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Effects of spatial autocorrelation structure for friction angle on the 1 

runout distance in heterogeneous sand collapse  2 

Guotao Ma1, Mohammad Rezania2,  Mohaddeseh Mousavi Nezhad3 3 

Abstract 4 

This paper proposes a stochastic method for analyzing the runout distance of sand collapse 5 

considering the spatial variability of shear strength, in which random field theory and generalized 6 

interpolation material point method are integrated into a Monte-Carlo simulation basis. The 7 

random field is generated by Cholesky matrix decomposition method and implemented into the 8 

material point level, hence heterogeneity and large deformations are simultaneously considered in 9 

the modeling process. A sand collapse case is simulated with both homogeneous and 10 

heterogeneous condition assumptions by the proposed method. The effect of five theoretical 11 

autocorrelation functions (ACFs) on the runout distance of the collapse is highlighted since the 12 

ACFs are commonly adopted to characterize the spatial variability of soil properties due to sparse 13 

site observation data. It is shown that the deterministic analysis may underestimate the runout 14 

distance, while the heterogeneous model provides realistic results. Moreover, five ACFs and 15 
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different coefficients of variation of friction angle (COV𝜑 ) are compared to investigate their 16 

influences on the runout distance modeling. The results show that the uncertainty of runout 17 

distance increases with the increase in COV𝜑. Meanwhile, the variances of the runout distance 18 

also become larger with COV𝜑 increasing. Based on the proportion of the runout distance which 19 

exceeds the deterministic value, the results indicate that the deterministic analysis notably 20 

underestimates the risk induced by large runout distances in real heterogeneous granular flows 21 

(e.g., landslide, debris-avalanches). 22 

Author Keywords: Random field, Sand collapse, Runout distance, Spatial variability. 23 

1. Introduction 24 

In nature, the flow of granular material is a common phenomenon in geological disasters such as 25 

landslides, debris flows, and avalanches (Crosta et al., 2009; Ma et al., 2018). Therefore, landslides 26 

are often treated as granular flows with diverse behaviors ranging from solid-like to fluid-like. 27 

Landslides as a real geophysical flow are primarily driven by gravity and could result in 28 

catastrophic damages along their extensive motion paths, such as destroying transportation 29 

infrastructures, facilities, and buildings (Huang and Fan, 2013). Especially, all transportation in 30 

mountainous regions face great challenges given their exposure to long runout distance and huge 31 

influence zone of potential landslides (Yerro et al., 2019; Wang et al., 2020). Additionally, this is 32 

further complicated due to the spatial variability of the geomaterials involved, with natural 33 

heterogeneity in these flows. Therefore, for risk assessment and disaster mitigation, prediction of 34 

the final extent of granular flow in spatially varying deposits is crucial to precisely investigate the 35 

post-failure behavior, which plays a significant role in real landslides. 36 
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Collapse of a granular column has been extensively studied in the case of dry granular material 37 

(Fern and Soga, 2017). Lube et al. (2004) and Lajeunesse et al. (2004) are the first to conduct the 38 

experiments by releasing a column of granular material on a flat surface to investigate the flow 39 

mechanisms and geometrical properties of the final deposits. Since then, granular flows are also 40 

investigated using several numerical approaches such as discrete element method (DEM) (Guo 41 

and Curtis, 2015), smooth particle hydrodynamics (SPH) (Bui et al., 2008; Nguyen et al., 2017), 42 

and material point method (MPM) (Li et al., 2018) which compensated the details of granular 43 

flows on stress-strain and final runout distance by different aspect ratios and mechanical parameter 44 

settings. Among the mentioned methods, DEM is deemed to be an accurate approach to simulate 45 

granular flows, but it requires demanding computational resources for a practical problem 46 

involving hundreds of millions of particles. In addition, the difficulty in selection of appropriate 47 

micro-parameters is a main drawback in DEM, particularly for practical level simulations 48 

(Benvenuti et al., 2016). As for particle-based method, inconsistent near boundaries (Morris, 1996) 49 

and tensile instability (Bui et al., 2008) would result in low accuracy and greatly limit the 50 

application of SPH in geo-engineering. This leads to the increasing development and application 51 

of MPM in modeling granular flow problems (Bardenhagen et al., 2000; Iaconeta et al., 2017; Li 52 

et al., 2018). However, in previous studies the granular materials are always assumed to be 53 

homogeneous and modeled with simplified homogeneous and isotropic material models without 54 

considering the spatial variability and uncertainty of their heterogeneity. Meanwhile, it is 55 

impractical to conduct hundreds of physical experiments to investigate the runout distance affected 56 

by natural heterogeneities in different geomaterial deposits. However, in engineering geology, 57 

variability of natural geomaterials (e.g., sand, silt, clay) is extensively admitted, and it is agreed 58 

that the spatial distributions of shear strength parameters (e.g., internal friction angle 𝜑  and 59 
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cohesion 𝑐) notably influence the likelihood and failure mode of these flows, thereby influencing 60 

their post-failure behavior and runout motion. Kerswell (2005) indicated that the runout behavior 61 

of granular flows has a clear material dependence, even little variability in material strength could 62 

result in a totally different response. According to Crosta et al. (2009) and Zhang and Xiao (2019) 63 

the internal friction angle plays a particularly important role on the post-failure behavior of 64 

granular flows. However, currently conventional deterministic particle-based methods cannot 65 

investigate the effect of spatial variability of shear strength parameters on runout motion. 66 

Therefore, analyzing runout distance of the granular flow in spatially varying soils is still an open 67 

question. 68 

In recent decades, many probabilistic studies have been conducted as the complementation for 69 

deterministic analysis in geotechnical engineering. Spatial variability of soil properties is 70 

commonly considered as weakly stationary random fields (Fenton and Griffiths, 2003; Griffiths 71 

and Fenton, 2004; Jiang et al., 2014), which is based on random field theory (Vanmarcke, 1977; 72 

Nezhad, 2010, Nezhad et al., 2011). In the previous studies, the spatially varying shear strength is 73 

usually modeled as a random variable in a structural correlation computational domain (Liu, 2018; 74 

Zhang et al., 2018; Gironacci et al., 2018; Nezhad et al., 2018), and the stability/reliability of geo-75 

structures (e.g., foundation or slope) and corresponding probability of failure is evaluated by limit 76 

equilibrium method (LEM), finite element method (FEM), or finite difference method (FDM). 77 

Among these studies, it can also be noticed that they have been mainly focused on failure 78 

probability or pre-failure phase and do not consider the effect of spatial variability on large 79 

deformation problems or moving behaviors at post-failure phase. Consequently, post-failure 80 

analysis of heterogeneous granular flows is predominantly overlooked in previous works, hence 81 

its resulting consequences from the extensive runout of deposits under the effect of inherent spatial 82 
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variability were also largely ignored. Part of the reason is that large deformation and strain 83 

alternation in the computation domain at post-failure phase cannot be easily simulated and 84 

analyzed by LEM and FEM methods (e.g., due to mesh dependency, mesh distortion or twisting 85 

problems). On the other hand, the lack of such research is partly because of the difficulty in 86 

implementing random field information into the modeling framework in an efficient way. 87 

In this paper, a generalized interpolation MPM (GIMP) based stochastic numerical modeling 88 

framework, termed SGIMP, is employed for simulating granular column collapse in heterogeneous 89 

sands with the aim to investigate the spatial variability of shear strength with different 90 

autocorrelation functions (ACFs) on the runout distance. The method utilizes both advantages of 91 

GIMP and random field theory. According to Crosta et al. (2009), Mohr-Coulomb constitutive 92 

model is suitable for capturing the dynamics of collapse in non-cohesive deposits, therefore the 93 

whole failure process is modeled by the SGIMP using this constitutive model. Given the large 94 

influence of internal friction angle on post-failure behavior (Zhang and Xiao, 2019), it is selected 95 

as the random variable and introduced by random field principle. A homogeneous sand collapse 96 

and a heterogeneous sand collapse are studied to demonstrate the validity of the method and 97 

explore the effects of ACFs and coefficient of variations (COVs) for the internal friction angle 98 

parameter. The results of this study can provide a new methodology and insight towards the 99 

enforcement of risk assessments for real landslides and other geomaterial flows. 100 

2. Stochastic generalized interpolation material point method 101 

2.1 Brief review of MPM 102 

MPM was originally developed based on the strengths of particle-in-cell scheme (Sulsky et al., 103 

1994) and FEM. It has been proven as a promising particle-based mesh free method in geotechnical 104 
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engineering for simulating large strain boundary value problems. The method has been applied to 105 

simulate granular flows, slope failures, landslides, embankment collapse and other geological and 106 

geotechnical problems (e.g., Andersen and Andersen, 2010; Llano-Serna et al., 2016; Li et al., 107 

2018; Yerro et al., 2019). The essential idea in MPM is to take the advantages of both Lagrangian 108 

and Eulerian methods. A cluster of material points (Lagrangian points) is considered representing 109 

the continuous material and is allowed to freely move, carrying density, strain, stress, and all state 110 

variables of the continuous body; and a Eulerian background mesh is adopted for solving the 111 

governing equations of motion and determining incremental velocities, instead of carrying 112 

permanent information. In the convection phase, the updated information of grid nodes is mapped 113 

back to the material points, and subsequently the grid is regularly reset to the initial configuration 114 

and the deformation of the domain is tracked by the motion of the material points. As shown in a 115 

computational cycle (Fig. 1), the material points carrying information and background mesh are 116 

used to solve motion equations, update the material points, and refresh. 117 

In a material domain Ω, it yields the mass and momentum conservation as follows: 118 

ⅆρ

ⅆt
+ ρ∇𝐯 = 0 (1) 119 

ρ
ⅆ𝐯

ⅆt
= ∇σ + ρb (2)  120 

where, 𝜌 is the mass density, 𝐯 is the velocity of material, 𝜎 is the Cauchy stress tensor, 𝑏 is 121 

the body force, and ∇ is the gradient operator.  122 

 123 
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 124 

Fig. 1 The basic computational cycle in material point method 125 

2.2 Generalized interpolation material point method 126 

The original MPM has grid-crossing instability, which is caused by the discontinuous gradient of 127 

shape functions (Bardenhagen et. al., 2002). A sudden change of the stress can be found when a 128 

material point crosses to a new cell. This error can be reduced by using GIMP method to introduce 129 

GIMP grid shape function and particle characteristic function (Bardenhagen and Kober, 2004). 130 

This paper uses GIMP as implemented in the open-source code named MPM3D, from the 131 

Computational Dynamics Laboratory, School of Aerospace, Tsinghua University (Zhang et al., 132 

2016). The main computational cycle of GIMP is summarized in the following four steps: 133 
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1. Firstly, state variables of material points (e.g., mass, momenta, etc.) are interpolated to grid 134 

nodes on the mesh, the mass of a node 𝑖 and nodal momentum is expressed as: 135 

𝑚𝑖 = ∑ 𝑆𝑖𝑝

𝑛

𝑝=1

𝑚𝑝 (3)  136 

𝑝𝑖 = ∑ 𝑆𝑖𝑝

𝑛

𝑝=1

𝑚𝑝𝑣𝑝 (4) 137 

where 𝑆𝑖𝑝 is the computational grid shape function of node 𝑖 for particle 𝑝 in GIMP, 𝑚𝑝 is 138 

the mass, 𝑣𝑝 is the velocity. 139 

2. Then the nodal internal force 𝑓𝑖
𝑖𝑛𝑡 and external force 𝑓𝑖

𝑒𝑥𝑡  at the node 𝑖 are expressed as: 140 

𝑓𝑖
𝑖𝑛𝑡 = −∑∇

𝑝

𝑆𝑖𝑝𝜎𝑝𝑉𝑝 (5) 141 

𝑓𝑖
𝑒𝑥𝑡 = ∑𝑆𝑖𝑝

𝑝

𝑏𝑝𝑚𝑝 (6) 142 

where ∇𝑆𝑖𝑝 is the gradient of the computational grid shape function over the particle 𝑝, 𝜎𝑝 is 143 

the Cauchy stress at the particle 𝑝, 𝑉𝑝 is the volume of the particle, 𝑏𝑝 is the corresponding body 144 

force. Based on the forces, the nodal velocities can be updated from: 145 

𝑣𝑖
𝑛+1 = 𝑣𝑖

𝑛 +
𝑓𝑖

𝑖𝑛𝑡 + 𝑓𝑖
𝑒𝑥𝑡

𝑚𝑖
Δ 𝑡 (7) 146 

3. The velocity of the particle 𝑝 can be computed from the updated nodal velocity: 147 
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𝑣𝑝
𝑛+1 = 𝑣𝑝

𝑛 + ∑𝑆𝑖𝑝

𝑖

𝑓𝑖
𝑖𝑛𝑡 + 𝑓𝑖

𝑒𝑥𝑡

𝑚𝑖
Δ 𝑡 (8) 148 

4. The position of the particle is then updated: 149 

𝑥𝑝
𝑛+1 = 𝑥𝑝

𝑛 + ∑𝑆𝑖𝑝

𝑖

𝑣𝑖
𝑛+1Δ 𝑡 (9) 150 

Finally, the background mesh is discarded and refreshed to undistorted configuration. Note that 151 

the above computational cycle can be repeated for each incremental step Δ 𝑡. The used GIMP code 152 

is modified from the openly available MPM3D code (Zhang et al., 2016), which has been 153 

previously exercised by other researchers (e.g., Li et al. 2018). 154 

2.3 Random field generation 155 

Inherent spatial variability of soil is commonly represented by a numerically generated random 156 

field, which is based on first and second moments of variables and spatial correlation structure 157 

function. To generate a random field of a domain Ω, assume the domain is discretized into n 158 

elements with the centroid coordinates (𝑥𝑖 , 𝑦𝑖), the autocorrelation matrix 𝐂𝑛×𝑛 defining spatial 159 

structure of the domain can be expressed by: 160 

𝐂𝑛×𝑛 =

[
 
 
 
 

1 𝜌(𝜏𝑥12
, 𝜏𝑦12

) … 𝜌(𝜏𝑥1𝑛
, 𝜏𝑦1𝑛

)

𝜌(𝜏𝑥21
, 𝜏𝑦21

) 1 … 𝜌(𝜏𝑥2𝑛
, 𝜏𝑦2𝑛

)

⋮ ⋮ ⋱ ⋮
𝜌(𝜏𝑥𝑛1

, 𝜏𝑦𝑛1
) 𝜌(𝜏𝑥𝑛2

, 𝜏𝑦𝑛2
) … 1 ]

 
 
 
 

(10) 161 

where, n represents the number of random field elements, 𝜌(𝑥𝑖𝑗 , 𝑦𝑖𝑗)  is the autocorrelation 162 

coefficient of quantities between two spatial locations, 𝜏 is the absolute distances between the 163 
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centroid coordinates of the 𝑖 th element and 𝑗th element in horizontal and vertical directions, 164 

respectively. 165 

Generally, the correlation of any two variables at different locations is usually characterized by an 166 

ACF in a random field. As reported in the literature, DeGroot and Baecher (1993) adopted the 167 

maximum likelihood method to estimate the corresponding ACF of soil shear strength, Phoon and 168 

Ching (2014) tried to estimate the ACF by using moments method. However, determination of an 169 

appropriate ACF for soil properties is particularly difficult in practice because of limited site 170 

investigation, which requires extensive effort to obtain large quantities of geo-statistical data. 171 

Therefore, theoretical ACFs as alternatives are commonly used to characterize the spatial 172 

variability of soil properties (e.g., Phoon et al., 2003; Li et al., 2015; Liu, 2018). Based on the 173 

findings of previous studies carried out in the probabilistic analysis field, the five most commonly 174 

used theoretical ACFs for geo-statistical analysis can be pointed as; single exponential (SNX), 175 

widely used model to simulate inherent spatial variability of shear strength parameters (Griffiths 176 

and Fenton, 2004; Li et al., 2015), squared exponential (SQX), also named as Gaussian 177 

autocorrelation (Masoudian et al., 2019), cosine exponential (CSX) (Cafaro and Cherubini, 2002; 178 

Liu et al., 2017), second-order Markov (SMK) (Liu et al., 2017; Ching et al., 2019), and Binary 179 

noise (BIN) (Liu et al., 2017; Huang et al., 2018). Table 1 summarizes these five theoretical ACFs. 180 

Table 1. Common ACFs for geostatistical analysis 181 

Type ACF in 1-D 
Scale of 

fluctuation 
ACF in 2-D 

SNX ( ) exp( )a  = −  a/2=  







+= )2(-exp),(

v

y

h

x
yx








  

SQX ( )
2

( ) exp b   = −
 

 bπ=  
22

2 2
( , ) exp - ( )

yx
x y

h v


   

 

 
= + 

  
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SMK ( ) exp( )(1 )c c   = − +  c/4=  
44

( , ) exp 4 (1 )(1 )- ( )
y yx x

x y

h v h v

  
  

   

 
= + + + 

 

 

CSK ( ) exp( )cos( )d d   = −  d/1=  ( , ) exp cos( cos )-( ) ) (
y yx x

x y

h v h v

  
  

   

 
= + 

 

 

BIN 
1 1/

( )
0

for 

otherwise

e e 
 

− 
= 


 
e/1=  

(1 )(1 )
( , )

0

for  and 

otherwise

yx
x h y v

x y h v


   

    


− −  

= 



 

*The 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are the scale of fluctuation parameters of the ACF model; the lags 𝜏𝑥 =∣ 𝑥𝑖 − 𝑥𝑗 ∣ and 182 
𝜏𝑦 =∣ 𝑦𝑖 − 𝑦𝑗 ∣ are the absolute distances between two spatial locations in horizontal and vertical directions, 183 
respectively; 𝛿ℎ and 𝛿𝑣 are the scale of fluctuation in horizontal and vertical directions, respectively .  184 
 185 

For distinguishing the differences among the ACFs, the 2-D line graph and the 3-D surfaces of the 186 

ACFs are plotted in Fig. 2 and Fig. 3, respectively. It can be found that with the increasing of 187 

normalized absolute distance |𝜏|/𝛿, the corresponding autocorrelation coefficients associated with 188 

ACFs are very different. Meanwhile, significant differences can be observed among these surfaces 189 

of the ACFs, where 𝜌(𝜏𝑥, 𝜏𝑦) is the dependent variable, and 𝜏𝑥  and 𝜏𝑦  are the corresponding 190 

independent variables in horizontal and vertical directions, respectively. As Fig. 3 shows, among 191 

the surfaces, SNX decreases sharply with the increasing of 𝜏𝑥 and 𝜏𝑦. The surfaces of SNX, CSX, 192 

and BIN ACFs exhibit a sharp corner near the origin and four edges, which are not differentiable. 193 

While the surfaces of SMK and SQX ACFs are very smooth and isotropic, which means the ACFs 194 

are differentiable at the origin. These five ACFs are used in this work to feature the spatial 195 

variability structure of shear strength in the computation domain and are utilized to investigate 196 

how the outputs change with various ACF conditions. 197 
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 198 

Fig. 2 Common ACFs for geostatistical analysis (normalized to unit scale of fluctuation) 199 
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 200 

(a) SNX                                                      (b) SQX 201 

 202 

(c) SMK                                                 (d) CSX 203 

 204 

(e) BIN 205 

Fig. 3 3-D surfaces of the ACFs for geo-statistical analysis 206 
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2.3.1. Cholesky Matrix Decomposition Method 207 

The Cholesky matrix decomposition (CMD) method (Li et al., 2015; Liu, 2018; Masoudian et al., 208 

2019) is adopted in this paper to generate random fields. Karhunen-Loéve expansion method can 209 

also be used for the same purpose; however, its application can result in a complex process as the 210 

eigenvalue of Fredholm integral equation could not be analytically readily solved (Zhu et al., 211 

2017). CDM is computationally very efficient and easily implementable, it is also very robustly 212 

coping with multivariate random fields (Phoon et al., 2003; Phoon and Ching, 2014; Li et al., 213 

2015). More details about generating random fields by using CMD can be found in Zhu et al. 214 

(2017). By using CMD, the autocorrelation matrix 𝐂𝑛×𝑛 can be decomposed as: 215 

𝐂𝑛×𝑛 = 𝐋 ⋅ 𝐋𝐓

= [

1 0 …

𝜌 √1 − 𝜌2 …

⋮ ⋮ ⋱

] [

1 𝜌 …

0 √1 − 𝜌2 …

⋮ ⋮ ⋱

]
(11) 216 

where, 𝐋 is the lower triangular matrix with dimension of 𝑛 × 𝑛. An anisotropic standard 217 

Gaussian random field 𝐗𝐺 can be derived as follows: 218 

𝐗𝐺(𝑥, 𝑦) = 𝐋 ⋅ 𝜉𝑖 (𝑖 = 1,2,… , 𝑁) (12) 219 

where 𝑖 is the number of standard Gaussian random field, 𝜉𝑖  is a sample matrix obtained by 220 

arranging the vector of 𝑛  independent standard normal random variables as 𝑚  vectors with 221 

dimension of 𝑛. Subsequently, the standard Gaussian random field 𝐗𝐺 is used to generate the Non-222 

Gaussian random field 𝐗𝑁𝐺 of desired values by isoprobabilistic transformation method (Li et al., 223 

2015) as: 224 
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𝐗𝑁𝐺(𝑥, 𝑦) = 𝐹−1𝛷[𝐗𝐺(𝑥, 𝑦)] (𝑖 = 1,2,… ,𝑁) (13) 225 

where the 𝐹−1(•)  is the inverse function of its corresponding marginal cumulative 226 

distribution of the desired variable given its mean 𝜇 , standard deviation 𝜎 , and probability 227 

distribution; 𝛷(•)  is the standard Gaussian cumulative distribution function. The 𝛷(•)  can 228 

rearrange the standard Gaussian random field 𝐗𝐺 into the uniform distribution 𝐔 = 𝛷[𝐗𝐺(𝑥, 𝑦)] 229 

within (0,1) . Thereafter, non-Gaussian random field 𝐗𝑁𝐺  can be generated by Eq. (13), the 230 

procedure can be repeated 𝑁 times to obtain 𝑁 realisations of the random field. 231 

2.4. Implementation and workflow of the framework 232 

Fig. 4 outlines the basics of the SGIMP framework employed in this work, which consists of three 233 

important steps: 234 

Step 1. In the pre-process phase, the random variable 𝐗 is set up based on the point statistics (mean 235 

𝜇𝑋, variance 𝜎𝑋, and assumed distribution type, e.g., normal distribution), and the modules 236 

are initialized. 237 

Step 2. In the SGIMP, Monte-Carlo simulation (MCS) is implemented for the stochastic modeling. 238 

After setting the total realization number 𝑁, the current simulation starts from 𝑖 = 1. Based 239 

on a set of random seed numbers, 𝐬, the coordinates (𝑥, 𝑦) of model geometry including 240 

the boundary conditions 𝛤, spatial structure defined by ACFs, and spatial statistics (scale 241 

of fluctuation 𝛿), a set of isotropic Gaussian random fields X𝐺(𝑥, 𝑦) can be generated. 242 

Then, it is transformed into the non-Gaussian random field X𝑁𝐺(𝑥, 𝑦) in the physical space 243 

by Eq. (13). It can be observed that all random fields may look similar in pattern; however, 244 
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they differ with respect to the spatial distribution of mechanically strong and weak zones 245 

that will lead to different output responses. The 𝑖-th set of spatially correlated soil property 246 

values X𝑁𝐺(𝑥, 𝑦) is then transmitted to the mechanical module, which has been developed 247 

to perform the large deformation analysis. Meanwhile, a single set of deterministic model 248 

parameters 𝐃 (e.g., density 𝜌, Young’s modulus 𝐸, Poisson’s ratio 𝜈) is transmitted to the 249 

mechanical module. After both deterministic model parameters and stochastic model 250 

parameters are prepared, the mechanical module starts to run the modeling and receives 251 

back a discrete response measure, runout distance 𝑦 = 𝑆𝑥. This communication continues 252 

for 𝑁 times realizations and until convergence of the first and second moments of the 253 

model outputs occurs. Here, it is assumed that the convergence occurs when the differences 254 

in the calculated values for mean and variance obtained in consequent MC iterations 255 

become less than 10-3. 256 

In the mechanical module, the most significant work about transmission of random fields to the 257 

mechanical module are highlighted. After running a MATLAB code of CMD method, the obtained 258 

𝑖-th non-Gaussian random field X𝑁𝐺(𝑥, 𝑦) of computation domain Ω holding the shear strength 259 

parameters of the geomaterial (in here the internal friction angle 𝜑 of sand) are mapped onto each 260 

material point in the GIMP instead of grid nodes as shown in Fig. 5. The transmission process is 261 

based on spatial relationship between material point and random field element (e.g., a position-to-262 

position mapping process), which is similar with the RFEM sharing the same value on elements 263 

of random fields and FEM mesh (Huang and Griffiths, 2015). 264 

Therefore, a deterministic GIMP calculation is performed after carrying a set of random 265 

mechanical property values on the material points. Consequently, stochastic modeling is conducted 266 
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and the output runout distance 𝑆𝑥 is determined for each realization, i.e., S𝑥 = {𝑆𝑥1
, 𝑆𝑥2

, … , 𝑆𝑥𝑛
}T. 267 

It should be noted that each simulation index, 𝑖, would be updated and checked; if 𝑖 ≤ 𝑁 the MCS 268 

is aborted, otherwise it is continued. 269 

Step 3. In the post-processing phase, all calculated data are processed to compute the mean values, 270 

variances, and PDFs, and they will be compared with the corresponding homogeneous 271 

model outputs to investigate the effect of spatial variability on the runout distances. This 272 

framework can be easily extended to account for the uncertainty in other shear strength 273 

parameters of the deposit, such as undrained shear strength 𝑆𝑢 , and any geometry. 274 

Furthermore, the outcomes can be used to assess and mitigate the potential damages 275 

incurred by large deformations during geo-disasters. 276 
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 277 

Fig. 4 Flowchart illustrating the employed SGIMP model framework 278 

 279 

Fig. 5 Schematics of the mapping process of a random field in SGIMP 280 
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3. Stochastic analysis of sand column collapse  281 

3.1. Numerical model setup 282 

3.1.1. Deterministic model parameters 283 

The numerical model is setup as a plane strain problem. Fig. 6 shows the initial geometry of the 284 

sand column model with 5.0 × 5.0 m, and the distance from the right side of the sand column to 285 

the right-side boundary is 15.0 m for allowing enough runout distance for the sand flow. The 286 

computation domain is discretized into 6400 material points with a radius of 0.0625 m (0.625 dm) 287 

and covered by a total of 10170 background computational grids with side length of 0.125 mm 288 

(1.25 dm). The background computational mesh is made up of 4-noded quadrilateral elements, 289 

where each grid contains 4 (2 × 2) material points inside. The bottom boundary 𝑦 = 0 is fully 290 

fixed in the 𝑥 , 𝑦 , 𝑧  directions. While roller boundary conditions are set for allowing vertical 291 

displacements at both lateral boundaries (𝑥 = 0 and 𝑥 = 20 m). On the boundaries of 𝑧 = 0 m and 292 

𝑧 = 0.0625 m, the grid nodes are fixed in the 𝑧-direction.  Lube et al. (2004) suggested that the 293 

roughness of the base surface on which the sand spreads has a negligible effect on the runout 294 

distance. This can be explained by the fact that the majority of the actual flow generally occurs 295 

over the base of the deposit. Therefore, rough contact, inherent in the MPM, was used in the 296 

analysis. The time increment is 2.0 × 10−2 s and total time for the calculation is 5 s when deposits 297 

become stable according to kinetic energy and unbalanced forces of the system (Kafaji 2013). 298 

A Mohr-Coulomb model is used to describe the sand behavior, the material properties are 299 

summarized in Table 2. To realistically model the post-failure behavior of the sand collapse, a 300 

numerical damping is introduced for approximating the energy loss of grains on movement, which 301 

is mainly influenced by the effect of friction between particles (Sołowski and Sloan, 2015). 302 
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Without such damping factor, the spreads of sand particles can be too far (Sołowski and Sloan, 303 

2013). The numerical damping is applied using: 304 

a𝐼 = a𝐼 − 𝑐𝑑v𝐼 (14) 305 

where a𝐼  is the acceleration of the nodes on the background grids, v𝐼 is the velocity of nodes on 306 

the background grids and 𝑐𝑑  is the damping coefficient. In the model, the value of damping 307 

coefficient has been selected as 2. 308 

Table 2. Material properties of the sand 309 

Parameters unit Values 

Bulk density, 𝜌 kg/m3 1450 

Young’s modulus, 𝐸 kPa 2600 

Poisson’s ratio, 𝜈  0.31 

Internal friction angle, 𝜑 ∘ 35 

 310 

 311 

Fig. 6 Geometry and boundary conditions of the model 312 

https://doi.org/10.1016


Transportation Geotechnics. Submitted Sep 2021; Published Dec 2021. 

https://doi.org/10.1016/j.trgeo.2021.100705 

 21 

3.1.2. Stochastic model parameters 313 

Sand is a natural geomaterial with heterogeneities subject to long-term geological processes. Since 314 

Lumb (1966, 1970) investigated the natural variability of internal friction angle of sand, many 315 

researchers started to build random variable model for sand. It is admitted that even small-scale 316 

heterogeneities of internal friction angle 𝜑 have strong influence on macroscopic behavior, such 317 

as internal structure deformation and flow distances (Hungr, 1995). Therefore, this soil strength 318 

parameter is selected as the random variable for the analysis. Different plausible ranges of 319 

variations for both tan𝜑 and 𝜑 of sand, according to the literature, are summarized in Table 3.  320 

Table 3. General summary of the ranges of the COV reported in the literature for friction angle 321 

of sand 322 

Values of COV PDF Reference 

COVtan𝜑 = 0.058 - Lumb (1966) 

COV𝜑 = 0.053 

COVtan𝜑 = 0.073 
Log-normal distribution Schultze (1972) 

0.05 ≤ COVtan𝜑 ≤ 0.14 - Schultze (1975) 

0.037 ≤ COV𝜑 ≤ 0.093 Normal distribution Wolff et al. (1996) 

0.05 ≤ COV𝜑 ≤ 0.11 - 
Phoon and Kulhawy (1996) 

0.05 ≤ COVtan𝜑 ≤ 0.14 - 

0.02 ≤ COV𝜑 ≤ 0.05 

COV𝜑 = 0.059 
Normal distribution Lacasse and Nadim (1997) 

0.05 ≤ COVtan𝜑 ≤ 0.15 - Cherubini (2000) 

0.054 ≤ COVtan𝜑 ≤ 0.167 - Wang et al. (2010) 

 323 

According to the summary, in this work, the internal friction angles are described by a normal 324 

distribution and the statistical characteristics of sand parameters are displayed in Table 4. The 325 
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mean value is 𝜇𝜑=35∘ and values of coefficient of variation, COV𝜑, equal to 0.05, 0.10, and 0.15, 326 

are used to study the effect of degree of heterogeneity on the macroscopic response. Only isotropic 327 

random fields with 𝛿ℎ = 𝛿𝑣  =  0.2 𝑚 are used in this study (usually 0.13 m to 0.71 m), which is 328 

based on the CPT cone resistance data reported in the literature (Campanella et al., 1987; Nie et 329 

al., 2015). 330 

Table 4. Statistical parameters of the internal friction angle 𝜑 of sand 331 

Parameters unit Values Distribution 

Mean, 𝜇𝜑 ∘ 35 

Normal distribution 
COV𝜑 - 0.05, 0.10, 0.15 

Horizontal fluctuation, 𝛿ℎ m 0.2 

Vertical fluctuation, 𝛿𝑣 m 0.2 

 332 

4. Numerical modeling  333 

4.1. Homogeneous sand collapse modeling 334 

By conducting the homogeneous sand collapse modeling with constant parameters in Table 2, the 335 

runout distance 𝑆𝑥 of sand collapse at critical times are presented in Fig. 7. For better visualization 336 

of the modeling, the unit is set as decimeter (dm). When t=1.4 s, the runout distance starts 337 

increasing rapidly, and a large deformation can be observed. When t=4.2 s, the sand collapse is 338 

stable, and its final runout distance reaches 60.03 dm. 339 

 340 
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(a) t = 1.4 s                                                               (b) t = 1.8 s 341 

 342 

(c) t = 2.6 s                                                               (d) t = 4.2 s 343 

Fig. 7 Homogeneous sand collapse process represented by horizontal runout distance at different 344 

times 345 

4.2. Heterogeneous sand collapse modeling 346 

From this section on, a stochastic modeling of sand collapse considering the effect of soil 347 

heterogeneity is conducted, in which the five previously introduced ACFs and three different 348 

values of COV𝜑  are used to specify the most influential heterogeneous characteristics on the 349 

mechanical responses. In these simulations, the baseline case is defined when the COV𝜑 is taken 350 

as 0.05, and the horizontal and vertical scale of fluctuations are taken as 𝛿ℎ = 𝛿𝑣 = 0.2 m. 351 

Fig. 8 presents the typical samples of random fields of 𝜑  with the baseline case parameters 352 

associated with the SNX, SQX, SMK, CSX, and BIN ACFs. In these figures, the red regions denote 353 

larger 𝜑  values representing the mechanically strong zones, while the blue regions represent 354 

relatively smaller 𝜑 values specifying the mechanically weaker zones in the sand column. All 355 

typical samples of random fields show that heterogeneity causes a random distribution of local 356 

weakness (low values of 𝜑) in the domains. These weak zones will introduce different final output 357 

responses, which cannot be predicted by homogeneous modeling. It can also be observed that the 358 

generated random samples associated with SQX and SMK ACFs present relatively smoother 359 
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variations among sand friction angle values, hence they provide more realistic representation of 360 

the spatially correlated soil strength characteristic (Li et al., 2015). While the SNX, CSX, and BIN 361 

ACFs result in generating random samples with higher degrees of fluctuation, where the random 362 

values vary quite roughly (as shown in Fig. 8). 363 

 364 

(a) SNX                                                                      (b) SQX 365 

 366 

(c) SMK                                                                     (d) CSX 367 

 368 

(e) BIN 369 

Fig. 8 Typical samples of random fields associated with the ACFs of COV𝜑 = 0.05, 𝛿ℎ = 𝛿𝑣 =370 

0.2 m, red and blue regions depict mechanically “strong” and “weak” sand, respectively. 371 

 372 
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Fig. 9 shows the collapse status of the heterogeneous sand at final state, predicted by using different 373 

ACFs in the SGIMP simulations. With different ACFs, the frontal deposits spread over a range, 374 

from about 110 dm to over 120 dm, that demonstrates the impact of considering sand heterogeneity 375 

on the modeling results.  376 

To comprehensively analyze the impact of the key mechanical features on the runout distance, the 377 

stochastic response of the runout distance 𝑆𝑥 is computed using MCS with different ACFs and 378 

COV𝜑 values. The number of samples is crucial for the statistical accuracy. Large numbers would 379 

lead to more accurate estimations with lower errors, but they require dramatic computational time. 380 

Therefore, an appropriate MCS number is determined by compromising between the efficiency 381 

and accuracy. In this work, both the mean values and standard deviations of the 𝑆𝑥 for the five 382 

ACFs with the baseline cases are plotted as functions of the number of MCS. It demonstrates that 383 

after about 700 simulations the statistical convergence is achieved (Fig. 10). Therefore, one 384 

thousand realizations are performed for each case to confirm stable statistical results and 385 

computational efficiency. Each realization takes about 8 ∼ 10 minutes when using a PC with an 386 

Intel Core i7-6700 3.40 GHz processor with 8 cores and 16 GB memory. 387 
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 388 

(a) SNX                                                                (b) SQX 389 

 390 

(c) SMK                                                                  (d) CSX 391 

 392 

(e) BIN 393 

Fig. 9 Final configuration of the heterogeneous sand collapse (COV𝜑  = 0.05) 394 

  

  (a) Means vs. number of the statistical 

samples.                       

(b) Standard deviation vs. number of the 

statistical samples. 
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Fig. 10 Variations of the mean and standard deviation of the Sx with the number of MCS samples 395 

based on the baseline case. 396 

4.2.1. Effect of ACFs on runout distance 397 

In the previous section, the effects of different ACFs on the runout distance of heterogeneous sand 398 

collapse were investigated by the SGIMP analysis in which 1000 samples of friction angle random 399 

field were generated and evaluated to obtain an accurate estimation of each case. In order to 400 

identify the distribution of the computed runout distance for each case, four different types of 401 

statistical distributions including normal distribution, lognormal distribution, Gumbel and Weibull 402 

distributions are examined. A goodness-of-fit test method is applied to identify the best-fit 403 

marginal distribution underlying the computed data. In this work, both the Akaike information 404 

criterion (AIC) (Akaike, 1974) and Bayesian information criterion (BIC) (Schwarz, 1978) are 405 

adopted to identify the best-fit distributions, they are defined as 406 

AIC = −2 ∑ ln

𝑁

𝑖=1

𝑓[(𝑥𝑖; 𝑝, 𝑞)] + 2𝑘1 (15) 407 

BIC = −2 ∑ ln

𝑁

𝑖=1

𝑓[(𝑥𝑖; 𝑝, 𝑞)] + 𝑘1ln𝑁 (16) 408 

where 𝑥𝑖  ( 𝑖 = 1,2, . . . , 𝑁 ) is the output 𝑆𝑥  from the SGIMP; 𝑁  is the number of samples; 409 

𝑓(𝑥𝑖; 𝑝, 𝑞) is the PDF of alternative marginal distribution function, 𝑝 and 𝑞 are the parameters of 410 

distribution; 𝑘1 is the number of distribution parameters in the alternative marginal distribution. 411 

For the above-mentioned marginal distribution function, 𝑘1is considered to be equal to 2 (Phoon 412 

and Ching, 2014; Zhang et. al., 2018). 413 
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Table 5 shows the AIC and BIC values associated with the four distributions for various ACF 414 

conditions. Note that the distribution associated with the smallest AIC and BIC values is identified 415 

to be the best-fit marginal distribution to the output data (Zhang et. al., 2018). It is found that both 416 

the AIC and BIC values indicate the Gumbel distribution is the best-fit distribution for the output 417 

runout distance of all cases. 418 

Table 5. AIC and BIC values for the candidate distributions 419 

ACF 
Normal Lognormal Gumbel Weibull 

[AIC, BIC] [AIC, BIC] [AIC, BIC] [AIC, BIC] 

SNX 702.86, 708.07 693.00, 698.21 676.12, 681.33* 738.54, 743.75 

SQX 714.45, 719.66 699.41, 704.62 676.15, 681.36* 767.03, 772.24 

SMK 677.71, 682.92 665.38, 670.59 642.25, 647.46* 741.22, 746.43 

CSX 688.59,693.80 675.25,680.46 652.28, 657.49* 751.64, 756.85 

BIN 722.87,728.08 708.45,713.66 687.49, 692.70* 768.87, 774.08 

*Denotes the minimum AIC and BIC values, which correspond to the best-fit distributions. 420 

The PDF of the Gumbel distribution is expressed as (Phoon and Ching, 2014): 421 

𝑓(𝑥; 𝑝, 𝑞)  =  
𝑞exp{ − 𝑞(𝑥 − 𝑝) − 𝑒𝑥𝑝[−𝑞(𝑥 − 𝑝)]}

{1 − 𝑒𝑥𝑝 [−𝑒𝑥𝑝(𝑝𝑞)]}
(17) 422 

𝜇 = 𝑝 + 0.5772/𝑞 (18) 423 

𝜎2 = 𝜋2/(6𝑞2) (19) 424 

where 𝑝  and 𝑞  are the parameters of distribution, 𝜇  is the mean value, and 𝜎  is the standard 425 

deviation. In this work, maximum likelihood method is adopted to estimate the corresponding 426 

parameters of the Gumbel distribution. The mean and deviation of stochastic data can be obtained 427 

by equations (17-19). 428 
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Fig. 11 shows the distributions and mean values of runout distance 𝑆𝑥 of each heterogeneous sand 429 

collapse case associated with different ACFs. It should be noted that the probabilistic post-failure 430 

behavior analysis is different from the pre-failure analysis such as stability analysis or reliability 431 

analysis. The effect of ACFs on runout distance shows different features compared with other 432 

works (e.g., stability or reliability analysis of slopes (Li et al. 2015; Ching and Phoon 2019). 433 

Because of the diverse spatial distribution of friction angle generated by different ACFs, each 434 

output runout distance is different. The runout distances predicted by the heterogeneous models 435 

range from 57 dm to 89 dm. By comparing the mean values, the results of SNX with a value of 436 

63.47 dm are larger than those obtained by the other ACFs. While the results of SQX and SMK 437 

are very close to each other with 62.54 dm and 62.65 dm, respectively. The results achieved by 438 

CSX and BIN are relatively smaller than the other cases, with 62.35 dm and 62.37 dm, 439 

respectively. The relative difference in mean value of the runout distance associated with these 440 

ACFs can be explained by their function graphs and expressions. According to Fig. 3, a sharp 441 

decrease can be observed in the SNX surface, which suggests that the random internal friction 442 

angle based on SNX spatially fluctuates significantly, thus predicting larger values for the runout 443 

distance. As for other ACFs, the surfaces are relatively smooth, presenting more realistic variations 444 

than those of the SNX ACF, which result in more reliable predictions. This is consistent with the 445 

previous findings of Uzielli et al. (2005) that SMK and CSX are suitable for characterizing the 446 

spatial correlation of shear strength of sands. 447 

In Fig. 12, it can be observed that the effect of ACFs on runout motion of sand collapse are slightly 448 

different, in which SNX shows the largest impact on post-failure behavior of flows among the 449 

different ACF cases. Additionally, the homogeneous model underestimates the runout distance 450 

with only 60.03 dm, which is apparently because the effect of local spatial variation in the friction 451 

https://doi.org/10.1016


Transportation Geotechnics. Submitted Sep 2021; Published Dec 2021. 

https://doi.org/10.1016/j.trgeo.2021.100705 

 30 

angle is not considered in the deterministic analysis. A recognizable difference can be noticed in 452 

terms of 𝜑 of the sand. In addition, between 55% to 68% of the runout distances predicted by the 453 

heterogeneous models with all cases exceeding the runout distance obtained by the deterministic 454 

model, which means there is a large uncertainty in prediction of the runout distances. Because flow 455 

of the granular materials depends on the interparticle frictions (Crosta et al., 2009), the spatial 456 

variation of 𝜑  would significantly influence the post-failure behavior. Therefore, the 457 

homogeneous model cannot reproduce the aspect of the post-failure behavior of the heterogenous 458 

sand collapse and as such it cannot predict the real post-failure behavior and the runout distance 459 

of the sand collapse. 460 
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     461 

(a) SNX                                                               (b) SQX 462 

          463 

(c) SMK                                                             (d) CSX 464 

 465 

(e) BIN 466 

Fig. 11 Histograms, PDF and mean values of 𝑆𝑥 with the ACF cases 467 

 468 
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      469 

(a)                                                                         (b) 470 

Fig. 12 (a) PDFs with the ACFs compared with homogenous results, (b) Mean values and 471 

standard deviations of 𝑆𝑥 with the ACFs. 472 

4.2.2. Effect of COV𝝋 on runout distance 473 

To investigate the effect of COV𝜑 on the runout distance of the heterogeneous sand collapse, the 474 

COV𝜑 is increased from 0.05 to 0.15 with constant 𝛿ℎ = 𝛿𝑣 = 0.2 m in each ACF case. A total of 475 

5000 simulations have been conducted. According to the statistics, the mean values and standard 476 

deviations of the runout distance in each case (considering different COV𝜑 values) are plotted in 477 

Fig. 13, and compared with the runout distances predicted by the deterministic analysis. 478 

         479 
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(a) SNX                                                               (b) SQX 480 

         481 

(c) SMK                                                             (d) CSX 482 

         483 

                            (e) BIN                                        (f) Comparison with different cases 484 

Fig. 13 Mean values and standard deviations of the runout distances considering different COV𝜑 485 

All results show that the mean values of the runout distance increase with increasing COV𝜑, and 486 

all the mean values are larger than the value obtained from the homogeneous model. Additionally, 487 

the number of the extreme values of the runout distance increases with the COV𝜑 increase. For a 488 

small COV𝜑, the varying range of 𝜑 is correspondingly narrowed. Thereby, the distribution of the 489 
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runout distances will be narrower. On the other hand, a large COV𝜑 causes a wide range of values 490 

for 𝜑, subsequently resulting in a wider distribution of the runout distance. Therefore, the standard 491 

deviations of the runout distance become large with the increase in COV𝜑 value.  492 

Fig. 14 shows the exceedance probability of the predicted runout distances ( 𝑆𝑥 ) by all 493 

heterogeneous cases that larger runout distance is obtained compared to that of the deterministic 494 

analysis. It shows that the uncertainty in predicting the 𝑆𝑥  is significantly enlarged as COV𝜑 495 

increases. Moreover, it is found that different ACFs have relatively different effects on the 𝑆𝑥 496 

outputs when COV𝜑 is increasing, but the overall trends are similar with each other. As for SMK, 497 

the result with COV 𝜑 =0.05 illustrates that only 39% of the predicted cases exceed the 498 

deterministic value, which indicates that the smallest uncertainty on 𝑆𝑥 is when using SMK. While 499 

the results with COV 𝜑 =0.15, generating from CSX, demonstrate the largest uncertainty in 500 

predicting the runout distance, as 74% of the outputs exceed the deterministic value. All 501 

probabilities of the runout distance exceed the value obtained by the homogeneous model, 502 

indicating that sand heterogeneity significantly influences on the magnitude of the runout distance 503 

and post-failure behavior. It also indicates that potentially longer runout distance can be caused by 504 

the increasing of COV𝜑. 505 
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  506 

Fig. 14 Probability of 𝑆𝑥 exceeding the deterministically predicted value in each case 507 

5. Conclusion 508 

A SGIMP framework is proposed for probabilistic analysis of runout distance in sand collapse 509 

considering the heterogeneity of soil shear strength. The framework is based on the integration of 510 

random fields theory and GIMP into a Monte-Carlo simulation basis. Heterogeneity and large 511 

deformation are both considered in this method, and the capability of the SGIMP framework to 512 

estimate the runout distance of heterogeneous sand collapse has been explored, through which the 513 

effects of different ACFs and COV on the runout distance have also been investigated. The main 514 

findings of the study are summarized in the following: 515 

1. The proposed SGIMP framework can be used to generate reasonable random fields for 516 

stochastic large-deformation failure analysis, and it provides a practical tool for solving large 517 

deformation problems in deposits with prominent heterogeneity.  518 
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 2. Using the proposed framework, a heterogeneous sand collapse is simulated with both 519 

homogeneous and heterogeneous conditions. The results show that the homogeneous model 520 

may underestimate the runout distance while the stochastic-based analysis provides more 521 

realistic results. Due to the differences of adopted ACFs, the runout distance outputs 522 

associated with different ACFs are dissimilar. Among the five ACFs, it is shown that SNX 523 

results in the largest possible post-failure material flow with apparent overestimation of 524 

runout distances. As for other ACFs, more realistic variations of soil strength parameter are 525 

obtained which result in more reliable predictions. In particular, SMK and CSX seem to be 526 

the most suitable for characterizing the spatial correlation of shear strengths. 527 

3. The COV𝜑 affects the runout distance of sand collapse. The uncertainty of runout distance 528 

increases with COV𝜑  increasing, accordingly the distribution of the runout distance also 529 

increases, which indicates that the deviations of the runout distance become larger. 530 

4. According to the proportion of the runout distance that exceeds the deterministic value in 531 

each case, the results imply that a deterministic analysis would significantly underestimate 532 

the potential risk casued by the large runout distance induced by heterogeneous sand collapse. 533 

As has been clarified, the main focus of this paper was to study the implications of using different 534 

ACFs on stochastic analysis of post-failure runouts due to sand collapse within a SGIMP 535 

framework. However, it should be mentioned that, within this framework, there are other factors 536 

or considerations worth investigating in future works, for example the natural non-stationary 537 

characteristics of soil properties (e.g., Ma et al. 2022) or employing more advanced material 538 

models (e.g., Wang et al. 2020).  539 
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