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When do epidemics end? Scientific insights from mathematical modelling studies 
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Abstract 

Quantitative assessments of when infectious disease outbreaks end are crucial, as resources targeted 

towards outbreak response typically remain in place until outbreaks are declared over. Recent 

improvements and innovations in mathematical approaches for determining when outbreaks end 

provide public health authorities with more confidence when making end-of-outbreak declarations. 

Although quantitative analyses of outbreaks have a long history, complex mathematical and statistical 

methodologies for analysing outbreak data were developed early in the twentieth century and continue 

to be refined. Historically, such methodologies focused primarily on factors affecting the early and 

middle phases of an outbreak, with less attention given to determining how and when outbreaks end.  

This review discusses mathematical modelling methods from the last 20 years that have been developed 

for determining the ends of infectious disease outbreaks, and consider the factors that affect the 

accuracy of such determinations.  When surveillance systems provide timely and representative data to 

inform models, the timings of end-of-outbreak declarations can be fine-tuned to allow outbreaks to be 

declared over quickly and with a low risk of being incorrect. Premature declarations that outbreaks are 

over may undermine earlier achievements in disease control and may result in a resurgence of cases, 

but unnecessary delays in declaring outbreaks over cause significant economic and social harms. 

Appropriate declarations that balance the benefits of releasing control measures against the risk of a 

surge in cases thereby allow public health resources to be conserved (and economic and social pressures 

to be reduced) while limiting the potential for additional transmission. 
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Main Text 

Determining when infectious disease outbreaks (used synonymously with epidemics, see Box 1) end is a 

critical component of outbreak response. In recent or ongoing outbreaks, such as those of coronavirus 

disease 2019 (COVID-19) or pandemic influenza, mathematical modelling has played a central role in 

policy and public understanding of the course of outbreaks.  Although quantitative analyses of outbreaks 

have a long history, complex mathematical and statistical methodologies for analysing outbreak data 

were developed early in the twentieth century and continue to be refined. Historically, such 

methodologies focused primarily on factors affecting the early and middle phases of an outbreak, with 

less attention given to determining how and when outbreaks end. In this article, we review 

mathematical modelling methods from the last 20 years that have been developed for determining the 

ends of infectious disease outbreaks, and consider the factors that affect the accuracy of such 

determinations.  Rather than setting out a history of epidemiological modelling, here we explain the 

function and methods of quantitative disease modelling, drawing on key practices and case studies to 

demonstrate the applications, advantages, and limitations of the disciplinary methodologies that have 

become crucial to understand outbreaks and how they end.     

 

Development of statistical methods for determining the ends of infectious disease outbreaks has 

accelerated in recent years, as large cross-border outbreaks attract significant public attention and 

consume resources that cannot be fully demobilised until the outbreak is declared over. Large-scale 

outbreaks and associated control interventions can have a profound impact on lives and livelihoods, 

whether the implicated disease is one of humans, animals, or plants.1 As such, it is in the public interest 

to be able to declare an outbreak over as soon as possible. However such declarations, if premature, 

may undermine earlier effective control measures and result in a resurgence of cases. Declaring the end 

of an outbreak based on rigorous quantitative methods helps to ensure that a valid risk assessment has 

been carried out and that there is only a limited risk of a false declaration, while avoiding interventions 

that remain in place long after transmission has ceased. 

 

 
1 For examples of each, see: Ebata, Nisbett, & Gillespie, 2021; Sonaiya, 2007; Thiermann, 2004; R. N. Thompson & 

Brooks-Pollock, 2019 
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To understand how outbreaks end, it is first important to understand how outbreaks are defined.2 

Outbreaks occur when the number of cases of a disease exceeds the expected range. The upper range of 

the expected number of cases forms the basis for an “epidemic threshold” which, when exceeded, 

signals the need for an urgent public health response. If a disease is endemic (consistently found in a 

region or population), the epidemic threshold may be determined by historical observations. If a disease 

is non-endemic (no sustained transmission in a region or population) or newly emerged, the epidemic 

threshold may be simply “more than zero” cases (for outbreak-prone diseases) or evidence of ongoing 

transmission (for diseases not prone to outbreaks).  

 

As shown in Figure 1, outbreaks can be thought of as occurring in cycles, with the time between cycles—

the holding period, during which the disease is either at endemic levels or eliminated—varying by 

disease, location, and other related factors. In situations in which a disease is endemic, cyclicality is 

often seasonal, as is the case for Lassa fever in West Africa, tickborne encephalitis in parts of Siberia, 

and seasonal influenza.3 In non-endemic situations, outbreaks only occur when the disease is 

(re)introduced, potentially during an importation event or spillover from an animal reservoir.4      

 

Endemic status is often ascribed according to geographic boundaries (i.e., country or province). 

However, it should be noted that incidence is usually unequally distributed within these boundaries, and 

this can lead to stretches of zero cases being reported even for endemic diseases due to patterns of 

localized extinction.5 The use of the term “extinction” in mathematical models does not describe a 

permanent state, but rather is used to express a short-term decrease in cases to zero (Box 1). In 

contrast, non-endemicity is often described in terms of elimination, which represents a long-term or 

permanent reduction of incidence to zero cases (i.e., no transmission of the pathogen). At a global level, 

a challenging (and often impossible) aim may be eradication, which refers to a scenario in which a 

pathogen no longer exists in hosts anywhere in the world. Following eradication, continued actions to 

prevent transmission are no longer required. In contrast, for diseases that have been eliminated (but not 

 
2 Historiographical article on how outbreaks end: Charters & Heitman, 2021. For definitions of different endpoints 

see Dowdle, 1998 and Box 1.  
3 For an example for Lassa fever see Lo Iacono et al., 2016; for tickborne encephalitis, see Korenberg, 2000; for 

seasonal influenza, see Dalziel et al., 2018. 
4 Examples of importation events: R. N. Thompson, 2020; R. N. Thompson, Thompson, Pelerman, Gupta, & Obolski, 

2018; Wilson, 2005. Examples of spillover from an animal reservoir: Borremans, Faust, Manlove, Sokolow, & Lloyd-
Smith, 2019; Lloyd-Smith et al., 2009; Plowright et al., 2017; Ponce, Kinoshita, & Nishiura, 2019. 
5 Eichner & Dietz, 1996; Keeling & Grenfell, 2002; Lindholm & Britton, 2007; Britton & Neal, 2010; Holme, 2013. 
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eradicated), continued actions may be required to prevent substantial pathogen transmission from 

restarting (e.g., monitoring of inbound travellers for infection to reduce the risk of pathogen 

reimportation).6 Elimination may also be defined in terms of “elimination as a public health problem,” 

which typically indicates reaching a low level of prevalence rather than sustaining zero cases. This is 

important for many pathogens, as it is often improbable to reach zero cases for an extended period of 

time, with factors such as numerous possible hosts, varying modes of transmission, or difficulties in 

implementing surveillance and control measures decreasing the chance of complete elimination. 

 

Establishing that an outbreak is over is often less clear-cut than confirming that an outbreak has started. 

A dip in cases below the epidemic threshold (to endemic levels or to zero cases) does not necessarily 

mean that the outbreak is over, as cases could soon return to epidemic levels. This was evidenced by the 

2013–2016 Ebola virus disease (EVD) epidemic in West Africa, when new cases appeared soon after five 

of the occasions on which the outbreak was declared over in three of the countries involved.7 Instead, it 

may be necessary to define an analogous “extinction threshold” which, rather than being defined based 

on a simple rule about numbers of reported cases, is instead established using quantitative analyses that 

aim to assess the probability that the outbreak is over (according to a specified definition of an outbreak 

end – see Box 1). When the extinction threshold is met, an outbreak can be declared over with 

confidence. For example, an outbreak might be declared over on the first date on which, according to a 

mathematical model, the probability that cases occur in future (as a direct result of recent transmission) 

is estimated to fall below a pre-specified threshold. 

 

Predicting whether or not an outbreak has ended, or when an outbreak will end, is particularly 

complicated in the case of a recently emerged disease such as COVID-19, as there is limited historical 

data to inform predictions. In fact, as of mid-2021, more than a year and a half after the first COVID-19 

cases were detected, it remains to be seen whether the disease will be eliminated long-term in any 

given location or whether it will instead become endemic worldwide. If the disease burden of COVID-19 

becomes comparable to or lower than that of other existing infectious diseases, such as seasonal 

influenza, it may become accepted as endemic and local epidemic thresholds established. 

 

 
6 Sachak-Patwa, Byrne, Dyson, & Thompson, 2021. 
7 See Lee & Nishiura, 2017. 
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Avoiding both false declarations of outbreak ends and unnecessary waiting times prior to end-of-

outbreak declarations has been a recent focus of infectious disease modelling efforts.8 Improving the 

timing of end-of-outbreak declarations helps conserve public health resources and reduce pressure on 

healthcare, social, and economic systems. This review summarises quantitative methods used to infer 

when infectious disease outbreaks are over from a modern-day perspective, with some historical 

context interspersed throughout. In the following sections, we first introduce the concept of establishing 

freedom from disease. Then, we introduce epidemiological modelling methods used to estimate 

outbreak end times. Lastly, we consider scenarios in which these methods are applied and factors 

affecting end-of-outbreak estimates.  

 

Establishing freedom from disease 

In the wake of an infectious disease outbreak, an important question can be to establish when a 

population is entirely free from infection. This is not only important for diseases of humans but is also 

relevant in the context of animal and plant diseases, as trade regulations commonly require certification 

of disease elimination to protect global biosecurity.9 In fact, the concept of freedom from disease 

emerged in the field of veterinary epidemiology due to the need to establish the absence of infection 

when trading livestock and meat. 

 

To guarantee that a disease has been eliminated from a population, it is necessary to assess every 

individual in that population for infection, and for that assessment to be perfectly accurate. 

Unfortunately, exhaustive assessment is usually rendered unfeasible by financial and logistical 

constraints. Instead, screening for disease is commonly performed on a random sample of individuals 

from the population. The results from that sample are then used to infer the prevalence of disease (the 

proportion of individuals infected) in the whole population. 

 

Identifying an infected individual in a selected sample confirms that total disease elimination has not 

been achieved. However, the inverse is not true; finding no infected individuals in the sample does not 

guarantee that the disease is absent from the whole population. It is possible that the disease is present, 

 
8 For example, Djaafara et al., 2021; Nishiura, Miyamatsu, & Mizumoto, 2016; Parag, Donnelly, Jha, & Thompson, 

2020; R. N. Thompson, Morgan, & Jalava, 2019. 
9 See Caporale, Giovannini, & Zepeda, 2012; Food and Agriculture Organization (FAO), 2017; Rüegg et al., 2018; 

Tratalos et al., 2018. 
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but that by chance only uninfected individuals were included in the sample. Although the absence of 

evidence of the disease is not proof of the disease’s absence, it does give us some information about its 

plausible maximum prevalence in the population, since observing no infections in the sample is unlikely 

to be consistent with a very high prevalence. 

  

For example, if a sample of 𝑁 individuals are randomly chosen from the population and all are assessed 

to be disease-free, there is a simple rule—the “rule of three”—that provides an estimate of how many 

individuals in the entire population could be infected.10 The rule of three states that, in that scenario, we 

can say with 95% confidence that the maximum proportion of the whole population that could be 

infected is 3/𝑁. This rule can be derived straightforwardly. Specifically, suppose that the true (unknown) 

prevalence of disease in the population is 𝑝. Then, the probability that none of a sample of 𝑁 randomly 

selected individuals are infected is (1 − 𝑝)𝑁. If this probability is very small, it is unlikely that we would 

observe no infections in the sample. We choose a value 𝛼 as a threshold for credibility, so that if 

(1 − 𝑝)𝑁 < 𝛼, the chance of observing no cases in our sample is “too unlikely” to be believable.  

  

Therefore, if indeed we observe no infections in the sample, a plausible value of 𝑝 is one that gives rise 

to this observation with probability no less than 𝛼. That is, 𝑝 must satisfy the equation (1 − 𝑝)𝑁 ≥ 𝛼, 

which can be rearranged to obtain the upper bound 𝑝 ≤  1 −  𝛼1/𝑁. By convention, the credibility 

threshold 𝛼 is usually taken to be 𝛼 = 0.05 (the standard threshold for statistical significance in many 

scientific disciplines). For this value of 𝛼, the upper bound for 𝑝 may be approximated by 𝑝 ≤  3/𝑁. Any 

prevalence higher than this would make the likelihood of observing no infected cases in our sample less 

than 5%. Thus, given that our sample returns a positive infection rate of 0/𝑁, we can say with 95% 

confidence that the maximum “true” prevalence 𝑝 that is consistent with this observation is 3/𝑁.  

  

The “rule of three” is an example of what is known as a confidence interval:11 a range of plausible values 

of a parameter (in this case 𝑝), that contains the true value with a given probability, in this case 95%. 

Usefully, this rule can also be inverted to obtain the minimum sample size 𝑁 for which observing no 

cases establishes with 95% confidence that the disease prevalence is at most 𝑝. This lower bound on 𝑁 

is given by 𝑁 ≥ ⌈3/𝑝⌉, where ⌈. ⌉ represents the ceiling function that rounds a value up to the nearest 

 
10 Hanley & Lippman-Hand, 2008; Jovanovic & Levy, 1997; Louis, 1981. 
11 Hazra, 2017. 
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integer. For example, if we wish to be 95% sure that the prevalence is no greater than 1%, we must take 

a sample of size at least ⌈3/0.01⌉ (that is, 𝑁 ≥ 300) and fail to find the disease. 

 

In practice, observing no positive cases amongst sampled individuals is not necessarily a requirement for 

declaring freedom from disease. For example, the criterion for a member state of the European Union to 

be declared free from bovine tuberculosis is that the prevalence must remain below 0.1% for 6 

consecutive years, which allows for a small number of cases to be present in each annual sample. 

Reasoning analogous to the above derivation may be applied to estimate confidence intervals for the 

prevalence 𝑝 in scenarios in which 𝑛 > 0 cases have been observed in a sample of size 𝑁. This allows 

policymakers to determine whether or not freedom from disease has been achieved in the sense of 

“elimination as a public health problem” (as defined by a specific criterion about the estimated 

prevalence).  

 

Although the simplicity of the rule of three (and confidence intervals constructed as described above) is 

appealing, it relies on several assumptions. For example, it assumes that the screening method applied 

to detect disease never gives any false positive results (healthy individuals identified as infected) or false 

negative results (infected individuals identified as healthy), which is unrealistic in practice. It also 

assumes that the population is large enough that the probability of selecting an infected individual at 

any point in the sample remains approximately constant, regardless of the disease status of those 

already chosen. However, the underlying conceptual framework may readily be extended to overcome 

these assumptions, allowing for imperfect testing methods and populations of any size.12   

 

Similar methods may also be used to evaluate more complex sampling strategies. For example, when 

attempting to establish whether livestock are disease-free at a regional or national level, it is often 

impractical to implement uniform random sampling from the entire population due to the number of 

individuals involved. Additionally, doing so would not account for the fact that disease tends to cluster 

within herds rather than being evenly distributed throughout the population. Instead, two-stage 

sampling frameworks are often implemented in practice, in which the first stage is to select herds for 

testing and the second is to select individuals from within those herds. In that context, probabilistic 

 
12 Cameron & Baldock, 1998a; Cannon, 2001; Johnson, Su, Gardner, & Christensen, 2004; Nishiura et al., 2016. 
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techniques may be applied to establish the optimal division of sampling resources between and within 

herds in order to maximise our confidence that the overall prevalence is below an acceptable level.13 

  

Since samples taken at a single point in time do not incorporate information gained from previous 

sampling rounds, analogous techniques may be applied to construct confidence intervals for the 

underlying prevalence based on sampling performed at multiple time points. These models may be 

designed to account for changes in the underlying prevalence over time, consider the incubation period 

of the disease (the time during which individuals are infected but presymptomatic), or consider the risk 

that the pathogen has been reintroduced into the pathogen from elsewhere.14 

  

As noted above, although establishing the elimination of a disease from a population with 100% 

certainty is almost always unfeasible, probabilistic techniques may be used to guide statistically sound 

surveys that allow us to determine with a given level of confidence that disease prevalence is below a 

given threshold. In addition to diseases of livestock such as bovine tuberculosis, foot-and-mouth disease 

and Bluetongue, these methods have been applied in the context of human diseases including Zika, 

parasitic infections, and COVID-19.15 

 

For populations in which samples of randomly chosen individuals are not tested for infection, an 

alternative approach is required in which the probability that a population is disease-free is assessed 

based on the time elapsed since the last observed case, as described in the following two sections. 

 

Using statistical models to determine when an outbreak is over 

Guidance developed by the World Health Organization (WHO) for declaring the official end of an 

outbreak indicates that, after waiting twice the maximal incubation period since the most recently 

diagnosed case, an outbreak can be considered over.16 However, the optimal timing for such a 

declaration cannot be determined using a fixed length of time, since it varies between outbreaks due to 

 
13 Cameron & Baldock, 1998b; Cannon, 2001; Rüegg et al., 2018. 
14 Bourhis, Gottwald, Lopez-Ruiz, Patarapuwadol, & van den Bosch, 2019; Bourhis, Gottwald, & van den Bosch, 

2019; More et al., 2009. 
15 Bovine tuberculosis: More et al., 2009. Foot-and-mouth disease: Caporale et al., 2012. Bluetongue: Rüegg et al., 

2018. Zika: C. N. Thompson et al., 2018. Parasitic infections: Michael et al., 2018. COVID-19: Foddai, Lubroth, & 
Ellis-Iversen, 2020; Larsen et al., 2021. 
16 Hersey et al., 2015. 
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a wide range of factors. Infectious disease transmission is dynamic, and given the multitude of possible 

outbreak trajectories, efficient and accurate end-of-outbreak declarations require a method that can 

dynamically determine the end of an outbreak using information about the outbreak characteristics and 

causal pathogen. One such approach is a statistical method that offers an interpretable estimate of the 

end-of-outbreak probability based on the probability of observing additional cases after the current 

time. This approach uses the offspring distribution (describing the numbers of secondary cases infected 

by each infected individual) and the serial interval (describing the time from illness onset in an infected 

individual to illness onset in a case they infect), and was applied during the outbreak of Middle East 

respiratory syndrome (MERS) in South Korea in 2015.17 In that study, the declaration of the end of a 

MERS outbreak was recommended when the estimated probability of observing additional cases in 

future falls below a pre-specified threshold value. 

 

More specifically, using the dataset of onset dates for diagnosed cases (𝑡𝑖) for cases 𝑖 = {0, 1, … , 𝑀}, the 

probability of observing at least one additional case in the future (as estimated at time 𝑡) can be 

approximated by the expression: 

𝑃(𝑋(𝑡) > 0) = 1 − ∏ ∑ 𝑝𝑦[𝐹(𝑡 − 𝑡𝑖)]𝑦

∞

𝑦=0

𝑀

𝑖=0

. 

Here, 𝑝𝑦 is the offspring distribution, which describes the probability that 𝑦 cases are infected by a 

single primary case, while 𝐹 represents the cumulative distribution of the serial interval. 

 

This methodology was later extended to consider end-of-outbreak probabilities for other diseases, such 

as EVD and COVID-19, as well as to account for the delay from illness onset of a case to when they are 

reported in surveillance data. Accounting for reporting delays involves a straightforward extension of 

the equation above by combining the serial interval and reporting delay distributions.18 

 

Furthermore, the method was adapted to account for multiple modes of transmission by Lee et al. 

(2019), who considered the potential for both sexual and non-sexual transmission of Ebola virus in the 

context of the end of the 2013–2016 EVD outbreak in West Africa. Ebola virus can be detected in semen 

long after illness onset,19 and sexual transmission increases the risk of re-emergence of the virus, as 

 
17 Nishiura, Miyamatsu, & Mizumoto, 2016. 
18 Linton, Akhmetzhanov, & Nishiura, 2021b. 
19 Deen et al., 2017. 
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evidenced by the appearance of new cases in West Africa after the virus was believed to have been 

eliminated.20 To account for both modes of transmission, Lee et al. introduced a probability distribution 

characterising the length of the serial interval using distributions of the serial intervals for each mode of 

transmission, with the distribution for sexual transmission based on the survival probability of Ebola 

virus in semen as a function of the time since illness onset.21 The authors found that the optimal time at 

which to declare the outbreak over varies based on the relative frequency of sexual and non-sexual 

transmission, as well as the level of underreporting of cases. If there is a substantial amount of sexual 

transmission, a long period is required without observing any new cases for the outbreak to be declared 

over with confidence. 

 

Transmission of many pathogens can be highly heterogeneous between infectors, with some infectors 

transmitting the pathogen to many individuals and other infectors transmitting the pathogen to few 

individuals.22 The potential for superspreading has been characterised by the “80/20 rule”, whereby 20% 

of infected individuals are said to generate around 80% of infections.23 Statistical models for assessing 

the end-of-outbreak probability typically account for this superspreading potential. A higher propensity 

for superspreading acts to increase the time until the end of the outbreak can be declared with 

confidence.24 

 

A number of recent publications have built on the statistical approach described here.25 Specifically, 

methods have been developed based on renewal equations in which the numbers of cases each day 

follow a Poisson or negative binomial distribution. Using renewal equations, the number of cases arising 

each day in future can be simulated (or calculated analytically), based on the observed disease incidence 

time series up until the current time. For those models, the probability that an outbreak is over based on 

incidence data up to time t is simply the proportion of forward simulations in which no cases occur after 

time t. Although these approaches are based on the one by Nishiura, Miyamatsu & Mizumoto (2016), 

 
20 Lee & Nishiura, 2017. 
21 For more information about the persistence of Ebola virus in semen, see Eggo et al., 2015. 
22 Lloyd-Smith, Schreiber, Kopp, & Getz, 2005. For COVID-19 examples, see Adam et al., 2020; Tariq et al., 2020; 

Zhao, Zhang, & Li, 2020. 
23 Woolhouse et al., 1997. 
24 Linton, Akhmetzhanov, & Nishiura, 2021b. 
25 Djaafara et al., 2021; Parag, 2021; Parag, Cowling, & Donnelly, 2021; Parag, Donnelly, Jha, & Thompson, 2020 
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there are subtle differences in the underlying assumptions, and a quantitative comparison of end-of-

outbreak probabilities obtained using these different methods remains a target for further research. 

 

Using compartmental models to determine when an outbreak is over 

The epidemiological models described in the previous section track the number of new cases arising 

each day. However, the dynamics of infectious disease outbreaks can be complex, with individuals 

transitioning through a range of infection or symptom states. For that reason, a commonly used 

mathematical modelling framework is compartmental modelling, in which individuals are categorised 

over the course of an outbreak according to their infection or symptom status.26 

 

Compartmental epidemiological models have a long history. One of the most basic compartmental 

models is the Susceptible-Infected-Removed (SIR) model (Figure 2a), which is a special case of the 

epidemiological model considered by Kermack and McKendrick (1927). In the SIR model, individuals are 

classified as (S)usceptible to the outbreak pathogen, (I)nfected and generating new infections, or 

(R)emoved and no longer generating new infections. As the outbreak progresses, individuals who are 

susceptible may become infected (and transition from the S compartment to the I compartment) and 

then subsequently recover or die (and transition from the I compartment to the R compartment). By 

choosing the parameters of the model (in the SIR model, the infection rate and removal rate 

parameters) appropriately, output from compartmental models can be tuned to match real-world data 

from an ongoing outbreak.27 

 

Compartmental models can be categorised into two complementary groups - either deterministic 

models or stochastic models.28 Deterministic models, often represented as systems of ordinary 

differential equations, generate the same results every time for a specific set of inputs (e.g., infection 

and removal rate parameters, initial numbers of individuals in each compartment of the model). 

Stochastic models, on the other hand, reflect the intrinsic and extrinsic randomness inherent in real-

world epidemiological systems, with repeated simulations of the model generating different outbreaks, 

even when the inputs are identical. A simulation of the stochastic SIR model can be thought of as a 

 
26 Brauer, 2008; R. N. Thompson, 2020. 
27 Chowell, 2017. 
28 Keeling & Rohani, 2008. 
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series of coin tosses, with the result of each coin toss determining whether the next event is an infection 

event (with an individual in the S compartment transitioning to the I compartment) or a removal event 

(with an individual in the I compartment transitioning to the R compartment). When considering 

outbreak extinctions, randomness in when precisely the pathogen goes extinct is important in 

determining the confidence in an end-of-outbreak declaration. For that reason, our focus here is entirely 

on stochastic, rather than deterministic, epidemiological models. 

 

A key benefit of compartmental models is that they can be extended straightforwardly to include 

different features that affect transmission. For example, a common extension to the SIR model is to 

include a time delay between each individual being first infected and becoming infectious. This time 

delay is termed the latent period, and varies between pathogens. For example, the latent period for 

influenza is typically in the range 1–3 days, whereas the latent period for measles is around 8–13 days.29 

A latent period can be included in the SIR model by inserting a new compartment—the (E)xposed 

compartment—between the S and I compartments.30 Individuals in the E compartment are infected but 

not yet infectious. Other possible features that can be included in compartmental models, and may be 

appropriate when modelling outbreaks of certain pathogens, are age structure, spatial structure, within-

host dynamics, and transmission via insect vectors.31 

 

In the context of determining whether or not an outbreak has finished, a crucial question is whether the 

outbreak is over or whether it may still be ongoing in individuals who are not reporting disease (see 

Using statistical models to determine when an outbreak is over, above). For outbreaks in populations of 

humans, a failure to report disease might arise due to some infected individuals being asymptomatic or 

showing only limited symptoms, or because individuals recover at home without reporting their 

infection to local health authorities.32 In either scenario, infected individuals may not appear in routinely 

collected surveillance data. To establish whether or not an outbreak has finished, an important 

extension to the SIR model described above is therefore to include the possibility that infected 

 
29 Anderson & May, 1991. 
30 Anderson & May, 1991; Bolker & Grenfell, 1995; Chowell, Nishiura, & Bettencourt, 2007; R. N. Thompson, 

Gilligan, & Cunniffe, 2016. 
31 Age structure: Davies, Kucharski, et al., 2020; Prem et al., 2020. Spatial structure: Bolker & Grenfell, 1995; R. N. 

Thompson, Thompson, Pelerman, Gupta, & Obolski, 2018. Within-host dynamics: Hart, Maini, Yates, & Thompson, 
2020; Mideo, Alizon, & Day, 2008. Transmission via insect vectors: Allen et al., 2019; Kucharski et al., 2016; R. N. 
Thompson, Gilligan, & Cunniffe, 2020. 
32 Angulo, Finelli, & Swerdlow, 2021; Cori et al., 2017; Gignoux et al., 2015 
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individuals do not report disease. This can be done by including separate compartments in the model for 

infected individuals that do and do not report disease (Figure 2b).  

 

Simulations of stochastic compartmental models of the type shown in Figure 2b can be used to 

determine the confidence that an outbreak is over, based on the time period since the last case was 

reported. Specifically, a large number of model simulations can be run, with each simulation generated 

until the number of infected individuals reporting disease reaches zero. Each simulation can then be 

continued until a period of X days has passed since an infection-reporting individual was present in the 

population. The proportion of those simulations in which no unreported infected individuals remain 

after a time period of X days without reported infections is then a proxy for the probability that the 

outbreak is over after that period. 

 

The simulation approach described above was applied to study the confidence in end-of-outbreak 

declarations for EVD.33 The WHO considers EVD outbreaks to be over at the national level once a time 

period of 42 days (twice the maximal incubation period) has elapsed since the latest reported case. 

However, the situation is complicated by several features of EVD outbreaks (see Using statistical models 

to determine when an outbreak is over and Figure 1). First, the virus may be reimported from elsewhere, 

with local transmission restarting even after the virus has been eliminated locally.34 Second, some EVD 

survivors may be infectious long after they were first infected, again potentially leading to local 

resurgence after the outbreak appears to have finished.35 Third, as described above, reporting is 

imperfect, and so chains of transmission may persist undetected during the 42 days following the most 

recent reported case. Thompson et al. (2019) considered this third feature and showed that the 

confidence in an end-of-outbreak declaration is extremely sensitive to the level of underreporting. This 

led to a target of 79% case detection for EVD outbreaks to be declared over with 95% confidence after a 

time period of 42 days without reported cases.36 The finding that the confidence in an end-of-outbreak 

declaration is sensitive to the level of reporting was echoed in a later analysis by Djaafara et al. (2021) 

using renewal equations (see Using statistical models to determine when an outbreak is over), in which 

those authors advocated replacing the 42-day period with a longer period of 63 days. 

 
33 R. N. Thompson, Morgan, et al., 2019 
34 Weah et al., 2017. 
35 Diallo et al., 2016; Keita et al., 2016; MacDermott & Bausch, 2016. 
36 R. N. Thompson, Morgan, et al., 2019. 
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A similar approach to the one described above has also been used in the context of polio eradication. 

Specifically, Eichner and Dietz (1996) considered a synthetic population of 200,000 individuals on the 

pathway to polio eradication, and demonstrated that the duration of the case-free period must be at 

least three years before a policymaker can be 95% sure that local extinction has occurred. At the global 

level, polio eradication remains a key challenge, and epidemiological models can be used to assess 

different public health policies.37 

 

To summarise, compartmental epidemiological models involve separating individuals according to their 

infection or symptom status. Extensions to basic compartmental models (to include e.g. a latent period, 

age structure, or any number of other epidemiological realisms) involve adding more compartments to 

the models. The models can be matched to real-world outbreak data by adjusting the values of the 

parameters governing transmission. Simulations of compartmental models including underreporting can 

then be used to assess the confidence that an outbreak is over, in a similar fashion to simulations of 

renewal equations, based on the time period since the last case was observed. 

 

When outbreaks are ongoing: The time to extinction 

Throughout this review article so far, we have focused on the question of determining whether or not a 

population is disease-free at the current time. However, interventions are often planned while an 

outbreak is ongoing, and so estimating when an outbreak will end during the outbreak is another 

important area of research. 

 

The time-varying reproduction number, 𝑅𝑡, is often used to indicate whether or not an outbreak is on 

the path to extinction.38 It describes the expected number of secondary cases generated by an infected 

individual in the population at time 𝑡. If 𝑅𝑡 is (and remains) below one, the disease is unable to sustain 

itself without repeated introductions and the outbreak will eventually end. However, even once the 

threshold of 𝑅𝑡  =  1 is crossed (so that 𝑅𝑡 <  1), although extinction could be inevitable, it is not 

immediate and control measures may need to be maintained for extinction to occur. Providing 

 
37 See K. M. Thompson & Kalkowska, 2020, 2021. 
38 For more on Rt, see Cori, Ferguson, Fraser, & Cauchemez, 2013; Nishiura & Chowell, 2009; R. N. Thompson, 

Stockwin, et al., 2019. 
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stakeholders with the expected remaining duration of an outbreak can help estimate future costs 

required for controlling the disease. Towards the end of an outbreak, it is therefore important to assess 

how long the delay will be before extinction occurs. 

 

Stochastic models (see Using compartmental models to determine when an outbreak is over) can be 

used to estimate the expected time until extinction given an initial observation of the number of 

infected individuals in the population. This period depends on the disease dynamics, control measures in 

place, and the population size. Estimation of the time to extinction was first considered for ecological 

systems with stochastic models describing deteriorating population dynamics.39 Studies with synthetic 

infectious disease data have demonstrated the capability to approximate the expected time to 

extinction for both simple epidemiological models (e.g., the SIR model) and more complex models with 

spatial structure, vaccination dynamics, and host-vector transmission.40  

 

The expected time to extinction is typically stated as a function, 𝜏(𝑖), of the current observed number of 

infected individuals, 𝑖, and can be found by solving a set of simultaneous equations. The coefficients of 

the equations are constructed by considering the possible transitions between compartments. For 

example, the schematic and equation in Figure 3 describe a stochastic Susceptible-Infected-Susceptible 

(SIS) model. Figure 3a illustrates how, as the next event, the number of infectious individuals 𝑖 can either 

increase to 𝑖 + 1 (a susceptible individual is infected) or decrease to 𝑖 − 1 (an infected individual 

recovers). For the example in Figure 3, the total number of individuals in the population (𝑁) is assumed 

to be constant, and new infections occur at rate 𝛽(𝑁 − 𝑖)𝑖/𝑁, where the parameter 𝛽 governs the rate 

of transmission between infectious and susceptible individuals.  Each infected individual recovers from 

the infection at a rate 𝛾, where 1/𝛾 is the average amount of time that an individual spends infectious 

before recovering. The infection process will continue until no one in the population is infected and 

disease extinction is reached (leftmost box in Figure 3a).  

 

The formula shown in Figure 3b indicates that the expected time to extinction from 𝑖 infected individuals 

depends on the time until the next event (first term), the probability that the next event is a recovery 

 
39 See Giles Leigh, 1981; MacArthur & Wilson, 1967. 
40 SIR model: Barbour, 1975. Spatial structure: Britton & Neal, 2010; Lindholm & Britton, 2007; Swinton, 1998. 

Vaccination dynamics: Andersson & Britton, 2000. Host-vector transmission: Aliee, Rock, & Keeling, 2020; Britton & 
Traoré, 2017. 
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(second term), and the probability that the next event is an infection (third term). These probabilities 

relate the expected time to extinction, 𝜏(𝑖), to the subsequent extinction time, which could be 𝜏(𝑖 − 1) 

or 𝜏(𝑖 + 1) depending on whether the next event is a recovery or an infection. This equation can be 

simplified by assuming that, when near extinction, very few individuals in the population will be infected 

and so the number of susceptible individuals is approximately equal to the population size, 𝑁. Generally, 

following some rearrangement, the coefficients of this equation can be written as a matrix 𝑄0, where 

each row of the matrix, 𝑗, contains the coefficients in the equation for 𝜏(𝑗). Finding the extinction times 

𝜏 = 𝜏(1), … , 𝜏(𝑁) given the current number of infected individuals 𝑖 = 1, . . . , 𝑁  involves solving 𝑄0 𝜏 =

 −1.41 The matrix 𝑄0 is commonly referred to as the transition matrix conditioned on non-extinction, 

and can be constructed for models with more complex disease dynamics, such as those including latent 

periods or waning immunity. 

 

As well as the expected time until extinction occurs, understanding the distribution of possible 

extinction times is important to account for uncertainty in model predictions, and can be used for more 

in-depth analyses, such as finding the date by which there is a 90% chance of extinction.42 Stochastic 

models may appear to fluctuate around an endemic steady state for a long time before extinction is 

reached. For many epidemiological models, the time to extinction starting from that steady state value 

is exponentially distributed.43 However, approximating the distribution of possible extinction times can 

be challenging in some scenarios, such as when the population size is large.44 The distribution of 

extinction times starting from 𝑖 infected individuals can sometimes be estimated using higher moments 

of 𝜏(𝑖).45 

 

An example demonstrating how the remaining duration of an outbreak after it has been brought under 

control (𝑅𝑡 < 1) can be estimated using the stochastic SIS model is shown in Figure 4. We ran 10,000 

stochastic simulations of the SIS model and recorded the time to extinction in each simulation (the first 

time zero infections are recorded), presented in Figure 4b. The mean extinction time from the equation 

in Figure 3b is plotted onto the histogram, and we observe that it aligns with the simulation results.  

 
41 See Keeling & Ross, 2008. 
42 Aliee et al., 2020. 
43 SIS dynamics: Mangel & Tier, 1993. SIR dynamics: Andersson & Britton, 2000; Nåsell, 1999. Host-vector 

dynamics: Britton & Traoré, 2017. 
44 Doering, Sargsyan, & Sander, 2005; Nåsell, 1999. 
45 Aliee et al., 2020. 
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In summary, if 𝑅𝑡 < 1 but the outbreak has not yet faded out, the mean time to extinction can be 

estimated, providing an approximation of the remaining duration of the outbreak. The distribution of 

possible times to extinction can provide more nuanced information about the possible duration of the 

outbreak remaining. The methods described here are suitable for use with prevalence data (describing 

the total number of individuals currently infected). However, these data are often unavailable, so future 

work should consider the development of methods to estimate the time to extinction from incidence 

data (describing the number of new cases each day). The application of these future methods to predict 

outbreak extinction dates for real-world pathogens has the potential to inform outbreak responses. 

 

Factors that affect end-of-outbreak estimates 

In the previous sections, mathematical approaches for inferring whether an outbreak is over and 

projecting the timing of the outbreak end were reviewed. These quantitative methods provide insights 

into the uncertainties surrounding outbreak decline and extinction (and, therefore, the confidence levels 

with which outbreaks can be declared over). However, there are many factors that can affect the 

accuracy of these estimates. These include data reliability, modes of pathogen transmission, parameter 

selection and inference, and the precise definition of the host population within which the outbreak is 

occurring.  

 

Data reliability: As mentioned in Using compartmental models to determine when an outbreak is over, 

outbreaks can be declared over most quickly and with highest confidence when disease surveillance 

systems are highly sensitive and able to detect infectious cases accurately and promptly.46 However, the 

sensitivity and timeliness of surveillance can vary greatly from location to location, as well as by disease, 

so it is necessary to account for underascertainment of cases and reporting delays. Failing to do so can 

lead to erroneous end-of-outbreak declarations.47 Factors that may affect the sensitivity of a human, 

animal or plant disease surveillance system include: the level of symptoms associated with infections 

(e.g., asymptomatic or mild infections may be less likely to be detected),48 failures to seek healthcare, 

 
46 R. N. Thompson, Morgan, et al., 2019. 
47 Akhmetzhanov, Jung, Cheng, & Thompson, 2021, Linton et al., 2021b; Parag et al., 2020. 
48 Poliovirus can persist for years within a population as a “silent” infection, since most of those infected do not 
show symptoms and are never diagnosed. Eichner & Dietz (1996) estimated how many years of zero case incidence 
would need to pass before it would be possible to be 95% certain that local extinction of wild poliovirus infection 
had occurred. 
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veterinary or agricultural services, inaccurate diagnoses, false-negative tests, and failures to report cases 

to public health or other authorities.49 

 

Modes of transmission: To obtain an accurate picture of when an outbreak will end for a given disease, 

it is necessary to understand and account for epidemiological differences associated with different 

modes of transmission. These differences can affect the estimates generated by the methods described 

here. During the 2013–2016 EVD outbreak in West Africa, the months-long persistence of the Ebola 

virus in the semen of some men who recovered from EVD was not originally considered in analyses of 

when to declare that EVD outbreak over (see Using statistical models to determine when an outbreak is 

over). This led Lee and Nishiura (2019) to explore the use of an epidemiological model that accounts for 

sexual contacts and survival of the Ebola virus in semen to generate more realistic end-of-outbreak 

assessments. 

 

Parameter selection and accurate inference: The values of the parameters of models used to inform 

end-of-outbreak declarations must be considered carefully. For example, the models presented in Using 

statistical models to determine when an outbreak is over use the serial interval or generation time 

(which characterises the times between successive infections) to inform estimates. However, the serial 

interval and generation time can change over the course of an outbreak.50 Failing to account for this can 

result in incorrect assessments of the end-of-outbreak probability. Likewise, other parameters governing 

pathogen transmission, which may be included in the compartmental models presented in Using 

compartmental models to determine when an outbreak is over, can vary by host age, pathogen variant 

and host immunity (which is affected by vaccination status and past infections), amongst other factors.51 

The size of the susceptible population must also be quantified accurately, since sustained pathogen 

transmission requires the susceptible population size to be sufficiently large.52 When deciding which 

parameters to include in epidemiological models for analysing end-of-outbreak dynamics, it is necessary 

to balance epidemiological realism with tractability and interpretability. The model parameters to 

include, and the methods used to estimate epidemiological parameter values, require careful 

consideration. 

 
49 Gibbons et al., 2014. 
50 Noted for SARS by Lipsitch et al., 2003. Later investigated in greater detail by Kenah, Lipsitch, & Robins, 2008, as 

well as Nishiura 2020. Analyses considering COVID-19 include Ali et al., 2020. and Linton et al., 2021a. 
51 Davies, Klepac, et al., 2020; Teunis, Le Guyader, Liu, Ollivier, & Moe, 2020 
52 Keeling & Grenfell, 1997 



19 

 

Definition of outbreak populations: Most mathematical approaches used for studying epidemiological 

dynamics at the ends of outbreaks have considered outbreaks as occurring with fixed geographical 

administrative boundaries. However, pathogens do not observe these boundaries, and not all outbreaks 

have a clear geographical scope.53 Foodborne disease outbreaks, for example, can cross international 

borders via food distribution chains, and plant and animal disease outbreaks often follow domestic or 

international trade networks.54 For outbreaks of directly transmitted pathogens, such as the ongoing 

COVID-19 pandemic, outbreaks may likewise cross geographical boundaries, with transmission 

facilitated by domestic and international travel. Outbreaks can be considered at a number of different 

spatial scales: for example, a national outbreak or a cluster of cases in a specific setting such as a 

hospital, prison or care home.55 The optimal scale at which to define the host population when assessing 

end-of-outbreak probabilities depends on factors including the patterns of exposure: for example, for 

point-source outbreaks, when exposure is to a single source of infection over a short period of time,56 it 

may only be necessary to include attendees at the exposure event in the population under 

consideration. 

 

Further considerations: While a suite of approaches exist for analysing the ends of outbreaks, it should 

be emphasised that the performance of these methods has yet to be assessed rigorously in a range of 

outbreak response scenarios. A comparison of different approaches, as well as scientific assessments of 

their relative accuracy and reliability, should be explored systematically through theoretical studies and 

practical applications during and after outbreaks. While we have focused mainly on approaches relating 

to local extinction or elimination, quantitative methods for use in scenarios in which the outbreak end 

represents a return to endemicity require particular attention. The utility of different approaches from a 

public health and economic viewpoint must be assessed, and the criteria to use for declaring outbreaks 

over should be considered carefully. A key component of this decision is the potential consequence of 

an incorrect end-of-outbreak declaration, which must be assessed with a multidisciplinary perspective. 

      

 
53 R. N. Thompson, Cobb, Gilligan, & Cunniffe, 2016. 
54 For more on foodborne disease, see Coulombier & Takkinen, 2013. For more on plant and animal outbreaks, see 

Wilkinson et al., 2011. 
55 For examples of estimating end-of-outbreak probabilities using case clusters, see Linton et al., 2021. For 

examples of cluster settings, see Furuse et al., 2020. 
56 Brookmeyer & You, 2006. 
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Conclusions 

Accurate determination of when outbreaks end allows for enhanced surveillance activities and public 

health interventions to be relaxed safely.57 In this article, we have introduced various epidemiological 

modelling approaches that can be used to infer whether or not (and when) an outbreak has ended. 

Improving the accuracy of end-of-outbreak determinations based on modelling studies is best 

accomplished by: i) Strengthening surveillance systems, so that cases are found and reported accurately, 

and; ii) Supporting research that leads to an improved characterisation of pathogen transmission in the 

later stages of outbreaks, including identification and estimation of relevant transmission parameters. 

 

However, end-of-outbreak declarations must not solely be the jurisdiction of public health advisors or 

policymakers and epidemiological modellers. It is important that healthcare capacity and socioeconomic 

considerations are also included. If the risk to human health is low (i.e., an incorrect end-of-outbreak 

declaration is only likely to lead to a small number of severe future cases) but the societal costs of 

outbreak interventions are high, it may be best to declare outbreaks over when the confidence in an 

end-of-outbreak declaration is relatively low. On the other hand, if the risk to human health of outbreak 

resurgence is particularly high (e.g., healthcare systems may be overwhelmed), it may be preferred to 

set the threshold confidence for declaring an outbreak over to be much higher. Irrespective of a policy-

maker’s desired level of risk aversion, quantitative approaches for studying the ends of infectious 

disease outbreaks will remain important for public health decision making whenever pathogens near 

elimination. It is essential that these methods continue to be developed. 

  

 
57 The definition of elimination introduced by Dowdle (1998) embraced the need for continued interventions to 
prevent re-emergence and re-establishment of transmission. However, as pointed out by Heymann (2006), all too 
often a complete cessation of intervention activities follows elimination. Although public health interventions can 
and should be relaxed once an outbreak ends, some surveillance and continuation of control interventions are 
necessary to maintain elimination or transmission at endemic levels; these should continue until and unless 
eradication is achieved. 
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Figures 

Box 1. Important definitions for end-of-outbreak analyses58 

Emerging 
disease 

A disease with incidence that has recently (e.g., in the 
past two decades) increased substantially or threatens 
to increase in the near future. 

Epidemic A sudden increase in the occurrence of cases of a 
disease in excess of normal expectancy for the 
location or season. This is also the definition of an 
outbreak, although the term outbreak is used more 
often when the geographical range is limited.  

Endemic When a disease is consistently present in a region or 
population. 

Non- 
endemic 

Elimination (as a public health problem): Achievement 
of measurable global targets in reduction of incidence 
or prevalence set by WHO. When reached, continued 
actions are required to maintain the targets and/or to 
advance the interruption of transmission. 

Elimination (of transmission): Reduction of incidence 
of a given disease to zero in a defined location and for 
a defined minimum period of time as a result of 
deliberate efforts with minimal risk of reintroduction. 

Eradication: Permanent worldwide reduction of 
incidence of a given disease to zero as a result of 
deliberate efforts. 

Extinction Short-term disappearance of a disease in a defined 
location or population. This term is frequently used in 
statistical end-of-outbreak analyses. 

 

 

 
58 For historical definitions of eradication and elimination, see Soper, 1962 and Dowdle, 1998. For a more recent 

commentary on the definition of eradication, see Arita, Wickett, & Nakane, 2004. In practice, elimination of a 
disease may be defined as elimination of the disease as a public health problem (rather than complete 
elimination), or in terms of prevalence, rather than incidence. For example, leprosy elimination was defined in 
1991 by the World Health Assembly as the reduction of prevalence to a level of < 1 case per 10,000 population. 
Likewise, tuberculosis elimination as a public health problem has been defined as reduction of prevalence to < 1 
case per 1 million population. See also World Health Organization, 2015. 
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Figure 1. Schematic of the epidemic cycle a) and the timeline of key events in the cycle juxtaposed with 

an epidemic curve, which depicts the number of new cases per unit of time (incidence; where time is 

typically measured in days or weeks) for an infectious disease outbreak b). Transitioning to/from a given 

epidemic stage could be due to various factors such as undetected community transmission, pathogen 

mutation, or application of different interventions (arrows in caption a). 

 

Figure 2. Stochastic compartmental epidemiological models can be used to estimate the end-of-

outbreak probability. a) Schematic showing a simple compartmental model, the Susceptible-Infected-

Removed (SIR) model. As an outbreak continues, healthy individuals become infected (transition from S 

to I) and then recover or die (transition from I to R). b) Schematic showing an extended version of the 

SIR model, in which infected hosts can either report disease (I) or fail to report disease (U). Unreported 

infected individuals include those who are asymptomatic or show limited symptoms, and those who are 

symptomatic but do not report disease to local health authorities. c) Example output from an end-of-

outbreak analysis using a large number of simulations of a stochastic compartmental model. This graph 

shows the probability that an outbreak is over as a function of the time since the last reported case. As 

the period of time without a reported case increases, it becomes more likely that the outbreak is truly 

over. 

 

Figure 3. a) Schematic illustrating the possible transitions from 𝑖 infected individuals, to 𝑖 + 1 infected 

individuals (in the event of an infection) or 𝑖 − 1 infected individuals (in the event of a recovery) for a 

stochastic Susceptible-Infected-Susceptible (SIS) model. The simulated outbreak continues until the 

population reaches zero infected individuals (far left). b) Equation describing the relationship between 

the expected time to extinction from a state in which there are 𝑖 infected individuals, 𝜏(𝑖), and related 

times to extinction from states in which there are 𝑖 − 1 infected individuals  (𝜏(𝑖 − 1)), and 𝑖 + 1 

infected individuals (𝜏(𝑖 + 1)). 

 

Figure 4. Example of simulating the stochastic Susceptible-Infected-Susceptible (SIS) model in a 

population of N = 10,000 individuals with 100 individuals initially infected. a) The trajectory of 10 

simulations (grey lines) and the deterministic solution (red line). b) The distribution of times to 
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extinction for 10,000 stochastic simulations, with the mean time-to-extinction calculated using the 

simulations given by the dark grey marker, and the analytical solution, 𝜏(100), shown by the red 

marker. 
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