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HAUSDORFF DIMENSION ESTIMATES APPLIED TO

LAGRANGE AND MARKOV SPECTRA, ZAREMBA THEORY,

AND LIMIT SETS OF FUCHSIAN GROUPS

M. POLLICOTT AND P. VYTNOVA

Abstract. In this note we will describe a simple and practical approach to
get rigorous bounds on the Hausdorff dimension of limits sets for some one
dimensional Markov iterated function schemes. The general problem has at-
tracted considerable attention, but we are particularly concerned with the
role of the value of the Hausdorff dimension in solving conjectures and prob-
lems in other areas of mathematics. As our first application we confirm, and
often strengthen, conjectures on the difference of the Lagrange and Markov

spectra in Diophantine analysis, which appear in the work of Matheus and
Moreira [Comment. Math. Helv. 95 (2020), pp. 593–633]. As a second ap-
plication we (re-)validate and improve estimates connected with the Zaremba
conjecture in number theory, used in the work of Bourgain–Kontorovich [Ann.
of Math. (2) 180 (2014), pp. 137–196], Huang [An improvement to Zaremba’s
conjecture, ProQuest LLC, Ann Arbor, MI, 2015] and Kan [Mat. Sb. 210
(2019), pp. 75–130]. As a third more geometric application, we rigorously
bound the bottom of the spectrum of the Laplacian for infinite area surfaces,
as illustrated by an example studied by McMullen [Amer. J. Math. 120 (1998),
pp. 691-721].

In all approaches to estimating the dimension of limit sets there are ques-
tions about the efficiency of the algorithm, the computational effort required
and the rigour of the bounds. The approach we use has the virtues of being
simple and efficient and we present it in this paper in a way that is straight-

forward to implement.

These estimates apparently cannot be obtained by other known methods.

1. Introduction

We want to consider some interesting problems where a knowledge of the ex-
act value of the Hausdorff dimension of some appropriate set plays an important
role in an apparently unrelated area. For instance we consider the applications to
Diophantine approximation and the difference between the Markov1 and Lagrange
spectra, denominators of finite continued fractions and the Zaremba conjecture, and

Received by the editors February 10, 2021, and, in revised form, December 22, 2021, and Jan-
uary 12, 2022.

2020 Mathematics Subject Classification. Primary 37C30; Secondary 11K55.
The first author was partly supported by ERC-Advanced Grant 833802-Resonances and

EPSRC grant EP/T001674/1. The second author was partly supported by EPSRC grant
EP/T001674/1.

The second author is the corresponding author.
1Markov’s name will appear in this article in two contexts, namely those of Markov spectra

in number theory and the Markov condition from probability theory. Since the both notions are
associated with the same person (A. A. Markov, 1856–1922), we have chosen to use the same
spelling, despite the conventions often used in these different areas.

c©2022 by the author(s) under Creative Commons Attribution 3.0 License (CC BY 3.0)

1102

https://www.ams.org/btran/
https://www.ams.org/btran/
https://doi.org/10.1090/btran/109


HAUSDORFF DIMENSION ESTIMATES 1103

the spectrum of the Laplacian on certain Riemann surfaces. A common feature is
that the progress on these topics depends on accurately computing the dimension
of certain limit sets for iterated function schemes.

The sets in question are dynamically defined sets given by Markov iterated func-
tion schemes. The traditional approach to estimating the dimension of such sets is
to use a variant of what is sometimes called a finite section method. This typically
involves approximating the associated transfer operator by a finite rank operator
and deriving approximations to the dimension from its maximal eigenvalue. This
method originated with traditional Ulam method and there are various applications
and refinements due to Falk–Nussbaum [9], Hensley [19], McMullen [40] and oth-
ers. A second approach, which we will call the periodic point approach, uses fixed
points for combinations of contractions in the iterated function schemes [24]. This
approach works best for a small number of analytic branches whereas the finite
section method often works more generally. However, in both of these approaches
additional work is needed to address the important issue of validating numerical
results. In the case of periodic point method there has been recent progress in
getting rigorous estimates for Bernoulli systems [25], but it can still be particularly
difficult to get rigorous bounds in the case of Markov maps. In the case of Ulam’s
method the size of matrices involved in approximation can make it hard to obtain
reasonable bounds.

In this note we want to use a different approach which has the twin merits of
giving both effective estimates on the dimension and ensuring the rigour of these
values. This is based on combining elements of the methods of Babenko–Jur’ev [1]
and Wirsing [54] originally developed for the Gauss map. We will describe this in
more detail in §3.

To complete this section we will discuss our main applications.

Application I: Markov and Lagrange spectra. As our first application, we
can consider the work of Matheus and Moreira [35] on estimating the size of the
difference of two subsets of the real line called the Markov spectrum M ⊂ R+

and the Lagrange spectrum L ⊂ R+. The two sets play an important role in
Diophantine approximation theory and an excellent introduction to topics in this
subsection is [8].

By a classical result of Dirichlet from 1840, for any irrational number α there are
infinitely many rational numbers p

q satisfying |α − p
q | ≤

1
q2 . For each irrational α

we can choose the largest value �(α) > 1 such that the inequality
∣∣∣α− p

q

∣∣∣ ≤ 1
�(α)q2

still has infinitely many solutions with p
q ∈ Q. An equivalent definition would be

�(α) : =

(
inf

p,q∈Z,q �=0
|q(qα− p)|

)−1

.

For example, we know that �
(

1+
√
5

2

)
=

√
5, �

(
1−

√
2
)
=

√
8, etc. The Hurwitz

irrational number theorem states that for any irrational α there are infinitely many

rationals p
q such that

∣∣∣α− p
q

∣∣∣ < 1
q2

√
5
. This implies, in particular, that �(α) ≥

√
5

for all α ∈ R \Q.

Definition 1.1. The set L = {�(α) : α ∈ R \Q} is called the Lagrange spectrum.
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There is another characterisation of elements of Lagrange spectrum in terms of
continued fractions [8]. We denote the infinite continued fraction of α ∈ R\Q by

α = [a0; a1, a2, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

where a0 ∈ Z and an ∈ N for n ≥ 1. Assume that for α ∈ R \Q we have

α = [a0; a1, a2, . . .] = [a0; a1, a2, . . . , an, αn+1],

in other words for the n’th rational approximation we may write∣∣∣∣α− pn
qn

∣∣∣∣ = 1(
αn+1 +

qn−1

qn

)
q2n

.

Then

�(α) = lim sup
n→∞

(
αn+1 +

qn−1

qn

)
.

Replacing lim sup in the latter formula by supremum, we get the definition of the
Markov spectrum.

Definition 1.2. In the notation introduced above, let

μ(α) = sup
n

(
αn+1 +

qn−1

qn

)
.

The set M = {μ(α) : α ∈ R \Q} is called the Markov spectrum.

There is an equivalent definition of the Markov spectrum in terms of quadratic
forms. Both notions were suggested by Markov in 1879–80 [37], [38].

Naturally, the sets L and M have many similarities. The smallest value for each
is

√
5 and in [

√
5, 3] both sets are countable and agree, i.e.,

L ∩ [
√
5, 3] = M∩ [

√
5, 3] = {

√
5,
√
8,
√
221/5 · · · }.

Furthermore, Frĕıman [13], following earlier work of Hall [17], computed an explicit

constant, called Freiman constant
√
20 < cF <

√
21, such that

L ∩ [cf ,+∞) = M∩ [cF . . . ,+∞) = [cF ,+∞).

The half-line [cF ,+∞) is known as Hall’s ray. Nevertheless, these two sets are
actually different. In particular, Tornheim [51] showed L ⊆ M and Frĕıman [12]
showed L 
= M.

In a recent work Matheus and Moreira [35, §B.2] give upper bounds on the
Hausdorff dimension dimH(M \ L) in terms of the Hausdorff dimension of limits
sets of specific Markov Iterated Function Schemes. Using the approach presented
in this article we compute the Hausdorff dimensions of the sets concerned, and
combining our numerical estimates in §4.1 with the intricate analysis of [35] we
obtain the following result (the proof is computer-assisted).

Theorem 1.3. We have the following bounds on the dimension of parts of M\L
(1) dimH((M\L) ∩ (

√
5,
√
13)) < 0.7281096;

(2) dimH((M\L) ∩ (
√
13, 3.84)) < 0.8552277;

(3) dimH((M\L) ∩ (3.84, 3.92)) < 0.8710525;
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(4) dimH((M\L) ∩ (3.92, 4.01)) < 0.8110098; and

(5) dimH((M\L) ∩ (
√
20,

√
21)) < 0.8822195.

In particular, taking into account the known bound dimH(M\L∩(4.01,
√
20)) <

0.873316 [35, (B.6)] on the remaining interval we obtain an upper bound of

dimH(M\L) < 0.8822195.

Note that this confirms the conjectured upper bound dimH(M \ L) < 0.888 [35,
(B.1)] and improves on the earlier rigorous bound of dimH(M \ L) < 0.986927
([35, Corollary 7.5] and [41, Theorem 3.6]).

For the purposes of comparison, we present the bounds in Theorem 1.3 with the
previous rigorous bounds given on different portions of M\L in Figure 1.

√
5

√
10

√
13 3.84 3.92 4.01

√
20

√
21

0.93 0.706104 0.986927 0.873316 0.961772

0.7281096 0.8552277 0.8710525 0.8110098 0.8822195

MM

PV

Figure 1. Comparison of old and new upper bounds

In the present work we will be looking for both lower and upper bounds. In
order to give a clearer presentation of the results we will use Notation 1.4.

Notation 1.4. We abbreviate a ∈ [b− c, b+ c] as a = b± c.

In order to get a lower bound on the difference of the Lagrange and Markov
spectra Matheus and Moreira [35, Theorem 5.3] showed that there is a lower bound
dimH(M \ L) ≥ dimH(E2) where E2 ⊂ [0, 1] denotes the Cantor set of irrational
numbers with infinite continued fraction expansions whose digits are either 1 or 2.2

The study of the dimension of this set was initiated by Good in 1941 [16]. There are
various estimates on dimH(E2) including [25] where the dimension was computed
to 100 decimal places using periodic points. In §4 we will recover and improve on
this estimate giving an estimate accurate to 200 decimal places and thus we deduce
the following result.

Theorem 1.5. 3

dimH(E2)

= 0.5312805062 7720514162 4468647368 4717854930 5910901839 8779888397

8039275295 3564383134 5918109570 1811852398 8042805724 3075187633

4223893394 8082230901 7869596532 8712235464 2997948966 3784033728

7630454110 1508045191 3969768071 3± 10−201.

Details on the proof of this bound appear in §4.1.2. Whereas it may not be clear
why a knowledge of dimH(E2) to 200 decimal places is beneficial, it at least serves
to illustrate the effectiveness of the method we are using compared with earlier
approaches.

2A slight improvement on this lower bound is described in the book “Classical and Dynamical
Markov and Lagrange Spectra: Dynamical, Fractal and Arithmetic Aspects” by D. Lima, C.
Matheus, C. G Moreira, S. Romana.

3The calculation was done using Mathematica. The validity of the estimate depends on the
internal error estimates of the software.
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Application II: Zaremba theory. A second application is to problems on finite
continued fractions related to the Zaremba conjecture. The Zaremba conjecture [56]
was formulated in 1972, motivated by problems in numerical analysis. It deals with
the denominators that can occur in finite continued fraction expansions using a
uniform bound on the digits. A nice account appears in the very informative survey
of Kontorovich [32].

Zaremba conjecture. For any natural number q ∈ N there exist p (coprime to q)
and a1, . . . , an ∈ {1, 2, 3, 4, 5} such that

p

q
= [0; a1, · · · , an] : =

1

a1 +
1

a2 +
1

· · ·+
1

an

.

Let us denote for each N ≥ 1 and m ≥ 2,

Dm(N) := Card

{
1 ≤ q ≤ N | ∃p ∈ N, (p, q) = 1, a1, · · · , an ∈ {1, 2, · · · ,m}

with
p

q
= [0; a1, · · · , an]

}
,

i.e., the number of 1 ≤ q ≤ N which occur as denominators of finite continued
fractions using digits |ai| ≤ m. The Zaremba conjecture would correspond to
D5(N) = N for all N ∈ N. The conjecture remains open, but Huang [20], building
on work of Bourgain and Kontorovich [2], proved the following version of Zaremba
conjecture.

Theorem 1.6 (Bourgain–Kontorovich, Huang). There is a density one version of
the Zaremba conjecture, i.e.,

lim
N→+∞

D5(N)

N
= 1.

There have been other important refinements on this result by Frolenkov–Kan
[14], [15], Kan [28], [29], Huang [20] and Magee–Oh–Winter [34].

Let us introduce for each m ≥ 2,

Em : = {[0; a1, a2, · · · ] | an ∈ {1, 2, · · · ,m} for all n ∈ N}
which is a Cantor set in the unit interval. Originally, Bourgain–Kontorovich [2]
proved an analogue to Theorem 1.6 for D50(N). Amongst other things, their ar-
gument, related to the circle method, used the fact that the Hausdorff dimen-
sion dimH(E50) is sufficiently close to 1 (more precisely, dimH(E50) > 307

312 ). In
Huang’s refinement of their approach, he reduced m to 5, i.e. replaced the al-
phabet {1, 2, · · · , 50} with {1, 2, 3, 4, 5}, as in the statement of Theorem 1.6. In
Huang’s approach, it was sufficient to show that dimH(E5) >

5
6 . In [25] there is an

explicit rigorous bound on the Hausdorff dimension of this set which confirms this
inequality. The approach used there is the periodic point method, whereas in this
article we use a different method to confirm and improve on these bounds.

As another example, we recall the following result for m = 4 and the smaller
alphabet {1, 2, 3, 4}.
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Theorem 1.7 (Kan [29]). For the alphabet {1, 2, 3, 4} there is a positive density
version of the Zaremba conjecture, i.e.,

lim inf
N→+∞

D4(N)

N
> 0.

The proof of the result is conditional on the lower bound dimH(E4) >
√
19−2
3 .

In [29] this inequality is attributed to Jenkinson [23], where this value was, in
fact, only heuristically estimated. In [25] there is an explicit rigorous bound on
the Hausdorff dimension of this set which confirms this inequality. The approach
used there is the periodic point method, whereas in this article we give a different
method to confirm and improve on these bounds, as well as give new examples.
These results are presented in §4.2.

Application III: Schottky group limit sets. A third application belongs to
the area of hyperbolic geometry. The two dimensional hyperbolic space can be
represented as the Poincaré disc D2 = {z ∈ C : |z| < 1} with the Poincaré metric
ds2 = 4(1−|z|2)−2. A Fuchsian group Γ is a discrete group of isometries of the two
dimensional hyperbolic space. In particular, the factor space D2/Γ is a surface of
constant curvature κ = −1.

We can associate to the Fuchsian group Γ the limit set XΓ ⊆ ∂D = {z ∈ C : |z| =
1} defined to be the Euclidean limit points of the orbit {g0: g ∈ Γ}. In the event
that Γ is cocompact, the quotient D2/Γ is a compact surface, and thus the limit set
will be equal to the entire unit circle. On the other hand, if Γ is a Schottky group
then the limit set will be a Cantor subset of the unit circle (of Hausdorff dimension
strictly smaller than 1).

In the particular case that Γ is a Schottky group the space D2/Γ is a surface
of infinite area. It is known [6] that the classical Laplace–Beltrami operator has
positive real spectra and in particular, its smallest eigenvalue λΓ > 0 is strictly pos-
itive. There is a close connection between the spectral value λΓ and the Hausdorff
dimension dimH(XΓ). More precisely, we have a classical result (see [50])

λΓ = min

{
1

4
, dimH(XΓ)(1− dimH(XΓ))

}
.

Next we want to consider a concrete example of a Schottky group.

Example 1.8. McMullen [40] considered the Schottky group Γ = 〈R1, R2, R3〉 gen-
erated by reflections R1, R2, R3 : D2 → D2 in three symmetrically placed geodesics
with end points eπi(2j+1)/6 with j = 1, . . . , 6 on the unit circle (Figure 2).

The limit set XΓ can be written as a limit set of a suitable Markov iterated
function scheme, or, more precisely, a directed Markov graph system [36]. Applying
the method described in this article we can estimate the dimension of the limit set
and thus the lowest eigenvalue of the Laplacian.

Theorem 1.9. In notation introduced above, the dimension of the limit set of the
Schottky group Γ satisfies

dimH(XΓ) = 0.295546475± 5 · 10−9

and the smallest value of the Laplacian satisfies

λΓ = 0.2081987565± 2.5 · 10−9.
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γ1

γ2

γ3

R2(γ1)

R3(γ1)

R1

R2

R3

XΓ

Figure 2. Group Γ generated by reflections R1, R2, and R3 in
the geodesics γ1, γ2, and γ3

Finally, the same approach we have used in these applications can also be used
to estimate the Hausdorff dimension of the various dynamically defined limit sets
of iterated function schemes which have been considered by other authors, cf. [19].
We will return to this in §4.9, where we verify and improve estimates of Hensley [19]
and Jenkinson [23] for some iterated function schemes and estimates of Chousionis
et al. [7] for some countable iterated function systems.

In §2 we will describe the general setting of one dimensional Markov iterated
function schemes which is the main focus of our study and the key to proving these
theorems.

2. Definitions and preliminary results

In this section we collect together some of the background material we require.

2.1. Hausdorff dimension. The following classical definition of the Hausdorff
dimension is well known, and an excellent general reference is the textbook of
Falconer [11]. Given X ⊂ R+ for each 0 < s < 1 and δ > 0 we define the s-
dimensional Hausdorff content of X by

Hs
δ (X) = inf

U={Ui},
|Ui|≤δ

∑
i

|Ui|s,

where the infimum is taken over all open covers U = {Ui} of X with each open
set Ui having diameter |Ui| ≤ δ. The s-dimensional Hausdorff outer measure of X
is given by

Hs(X) = lim
δ→0

Hs
δ (X) ∈ [0,+∞].

Finally, the Hausdorff dimension of X is defined as infimum of values s for which
the outer measure vanishes:

dimH(X) = inf{s | Hs(X) = 0}.
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2.2. Markov iterated function schemes. We say that the contractions Tj : [0, 1]
→ [0, 1] (j = 1, . . . , d) satisfy the Open Set Condition if there exists a non-empty
open set U ⊂ [0, 1] such that the images {TjU}dj=1 are pairwise disjoint. This will
be the case in all the examples we consider.

We begin with the definition of a one dimensional Markov iterated function
scheme. Recall that a matrix M is called aperiodic if there exists n ≥ 1 such
that Mn > 0, i.e., all of the entries are strictly positive.

Definition 2.1. Let d ≥ 2. A Markov iterated function scheme consists of:

(1) a family Tj : [0, 1] → [0, 1] (j = 1, . . . , d) of C1+α contractions satisfying
the Open Set Condition; and

(2) an aperiodic d× d matrix M with entries 0 and 1, which gives the Markov
condition.

We can define the limit set of {Tj}dj=1 with respect to the matrix M by

XM =

{
lim

n→+∞
Tj1 ◦ · · · ◦ Tjn(0) | jk ∈ {1, · · · , d},M(jk, jk+1)=1, 1≤k≤n− 1

}
.

Remark 2.2. In one of the examples we consider, the matrixM has an entire column
of zeros. In this case, we can remove the contraction corresponding to this column
from the iterated function scheme without changing the limit set. This corresponds
to removing the row and the column corresponding to this contraction from the
matrix M .

Remark 2.3. More generally, letM be a k×k matrix with entries 0 or 1, and assume
its rows and columns are indexed by {1, · · · , k}. Given r, s ∈ {1, · · · , k} we say s
is accessible from r if there exists n ≥ 1 with Mn(r, s) ≥ 1. After reordering the
index set, if necessary, we can assume that if n ≥ 1 with Mn(r, s) ≥ 1 then s ≥ r.
We can then define an equivalence relation on {1, · · · , k} by r ∼ s if both s is
accessible from r and also r is accessible from s and assume that there are q distinct
equivalence classes [j1], . . . , [jq]. The matrix M then takes the form of submatrices
M1, . . . , Mq on the diagonal indexed by the equivalence classes [j1], . . . , [jq], say,
with any other non-zero entries appearing only above the main diagonal [49, Ch.
1].

In particular, each matrix Mj is irreducible, i.e. for pair of indices (r, s) there
exists n = n(j, r, s) such that Mn

j (r, s) ≥ 1. The period dj of Mj is the greatest
common divisor of n(j, r, s) for all pairs of indices (r, s). Finally, after further re-
ordering of the index set, if necessary, the dth power Md

j takes the form of aperiodic
submatrices Mj1, Mj2, . . . , Mjp on the diagonal (i.e., there exists n = n(j, k) ≥ 1
such that ∀r, s in the index set for Mjk we have Mn

jk(r, s) ≥ 1).
We can also consider the iterated function schemes XMjk

associated to the ma-
trices Mjk, where the corresponding contractions are d-fold compositions of the
original contractions. Then the iterated function scheme with contractions Ti where
i ∈ {1, · · · , k} with the limit set XM has dimension dim(XM ) = maxj,k dim(XMjk

).

Definition 2.1 is a special case of a more general graph directed Markov sys-
tem [36], where the contractions Tj may have different domains and ranges, to
which our analysis also applies. However, Definition 2.1 suffices for the majority of
our applications, although in the case of Fuchsian–Schottky groups a more general
setting is implicitly used.
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Remark 2.4. For Markov iterated function schemes, the Hausdorff dimension coin-
cides with the box counting dimension [44, Ch. 5], see also [45], which has a slightly
easier definition. More precisely, for ε > 0 we denote by N(ε) the smallest number
of ε-intervals required to cover X. We define the Box dimension to be

dimB(XM ) = lim
ε→0

logN(ε)

log(1/ε)

provided the limit exists. Then dimH(XM ) = dimB(XM ). However, we needed to
introduce the definition of Hausdorff dimension, for the benefit of the statements
of results on Markov and Lagrange spectra.

2.3. Pressure function. We would like to use the Bowen–Ruelle formula [48] to
compute the value of the Hausdorff dimension of the limit set of a Markov iterated
function scheme. We will use Notation 2.5.

Notation 2.5. In what follows, A(t) � B(t) denotes that there exists C > 0 such
that A(t) ≤ C ·B(t). We write A(t) � B(t) if there exist constants C1, C2 > 0 such
that C1A(t) ≤ B(t) ≤ C2A(t) for all sufficiently large t.

Before giving the statement we first need to introduce Definition 2.6.

Definition 2.6. A pressure function P : [0, 1] → R associated to a system of con-
tractions {Tj}kj=1 with Markov condition defined by a matrix M is given by

P (t) = lim
n→+∞

1

n
log

⎛⎜⎜⎝ ∑
M(j1,j2)=···=
M(jn−1,jn)=1

|(Tj1 ◦ · · · ◦ Tjn)
′(0)|t

⎞⎟⎟⎠ ,

where the summation is taken over all compositions Tj1 ◦ · · · ◦ Tjn : [0, 1] → [0, 1]
which are allowed by the Markov condition and the summands are the absolute
values of the derivatives of these contractions at a fixed reference point (which for
convenience we take to be 0) raised to the power t.

The pressure function depends on the matrix M but we omit this in the notation.
In the present context the function is well defined as the limit in this definition of
P (t) always exists. There are various other definitions of the pressure, and we refer
the reader to the books [43] and [53] for more details. A sketch of the graph of the
pressure function is given in Figure 3.

The following well known connection between dimH(XM ) and the pressure func-
tion is useful for practical applications.

Lemma 2.7 (Bowen [3], Ruelle [48, Proposition 4]). In the setting introduced above,
the pressure function of a Markov Iterated Function Scheme has the following prop-
erties:

(1) P (t) is a smooth monotone strictly decreasing analytic function; and
(2) The Hausdorff dimension of the limit set is the unique zero of the pressure

function i.e., P (dimH(XM )) = 0.

The general result of Ruelle extended a more specific posthumous result of
Bowen on the Hausdorff dimension for quasi-circles. Thus the problem of esti-
mating dimH(XM ) is reduced to the problem of locating the zero of the pressure
function.
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dimXM

P (t)

t

log d

Figure 3. A typical plot of the pressure function P

Remark 2.8. To understand the connection between the pressure and the Hausdorff
dimension, described in Lemma 2.7, we can consider covers of XM of the form
U = {Ti1 ◦· · ·◦TinU}, where Ti1 ◦· · ·◦Tin are allowed compositions (i.e. M(i1, i2) =
. . . = M(in−1, in) = 1) and U ⊃ [0, 1] is an open set. The diameters of the elements
of this cover for large n are comparable to the absolute values of the derivatives
(Ti1 ◦ · · · ◦ Tin)

′(0). In particular, by the mean value theorem, diam(Ti1 ◦ . . . ◦
Tin(U)) ≤ supy∈U |(Ti1 ◦ . . . ◦ Tin)

′(y)| and taking into account

|(Ti1 ◦ . . . ◦ Tin)
′(y)|

|(Ti1 ◦ . . . ◦ Tin)
′(0)| ≤ sup

z∈U
exp

(
(log |(Ti1 ◦ . . . ◦ Tin)

′(z)|)′
)
< +∞.

If P (t) = 0 then for any t0 > t we have that P (t0) < 0 and therefore the Hausdorff
content

Ht0
δ (XM ) �

∑
M(i1,i2)=···

=M(in−1,in)=1

|(Ti1 ◦ · · · ◦ Tin)
′(0)|t0

for n sufficiently large. In particular, letting n → +∞ we can deduce from the
definition of pressure that the right hand side of the inequality tends to zero and
therefore Ht0(X) = 0. We then conclude that outer measure vanishes and thus
dimH(XM ) ≤ t0 and, since t0 > t was arbitrary, we have dimH(XM ) ≤ t (see §2.1).
For the reverse inequality see Remark 2.14.

2.4. Transfer operators for Markov iterated function schemes. We ex-
plained in the previous subsection that the dimension dimH(XM ) corresponds to
the zero of the pressure function P . This function can also be expressed in terms
of a linear operator on a suitable space of Hölder functions.

In order to accommodate the Markov condition it is convenient to consider the
space consisting of d disjoint copies of [0, 1], which we denote by S := ⊕d

j=1[0, 1]×{j}
and to introduce the maps

Tj : S → S, Tj : (x, k) �→ (Tj(x), j).

We omit the dependence on d where it is clear.
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The transfer operator associated to {Tj} is a linear operator acting on the space
of Hölder functions Cα(S) : = ⊕d

j=1C
α([0, 1] × {j}), where 0 < α ≤ 1. This is

a Banach space with the norm ‖f1, · · · , fd‖ = max1≤j≤d {‖fj‖α + ‖fj‖∞} where

‖fj‖α = supx�=y
|fj(x)−fj(y)|

|x−y|α . For many applications we can take α = 1.

Definition 2.9. For 0 ≤ t ≤ 1 the transfer operator Lt : C
α(S) → Cα(S) for

the scheme Tj : S → [0, 1] × {j} is defined by the formula Lt : (f1, · · · , fd) �→
(F t

1 , · · · , F t
d) where

F t
k(x, k) =

d∑
j=1

M(j, k) · fj(Tj(x, k))|T ′
j(x, k)|t.

We omit the dependence on M where it is clear.

Remark 2.10. For some applications where the contractions form a Bernoulli system
(i.e. there are no restrictions and all the entries of M are 1) it is sufficient to take
one copy of the interval [0, 1], i.e. d = 1. This applies, for example, in all of the
Zaremba examples. In this case the transfer operator takes simpler form

(1) Lt : C
α([0, 1]) → Cα([0, 1]) Lt : f �→

d∑
j=1

f(Tj)|T ′
j |t.

Definition 2.11. We say that a function f ∈ Cα(S) is positive if f = (f1, . . . , fd)
and each fj ∈ Cα([0, 1]× {j}) takes only positive values.

The connection between the linear operator Lt and the value of the pressure
function P (t) comes from the first part of the following version of a standard result,
cf. [46].

Lemma 2.12 (After Ruelle). Assume that the matrix M is aperiodic. In terms of
the notation introduced above, the spectral radius of Lt is eP (t). Furthermore,

(1) Lt has an isolated maximal eigenvalue eP (t) associated to a positive eigen-
function h ∈ Cα(S) and a positive eigenprojection4 η : Cα(S) → 〈h〉; and

(2) for any f ∈ Cα(S) we have

‖e−nP (t)Ln
t f − η(f)‖∞ → 0 as n → +∞.

Proof. For the reader’s convenience we sketch a proof adapted to the present context
(see [47] for a different proof).

For part (1) let c = max1≤i≤d ‖T ′
i‖∞ < 1 and A = max1≤i≤d ‖ log |T ′

i‖α < 1 and
choose B sufficiently large that A+Bc < B. We can define a convex space

C =

{
f = (f1, · · · , fd) = Cα(S) :

∀1 ≤ j ≤ d, ∀0 ≤ x ≤ 1, fj(x) ≤ 1

∀1 ≤ j ≤ d, ∀0 ≤ x, y ≤ 1, fj(x) ≤ fj(y)e
B|x−y|α

}
which is uniformly compact by the Arzela–Ascoli theorem. Given f ∈ C and n ≥ 1

we can define Φn(f) =
Lt(f+

1
n )

‖Lt(f+
1
n )‖∞

∈ Cα(S). For all 0 ≤ x, y ≤ 1 and f =

(f1, · · · , fd) ∈ C and each 1 ≤ j ≤ d, using 0 ≤ t ≤ 1, we get

F t
k(x) ≤ e(A+Bc)|x−y|α

d∑
j=1

M(j, k) · fj(Tj(y))|T ′
j(y)|t ≤ eB|x−y|αF t

k(y).

4For a general introduction see [31, Ch.3, §6]; we say that the eigenprojection is positive if
elements of the positive cone are mapped into R+h.
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Hence for each n ≥ 1 and 0 ≤ x, y ≤ 1 we have Φn(f)(x) ≤ eB|x−y|αΦn(f)(y) and
thus ‖Φn(f)(x)‖∞ = 1. Therefore, for each n ≥ 1 the map Φn : C → C is well
defined and has a non-trivial fixed point hn = Φn(hn) 
= 0 by the Schauder fixed
point theorem. We can take an accumulation point h of {hn} ⊂ C. This is an
eigenfunction of Lt for the eigenvalue λ = ‖Lth‖∞ and we can choose x0 and j,
say, with |hj(x0)| = ‖h‖∞.

Since M is aperiodic we can choose N sufficiently large such that for arbitrary k
and j1 we have a contribution hk(Tj1 ◦ · · · ◦ TjNx0)|(Tj1 ◦ · · · ◦ TjN )′(x0)|t > 0 to
LN
t . It follows from the second condition of the definition of C that hk(x1) > 0

where we let x1 = Tj1 ◦ · · · ◦TjNx0. Since h ∈ C we conclude that for any x we have
hk(x) ≥ hk(x1)e

−B > 0. By Definition 2.6 of the pressure function,

P (t) = lim
n→+∞

1

n
log ‖Ln

t 1‖ = lim
n→+∞

1

n
log ‖Ln

t h‖ = log λ.

For part (2) let Δ(h) : Cα(S) → Cα(S) denote multiplication by h and then
introduce the linear operator K = 1

λΔ(h)−1LtΔ(h), which now satisfies K1 = 1.
This implies that for f ∈ Cα(S) we have that for each x ∈ S :

(a) the sequence inf0≤x≤1 Knf(x) (n ≥ 1) is monotone increasing and bounded,
and

(b) the sequence sup0≤x≤1 Knf(x) (n≥1) is monotone decreasing and bounded.

The limits are fixed points for K, and thus without too much effort we can deduce
that Knf converges uniformly to a constant function. Reformulating this for the
original operator Lt gives the claimed result. �

Remark 2.13. The properties of the transfer operator in Lemma 2.12 now clarify the
reasoning behind the remaining parts of Lemma 2.7. With a little more work (and
the Fortet–Doeblin inequality) one can show that eP (t) is an isolated eigenvalue of
Lt and thus has an analytic dependence on t (compare with [43]).

Remark 2.14. To explain the idea behind Lemma 2.7, it remains to recall why if
P (t) = 0 then dimH(X) ≥ t.

Let M be the space of probability measures supported on S with the weak star
topology. By Alaoglu’s theorem this space is compact. The map Ψ : M → M
defined by [Ψμ](g) = e−P (t)μ(Ltg) for g ∈ Cα (S) has the fixed point η.

We would like to apply the mass distribution principle (cf. [11, p. 67]) to the
measure η. In other words, to show that t corresponding to P (t) = 0 is a lower
bound on dimH(X), it is sufficient to show that there exists C > 0 for which on any
small interval V we have η(V ) ≤ C|V |t. Moreover, it suffices to consider intervals of
the form V = Ti1 ◦ . . . ◦TinU for some i1, . . . , in. In particular, providing P (t) = 0
for an allowed sequence i1, . . . , in we have

η(Ti1 ◦ · · · ◦ TinU) �
∫

Ln
t χTi1

◦···◦TinUdη � |(Ti1 ◦ · · · ◦ Tin)
′(0)|t.

By compactness of the closure cl(Ti1 ◦ . . . ◦ TinU) for x ∈ U we have

|(Ti1 ◦ . . . ◦ Tin)
′(0)|

|(Ti1 ◦ . . . ◦ Tin)
′(x)| ≤ sup

y∈U
exp

(
(log |(Ti1 ◦ . . . ◦ Tin)

′(y)|)′
)
< +∞,

together with the mean value theorem we get |(Ti1 ◦ . . .◦Tin)
′(0)| � diam(Ti0 ◦ . . .◦

TinU). Hence we conclude η(Ti1 ◦ · · · ◦ TinU) � diam(Ti1 ◦ · · · ◦ TinU)t. The mass
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distribution principle gives

dimH(X) ≥ lim
n→+∞

log η(Ti1 ◦ · · · ◦ TinU)

log diam(Ti1 ◦ · · · ◦ TinU)t
= t.

This completes the preparatory material. In §3 we will explain our basic method-
ology.

3. Hausdorff dimension estimates

Effective estimates on the Hausdorff dimension come from two ingredients.

(1) Min-max type inequalities presented in §3.1, which give a way to rigor-
ously bound the largest eigenvalue eP (t) of the transfer operator Lt using a
suitable test function f .

(2) The Lagrange–Chebyshev interpolation scheme described in §3.2, which
gives a polynomial that can serve as the test function f .

The first is inspired by the corresponding result for the second eigenvalue of the
transfer operator for the Gauss map in the work of Wirsing [54]. The second part
is inspired by the work of Babenko–Yur’ev [1] on the problem of Gauss.

The accuracy of the estimates which come out from the min-max inequalities
depends on the test function. Lagrange–Chebyshev interpolation is a very classical
method of approximating holomorphic functions and perhaps first has been used
in this setting by Babenko–Yur’ev [1]. Whereas various interpolation schemes have
been used by many authors to estimate eP (t), it is the combination of these two
ingredients that leads to particularly effective and accurate estimates.

3.1. The min-max inequalities. Our analysis is based on the maximal eigenvalue
eP (t) for Lt being bounded using the following simple result.

Lemma 3.1.

(1) Assume there exist a > 0 and a positive function f ∈ Cα(S) such that for
all x ∈ S

af(x) ≤ Ltf(x),

then a ≤ eP (t).
(2) Assume there exist b > 0 and a positive function g ∈ Cα(S) such that for

all x ∈ S

Ltg(x) ≤ bg(x),

then eP (t) ≤ b.

Proof. By iteratively applying Lt to both sides of the inequality in part (1) we have
that for all x ∈ S and n ≥ 1

anf(x) ≤ Ln
t f(x)

and thus taking n’th roots and passing to the limit as n → +∞ we have for all
x ∈ S

a ≤ lim sup
n→+∞

|Ln
t f(x)|1/n = eP (t)

since f(x) is strictly positive and e−nP (t)Ln
t f converges uniformly to η(f) > 0 by

the second part of Lemma 2.12. This completes the proof of part (1).
The proof of part (2) is similar. �
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Below we will use the following shorthand notation when working with the Ba-
nach space Cα(S).

Notation 3.2. Given f, g ∈ Cα(S) we abbreviate

sup
S

f

g
:= sup

1≤j≤d
sup
x∈S

fj(x)

gj(x)
and inf

S

f

g
:= inf

1≤j≤d
inf
x∈S

fj(x)

gj(x)
.

In particular, we can use Lemma 3.1 to deduce a technical fact, which is a basis
for validation of all numerical results in the present work.

Lemma 3.3. The Hausdorff dimension dimH X ∈ (t0, t1) if and only if there exist
two positive functions f, g ∈ Cα(S) such that the following inequalities hold

(2) inf
S

Lt0f

f
> 1 and sup

S

Lt1g

g
< 1.

Proof. Assume first that dimH X ∈ (t0, t1), then P (t0) > 0 > P (t1) which is
equivalent to eP (t0) > 1 > eP (t1). Then by part (1) of Lemma 2.12 there exist
positive eigenfunctions h0 and h1 of Lt0 and Lt1 , respectively, such that

Lt0h0

h0

= eP (t0) > 1 and
Lt1h1

h1

= eP (t1) < 1.

Now assume that (2) hold true for some f and g. Then by Lemma 2.7 the
first inequality in (2) implies that the hypothesis of part (1) of Lemma 3.1 holds

with a = infS
Lt0

f

f > 1. We deduce that eP (t0) ≥ a > 1 and thus P (t0) > 0.

The second inequality in (2) implies that the hypothesis of part (2) of Lemma 3.1

holds with b = supS
Lt1

g

g < 1. We deduce that eP (t1) ≤ b < 1, thus P (t1) < 0.

By the intermediate value theorem applied to the strictly monotone decreasing
continuous function P we see that the unique zero t = dimH(X) for P satisfies
t0 < dimH X < t1, as required. �

Therefore our aim in applications is to make choices of f = (fi)
d
i=1 > 0 and

g = (gi)
d
i=1 > 0 in Lemma 3.3 so that t0 and t1 are close, in order to get good

estimates on dimH(X).

Remark 3.4 (Domains of test functions). It is apparent from the proof that we need
only to consider the minima and maxima of the ratios Lf(x)/f(x) and Lg(x)/g(x)
for those x ∈ S lying in the limit set. However, a compromise which simplifies
the use of calculus would be to consider the minima and maxima over the smallest
interval containing the limit set.

Remark 3.5 (Min-max theorem). A more refined version which we won’t require is
the min-max result:

eP (t) = sup
f>0

inf
S

Ltf

f
= inf

f>0
sup
S

Ltf

f
.

To see this, observe that by Lemma 3.1 for any f, g > 0 we have

inf
x∈S

Ltf(x)

f(x)
≤ eP (t) ≤ sup

x∈S

Ltg(x)

g(x)
,
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and therefore

sup
f>0

inf
S

Ltf

f
≤ eP (t) ≤ inf

g>0
sup
S

Ltg

g
.

In particular, by the Ruelle operator theorem, the equality is realized when
f = g = h > 0 is the eigenfunction associated to eP (t). We refer the reader to
[39, p.88] and [22, §2.4.2] for more details.

3.1.1. Applying Lemma 3.3 in practice. In order to obtain good estimates on the
Hausdorff dimension based on Lemma 3.3 it is necessary to construct a pair of
functions f and g and to rigorously verify the inequalities (2). We shall now explain
how the verification has been realised in practice, i.e. in our computer program.
To simplify the exposition, we demonstrate the method in the case of Bernoulli
scheme. It will be clear how to generalise it to treat a more general Markov case.

Evidently for any interval [t0, t1] ⊂ [0, 1] and for any x ∈ [t0, t1] we have5

(3)

∣∣∣∣ [Ltf ](t0)

f(t0)
− [Ltf ](x)

f(x)

∣∣∣∣ ≤ ∥∥∥∥(Ltf

f

)′∥∥∥∥
∞

(t1 − t0),

therefore if we can get an upper bound on
∥∥(Ltf

f

)′∥∥
∞, then we can rigorously

estimate the ratio by taking a partition of [0, 1] and applying (3) on each interval

of the partition. Furthermore, it is clear that provided
∥∥(Ltf

f

)′∥∥
∞ is small, we can

allow a relatively coarse partition.
We have the following simple useful fact.

Lemma 3.6. Let h be a positive eigenfunction of Lt corresponding to the eigen-
value λ. Then there exists a constant r1 > 0 such that for any approximation f

such that ‖f − h‖C1 < ε we have
∥∥(Ltf

f

)′∥∥
∞ < r1ε.

Proof. By the hypothesis of the Lemma, we may write f = h+ fε, where ‖fε‖C1 =
max |fε| + max |f ′

ε| < ε, and f > r0 > 0. Then the condition ‖fε‖C1 < ε implies
‖f‖C1 ≤ ‖h‖C1

+ ε, furthermore, we calculate

|([Ltfε](x))
′| ≤

d∑
j=1

∣∣∣(|T ′
j(x)|sfε(Tj(x))

)′∣∣∣
≤

d∑
j=1

(∣∣(|T ′
j(x)|s)′fε(Tj(x))

∣∣+ ∣∣|T ′
j(x)|s+1f ′

ε(Tj(x))
∣∣) ≤ r2ε,

where r2 = 2dmax(‖(|T ′
j |s)′‖∞, ‖|T ′

j(x)|s+1‖∞). By linearity of the transfer opera-
tor we have that (Ltf)

′ = (Lth)
′ + (Ltfε)

′ = λh′ + (Ltfε)
′. Now we have for the

derivative of the ratio∣∣∣(Ltf

f

)′∣∣∣ = ∣∣∣ (Ltf)
′f − f ′(Ltf)

f2

∣∣∣
≤
∣∣∣ (λh′ + (Ltfε)

′) · (h+ fε)− (h′ + f ′
ε) · (λh+ Ltfε)

r20

∣∣∣
≤ ε

r20
(r2‖f‖∞ + λ‖h′‖∞ + ‖Ltf‖∞ + r2‖h′‖∞).

5Here by ‖f‖∞ we understand sup[t0,t1] |f |.
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Taking into account that ‖f‖C1 ≤ ‖h‖C1 + ε we may now choose r1, which de-
pends on the norm of the eigenfunction ‖h‖C1 , but is independent of the choice of

approximation f , such that
∥∥(Ltf

f

)′∥∥
∞ ≤ r1ε. �

In practice, the derivative
(Ltf

f

)′
can be effectively estimated using the following

computer-assisted approach to arbitrary precision and without excessive effort. We
construct our test function f as a polynomial of degree m and our IFS consists

of linear-fractional transformations Tj(x) =
ajx+bj
cjx+dj

, the image functions F t = Ltf

can be written as

F t(x) =
d∑

j=1

|ajdj − bjcj |t
|cjx+ dj |2t

f

(
ajx+ bj
cjx+ dj

)
=

d∑
j=1

|ajdj − bjcj |t
(cjx+ dj)2t(cjx+ dj)m

pj(x),

where pj are polynomials of degree m, whose coefficients can be computed with
arbitrary precision. Then for the derivative of the ratio we obtain

(4)

(
F t(x)

f(x)

)′
=

d∑
j=1

|ajdj − bjcj |t
(cjx+ dj)2t(cjx+ dj)m+1f2(x)

p̂j(x),

where

p̂j(x) = −(m+ 2t)pj(x)f(x)− (cjx+ dj)(f(x)p
′
j(x)− f ′(x)pj(x))

is a polynomial of degree 2m whose coefficients can be computed explicitly with
arbitrary precision chosen. The computation of these coefficients, together with the

coefficients of f , allowed us to obtain accurate estimates on the derivative
(
F t

f

)′
on

the entire interval [0, 1] using ball arithmetic [27] in all the examples we considered.

Remark 3.7. Since the ratios are analytic functions, one would expect that they
can be approximated by polynomials. A heuristic observation suggests that for an
IFS of analytic contractions, ε ∼ 10−3m/4 in Lemma 3.6, where m is the degree of
the approximating polynomial.

Remark 3.8. The formulae for F t, F t

f and p̂j given above have been used in the

actual computer program written in C to study the Examples we have in the paper.
For the iterated function schemes which are not linear fractional transformations,
the formulae, indeed, will be different, and in particular, p̂j may not be a polyno-
mial. The same method applies, but the computation might require more computer
time. The implicit constant r2 also affects the accuracy of the estimate.

3.2. Lagrange–Chebyshev interpolation. We might fancifully note that if we
had an a priori knowledge of the true eigenfunction h for Lt corresponding to
the maximal eigenvalue and took this choice for f in Lemma 3.1 then we would

immediately have a = b = eP (t). However, in the absence of a knowledge of the
eigenfunction our strategy is to find an approximation.

(a) Choose t0 < t1 as potential lower and upper bounds, respectively, in Lemma
3.3 based on a heuristic estimate on the dimension (for example using the
periodic point method, or bounds that we would like to justify from any
other source); and

(b) Find candidates for f and g which are close to the eigenfunctions ht1 and ht0
for the operators Lt1 and Lt0 , respectively. We do this by approximating the
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two operators by finite dimensional versions and using their eigenfunctions
for f and g (in the next section).

There are different possible ways to find the functions we require in (b) in the
previous section. We will use classical Lagrange interpolation [4], [52].

Step 1 (Points). Fix m ≥ 2. We can then consider the zeros of the Chebyshev
polynomials:

xk = cos

(
π(2k − 1)

2m

)
∈ [−1, 1], for 1 ≤ k ≤ m.

In the present context it is then convenient to translate them to the unit interval
by setting yk = (xk + 1)/2 ∈ [0, 1].

Step 2 (Functions). We can use the values {yk} to define the associated Lagrange
interpolation polynomials:

(5) lpk(x) =

∏
i �=k(x− yi)∏
i �=k(yk − yi)

, for 1 ≤ k ≤ m

which are the polynomials of the minimal degree with the property that lpk(yk) = 1
and lpk(yj) = 0 for j 
= k for all 1 ≤ j, k ≤ m. These polynomials span an m-
dimensional subspace 〈lp1, · · · , lpm〉 ⊂ Cα([0, 1]).

To allow for the Markov condition we need to consider the (d×m)-dimensional
subspace of Cα(S). To define it we simply consider d copies lpk,i : [0, 1]× {i} → R

(1 ≤ i ≤ d) of the Lagrange polynomials given by lpk,i(x, i) ≡ lpk(x).

Step 3 (Matrix). The polynomials lpk,i for i = 1, . . . , d and k = 1, . . . , m constitute
a basis of a (d×m)-dimensional subspace E := 〈lpk,i〉 ⊂ Cα(S). Using Definition 2.9
of the transfer operator we can write for any 0 < t < 1 and (f1, . . . , fd) ∈ E :

(Lt(f1, . . . , fd))j =

d∑
i=1

M(i, j)fi(Ti)|T ′
i |t, 1 ≤ i ≤ d,(6)

(Lt(f1, . . . , fd))j : [0, 1]× {j} → R.

For each 1 ≤ i, j ≤ d and 1 ≤ k, l ≤ m we can introduce the m×m matrix Bt
ij(l, k)

(7) Bt
ij(l, k) : = lpk,i(Ti(yl,j)) · |T ′

i (yl,j)|t.
Then we can apply the operator Lt to a basis function (0, · · · , 0, lpk,i, 0, · · · , 0) ∈ E
and evaluate the resulting function at the nodes yl,j = (yl, j) ∈ [0, 1]×{j}, 1 ≤ l ≤
m, 1 ≤ j ≤ d

(Lt(0, · · · , 0, lpk,i, 0, · · · , 0))j(yl,j) = M(i, j)lpk,i(Ti(yl,j))|T ′
i (yl,j)|t

= M(i, j) ·Bt
i,j(l, k).

Taking into account that the polynomials lpk,i constitute a basis of the subspace
E we can approximate the restriction Lt|E by an md×md matrix:

(8) Bt =

⎛⎜⎝M(1, 1)Bt
11 · · · M(1, d)Bt

1d
...

. . .
...

M(d, 1)Bt
d1 · · · M(d, d)Bt

dd

⎞⎟⎠ .

For large values of m the maximal eigenvalue of the matrix Bt will be arbitrarily
close to the maximal eigenvalue eP (t) of the transfer operator Lt, see §3.4.
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Step 4 (Eigenvector). We can consider the left eigenvector of Bt

(9) vt = (vt1,1, · · · , vt1m, vt21, · · · , vt2,m · · · , vtd1, · · · vtdm)

corresponding to the maximal eigenvalue and use it to define a function (f t
1, · · · , f t

d)
∈ E as a linear combination of Lagrange polynomials

(10) f t
i =

m∑
j=1

vtij lpi,j , 1 ≤ i ≤ d.

Remark 3.9. In many cases the calculation can be simplified. More precisely, in the
construction above, the points yl,j ≡ yl do not depend on j. Therefore the matrices
Bij(l, k) do not depend on j either, and instead of computing d2 matrices Bij(l, k)
it is sufficient to compute d matrices Bt

i(l, k).

It is not immediately clear that the polynomials given by (10) are positive. In
Proposition 3.10 in §3.4 we show that for an iterated function scheme of analytic
contractions the algorithm presented above gives positive functions provided m is
sufficiently large. However, we don’t have a priori bounds on m. Therefore, for
every example we consider, we rigorously verify that the function constructed is
positive using the following simple method (and if the function turns out not to be
positive, we increase m).

Since our f t
j ’s are polynomials, their derivatives are easy to compute symbolically.

We then take a uniform partition of the interval into 210 intervals. For each interval
(a, b) of the partition, we compute the following:

(1) The middle point c = 1
2 (a+ b) and half-length r = 1

2 (b− a).

(2) The first m− 1 derivatives at c: f
(k)
j (c) for k = 1, . . . , m− 1.

(3) The image of the interval under the m’th derivative: (a1, b1) = |f (m)
j (a, b)|,

this is done using ball arithmetic. The inequality max(a,b) |f (m)
j | ≤ b1 is

guaranteed by the Arb library [27].

Then we can calculate a lower bound on fj on (a, b):

fj(x)≥fj(c)−(r|f (1)
j (c)|+r2|f (2)

j (c)|+. . .+rm−1|f (m−1)
j (c)|+rmb1) for all x∈(a, b).

3.3. Bisection method. The approach described in the previous two sections can
be used not only to verify given estimates t0 < dimH X < t1 but also to compute
the Hausdorff dimension of a limit set of a Markov iterated function scheme with
any desired accuracy using a basic bisection method. Assume that given ε > 0 we
would like to find an interval dimH X ∈ (d0, d1) of length d1 − d0 = ε.

We begin by fixing a value of m, say m = 6. Then we pick t0 < t1 for which we
know P (t0) > 1 > P (t1) (for a one-dimensional Iterated Function Scheme a safe
choice is t0 = 0, t1 = 1) and compute q = 1

2 (t0 + t1). Using Lagrange–Chebyshev
interpolation, the method described in §3.2, we compute the matrix Bq defined
by (8). We then calculate its left eigenvector vq using the classical power method
and construct the corresponding function fq ∈ E according to (10) as a sum of
Lagrange polynomials. We verify that f q is positive, using the approach explained
above. Having the function fq we compute the minima and the maxima of the ratio

a′ : = inf
S

Lqf
q

fq , b′ : = sup
S

Lqf
q

fq .

Then there are three possibilities
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ss

Start t0 < t1

Set q =
t1+t0

2

v = (v)mj=1

eigenvector for
(Lqlpj(xk))

m
j,k=1

g(x) =
m∑
j=1

vj lpj(x)
g > 0 ? sup

S

Lqg
g ≤ 1 ≤ inf

S

Lqg
g ?

yes

Increase m

m ∈ N

no

no

t1 − t0 < ε ?
no

Replace
t0 by q

Replace
t1 by q

inf
S

Lqg
g > 1 ?

yes

yesno

ε > 0 Stop

yes

Figure 4. The flow diagram summarizes how a computer program
implements the bisection procedure to find a small interval [t0, t1]
of small size ε > 0 containing dimH(X)

(1) if a′ > 1 we deduce by Lemma 3.3 that dimH X ≥ q and move the left
bound of the interval to t0 = q,

(2) if b′ < 1 we deduce from Lemma 3.3 that dimH X ≤ q and move the right
bound of the interval to t1 = q,

(3) if a′ ≤ 1 ≤ b′ we increase m,

and repeat the process described above, see Figure 4 for a flowchart.

3.4. The convergence of the algorithm. In this section we show that our
method gives estimates on the dimension which are arbitrarily close to the true
value, thus opening up the possibility of arbitrarily close estimates with further
computation.

All of the examples we consider in the present work have an iterated scheme
consisting of one-dimensional real analytic contractions. For simplicity we state
Proposition 3.10 for a single interval I, which corresponds to the Bernoulli case
with d = 1 in §3.2, but it will be clear how to extend this case to the more general
Markov setting.

Proposition 3.10. Let T1, . . . , Td : I → I be an iterated function scheme with real
analytic contractions with 0 < infx∈I |T ′

j(x)| ≤ supx∈I |T ′
j(x)| < 1 for j = 1, . . . ,

d. Assume that P (t) 
= 0 (i.e. dimH(X) 
= t). Then for any m sufficiently large
the polynomial f t defined by (10) satisfies one of the inequalities of Lemma 3.3, in

other words we have either infI
Ltf

t

ft > 1 or supI
Ltf

t

ft < 1.
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The proof of Proposition 3.10 which we will give here consists of two steps:
The first step is to construct a subspace of analytic functions in Cα(I) such that
the restriction of the transfer operator onto it has the right spectral properties.
The second step is to construct an approximation of the operator acting on the
subspace of analytic functions by a finite rank operator acting on the subspace of
polynomials of degree m. We begin our preparations for the proof of Proposition
3.10 by introducing the subspace of analytic functions and defining the operator
there. First, we need to introduce a suitable domain of analyticity.

Definition 3.11. Given ρ > 1 we define an ellipse with the foci 0 and 1 by

(11) ∂Uρ =

{
z =

1

2
+

1

4

(
ρeiθ +

e−iθ

ρ

)
: 0 ≤ θ < 2π

}
.

It is often referred to as a Bernstein ellipse [52].

In the setting and under the hypothesis of Proposition 3.10 without loss of gen-
erality we may assume the following:

(a) There exists ρ > 1 such that each contraction Tj extends to a complex
domain Uρ ⊃ [0, 1] bounded by the ellipse ∂Uρ, such that T ′

j(z) 
= 0 for
any z ∈ Uρ; and

(b) The closures cl(TjUρ) of the images TjUρ satisfy cl(TiUρ) ⊂ Uρ for all j = 1,
. . . , k.

It is clear that an ellipse satisfying (a) and (b) exists. More precisely, since we
assume real analyticity of the Tj we can choose an elliptical domain sufficiently
close to [0, 1] and by the hypotheses of Proposition 3.10 we can deduce (a). Since
the Tj contract we can choose the ellipse in (a) sufficiently close to I (by making ρ
close to 1) that (b) holds. In what follows, we shall simplify notation and omit the
index ρ.

After introducing the domain of analyticity, we now define a Banach space of
analytic functions.

Definition 3.12. Let H∞ denote the space of bounded analytic functions on Uρ

with the norm ‖f‖ = supz∈Uρ
|f(z)|.

The space H∞ is special case of Hardy spaces (hence the choice of notation), and
it is known to be a Banach space [33]. For any function f ∈ H∞ the restriction f |I
is a continuously differentiable function on I and, in particular, it is contained
in Cα(I) for any 0 < α ≤ 1. More precisely, we can choose a simple closed curve
Γ ⊂ Uρ close to ∂Uρ and use Cauchy’s theorem to write the derivative for the
restriction f |I by

f ′(x) =
1

2πi

∫
Γ

f(z)

(z − x)2
dz,

which is continuous as a function of x ∈ I.
Note that T ′

j is real analytic and non-vanishing on I and the same holds true for

|T ′
j |t. Thus by slight abuse of notation we may also denote by |T ′

j(z)|t its analytic
extension to the domain bounded by the sufficiently small Bernstein ellipse Uρ.
Therefore we may now introduce a restriction of the transfer operator (1) onto H∞.
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Definition 3.13. For t > 0, the transfer operator Lt : H
∞ → H∞ will again be

given by the formula

(12) [Ltf ](z) =

k∑
j=1

|T ′
j(z)|tf(Tjz), z ∈ Uρ.

The operator Lt : H
∞ → H∞ given by (12) is actually compact and even nu-

clear [39], [46] although this will not be needed. We will use the following simpler
fact instead.

Lemma 3.14. The operator Lt : H
∞ → H∞ shares the same maximal eigen-

value λ = eP (t) as Lt : C
α(I) → Cα(I) and the rest of the spectrum is contained in

a disk of strictly smaller radius.

Proof. Indeed, if we let � denote the constant function on [0, 1] then by Lemma 2.12
we see that e−nP (t)Lt

n� converges uniformly to η(�) ∈ 〈h〉. However, since � ∈
H∞ and Ln

t preserves H∞ we can conclude that η(�) ∈ H∞ and thus h has an
extension in H∞ and eP (t) is a simple eigenvalue for Lt : H

∞ → H∞. Similarly, any
eigenvalue for Lt : H

∞ → H∞ must be an eigenvalue for Lt : C
α(I) → Cα(I) since

H∞ ⊆ Cα(I). Therefore, since Lt : C
α(I) → Cα(I) has the rest of the spectrum in

a disk of the radius strictly small than eP (t) this property persists for the operator
on H∞. �

This completes the first step of the proof of Proposition 3.10 outlined above.
Recall that the Lagrange polynomials lp1, . . . , lpm given by (5) form a basis

of the subspace of polynomials of degree m − 1 in H∞; in §3.2 we named this
subspace E . Let Pm : H∞ → E be the natural projection given by the collocation
formula

(13) [Pmf ](x) =

m∑
j=1

f(xj)lpj(x), x ∈ I.

We see immediately that the restriction Pm|E of Pm to E is the identity.
The second step is to approximate the transfer operator on H∞ by a finite rank

operator. We now recall an estimate on the norm of the difference ‖Lt−LtPm‖H∞ .

Lemma 3.15 (See [5, Theorem 3.3]). For the transfer operator on H∞ given
by (12) there exist C > 0 and 0 < θ < 1 such that ‖Lt −LtPm‖H∞ ≤ C‖Lt‖H∞θm

for m ≥ 1.

This is also implicit in [55, §2.2].

Remark 3.16. The proof of Lemma 3.15 relies on the fact that for any function f
analytic on a domain bounded by a Bernstein ellipse the image Ltf is analytic on
a larger domain bounded by another Bernstein ellipse. This form of analyticity
improving property is also essential in showing that Lt is nuclear [46].

It follows from Lemmas 3.14, 3.15 and classical analytic perturbation theory (see
the book of Kato [31, Chapter VII]) that we have the following:

Corollary 3.17. For any ε > 0 there exists δ > 0 sufficiently small such that for
all m sufficiently large we have

(1) LtPm : H∞ → H∞ has a simple maximal eigenvalue λm with |λm−λ| < ε;
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(2) The rest of the spectrum of LtPm is contained in {z ∈ C : |z| < λ − 2δ};
and

(3) The eigenfunctions hm of LtPm converge to the eigenfunction h of Lt, more
precisely ‖hm − h‖H∞ → 0 as m → ∞.

(4) The exists a constant c > 0, independent of m, such that the eigenfunc-
tion hm for LtPm corresponding to λm satisfies |hm(z)| > c for all z ∈ Uρ.

We are now ready to prove Proposition 3.10.

Proof of Proposition 3.10. It follows from (13) that the restriction PmLt|E to E is
a finite rank operator PmLt : E → E given by

PmLt : f �→
n∑

j=1

[Ltf ](xj) · lpj .

On the basis of Lagrange polynomials {lpj}mj=1 the operator PmLt is given by the

m×m-matrix Bt = Bt(j, k), j, k = 1, . . . , m, where

Bt(j, k) =
m∑
i=1

[Ltlpj ](xi) · lpi(xk) = [Ltlpj ](xk) for 1 ≤ j, k ≤ m,

which agrees with the matrix given by (7) in a special case d = 1. A straightforward
computation gives that the eigenvalue λm for LtPm is also an eigenvalue for the
matrix Bt corresponding to the eigenvector Pmhm ∈ E . Since we have chosen the
basis of Lagrange polynomials to define the matrix Bt, we conclude that

[Pmhm](x) =

m∑
j=1

vj lpj(x),

where (v1, . . . , vm) is the eigenvector of Bt.
To see that Pmhm is a positive function, we apply a classical result by Cheby-

shev [52], which gives

(14) sup
I

|hm − Pmhm| ≤ 1

2m−1m!
sup
I

|h(m)
m |.

Since hm → h asm → ∞ in the space of analytic functionsH∞, the derivatives h
(m)
m

are uniformly bounded on I. Therefore the positivity of hm on I guarantees the
positivity of the projection Pmhm ∈ E on I for sufficiently large m.

It remains to show that one of the inequalities in Lemma 3.3 holds true for Pmhm.
Without loss of generality we may assume that P (t) > 0, which implies Lth

h =

eP (t) > 1. Therefore the part (4) of Corollary 3.17 together with (14) gives ‖Pmhm−
h‖H∞ → 0 as m → ∞. Hence for m sufficiently large we shall have LtPmhm

Pmhm
> 1

everywhere on I. The case P (t) < 0 is similar.
This completes the proof of Proposition 3.10. �

Remark 3.18. To avoid confusion we should stress that positivity of the polynomial
Pmhm ∈ E and positivity of the entries of Bt are not related; furthermore, in the
examples we consider the matrices Bt typically have entries of both signs.

The convergence of the algorithm we presented in §3.2-§3.3 follows immediately
from Proposition 3.10.
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Corollary 3.19. After applying the bisection method sufficiently many times we
obtain an approximation to dimH X which is arbitrarily close to the true value.

Remark 3.20. We would like to note that although Proposition 3.10 guarantees the
convergence of our algorithm, it doesn’t give any explicit estimates on how large m
one will need to take in practical realisation. Our heuristic observation shows that
it takes of order N = − log ε

log 2 iterations of the bisection method to find an interval

of length ε containing the value of dimH X for a scheme of analytic contractions.
For instance, for many of our examples it is sufficient to take m = 6 to obtain

an estimate accurate to 4 decimal places which makes the matrices small and the
computation very fast. However, when we require greater accuracy we need to
choose m larger to provide test functions for Lemma 3.3 which will be a more close
approximation of the eigenfunction. For example, to verify dimH(E2) to over 200
decimal places we choose m = 275.

Example 3.21 (Contractions with less regularity). When the contractions have
less regularity the present interpolation method is not very efficient. For instance
Falk and Nussbaum [9, §3.3] considered the limit set X corresponding to the con-
tractions

T1(x) =
x+ ax7/2

3 + 2a
and T2(x) =

x+ ax7/2

3 + 2a
+

2 + a

3 + 2a

for 0 < a < 1. For example, when a = 1
2 they show that

0.7334745730 00780 ≤ dimH(X) ≤ 0.7334746222 22678,

giving an estimate accurate to 6 decimal places. By increasing the number of
Chebyshev nodes to m = 100 we obtain test functions that using Lemma 3.3 give

dimH(X) = 0.7334746151 5± 1.5 · 10−10.

This is a modest improvement in accuracy to 9 decimal places.

4. Applications

We will now apply the method in §3 to the problems described in §1.

4.1. Markov–Lagrange theorems. The bounds on the Hausdorff dimension on
various parts of the difference of the Markov and Lagrange spectra as stated in
Theorem 1.3 are built on the comprehensive analysis of Matheus and Moreira [35],
where the Hausdorff dimension bounds are given in terms of the Hausdorff dimen-
sion of certain linear-fractional Markov Iterated Function Schemes.

Therefore we set ourselves the task of establishing with an accuracy of ε = 10−5,
say, the Hausdorff dimension of the limit sets involved. We need to consider five
different Iterated Function Schemes corresponding to five cases of Theorem 1.3.

We begin by formulating a general framework which embraces many of our
numerical results. In the proof of Theorem 1.3 the set XM is given in terms
of sequences from an alphabet {1, 2, . . . , d} with certain forbidden words w (of
possibly varying lengths). For example, in Parts (2) and (3) the basic forbid-
den words are of length 2 and Markov condition is easy to write. However, in
Parts (1), (4) and (5) the basic forbidden words are of length 3 and 4. If the
maximum length of a word is N , then we can consider the alphabet of “letters”
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w = w1w2 · · ·wN−1 ∈ {1, 2, · · · , d}N−1, which are sequences of length N − 1 and
define a dN × dN matrix M ′, where

Mjk =

{
1 if wj

2 · · ·w
j
N−1 = wk

1 · · ·wk
N−2 and wj

1 · · ·w
j
N−1w

k
N−1 is allowed;

0 otherwise,

where we say that the word is allowed if it doesn’t contain any forbidden subwords.
We can then define a matrix M by changing the entry in the row indexed by a
word i1i2 · · · iN and column indexed by j1j2 · · · jN to 0 whenever the concatenation
i1i2 · · · iN−1jN−1 contains any of the forbidden words as a substring.6 The trans-
formation associated to the word w is defined by the first term, i.e., Tw = Tw1

.

4.1.1. Proof of Theorem 1.3. We can divide the proof of Theorem 1.3 into its five
constituent parts.
Part (1): (M\L) ∩ (

√
5,
√
13). It is proved in §B.1 of [35] that

(15) dimH(M\L ∩ (
√
5,
√
13)) ≤ 2 dimH(XM ),

where XM ⊂ [0, 1] is a set of numbers whose continued fraction expansions contain
only digits 1 and 2, except that subsequences 121 and 212 are not allowed. We can
relabel the contractions Tij , i, j ∈ {1, 2} for the Markov iterated function scheme
on [0, 1] as

T1(x) = T2(x) =
1

1 + x
, T3(x) = T4(x) =

1

2 + x
and M =

(
1 1 0 0
0 0 0 1
1 0 0 0
0 0 1 1

)
.

The associated transfer operator is acting on the Hölder space of functions Cα(S)
where S = ⊕4

j=1[0, 1] × {j}. We choose m = 8 and apply the bisection method

starting with the bounds t′0 = 0.35, t′1 = 0.38. It gives the estimate

(16) t0 : = 0.3640546 < dimH XM < 0.3640548.

To justify the bounds, the functions f = (f1, . . . , f4), g = (g1, . . . , g4) ∈ Cα(S) are

explicitly computed using eigenvectors of the matrices Bt0 and Bt1 , respectively.
These are polynomials of degree 7 given by

fj(x) =

7∑
k=0

ajkx
k, gj =

7∑
k=0

bjkx
k, j = 1, . . . , 4,

whose coefficients ajk, b
j
k are tabled in §A.1.1. We can obtain the following inequal-

ities

(17) sup
S

Lt1f

f
< 1− 10−9; inf

S

Lt0g

g
> 1 + 10−7,

and the bound (16) follows from Lemma 3.3. Substituting the bounds from (16)
into the inequality (15) we obtain

dimH((M\L) ∩ (
√
5,
√
13)) < 0.7281096.

The estimates from (16) confirm the conjectured upper bound of dimH(XM ) <
0.365 obtained in [35, §B.1] using the periodic point method.

6In the special case N = 2 this corresponds to the usual 1-step Markov condition.
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Part (2): (M\L) ∩ (
√
13, 3.84). In [35, §B.2] it is shown that

(18) dimH

(
(M\L) ∩ (

√
13, 3.84)

)
< 0.281266 + dimH XM ,

where XM ⊂ [0, 1] is a set of numbers whose continued fraction expansions contain
only digits 1, 2, 3, except subsequences 13 and 31 are not allowed. This is also the
limit set of the IFS

T1(x) =
1

1 + x
, T2(x) =

1

2 + x
, T3(x) =

1

3 + x
, M =

(
1 1 0
1 1 1
0 1 1

)
.

Following the same strategy as above, with S = ⊕3
j=1[0, 1] × {j} and m = 8, and

using t′0 = 0.56 and t′1 = 0.58 as initial guesses for bisection method7 we get the
following upper and lower bounds

(19) t0 : = 0.5739612 ≤ dimH(XM ) ≤ 0.5739617 =: t1.

The leading eigenvectors of the corresponding matrices Bt0 and Bt1 give polynomial
functions

fj(x) =
7∑

k=0

ajkx
k, gj =

7∑
k=0

bjkx
k, j = 1, 2, 3,

whose coefficients ajk, b
j
k are tabled in §A.1.2. We can obtain the following inequal-

ities

(20) sup
S

Lt1f

f
< 1− 10−7; inf

S

Lt0g

g
> 1 + 10−7,

and the bound (19) follows from Lemma 3.3. Substituting the bounds from (19)
into the inequality (18) we obtain

dimH((M\L) ∩ (
√
13, 3.84)) < 0.855228.

The upper bound in estimate (19) confirms the conjectural bound dimH(XM ) <
0.574 [35, §B.2] which has been obtained using the periodic point approach.
Part (3): (M \ L) ∩ (3.84, 3.92). The following inequality was established in [35,
§B.3]:
(21) dimH((M\L) ∩ (3.84, 3.92)) < dimH(XM ) + 0.25966,

where XM ⊂ [0, 1] is the set of all numbers such that its continued fraction ex-
pansions contain only digits 1, 2, and 3 with an extra condition that subsequences
131, 132, 231, and 313 are not allowed. This corresponds to a Markov IFS with 9
contractions

Tij =
j + x

1 + i(j + x)
, i, j ∈ {1, 2, 3},

with Markov condition given by the 9× 9 matrix

Mij,kl =

{
0 if {ijk, jkl} ∩ {131, 132, 231, 313} 
= ∅,

1 otherwise.

Ordering the 2-element sequences ij in lexicographical order, we see that some
columns of the resulting 9× 9 matrix agree, more precisely, M(j, 1) ≡ M(j, 2) and
M(j, 4) ≡ M(j, 5) ≡ M(j, 6) for all 1 ≤ j ≤ 9. Therefore, the matrix Bt defined

7Based on [35, §B.2].
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by (8) has the same property. Let vt = (v1, . . . , vd), where vj ∈ Rm be its left
eigenvector corresponding to the leading eigenvalue λ. Then

d∑
k=1

vkM(k, j) ·Bt
k = λvj , 1 ≤ j ≤ 9.

Therefore the equality between matrix columns implies v1 = v2 and v4 = v5 = v6.
The bisection method with m = 8 gives the following lower and upper bounds

on dimension

(22) t0 : = 0.6113922 < dimH XM < 0.6113925 =: t1.

The coefficients of the test functions f = (f1, . . . , f9) for Lt1 and g = (g1, . . . , g9) for
Lt0 which are polynomials of degree 7 are tabled in §A.1.3. The equalities between
elements of the eigenvectors imply f1 = f2, f4 = f5 = f6 and g1 = g2, g4 = g5 = g6.
Using ball arithmetic we get bounds for the ratios

(23) sup
S

Lt1f

f
< 1− 10−7; inf

S

Lt0g

g
> 1 + 10−7,

and the estimates (22) follow from Lemma 3.3. Substituting the upper bound
from (22) into the inequality (21) we obtain

dimH((M\L) ∩ (3.92, 4.01)) < 0.8710525.

The estimates (22) confirm the heuristic bound of dimH(XM ) < 0.612 given
in [35, §B.3].

In the remaining two cases, corresponding to intervals (3.92, 4.01) and (
√
20,

√
21)

the Markov condition is a little more complicated and instead of numbering the
contractions defining the Iterated Function Scheme by single numbers it is more
convenient to index them by pairs or triples.
Part (4): dimH((M \ L) ∩ (3.92, 4.01)). In [35, §B.4] the following inequality is
proved:

(24) dimH((M\L) ∩ (3.92, 4.01)) < dimH(XM ) + 0.167655,

where XA ⊂ [0, 1] is the set of all numbers such that its continued fraction ex-
pansions contain only digits 1, 2, and 3 with an extra condition that subsequences
131, 313, 2312, and 2132 are not allowed. This corresponds to a Markov iterated
function scheme

Tijk =
1 + j(k + x)

i+ (ij + 1)(k + x)
, i, j, k ∈ {1, 2, 3},

with Markov condition given by the 27× 27 matrix

M(ijk, qrs) =

⎧⎪⎨⎪⎩
0 if {ijk, jkq, kqr, qrs} ∩ {131, 313} 
= ∅, or

0 if {ijkq, jkqr, kqrs} ∩ {2312, 2132} 
= ∅,

1 otherwise.
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Again we see that there are equalities between columns of the matrix M . In par-
ticular, for any triple ijk

M(ijk, 111) = M(ijk, 112) = M(ijk, 113),

M(ijk, 121) = M(ijk, 122) = M(ijk, 123),

M(ijk, 131) = M(ijk, 313) = 0,(25)

M(ijk, 321) = M(ijk, 322) = M(ijk, 323),

M(ijk, 331) = M(ijk, 332) = M(ijk, 333),

M(ijk, 211) = M(ijk, 2rs) 1 ≤ r, s ≤ 3.

As in the previous case, these equalities imply that the corresponding components of
the eigenfunctions are identical. The bisection method with m = 8 and ε = 6 ·10−8

gives the following lower and upper bounds on dimension

(26) t0 : = 0.6433544 < dimH XA < 0.6433548 =: t1.

The coefficients of the test functions f for Lt1 and g for Lt0 which are polynomials
of degree 7 are tabled in §A.1.4. Using ball arithmetic we get bounds for the ratios

(27) sup
S

Lt1f

f
< 1− 10−7; inf

S

Lt0g

g
> 1 + 10−7,

and the estimates (26) follow from Lemma 3.3. Substituting the upper bound
from (26) into the inequality (24) we obtain

dimH((M\L) ∩ (
√
20,

√
21)) < 0.8110098.

The upper bound from (26) makes rigorous the heuristic bound dimH(XM ) < 0.65
in [35, §B.5] which was based on the non-validated periodic point method.

Remark 4.1. In [35] there are also bounds on dimH((M\ L) ∩ (4.01,
√
20)) which

use estimates on dimH(X1,2,3) due to Hensley. We reconfirm and improve these in
Table 3.

Part (5): dimH((M\ L) ∩ (
√
20,

√
21)). In [35, §B.5] Matheus and Moreira estab-

lished the following inequality:

(28) dimH((M\L) ∩ (
√
20,

√
21) < dimH(XM ) + 0.172825,

where XM ⊂ [0, 1] is a set of numbers whose continued fraction expansions contain
only digits 1, 2, 3, and 4, except that subsequences 14, 24, 41 and 42 are not allowed.
This is the limit set of the Markov Iterated Function Scheme

T1(x) =
1

1 + x
, T2(x) =

1

2 + x
, T3(x) =

1

3 + x
, T4(x) =

1

4 + x
; M =

(
1 1 1 0
1 1 1 0
1 1 1 1
0 0 1 1

)
.

The bisection method with m = 10 and ε = 6 · 10−8 as before and the initial guess
t′0 = 0.7, t′1 = 0.71 gives upper and lower bounds on the dimension:

(29) t0 : = 0.7093943 < dimH XM < 0.7093945 =: t1.

The coefficients of the test functions f for Lt1 and g for Lt0 which are polynomials
of degree 9 are tabled in §A.1.5. Using ball arithmetic we get bounds for the ratios

(30) sup
S

Lt1f

f
< 1− 10−7; inf

S

Lt0g

g
> 1 + 10−8,



HAUSDORFF DIMENSION ESTIMATES 1129

and the estimates (29) follow from Lemma 3.3. Substituting the upper bound
from (29) into the inequality (28) we obtain

dimH((M\L) ∩ (3.84, 3.92)) < 0.8822195.

The upper bound from (29) confirms a heuristic estimate dimH(XM ) < 0.715
(in [35, §B.6]) obtained using the periodic points method.

Remark 4.2. We can very easily increase the accuracy significantly, at the expense
of greater computation, but the present estimates seem sufficient for our needs.

Remark 4.3. The initial calculations were carried out on a MacBook Pro with a
2.8 GHz Quad-Core Intel i7 with 16GB DDR3 2133MHz RAM running MacOS
Catalina using Mathematica. The bounds have been confirmed rigorously using a
C program written by the second author based on Arb library for arbitrary precision
ball arithmetic.

Remark 4.4. The periodic point method does not allow such accurate estimates
on the computational error. In particular, it is possible to estimate the error in
the case of Bernoulli iterated function schemes, but the estimate is ineffective for
Markov systems. Similarly, for the McMullen algorithm [40] the errors are more
difficult to estimate.

4.1.2. Lower bounds and the proof of Theorem 1.5. A further estimate on the Haus-
dorff dimension of the difference of the Lagrange and Markov spectra uses the di-
mension of the Cantor set of numbers in (0, 1) whose continued fraction expansion
contains only digits 1 and 2:

(31) E2 : = {[0; a1, a2, a3, . . .] | an ∈ {1, 2} for all n ∈ N} .
In particular, Matheus and Moreira [35] showed thatM\L contains the image under
a Lipschitz bijection of the set E2 [35, Theorem 5.3] from which they immediately
deduce the following.

Theorem 4.5 (Matheus–Moreira). dimH(M\L) ≥ dimH(E2).

Remark 4.6. Theorem 4.5 is a corollary of the slightly stronger local result that
dimH(M\L ∩ (3.7096, 3.7097)) ≥ dimH(E2), cf. [35, Corollary 5.4].

It is easy to see that the set E2 is the limit set for the contractions T1, T2 :
[0, 1] → [0, 1] defined by

T1(x) =
1

1 + x
and T2(x) =

1

2 + x
.

In [24] there is a validated value for the Hausdorff dimension of dimH(E2) to 100
decimal places using periodic points method and a careful analysis of the error
bounds. In this case the error estimates are easier because the system is Bernoulli.
In [40] Theorem 4.5 is combined with the numerical value from [24] to give a lower
bound on the dimension of the difference of the Markov and Lagrange spectrum.

We can use the approach in §3 of this note to rigorously (re-)verify this bound.
We begin with the lower bound. We choose S = [0, 1] since the iterated function
scheme is Bernoulli. Let m = 120 and

t′0 = 0.5312805062 7720514162 4468647368 4717854930 5910901839(32)

8779888397 8039275295 3564383134 5918109570 1811852398,

t′1 = t0 + 10−100(33)
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(taken from [24]). We can then use the Chebyshev–Lagrange interpolation to find a
test function g : [0, 1] → R which is a polynomial of degree 119. We can then check
that

inf
S

Lt′0
g

g
> 1 + 10−100

and then applying Lemma 3.3 we can deduce that dimH(E2) > t0.
We proceed similarly to verify the upper bound t′1. Namely, the Chebyshev–

Lagrange interpolation gives another test function f : [0, 1] → R which is also a
polynomial of degree 119 with the property that

sup
S

Lt′1
f

f
< 1− 10−101.

Thus by Lemma 3.3 we conclude that dimH(E2) < t′1.

Remark 4.7. This example demonstrates that, despite the fact that at first sight
estimating the ratio of the image of the test function and the function itself could
be potentially very time consuming and challenging, for many systems of particular

interest, the derivative
(

Lqf
f

)′
turns out to decrease sufficiently fast as m → ∞ to

make realisation possible in practice.
In [24] the estimates involved computing 225 = 33, 554, 432 periodic points up

to period 25 and the exponentially increasing amount of data needed makes it im-
practical to improve the rigorous estimate on dimH(E2) significantly. On the other
hand, using the approach via Chebyshev–Lagrange interpolation and Lemma 3.3
we were able to confirm this result with the same accuracy using only two 120×120
matrices, and it would require about 600 matrices (of increasing size from 6 × 6
up to 120× 120) in total to recompute this estimate starting with the initial guess
t0 = 0 and t1 = 1. This represents a significant saving in memory usage at expense
of computing 400 coefficients for the derivative estimates.

Moreover, we can now easily improve on the estimate using the bisection method
combined with interpolation and Lemma 3.3 where the amount of data required
by our analysis grows linearly with the accuracy required. Indeed, letting m = 270
and ε = 10−200 we apply the bisection method choosing t′0 given by (32) and t′1
given by (33) as initial guess. It gives

t0 = 0.5312805062 7720514162 4468647368 4717854930 5910901839 8779888397

(34)

8039275295 3564383134 5918109570 1811852398 8042805724 3075187633

4223893394 8082230901 7869596532 8712235464 2997948966 3784033728

7630454110 1508045191 3969768071 2,

and

t1 = t0 + 2 · 10−201.

(35)

Then we can use the interpolation method to construct test functions f and g which
are polynomials of degree 269 defined on the unit interval.8

8We omit a detailed listing of all the 540 coefficients of f and g. However, they are easily

recovered by Mathematica.
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We can then explicitly compute

inf
S

Lt0f

f
> 1 + 10−213, sup

S

Lt1g

g
< 1− 10−211,

which implies that t0 ≤ dimH(E2) ≤ t1.

4.2. Zaremba theory. In §1 we described interesting results of Bourgain–
Kontorovich [2], Huang [20], and Kan [28], [29], [30], which made progress towards
the Zaremba Conjecture. These results have a slightly more general formulation,
which we will now recall. For a finite alphabet set A ⊂ N consider the iterated
function scheme

Tn : [0, 1] → [0, 1], Tn(x) =
1

x+ n
for n ∈ A,

and denote its limit set by XA.
For any N ∈ N we can in addition consider a set

DA(N) : ={
q∈N |1≤q≤N, ∃p∈N, (p, q)=1; a1, · · · , an∈A with

p

q
=[0; a1, · · · , an]

}
.

In particular, when A = {1, 2, · · · ,m} then DA reduces to Dm as defined in §1.
We begin with the density one result [20], [21].

Theorem 4.8 (Bourgain–Kontorovich, Huang). Let A ⊂ N be a finite subset for
which the associated set XA satisfies dimH(XA) >

5
6 = 0.833̇. Then

lim
N→+∞

#DA(N)

N
= 1.

The statement of Theorem 1.6 corresponds to the particular choice of alphabet
A = {1, 2, 3, 4, 5} in Theorem 4.8. Similarly, Theorem 1.7 has a slightly more
general formulation (from [28]) as a positive density result.

We begin by recalling the following useful notation. Given two real-valued func-
tions f and g we say that f � g if there exists a constant c such that f(x) > cg(x)
for all x sufficiently large.

The statement of Theorem 1.7 corresponds to the particular choice of alphabet
of A = {1, 2, 3, 4} in Theorem 4.9.

Theorem 4.9 (Kan [28, Theorem 1.4]). Let A ⊂ N be a finite set for which the

associated limit set XA has dimension dimH(XA) >
√
19−2
3 = 0.7862 . . .. Then

#

{
q ∈ N | 1 ≤ q ≤ N : ∃p ∈ N; a1, · · · , an ∈ A with

p

q
= [0; a1, · · · , an]

}
� N.

The derivation of Theorem 4.9 is conditional on the inequality dimH(E4) >√
19−2
3 which was based on the empirical computations by Jenkinson [23], but which

were rigorously justified in [25]. We will rigorously (re)confirm this inequality in
the next section using the approach in §3.

In the case that the Hausdorff dimension of the limit set XA is smaller, in par-
ticular, dimH(XA) <

5
6 there are still some interesting lower bounds on #DA(N).

For convenience we denote (omitting dependence on A)

δ : = dimH(XA),
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then a classical result of Hensley showed that #DA(N) � N2δ [19]. Subsequently,
this was refined in different ranges of δ as follows:

(i) If 1
2 < δ < 5

6 then #DA(N) � Nδ+(2δ−1)(1−δ)/(5−δ)−ε, for any ε > 0 [2].

(ii) If
√
17−1
4 < δ < 5

6 then #DA(N) ≥ N1−ε for all ε > 0 [28].

(iii) If 3−
√
5 < δ <

√
17−1
4 , then #DA(N) ≥ N1+ 2δ2+5δ−5

2δ−1 −ε [30].

As a concrete application, Kan considered the finite set A = {1, 2, 3, 5} and by
applying the inequality in (iii) obtained the following lower bound.

Theorem 4.10 (Kan [30, Theorem 1.5, Remark 1.3]). For the alphabet A =
{1, 2, 3, 5} one has #DA(N) � N0.85.

This gave an improvement on the bound of #DA(N) � N0.80 arising from

(i). However, this required that dimH(XA) > 3 −
√
5, an estimate conjectured by

Jenkinson in [23], but which was not validated. We will present a rigorous bound
in the next subsection.

To further illustrate this theme we will use the present method to confirm the
following local version of the Zaremba conjecture proposed by Huang.

Theorem 4.11 (After Huang). Let A={1, 2, 3, 4, 5} and consider DA=∪n∈NDA(n),
in other words

DA : =

{
q ∈ N | ∃p ∈ N, (p, q) = 1 and a1, · · · , an ∈ A with

p

q
= [0; a1, · · · , an]

}
.

Then for every m > 1 we have that DA = N(mod m). In other words, for every
m > 1 and every q ∈ N we have q (mod m) ∈ DA.

4.2.1. Dimension estimates for E5. A crucial ingredient in the analysis in the proof
of density one Theorem 1.6 used in [20] is that the limit set E5 for the iterated
function scheme

Tj : [0, 1] → [0, 1], Tj(x) =
1

j + x
, 1 ≤ j ≤ 5

satisfies dimH(E5) >
5
6 = 0.833̇. In [25], this was confirmed with rigorous bounds

dimH(E5) = 0.836829445± 5 · 10−9

using the periodic points method. For this particular example, the error estimates
are more tractable because the iterated function scheme is Bernoulli, rather than
just Markov.

However, we can use the method in this note to reconfirm this bound, and
improve it, with very little effort, to the following:

Theorem 4.12.
dimH(E5) = 0.836829443680± 10−12.

Proof. We can choose S = [0, 1] since the iterated function scheme is Bernoulli.
Applying the bisection method with m = 15 and ε = 10−11, we get lower and
upper bounds

t0 = 0.83682944368 02, and

t1 = t0 + 2 · 10−12 = 0.83682944368 20.

The Chebyshev–Lagrange interpolation method then gives two polynomials of de-
gree 14 that can serve as test functions. Their coefficients are listed in §A.2.1.
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We can then explicitly compute

(36) sup
S

Lt1f

f
< 1− 10−13; inf

S

Lt0g

g
> 1 + 10−13

and the result follows from Lemma 3.3. �

Remark 4.13. In terms of the practical application to Theorem 1.6, there is no need
to have accurate estimates of dimH(E5), it is sufficient to show dimH(X) > 5

6 . This
can be achieved using a simple calculation “by hand”. We can take

f(x) =
2

3
− 11

20
x+

1

3
x2 − 1

10
x3.

We can then compute that
L5/6f(x)

f(x) > 1.0029. It then follows from Lemma 3.3 that

dimH(E5) >
5
6 .

4.2.2. Dimension estimates for E4. A crucial ingredient in the analysis in the proof
of Theorem 1.7 used in [29] is that the limit set E4 for the iterated function scheme

Tj : [0, 1] → [0, 1], Tj(x) =
1

j + x
, 1 ≤ j ≤ 4

satisfies dimH(E4) >
√
19−2
3 ≈ 0.7862 . . ..

We can validate this result by showing the following bounds on the dimension

Theorem 4.14. dimH(E4) = 0.7889455574 83± 10−12.

Proof. We can choose S = [0, 1] since the iterated function scheme is Bernoulli.
Applying the bisection method with m = 15 and ε = 10−11, we obtain the lower
and upper bounds

t0 = 0.7889455574 81 and

t1 = t0 + 2 · 10−12 = 0.7889455574 84.

The Chebyshev–Lagrange interpolation method then gives two polynomials of de-
gree 14 that can serve as test functions. Their coefficients are listed in §A.2.2.

We can then explicitly compute

(37) sup
S

Lt1f

f
< 1− 10−13; inf

S

Lt0g

g
> 1 + 10−12

and the result follows from Lemma 3.3. �

Remark 4.15. In terms of the practical application to Theorem 1.7, there is no need

to have accurate estimates of dimH(E4), it is sufficient to show dimH(X) >
√
19−2
3 .

This can be achieved using a simple calculation “by hand”. We can take

f(x) =
27

50
− 11

25
x+

33

100
x2 − 11

50
x3 +

21

200
x4 − 1

40
x5.

We can then compute that [L√
19−2
3

f ](x)/f(x) > 1.00205. It then follows from

Lemma 3.3 that dimH(E4) >
√
19−2
3 .
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4.2.3. Dimension estimates for alphabet A = {1, 2, 3, 5}.

Theorem 4.16. Let A = {1, 2, 3, 5}. Then dimH(XA) = 0.7709149399 375 ± 1.5 ·
10−12.

Proof. The estimate can be recovered following the same approach as in the proof
of Theorem 4.14 and coefficients of the corresponding test functions listed in §A.2.3.
We choose S = [0, 1]. Applying the bisection method with m = 16 and ε = 3·10−12,
we obtain the lower and upper bounds

t0 = 0.7709149399 36 and

t1 = t0 + 3 · 10−12 = 0.7709149399 39.

The Chebyshev–Lagrange interpolation method then gives two polynomials of de-
gree 15 that can serve as test functions. Their coefficients are listed in §A.2.3.

We can then explicitly compute

sup
S

Lt1f

f
< 1− 10−12, inf

S

Lt0g

g
> 1 + 10−12;

and the result follows from Lemma 3.3. �

Remark 4.17. In terms of the practical application to Theorem 4.10, there is no need
to have accurate estimates of dimH(E{1,2,3,5}), it is sufficient to show dimH(X) >

3−
√
5. This can be achieved using a simple calculation “by hand”. We can take

f(x) =
9

10
− 2

5
x.

We can then compute that [L3−
√
5f ](x)/f(x) > 1.00042. It then follows from

Lemma 3.3 that dimH(X) > 3−
√
5.

Remark 4.18. The periodic point method and McMullen’s approach [40] cannot give
such accurate estimates because of the prohibitive computer resources required. In
a recent paper [10] Falk and Nussbaum computed Hausdorff dimension of the sets
E5, E4, E1235 and some of the Hensley examples we give below. Their method is
also rooted in the interpolation, but uses different machinery.

4.3. Counter-example to a conjecture of Hensley. In [2] Bourgain and Kon-
torovich gave a counter-example to a conjecture of Hensley [19, Conjecture 3, p.16].
The conjecture stated that for any finite alphabet A ⊂ N for which the Hausdorff
dimension of the associated limit set (corresponding to the iterated function scheme
with contractions Tj(z) =

1
j+x for j ∈ A) satisfies dimH(XA) >

1
2 the analogue of

the Zaremba conjecture holds true for q sufficiently large, i.e., there exists q0 > 0
such that for any natural number q ≥ q0 there exists p < q and a1, . . . , an ∈ A
such that p

q = [a1, · · · , an].
The construction of the counter-example hinged on the observation that the de-

nominators q corresponding to such restricted continued fraction expansions cannot
ever satisfy q = 3(mod 4) and on showing that for the iterated function scheme
{Tj = 1

x+j | a = 2, 4, 6, 8, 10} the limit set X has dimension dimH(X) > 1
2

(cf. [2, p. 139]). This was rigorously confirmed in [25, Theorem 7] by a fairly
elementary argument, where it was also suggested by a non-rigorous computation
that

(38) dimH X = 0.5173570309 3701730466 6628474836 4397337 . . . .
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To rigorously justify this estimate, we apply the bisection method with S = [0, 1],
m = 40, ε = 10−36 and the initial guess

t0 = 0.5173570309 3701730466 6628474836 4397337,

t1 = t0 + 10−37.

The Chebyshev–Lagrange interpolation gives two polynomials f and g of degree 39
which satisfy

sup
S

Lt1f

f
< 1− 10−38 and inf

S

Lt0g

g
> 1 + 10−37.

The equality (38) follows from Lemma 3.3.

Remark 4.19 (An elementary bound). As in the previous examples it is not neces-
sary to have a very precise knowledge of the value of dimH(XA) in order to establish
that this is a counter-example to the Hensley conjecture. It would be sufficient to
know that dimH(XA) >

1
2 . This can again be achieved using a simple calculation.

We can consider instead the linear function f(x) = 8 − 2x. It is easy to compute
its image under the transfer operator L0.5f :

L0.5f(x) =

(
8

2 + x
− 2

(2 + x)2

)
+

(
8

4 + x
− 2

(4 + x)2

)
+

(
8

6 + x
− 2

(6 + x)2

)
+

(
8

8 + x
− 2

(8 + x)2

)
+

(
8

10 + x
− 2

(10 + x)2

)
.

Clearly, this is a monotone decreasing function.
By taking derivatives or otherwise we can justify that

inf
S

L0.5f

f
=

1

6
L0.5f(1) > 1.

The result now follows from Lemma 3.3.

Although the original Hensley conjecture is false, Moshchevitin and Shkredov
recently proved an interesting modular version.

Theorem 4.20 ([42]). Let A ⊂ N be a finite set for which dimH(XA) >
1
2 . Then

for any prime p there exist q = 0(mod p), r (coprime to q) and a1, . . . , an ∈ A
such that

r

q
= [a1, · · · , an].

Thus there is some interest in knowing which examples of A⊂N satisfy dimH(XA)
> 1

2 so that this result applies. For example, one can easily check that for A1 =

{1, 4, 9} we have dimH(XA1
) = 0.5007902321 42100396±10−18 or forA2={2, 3, 6, 9}

we have dimH(XA2
) = 0.5003228005 96840463± 10−18.

4.4. Primes as denominators. There is an interesting variation on Theorem 4.8
where we consider only the denominators which are prime numbers.

Theorem 4.21 (Bourgain–Kontorovich, Huang). There are infinitely many prime
numbers q which have a primitive root9 a mod q such that the partial quotients of
a
q are bounded by 7.

9In other words, there exists n such that an = 1 mod q.
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This was originally proved by Bourgain and Kontorovich with the weaker con-
clusion that the partial quotients of a

q are bounded by 51. The improvement of

Huang was conditional on the Hausdorff dimension of limit set E6 for the iterated

function scheme
{
Tj(x) =

1
x+j | 1 ≤ j ≤ 6

}
satisfying dimH E6 > 19

22 . In [25] it was

rigorously shown using the periodic point method that

dimH E6 = 0.86761915± 10−8.

Furthermore, there was a heuristic estimate of dimH(E6) = 0.8676191732401 . . ..
We can apply Chebyshev–Lagrange interpolation with S = [0, 1], m = 20 to confirm
this estimate.

Theorem 4.22.
dimH E6 = 0.8676191732 4015± 10−13.

Proof. By Chebyshev–Lagrange interpolation applied to the operators Lt0 and Lt1

we obtain two polynomials f and g of degree 19 which satisfy

sup
S

Lt1f

f
< 1− 10−13 and inf

S

Lt0g

g
> 1 + 10−14.

The statement now follows from Lemma 3.3. �

Remark 4.23 (An elementary bound). As in the previous two examples, it is not
necessary to have a very precise knowledge of the value of dimH(E6) in order to
establish the conditions necessary for Theorem 4.21. It would be sufficient to know
that dimH(E6) > 19

22 . This can again be achieved using a simplified choice of f ,
although it might be a slight exaggeration to say that this is entirely elementary.
We can consider the degree 3 polynomial f : [0, 1] → R+ defined by f(x) = 0.67−
0.57x + 0.35x2 − 0.107x3. Letting t = 19

22 we can consider the image under the
transfer operator Lt. In particular, one can readily check that

inf
S

Ltf

f
> 1 + 10−4.

It follows from Lemma 3.3 that P (t) > 0 and thus we conclude that dimH(E6) >
t = 19

22 .

In the remainder of this section we will consider applications where the alphabets,
and thus the number of contractions in the iterated function scheme, are infinite.

4.5. Modular results and countable iterated function schemes. Given N ≥
2 and 0 < r ≤ N , we want to consider a set

Xr(N) = {[0; a1, a2, a3, · · · ] | an ≡ r ( mod N)}
consisting of those numbers whose continued fraction expansion only has digits
equal to r (mod N). This can be interpreted as a limit set for the countable family
of contractions Ti(x) = 1

x+r+Nk (k ≥ 0). However, unlike the case of a finite
iterated function scheme the limit set Xr(N) is not a compact set.

Similarly to the case of a finite alphabet, a key ingredient in determining the
Hausdorff dimension dimH(Xr(N)) is to consider a one-parameter family of transfer

operators Lt : C
1([0, 1] → C1([0, 1]) given by

(39) (Ltw)(x) =
∞∑
k=0

(x+ r +Nk)−2tw
(
(x+ r +Nk)−1

)
.
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It is well defined for �(t) > 1
2 . A common approach to the analysis of these

operators is to truncate the series to a finite sum of first K, which contributes an
error of O

(
K−2t

)
to the estimates of leading eigenvalue. Then this would require

K to be chosen quite large for even moderate error bounds.
A more successful alternative approach in the present context is to employ the

classical Hurwitz zeta function from analytic number theory.

Definition 4.24. The Hurwitz zeta function is a complex analytic function on a
half-plane �x > 0, �s > 1 defined by the series

ζ(x, s) =
∞∑
k=0

(x+ k)−s.

It can be extended to a meromorphic function on C for s 
= 1. The famous
Riemann zeta function is a particular case ζ(1, s).

We would like to consider monomials wn(x) := xn, n ≥ 0 and to rewrite Ltwn

using the Hurwitz zeta function as follows

Ltwn(x) =

∞∑
k=0

(x+ kN + r)−2t · (x+ kN + r)−n

= N−2t−n
∞∑
k=0

(x+ r

N
+ k
)−2t−n

= N−n−2tζ

(
x+ r

N
, n+ 2t

)
.(40)

From a computational viewpoint, the advantage we gain from expressing the trans-
fer operator in terms of the Hurwitz zeta function stems from fact that there are
very efficient algorithms for evaluation of ζ(x, s) to arbitrary numerical precision
(cf. [26] and references therein). In particular, the Hurwitz zeta function is imple-
mented both in Mathematica and within the Arb library.

We can now return to our usual strategy to estimate dim(Xr(N)). We begin with
the following simple result.

Lemma 4.25. For t > 1
2 the operator Lt has a simple maximal eigenvalue eP (t).

The function P is real analytic and strictly decreasing on the interval ( 12 ,+∞).

Moreover, there is a unique t0∈( 12 ,+∞) such that P (t0)=0 and t0 = dim(Xr(N)).

Proof. The analyticity comes from analytic perturbation theory and the simplicity
of the maximal eigenvalue (see [36, Theorem 6.2.12]). The strict monotonicity of the
function P comes from the perturbation identity P ′(t)=−2

∫
(log x)h(x)dμ(x)/

∫
hdμ

< 0 where Lth = eP (t)h and L∗
tμ = eP (t)μ. The interpretation of dim(Xr(N)) in

terms of the pressure was shown in [36, Theorem 4.2.13]. �

Proceeding as in §3.2 we can fix m, compute the zeros of the m’th Chebyshev
polynomials {yk}mk=1 ∈ [0, 1] and define Lagrange interpolation polynomials lpk(x)
for 0 ≤ k ≤ m as before using (5). These polynomials can also be written in a
standard form

lpk(x) =

m−1∑
n=0

a(k)n xn =

m−1∑
n=0

a(k)n wn(x), for 0 ≤ x ≤ 1.
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Since the operator Lt is linear, we can write using equation (40)

(41) (Ltlpk)(x) =

m−1∑
n=0

a(k)n (Ltwn)(x) =

m−1∑
n=0

a(k)n N−n−2tζ

(
x+ r

N
, n+ 2t

)
.

Since the Hurwitz zeta function can be evaluated to arbitrary precision, we can
now compute the m × m matrix (Ltlpk)(yj)

m
k,j=1, the associated left eigenvector

v = (v1, · · · , vm) and construct a test function f =
∑m

j=1 vj lpj to use in Lemma 3.3.

Example 4.26. To illustrate the efficiency of the approach, we apply this general
construction in a number of cases, which we borrow from a recent work by Chousio-
nis et al. [7], where the estimates are obtained using a combination of a truncation
technique with the method of Falk and Nussbaum. We apply the bisection method
with m = 12 and summarize our results in the Table 1. For comparison, we include
estimates from [7].

Table 1. The estimates for dimH(Xr(N)) based on the bisec-
tion method with Hurwitz function employed and the bounds on
dimH(Xr(N)) ∈ [s0, s1] from [7]

r(N) New estimate dimH(Xr(N))
Old bounds
s0 s1

2 (2) 0.7194980248 366± 3 · 10−13 0.719360 0.719500
1 (2) 0.8211764906 5± 3.5 · 10−10 0.821160 0.821177
3 (3) 0.6407253143 83684± 2 · 10−15 0.639560 0.640730
3 (2) 0.6654623380 4075± 2.5 · 10−13 0.664900 0.665460
3 (1) 0.7435862804 5± 2.5 · 10−10 0.743520 0.743586
1 (8) 0.6194381921 5± 1.5 · 10−10 N/A N/A

4.6. Lower bounds for deleted digits. We can also use the method in the previ-
ous section to address the following natural problem: Given N ≥ 1 give a uniform
upper bound on the dimension dimH(XA) where A ranges over all families of sym-
bols satisfying A ∩ {1, · · · , N} 
= ∅.

By the natural monotonicity (by inclusion) of A �→ dimH(XA) we see that such
an upper bound will be given by dimH(XAN+1

) where we let

AN+1 = {N + 1, N + 2, N + 3, · · · }.

As in the preceding subsection we can write the transfer operator associated to the
infinite alphabet AN+1 acting on wn in terms of the Hurwitz zeta function:

Ltwn(x) =

∞∑
k=N+1

(x+ k)−2t · (x+ k)−n

=

∞∑
k=0

(x+N + 1 + k)−2t−n

= ζ (x+N + 1, n+ 2t) .(42)

We have the natural analogue of Lemma 4.25.
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Lemma 4.27. For t > 1
2 the operator Lt has a simple maximal eigenvalue eP (t).

The function P is real analytic and strictly decreasing on the interval ( 12 ,+∞).

Moreover, there is a unique t0 ∈ ( 12 ,+∞) such that P (t0) = 0 and t0 = dim(XAN+1
).

Again proceeding as in §3.2 we can fix m, compute the zeros of the m’th Cheby-
shev polynomials {yk}mk=1 ∈ [0, 1] and define Lagrange interpolation polynomi-
als lpk(x) for 0 ≤ k ≤ m as before using (5). By analogy with (39) we can write
using equation (42)

(43) (Ltlpk)(x) =
m−1∑
n=0

a(k)n (Ltwn)(x) =
m−1∑
n=0

a(k)n ζ (x+N + 1, n+ 2t) .

Since the Hurwitz zeta function can be evaluated to arbitrary precision, we can
now compute the m × m matrix (Ltlpk)(yj)

m
k,j=1, the associated left eigenvector

v = (v1, · · · , vm) and construct a test function f =
∑m

j=1 vj lpj to use in Lemma 3.3.
The results are presented in Table 2.

Table 2. Estimates on dimH(XAN+1
) which give upper bounds

on dimH(XA) for those alphabets A with A ∩ {1, · · · , N} = ∅

N Estimate on dimH(XAN+1
)

1 0.840884586± 10−8

2 0.785953471± 10−8

3 0.757889122± 10−8

4 0.757889122± 10−8

5 0.728307126± 10−8

4.7. Local obstructions. In his thesis, Huang makes an interesting conjecture on
local obstructions for the Zaremba conjecture (see [20, p. 18]). More precisely, to
every m ∈ N we can associate the “modulo m map” which we denote by

πm : Z+ → Zm = {0, 1, 2, · · · ,m− 1} given by πm(q) = q ( mod m).

We say that a finite set A ⊂ N has no local obstructions if for all m ≥ 1,

πm

({
q∈N

∣∣∣∃p∈N, (p, q)=1; a1, · · · , an∈{1, 2, 3, 4, 5} : p
q
=[0; a1, · · · , an]

})
=Zm,

i.e., for each m the map πm is surjective.

Conjecture 4.28 (Huang, [20]). If the limit set XA of the alphabet A ⊂ N has
dimension dimH(XA) >

5
6 then there are no local obstructions.

Huang also reduced this to a statement about dimensions of specific limit sets.

Proposition 4.29 ([20, Theorem 1.3.11]). In notation introduced above, a fi-
nite alphabet A has no local obstructions provided dimH XA > max(dimH(X2(2)),
dimH(X1(8))).

In particular, in light of the use of Proposition 4.29 to establish Conjecture 4.28
it is sufficient to know that dimH(X2(2)) and dimH(X1(8)) both have dimension at

most 5
6 . Fortunately, we have rigorously established these inequalities as Table 1

shows.

Proposition 4.30. Conjecture 4.28 is correct.
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4.7.1. Truncation method. The use of the Hurwitz zeta function works well for the
modular examples considered above. For more general countable alphabets A ⊂ N

we may have to resort to a cruder approximation argument. To illustrate this we
can consider the restriction to a finite alphabet AN = A ∩ {1, 2, · · · , N}. If we let
LA,tf(x) =

∑
n∈A f((x+n)−1)(x+n)−2t and LAN ,tf(x) =

∑
n∈AN

f((x+n)−1)(x+

n)−2t. Given t we can pick an m and apply the Chebyshev–Lagrange interpolation
with m nodes to find a polynomial test function

fN,m(x) =

m−1∑
j=0

ajx
j

approximating the eigenfunction for LAN ,t. But if we subsequently want to use this
function in Lemma 3.3 to study LA,t we also need to obtain an upper bound for
the remainder

E(x) =
∑

n∈A\AN

fN,m

(
1

x+ n

)
1

(x+ n)2t
=

m∑
j=0

aj
∑

n∈A\AN

1

(x+ n)j+2t
.

We can also bound∑
n∈A\AN

(x+ n)−j−2t ≤
∞∑

N+1

(x+ n)−j−2t ≤
∫ ∞

N

x−j−2tdx =
1

(j + 2t− 1) ·N j+2t−1

and then

|E(x)| ≤
m∑
j=0

|aj |
1

(j + 2t− 1) ·N j+2t−1
.

This bound is only polynomial in N giving this approach limited use in precise esti-
mates, in comparison with limits sets generated by a finite number of contractions.

However, this elementary approach leads to a simple direct proof of Conjecture
4.28 (without resorting to introducing the Hurwitz zeta function).

Example 4.31 (An elementary bound for dimH X0(2) revisited). We will use a
more elementary proof based on the interpolation method. We can consider the
transfer operator

(Ltf)(x) =

∞∑
n=1

f

(
1

x+ 2n

)
1

(x+ 2n)2t
.

We can separate the first term of the infinite series and estimate the remaining sum
by an integral. More precisely, we may write

(Ltf)(x) = f

(
1

x+ 2

)
1

(x+ 2)2t
+

∞∑
n=2

f

(
1

x+ 2n

)
1

(x+ 2n)2t
.

We can consider the trivial test function f = �[0,1] and obtain an upper bound

|E(x)| : =
∞∑

n=2

f

(
1

x+ 2n

)
1

(x+ 2n)2t
≤ ‖f‖∞

( ∞∑
n=2

1

(x+ 2n)2t

)
≤
∫ ∞

1

1

(2u)2t
du

=
1

(2t− 1)22t
.
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In particular, if we take t = 5
6 then |E(x)| ≤ 3 · 2−7/3. Thus

sup
[0,1]

Lt�[0,1]
�[0,1] ≤ sup

[0,1]

(
1

(2 + x)5/3
+ E(x)

)
≤ 2−5/3 + 3 · 2−7/3 < 0.95.

We conclude that P
(
5
6

)
< 0 and Lemma 3.3 implies that dimH(Xeven) <

5
6 .

Example 4.32 (An elementary bound for dimH(X1(8)) revisited). This time we
can take f(x) = 1− x

2 and consider the image under the transfer operator

(44) Ltf(x) = f

(
1

x+ 1

)
1

(x+ 1)2t
+

∞∑
n=2

f

(
1

x+ 8n− 7

)
1

(x+ 8n− 7)2t
.

We have an upper bound for the remainder term

|E(x)| : =
∞∑

n=2

f

(
1

x+ 8n− 7

)
1

(x+ 8n− 7)2t

=
∞∑

n=2

1

(x+ 8n− 7)2t

(
1− 1

2(x+ 8n− 7)

)
≤
(∫ ∞

1

1

(8u− 7)2t
du− 1

2

∫ ∞

2

1

(8u− 7)2t+1
du

)
=

1

8

(
1

2t− 1
− 1

4t · 92t

)
.

Substituting t = 5
6 we obtain

(45) |E(x)| ≤ 3

16

(
1− 1

5 · 95/3

)
.

In particular, we can now estimate

sup
[0,1]

Ltf(x)

f(x)
= sup

[0,1]

(
f
(

1
x+1

)
f(x)(x+ 1)5/3

+
E(x)

f(x)

)
≤ sup

[0,1]

f
(

1
x+1

)
f(x)(x+ 1)5/3

+
sup[0,1] E(x)

inf [0,1] f(x)

= sup
[0,1]

1− 1
2(x+1)

(1− x
2 )(x+ 1)5/3

+
3

8

(
1− 1

5 · 95/3

)
< 1.

The result follows from Lemma 3.3.

4.8. Symmetric Schottky group. We can represent the limit set XΓ ⊂ {z ∈
C | |z| = 1} of a Fuchsian Schottky group as the limit set of an associated Markov
iterated function scheme. To construct the contractions it is more convenient to use
the alternative model for hyperbolic space consisting of the upper half-plane H2 =

{x+iy | y > 0} supplied with the Poincaré metric ds2 = dx2+dy2

y2 . Geodesics on the

upper half plane H2 are either circular arcs which meet the boundary orthogonally
or vertical lines. Applying the transformation T : D → H2 given by T : z �→ −i z−1

z+1

we obtain three geodesics on H2. The group generated by reflections with respect
to three geodesics with end points eπi(2j±1)/6, j = 0, 1, 2 in the unit disk when
transferred to the half-plane becomes a group generated by reflections with respect
to half-circles, see Figure 5.
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−2−
√
3 −1 √

3−2 2−
√
3 1 2 +

√
33+

√
3
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√
3
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2−
√
3

3+
√
3

2

1+
√
3

2

R2(x) = − (3+
√
3)x+4+2

√
3

2x+3+
√
3

R1(x) =
(3+

√
3)x−4−2

√
3

2x−3−
√
3

R0(x) =
7−4

√
3

x

Figure 5. Group Γ generated by three reflections R0, R1, R2

A reflection with respect to a circle of radius r centred at c is given by the
formula

(46) R(z) =
r2

(z − c)
+ c.

To compute the radius and the centre of the circle of reflection, we calculate the
end points by the formula T (ei2ϕ) = tanϕ and applying (46), we obtain

(47)

R0(z) =
7− 4

√
3

z
, R1(z) =

(3 +
√
3)z − 4− 2

√
3

2z − 3−
√
3

,

R2(z) = − (3 +
√
3)z + 4 + 2

√
3

2z + 3 +
√
3

.

Then the limit set XΓ ⊂ ∪2
j=0Xj ⊂ R consists of accumulation points of the set

{Rj1Rj2 · · ·Rjn(i) | j1, j2, · · · , jn ∈ {0, 1, 2} where jr 
= jr+1 for 1 ≤ r ≤ n− 1} .

Since T : {z : |z| = 1} → R ∪ {∞} is a conformal map we know that XΓ has the
same dimension as the corresponding limit set in the unit circle.

Proof of Theorem 1.9. In order to apply the technique developed in §3 we need to
define a Markov iterated function scheme consisting of contractions whose limit set
coincides with XΓ. For instance we may consider the three intervals enclosed by
the geodesics, more precisely, we define

(48) X0 := [−2 +
√
3, 2−

√
3], X1 := [1, 2 +

√
3], X2 := [−2−

√
3,−1].

Then the limit set XΓ for Γ can be identified with the limit set XA ⊂ ∪2
j=0Xj ⊂ R

of the Markov iterated function scheme with contractions Rj : ∪k �=j Xk → Xj for
j = 0, 1, 2 with transition matrix

M =

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠ .

The associated transfer operator takes the form

(Ltf)0(z) = f1(R1(z)) · |R′
1(z)|t + f2(R2(z)) · |R′

2(z)|t, z ∈ X0,

(Ltf)1(z) = f0(R0(z)) · |R′
0(z)|t + f2(R2(z)) · |R′

2(z)|t, z ∈ X1,

(Ltf)2(z) = f0(R0(z)) · |R′
0(z)|t + f1(R1(z)) · |R′

1(z)|t, z ∈ X2.
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Looking at the formulae (47) we may observe that R1(z) = −R2(−z), R′
1(z) =

R′
2(−z), and R0(z) = −R0(−z) and therefore Lt preserves the subspace

V0 := {(f0, f1, f2) ∈ Cα(S) | f1(z) = f2(−z), f0(z) = f0(−z)}.

We can apply the bisection method to get rigorous estimates on the dimension
of the limit set XΓ = XA with the setting S = ∪2

j=0Xj , m = 20 and ε = 10−7. We
take the interpolation nodes to be zeros of Chebyshev polynomials transferred to
each of the intervals Xj affinely. It gives

(49) t0 : = 0.29554647 < dimH XA < 0.29554648 =: t1.

Lagrange–Chebyshev interpolation gives test functions f, g ∈ V0, whose components
are presented in Figure 6.

0.8334

0.8373

0.8411

0.845

y

√
3− 2 2−

√
3

x

X0

f0(x)

0.38

0.48

0.58

0.68

y

1 2 +
√
3

x

X1

f1(x) = f2(−x)

Figure 6. Theorem 1.9: The graphs of f0 : X0 → R and f1 :
X1 → R (the plots of gk, k = 0, 1 are similar). The plot of f2 is
the mirror image of f1.

We can estimate numerically

sup
S

Lt1f

f
< 1− 10−10, inf

S

Lt0g

g
> 1 + 10−8.

The result follows from Lemma 3.3.
There is a simple connection between the dimension dimH(X) of the limit set

X and the smallest eigenvalue λ0 > 0 of the Laplace–Beltrami operator on the
non-compact surface H2/Γ [50]. More precisely, λ0 = dimH(XΓ)(1 − dimH(XΓ)).
Applying the estimates (49), we obtain λ0 = 0.2081987565± 2.5 · 10−9. �

Remark 4.33. By increasing m it is an easy matter to get better estimates on the
dimension of the limit set. For example, taking m = 25 we can improve the bounds
to dim(XΓ) = 0.2955464798 845±4.5 ·10−12 and λ0 = 0.208198758112±2.5 ·10−13.
The coefficients of the corresponding test functions are given in §A.3.
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γ0θ

γ1

θ

γ2

θ

R1(γ0)

R2(γ0)

R0

R1

R2

XΓθ

Figure 7. The group Γθ generated by three reflections in
geodesics γ0, γ1, and γ2

4.8.1. Other symmetric Schottky groups. More generally, McMullen [40] considered
the Schottky group Γθ = 〈R0, R1, R2〉 generated by reflections R0, R1, R2 : D2 → D2

in three symmetrically placed geodesics (with respect to the Poincaré metric) with
six end points e2πij/3±θ/2, j = 0, 1, 2 on the unit circle (Figure 7).

Similarly to the special case that θ = π
3 which we have already considered, one

can transform the unit disk D2 to the upper half plane H2 and compute the centres
and the radii of reflections

cj =
1

2

(
tan

(
πj

3
+

θ

4

)
+ tan

(
πj

3
− θ

4

))
, and

rj =
1

2

∣∣∣∣tan(πj

3
+

θ

4

)
− tan

(
πj

3
− θ

4

)∣∣∣∣ , j = 0, 1, 2.

The limit set XΓθ
is again defined as the accumulation points of the orbit Γθi. We

can introduce a corresponding Markov iterated function scheme whose limit set
coincides with XΓθ

. We can consider two representative examples and estimate the
Hausdorff dimension of the associated limit set.

Example 4.34 (θ = 2π/9). In this case setting m = 15 we can obtain an estimate
to 11 decimal places of the form

dimH(XΓθ
) = 0.2177658102 55± 5 · 10−12.

This agrees with McMullen’s result (given to 8 decimal places).

Example 4.35 (θ = π/9). In this case we can let m = 12 to deduce an estimate
to 11 decimal places of the form

dimH(XΓθ
) = 0.1511836820 35± 5 · 10−12.

This agrees with McMullen’s result (given to 8 decimal places).

4.9. Other iterated function schemes. To conclude we will collect together a
number of other examples of iterated function schemes that have attracted attention
of other authors and give estimates on the Hausdorff dimension of their limit sets.
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4.9.1. Non-linear fractional example. So far we have been studying iterated func-
tion schemes generated by linear fractional transformations. Following [40, §6]
we will consider a simple example of a map of H2 of a different nature. For any
0 < t ≤ 1 we can define

ft(z) =
z

t
− 1

z
.

If t = 1 then the real line is f -invariant and there is no strictly smaller closed
invariant set. If 0 < t < 1 then there exists an f -invariant Cantor Xt ⊂ R [48].

Example 4.36 (t = 1
2 ). The map f(z) = 2z − 1

z has a limit set X ⊂ [−1, 1] and
there are two inverse branches T1, T2 : [−1, 1] → [−1, 1] given by

T1(x) =
1

4
(x−

√
8 + x2]),

T2(x) =
1

4
(x+

√
8 + x2),(50)

which define a Bernoulli system on [−1, 1]. The transfer operator defined by (1)
takes the form

(Ltf)(x) = f(T1(x))|T ′
1(x)|t + f(T2(x))|T ′

2(x)|t.
We may observe that T1(x) = −T2(−x) and T ′

1(x) = T ′
2(−x). It follows that

the transfer operator preserves subspaces consisting of odd and even functions.
Applying the bisection method with S = [−1, 1], m = 10 we obtain that10

dimH X = 0.4934480908 025± 5 · 10−13.

The corresponding test functions f and g for t0 = 0.493448088 02 and
t1 = 0.4934480908 03, respectively, turn out to be even and given by

f(x) =

7∑
n=0

a2nx
2n g(x) =

7∑
n=0

b2nx
2n,

which are plotted in Figure 8 and whose coefficients are given in §A.4.
We can also compute

inf
S

Lt0f

f
> 1 + 10−13 sup

S

Lt1g

g
< 1− 10−13,

to justify the dimension estimates above.

Remark 4.37. These estimates can easily be improved by increasing the number of
Chebyshev points. For example, letting m = 20 gives a better estimate

dimH(X) = 0.4934480908 02613± 10−15.

4.9.2. Hensley examples. In a well known article from 1992, Hensley [18] presented
an algorithm for calculating the Hausdorff dimension of the limit sets for suitable
iterated function schemes. In this article there was included a table containing
estimates on selected examples which were good for the computational resources
available at the time and continued to be quoted up to the present time. It is a
simple matter to apply the method in §3 to improve these estimates. We give lower
and upper bounds in Table 3.

10Table 14 in [40] gives an estimate 0.49344815, which is correct except for the last two signif-
icant figures. An inconsequential typographical mistake in [40] is that there is an incorrect sign
in the equation in the caption to Table 14.
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Figure 8. A plot of the function f for the system (50) (the func-
tion g being similar)

In Table 1 in another paper by Hensley [19], there are a number of numerical
results on Hausdorff dimension various of limit sets. Let us consider two typical
examples from the list.

(i) Let X1,2,7 = {[0; a1, a2, a3, · · · ] | an ∈ {1, 2, 7}}. Hensley presents an esti-
mate

dimH(X1,2,7) = 0.6179036954 6338,

accurate to 13 decimal places. The bisection method with S = [0, 1], ε =
10−23 and m = 30 gives

dimH(X) = 0.6179036954 6337565066 3413± 10−24,

with the corresponding test functions f and g satisfying

inf
S

Lt0g

g
> 1 + 10−24, sup

S

Lt1f

f
< 1− 10−24.

(ii) Let X1,3,4 = {[0; a1, a2, a3, · · · ] | an ∈ {1, 3, 4}}. Hensley presents an esti-
mate dimH(X1,3,5) = 0.6042422606 9111965. However, this is only accurate
to seven decimal places (there seeming to be a typographical error) and ap-
plying the bisection method with S = [0, 1], ε = 10−23 and m = 30 we can
correct the estimate as follows:

dimH(X) = 0.6042422577 5648956551 0773± 10−24.

4.9.3. Other limit sets. In [41] Moreira considered a limit set X for the IFS

T1(x) =
1

1 + x
and T2(x) =

1

2 + 1
2+x

.
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Table 3. Numerical data for Hensley examples from [18];
dimH XA = d± 10−20

Alphabet A Hensley Estimate d
1, 2 0.5312805062 772051416 0.5312805062 7720514162 4
1, 3 0.4544827 0.4544890776 6182874384 5
1, 4 0.4111827 0.4111827247 7479177684 4
2, 3 0.337437 0.3374367808 0606363630 4
2, 4 0.306313 0.3063127680 5278403027 7
3, 4 0.263737 0.2637374828 9742655875 0
1, 2, 3 0.7056609080 0.7056609080 2873823060 7
1, 2, 4 0.66922149 0.6692214869 1028607643 2
1, 3, 4 0.6042422606 9111965 0.6042422577 5648956551 0
2, 3, 4 0.480696 0.4806962223 1757304132 2
1, 2, 3, 4 0.788946 0.7889455574 8315397254 0
1, 2, 7 0.6179036954 6338 0.6179036954 6337565066 2
1, 3, 7 0.55324225 0.5532422505 6731096881 6
1, 4, 7 0.51788376 0.5178837570 0691696528 4
2, 3, 7 0.43801241 0.4380124057 1403118230 1
2, 4, 7 0.410329 0.4103293158 3768700408 7
3, 4, 7 0.36757914 0.3675791395 9190093176 3
1, 2, 3, 7 0.75026306 0.7502630613 3714304325 2
1, 2, 4, 7 0.7185418875 0.7185418874 7036994981 8
2, 3, 4, 7 0.540036 0.5400358121 5475951902 6
1, 2, 3, 4, 7 0.820004 0.8200039471 2686900746 5
10, 11 0.146921 0.1469212353 9078346331 0
100, 10000 0.052247 0.0522465926 3865887865 1
2, 7 0.26022398 0.2602238774 2217867170 7
1, 3, 4, 7 0.66015538 0.6601553798 3237807776 6
1, 7 0.34623824 0.3462382435 3395787983 0
4, 7 0.2052533419 4 0.2052534193 6736493221 5
3, 7 0.2249239471 918 0.2249239471 9177898918 3
1, 2, 3, 4, 5 0.8368294437 0.8368294436 8120882244 2
2, 3, 4, 5 0.55963645 0.5596364501 6477671331 0
2, 3, 5 0.4616137 0.4616136840 1828922267 4
1, 500 0.1094760117 37 0.1094760117 3723275274 5

After Theorem 3.4 therein he gives a rigorous estimate 0.353 < dimH(X) <
0.3572.11 Applying the bisection method with ε = 10−30 and m = 40 we obtain

dimH X = 0.3554004768 3384079791 6306289490 45± 5 · 10−32.

There are also additional examples studied by Jenkinson, in connection with his
numerical investigation of the Texan conjecture. It is a simple matter to apply the
bisection method to compute intervals [t0, t1] containing the actual values and these
are presented in Table 4.

11This application was superseded by other work, so the interest in this bound is mainly
academic.
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Table 4. Numerical data for Jenkinson examples from [23];
dimH XA = d± 2 · 10−24

Alphabet A
Jenkinson

d
Estimate

1, 3, 8 0.5438 0.5438505824 0696620129 10871
1, 3, 6 0.5652 0.5652752192 8623250537 07768
1, 3, 5 0.5813 0.5813668211 3469731449 44763
1, 2, 10 0.5951 0.5951117365 4560755184 18957
1, 3, 4 0.6042 0.6042422576 9541848140 50596
1, 2, 7, 40 0.6265 0.6265741168 9229403866 4271
1, 2, 5 0.6460 0.6460620828 3482621991 26074
1, 2, 5, 40 0.6532 0.6532480771 5774872727 88226
1, 2, 4 0.6692 0.6692214868 6131601289 10582
1, 2, 4, 40 0.6754 0.6754204446 6970405658 86491
1, 2, 4, 15 0.6899 0.6899117699 4923640369 39765
1, 2, 4, 6 0.7275 0.7275240485 5844736070 17215
1, 2, 4, 5 0.7400 0.7400268606 0207750663 59866
1, 2, 3, 6 0.7588 0.7588596765 7522348478 34758
1, 2, 3, 5 0.7709 0.7709149398 4418222560 66922
1, 2, 3, 4, 10 0.8081 0.8081711218 9508471948 06225
1, 2, 3, 4, 6 0.8269 0.8269084945 9163116837 24267
1, 2, 3, 4, 5, 9 0.8541 0.8541484705 3932261542 70362
1, 2, 3, 4, 5, 7 0.8616 0.8616561744 0626491056 99743
1, 2, 3, 4, 5, 6 0.8676 0.8676191730 6718378091 2243
1, 2, 3, 4, 5, 6, 8 0.8851 0.8851175915 5644894823 12343
1, 2, 3, 4, 5, 6, 7 0.8889 0.8889553164 9195167843 64394
1, 2, . . . , 8 0.9045 0.9045526893 2916142728 20095
1, 2, . . . , 9 0.9164 0.9164211122 6835174040 64645
1, 2, . . . , 10 0.9257 0.9257375908 8754612367 25506
1, 2, . . . , 13 0.9445 0.9445341091 7126158776 76671
1, 2, . . . , 18 0.961 0.9611931848 1599230516 44346
1, 2, . . . , 34 0.980 0.9804196247 7958255969 58015

Appendix A. Coefficients for polynomials

For completeness, we collect together the coefficients of the polynomials which
appear in the proofs of the theorems. The exceptions to this is Theorem 1.5 where
the polynomials are of degree 200. However, in all of these examples the reader
may easily reconstruct these polynomials using the method described in §3.2 and
§3.3.

Coefficients given in this section are exact rational numbers.

A.1. Estimates of dimH M\L.

A.1.1. Part 1: (M\ L) ∩ (
√
5,
√
13). We present coefficients of the test functions

f = (f1, f2, f3, f4) and g = (g1, g2, g3, g4) used in (17).

fj =
7∑

k=0

ajkx
k gj =

7∑
k=0

bjkx
k, j = 1, 2, 3, 4.
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Straightforward calculation shows that the functions fj and gj are monotone de-
creasing on [0, 1] and achieve their minima at 1. For convenience, we give a lower
bound sj < min(fj(1), gj(1)).

f1 f2 f3 f4
a1
0 0.9719420630 a2

0 0.6996881504 a3
0 0.5151068706 a4

0 1.0035153909
a1
1 −0.4083622154 a2

1 −0.3257856180 a3
1 −0.1503102708 a4

1 −0.3675009146
a1
2 0.2105627503 a2

2 0.1808409982 a3
2 0.0521402712 a4

2 0.1667939317
a1
3 −0.1166905024 a2

3 −0.1054480473 a3
3 −0.0190434708 a4

3 −0.0824212096
a1
4 0.0649256757 a2

4 0.0606297675 a3
4 0.0070462566 a4

4 0.0416454207
a1
5 −0.0321113965 a2

5 −0.0305675512 a3
5 −0.0024652813 a4

5 −0.0191792606
a1
6 0.0114531320 a2

6 0.0110148596 a3
6 0.0006866462 a4

6 0.0065321353
a1
7 −0.0020311821 a2

7 −0.0019639179 a3
7 −0.0001041463 a4

7 −0.0011267545

s1 0.6 s2 0.4 s3 0.4 s4 0.7

g1 g2 g3 g4
b10 0.9719420489 b20 0.6996881913 b30 0.5151068139 b40 1.0035153929
b11 −0.4083624405 b21 −0.3257858144 b31 −0.1503103363 b41 −0.3675011259
b12 0.2105629174 b22 0.1808411480 b32 0.0521403058 b42 0.1667940700
b13 −0.1166906125 b23 −0.1054481493 b33 −0.0190434862 b43 −0.0824212916
b14 0.0649257436 b24 0.0606298318 b34 0.0070462630 b44 0.0416454670
b15 −0.0321114321 b25 −0.0305675854 b35 −0.0024652837 b45 −0.0191792835
b16 0.0114531451 b26 0.0110148723 b36 0.0006866469 b46 0.0065321434
b17 −0.0020311845 b27 −0.0019639202 b37 −0.0001041464 b47 −0.0011267559

s1 0.6 s2 0.4 s3 0.4 s4 0.7

A.1.2. Part 2: (M\L) ∩ (
√
13, 3.84). We present coefficients of the test functions

f = (f1, f2, f3) and g = (g1, g2, g3) used in (20).

fj =
7∑

k=0

ajkx
k gj =

7∑
k=0

bjkx
k, j = 1, 2, 3.

Straightforward calculation shows that the functions fj and gj are monotone de-
creasing on [0, 1] and achieve their minima at 1. For convenience, we give a lower
bound sj < min(fj(1), gj(1)).

f1 f2 f3
a10 0.8909247279 a20 1.0057862651 a30 0.4637543240
a11 −0.5666958388 a21 −0.6057959903 a31 −0.1989455013
a12 0.3563184411 a22 0.3687733983 a32 0.0812067365
a13 −0.2268317558 a23 −0.2307067719 a33 −0.0328166697
a14 0.1399500506 a24 0.1411336470 a34 0.0130694788
a15 −0.0741972949 a25 −0.0745402261 a35 −0.0048273012
a16 0.0275558152 a26 0.0276379657 a36 0.0013941859
a17 −0.0049924560 a27 −0.0050037264 a37 −0.0002161328
s1 0.5 s2 0.6 s3 0.3
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g1 g2 g3
b10 0.8909246136 b20 1.0057862594 b30 0.4637545188
b11 −0.5666952424 b21 −0.6057953968 b31 −0.1989454076
b12 0.3563178857 b22 0.3687728381 b32 0.0812066594
b13 −0.2268313254 b23 −0.2307063388 b33 −0.0328166280
b14 0.1399497528 b24 0.1411333481 b34 0.0130694591
b15 −0.0741971263 b25 −0.0745400571 b35 −0.0048272932
b16 0.0275557503 b26 0.0276379006 b36 0.0013941834
b17 −0.0049924440 b27 −0.0050037144 b37 −0.0002161324
s1 0.5 s2 0.6 s3 0.3

A.1.3. Part 3: (M\L)∩(3.84, 3.92). We present coefficients of the polynomial test
functions f = (f1, . . . , f7) and g = (g1, . . . , g7) used in (23). It follows from the
equality between columns of the transition matrix M that certain components are
identical.

f1 = f2 =

7∑
k=0

a1kx
k, g1 = g2 =

7∑
k=0

b1kx
k;

f4 = f5 = f6 =

7∑
k=0

a4kx
k, g4 = g5 = g6 =

7∑
k=0

b4kx
k;

fj =
7∑

k=0

ajkx
k, gj =

7∑
k=0

bjkx
k; j = 3, 7, 8, 9.

Straightforward calculation shows that the functions fj and gj are monotone de-
creasing on [0, 1] and achieve their minima at 1. For convenience, we give a lower
bound sj < min(fj(1), gj(1)).

f1 f3 f4
a10 0.8752491446 a30 0.8242977486 a40 0.9435673129
a11 −0.5862938673 a31 −0.5673413247 a41 −0.6108763701
a12 0.3817921234 a32 0.3753845810 a42 0.3898319394
a13 −0.2509102043 a33 −0.2488176120 a43 −0.2534505061
a14 0.1594107381 a34 0.1587442151 a44 0.1601941335
a15 −0.0866513835 a35 −0.0864513792 a45 −0.0868796783
a16 0.0328162711 a36 0.0327671074 a46 0.0328711315
a17 −0.0060331410 a37 −0.0060262852 a47 −0.0060406787
s1 0.4 s3 0.4 s4 0.5

f7 f8 f9
a70 0.2183470684 a80 0.5232653503 a90 1.0058222185
a71 −0.0767355580 a81 −0.2253827130 a91 −0.6095554508
a72 0.0245616045 a82 0.0906682129 a92 0.3705808500
a73 −0.0076106356 a83 −0.0360797100 a93 −0.2326605853
a74 0.0023068479 a84 0.0141972990 a94 0.1434620328
a75 −0.0006627640 a85 −0.0052036970 a95 −0.0765436603
a76 0.0001576564 a86 0.0014967921 a96 0.0286722918
a77 −0.0000215279 a87 −0.0002316038 a97 −0.0052379012
s7 0.1 s8 0.3 s9 0.5
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g1 g3 g4
b10 0.8752491756 b30 0.8242978103 b40 0.9435673145
b11 −0.5862941999 b31 −0.5673416594 b41 −0.6108767042
b12 0.3817924531 b32 0.3753849098 b42 0.3898322718
b13 −0.2509104702 b33 −0.2488178772 b43 −0.2534507734
b14 0.1594109280 b34 0.1587444046 b44 0.1601943239
b15 −0.0866514938 b35 −0.0864514894 b45 −0.0868797888
b16 0.0328163145 b36 0.0327671507 b46 0.0328711749
b17 −0.0060331491 b37 −0.0060262933 b47 −0.0060406868
s1 0.4 s3 0.4 s4 0.5

g7 g8 g9
b70 0.2183469977 b80 0.5232652393 b90 1.0058222217
b71 −0.0767355702 b81 −0.2253827769 b91 −0.6095557922
b72 0.0245616149 b82 0.0906682634 b92 0.3705811764
b73 −0.0076106401 b83 −0.0360797369 b93 −0.2326608405
b74 0.0023068496 b84 0.0141973115 b94 0.1434622111
b75 −0.0006627646 b85 −0.0052037021 b95 −0.0765437625
b76 0.0001576566 b86 0.0014967937 b96 0.0286723317
b77 −0.0000215279 b87 −0.0002316041 b97 −0.0052379086
s7 0.1 s8 0.3 s9 0.5

A.1.4. Part 4: (M\L)∩(3.92, 4.01). It follows from the equalities between columns
of the transition matrix M (25) that components of the test function
f = (f111, . . . , f333) and g = (g111, . . . , g333) used in (27) satisfy the following
identities.

f111 = f112 = f113 =

7∑
k=0

a111k xk g111 = g112 = g113 =

7∑
k=0

b111k xk,

f211 = f2rs =

7∑
k=0

a211k xk g211 = g2rs =

7∑
k=0

b211k xk, 1 ≤ r, s ≤ 3,

f121 = f122 = f123 =
7∑

k=0

a121k xk g121 = g122 = g123 =
7∑

k=0

b121k xk,

f321 = f322 = f323 =
7∑

k=0

a123k xk g321 = g322 = g323 =
7∑

k=0

b123k xk,

f331 = f332 = f333 =

7∑
k=0

a133k xk g331 = g332 = g333 =

7∑
k=0

b133k xk.

Straightforward calculation shows that the functions fj and gj are monotone de-
creasing on [0, 1] and achieve their minima at 1. For convenience, we give a lower
bound sqrs < min(fqrs(1), gqrs(1)).
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f111 f121 f132
a1110 0.9884535079 a1210 0.9249363898 a1320 0.5745876575
a1111 −0.6902235127 a1211 −0.6661893079 a1321 −0.4908751097
a1112 0.4629840472 a1212 0.4549027221 a1322 0.3761466270
a1113 −0.3124708511 a1213 −0.3098685263 a1323 −0.2757231992
a1114 0.2030567394 a1214 0.2022427698 a1324 0.1878939498
a1115 −0.1122167788 a1215 −0.1119770597 a1325 −0.1064665719
a1116 0.0429529760 a1216 0.0428949582 a1326 0.0412628171
a1117 −0.0079480141 a1217 −0.0079400087 a1327 −0.0076832222
s111 0.5 s121 0.4 s132 0.2

f133 f211 f311
a1330 0.8813943456 a2110 1.0003583962 a3110 0.5081203394
a1331 −0.6491441142 a2111 −0.6654322134 a3111 −0.2326160640
a1332 0.4489736082 a2112 0.4295333392 a3112 0.0972736889
a1333 −0.3078936043 a2113 −0.2812396746 a3113 −0.0398841238
a1334 0.2016042974 a2114 0.1785878079 a3114 0.0160797615
a1335 −0.1117833249 a2115 −0.0971302423 a3115 −0.0060041586
a1336 0.0428469743 a2116 0.0368077301 a3116 0.0017487411
a1337 −0.0079332871 a2117 −0.0067699556 a3117 −0.0002726247
s133 0.4 s211 0.5 s311 0.3

f312 f321 f331
a3120 0.2013136513 a3210 0.8072631514 a3310 1.0061848844
a3121 −0.0743470595 a3211 −0.4648188145 a3311 −0.6476491585
a3122 0.0244467077 a3212 0.2575884636 a3312 0.4067501349
a3123 −0.0077137186 a3213 −0.1452652325 a3313 −0.2603687665
a3124 0.0023694138 a3214 0.0809083385 a3314 0.1624071150
a3125 −0.0006874054 a3215 −0.0398683005 a3315 −0.0872158384
a3126 0.0001645838 a3216 0.0141619841 a3316 0.0327839671
a3127 −0.0000225598 a3217 −0.0025036826 a3317 −0.0060002449
s312 0.1 s321 0.4 s331 0.5

g111 g121 g132
b1110 0.9884535050 b1210 0.9249364233 b1320 0.5745877791
b1111 −0.6902239809 b1211 −0.6661897749 b1321 −0.4908755105
b1112 0.4629845398 b1212 0.4549032114 b1322 0.3761470588
b1113 −0.3124712630 b1213 −0.3098689364 b1323 −0.2757235761
b1114 0.2030570414 b1214 0.2022430710 b1324 0.1878942344
b1115 −0.1122169575 b1215 −0.1119772381 b1325 −0.1064667431
b1116 0.0429530470 b1216 0.0428950291 b1326 0.0412628857
b1117 −0.0079480275 b1217 −0.0079400220 b1327 −0.0076832353
s111 0.5 s121 0.4 s132 0.2
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g133 g211 g311
b1330 0.8813944143 b2110 1.0003583991 b3110 0.5081201992
b1331 −0.6491445844 b2111 −0.6654326742 b3111 −0.2326161465
b1332 0.4489740965 b2112 0.4295338070 b3112 0.0972737581
b1333 −0.3078940138 b2113 −0.2812400555 b3113 −0.0398841619
b1334 0.2016045985 b2114 0.1785880816 b3114 0.0160797798
b1335 −0.1117835035 b2115 −0.0971304019 b3115 −0.0060041662
b1336 0.0428470454 b2116 0.0368077929 b3116 0.0017487435
b1337 −0.0079333006 b2117 −0.0067699674 b3117 −0.0002726251
s133 0.4 s211 0.5 s311 0.3

g312 g321 g331
b3120 0.2013135639 b3210 0.8072631281 b3310 1.0061848887
b3121 −0.0743470726 b3211 −0.4648191338 b3311 −0.6476496175
b3122 0.0244467204 b3212 0.2575887534 b3312 0.4067505913
b3123 −0.0077137243 b3213 −0.1452654416 b3313 −0.2603691317
b3124 0.0023694160 b3214 0.0809084732 b3314 0.1624073740
b3125 −0.0006874061 b3215 −0.0398683727 b3315 −0.0872159881
b3126 0.0001645840 b3216 0.0141620110 b3316 0.0327840257
b3127 −0.0000225598 b3217 −0.0025036874 b3317 −0.0060002559
s312 0.1 s321 0.4 s331 0.5

A.1.5. Part 5: (M \ L) ∩ (
√
20,

√
21). We present coefficients of the polynomial

components of test functions f = (f1, f2, f3, f4) and g = (g1, g2, g3, g4) used in (30).
It follows from the equality between the first and second columns of the matrix M
that f1 = f2 and g1 = g2.

fj =
9∑

k=0

ajkx
k gj =

9∑
k=0

bjkx
k, j = 1, 2, 3, 4.

Straightforward calculation shows that the functions fj and gj are monotone de-
creasing on [0, 1] and achieve their minima at 1. For convenience, we give a lower
bound sj < min(fj(1), gj(1)).

f1 f3 f4
a10 0.9799928531 a30 1.0045893915 a40 0.1934516264
a11 −0.7406258897 a31 −0.7487821988 a41 −0.0765314787
a12 0.5273926877 a32 0.5296982401 a42 0.0259667329
a13 −0.3800229054 a33 −0.3806370202 a43 −0.0083489461
a14 0.2763248479 a34 0.2764834085 a44 0.0026152698
a15 −0.1955487122 a35 −0.1955888334 a45 −0.0008056462
a16 0.1241717000 a36 0.1241816277 a46 0.0002419581
a17 −0.0622409671 a37 −0.0622432782 a47 −0.0000670179
a18 0.0206092394 a38 0.0206096817 a48 0.0000146636
a19 −0.0032442178 a39 −0.0032442666 a49 −0.0000017681
s1 0.4 s3 0.4 s4 0.05
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g1 g3 g4
b10 0.9799928382 b30 1.0045893900 b40 0.1934516765
b11 −0.7406256446 b31 −0.7487819559 b41 −0.0765314768
b12 0.5273924149 b32 0.5296979674 b42 0.0259667280
b13 −0.3800226607 b33 −0.3806367755 b43 −0.0083489435
b14 0.2763246450 b34 0.2764832054 b44 0.0026152687
b15 −0.1955485561 b35 −0.1955886769 b45 −0.0008056458
b16 0.1241715958 b36 0.1241815227 b46 0.0002419578
b17 −0.0622409134 b37 −0.0622432239 b47 −0.0000670177
b18 0.0206092213 b38 0.0206096634 b48 0.0000146636
b19 −0.0032442150 b39 −0.0032442637 b49 −0.0000017681
s1 0.4 s3 0.4 s4 0.05

A.2. Zaremba theory.

A.2.1. dimH(E5). We present coefficients of the polynomial test functions f and g
used in (36).

f =
15∑
k=0

akx
k, g =

15∑
k=0

bkx
k.

Similarly to the previous examples, the functions f and g are monotone and they can
be bounded from below by their value at 1. In particular, we have f(1), g(1) ≥ 0.4.

f g
a0 1.002075775192587 b0 1.002075775192580
a1 −0.863832791554195 b1 −0.863832791551160
a2 0.694904605500679 b2 0.694904605500778
a3 −0.563982609501401 b3 −0.563982609938672
a4 0.462936795376894 b4 0.462936803438964
a5 −0.382787786278096 b5 −0.382787860060200
a6 0.317798375235142 b6 0.317798788806115
a7 −0.263717774563333 b7 −0.263719322983292
a8 0.216187532791877 b8 0.216191581202906
a9 −0.170354610076857 b9 −0.170362167218400
a10 0.123046705346496 b10 0.123056842712685
a11 −0.076412879097916 b11 −0.076422574631579
a12 0.037844499485800 b12 0.037850946915568
a13 −0.013650349050295 b13 −0.013653178641107
a14 0.003133011516183 b14 0.003133747261017
a15 −0.000339760445059 b15 −0.000339846126736

A.2.2. dimH(E4). We present coefficients of the polynomial test functions f and g
used in (37).

f =
15∑
k=0

akx
k, g =

15∑
k=0

bkx
k.

Similar to the previous examples, the functions f and g are monotone and they can
be bounded from below by their value at 1. In particular, we have f(1), g(1) ≥ 0.4.
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f g
a0 1.001981557057916 b0 1.001981557057906
a1 −0.824549641777407 b1 −0.824549641773357
a2 0.632377740413372 b2 0.632377740394589
a3 −0.489751892709023 b3 −0.489751892404770
a4 0.384644919648888 b4 0.384644915987248
a5 −0.305093638471734 b5 −0.305093610668140
a6 0.243481281464752 b6 0.243481142895873
a7 −0.194635007255869 b7 −0.194634539676458
a8 0.154196605135780 b8 0.154195521320957
a9 −0.118018014953805 b9 −0.118016296613633
a10 0.083325052299187 b10 0.083323249134991
a11 −0.050893608677143 b11 −0.050892477178423
a12 0.024910421954700 b12 0.024910155247198
a13 −0.008908424701076 b13 −0.008908569288906
a14 0.002031148876994 b14 0.002031269948929
a15 −0.000219053588808 b15 −0.000219079665840

A.2.3. dimH(E1235). We present coefficients of the polynomial test functions f
and g corresponding to t1 = 0.7709149399 36 and t0 = t1 + 3 · 10−12 respectively.

f =

15∑
k=0

akx
k, g =

15∑
k=0

bkx
k.

Similar to the previous examples, the functions f and g are monotone and they can
be bounded from below by their value at 1. In particular, we have f(1), g(1) ≥ 0.4.

f g
a0 1.001943825796940 b0 1.001943825796930
a1 −0.808837588421526 b1 −0.808837588417559
a2 0.615494218966991 b2 0.615494218954915
a3 −0.474372511899657 b3 −0.474372511806688
a4 0.371576736077143 b4 0.371576735828591
a5 −0.294687522275668 b5 −0.294687526007311
a6 0.235767134415525 b6 0.235767178162078
a7 −0.189403864881314 b7 −0.189404097267897
a8 0.151071322536495 b8 0.151072090158663
a9 −0.116493763140853 b9 −0.116495485397309
a10 0.082822264062997 b10 0.082824975856055
a11 −0.050871691397334 b11 −0.050874703061709
a12 0.025002624053740 b12 0.025004941184306
a13 −0.008966855413747 b13 −0.008968032838312
a14 0.002048316877335 b14 0.002048672642558
a15 −0.000221169553698 b15 −0.000221217982471

A.3. Fuchsian Schottky groups. We present coefficients of the polynomial test
functions f = (f0, f1, f2) and g = (g0, g1, g2), where each fj and gj for j = 0, 1, 2,
are defined on the interval Xj , respectively.

fj =
24∑
k=0

ajkx
k, gj =

24∑
k=0

bjkx
k, j = 0, 1, 2.
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The functions f0 and g0 are even and therefore their odd coefficients vanish: a02k+1 =

b02k+1 ≡ 0. Moreover, f1(x) = f2(−x) and g1(x) = g2(−x) therefore their even

coefficients agree and their odd coefficients have the opposite signs: a12k = a22k,
a12k+1 = −a22k+1; b

1
2k = b22k, b

1
2k+1 = −b22k+1.

f1
a10 2.8770704827462130787849251492030
a11 −11.4401515732168029128293331165380
a12 41.2783414403998127337761764215520
a13 −111.0688407519945991015658074607160
a14 229.2359826830719504436183231429020
a15 −374.1839317918421651508580498351190
a16 494.2486182891231866860550011193190
a17 −537.1550718818002043450127874148360
a18 486.1852872370976132985936371604760
a19 −369.6791357119376158018979254258860
a110 237.5656093180881359651809836821330
a111 −129.5193450984147750120850142699940
a112 60.0196876244694040557343257845630
a113 −23.6421320534647605005954912805860
a114 7.9021374699139922100387246571970
a115 −2.2327574635963721814894503262740
a116 0.5301045742621054501101376372390
a117 −0.1048257433528365630840057396770
a118 0.0170498220734007394058868515300
a119 −0.0022409149968744747201392201870
a120 0.0002320048619867762156560576330
a121 −0.0000182076188328122444526479340
a122 1.017711979517475899435180 · 10−6

a123 −3.60864141942206682494120 · 10−8

a124 6.09941161252684275320 · 10−10

f0
a00 0.988509120501286981726492299097
a02 0.157542850847455232142931716289
a04 0.042904006074342082007020639894
a06 0.013311224077669383683707536427
a08 0.004429850096065885316293787561
a010 0.001543440394063281474032350116
a012 0.000555351173373256765356036270
a014 0.000204517408718030083947390234
a016 0.000076609680108249015238001359
a018 0.000029061155169646923244681761
a020 0.000011137276040685233840494967
a022 4.2275802352717104321010360 · 10−6

a024 1.9876322730511567993854040 · 10−6

g1
b10 2.877070483741637235339396793709
b11 −11.440151580102508283298777329005
b12 41.278341467154591279141888564443
b13 −111.068840826093040583068331287781
b14 229.235982838419674330781933540686
b15 −374.183932047938578510658766660908
b16 494.248618629707611522216515713345
b17 −537.155072253799253891555878102640
b18 486.185287575077537070728753265866
b19 −369.679135969693151986947450814820
b110 237.565609484126480000044027316791
b111 −129.519345189116330520934728232633
b112 60.019687666569911991602610502470
b113 −23.642132070071466367919223736091
b114 7.902137475471208082330326553248
b115 −2.232757465168180629595168192690
b116 0.530104574635619914117715916573
b117 −0.104825743426755206788900861842
b118 0.017049822085431863890249313609
b119 −0.002240914998456736922493194695
b120 0.000232004862150679716335333676
b121 −0.000018207618845681630026751529
b122 1.0177119802371267732818260 · 10−6

b123 −3.60864142197485386059250 · 10−8

b124 6.099411616843192081320 · 10−10

g0
b00 0.988509120496506332431826934199
b02 0.157542850912623683440552637873
b04 0.042904006097255254396958615314
b06 0.013311224085738465758389603856
b08 0.004429850098979983540304963280
b010 0.001543440395140704805733043742
b012 0.000555351173779220956618567711
b014 0.000204517408873232993380371066
b016 0.000076609680168235804587352199
b018 0.000029061155193021143267002387
b020 0.000011137276049855568024571829
b022 4.2275802388232323523285170 · 10−6

b024 1.9876322747582711067418060 · 10−6

A.4. Non-linear example. We present coefficients of the polynomial test func-
tions f and g corresponding to t0 = 0.4934480908 02 and t1 = t0 + 10−12 respec-
tively.

f =
7∑

k=0

a2kx
2k, g =

7∑
k=0

b2kx
2k.
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f g
a0 0.260509445190371 b0 0.260509445190371
a2 −4.88560887219182 · 10−3 b2 −4.88560887219092 · 10−3

a4 3.65942002704976 · 10−4 b4 3.65942002704768 · 10−4

a6 −3.48521776330216 · 10−5 b6 −3.48521776329928 · 10−5

a8 3.61101766657243 · 10−6 b8 3.61101766656879 · 10−6

a10 −3.88502731592718 · 10−7 b10 −3.88502731592271 · 10−7

a12 4.09696977259504 · 10−8 b12 4.09696977258989 · 10−8

a14 −3.23465524617897 · 10−9 b14 −3.23465524617468 · 10−9
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[44] Yakov B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics,

University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications, DOI
10.7208/chicago/9780226662237.001.0001. MR1489237

[45] Yakov Pesin and Howard Weiss, On the dimension of deterministic and random Cantor-
like sets, Math. Res. Lett. 1 (1994), no. 4, 519–529, DOI 10.4310/MRL.1994.v1.n4.a12.
MR1302395

[46] David Ruelle, Thermodynamic formalism, 2nd ed., Cambridge Mathematical Library, Cam-
bridge University Press, Cambridge, 2004. The mathematical structures of equilibrium sta-
tistical mechanics, DOI 10.1017/CBO9780511617546. MR2129258

[47] David Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys. 125
(1989), no. 2, 239–262. MR1016871

[48] David Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982),
no. 1, 99–107, DOI 10.1017/s0143385700009603. MR684247

[49] E. Seneta, Non-negative matrices, Halsted Press [John Wiley & Sons], New York, 1973. An
introduction to theory and applications. MR0389944

[50] Dennis Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom.
25 (1987), no. 3, 327–351. MR882827

[51] Leonard Tornheim, Asymmetric minima of quadratic forms and asymmetric Diophantine
approximation, Duke Math. J. 22 (1955), 287–294. MR69221

[52] Lloyd N. Trefethen, Approximation theory and approximation practice, Society for Industrial

and Applied Mathematics (SIAM), Philadelphia, PA, [2020] c©2020. Extended edition [of
3012510]. MR4050406

[53] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79,
Springer-Verlag, New York-Berlin, 1982. MR648108

[54] Eduard Wirsing, On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem
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with English summary), Applications of number theory to numerical analysis (Proc. Sym-
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