
}
− ck

with 11 intervals of continuity Ik, k = 1, . . . 11 which are given in Table 2, together 
with the corresponding values ck. In other words, for any λ ∈ [ 14 , 

2
5 ]

dimH(μ0,1,3
λ ) ≥ G0,1,3

1 (λ).

(iii) The estimate from part (ii) can be refined further. The dimension dimH(μ0,1,3
λ )

is bounded from below by a piecewise-continuous function G0,1,3
2 with approxi-

mately 10000 intervals of continuity, dimH(μ0,1,3
λ ) ≥ G0,1,3

2 (λ). The graph of the 
function G0,1,3

2 is presented in Fig. 2.

Table 2
Table of values of ck.

Interval Ik ck

[0.2500, 0.2630] 0.0350
[0.2630, 0.2650] 0.0550
[0.2650, 0.2800] 0.0350
[0.2800, 0.2820] 0.0650
[0.2820, 0.2980] 0.0350
[0.2980, 0.3210] 0.0850
[0.3210, 0.3320] 0.1100
[0.3320, 0.3350] 0.2000
[0.3350, 0.3450] 0.1100
[0.3450, 0.3670] 0.0800
[0.3670, 0.4045] 0.0400

Fig. 2. Plots of G0,1,3
1 and G0,1,3

2 .
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Remark 1.14. An alternative version for (i) could be: For any 0.25 < λ < 0.4 we have 
that dimH μ0,1,3

λ ≥ G0,1,3
0 (λ), where

G0,1,3
0 (λ) :=

⎧⎪⎪⎨⎪⎪⎩
log 3

logλ−1 − 0.11, if 0.25 < λ < 0.3210;
log 3

logλ−1 − 0.2, if 0.3210 < λ < 0.3250;
0.89, otherwise.

In particular, we see that the largest dimension drop seems to take place at λ = 1
3 . For 

this parameter value the dimension can be computed explicitly [21] following the method 
of [12], more precisely,

dimH μ0,1,3
1/3 = 0.83703915049 ± 10−10.

As in the case of Bernoulli convolutions, the biggest dimension drops appear to corre-
spond to the reciprocals of the limit points of hyperbolic numbers.1 However, in contrast 
to the Pisot numbers in the interval (1, 2), the limit set of hyperbolic numbers in the 
interval 

( 5
2 , 4
)

is not very well studied. We give detailed plot of G0,1,3
2 in Fig. 9 and 

discuss its features in Section 3.4.
We obtain lower bounds for the Hausdorff dimension of Bernoulli convolutions and for 

the stationary measures of the {0, 1, 3}-system using the same method, which we outline 
in the next section.

1.3. Approach to lower bounds for Hausdorff dimension

The Hausdorff dimension of a measure is an important characteristic which is gener-
ally difficult to estimate, both numerically and analytically. We introduce two alternative 
characteristics of dimension type, namely, the correlation dimension and the Frostman 
dimension, which are easier to estimate and give a lower bound on the Hausdorff dimen-
sion. Whilst the numerical results suggest that in the case of iterated function schemes 
with similarities the Frostman dimension and Hausdorff dimension behave very differ-
ently, the correlation dimension appears to exhibit the same dependence on parameter 
values as expected from the Hausdorff dimension.

To sum up, our approach is the following:

Step 1: Replace the Hausdorff dimension with the correlation dimension or the Frostman 
dimension;

Step 2: Compute the lower bound for the correlation dimension or the Frostman dimen-
sion.

1 An algebraic number is called hyperbolic, if all its Galois conjugates lie inside the unit circle.



10 V. Kleptsyn et al. / Advances in Mathematics 395 (2022) 108090
Fig. 3. An iterated function scheme of three similarities f0(x) = x
3 , f1(x) = x

3 + 1, and f3(x) = x
3 + 3 and 

an admissible interval J.

1.3.1. Affine iterated function schemes with similarities
We begin by defining the correlation dimension which bounds the Hausdorff dimension 

from below (cf. Lemma 2.4). It has been introduced in [29] as a characteristic of dimension 
type. The notion was subsequently formalised by Pesin in [27], see also [4] and [33]. We 
will give a formal definition later in Section 2.2.

We proceed by introducing one of our main tools, a symmetric diffusion operator
associated to an iterated function scheme.

Let S(λ, ̄c, p̄) be an iterated function scheme of similarities. Assume that Jλ ⊂ R is 
an interval such that fi(Jλ) ⊂ Jλ for all i = 1, . . . , k. For the invariant measures μλ we 
have that suppμλ ⊂ Jλ.

We say that an interval J is λ-admissible for an iterated function scheme S(λ, ̄c, p̄) if

Interior(J) ⊃ {x− y | x, y ∈ Jλ}. (4)

This is illustrated in Fig. 3. Given a (possibly infinite) set of parameter values Λ ⊂ [0, 1]
we say that the interval J is Λ-admissible if it is an admissible interval for all λ ∈ Λ.

Definition 1.15. Given an iterated function scheme of similarities S(λ, ̄c, p̄) for any α ∈
(0, 1) we define the symmetric diffusion operator D(2)

α,S by

[D(2)
α,Sψ](x) := λ−α ·

k∑
i,j=1

pipj · ψ
(
x− ci + cj

λ

)
. (5)

We consider this operator to be acting on the space of all functions on the real line, 
however the subset of nonnegative functions{

ψ : R → R+ | suppψ ⊆ {x− y | x, y ∈ Jλ}
}

is invariant with respect to D(2)
α,S .
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Fig. 4. Image of the function ψ = 1 − 0.2|x| is strictly smaller than ψ.

Remark 1.16. Although the difference between two operators D(2)
α1,S and D(2)

α2,S is in 
scaling factor only, we prefer to keep this factor as a part of the definition.

We are now ready to state a key result, which is the basis for our numerical method.

Theorem 1.17. Let S(λ, ̄c, p̄) be an iterated function scheme of similarities. Assume that 
for some α > 0 there exists an admissible compact interval J ⊂ R, a function ψ : R → R+

with suppψ ⊂ J which is positive and bounded away from 0 and from infinity on J , such 
that for any x ∈ J

[D(2)
α,Sψ](x) < ψ(x). (6)

Then the correlation, and hence the Hausdorff, dimension of the S-stationary measure 
μ is bounded from below by α:

dimH(μ) ≥ D2(μ) ≥ α.

Theorem 1.17 allows us to obtain rigorous lower estimates for the correlation dimen-
sion D2(μ) of the stationary measure μ for a single parameter value λ (and thus for the 
Hausdorff dimension dimH μ), once a suitable test function ψ is found. This also provides 
us with a way to find an asymptotic lower bound and to prove Theorem 1.8.

Example 1.18. To illustrate the way Theorem 1.17 is applied, we may choose λ = 0.75, a 
function ψ(x) = 1 −0.2|x| and to apply the operator D(2)

0.2,S . It is clear that we may choose 

J = [−4, 4]. Then Fig. 4 shows that D(2)
0.2,Sψ(x) < ψ(x) and therefore dimH μ ≥ 0.2.

We next want to adapt Theorem 1.17 to prepare for a computer-assisted proof of 
Theorems 1.4, 1.7 and 1.13. In Section 3.1 we modify the operator D(2)

α,S to obtain an 
operator Dα,Λ,J which preserves a subspace of piecewise constant functions, and amend 
Theorem 1.17 so that a common test function can be used for an open set of parame-
ter values Λ = (λ − ε, λ + ε). This adaptation allows us to choose the test function to 
be piecewise constant on intervals with rational endpoints and to verify the hypothe-
sis of Theorem 1.17 numerically, thus providing us with a means to obtain a uniform 
lower bound for the (correlation, and hence Hausdorff) dimension of the corresponding 
stationary measures.
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Afterwards, in Section 3.2 we give an iterative procedure to construct a test function 
for the operators D(2)

α,S and Dα,Λ,J .
A natural question arises. Assume that D2(μλ) > α. Does there exist a test function ψ

so that (6) holds? The next result gives an affirmative answer.

Theorem 1.19. Let μλ be the unique stationary measure of a scheme of contraction sim-
ilarities S(λ). Then for any α < D2(μλ) the hypothesis of Theorem 1.17 holds. In 
other words, there exists an admissible interval J , a piecewise constant function ψ with 
suppψ ⊂ J which is positive and bounded away from 0 and from infinity on J and such 
that for any x ∈ J

[D(2)
α,Sψ](x) < ψ(x).

As the reader will see, the technique in the proof of Theorem 1.17 exploits the fact that 
the maps are similarities with the same scaling coefficient. In the next section 1.3.2 we 
generalise the method to study other types of iterated function schemes at the expense 
of weaker estimates.

1.3.2. General uniformly contracting schemes
Let us denote by Br(x) a neighbourhood of a point x of radius r.
We will be concerned with iterated function schemes T (f̄ , p̄, J), where J ⊂ R is a 

compact interval, f̄ = (f1, . . . , fn) is a finite collection of uniformly contracting C1+ε

diffeomorphisms of R, which preserve the interval J , i.e. fj(J) ⊂ J for 1 ≤ j ≤ n and p̄
is a probability vector.

Following Hochman [16, §4.1], we say that the measure μ is α-regular, if there exists 
a constant C such that for any r > 0 and any x we have that

μ(Br(x)) < Crα. (7)

One of the examples of α-regular measures are Bernoulli convolutions [10, Proposition 
2.2]. We introduce the following dimension-type characteristic of a compactly supported 
probability measure μ on R, which is sometimes referred to as the Frostman dimension [8]
(in the context of Rn) or the lower Ahlfors dimension (in the context of general separable 
metric spaces). It is defined as supremum of the regularity exponents:

D1(μ) := sup{α | ∃C : ∀x, r μ (Br(x)) < Crα}.

Remark 1.20. We would like to warn the reader that the Frostman dimension doesn’t 
satisfy all conditions which a dimension of a measure is expected to satisfy, in particular, 
it is not closed under countable unions. We will see in Lemma 2.9 that D1(μ) ≤ D2(μ)
for any probability measure μ. It is not hard to show that it is also a lower bound for 
the packing dimension, as well as other dimensions which can be defined using the local 
dimension.
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A pair of complementary results, Theorems 1.23 and 1.25 below allow one to get a 
lower bound on the Frostman dimension D1(μ) for the stationary measure of an iterated 
function scheme T (f̄ , p̄, J) in terms of an associated linear operator.

Definition 1.21. Given an iterated function scheme T (f̄ , p̄, J) for any α ∈ (0, 1) we define 
the associated asymmetric diffusion operator D(1)

α,T by

D(1)
α,T [ψ](x) :=

n∑
j=1

pj · |(f−1
j )′(x)|α · ψ(f−1

j (x)). (8)

We consider this operator to be acting on the space of all functions on the real line, 
although it preserves nonnegative functions supported on J .

Remark 1.22. Comparing (8) with (5) we see that D(2)
α,S for the Bernoulli convolution 

system described in Example 1.11 corresponds to the operator D(1)
α,T for the system of 

three contractions

T := {f1(x) = λx− 1, f2(x) = λx, f3(x) = λx + 1}

and probability vector p = (0.25, 0.5, 0.25).

By analogy with D(2)
α,S , the operator D(1)

α,S gives us a way to obtain a lower bound for 
the Frostman dimension.

We denote by Br(J) the closed neighbourhood of the interval J of radius r.

Theorem 1.23. Assume that for some α > 0 there exist r > 0 and a function ψ : R → R+, 
supported on Br(J), positive on Br(J) and bounded away from 0 and from infinity on 
Br(J), such that

∀x ∈ Br(J) [D(1)
α,T ψ](x) < ψ(x).

Then the measure μ is α-regular.

We now give a simple example to illustrate Theorem 1.23 in action.

Example 1.24. We may consider an iterated function scheme T consisting of two maps 
f1(x) = 0.65x and f2(x) = 0.6x + 1 with probabilities p0 = p1 = 0.5. Then for the 
invariant measure μ we get suppμ ⊂ J = [0, 2.7]. If we choose a function ψ(x) =
1 −0.4|x −1.25| on J and apply D(1)

0.35,T we see that D(1)
0.35,T ψ(x) < ψ(x). This is illustrated 

in Fig. 5. Therefore we conclude that the Frostman dimension of the stationary measure 
of this system is bounded from below by 0.35.

As in the case of Theorem 1.19 for correlation dimension, our next result states that 
any lower bound can be found using this method.
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Fig. 5. The image of the function ψ(x) = 1 − 0.4|x − 1.25| is strictly smaller than ψ.

Theorem 1.25. Let μ be the stationary measure of the iterated function scheme T (f̄ , p̄, J). 
Then for any α < D1(μ) the hypothesis of Theorem 1.23 holds. In other words there exists 
a neighbourhood Br(J) and a piecewise constant function ψ with suppψ ⊂ Br(J), which 
is positive and bounded away from 0 and from infinity on Br(J), and such that

∀x ∈ Br(J) [D(1)
α,T ψ](x) < ψ(x).

This test function can be constructed using the process similar to the one which is 
used in the construction of the test function for the diffusion operator D(2)

α,S , described 
in §3.2.

2. Dimension of a measure

In this section we collect together some preparatory material on different dimensions 
of a measure and their properties. A good reference for the background reading is a book 
by Falconer [7]. See also the work by Mattila et al. [24] for a discussion and comparison 
of notions of dimension of a measure.

It is convenient to summarize some useful notation for the sequel.
For any set X ⊂ R we denote by FX the set of real-valued positive functions, bounded 

away from zero and from infinity on X and vanishing on R \X. We would like to equip 
the set of functions FX with the partial order. We write that f ≺ g if f(x) < g(x) for 
all x ∈ X and f � g if f(x) ≤ g(x). Given a finite partition X def= {Xj , j = 1, . . . N}, 
X = ∪N

j=1Xj we denote by FX the subset of piecewise-constant functions associated to 
the partition X .

Given a collection of n maps fj , j = 1, . . . , n we use a multi-index notation for 
composition of k of them, namely, we denote fj

k
:= fj1 . . . fjk , where j

k
= j1, . . . , jk ∈

{1, . . . , n}k.
Finally, we denote by 1X the indicator function of X.

2.1. Hausdorff dimension

We briefly recall the definition of the Hausdorff dimension of a set X ⊂ R. Given 
s > 0 and δ > 0 we define s-dimensional Hausdorff content of X by
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Hs
δ (X) := inf

{∑
i

(diam(Ui))s | {Ui} is a cover for X and sup
i
{diam(Ui)} ≤ δ

}
,

where the supremum is over all countable covers by open sets whose diameter is at most 
δ. We next remove the δ dependence by defining s-dimensional Hausdorff measure of X
by

Hs(X) := lim
δ→0

Hs
δ (X) ∈ [0,+∞].

Finally, we come to the definition of the Hausdorff dimension of the set X.

Definition 2.1. The Hausdorff dimension of X is defined by

dimH(X) := inf{s ≥ 0 | Hs(X) = 0}. (9)

In particular, the Hausdorff dimension of Borel sets (Definition 2.1) is used in the 
definition of the Hausdorff dimension of probability measures (Definition 1.1).

2.2. Correlation dimension

A convenient method to obtain a lower bound on the Hausdorff dimension dimH(μ)
is a standard technique called the potential principle (see [26, p. 44]) which allows one to 
relate the Hausdorff dimension of a measure and convergence of the integral of powers 
of the distance function.

Definition 2.2. We define the energy of a probability measure μ by

I(μ, α) :=
ˆ

R

ˆ

R

(d(x, y))−α μ(dx)μ(dy), (10)

whenever the right-hand is finite.

Definition 2.3. The correlation dimension of the measure μ is defined by

D2(μ) = sup{α : I(μ, α) < +∞}. (11)

This is a special case of the more general q-dimensions Dq(μ) defined analogously [27].
The correlation dimension of μ gives a handy lower bound on the Hausdorff dimension 

of μ.

Lemma 2.4. dimH(μ) ≥ D2(μ).

Proof. The principle involved is described, for instance, in a book by Falconer [7, The-
orem 4.13] for sets or in a book by Mattila [23, §8] for measures. �
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The following simple result turns out to be very fruitful.

Corollary 2.5. If for a Borel probability measure μ and 0 < α < 1 the energy I(μ, α) is 
finite, then dimH(μ) ≥ α.

Remark 2.6. Developing the method proposed in [15] it is possible to show [21] that 
the strict inequality dimH(μλ) > D2(μλ) holds, for example, for some Pisot values of 
parameter λ both in the case of Bernoulli convolutions as described in Example 1.11 and 
in the case of {0, 1, 3}-system as described in Example 1.12.

We now would like to recall that a convolution of a continuous function f and a 
probability measure μ is a function given by (f ∗ μ)(x) =

´
R f(x − z)dμ(z). This fact 

brings us to introducing the last dimension notion we discuss in this work.

2.3. Frostman dimension

Since this notion is not very well known we will begin by introducing it.

Definition 2.7. Let us fix a function fα(r) = |r|−α. Let μ be a compactly supported 
probability measure. We define its Frostman dimension by

D1(μ) = sup{α : ∃C : ∀x, r μ(Br(x)) < Crα} (2.7.1)

= sup{α : ∃C : ∀x (fα ∗ μ)(x) < C} (2.7.2)

= sup{α : the convolution fα ∗ μ is a continuous function}. (2.7.3)

Remark 2.8. It is easy to see that three expressions for D1 give the same value. Indeed, 
it follows from the Chebyshev inequality that for any α and C such that (fα ∗μ)(x) < C

we have that μ(Br(x)) < Crα, so (2.7.2) implies (2.7.1).
Since suppμ is a compact set, the convolution (fα ∗ μ)(x) → 0 as x → ∞. Therefore 

if the function fα ∗ μ is continuous, it is also bounded. Hence (2.7.3) implies (2.7.2).
Finally, let us show that if μ(Br(x)) < Crα for some α and C, then for any α′ < α

we have that fα′ ∗ μ is continuous. Indeed, for any x and ε > 0 we have an asymptotic 
estimate

ˆ

Bε(x)

|x− y|−α′
dμ(y) ≤

εˆ

0

r−α′
d(Crα) = αC

α− α′ · ε
α−α′ → 0 as ε → 0. (12)

On the other hand, the convolution of μ with the function f̄α′(r) = max(|r|, ε)−α′ is a 
convolution of a probability measure with a continuous bounded function and hence is 
continuous. It follows from (12) that these convolutions converge uniformly to fα∗μ, and 
therefore the latter is everywhere finite and continuous as a uniform limit of continuous 
functions. Thus (2.7.1) implies (2.7.3).
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It is also not difficult to see that the Frostman dimension is not larger than the 
correlation dimension.

Lemma 2.9. For any compactly supported probability measure μ,

D1(μ) ≤ D2(μ). (13)

Proof. Let us consider the function fα(r) = |r|−α. Then for any α such that the convo-
lution f ∗ μ is bounded, one has that

I(μ, α) =
ˆ

R

(fα ∗ μ)(x)dμ(x) < +∞.

Therefore

{α | ∃C : ∀x (fα ∗ μ)(x) < C} ⊂ {α | I(μ, α) < +∞},

and the desired inequality (13) follows. �

3. Computing uniform lower bounds on dimension

We begin by modifying the diffusion operator and Theorem 1.17 in preparation for 
computer-assisted proofs of Theorems 1.4, 1.7 and 1.13.

3.1. Extension to open set of parameters

We keep the notation of Section 1.2. Let S(λ, ̄c, p̄) be an iterated function scheme of n
similarities with the same scaling coefficient λ and probability vector p̄.

Given 0 < α < 1 and a subset Λ ⊂ [0, 1] let J be a Λ-admissible interval and let 
J = {J1, . . . , JN} be a partition of J . The modified diffusion operator we introduce below 
preserves the subspace FJ of piecewise constant functions associated to the partition J .

Definition 3.1. We define a finite rank nonlinear diffusion operator Dα,Λ;J : FJ → FJ
by

Dα,Λ,Jψ|Jk
= (inf Λ)−α

n∑
i,j=1

pipj sup
x∈Jk, λ∈Λ

ψ

(
x− ci + cj

λ

)
, 1 ≤ k ≤ N. (14)

We see directly from definition that for any λ ∈ Λ we have that for any ψ ∈ FJ ,

D(2)
α,Sψ � Dα,Λ,Jψ.

The following adaptation of Theorem 1.17 to the operator Dα,Λ,J follows immediately.
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Fig. 6. The image of the piecewise constant function ψ is strictly smaller than ψ.

Theorem 3.2. Assume that for some α > 0 and a set Λ ⊂ [0, 1] there exists an admissible 
interval JΛ, its partition J , and a piecewise-constant function ψ ∈ FJ which is positive 
and bounded away from 0 and from infinity on JΛ, such that

Dα,Λ,Jψ � ψ. (15)

Then for any λ ∈ Λ the correlation dimension of the Sλ-stationary measure μλ is bounded 
from below by α:

D2(μλ) ≥ α.

We can illustrate the principle with the following example.

Example 3.3. In the setting of Bernoulli convolution with λ = 0.75 we may choose an 
interval Λ = [λ − 10−8, λ + 10−8] and J = [−4.1, 4.1]. Applying the operator D0.2,Λ,J to 
a function

ψ(x) = 0.15 · 1[−4,4] + 0.1 · 1[−2.7,2.7] + 0.15 · 1[−2.1,2.1] + 0.1 · 1[−1.6,1.6]

+ 0.125 · 1[−1.5,1.5] + 0.1 · 1[−1.2,1.2] + 0.125 · 1[−0.5,0.5] + 0.15 · 1[−0.25,0.25],

depicted in Fig. 6, we get that D0.2,Λ,Jψ ≺ ψ and conclude that dimH μλ > 0.2 for all 
λ ∈ Λ.

Therefore in order to show that D2(μλ) ≥ α for all λ ∈ Λ, it is sufficient to find an 
Λ-admissible interval JΛ, its partition J , and a piecewise constant function ψ associated 
to J , with ψ|JΛ > 0 such that Dα,Λ,Jψ � ψ and then apply Theorem 3.2.

Remark 3.4. Furthermore, by refining the partition in the construction of the operator 
Dα,Λ,J and choosing smaller intervals Λ, in the limit we obtain the correlation dimension. 
In particular, this implies a well-known fact that the correlation dimension is lower 
semicontinuous.
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3.2. Constructing the test function

The construction of a suitable test function ψ which satisfies the hypothesis of Theo-
rem 1.17 is based on the following general result for linear operators.

Notation 3.5. Given a linear operator A acting on real-valued functions and a small 
number ϑ > 0 we introduce

[Âϑf ](x) := min([Af ](x) + ϑ, f(x)). (16)

Observe that if A preserves the subset of positive functions, then Âϑ also does so. Fur-
thermore, if A preserves the subspace of continuous functions, then Âϑ preserves this 
subspace too.

We say that an operator A : FJ → FJ is monotone, if for any f, g ∈ FJ such that 
g � f we have that Ag � Af . Note that we don’t require the operator A to be linear in 
the definition of monotone.

We will need the following easy general statement.

Lemma 3.6. Let A : FX → FX be a monotone operator, and let ϑ > 0 be a real number. 
Assume that for some function f ∈ FX and for some x0 ∈ X we have that [Âϑf ](x0) =
[Af ](x0) + ϑ. Then for any k ≥ 1

[AÂk
ϑf ](x0) + ϑ ≤ [Âk

ϑf ](x0).

Proof. It is sufficient to show that the statement holds for k = 1. Then the result follows 
by induction. By definition of Âϑ we have that Âϑf � f . Together with monotonicity of 
A it implies that

[AÂϑf ](x0) + ϑ ≤ [Af ](x0) + ϑ = [Âϑf ](x0).

For the inductive step, let us assume that

[AÂk
ϑf ](x0) + ϑ ≤ [Âk

ϑf ](x0).

Then [Âk+1
ϑ f ](x0) = [AÂk

ϑf ](x0) +ϑ and therefore using monotonicity and the fact that 
Âϑf � f we get

[AÂk+1
ϑ f ](x0) + ϑ ≤ [AÂk

ϑf ](x0) + ϑ = [Âk+1
ϑ f ](x0). �

Proposition 3.7. Let J ⊂ R be a closed interval. Let A : FJ → FJ be a monotone operator. 
Let ϑ > 0 be an arbitrarily small real number. Assume that for some n > 0 and f ∈ FJ

we have that Ân
ϑf ≺ f . Then

AÂn
ϑf � Ân

ϑf.
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Proof. By definition of Âϑ for any function f ∈ FJ we have Âϑf � f . Since Âϑ is 
monotone, we deduce that

Ân
ϑf � Ân−1

ϑ f � · · · � f.

Since for every x ∈ J we have [Ân
ϑf ](x) < f(x), then there exists 0 ≤ m(x) ≤ n − 1 such 

that a strict inequality [Âm(x)+1
ϑ f ](x) < [Âm(x)

ϑ f ](x) holds. Therefore

[AÂ
m(x)
ϑ f ](x) + ϑ ≤ [Âm(x)

ϑ f ](x).

Applying Lemma 3.6 to the function Âm(x)
ϑ f with k = n −m(x), we get

[AÂn
ϑf ](x) + ϑ ≤ [Ân

ϑf ](x),

and the result follows. �

Our numerical results are based on the following Corollaries, which follow immediately 
from Theorem 1.17 and Theorem 3.2.

Corollary 3.8. If there exists and admissible interval Jλ such that Proposition 3.7 holds 
for A := D(2)

α,S(λ) and f := 1Jλ
, then D2(μλ) ≥ α.

We use the last proposition in order to find a suitable test function ψ for Theorem 3.2.

Corollary 3.9. If there exist an admissible interval JΛ and its partition J such that 
Proposition 3.7 holds for A := Dα,Λ,J and f := 1JΛ then D2(μλ) ≥ α for all λ ∈ Λ.

Note that Corollary 3.8 can only be applied to rational parameter values λ ∈ Q, which 
can be represented in computer memory exactly. In order to study irrational parameter 
values, such as Pisot or Salem numbers, we need to apply Corollary 3.9 to a tiny interval 
Λ with rational endpoints containing the irrational parameter value we would like to 
study.

3.3. Practical implementation: computing lower bounds for D2(μ)

The following method, based on Corollaries 3.8 and 3.9, can be used to obtain a lower 
bound on the correlation dimension of a stationary measure of an iterated function 
scheme of similarities.

3.3.1. Verifying a conjectured value
First let us assume that we would like to check whether α is a lower bound for the 

correlation dimension of an iterated function scheme of similarities S(λ, ̄c, p̄) for an open 
set of parameter values λ ∈ Λ. Then we proceed as follows:
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Fig. 7. The function Â25
ϑ 1J ≺ 1J for A = D0.75,Λ,J and ϑ = 10−3, suppμ0.75, and an admissible interval J.

(i) Fix an admissible interval JΛ, associated to Λ.
(ii) Choose a partition J of the interval J consisting of N intervals of the same length. 

From the point of view of efficiency of the practical implementation, it is better to 
choose the length of the intervals of the partition to be comparable with |Λ|. In our 
computations, we often take N so that

1
2N |Λ| ≤ |J | ≤ 2|Λ|N.

(iii) Introduce an operator A := Dα,Λ,J .
(iv) Take a piecewise-constant function 1J and ϑ > 0 and compute the images Ân

ϑ1J , 
which are piecewise-constant functions associated to the partition J .

(v) If we find n0 so that Ân0
ϑ 1J ≺ 1J , then we conclude that D2(μλ) > α.

We can give a simple example to illustrate the method.

Example 3.10. Let us show that for the Bernoulli convolution measure with λ ∈
(0.74, 0.76) we have D2(μλ) > 0.75. The corresponding iterated function scheme con-
sists of two maps and probability vector p̄ given by

f0(x) = λx, f1(x) = λx + 1; p̄ =
(1

2 ,
1
2

)
.

Then suppμλ ⊆ [0, 4.17] and we can choose an admissible interval J = [−4.5, 4.5]. We 
can also consider a uniform partition of J consisting of 120 intervals.

We then choose θ = 10−3, and compute the images of 1J under Âϑ for A = D0.75,Λ,J . 
It turns out that 25 iterations are sufficient, in particular we have that max Â25

ϑ 1J < 0.99. 
This is illustrated in Fig. 7.

When it comes to the realisation of an iterative method in practice one of the common 
concerns is accumulation of the rounding error. The following remark explains why in 
the present case this is not a significant issue.
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Remark 3.11. Applying the operator Âϑ to a given piecewise-constant function ψ changes 
its value on one of the intervals only if the computed value Acomp[ψ] is below the actual 
value of ψ on this interval by at least ϑ, otherwise the value stays completely unchanged.

Assume that the rounding errors never exceed 1
2ϑ; this is quite reasonably the case, 

for instance, since we typically chose ϑ = 10−8, while making the calculations with 
quadruple precision, in other words, the numbers involved have 32 significant digits.

Then, the computed image Âϑ,comp[ψ] is lower-bounded by a true image with half the 
“added value”:

Âϑ/2[ψ] � Âϑ,comp[ψ].

By induction, it is then easy to see that after an arbitrary number n of iterations one 
has

Ân
ϑ/2[ψ] � Ân

ϑ,comp[ψ].

Thus, if after some number n of iterations the computations provide An
ϑ,comp[1J ] ≺

1J , where A = D(2)
α,S(λ), one actually gets the desired Ân

ϑ/2[1J ] ≺ 1J and hence the 
applicability of Corollary 3.8. In our computations, to avoid problems with the strict 
inequality handling, we have been asking for the inequality

( ̂D(2)
α,Λ,J )nϑ,comp[1J ] ≺ 0.995 · 1J .

Next, we should describe what we would do if an attempt to obtain a lower bound by 
a given α was unsuccessful.

Remark 3.12. It is possible that after a large number of iterations n, there exists an 
interval Jk of the partition J where we have the equality:

[Ân
ϑ1J ]|Jk

= 1.

Then we cannot reach a definitive conclusion, as there are three possibilities:

(i) the number of iterations n is not large enough,
(ii) the intervals of the partition J are too long, or the interval Λ is too long,
(iii) the number α is not a lower bound, i.e. there exists λ ∈ Λ such that D2(μλ) ≤ α.

In this case we could try to increase the number of iterations, to choose a finer partition, 
or to drop the conjectured value α to α′ < α and to consider the operator A := Dα′,Λ,J . 
It follows from Proposition 5.11 that provided our guess on the lower bound was correct, 
we will be able to justify it using this approach, subject to computer resources.

Our method can be used not only to verify a suggested lower bound, but also to find 
a lower bound for the correlation dimension or to improve an existing lower bound.
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3.3.2. Computing a lower bound
Assume that we would like to improve an existing lower bound d1 < D2(μλ) using no 

more than N iterations of the operator and piecewise constant functions with no more 
than K intervals. Additionally assume that there is an upper bound D2(μλ) < d2.

Then we can fix ε > 0, a uniform partition J , an operator A := Dα,Λ,J and to search 
for an α satisfying the following conditions

(i) there exists k < N : Âk
ϑ1J ≺ 1J

(ii) for all k ≤ N : Âk
ϑ1J ⊀ 1J

One approach to find α would be to apply the well known bisection method to the interval 
(d1, d2). However, to obtain good estimates, one has to allow for a large number of 
iterations before dropping the conjectured lower bound and this is very time-consuming. 
In other words, a negative answer is expensive as we have to examine all possibilities 
described in Remark 3.12.

It is therefore more efficient to use a partition of the interval (d1, d2) into M :=
[
√

(d2 − d1)ε−1] intervals of equal length and to test the values αk = d1 + k · 1
M , k =

1, . . . , M using the method explained in the previous subsection 3.3.1. We then want to 
find a 0 ≤ k ≤ M such that for Ak := Dαk,Λ,J there exists n < N with the property

Ân
k,ϑ1J ≺ 1J and ÂN

k+1,ϑ1J ⊀ 1J .

Then we repeat the procedure again, dividing the interval (αk, αk+1) into M intervals 
of length ε. This way would need to apply all N iterations only twice (to confirm the 
second condition (ii)) to find the desired value α.

Finally, we note that in order to compute a good lower bound on a large interval 
of parameter values, we consider a cover of this interval by a large number of small 
overlapping intervals and compute a lower bound on each of them.

Remark 3.13. We would like to emphasize that the value α + ε is not an upper bound 
for correlation dimension, as it depends on the number K of iterations allowed and the 
number of intervals for the space of piecewise constant functions, and might increase 
(together with α) when we increase those values.

Definition 3.14. We call ε the refinement parameter.

In Subsection 3.3.3 we give details of the application of our method to computing 
lower bound for correlation dimension of Bernoulli convolutions.

We conclude this subsection by presenting the following alternate approach to the 
use of the diffusion operator, that was suggested to us by an anonymous referee. This 
suggestion is particularly helpful, and we are glad to be able to present it here:

Remark 3.15. For a given sufficiently small interval Λ of values of λ one can:
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• Take the initial function ψ0 = 1J , sufficiently small ϑ, initial lower bound α0 and a 
threshold t ∈ (0, 1);

• Apply the operator Âϑ, where A = Dα0,Λ,J , until the maximum descends below the 
chosen threshold. Let k be the smallest number such that

ψ := Âk
ϑ1J ≺ t · 1J . (17)

In particular, as t < 1, this implies that Âϑ[ψ] � ψ;
• Then, one gets a lower bound α for the correlation dimension, choosing its value to 

be the maximal for which Dα,Λ,J [ψ] � ψ, by setting

α := α0 + logλmin
max
J

Dα0,Λ,J [ψ]
ψ

= logλmin
max
J

D0,Λ,J [ψ]
ψ

, (18)

where λmin = min Λ. Observe that since one can actually use any function ψ in order 
to look for the lower bound α (applying then Theorem 3.2), rounding errors during 
the iterations are not much of an issue. Indeed, there is only one iteration and one 
division applied in (18), with the denominator bounded from below by ϑ due to the 
construction of ψ, and compared to the precision of calculations ϑ is not a small 
number at all.

This method really works quite well. For instance, taking ϑ = 10−7 and α0 = 0.82
(lower bound by Hare and Sidorov), taking Λ to be 0.5 · 10−5-neighbourhood of some 
λ and separating the interval J = [−r, r] into 4 · 104 intervals, where r = 1.1

1−λmax
, 

λmax = max Λ, and choosing the threshold t = 1
20 (that is quite small so that k in (17)

is quite large), one gets the estimates

• α = 0.9923757365 for the Fibonacci value λ = 0.6180339887 (compare with the lower 
bound 0.992395833333 in Table 5);

• α = 0.9642020738 for the tribonacci value λ = 0.54368901 (compare with the lower 
bound 0.964214555664 in Table 5);

• α = 0.999641567 for one of the Salem numbers λ = 0.71363917 (compare with the 
lower bound 0.999687500 in the table in Section A.1).

3.3.3. Proof of Theorem 1.4
Recall that dimH μλ ≥ dimH μλ2 and therefore it is sufficient to compute a lower 

bound for λ ∈ [0.5, 0.8].
To obtain a uniform lower bound on the correlation dimension D2(μλ), for Bernoulli 

convolution measures μλ on the entire interval of parameter values [0.5, 0.8] we proceed in 
two steps. First, we consider a cover of the interval [0.5, 0.8] by 100 overlapping intervals 
of the same size. We then apply the method explained in §3.3.2 with N = 7 ·106 partition 
intervals for the test function, and set the maximum for the number of iterations of the 
diffusion operator to K = 150. We choose a lower bound d1 = 0.82, an upper bound 



Table 3
Uniform lower bounds for the correlation dimension of 
Bernoulli convolution measures, after the first step.

Λ α Λ α

[0.500, 0.515] 0.96612 [0.566, 0.569] 0.96612
[0.515, 0.518] 0.95402 [0.569, 0.614] 0.97822
[0.518, 0.542] 0.96370 [0.614, 0.617] 0.96612
[0.542, 0.545] 0.95402 [0.617, 0.743] 0.97580
[0.545, 0.554] 0.96612 [0.743, 0.800] 0.96612
[0.554, 0.566] 0.97580

d2 = 1 and set the refinement parameter to ε = 0.01. The computation takes about 10 
minutes for each interval and can be done in parallel; the result is presented in Table 3.

Afterwards, we use the bounds we computed as an initial guess for the corresponding 
parameters λ and improve them by applying the same method again. This time, based 
on the first estimates, we take uniform covers of [0.499, 0.575] and [0.572, 0.8] by 5000
intervals each. We then use N = 107 intervals for the space of piecewise-constant func-
tions; set the maximum K = 1000 for the number of iterations for the diffusion operator; 
and choose ε = 10−4 as the refinement parameter. This second computation takes about 
two weeks with 32 threads running in parallel.

The result is presented in Fig. 8. In support of the conjecture that dimension drops 
occur at Pisot parameter values, we identify minimal polynomials of algebraic numbers 
which seem to correspond to the bigger drops and verified that they are Pisot values, 
i.e. all their Galois conjugates lie inside the unit circle.

Remark 3.16. It follows from the overlaps conjecture by Simon [32] which was proved by 
Hochman [17] for algebraic parameter values, that the dimension drop occurs only for 
the roots of polynomials with coefficients {−1, 0, 1}. We see that some of the polynomials 
indicated in the plot have ±2 among their coefficients. This doesn’t contradict the result 
of Hochman, because the polynomials we give are the minimal polynomials. Each of 
the polynomials with coefficients ±2 becomes a polynomial with coefficients {−1, 0, 1}
after multiplying by an appropriate factor. For instance, x5 − x3 − 2x2 − 2x − 1 after 
multiplying by (x − 1) becomes x6 − x5 − x4 − x3 + x + 1.

Based on the graph of the lower bound function G2(λ) shown in Fig. 8 we conjecture
that for reciprocals of Fibonacci λ = 2/(1 +

√
5) and “tribonacci” (λ = β−1, where β is 

the largest root of x3 − x2 − x − 1) parameter values there exists a sequence λ′
n of Pisot 

numbers such that λ′
n → λ as n → ∞ such that the dimensions D2(μλ′

n
) < 1 − ε for 

some ε > 0 and moreover the limit limn→∞ D2(μλ′
n
) < 1.

3.3.4. Proof of Theorem 1.13
Contrary to the case of Bernoulli convolutions, there were no a priori estimates on 

dimension drop known.
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Fig. 8. The plot of the piecewise constant function G2(λ), which gives lower bounds on correlation di-
mension of Bernoulli convolution D2(μλ). The plot of the piecewise constant function G2(λ), which gives 
lower bounds on correlation dimension of Bernoulli convolution D2(μλ). The polynomials indicated are the 
minimal polynomials of the corresponding values λ, which are Pisot.
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Fig. 8. (continued)

First, we consider a cover of the interval of parameter values (0.249, 0.334) by 100
overlapping intervals Λk, k = 1, . . . , 100. We set the limit K = 200 for the number of 
iterations and N = 105 for the number of intervals for piecewise constant functions. We 
then choose ε = 0.01 as the refinement parameter and d1 = 0.5, d2 = − log 3

log inf Λk
as lower 

and upper bounds, respectively. Applying the algorithm described in Section 3.3.2 we 
obtain rough estimates. The result is presented in Table 4.



2

Table 4
Uniform lower bounds for the correlation dimension of the stationary 
measure in the {0, 1, 3}-problem, after the first step.

Λ α Λ α

[0.25000, 0.26501] 0.77082 [0.32839, 0.33173] 0.85657
[0.26501, 0.26918] 0.79581 [0.33173, 0.33434] 0.79659
[0.26918, 0.28169] 0.80051 [0.33434, 0.33702] 0.87375
[0.28169, 0.28669] 0.83549 [0.33702, 0.34372] 0.89479
[0.28669, 0.29086] 0.85245 [0.34372, 0.34908] 0.91583
[0.29086, 0.30587] 0.83663 [0.34908, 0.35712] 0.94388
[0.30587, 0.30838] 0.87025 [0.35712, 0.36717] 0.91583
[0.30838, 0.31338] 0.86111 [0.36717, 0.37722] 0.95440
[0.31338, 0.32089] 0.88076 [0.37722, 0.38526] 0.95791
[0.32089, 0.32839] 0.86694 [0.38526, 0.40000] 0.98246

Afterwards, we improve this estimate. We choose the refinement parameter ε = 10−4, 
set N = 107 to be the number of intervals for the step function, K = 1000 for the 
maximal number of iterations and choose the lower bound which was already computed.

The lower bounds for λ ∈ (0.333, 0.401) we compute by applying the same steps with 
d0 = 0 and d1 = 1.

The result is presented in Fig. 9. We managed to identify minimal polynomials of 
algebraic numbers which seem to correspond to some of the biggest dimension drops and 
verified that the corresponding parameter values are reciprocals of hyperbolic numbers. 
In the case of the {0, 1, 3}-system, the overlaps conjecture implies that the dimension 
drop for algebraic parameter values takes place only for the roots of polynomials with 
coefficients {0, ±1, ±2, ±3}, and the polynomials we have identified satisfy this property.

3.4. Selected algebraic parameter values

So far we have applied our method to compute uniform lower bounds on dimension of 
the stationary measures. As we highlighted already in the end of §3.2, in order to get a 
lower bound on D2(μλ) for an algebraic λ, we need to consider a small interval containing 
the value. In this section, we compute a lower bound on correlation, and hence Hausdorff, 
dimensions of μλ, for selected algebraic values and compare our results with the existing 
data. For some specific values these results are not as accurate as existing estimates. For 
other parameter values, e.g. Salem numbers, we give a new improved lower bound.

We begin by recalling some known results. In [11] Garsia introduced a notion of 
entropy of an algebraic number λ (also see [15] for an alternative definition)

h(λ) = lim
N→+∞

− 1
2n

∑
i1,··· ,iN∈{0,1}

log
(

1
2n Card

{
j1, · · · , jN ∈ {0, 1} :

n∑
k=1

(ik − jk)λk = 0
})

.

Garsia entropy was first used to estimate Hausdorff dimension of Bernoulli convolution 
corresponding to the Golden mean λ = 2√ .
8 V. Kleptsyn et al. / Advances in Mathematics 395 (2022) 108090
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Fig. 9. The plot of the piecewise constant function G0,1,3
2 (λ), which gives lower bounds on Hausdorff di-

mension D2(μ0,1,3
λ ) of the stationary measure for the {0, 1, 3}-system. The polynomials indicated are the 

minimal polynomials of the corresponding values λ, which are hyperbolic. The plot of the piecewise constant 
function G0,1,3

2 (λ), which gives lower bounds on Hausdorff dimension D2(μ0,1,3
λ ) of the stationary measure 

for the {0, 1, 3}-system.
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Fig. 9. (continued)
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Table 5
Comparison of the lower bound for the correlation dimension α < D2(μλ) computed using the 
diffusion operator and the Hausdorff dimension computed in [12, §4] for multinacci parameter 
values.

n dimH(μλ) α n dimH(μλ) α

2 0.995713126685555 0.992395833333 6 0.996032591584967 0.990673828125
3 0.980409319534731 0.964214555664 7 0.997937445507094 0.994959490741
4 0.986926474333800 0.973324567994 8 0.998944915449832 0.997343750000
5 0.992585300274171 0.983559570313 9 0.999465368055570 0.998640046296

The method has been subsequently extended in [12] to the roots of the polynomials

Pn(x) = xn − xn−1 − . . .− x− 1.

In Table 5 we give a comparison of the lower bounds we have computed using the diffusion 
operator and the results of Grabner et al. [12]. This illustrates that our bounds are quite 
close to the known values.

The connection between h(λ) and dimH(μλ) comes by a result of Hochman [17]:

dimH(μλ) = min
{
−h(λ)

log λ, 1
}
. (19)

However, despite (19) being exact, the value h(λ) for algebraic numbers is often quite 
difficult to estimate for all but a small number of examples, see [1] (also [22]) which 
gave algorithms to compute the entropy based on Lyapunov exponents of random ma-
trix products. For several explicit (non-Pisot) examples they showed that h(λ)

log(λ−1) > 1; 
together with (19) this implies dimH(μλ) = 1.

On the other hand, Breuillard and Varjú [3] gave an estimate on h(λ) in terms of the 
Mahler measure Mλ:

c · min {1, logMλ} ≤ h(λ) ≤ min {1, logMλ} . (20)

Non-rigorous numerical calculations suggest that one can take c = 0.44. The upper 
bound in (20) is often strict. In particular, it is known that h(λ) < Mλ, provided λ has 
no Galois conjugates on the unit circle [3].

The dimension of the Bernoulli convolution measure for certain hyperbolic parameter 
values λ can be computed explicitly, too. In a recent work [15] Hare et al. considered 
hyperbolic algebraic numbers of degree 5. For a number of them they showed that the 
stationary measure has full Hausdorff dimension [15, Tables 5.1, 5.2]. We present our 
lower bound for the correlation dimension for comparison in Table 6, which shows that 
our lower bounds are accurate to 3 decimal places. On the other hand, there are a number 
of algebraic parameter values to which the method presented in [15] doesn’t apply, they 
are listed in [15, Table 5.3]. For these values we give a new lower bound in Table 7.
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Table 6
Lower bound α < D2(μ) for the correlation dimension for selected algebraic numbers for which 
it is known [15] that dimH(μλ) = 1, computed using 5 ·106 partition intervals and 500 iterations 
of the diffusion operator with the refinement parameter ε = 10−4. The value of the root β is 
given to simplify the comparison with [15].

λ α β = λ−1 Polynomial
0.862442360254 0.999609375000 1.159497777573 x5 + x4 − x3 − x2 − 1
0.827590407756 0.999687500000 1.208327199818 x5 − x4 + x3 − x − 1
0.874449227129 0.999609375000 1.143576972768 x5 + x3 − x2 − x − 1
0.710434255787 0.999843750000 1.407589783086 x5 − x4 + x3 − x2 − x − 1
0.779544663821 0.999765625000 1.282800135015 x5 − x3 − x2 + x − 1
0.791906429308 0.999765625000 1.262775452996 x5 − x4 + x2 − x − 1
0.786151377757 0.999765625000 1.272019649514 x4 − x2 − 1
0.699737022113 0.999843750000 1.429108319838 x5 − x3 − x2 − 1
0.779544663821 0.999765625000 1.282800135015 x5 − x3 − x2 + x − 1
0.800094994405 0.999765625000 1.249851588864 x5 − x4 + x3 − x2 − 1
0.876611867657 0.999609375000 1.140755717433 x5 + x4 − x3 − x − 1
0.655195524260 0.999843750000 1.526261952307 x5 − x4 − x2 − x + 1
0.848374895732 0.999687500000 1.178724176105 x4 + x3 − x2 − x − 1
0.819172513396 0.999687500000 1.220744084605 x4 − x − 1
0.774804113215 0.999765625000 1.290648801346 x4 − x3 + x2 − x − 1
0.730440478359 0.999843750000 1.369036943635 x5 − x3 − x2 − x + 1
0.833363173425 0.999687500000 1.199957031806 x5 − x3 + x2 − x − 1

Table 7
Lower bound α < D2(μ) for the correlation dimension for selected algebraic numbers for which 
there are no previous lower bounds, computed using 5 ·106 partition intervals and 500 iterations 
of the diffusion operator and the refinement parameter ε = 10−4. The value of the root β is 
given to simplify the comparison with [15].

λ α β = λ−1 Polynomial
0.593423522613 0.998714285714 1.685137110165 z5 − z4 − z2 − z − 1
0.595089298038 0.999000000000 1.680420070225 z5 − z4 − z3 − z + 1
0.557910446633 0.997857142857 1.792402357824 z5 − z4 − z3 − z2 + z − 1
0.712452611946 0.999800000000 1.403602124874 z5 − z4 − z2 + z − 1
0.645200388386 0.999800000000 1.549906072594 z5 − z4 − z3 + z − 1
0.667960707496 0.999800000000 1.497094048762 z5 − z4 − z − 1
0.808730600479 0.999600000000 1.236505703391 z5 − z3 − 1
0.837619774827 0.999722222222 1.193859111321 z5 − z2 − 1
0.856674883855 0.999652777778 1.167303978261 z5 − z − 1
0.889891245776 0.999513888889 1.123732821001 z5 + z4 − z2 − z − 1

3.4.1. Estimates for Salem numbers: proof of Theorem 1.7
In a recent work, Breuillard and Varjú state an open problem [3, Problem 3], asking 

whether it is true that h(λ) = Mλ for all Salem parameter values λ ∈
( 1

2 , 1
)
. This 

equality would imply that dimH(μλ) = 1 for Salem parameter values.
We apply the method described in §3.3.2 to 99 Salem numbers of degree no more 

than 10 and to 47 small Salem numbers. Our computational set-up had the following 
choices. First, we compute each Salem number sk with an accuracy of 10−32 and consider 
a neighbourhood of radius δ = 10−8, i.e. Λk = Bδ(sk). Then, based on the existing 
results, we choose d1 = 0.98 and d2 = 1, as conjectured lower and upper bounds. The 
number of intervals for piecewise constant functions is N = 6 · 105, and the allowed 
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number of iterations for the diffusion operator is K = 300. We also set the refinement 
parameter ε = 10−4. The detailed result is presented in Appendix §A.1 and §A.2.

4. Asymptotic bounds: proof of Theorem 1.8

We have provided a uniform lower bound on the correlation dimension D2(μλ) of 
Bernoulli convolution measures μλ. Now we will give an asymptotic lower bound for 
D2(μλ) in a neighbourhood of 1 using the diffusion operator approach.

Proof of Theorem 1.8. Given a small ε > 0 let us set λ = 1 − ε. Then the symmetric 
diffusion operator (5) takes the form

[D(2)
α,Sψ](x) = (1 − ε)−α 1

4

(
ψ

(
x + 1
1 − ε

)
+ 2ψ

(
x

1 − ε

)
+ ψ

(
x− 1
1 − ε

))
.

In order to prove the result, it is sufficient to find a function fε such that for any c > 3
2

and for any α < 1 − cε we have that

D(2)
α,Sfε ≺ fε. (21)

We will specify the function fε explicitly. Let us introduce a shorthand notation δ :=
2ε − ε2 > 0 and define

fε(x) := exp(−δ(1 − ε)2x2) = exp(−δx2) · exp(δ2x2). (22)

It is not difficult to see that fε satisfies (21). Indeed, note that 1+exp(−δ)
2 ≤ (1 − ε)1−cε

for any ε sufficiently small and any c > 3
2 . Therefore to establish (21) it is sufficient to 

show that

1
4

(
fε

(
x + 1
1 − ε

)
+ fε

(
x− 1
1 − ε

)
+ 2fε

(
x

1 − ε

))
≤ 1 + exp(−δ)

2 fε(x). (23)

To prove (23) we first note that

fε

(
x + 1
1 − ε

)
+ fε

(
x− 1
1 − ε

)
= exp(−δ(x + 1)2) + exp(−δ(x− 1)2)

= exp(−δ) · exp(−δx2) (exp(−2δx) + exp(2δx))

= 2 exp(−δ) · exp(−δx2) · cosh(2δx).

Moreover, since fε
(

x
1−ε

)
= exp(−δx2) we conclude for the left hand side of (23) that

1
4

(
fε

(
x + 1
1 − ε

)
+ fε

(
x− 1
1 − ε

)
+ 2fε

(
x

1 − ε

))
= 1

2 exp(−δx2)·(1 + cosh(2δx) exp(−δ)) .

(24)
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Combining (22) and (24) we see that (23) is equivalent to

1 + exp(−δ) cosh(2δx) ≤ (1 + exp(−δ)) exp
(
δ2x2) ,

which in turn, is equivalent to

1
1 + exp(−δ) + exp(−δ)

1 + exp(−δ) cosh(2δx) ≤ exp
(
δ2x2) . (25)

To establish (25) it is sufficient to show that

1
2 + 1

2 cosh(2δx) ≤ exp
(
δ2x2) .

This last inequality can be established by comparison of the Taylor series coefficients 
term by term. More precisely, the coefficient in front of the term (δx)2k of the function 
cosh(2δx) is 22k

(2k)! and the same coefficient of the function exp
(
δ2x2) is equal to 1

k! . �

5. Diffusion operator D(2)
α,λ and correlation dimension

We would like to start by explaining the idea behind the diffusion operator and its 
connection with the correlation dimension which lead us to it.

Let us recall the energy integral (10)

I(μ, α) =
ˆ

R

ˆ

R

|x− y|−αμ(dx)μ(dy)

and the definition of the correlation dimension (11): D2(μ) = sup{α : I(μ, α) is finite}. 
In other words, I(μ, α) is finite for any α < D2(μ).

Let S(λ, ̄c, p̄) be an iterated function scheme of n similarities fj = λx −cj , j = 1, . . . , n
and let μλ be its stationary measure. Then μλ is the fixed point of the operator on Borel 
probability measures

TS : μ �→
n∑

j=1
pjfj∗μ.

We now would like to study the induced action of TS on I(μ, α). To this end, we want to 
incorporate I(μ, α) into a family. More precisely, we consider a family of functions given 
by

ψα,μ : R → R+ ∪ {+∞} ψα,μ(r) :=
ˆ

R

ˆ

R

|(x− y) − r|−α μ(dx)μ(dy). (26)

Notation 5.1. We denote by −μ the push-forward of the measure μ under x �→ −x.
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In the sequel, we will need the following technical lemma which helps us to decide 
whether or not ψα,μ(r) is finite.2

Lemma 5.2. Let μ be a probability measure. Assume that I(μ, α) = ψα,μ(0) is finite. 
Then ψα,μ(r) is finite for any r ∈ R and, moreover, we have that ψα,μ(r) < ψα,μ(0). In 
particular, ψα,μ is a continuous function.

Proof. Let us denote ν : = μ ∗ (−μ). It is easy to see that its Fourier transform is a 
nonnegative function:

ν̂(t) =
ˆ

R

e−itzν(dz) =
ˆ

R

ˆ

R

e−it(x−y)μ(dx)μ(dy) = μ̂(t)μ̂(t) = |μ(t)|2 ≥ 0.

We may write

ψα,μ(r) =
ˆ

R2

|x− y − r|−αμ(dx)μ(dy) =
ˆ

R

|z − r|−αν(dz).

Then the desired inequality ψα,μ(r) < ψα,μ(0) for all r ∈ R is equivalent to
ˆ

R

|z − r|−αν(dz) ≤
ˆ

R

|z|−αν(dz).

Let us consider the function fα(s) def= |s|−α. Its Fourier transform is known3 to be

f̂α(t) = πα−1/2Γ ((1 − α)/2)
Γ(α/2) |t|α−1 = Cα|t|α−1 ≥ 0, 0 < α < 1, (27)

where Cα = πα−1/2Γ((1−α)/2)
Γ(α/2) . Therefore f̂α ∗ νλ = f̂α · ν̂λ is real and non-negative. Using 

the inverse Fourier transform formula we obtain an upper bound.

ψα,μ(r) =
ˆ

R

|z − r|−αν(dz) = (fα ∗ ν)(r) = 1
2π

ˆ

R

e−itrf̂α(t) · ν̂(t)dt

≤ 1
2π

ˆ

R

f̂α(t) · ν̂(t)dt = ψα,μ(0) < ∞.

The function ψα,λ is continuous since it is an inverse Fourier transform of an L1
function. �

2 Or in other words whether the function (x − y − r)−α is integrable with respect to μ × μ.
3 One possible approach is via the Gamma function. We rewrite |s|−α = 2πα/2

Γ(α/2)
´∞
0 tα−1e−πt2s2

dt and 
compute the Fourier transform of the latter by swapping the order of integrals.
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Remark 5.3. Let m = inf{x | suppμ ∗ (−μ) ⊆ [−x, x]} and let J = [−a, a] � [−m, m]. 
Then ψα,μ has a bounded continuous extension to R \ J with an upper bound

ψα,μ(r) ≤ (m− a)−α for all r, |r| > a.

Therefore, the behaviour of ψα,μ on suppμ ∗(−μ) is the most important to us. The next 
Proposition ties together the symmetric diffusion operator D(2)

α,S , a family of functions 
ψα,μ, and the action on measures TS .

Proposition 5.4. Let S(λ, ̄c, p̄) be an iterated function scheme of n similarities. Let μ be 
a probability measure such that suppμ ⊂ J for a closed interval J . Assume that for some 
α > 0 the function ψα,μ is bounded. Then

ψα,TSμ = D(2)
α,Sψα,μ.

Proof. For convenience, recall the definition of the symmetric diffusion operator (5):

[D(2)
α,Sψ](x) := λ−α ·

k∑
i,j=1

pipj · ψ
(
x + ci − cj

λ

)
.

By straightforward computation,

ψα,TSμ(r) =
¨

|y − (x− r)|−αTSμ(dx)TSμ(dy)

=
¨

|y − (x− r)|−α
(∑

pjfj∗μ
)

(dx)
(∑

pkfk∗μ
)

(dy)

=
∑
j,k

pjpk

¨
|fj(x) − (fk(y) − r)|−αμ(dx)μ(dy)

=
∑
j,k

pjpk

¨
|λx− cj − λy + ck + r|−αμ(dx)μ(dy)

= λ−α
∑
j,k

pjpk

¨ ∣∣x− y + λ−1(r − cj + ck)
∣∣−α

μ(dx)μ(dy)

= λ−α
∑
j,k

pjpkψα,μ

(
λ−1(r − cj + ck)

)
= [D(2)

α,Sψ](r). �

Corollary 5.5. Let μ be the unique stationary measure μ of an iterated function scheme 
S(λ, ̄c, p̄). Assume that I(μ, α) is bounded. Then ψ(α, μ) is the fixed point of D(2)

α,S .

Remark 5.6. Of course the constant function f ≡ 1 ⊂ L∞(R) is an eigenvector for the 
diffusion operator with the eigenvalue λ−α, but it does not satisfy the hypothesis of 
Theorem 1.17 and is of no use to us.
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In the next section we give a proof for Theorem 1.17, which provides the grounds for 
the numerical estimates of the correlation dimension.

5.1. Random processes viewpoint

The random processes viewpoint will be used in the arguments for Theorems 1.17, 
1.19, 1.23, and 1.25. We would like therefore to make a preparatory description of the 
setup.

Definition 5.7. Let S (λ, c̄, p̄) be an iterated function scheme. We want to consider the 
set of pairwise differences {dk | dk = ci − cj}, a probability vector qk =

∑
i,j : ci−cj=dk

pipj , 

and to define a complementary iterated function scheme S(λ, d̄, q̄):

gk(x) = λx− dk.

If μ is the unique stationary measure of S(λ, ̄c, p̄) then the unique stationary measure 
of the complementary iterated function scheme is μ ∗ (−μ). Since the measure μ is 
compactly supported, we may define:

m := inf{x | supp(μ ∗ (−μ)) ⊆ [−x, x]}. (28)

The symmetric diffusion operator can be written in terms of the maps of the 
scheme S(λ, d̄, q̄):

[D(2)
α,Sψ](x) = λ−α

n∑
i,j=1

pipjψ

(
x + ci − cj

λ

)
= λ−α

∑
k

qkψ
(
g−1
k (x)

)
. (29)

This observation brings us to the idea of introducing the backward process associated to 
S(λ, d̄, q̄), which can be defined as follows.

Let x and y be two independent μ-distributed random points

x =
∞∑
k=0

ξkλ
k, y =

∞∑
k=0

ηkλ
k, (30)

where ξk, ηk are i.i.d. random variables assuming values cj with probabilities pj , j =
1, . . . , n. Consider the random process given by renormalized differences

zk := λ−k−1

⎛⎝ k∑
j=0

ξjλ
j −

k∑
j=0

ηjλ
j

⎞⎠ . (31)

It is easy to see that zk+1 = λ−1(zk + ζ), where ζ = ξk+1 − ηk+1 is a random variable 
assuming values dk = ci − cj with probabilities qk =

∑
pipj .
i,j : ci−cj=dk
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Definition 5.8. We call zk the backward process associated to S(λ, d̄, q̄).

With this notation, the symmetric diffusion operator takes the form

[D(2)
α,Sψ](x) = λ−α

∑
k

qkψ
(
g−1
k (x)

)
= λ−αE

(
ψ

(
x + ζ

λ

))
. (32)

We conclude this preparatory discussion by commenting on the rôle of the admissible 
interval.

Lemma 5.9. If a trajectory of the random process zn leaves an admissible interval J for 
the S(λ, ̄c, p̄), then it never returns to it. In other words, if there exists k such that zk /∈ J , 
then zn /∈ J for any n > k.

Proof. Evidently, suppμ ∗ (−μ) ⊆ {x − y | x, y ∈ suppμ}. At the same time,

max |dk|
1 − λ

= max |dk|
∞∑
k=1

λk ∈ suppμ ∗ (−μ)

and in particular max |dk|
1−λ < m, where m is defined by (28). Thus max |dk| < m(1 − λ). 

Assume that J = [b1, b2] � [−m, m] is an admissible interval and zk /∈ J . Without loss 
of generality we may assume that zk > b2 then

|zk+1| =
∣∣∣zk + dk

λ

∣∣∣ ≥ |zk| − max |dk|
λ

≥ b2 − max |dk|
λ

>
b2 −m(1 − λ)

λ
> b2.

The case zk < b1 is similar. �

5.1.1. Proof of Theorem 1.17
For the convenience of the reader, we recall the statement.

Theorem 1.17. Let S(λ, ̄c, p̄) be an iterated function scheme of similarities. Assume that 
for some α > 0 there exists an admissible compact interval J ⊂ R and a function ψ ∈ FJ

such that

[D(2)
α,Sψ] ≺ ψ.

Then the correlation dimension of the S-stationary measure μ is bounded from below 
by α:

D2(μ) ≥ α.

The proof of Theorem 1.17 relies on the following lemma which relates the time for 
which the backward process of the complementary iterated function scheme remains in 
an admissible interval J to the correlation dimension of the measure μ.
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Lemma 5.10. Let J = [−a, a] be an admissible interval for S(λ, ̄c, p̄) with the stationary 
measure μ. Let zn be the backward process for the complementary scheme. If P (zn ∈
J) ≤ C0λ

αn for some constant C0, independent of z0, then D2(μ) ≥ α.

Proof. Let m be as defined in (28). Let x and y be two independent μ-distributed random 
variables defined by (30), and let the backward process zn be defined by (31). Observe 

that the difference between |x −y| and the finite sum 
∣∣∣∑n

j=0(ξj − ηj)λj
∣∣∣ is no more than 

mλn+1. By a straightforward calculation, we have

P (zn ∈ J) = P

⎛⎝λ−n−1

∣∣∣∣∣∣
n∑

j=0
(ξj − ηj)λj

∣∣∣∣∣∣ ≤ a

⎞⎠
= P

⎛⎝∣∣∣∣∣∣
n∑

j=0
(ξj − ηj)λj

∣∣∣∣∣∣ ≤ aλn+1

⎞⎠ ≥ P
(
|x− y| ≤ (a−m)λn+1) .

Therefore the hypothesis of the Lemma implies P
(
|x− y| ≤ (a−m)λn+1) ≤ C0λ

αn and 
thus for any r we have that

P (|x− y| ≤ r) ≤ C0 · (a−m)−αrα =: C1(m, a, α)rα. (33)

In order to show that D2(μ) ≥ α it is sufficient to show that for any α′ < α the integral ´
R2 |s − t|−α′

μ(ds)μ(dt) is finite. Indeed,

ˆ

R2

|s− t|−α′
μ(ds)μ(dt) = E(|x− y|−α′

) =
ˆ

R

P (|x− y|−α′
> r)dr.

Evidently, P (|x −y| < r) ≤ C1(m, a, α)rα implies P (|x −y|−α′
> r) ≤ min(1, C2 ·r−α/α′)

for some constant C2, which depends on m, a, and α only. Hence for some constants C3
and C4, which depend on m, a, and α, but do not depend on r we have that

ˆ

R2

|s− t|−α′
μ(ds)μ(dt) ≤

C3ˆ

0

1dr +
+∞ˆ

C3

r−α/α′
dr < C4,

since α
α′ > 1. �

Finally, we can proceed to the proof of Theorem 1.17. We use the same notation as 
above.

Proof of Theorem 1.17. By the hypothesis of the Theorem there exists θ > 0 such that 
for any x ∈ J we have that θ < ψ(x) < θ−1.
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Consider a discrete random process defined by wn = λ−αnψ(zn). Then for any zn ∈ J

taking into account (32), we compute

E(wn+1 | zn) = E(λ−α(n+1)ψ(zn+1) | zn) = λ−α(n+1)E
(
ψ
(
λ−1(zn + ζ)

)
| zn
)

= λ−α(n+1)E
(
ψ
(
λ−1(zn + ζ)

))
= λ−αnD(2)

α,Sψ(zn)

≤ λ−αnψ(zn) = wn.

(34)

Thus the process wn is a supermartingale, as E(wn+1 | zn) ≤ wn. In particular,

Ewn ≤ w0 = ψ(z0) = ψ(0) < θ−1.

On the other hand,

Ewn = λ−αn · Eψ(zn) ≥ λ−αn · inf ψ|J · P (zn ∈ J) ≥ λ−αn · θ · P (zn ∈ J).

Therefore P (zn ∈ J) ≤ θ−2λαn and the Theorem follows from Lemma 5.10. �

5.2. Effectiveness of the algorithm

Let μ be the stationary measure of an iterated function scheme of similarities S(λ, ̄c, p̄). 
In this section we shall show that for any α < D2(μ) the method described in Section 3.3.1
will be able to confirm this inequality, subject to computer resources and time. In other 
words we shall show the following.

Proposition 5.11. Let μ be the stationary measure of an iterated function scheme of 
similarities S(λ, ̄c, p̄). Assume that α < D2(μ). Then there exist:

(i) A sufficiently small ε > 0 and an admissible interval JΛ for Λ = Bε(λ);
(ii) A sufficiently fine partition J of JΛ;
(iii) A sufficiently large n ∈ N; and
(iv) A sufficiently small ϑ > 0,

so that the hypothesis of Corollary 3.9 holds, more precisely, for A = Dα,Λ,J we have

Ân
ϑ1J ≺ 1J .

Theorem 1.19 follows immediately from Proposition 5.11. We begin with the following 
technical fact.

Lemma 5.12. Let S(λ, ̄c, p̄) be an iterated function scheme. Let μ be the unique stationary 
measure and assume that α < D2(μ). Then for any sufficiently small ε > 0 there exist an 
admissible interval J , a continuous function ϕ, ϕ|J > θ > 0, and n such that (D(2)

α,S)nϕ ≺
(1 − ε)ϕ.
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Fig. 10. The construction of function ϕ in Lemma 5.12. It agrees with ψα,μ on the admissible interval J, is 
linear on J̃ \ J and vanishes outside of J̃ .

Proof. Since α < D2(μ), then I(α, μ) is finite and by Lemma 5.2 the function

ψα,μ(r) =
¨

|x− y − r|−αdμ(x)dμ(y)

is finite for all r ∈ R. Moreover, by Corollary 5.5 it is the fixed point of the symmetric 
diffusion operator D(2)

α,S .
Let S(λ, d̄, q̄) be the complementary iterated function scheme of N similarities. Let 

m be as defined in (28), so that suppμ ∗ (−μ) ⊆ [−m, m]. Let us choose an admissible 
interval J := [−a, a] and consider the intersection of its preimages under gj = λx + dj

J̃ :=
N⋂
j=1

g−1
j ([−a, a]) = [−ã, ã] � [−a, a] � [−m,m].

Then for any x /∈ J and any j = 1, . . . , N one has f−1
j (x) /∈ J̃ .

We define a continuous function ϕ by (see Fig. 10)

ϕ(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψα,μ(r), if |r| ≤ a,

ψα,μ(r) · ã−r
ã−a , if a < r < ã,

ψα,μ(r) · ã+r
ã−a , if − ã < r < −a,

0, otherwise.

(35)

It is easy to see that ϕ(r) ≤ ψα,μ(r) for all r ∈ R. Taking into account monotonicity 
of the diffusion operator (29) we obtain for any r ∈ J

[D(2)
α,Sϕ](r) ≤ [D(2)

α,Sψα,μ](r) = ψα,μ(r) = ϕ(r). (36)

On the other hand, for any r ∈ (−ã, ̃a) \ J one has [D(2)
α,Sϕ](r) = 0 < ϕ(r), where the 

equality is due to Lemma 5.9 and formula (32) for D(2)
α,S . Together these two observations 

give D(2)
α,Sϕ � ϕ.
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We shall now show that for sufficiently large n we have [(D(2)
α,S)nϕ](r) < ϕ(r) for all 

r ∈ J . Indeed, let dk = max |ci − cj |. Then for any x ∈ [0, a] we have that

g−n
k (x) ≥ dk

n∑
j=1

λ−k ≥ dkλ
−n → ∞ as n → ∞,

and the case x ∈ [−a, 0] is similar.
Therefore we may choose n such that for any x ∈ J there exists a sequence j

n
such 

that g−1
j
n

(x) /∈ J . We may write for any r ∈ J

[(D(2)
α,S)nϕ](r) =

∑
j
n

qj1 . . . qjnϕ
(
g−1
j
n

(r)
)

=
∑

j
n

: g−1
jn

(r)∈J

qj1 . . . qjnψα,μ

(
g−1
j
n

(r)
)

+
∑

j
n

: g−1
jn

/∈J

qj1 . . . qjnϕ
(
g−1
j
n

(r)
)

<
∑

j
n

: g−1
jn

(r)∈J

qj1 . . . qjnψα,μ

(
g−1
j
n

(r)
)

+
∑

j
n

: g−1
jn

/∈J

qj1 . . . qjnψα,μ

(
g−1
j
n

(r)
)

= ψα,μ(r) = ϕ(r),
(37)

where the equality in the second line comes from the fact that ϕ|J = ψα,μ|J , while the 
inequality in the third is due to the strict inequality between the corresponding terms of 
the sums over the set {j

n
: g−1

j
n

/∈ J}. Note that (D(2)
α,S)nϕ is a continuous function, and 

a strict inequality

[(D(2)
α,S)nϕ](r) < ϕ(r)

for all r ∈ J implies, taking into account compactness of J , that for some ε > 0 one has

(D(2)
α,S)nϕ ≺ (1 − ε)ϕ. �

We now proceed to prove Proposition 5.11.

Proof of Proposition 5.11. Let an admissible interval J be fixed. By Lemma 5.12 we 
know that there exist n, ε, θ > 0 and a function ϕ(r) > θ such that D(2)

α,Sϕ � ϕ and for 
all r ∈ J

[(D(2)
α,S)nϕ](r) < (1 − ε)ϕ(r).

Note that for c = 1
θ we have 1J � cϕ, and in particular for every m we get

(D(2)
α,S)mn(1J ) � (D(2)

α,S)mn(cϕ) = c(D(2)
α,S)mn(ϕ) � c(1 − ε)mϕ.
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Then for m sufficiently large so that c(1 −ε)m ·maxJ ϕ < 1
2 , we obtain a strict inequality

(D(2)
α,S)mn(1J) ≺ 1

21J .

Let us fix n′ := nm. Note that ϕ and its images under D(2)
α,S are continuous. The finite 

rank operator Dn′

α,Λ,J depends continuously on the partition J and Λ, therefore

sup
J

∣∣∣(Dα,Λ,J )n
′
ϕ− (D(2)

α,S)n
′
ϕ
∣∣∣→ 0 as ε → 0 and M → ∞.

In particular, for all sufficiently small ε and sufficiently large M one has for all x ∈ J

(Dα,Λ,J )n
′
(cϕ)(x) < 1

2 ,

since the operator Dα,Λ,J is monotone, the latter implies

(Dα,Λ,J )n
′
(1J ) ≺ 1

21J .

Now, let us denote A = Dα,Λ,J ; then for any nonnegative ψ we get Â0ψ � Aψ, and 
hence

Ân′

0 (cϕ) � An′
(cϕ) ≺ 1

21J .

On the other hand, (Âϑ)n′(cϕ) converges to Ân′
0 (cϕ) uniformly as ϑ → 0. Hence for all 

sufficiently small ϑ we get

(Âϑ)n
′
(cϕ) < 1

2

everywhere on J . Finally we conclude

(Âϑ)n
′
(1J ) ≺ 1

21J . �

5.2.1. Proof of Theorem 1.19
Let S(λ) be an iterated function scheme of similarities and let μ be its unique station-

ary measure. Assume that α < D2(μ). Then by Proposition 5.11 there exist an interval 
Λ � λ, an admissible interval JΛ, and its partition J such that for the finite rank dif-
fusion operator A = Dα,Λ,J we have that ϕ := Ân

ϑ1J ≺ 1J . Then by Proposition 3.7
we have Dα,Λ,Jϕ ≺ ϕ in other words, that the function ϕ satisfies the hypothesis of 
Theorem 3.2.



44 V. Kleptsyn et al. / Advances in Mathematics 395 (2022) 108090
6. Diffusion operator D(1)
α,λ and regularity of the measure

In this section we consider general iterated function schemes of orientation-preserving 
contracting C1+ε diffeomorphisms and show that the diffusion operator approach can be 
used to get a lower bound on the regularity exponent of the stationary measure.

We briefly recall the setting. Let J ⊂ R be a compact interval. Consider an iter-
ated function scheme T (f̄ , p̄, J) consisting of n uniformly contracting diffeomorphisms 
fj : R → R, fj ∈ C1+ε(R) which preserve the interval J : fj(J) ⊂ J for j = 1, . . . , n
and probability vector p̄ = (p1, . . . , pn). Let μ be the stationary measure so that ∑n

j=1 pjfj∗μ = μ; evidently, suppμ ⊂ J .
The asymmetric diffusion operator is defined by (8).

D(1)
α,T [ψ](x) :=

k∑
j=1

pj · |(f−1
j )′(x)|α · ψ(f−1

j (x)).

Example 6.1 (Bernoulli convolution revisited). In the special case of Bernoulli convolu-
tion scheme S as defined in Example 1.11 and α = 1 the operator D(1)

1,S : L1(R) → L1(R)
has a fixed point D(1)

1,Sh = h precisely when μ has an L1 density, i.e., dμdx = h ∈ L1(R).

We will need the following technical fact for the proof of Theorem 1.23.

Lemma 6.2. Let T (f̄ , p̄) be an iterated function scheme of uniformly contracting 
C1+ε-diffeomorphisms which preserve a compact interval J . Then the distortion is uni-
formly bounded. In other words, there exist two constants c1, c2 such that for any sequence 
j
n

we have for the distortion of the composition fj
n

= fjn ◦ . . . ◦ fj1 that for all x, y ∈ J

ec1 <
f ′
j
n
(x)

f ′
j
n
(y) < ec2 .

Proof. The argument generalises the classical argument for a single function, which can 
be found, in particular in [25, §3.2]. More precisely, we define the distortion of f on the 
interval J by

κ(f, J) := max
J

log f ′ − min
J

log f ′.

It is easy to see that it is subadditive with respect to composition, in particular, for any 
f , g we have

κ(f ◦ g, J) ≤ κ(g, J) + κ(f, g(J)).

Since by assumption fj are uniformly contracting C1+ε diffeomorphisms, there exist 
constants C = C(T ) such that κ(fj , J) ≤ C · |J |ε and λ < 1 such that f ′

j(x) < λ for all 
j = 1, . . . n and for any x ∈ J . Therefore



V. Kleptsyn et al. / Advances in Mathematics 395 (2022) 108090 45
κ(fj
n
, J) ≤

n∑
k=1

κ(fjk , fjk−1 ◦ . . . ◦ fj1(J)) ≤ C
n∑

k=1

|fjk−1 ◦ . . . ◦ fj1(J)|ε

≤ C

n−1∑
k=0

λkε|J |ε ≤ C|J |ε
1 − λε

,

and the result follows. �

6.1. Proof of Theorem 1.23

For the convenience of the reader, we recall the statement.

Theorem 1.23. Assume that for some α > 0 there exists a function ψ ∈ FBr(J) such that 
for any x ∈ Br(J) we have that

[D(1)
α,T ψ](x) < ψ(x).

Then the measure μ is α-regular.

Proof. Let I = Bδ(x) ⊂ J be an interval of length |I| = 2δ. We shall show that there 
exists c ∈ R such that

μ(I) ≤ c · δα. (38)

We will use a random processes approach as in the previous section. Let us first 
consider a random process

Fωn
(x) = fω1 ◦ . . . ◦ fωn

(x), (39)

where ωj are the i.i.d. distributed with P (ωj = j) = pj . Using the induced action on the 
stationary measure μ we define another random process by

ξn(ω) = μ
(
F−1
ωn

(I)
)
. (40)

It follows from the invariance of μ that the process ξ is a martingale. Indeed,

Eξn(ω) =
∑
j
n

pj1 . . . pjnμ(f−1
j
n

(I)) = μ(I) = ξ0.

By assumption the maps are uniformly contracting, therefore their inverses are uniformly 
expanding and by compactness the derivatives are bounded on Br(J). Let us denote by 
βmin and βmax the lower and the upper bound, respectively:

1 < βmin := inf
x∈Br(J)
1≤j≤n

(f−1
j )′(x) < sup

x∈Br(J)
(f−1

j )′(x) =: βmax
1≤j≤n
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and consider the stopping time

T (ω) = min
{
n | F−1

ωn
(x) /∈ Br(J) or

∣∣∣F−1
ωn

(I)
∣∣∣ > r

βmax

}
. (41)

Since the diffeomorphisms fj are contracting, we have for any ω

T (ω) < log(2βmaxε)
log βmin

+ 1.

Consider the backward random process associated with the inverses of diffeomorphisms fj

ηn(ω) =
(
(F−1

ωn
)′(x)
)α

· ψ(F−1
ωn

(x)). (42)

We claim that η is a supermartingale. Indeed, by assumption

[D(1)
α,T ψ](F−1

ωn
(x)) ≤ ψ(F−1

ωn
(x))

therefore

E(ηn+1 | ω1 . . . ωn) =

=
(
F−1
ωn

(x)
)α

·
n∑

j=1
pjn+1

(
(f−1

jn+1
)′
(
F−1
ωn

(x)
))α

· ψ
(
f−1
jn+1

(F−1
ωn

(x))
)

=
(
F−1
ωn

(x)
)α

· [D(1)
α,T ψ](F−1

ωn
(x))

≤
(
F−1
ωn

(x)
)α

ψ(F−1
ωn

(x)) = ηn.

In particular, since T (ω) is finite,

EηT (ω) ≤ η0 = ψ(x). (43)

We next want to consider the expectations EξT (ω) and EηT (ω). By definition (41) of 
T (ω) we have that at least one of the following events takes place:

A : =
[
F−1
ωT

(x) /∈ Br(J)
]

B : =
[
F−1
ωT

(x) ∈ Br(J) and
∣∣∣F−1

ωT
(I)
∣∣∣ > r

βmax

]
.

We claim that if B doesn’t occur, then ηT (ω) = 0 and ξT (ω) = 0. Indeed, the first follows 
from (42) and the fact that suppψ ⊂ Br(J). For the second, note that, by definition (41)
of T (ω), in this case we have F−1

ω (x) ∈ J and 
∣∣∣F−1

ω (I)
∣∣∣ < r . Therefore
T−1 T−1 βmax
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∣∣∣F−1
ωT

(I)
∣∣∣ ≤ βmax · r

βmax
= r,

hence F−1
ωT

(I) ∩ J = ∅, and ξT (ω) = μ(F−1
ωT

(I)) = 0.
Now assume that B occurs. Then 

∣∣∣F−1
ωT

(I)
∣∣∣ ≤ r and therefore F−1

ωT
(I) ⊂ B2r(J). By 

Lemma 6.2 applied to the interval B2r(J), we see that there exist c1 and c2 such that 
for any y ∈ I

ec1 ≤
(F−1

ωT
)′(x)

(F−1
ωT

)′(y)
≤ ec2 .

Indeed, if we denote x̄ := (F−1
ωT

)(x), ȳ := (F−1
ωT

)(y); then x̄, ȳ ∈ B2r(J) and

(F−1
ωT

)′(x)
(F−1

ωT
)′(y)

=
(FωT

)′(ȳ)
(FωT

)′(x̄) .

In particular,

(F−1
ωT

)′(x) ≥ ec1
|F−1

ωT
(I)|

|I| ≥ ec1r

δ · βmax
. (44)

We have an upper bound for μ(I) = μ(Bδ(x)):

μ(I) = EξT (ω) = Eμ(F−1
ωT

(I)) = E
(
μ(F−1

ωT
(I)) · 1B

)
≤ P (B), (45)

since μ(F−1
ωT

(I)) ≤ 1 and if B doesn’t take place, then μ(F−1
ωT

(I)) = 0.
By the hypothesis of the Theorem, there exists c3 > 0 such that for any x ∈ Br(J)

we have that 1
c3

< ψ(x) < c3. Therefore, using (43) and (44)

c3 ≥ ψ(x) = η0 ≥ EηT (ω) = E
((

(F−1
ωT

)′(x)
)α

· ψ(F−1
ωT

(x))
)
≥ 1

c3
·
( ec1r

δ · βmax

)α
· P (B).

(46)
In particular, we obtain an upper bound P (B) ≤ c4 · δα and the desired estimate (38)
follows from (45). �

6.2. Proof of Theorem 1.25

Theorem 1.25 follows immediately from Proposition 3.7 and Proposition 6.4 below.
We begin with the following lemma, which is analogous to Lemma 5.12. However, in 

the case of general iterated function scheme T (f̄ , p̄, J) we don’t know the eigenfunction 
of D(1)

α,T .

Lemma 6.3. Let μ be the stationary measure of T (f̄ , p̄, J). Assume that α < D1(μ). Then 
there exists r > 0 such that
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lim
n→∞

∥∥(D(1)
α,T )n1Br(J)

∥∥
∞ = 0.

Proof. Let us introduce a shorthand notation I := Br(J) and

ψn(x) := (D(1)
α,T )n1I .

Since D(1)
α,T preserves non-negative functions, it is sufficient to show that

ψn(x) → 0 as n → ∞ uniformly in x. (47)

Let x ∈ I be fixed. We may rewrite ψn using the definition of the asymmetric operator (8)
as follows

ψn(x) =
∑
j
n

pj1 . . . pjn((F−1
j
n

)′(x))α1I(F−1
j
n

(x)), (48)

where Fj
n

= fj1 ◦ · · · ◦ fjn .
By Lemma 6.2 there exists c1 such that for any word j

n
for any y1, y2 ∈ I

e−c1 <
F ′
j
n
(y1)

F ′
j
n
(y2)

< ec1

in particular, there exists c2 > 0 such that for any y ∈ I we have

F ′
j
n
(y) ≥ c2|Fj

n
(I)|. (49)

Let us collect nonzero terms from the right hand side of (48) by length of Fj
n
(I). 

More precisely, given δ > 0 consider the set of words

Rδ := {j
n
| x ∈ Fj

n
(I), δ < |Fj

n
(I)| ≤ 2δ}.

Note that since μ is stationary, μ =
∑

j
n

pj
n
(Fj

n
)∗μ, and supp((Fj

n
)∗μ) ⊂ Fj

n
(I), we 

have for any word j
n
∈ Rδ that supp(Fj

n
)∗μ ⊂ B2δ(x). Hence

μ(B2δ(x)) ≥
∑

j
n
∈Rδ

pj
n
((Fj

n
)∗μ)(B2δ(x)) =

∑
j
n
∈Rδ

pj
n
· 1 = P (Rδ).

By assumption α < D1(μ). Then there exists α < ᾱ < D1(μ) such that

P (Rδ) ≤ μ(U2δ(x)) ≤ const · (2δ)ᾱ. (50)

Note that a term of the sum (48) corresponding to a given j
n

is nonzero only if 
F−1
j
n

(x) ∈ I or, equivalently, if x ∈ Fj
n
(I). It follows from (49) that for any j

n
∈ Rδ we 

have
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(F−1
j
n

)′(x) = 1
F ′
j
n
(y) ≤ 1

c2δ
. (51)

Thus, combining (50) with (51) we get an upper bound for a part of the sum from (48), 
which corresponds to j

n
∈ Rδ

∑
j
n
∈Rδ

pj
n
((F−1

j
n

)′(x))α1I(F−1
j
n

(x)) ≤ P (Rδ) ·
1

(c2δ)α
≤ c5 · δᾱ−α. (52)

Let us denote δn := maxj
n
Fj

n
(I). Since by assumption fj are uniformly contracting, 

δn → 0 as n → ∞ exponentially fast. Then, all Rδ corresponding to δ > δn are empty, 
and therefore

{j
n
| x ∈ Fj

n
(I)} =

∞⋃
k=0

R2−kδn .

Thus

ψn(x) = (D(1)
α,T )n1I(x) =

∑
j
n

pj
n
((F−1

j
n

)′(x))α1I(F−1
j
n

(x))

≤
∞∑
k=0

∑
j
n
∈R2−kδn

pj
n
((F−1

j
n

)′(x))α1I(F−1
j
n

(x))

≤ const ·
∞∑
k=0

(2−kδn)ᾱ−α = const · δᾱ−α
n .

Since δn → 0 as n → ∞ and ᾱ > α the estimate (47) follows. �

Discretization of the operator D(1)
α,T can be defined similarly to the discretization of 

the symmetric operator D(2)
α,S given by (14). Let J be a partition of Br(J) of N intervals. 

We introduce a non-linear finite rank operator

D(1)
α,Jψ|Jk

=
n∑

j=1
pj sup

x∈Jk

|(f−1
j )′(x)|α · sup

x∈Jk

ψ
(
f−1
j (x)

)
, 1 ≤ k ≤ N. (53)

An analogue of Proposition 5.11 holds for D(1)
α,J with obvious modifications.

Proposition 6.4. Let μ be the stationary measure of an iterated function scheme of dif-
feomorphisms T (f̄ , p̄, J). Assume that α < D1(μ). Then there exist:

(i) a sufficiently small interval Br(J);
(ii) a sufficiently fine partition J of Br(J);
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(iii) a sufficiently large k ∈ N; and
(iv) a sufficiently small ϑ > 0,

so that for A = D(1)
α,J we have that Âk

ϑ1Br(J) ≺ 1Br(J).

Proof. The argument is along the same lines as the proof of Proposition 5.11. However, 
in this case we do not know the eigenfunction, so we proceed as follows.

By Lemma 6.3 there exists r > 0 such that

lim
n→∞

∥∥(D(1)
α,T )n1Br(J)

∥∥
∞ = 0. (54)

Let us consider a continuous function ψ defined by

ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x ∈ Br/2(J);
0, if x /∈ Br(J);
linear, otherwise.

Since the operator D(1)
α,T is monotone on FBr(J), and ψ � 1Br(J), it follows from (54)

that

lim
n→∞

∥∥(D(1)
α,T )nψ

∥∥
∞ = 0.

In particular, we may choose k such that (D(1)
α,T )kψ ≺ 1

21Br(J).
As in the proof of Proposition 5.11, the function ψ and all its images (D(1)

α,T )mψ are 
continuous. Hence, as the size ε of intervals of the partition J decreases to zero, the 
images of ψ under the iterations of the finite rank operator converge

sup
Br(J)

∣∣∣(D(1)
α,J )kψ − (D(1)

α,T )kψ
∣∣∣→ 0.

Let us denote A := D(1)
α,J . Then for a sufficiently fine partition J , we obtain

Akψ = (D(1)
α,J )kψ ≺ 3

41Br(J).

The latter implies for Âϑ defined by (16)

Âk
0ψ � Akψ ≺ 3

41Br(J).

Finally, (Âϑ)kψ converges uniformly to (Â0)kψ as ϑ → 0, hence for all ϑ sufficiently 
small we get Âk

ϑψ ≺ 5
61Br(J). On the other hand, by monotonicity Âk

ϑ1Br/2(J) � Âk
ϑψ. 

Hence everywhere on Br/2(J) we have
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Âk
ϑ1Br/2(J)(x) < 1Br/2(J)(x),

and thus with respect to partial order on FBr/2(J)

Âk
ϑ1Br/2(J) ≺ 1Br/2(J). �

Numerical experiments show that the Frostman dimension behaves differently to cor-
relation dimension and to Hausdorff dimension. We give estimates for multinacci numbers 
for comparison in Table 8. In particular it appears that in the case of Bernoulli convo-
lutions the measure μλ corresponding to the root of x4 − x3 − x2 − x − 1 has smaller 
regularity exponent than the measure corresponding to the root of x3 − x2 − x − 1.

Table 8
Hausdorff dimension and lower bounds on correlation and Frostman 
dimension for the multinacci parameter values, i.e. the largest roots of 
xn − xn−1 − . . . − x − 1.

n dimH(μλ) α2 < D2(μ) α1 < D1(μ)
2 0.995713126685 0.992395833333 0.940215301807
3 0.980409319534 0.964214555664 0.853037293349
4 0.986926474333 0.973324567994 0.844963475586
5 0.992585300274 0.983559570313 0.854479046521
6 0.996032591584 0.990673828125 0.866685890042
7 0.997937445507 0.994959490741 0.880046136101
8 0.998944915449 0.997343750000 0.891195693964
9 0.999465368055 0.998640046296 0.900999615532

Remark 6.5. Nevertheless, the nonsymmetric operator can be applied to Bernoulli con-
volutions measures to show that at the other end of the range of parameters, there exists 
c > 0 and ε > 0 such that dimH(μλ) ≥ 1 − c

log(λ− 1
2 )−1 for 1

2 < λ < 1
2 + ε. Indeed, it 

suffices to apply N = �log2(λ − 1
2 )−1� iterations of D(1)

α,S to the initial function 1[−0.1,2.1]. 
The scalar factor λNα will be no larger than 1

4 , while each point of J = [−0.1, 2.1] will 
be covered by at most two images of J under composition of n maps of the iterated 
function scheme which corresponds to Bernoulli convolutions as defined in Example 1.11
f0(x) = λx, and f1(x) = λx − 1.

Appendix A. Numerical data

A.1. Salem numbers of degree up to 10

A lower bound α < D2(μ) for the correlation dimension of the Bernoulli convolu-
tion measure corresponding to Salem parameter values of degree up to 10. Computed 
using 300 iterations of the diffusion operator and 6 · 106 partition intervals.

Since the coefficients form a palindromic sequence, i.e. they read the same backward 
and forward, we give only the coefficients of the first half of each polynomial, from the 
leading coefficient to the middle coefficient.
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λ α Degree β = λ−1 Coefficients
0.58069183 0.997968750 4 1.72208380 1,−1,−1,−1, 1
0.53101005 0.990312500 4 1.88320350 1,−2, 1,−2, 1

0.71363917 0.999687500 6 1.40126836 1, 0,−1,−1
0.66395080 0.999765625 6 1.50613567 1,−1, 0,−1
0.64266105 0.999765625 6 1.55603019 1,−1,−1, 1
0.63197255 0.999765625 6 1.58234718 1, 0,−1,−2
0.61140647 0.999062500 6 1.63557312 1,−2, 2,−3
0.56127948 0.997187500 6 1.78164359 1,−1,−1, 0
0.54612702 0.994218750 6 1.83107582 1,−2, 0, 1
0.51364860 0.988671875 6 1.94685626 1,−1,−1,−1
0.50928087 0.988828125 6 1.96355303 1,−2,−1, 3
0.50637559 0.991406250 6 1.97481870 1,−2, 1,−2
0.50307044 0.993828125 6 1.98779316 1, 0,−2,−3

0.78086069 0.999609375 8 1.28063815 1, 0, 0,−1,−1
0.73529427 0.999687500 8 1.35999971 1,−1, 1,−2, 1
0.70175179 0.999687500 8 1.42500526 1,−1, 0,−1, 1
0.68587694 0.999687500 8 1.45798747 1, 0,−1,−1, 0
0.65657284 0.999765625 8 1.52306024 1,−1,−1, 0, 1
0.64633011 0.999765625 8 1.54719696 1,−2, 2,−3, 3
0.62287838 0.999687500 8 1.60544982 1,−2, 1, 0,−1
0.60974342 0.999375000 8 1.64003408 1, 0,−2,−1, 1
0.60202964 0.999062500 8 1.66104776 1,−2, 1,−1, 1
0.59350345 0.998828125 8 1.68491015 1,−1,−1, 0, 0
0.59049048 0.999296875 8 1.69350738 1,−1, 0,−1,−1
0.55677045 0.997343750 8 1.79607232 1,−1,−1, 0,−1
0.55550255 0.997968750 8 1.80017173 1,−3, 4,−5, 5
0.55255049 0.996015625 8 1.80978933 1,−1, 0,−2, 0
0.55199367 0.995078125 8 1.81161496 1,−2, 0, 1,−1
0.54499335 0.993671875 8 1.83488477 1, 0,−1,−2,−3
0.54065766 0.996718750 8 1.84959921 1, 1,−1,−4,−5
0.53646341 0.996250000 8 1.86406000 1,−1,−2, 0, 2
0.52178497 0.991250000 8 1.91649826 1,−1,−1,−1, 0
0.52066307 0.992421875 8 1.92062783 1,−3, 3,−2, 1
0.51899824 0.985468750 8 1.92678880 1, 0,−2,−2,−1
0.51142999 0.992187500 8 1.95530180 1,−2, 0,−1, 3
0.50150345 0.996250000 8 1.99400419 1,−2, 1,−2, 1

0.85013713 0.999375000 10 1.1762808 1, 1, 0,−1,−1,−1
0.82210362 0.999531250 10 1.2163916 1, 0, 0, 0,−1,−1
0.81274948 0.999531250 10 1.2303914 1, 0, 0,−1, 0,−1
0.79287619 0.999609375 10 1.2612309 1, 0,−1, 0, 0,−1
0.77310464 0.999609375 10 1.2934859 1, 0,−1,−1, 0, 1
0.74776798 0.999687500 10 1.3373132 1,−1, 0, 0, 0,−1
0.74020322 0.999687500 10 1.3509803 1,−1, 0, 0,−1, 1
0.72273314 0.999687500 10 1.3836365 1,−1, 0,−1, 1,−1
0.69881155 0.999687500 10 1.4310009 1,−1,−1, 1, 0,−1
0.69040602 0.999687500 10 1.4484230 1,−2, 2,−2, 1,−1
0.67918489 0.999687500 10 1.4723531 1,−1, 0, 0,−1, 0
0.67585437 0.999687500 10 1.4796086 1, 0,−2,−2, 1, 3
0.66056171 0.999765625 10 1.5138630 1, 0, 0,−1,−2,−1
0.65234742 0.999765625 10 1.5329254 1,−1,−1, 0, 0, 1
0.62865265 0.999765625 10 1.5907035 1,−2, 1, 0,−2, 3
0.62617211 0.999765625 10 1.5970050 1, 0,−1,−1,−1,−1
0.62552337 0.999687500 10 1.5986612 1,−2, 1,−1, 2,−3
0.61538018 0.999140625 10 1.6250117 1,−1,−1,−1, 1, 1
0.61442227 0.999218750 10 1.6275451 1,−2, 0, 2,−1,−1
0.60768664 0.998984375 10 1.6455849 1,−1,−1, 0, 0, 0
0.60335337 0.999218750 10 1.6574035 1, 1, 0,−2,−4,−5
0.59905359 0.999296875 10 1.6692997 1,−1, 0,−1, 0,−2
0.59769079 0.998906250 10 1.6731059 1,−2, 1,−1, 0, 1
0.59165468 0.998984375 10 1.6901750 1,−1,−2, 1, 1,−1
0.58364838 0.998828125 10 1.7133603 1,−2, 1, 0,−2, 2
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Table 8 (continued)

λ α Degree β = λ−1 Coefficients
0.57572460 0.998984375 10 1.7369415 1,−1, 0,−1,−1,−1
0.57309152 0.998750000 10 1.7449219 1,−2, 2,−3, 2,−3
0.57273303 0.998906250 10 1.7460141 1,−1,−1,−1, 0, 2
0.57086342 0.998515625 10 1.7517324 1,−2, 1,−1, 1,−2
0.57041893 0.998359375 10 1.7530974 1, 0,−1,−1,−2,−3
0.56813176 0.998515625 10 1.7601550 1,−2, 1,−2, 2,−1
0.56689143 0.998750000 10 1.7640061 1,−2, 0, 1, 0,−1
0.56595979 0.998515625 10 1.7669099 1, 0,−2,−2, 0, 1
0.56479027 0.998906250 10 1.7705687 1,−3, 4,−5, 5,−5
0.55915695 0.997500000 10 1.7884066 1,−1, 0,−2, 0,−1
0.55562233 0.997890625 10 1.7997836 1, 0,−3,−3, 2, 5
0.55401132 0.996015625 10 1.8050172 1,−2, 0, 1,−1, 1
0.54829524 0.995312500 10 1.8238348 1, 0,−1,−2,−2,−2
0.54790081 0.992734375 10 1.8251478 1,−1,−2, 0, 1, 1
0.54102298 0.994531250 10 1.8483503 1,−1,−1, 0,−1,−1
0.53962808 0.995625000 10 1.8531281 1,−2, 1,−2, 2,−2
0.53846598 0.997109375 10 1.8571275 1,−2, 1,−1, 0,−1
0.53687119 0.995156250 10 1.8626441 1,−3, 3,−1,−3, 5
0.53511394 0.996015625 10 1.8687608 1,−1, 0,−2, 0,−3
0.53312307 0.994765625 10 1.8757394 1,−2,−1, 3, 0,−3
0.52911051 0.993437500 10 1.8899643 1,−1,−1, 0,−1,−2
0.52809402 0.995234375 10 1.8936021 1,−1,−2, 0, 1, 0
0.52724900 0.994453125 10 1.8966370 1,−2, 0, 1,−1, 0
0.52656371 0.993671875 10 1.8991054 1,−2, 0, 0, 1,−1
0.52476315 0.989687500 10 1.9056215 1, 0,−1,−2,−3,−3
0.52402623 0.991171875 10 1.9083013 1,−1,−1,−1, 0,−1
0.52325199 0.988750000 10 1.9111250 1, 0,−2,−2,−1,−1
0.52234319 0.992578125 10 1.9144501 1,−1, 0,−1,−3,−1
0.51919283 0.987187500 10 1.9260666 1,−1,−1,−1,−1, 1
0.51815962 0.991093750 10 1.9299072 1,−1,−1,−2, 1, 0
0.51751378 0.993515625 10 1.9323156 1,−2, 2,−4, 3,−5
0.51734313 0.992109375 10 1.9329530 1,−3, 3,−2, 0, 1
0.51642814 0.993359375 10 1.9363778 1,−2, 0, 0, 0, 1
0.51544868 0.993125000 10 1.9400573 1,−2, 1,−1,−1, 0
0.51282383 0.993125000 10 1.9499873 1,−1,−2,−1, 1, 3
0.50707588 0.992890625 10 1.9720914 1,−2, 0, 0,−1, 3
0.50074301 0.997890625 10 1.9970323 1,−1,−1,−1,−1,−1
0.50036910 0.998828125 10 1.9985246 1,−2, 1,−2, 1,−2

A.2. Small Salem numbers

A lower bound α < D2(μ) for the correlation dimension of the Bernoulli convolution 
measure corresponding Salem parameter values of degree up to 10. Computed using 300
iterations of the diffusion operator and 6 · 106 partition intervals.

λ α Degree β = λ−1

0.841490073675 0.999453125000 18 1.188368147508
0.833314914305 0.999453125000 14 1.200026523987
0.831520104180 0.999453125000 14 1.202616743688
0.819859718384 0.999531250000 18 1.219720859040
0.811284283822 0.999531250000 20 1.232613548593
0.809281107406 0.999531250000 22 1.235664580389
0.808853430235 0.999531250000 16 1.236317931803
0.808077659864 0.999531250000 26 1.237504821217
0.805979449568 0.999531250000 12 1.240726423652
0.798227336699 0.999531250000 18 1.252775937410

(continued on next page)
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Table 8 (continued)

λ α Degree β = λ−1

0.797874048512 0.999531250000 20 1.253330650201
0.796753378647 0.999609375000 14 1.255093516763
0.796038178870 0.999609375000 18 1.256221154391
0.793585580847 0.999609375000 24 1.260103540354
0.793471798443 0.999609375000 22 1.260284236896
0.791741728445 0.999609375000 26 1.263038139930
0.789081359693 0.999609375000 14 1.267296442523
0.783220488506 0.999609375000 22 1.276779674019
0.780219031051 0.999609375000 26 1.281691371528
0.779729794543 0.999609375000 20 1.282495560639
0.778442407020 0.999609375000 18 1.284616550925
0.778363474601 0.999609375000 26 1.284746821544
0.778149945665 0.999609375000 30 1.285099363651
0.778136529751 0.999609375000 30 1.285121520153
0.778097688729 0.999609375000 30 1.285185670752
0.778090995075 0.999609375000 26 1.285196726769
0.778089510311 0.999609375000 44 1.285199179205
0.778067560084 0.999609375000 30 1.285235436228
0.777962461454 0.999609375000 34 1.285409064765
0.777365621302 0.999609375000 18 1.286395966836
0.777163708407 0.999609375000 26 1.286730182048
0.774148742227 0.999609375000 24 1.291741425714
0.773970381657 0.999609375000 20 1.292039106017
0.773743085596 0.999609375000 40 1.292418657582
0.773454591798 0.999609375000 46 1.292900721780
0.771798261859 0.999609375000 18 1.295675371944
0.771479537372 0.999609375000 34 1.296210659593
0.771354149852 0.999609375000 22 1.296421365194
0.771116223305 0.999609375000 28 1.296821373714
0.770160984197 0.999609375000 36 1.298429835475
0.769381763673 0.999609375000 26 1.299744869472
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