HAUSDORFF DIMENSION ESTIMATES APPLIED TO LAGRANGE AND MARKOV SPECTRA, ZAREMBA THEORY, AND LIMIT SETS OF FUCHSIAN GROUPS

M. POLLICOTT AND P. VYTNOVA

Abstract

In this note we will describe a simple and practical approach to get rigorous bounds on the Hausdorff dimension of limits sets for some one dimensional Markov iterated function schemes. The general problem has attracted considerable attention, but we are particularly concerned with the role of the value of the Hausdorff dimension in solving conjectures and problems in other areas of mathematics. As our first application we confirm, and often strengthen, conjectures on the difference of the Lagrange and Markov spectra in Diophantine analysis, which appear in the work of Matheus and Moreira [Comment. Math. Helv. 95 (2020), pp. 593-633]. As a second application we (re-)validate and improve estimates connected with the Zaremba conjecture in number theory, used in the work of Bourgain-Kontorovich [Ann. of Math. (2) 180 (2014), pp. 137-196], Huang [An improvement to Zaremba's conjecture, ProQuest LLC, Ann Arbor, MI, 2015] and Kan [Mat. Sb. 210 (2019), pp. 75-130]. As a third more geometric application, we rigorously bound the bottom of the spectrum of the Laplacian for infinite area surfaces, as illustrated by an example studied by McMullen [Amer. J. Math. 120 (1998), pp. 691-721].

In all approaches to estimating the dimension of limit sets there are questions about the efficiency of the algorithm, the computational effort required and the rigour of the bounds. The approach we use has the virtues of being simple and efficient and we present it in this paper in a way that is straightforward to implement.

These estimates apparently cannot be obtained by other known methods.

1. Introduction

We want to consider some interesting problems where a knowledge of the exact value of the Hausdorff dimension of some appropriate set plays an important role in an apparently unrelated area. For instance we consider the applications to Diophantine approximation and the difference between the Markov $\sqrt{1}$ and Lagrange spectra, denominators of finite continued fractions and the Zaremba conjecture, and

Received by the editors February 10, 2021, and, in revised form, December 22, 2021, and January $12,2022$.

2020 Mathematics Subject Classification. Primary 37C30; Secondary 11K55.
The first author was partly supported by ERC-Advanced Grant 833802-Resonances and EPSRC grant EP/T001674/1. The second author was partly supported by EPSRC grant EP/T001674/1.

The second author is the corresponding author.
${ }^{1}$ Markov's name will appear in this article in two contexts, namely those of Markov spectra in number theory and the Markov condition from probability theory. Since the both notions are associated with the same person (A. A. Markov, 1856-1922), we have chosen to use the same spelling, despite the conventions often used in these different areas.
the spectrum of the Laplacian on certain Riemann surfaces. A common feature is that the progress on these topics depends on accurately computing the dimension of certain limit sets for iterated function schemes.

The sets in question are dynamically defined sets given by Markov iterated function schemes. The traditional approach to estimating the dimension of such sets is to use a variant of what is sometimes called a finite section method. This typically involves approximating the associated transfer operator by a finite rank operator and deriving approximations to the dimension from its maximal eigenvalue. This method originated with traditional Ulam method and there are various applications and refinements due to Falk-Nussbaum [9, Hensley [19], McMullen 40] and others. A second approach, which we will call the periodic point approach, uses fixed points for combinations of contractions in the iterated function schemes [24]. This approach works best for a small number of analytic branches whereas the finite section method often works more generally. However, in both of these approaches additional work is needed to address the important issue of validating numerical results. In the case of periodic point method there has been recent progress in getting rigorous estimates for Bernoulli systems [25], but it can still be particularly difficult to get rigorous bounds in the case of Markov maps. In the case of Ulam's method the size of matrices involved in approximation can make it hard to obtain reasonable bounds.

In this note we want to use a different approach which has the twin merits of giving both effective estimates on the dimension and ensuring the rigour of these values. This is based on combining elements of the methods of Babenko-Jur'ev [1] and Wirsing 54 originally developed for the Gauss map. We will describe this in more detail in 83

To complete this section we will discuss our main applications.

Application I: Markov and Lagrange spectra. As our first application, we can consider the work of Matheus and Moreira [35] on estimating the size of the difference of two subsets of the real line called the Markov spectrum $\mathcal{M} \subset \mathbb{R}^{+}$ and the Lagrange spectrum $\mathcal{L} \subset \mathbb{R}^{+}$. The two sets play an important role in Diophantine approximation theory and an excellent introduction to topics in this subsection is 8.

By a classical result of Dirichlet from 1840, for any irrational number α there are infinitely many rational numbers $\frac{p}{q}$ satisfying $\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2}}$. For each irrational α we can choose the largest value $\ell(\alpha)>1$ such that the inequality $\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{\ell(\alpha) q^{2}}$ still has infinitely many solutions with $\frac{p}{q} \in \mathbb{Q}$. An equivalent definition would be

$$
\ell(\alpha):=\left(\inf _{p, q \in \mathbb{Z}, q \neq 0}|q(q \alpha-p)|\right)^{-1}
$$

For example, we know that $\ell\left(\frac{1+\sqrt{5}}{2}\right)=\sqrt{5}, \ell(1-\sqrt{2})=\sqrt{8}$, etc. The Hurwitz irrational number theorem states that for any irrational α there are infinitely many rationals $\frac{p}{q}$ such that $\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2} \sqrt{5}}$. This implies, in particular, that $\ell(\alpha) \geq \sqrt{5}$ for all $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.

Definition 1.1. The set $\mathcal{L}=\{\ell(\alpha): \alpha \in \mathbb{R} \backslash \mathbb{Q}\}$ is called the Lagrange spectrum.

There is another characterisation of elements of Lagrange spectrum in terms of continued fractions [8]. We denote the infinite continued fraction of $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ by

$$
\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}}
$$

where $a_{0} \in \mathbb{Z}$ and $a_{n} \in \mathbb{N}$ for $n \geq 1$. Assume that for $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ we have

$$
\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}, \alpha_{\mathbf{n}+\mathbf{1}}\right],
$$

in other words for the n 'th rational approximation we may write

$$
\left|\alpha-\frac{p_{n}}{q_{n}}\right|=\frac{1}{\left(\alpha_{n+1}+\frac{q_{n-1}}{q_{n}}\right) q_{n}^{2}} .
$$

Then

$$
\ell(\alpha)=\limsup _{n \rightarrow \infty}\left(\alpha_{n+1}+\frac{q_{n-1}}{q_{n}}\right) .
$$

Replacing limsup in the latter formula by supremum, we get the definition of the Markov spectrum.

Definition 1.2. In the notation introduced above, let

$$
\mu(\alpha)=\sup _{n}\left(\alpha_{n+1}+\frac{q_{n-1}}{q_{n}}\right) .
$$

The set $\mathcal{M}=\{\mu(\alpha): \alpha \in \mathbb{R} \backslash \mathbb{Q}\}$ is called the Markov spectrum.
There is an equivalent definition of the Markov spectrum in terms of quadratic forms. Both notions were suggested by Markov in 1879-80 [37, [38.

Naturally, the sets \mathcal{L} and \mathcal{M} have many similarities. The smallest value for each is $\sqrt{5}$ and in $[\sqrt{5}, 3]$ both sets are countable and agree, i.e.,

$$
\mathcal{L} \cap[\sqrt{5}, 3]=\mathcal{M} \cap[\sqrt{5}, 3]=\{\sqrt{5}, \sqrt{8}, \sqrt{221} / 5 \cdots\}
$$

Furthermore, Freĭman [13], following earlier work of Hall [17, computed an explicit constant, called Freiman constant $\sqrt{20}<c_{F}<\sqrt{21}$, such that

$$
\mathcal{L} \cap\left[c_{f},+\infty\right)=\mathcal{M} \cap\left[c_{F} \ldots,+\infty\right)=\left[c_{F},+\infty\right)
$$

The half-line $\left[c_{F},+\infty\right)$ is known as Hall's ray. Nevertheless, these two sets are actually different. In particular, Tornheim [51] showed $\mathcal{L} \subseteq \mathcal{M}$ and Freĭman [12] showed $\mathcal{L} \neq \mathcal{M}$.

In a recent work Matheus and Moreira [35, §B.2] give upper bounds on the Hausdorff dimension $\operatorname{dim}_{H}(\mathcal{M} \backslash \mathcal{L})$ in terms of the Hausdorff dimension of limits sets of specific Markov Iterated Function Schemes. Using the approach presented in this article we compute the Hausdorff dimensions of the sets concerned, and combining our numerical estimates in 4.1 with the intricate analysis of [35] we obtain the following result (the proof is computer-assisted).

Theorem 1.3. We have the following bounds on the dimension of parts of $\mathcal{M} \backslash \mathcal{L}$
(1) $\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{5}, \sqrt{13}))<0.7281096$;
(2) $\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{13}, 3.84))<0.8552277$;
(3) $\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(3.84,3.92))<0.8710525$;
(4) $\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(3.92,4.01))<0.8110098$; and
(5) $\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{20}, \sqrt{21}))<0.8822195$.

In particular, taking into account the known bound $\operatorname{dim}_{H}(\mathcal{M} \backslash \mathcal{L} \cap(4.01, \sqrt{20}))<$ 0.873316 [35, (B.6)] on the remaining interval we obtain an upper bound of

$$
\operatorname{dim}_{H}(\mathcal{M} \backslash \mathcal{L})<0.8822195
$$

Note that this confirms the conjectured upper bound $\operatorname{dim}_{H}(\mathcal{M} \backslash \mathcal{L})<0.888$ 35, (B.1)] and improves on the earlier rigorous bound of $\operatorname{dim}_{H}(\mathcal{M} \backslash \mathcal{L})<0.986927$ ([35, Corollary 7.5] and [41, Theorem 3.6]).

For the purposes of comparison, we present the bounds in Theorem 1.3 with the previous rigorous bounds given on different portions of $\mathcal{M} \backslash \mathcal{L}$ in Figure 1

Figure 1. Comparison of old and new upper bounds
In the present work we will be looking for both lower and upper bounds. In order to give a clearer presentation of the results we will use Notation 1.4,
Notation 1.4. We abbreviate $a \in[b-c, b+c]$ as $a=b \pm c$.
In order to get a lower bound on the difference of the Lagrange and Markov spectra Matheus and Moreira [35, Theorem 5.3] showed that there is a lower bound $\operatorname{dim}_{H}(\mathcal{M} \backslash \mathcal{L}) \geq \operatorname{dim}_{H}\left(E_{2}\right)$ where $E_{2} \subset[0,1]$ denotes the Cantor set of irrational numbers with infinite continued fraction expansions whose digits are either 1 or 2.2 The study of the dimension of this set was initiated by Good in 1941 [16]. There are various estimates on $\operatorname{dim}_{H}\left(E_{2}\right)$ including [25] where the dimension was computed to 100 decimal places using periodic points. In $\$ 4$ we will recover and improve on this estimate giving an estimate accurate to 200 decimal places and thus we deduce the following result.

Theorem 1.5. ${ }^{3}$

$$
\begin{aligned}
& \operatorname{dim}_{H}\left(E_{2}\right) \\
&= 0.531280506277205141624468647368471785493059109018398779888397 \\
& 803927529535643831345918109570181185239880428057243075187633 \\
& 422389339480822309017869596532871223546429979489663784033728 \\
& 7630454110150804519139697680713 \pm 10^{-201} .
\end{aligned}
$$

Details on the proof of this bound appear in 4.1.2. Whereas it may not be clear why a knowledge of $\operatorname{dim}_{H}\left(E_{2}\right)$ to 200 decimal places is beneficial, it at least serves to illustrate the effectiveness of the method we are using compared with earlier approaches.

[^0]Application II: Zaremba theory. A second application is to problems on finite continued fractions related to the Zaremba conjecture. The Zaremba conjecture 56] was formulated in 1972, motivated by problems in numerical analysis. It deals with the denominators that can occur in finite continued fraction expansions using a uniform bound on the digits. A nice account appears in the very informative survey of Kontorovich [32.

Zaremba conjecture. For any natural number $q \in \mathbb{N}$ there exist p (coprime to q) and $a_{1}, \ldots, a_{n} \in\{1,2,3,4,5\}$ such that

$$
\frac{p}{q}=\left[0 ; a_{1}, \cdots, a_{n}\right]:=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+\frac{1}{a_{n}}}}} .
$$

Let us denote for each $N \geq 1$ and $m \geq 2$,

$$
\begin{aligned}
& D_{m}(N):=\operatorname{Card}\left\{1 \leq q \leq N \mid \exists p \in \mathbb{N},(p, q)=1, a_{1}, \cdots, a_{n} \in\{1,2, \cdots, m\}\right. \\
& \left.\quad \text { with } \frac{p}{q}=\left[0 ; a_{1}, \cdots, a_{n}\right]\right\}
\end{aligned}
$$

i.e., the number of $1 \leq q \leq N$ which occur as denominators of finite continued fractions using digits $\left|a_{i}\right| \leq m$. The Zaremba conjecture would correspond to $D_{5}(N)=N$ for all $N \in \mathbb{N}$. The conjecture remains open, but Huang [20], building on work of Bourgain and Kontorovich [2], proved the following version of Zaremba conjecture.

Theorem 1.6 (Bourgain-Kontorovich, Huang). There is a density one version of the Zaremba conjecture, i.e.,

$$
\lim _{N \rightarrow+\infty} \frac{D_{5}(N)}{N}=1
$$

There have been other important refinements on this result by Frolenkov-Kan [14], 15], Kan [28, [29, Huang [20] and Magee-Oh-Winter 34.

Let us introduce for each $m \geq 2$,

$$
E_{m}:=\left\{\left[0 ; a_{1}, a_{2}, \cdots\right] \mid a_{n} \in\{1,2, \cdots, m\} \text { for all } n \in \mathbb{N}\right\}
$$

which is a Cantor set in the unit interval. Originally, Bourgain-Kontorovich [2] proved an analogue to Theorem 1.6 for $D_{50}(N)$. Amongst other things, their argument, related to the circle method, used the fact that the Hausdorff dimension $\operatorname{dim}_{H}\left(E_{50}\right)$ is sufficiently close to 1 (more precisely, $\left.\operatorname{dim}_{H}\left(E_{50}\right)>\frac{307}{312}\right)$. In Huang's refinement of their approach, he reduced m to 5 , i.e. replaced the alphabet $\{1,2, \cdots, 50\}$ with $\{1,2,3,4,5\}$, as in the statement of Theorem 1.6. In Huang's approach, it was sufficient to show that $\operatorname{dim}_{H}\left(E_{5}\right)>\frac{5}{6}$. In [25] there is an explicit rigorous bound on the Hausdorff dimension of this set which confirms this inequality. The approach used there is the periodic point method, whereas in this article we use a different method to confirm and improve on these bounds.

As another example, we recall the following result for $m=4$ and the smaller alphabet $\{1,2,3,4\}$.

Theorem 1.7 (Kan [29]). For the alphabet $\{1,2,3,4\}$ there is a positive density version of the Zaremba conjecture, i.e.,

$$
\liminf _{N \rightarrow+\infty} \frac{D_{4}(N)}{N}>0
$$

The proof of the result is conditional on the lower bound $\operatorname{dim}_{H}\left(E_{4}\right)>\frac{\sqrt{19}-2}{3}$. In [29] this inequality is attributed to Jenkinson [23], where this value was, in fact, only heuristically estimated. In [25] there is an explicit rigorous bound on the Hausdorff dimension of this set which confirms this inequality. The approach used there is the periodic point method, whereas in this article we give a different method to confirm and improve on these bounds, as well as give new examples. These results are presented in 44.2 ,

Application III: Schottky group limit sets. A third application belongs to the area of hyperbolic geometry. The two dimensional hyperbolic space can be represented as the Poincaré disc $\mathbb{D}^{2}=\{z \in \mathbb{C}:|z|<1\}$ with the Poincaré metric $d s^{2}=4\left(1-|z|^{2}\right)^{-2}$. A Fuchsian group Γ is a discrete group of isometries of the two dimensional hyperbolic space. In particular, the factor space \mathbb{D}^{2} / Γ is a surface of constant curvature $\kappa=-1$.

We can associate to the Fuchsian group Γ the limit set $X_{\Gamma} \subseteq \partial D=\{z \in \mathbb{C}:|z|=$ $1\}$ defined to be the Euclidean limit points of the orbit $\{g 0: g \in \Gamma\}$. In the event that Γ is cocompact, the quotient \mathbb{D}^{2} / Γ is a compact surface, and thus the limit set will be equal to the entire unit circle. On the other hand, if Γ is a Schottky group then the limit set will be a Cantor subset of the unit circle (of Hausdorff dimension strictly smaller than 1).

In the particular case that Γ is a Schottky group the space \mathbb{D}^{2} / Γ is a surface of infinite area. It is known [6] that the classical Laplace-Beltrami operator has positive real spectra and in particular, its smallest eigenvalue $\lambda_{\Gamma}>0$ is strictly positive. There is a close connection between the spectral value λ_{Γ} and the Hausdorff dimension $\operatorname{dim}_{H}\left(X_{\Gamma}\right)$. More precisely, we have a classical result (see 50])

$$
\lambda_{\Gamma}=\min \left\{\frac{1}{4}, \operatorname{dim}_{H}\left(X_{\Gamma}\right)\left(1-\operatorname{dim}_{H}\left(X_{\Gamma}\right)\right)\right\}
$$

Next we want to consider a concrete example of a Schottky group.
Example 1.8. McMullen 40 considered the Schottky group $\Gamma=\left\langle R_{1}, R_{2}, R_{3}\right\rangle$ generated by reflections $R_{1}, R_{2}, R_{3}: \mathbb{D}^{2} \rightarrow \mathbb{D}^{2}$ in three symmetrically placed geodesics with end points $e^{\pi i(2 j+1) / 6}$ with $j=1, \ldots, 6$ on the unit circle (Figure 2).

The limit set X_{Γ} can be written as a limit set of a suitable Markov iterated function scheme, or, more precisely, a directed Markov graph system [36]. Applying the method described in this article we can estimate the dimension of the limit set and thus the lowest eigenvalue of the Laplacian.

Theorem 1.9. In notation introduced above, the dimension of the limit set of the Schottky group Γ satisfies

$$
\operatorname{dim}_{H}\left(X_{\Gamma}\right)=0.295546475 \pm 5 \cdot 10^{-9}
$$

and the smallest value of the Laplacian satisfies

$$
\lambda_{\Gamma}=0.2081987565 \pm 2.5 \cdot 10^{-9}
$$

Figure 2. Group Γ generated by reflections R_{1}, R_{2}, and R_{3} in the geodesics γ_{1}, γ_{2}, and γ_{3}

Finally, the same approach we have used in these applications can also be used to estimate the Hausdorff dimension of the various dynamically defined limit sets of iterated function schemes which have been considered by other authors, cf. [19]. We will return to this in \$4.9, where we verify and improve estimates of Hensley [19] and Jenkinson [23] for some iterated function schemes and estimates of Chousionis et al. [7 for some countable iterated function systems.

In $\$ 2$ we will describe the general setting of one dimensional Markov iterated function schemes which is the main focus of our study and the key to proving these theorems.

2. Definitions and preliminary results

In this section we collect together some of the background material we require.
2.1. Hausdorff dimension. The following classical definition of the Hausdorff dimension is well known, and an excellent general reference is the textbook of Falconer [11]. Given $X \subset \mathbb{R}^{+}$for each $0<s<1$ and $\delta>0$ we define the s dimensional Hausdorff content of X by

$$
H_{\delta}^{s}(X)=\inf _{\substack{\mathcal{U}=\left\{U_{i}\right\} \\\left|U_{i}\right| \leq \delta}} \sum_{i}\left|U_{i}\right|^{s},
$$

where the infimum is taken over all open covers $\mathcal{U}=\left\{U_{i}\right\}$ of X with each open set U_{i} having diameter $\left|U_{i}\right| \leq \delta$. The s-dimensional Hausdorff outer measure of X is given by

$$
H^{s}(X)=\lim _{\delta \rightarrow 0} H_{\delta}^{s}(X) \in[0,+\infty] .
$$

Finally, the Hausdorff dimension of X is defined as infimum of values s for which the outer measure vanishes:

$$
\operatorname{dim}_{H}(X)=\inf \left\{s \mid H^{s}(X)=0\right\} .
$$

2.2. Markov iterated function schemes. We say that the contractions $T_{j}:[0,1]$ $\rightarrow[0,1](j=1, \ldots, d)$ satisfy the Open Set Condition if there exists a non-empty open set $U \subset[0,1]$ such that the images $\left\{T_{j} U\right\}_{j=1}^{d}$ are pairwise disjoint. This will be the case in all the examples we consider.

We begin with the definition of a one dimensional Markov iterated function scheme. Recall that a matrix M is called aperiodic if there exists $n \geq 1$ such that $M^{n}>0$, i.e., all of the entries are strictly positive.

Definition 2.1. Let $d \geq 2$. A Markov iterated function scheme consists of:
(1) a family $T_{j}:[0,1] \rightarrow[0,1](j=1, \ldots, d)$ of $C^{1+\alpha}$ contractions satisfying the Open Set Condition; and
(2) an aperiodic $d \times d$ matrix M with entries 0 and 1 , which gives the Markov condition.
We can define the limit set of $\left\{T_{j}\right\}_{j=1}^{d}$ with respect to the matrix M by

$$
X_{M}=\left\{\lim _{n \rightarrow+\infty} T_{j_{1}} \circ \cdots \circ T_{j_{n}}(0) \mid j_{k} \in\{1, \cdots, d\}, M\left(j_{k}, j_{k+1}\right)=1,1 \leq k \leq n-1\right\}
$$

Remark 2.2. In one of the examples we consider, the matrix M has an entire column of zeros. In this case, we can remove the contraction corresponding to this column from the iterated function scheme without changing the limit set. This corresponds to removing the row and the column corresponding to this contraction from the matrix M.

Remark 2.3. More generally, let M be a $k \times k$ matrix with entries 0 or 1 , and assume its rows and columns are indexed by $\{1, \cdots, k\}$. Given $r, s \in\{1, \cdots, k\}$ we say s is accessible from r if there exists $n \geq 1$ with $M^{n}(r, s) \geq 1$. After reordering the index set, if necessary, we can assume that if $n \geq 1$ with $M^{n}(r, s) \geq 1$ then $s \geq r$. We can then define an equivalence relation on $\{1, \cdots, k\}$ by $r \sim s$ if both s is accessible from r and also r is accessible from s and assume that there are q distinct equivalence classes $\left[j_{1}\right], \ldots,\left[j_{q}\right]$. The matrix M then takes the form of submatrices M_{1}, \ldots, M_{q} on the diagonal indexed by the equivalence classes $\left[j_{1}\right], \ldots,\left[j_{q}\right]$, say, with any other non-zero entries appearing only above the main diagonal 49, Ch . $1]$.

In particular, each matrix M_{j} is irreducible, i.e. for pair of indices (r, s) there exists $n=n(j, r, s)$ such that $M_{j}^{n}(r, s) \geq 1$. The period d_{j} of M_{j} is the greatest common divisor of $n(j, r, s)$ for all pairs of indices (r, s). Finally, after further reordering of the index set, if necessary, the d th power M_{j}^{d} takes the form of aperiodic submatrices $M_{j 1}, M_{j 2}, \ldots, M_{j p}$ on the diagonal (i.e., there exists $n=n(j, k) \geq 1$ such that $\forall r, s$ in the index set for $M_{j k}$ we have $\left.M_{j k}^{n}(r, s) \geq 1\right)$.

We can also consider the iterated function schemes $X_{M_{j k}}$ associated to the matrices $M_{j k}$, where the corresponding contractions are d-fold compositions of the original contractions. Then the iterated function scheme with contractions T_{i} where $i \in\{1, \cdots, k\}$ with the limit set X_{M} has dimension $\operatorname{dim}\left(X_{M}\right)=\max _{j, k} \operatorname{dim}\left(X_{M_{j k}}\right)$.

Definition 2.1 is a special case of a more general graph directed Markov system [36, where the contractions T_{j} may have different domains and ranges, to which our analysis also applies. However, Definition 2.1]suffices for the majority of our applications, although in the case of Fuchsian-Schottky groups a more general setting is implicitly used.

Remark 2.4. For Markov iterated function schemes, the Hausdorff dimension coincides with the box counting dimension [44, Ch. 5], see also [45, which has a slightly easier definition. More precisely, for $\varepsilon>0$ we denote by $N(\varepsilon)$ the smallest number of ε-intervals required to cover X. We define the Box dimension to be

$$
\operatorname{dim}_{B}\left(X_{M}\right)=\lim _{\varepsilon \rightarrow 0} \frac{\log N(\varepsilon)}{\log (1 / \varepsilon)}
$$

provided the limit exists. Then $\operatorname{dim}_{H}\left(X_{M}\right)=\operatorname{dim}_{B}\left(X_{M}\right)$. However, we needed to introduce the definition of Hausdorff dimension, for the benefit of the statements of results on Markov and Lagrange spectra.
2.3. Pressure function. We would like to use the Bowen-Ruelle formula [48 to compute the value of the Hausdorff dimension of the limit set of a Markov iterated function scheme. We will use Notation 2.5

Notation 2.5. In what follows, $A(t) \lesssim B(t)$ denotes that there exists $C>0$ such that $A(t) \leq C \cdot B(t)$. We write $A(t) \asymp B(t)$ if there exist constants $C_{1}, C_{2}>0$ such that $C_{1} A(t) \leq B(t) \leq C_{2} A(t)$ for all sufficiently large t.

Before giving the statement we first need to introduce Definition 2.6.
Definition 2.6. A pressure function $P:[0,1] \rightarrow \mathbb{R}$ associated to a system of contractions $\left\{T_{j}\right\}_{j=1}^{k}$ with Markov condition defined by a matrix M is given by

$$
P(t)=\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left(\sum_{\substack{M\left(j_{1}, j_{2}\right)=\ldots=\\ M\left(j_{n-1}, j_{n}\right)=1}}\left|\left(T_{j_{1}} \circ \cdots \circ T_{j_{n}}\right)^{\prime}(0)\right|^{t}\right),
$$

where the summation is taken over all compositions $T_{j_{1}} \circ \cdots \circ T_{j_{n}}:[0,1] \rightarrow[0,1]$ which are allowed by the Markov condition and the summands are the absolute values of the derivatives of these contractions at a fixed reference point (which for convenience we take to be 0) raised to the power t.

The pressure function depends on the matrix M but we omit this in the notation. In the present context the function is well defined as the limit in this definition of $P(t)$ always exists. There are various other definitions of the pressure, and we refer the reader to the books [43] and [53] for more details. A sketch of the graph of the pressure function is given in Figure 3

The following well known connection between $\operatorname{dim}_{H}\left(X_{M}\right)$ and the pressure function is useful for practical applications.

Lemma 2.7 (Bowen [3], Ruelle [48, Proposition 4]). In the setting introduced above, the pressure function of a Markov Iterated Function Scheme has the following properties:
(1) $P(t)$ is a smooth monotone strictly decreasing analytic function; and
(2) The Hausdorff dimension of the limit set is the unique zero of the pressure function i.e., $P\left(\operatorname{dim}_{H}\left(X_{M}\right)\right)=0$.

The general result of Ruelle extended a more specific posthumous result of Bowen on the Hausdorff dimension for quasi-circles. Thus the problem of estimating $\operatorname{dim}_{H}\left(X_{M}\right)$ is reduced to the problem of locating the zero of the pressure function.

Figure 3. A typical plot of the pressure function P

Remark 2.8. To understand the connection between the pressure and the Hausdorff dimension, described in Lemma 2.7 we can consider covers of X_{M} of the form $\mathcal{U}=\left\{T_{i_{1}} \circ \cdots \circ T_{i_{n}} U\right\}$, where $T_{i_{1}} \circ \cdots \circ T_{i_{n}}$ are allowed compositions (i.e. $M\left(i_{1}, i_{2}\right)=$ $\left.\ldots=M\left(i_{n-1}, i_{n}\right)=1\right)$ and $U \supset[0,1]$ is an open set. The diameters of the elements of this cover for large n are comparable to the absolute values of the derivatives $\left(T_{i_{1}} \circ \cdots \circ T_{i_{n}}\right)^{\prime}(0)$. In particular, by the mean value theorem, $\operatorname{diam}\left(T_{i_{1}} \circ \ldots \circ\right.$ $\left.T_{i_{n}}(U)\right) \leq \sup _{y \in U}\left|\left(T_{i_{1}} \circ \ldots \circ T_{i_{n}}\right)^{\prime}(y)\right|$ and taking into account

$$
\frac{\left|\left(T_{i_{1}} \circ \ldots \circ T_{i_{n}}\right)^{\prime}(y)\right|}{\left|\left(T_{i_{1}} \circ \ldots \circ T_{i_{n}}\right)^{\prime}(0)\right|} \leq \sup _{z \in U} \exp \left(\left(\log \left|\left(T_{i_{1}} \circ \ldots \circ T_{i_{n}}\right)^{\prime}(z)\right|\right)^{\prime}\right)<+\infty .
$$

If $P(t)=0$ then for any $t_{0}>t$ we have that $P\left(t_{0}\right)<0$ and therefore the Hausdorff content

$$
H_{\delta}^{t_{0}}\left(X_{M}\right) \lesssim \sum_{\substack{M\left(i_{1}, i_{2}\right)=\ldots \\=M\left(i_{n-1}, i_{n}\right)=1}}\left|\left(T_{i_{1}} \circ \cdots \circ T_{i_{n}}\right)^{\prime}(0)\right|^{t_{0}}
$$

for n sufficiently large. In particular, letting $n \rightarrow+\infty$ we can deduce from the definition of pressure that the right hand side of the inequality tends to zero and therefore $H^{t_{0}}(X)=0$. We then conclude that outer measure vanishes and thus $\operatorname{dim}_{H}\left(X_{M}\right) \leq t_{0}$ and, since $t_{0}>t$ was arbitrary, we have $\operatorname{dim}_{H}\left(X_{M}\right) \leq t$ (see 2.1). For the reverse inequality see Remark 2.14.
2.4. Transfer operators for Markov iterated function schemes. We explained in the previous subsection that the dimension $\operatorname{dim}_{H}\left(X_{M}\right)$ corresponds to the zero of the pressure function P. This function can also be expressed in terms of a linear operator on a suitable space of Hölder functions.

In order to accommodate the Markov condition it is convenient to consider the space consisting of d disjoint copies of $[0,1]$, which we denote by $S:=\oplus_{j=1}^{d}[0,1] \times\{j\}$ and to introduce the maps

$$
T_{j}: S \rightarrow S, \quad T_{j}:(x, k) \mapsto\left(T_{j}(x), j\right) .
$$

We omit the dependence on d where it is clear.

The transfer operator associated to $\left\{T_{j}\right\}$ is a linear operator acting on the space of Hölder functions $C^{\alpha}(S):=\oplus_{j=1}^{d} C^{\alpha}([0,1] \times\{j\})$, where $0<\alpha \leq 1$. This is a Banach space with the norm $\left\|f_{1}, \cdots, f_{d}\right\|=\max _{1 \leq j \leq d}\left\{\left\|f_{j}\right\|_{\alpha}+\left\|f_{j}\right\|_{\infty}\right\}$ where $\left\|f_{j}\right\|_{\alpha}=\sup _{x \neq y} \frac{\left|f_{j}(x)-f_{j}(y)\right|}{|x-y|^{\alpha}}$. For many applications we can take $\alpha=1$.
Definition 2.9. For $0 \leq t \leq 1$ the transfer operator $\mathcal{L}_{t}: C^{\alpha}(S) \rightarrow C^{\alpha}(S)$ for the scheme $T_{j}: S \rightarrow[0,1] \times\{j\}$ is defined by the formula $\mathcal{L}_{t}:\left(f_{1}, \cdots, f_{d}\right) \mapsto$ $\left(F_{1}^{t}, \cdots, F_{d}^{t}\right)$ where

$$
F_{k}^{t}(x, k)=\sum_{j=1}^{d} M(j, k) \cdot f_{j}\left(T_{j}(x, k)\right)\left|T_{j}^{\prime}(x, k)\right|^{t}
$$

We omit the dependence on M where it is clear.
Remark 2.10. For some applications where the contractions form a Bernoulli system (i.e. there are no restrictions and all the entries of M are 1) it is sufficient to take one copy of the interval $[0,1]$, i.e. $d=1$. This applies, for example, in all of the Zaremba examples. In this case the transfer operator takes simpler form

$$
\begin{equation*}
\mathcal{L}_{t}: C^{\alpha}([0,1]) \rightarrow C^{\alpha}([0,1]) \quad \mathcal{L}_{t}: f \mapsto \sum_{j=1}^{d} f\left(T_{j}\right)\left|T_{j}^{\prime}\right|^{t} \tag{1}
\end{equation*}
$$

Definition 2.11. We say that a function $\underline{f} \in C^{\alpha}(S)$ is positive if $f=\left(f_{1}, \ldots, f_{d}\right)$ and each $f_{j} \in C^{\alpha}([0,1] \times\{j\})$ takes only positive values.

The connection between the linear operator \mathcal{L}_{t} and the value of the pressure function $P(t)$ comes from the first part of the following version of a standard result, cf. [46].
Lemma 2.12 (After Ruelle). Assume that the matrix M is aperiodic. In terms of the notation introduced above, the spectral radius of \mathcal{L}_{t} is $e^{P(t)}$. Furthermore,
(1) \mathcal{L}_{t} has an isolated maximal eigenvalue $e^{P(t)}$ associated to a positive eigenfunction $\underline{h} \in C^{\alpha}(S)$ and a positive eigenprojection $\prod^{4} \eta: C^{\alpha}(S) \rightarrow\langle\underline{h}\rangle$; and
(2) for any $\underline{f} \in C^{\alpha}(S)$ we have

$$
\left\|e^{-n P(t)} \mathcal{L}_{t}^{n} \underline{f}-\eta(\underline{f})\right\|_{\infty} \rightarrow 0 \text { as } n \rightarrow+\infty
$$

Proof. For the reader's convenience we sketch a proof adapted to the present context (see 47] for a different proof).

For part (1) let $c=\max _{1 \leq i \leq d}\left\|T_{i}^{\prime}\right\|_{\infty}<1$ and $A=\max _{1 \leq i \leq d}\left\|\log \mid T_{i}^{\prime}\right\|_{\alpha}<1$ and choose B sufficiently large that $A+B c<B$. We can define a convex space $\mathcal{C}=\left\{\underline{f}=\left(f_{1}, \cdots, f_{d}\right)=C^{\alpha}(S): \begin{array}{l}\forall 1 \leq j \leq d, \forall 0 \leq x \leq 1, f_{j}(x) \leq 1 \\ \forall 1 \leq j \leq d, \forall 0 \leq x, y \leq 1, f_{j}(x) \leq f_{j}(y) e^{B|x-y|^{\alpha}}\end{array}\right\}$ which is uniformly compact by the Arzela-Ascoli theorem. Given $\underline{f} \in \mathcal{C}$ and $n \geq 1$ we can define $\Phi_{n}(\underline{f})=\frac{\mathcal{L}_{t}\left(\underline{f}+\frac{1}{n}\right)}{\left\|\mathcal{L}_{t}\left(\underline{f}+\frac{1}{n}\right)\right\|_{\infty}} \in C^{\alpha}(S)$. For all $0 \leq x, y \leq 1$ and $\underline{f}=$ $\left(f_{1}, \cdots, f_{d}\right) \in \mathcal{C}$ and each $1 \leq j \leq d$, using $0 \leq t \leq 1$, we get

$$
F_{k}^{t}(x) \leq e^{(A+B c)|x-y|^{\alpha}} \sum_{j=1}^{d} M(j, k) \cdot f_{j}\left(T_{j}(y)\right)\left|T_{j}^{\prime}(y)\right|^{t} \leq e^{B|x-y|^{\alpha}} F_{k}^{t}(y) .
$$

[^1]Hence for each $n \geq 1$ and $0 \leq x, y \leq 1$ we have $\Phi_{n}(f)(x) \leq e^{B|x-y|^{\alpha}} \Phi_{n}(f)(y)$ and thus $\left\|\Phi_{n}(\underline{f})(x)\right\|_{\infty}=1$. Therefore, for each $n \geq \overline{1}$ the map $\Phi_{n}: \mathcal{C} \rightarrow \mathcal{C}$ is well defined and has a non-trivial fixed point $\underline{h}_{n}=\Phi_{n}\left(\underline{h}_{n}\right) \neq 0$ by the Schauder fixed point theorem. We can take an accumulation point \underline{h} of $\left\{\underline{h}_{n}\right\} \subset \mathcal{C}$. This is an eigenfunction of \mathcal{L}_{t} for the eigenvalue $\lambda=\left\|\mathcal{L}_{t} \underline{h}\right\|_{\infty}$ and we can choose x_{0} and j, say, with $\left|h_{j}\left(x_{0}\right)\right|=\|h\|_{\infty}$.

Since M is aperiodic we can choose N sufficiently large such that for arbitrary k and j_{1} we have a contribution $h_{k}\left(T_{j_{1}} \circ \cdots \circ T_{j_{N}} x_{0}\right)\left|\left(T_{j_{1}} \circ \cdots \circ T_{j_{N}}\right)^{\prime}\left(x_{0}\right)\right|^{t}>0$ to \mathcal{L}_{t}^{N}. It follows from the second condition of the definition of \mathcal{C} that $h_{k}\left(x_{1}\right)>0$ where we let $x_{1}=T_{j_{1}} \circ \cdots \circ T_{j_{N}} x_{0}$. Since $\underline{h} \in \mathcal{C}$ we conclude that for any x we have $h_{k}(x) \geq h_{k}\left(x_{1}\right) e^{-B}>0$. By Definition 2.6 of the pressure function,

$$
P(t)=\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left\|\mathcal{L}_{t}^{n} \underline{1}\right\|=\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left\|\mathcal{L}_{t}^{n} \underline{h}\right\|=\log \lambda
$$

For part (2) let $\Delta(\underline{h}): C^{\alpha}(S) \rightarrow C^{\alpha}(S)$ denote multiplication by \underline{h} and then introduce the linear operator $\mathcal{K}=\frac{1}{\lambda} \Delta(\underline{h})^{-1} \mathcal{L}_{t} \Delta(\underline{h})$, which now satisfies $\mathcal{K} \underline{1}=\underline{1}$. This implies that for $\underline{f} \in C^{\alpha}(S)$ we have that for each $\underline{x} \in S$:
(a) the sequence $\inf _{0 \leq x \leq 1} \mathcal{K}^{n} \underline{f}(\underline{x})(n \geq 1)$ is monotone increasing and bounded, and
(b) the sequence $\sup _{0 \leq x \leq 1} \mathcal{K}^{n} \underline{f}(\underline{x})(n \geq 1)$ is monotone decreasing and bounded. The limits are fixed points for \mathcal{K}, and thus without too much effort we can deduce that $\mathcal{K}^{n} \underline{f}$ converges uniformly to a constant function. Reformulating this for the original $\overline{\text { opprator }} \mathcal{L}_{t}$ gives the claimed result.

Remark 2.13. The properties of the transfer operator in Lemma 2.12 now clarify the reasoning behind the remaining parts of Lemma 2.7. With a little more work (and the Fortet-Doeblin inequality) one can show that $e^{P(t)}$ is an isolated eigenvalue of \mathcal{L}_{t} and thus has an analytic dependence on t (compare with [43]).

Remark 2.14. To explain the idea behind Lemma 2.7, it remains to recall why if $P(t)=0$ then $\operatorname{dim}_{H}(X) \geq t$.

Let \mathcal{M} be the space of probability measures supported on S with the weak star topology. By Alaoglu's theorem this space is compact. The map $\Psi: \mathcal{M} \rightarrow \mathcal{M}$ defined by $[\Psi \mu](g)=e^{-P(t)} \mu\left(\mathcal{L}_{t} g\right)$ for $g \in C^{\alpha}(S)$ has the fixed point η.

We would like to apply the mass distribution principle (cf. [11, p. 67]) to the measure η. In other words, to show that t corresponding to $P(t)=0$ is a lower bound on $\operatorname{dim}_{H}(X)$, it is sufficient to show that there exists $C>0$ for which on any small interval V we have $\eta(V) \leq C|V|^{t}$. Moreover, it suffices to consider intervals of the form $V=T_{i_{1}} \circ \ldots \circ T_{i_{n}} U$ for some i_{1}, \ldots, i_{n}. In particular, providing $P(t)=0$ for an allowed sequence i_{1}, \ldots, i_{n} we have

$$
\eta\left(T_{i_{1}} \circ \cdots \circ T_{i_{n}} U\right) \asymp \int \mathcal{L}_{t}^{n} \chi_{T_{i_{1}} \circ \ldots \circ T_{i_{n}} U} d \eta \asymp\left|\left(T_{i_{1}} \circ \ldots \circ T_{i_{n}}\right)^{\prime}(0)\right|^{t}
$$

By compactness of the closure $\operatorname{cl}\left(T_{i_{1}} \circ \ldots \circ T_{i_{n}} U\right)$ for $x \in U$ we have

$$
\frac{\left|\left(T_{i_{1}} \circ \ldots \circ T_{i_{n}}\right)^{\prime}(0)\right|}{\left|\left(T_{i_{1}} \circ \ldots \circ T_{i_{n}}\right)^{\prime}(x)\right|} \leq \sup _{y \in U} \exp \left(\left(\log \left|\left(T_{i_{1}} \circ \ldots \circ T_{i_{n}}\right)^{\prime}(y)\right|\right)^{\prime}\right)<+\infty,
$$

together with the mean value theorem we get $\left|\left(T_{i_{1}} \circ \ldots \circ T_{i_{n}}\right)^{\prime}(0)\right| \asymp \operatorname{diam}\left(T_{i_{0}} \circ \ldots \circ\right.$ $\left.T_{i_{n}} U\right)$. Hence we conclude $\eta\left(T_{i_{1}} \circ \cdots \circ T_{i_{n}} U\right) \asymp \operatorname{diam}\left(T_{i_{1}} \circ \cdots \circ T_{i_{n}} U\right)^{t}$. The mass
distribution principle gives

$$
\operatorname{dim}_{H}(X) \geq \lim _{n \rightarrow+\infty} \frac{\log \eta\left(T_{i_{1}} \circ \cdots \circ T_{i_{n}} U\right)}{\log \operatorname{diam}\left(T_{i_{1}} \circ \cdots \circ T_{i_{n}} U\right)^{t}}=t
$$

This completes the preparatory material. In $\$ 3$ we will explain our basic methodology.

3. Hausdorff dimension estimates

Effective estimates on the Hausdorff dimension come from two ingredients.
(1) Min-max type inequalities presented in 3.1 which give a way to rigorously bound the largest eigenvalue $e^{P(t)}$ of the transfer operator \mathcal{L}_{t} using a suitable test function f.
(2) The Lagrange-Chebyshev interpolation scheme described in 83.2 which gives a polynomial that can serve as the test function \underline{f}.
The first is inspired by the corresponding result for the second eigenvalue of the transfer operator for the Gauss map in the work of Wirsing [54]. The second part is inspired by the work of Babenko-Yur'ev [1] on the problem of Gauss.

The accuracy of the estimates which come out from the min-max inequalities depends on the test function. Lagrange-Chebyshev interpolation is a very classical method of approximating holomorphic functions and perhaps first has been used in this setting by Babenko-Yur'ev [1]. Whereas various interpolation schemes have been used by many authors to estimate $e^{P(t)}$, it is the combination of these two ingredients that leads to particularly effective and accurate estimates.
3.1. The min-max inequalities. Our analysis is based on the maximal eigenvalue $e^{P(t)}$ for \mathcal{L}_{t} being bounded using the following simple result.

Lemma 3.1.

(1) Assume there exist $a>0$ and a positive function $\underline{f} \in C^{\alpha}(S)$ such that for all $x \in S$

$$
a \underline{f}(x) \leq \mathcal{L}_{t} \underline{f}(x),
$$

then $a \leq e^{P(t)}$.
(2) Assume there exist $b>0$ and a positive function $\underline{g} \in C^{\alpha}(S)$ such that for all $x \in S$

$$
\mathcal{L}_{t} \underline{g}(x) \leq b \underline{g}(x),
$$

$$
\text { then } e^{P(t)} \leq b
$$

Proof. By iteratively applying \mathcal{L}_{t} to both sides of the inequality in part (1) we have that for all $x \in S$ and $n \geq 1$

$$
a^{n} \underline{f}(x) \leq \mathcal{L}_{t}^{n} \underline{f}(x)
$$

and thus taking n 'th roots and passing to the limit as $n \rightarrow+\infty$ we have for all $x \in S$

$$
a \leq \limsup _{n \rightarrow+\infty}\left|\mathcal{L}_{t}^{n} \underline{f}(x)\right|^{1 / n}=e^{P(t)}
$$

since $\underline{f}(x)$ is strictly positive and $e^{-n P(t)} \mathcal{L}_{t}^{n} \underline{f}$ converges uniformly to $\eta(\underline{f})>0$ by the second part of Lemma 2.12. This completes the proof of part (1).

The proof of part (2) is similar.

Below we will use the following shorthand notation when working with the Banach space $C^{\alpha}(S)$.

Notation 3.2. Given $f, g \in C^{\alpha}(S)$ we abbreviate

$$
\sup _{S} \frac{f}{g}:=\sup _{1 \leq j \leq d} \sup _{x \in S} \frac{f_{j}(x)}{g_{j}(x)} \quad \text { and } \quad \inf _{S} \frac{f}{g}:=\inf _{1 \leq j \leq d} \inf _{x \in S} \frac{f_{j}(x)}{g_{j}(x)}
$$

In particular, we can use Lemma 3.1 to deduce a technical fact, which is a basis for validation of all numerical results in the present work.

Lemma 3.3. The Hausdorff dimension $\operatorname{dim}_{H} X \in\left(t_{0}, t_{1}\right)$ if and only if there exist two positive functions $\underline{f}, \underline{g} \in C^{\alpha}(S)$ such that the following inequalities hold

$$
\begin{equation*}
\inf _{S} \frac{\mathcal{L}_{t_{0}} \underline{f}}{\underline{f}}>1 \quad \text { and } \quad \sup _{S} \frac{\mathcal{L}_{t_{1}} \underline{g}}{\underline{g}}<1 \tag{2}
\end{equation*}
$$

Proof. Assume first that $\operatorname{dim}_{H} X \in\left(t_{0}, t_{1}\right)$, then $P\left(t_{0}\right)>0>P\left(t_{1}\right)$ which is equivalent to $e^{P\left(t_{0}\right)}>1>e^{P\left(t_{1}\right)}$. Then by part (1) of Lemma 2.12 there exist positive eigenfunctions \underline{h}_{0} and \underline{h}_{1} of $\mathcal{L}_{t_{0}}$ and $\mathcal{L}_{t_{1}}$, respectively, such that

$$
\frac{\mathcal{L}_{t_{0}} \underline{h}_{0}}{\underline{h}_{0}}=e^{P\left(t_{0}\right)}>1 \quad \text { and } \quad \frac{\mathcal{L}_{t_{1}} \underline{h}_{1}}{\underline{h}_{1}}=e^{P\left(t_{1}\right)}<1
$$

Now assume that (2) hold true for some \underline{f} and \underline{g}. Then by Lemma 2.7 the first inequality in (2) implies that the hypothesis of part (1) of Lemma 3.1 holds with $a=\inf _{S} \frac{\mathcal{L}_{t_{0}} \underline{f}}{\underline{f}}>1$. We deduce that $e^{P\left(t_{0}\right)} \geq a>1$ and thus $P\left(t_{0}\right)>0$. The second inequality in (2) implies that the hypothesis of part (2) of Lemma 3.1 holds with $b=\sup _{S} \frac{\mathcal{L}_{t_{1}} \underline{g}}{\underline{g}}<1$. We deduce that $e^{P\left(t_{1}\right)} \leq b<1$, thus $P\left(t_{1}\right)<0$. By the intermediate value theorem applied to the strictly monotone decreasing continuous function P we see that the unique zero $t=\operatorname{dim}_{H}(X)$ for P satisfies $t_{0}<\operatorname{dim}_{H} X<t_{1}$, as required.

Therefore our aim in applications is to make choices of $\underline{f}=\left(f_{i}\right)_{i=1}^{d}>0$ and $\underline{g}=\left(g_{i}\right)_{i=1}^{d}>0$ in Lemma 3.3 so that t_{0} and t_{1} are close, $\overline{\text { in }}$ order to get good estimates on $\operatorname{dim}_{H}(X)$.

Remark 3.4 (Domains of test functions). It is apparent from the proof that we need only to consider the minima and maxima of the ratios $\mathcal{L} \underline{f}(x) / \underline{f}(x)$ and $\mathcal{L} \underline{g}(x) / \underline{g}(x)$ for those $x \in S$ lying in the limit set. However, a compromise which simplifies the use of calculus would be to consider the minima and maxima over the smallest interval containing the limit set.

Remark 3.5 (Min-max theorem). A more refined version which we won't require is the min-max result:

$$
e^{P(t)}=\sup _{\underline{f}>0} \inf _{S} \frac{\mathcal{L}_{t} \underline{f}}{\underline{f}}=\inf _{\underline{f}>0} \sup _{S} \frac{\mathcal{L}_{t} \underline{f}}{\underline{f}} .
$$

To see this, observe that by Lemma 3.1 for any $\underline{f}, \underline{g}>0$ we have

$$
\inf _{x \in S} \frac{\mathcal{L}_{t} \underline{f}(x)}{\underline{f}(x)} \leq e^{P(t)} \leq \sup _{x \in S} \frac{\mathcal{L}_{t} \underline{g}(x)}{\underline{g}(x)},
$$

and therefore

$$
\sup _{\underline{f}>0} \inf _{S} \frac{\mathcal{L}_{t} \underline{f}}{\underline{f}} \leq e^{P(t)} \leq \inf _{\underline{g}>0} \sup _{S} \frac{\mathcal{L}_{t} \underline{g}}{\underline{g}} .
$$

In particular, by the Ruelle operator theorem, the equality is realized when $\underline{f}=\underline{g}=\underline{h}>0$ is the eigenfunction associated to $e^{P(t)}$. We refer the reader to [39, p.88] and [22, §2.4.2] for more details.
3.1.1. Applying Lemma 3.3 in practice. In order to obtain good estimates on the Hausdorff dimension based on Lemma 3.3 it is necessary to construct a pair of functions \underline{f} and \underline{g} and to rigorously verify the inequalities (21). We shall now explain how the verification has been realised in practice, i.e. in our computer program. To simplify the exposition, we demonstrate the method in the case of Bernoulli scheme. It will be clear how to generalise it to treat a more general Markov case.

Evidently for any interval $\left[t_{0}, t_{1}\right] \subset[0,1]$ and for any $x \in\left[t_{0}, t_{1}\right]$ we hav ${ }^{5}$

$$
\begin{equation*}
\left|\frac{\left[\mathcal{L}_{t} f\right]\left(t_{0}\right)}{f\left(t_{0}\right)}-\frac{\left[\mathcal{L}_{t} f\right](x)}{f(x)}\right| \leq\left\|\left(\frac{\mathcal{L}_{t} f}{f}\right)^{\prime}\right\|_{\infty}\left(t_{1}-t_{0}\right) \tag{3}
\end{equation*}
$$

therefore if we can get an upper bound on $\left\|\left(\frac{\mathcal{L}_{t} f}{f}\right)^{\prime}\right\|_{\infty}$, then we can rigorously estimate the ratio by taking a partition of $[0,1]$ and applying (3) on each interval of the partition. Furthermore, it is clear that provided $\left\|\left(\frac{\mathcal{L}_{t} f}{f}\right)^{\prime}\right\|_{\infty}$ is small, we can allow a relatively coarse partition.

We have the following simple useful fact.
Lemma 3.6. Let h be a positive eigenfunction of \mathcal{L}_{t} corresponding to the eigenvalue λ. Then there exists a constant $r_{1}>0$ such that for any approximation f such that $\|f-h\|_{C^{1}}<\varepsilon$ we have $\left\|\left(\frac{\mathcal{L}_{t} f}{f}\right)^{\prime}\right\|_{\infty}<r_{1} \varepsilon$.
Proof. By the hypothesis of the Lemma, we may write $f=h+f_{\varepsilon}$, where $\left\|f_{\varepsilon}\right\|_{C^{1}}=$ $\max \left|f_{\varepsilon}\right|+\max \left|f_{\varepsilon}^{\prime}\right|<\varepsilon$, and $f>r_{0}>0$. Then the condition $\left\|f_{\varepsilon}\right\|_{C^{1}}<\varepsilon$ implies $\|f\|_{C^{1}} \leq\|h\|_{C_{1}}+\varepsilon$, furthermore, we calculate

$$
\begin{aligned}
\left|\left(\left[\mathcal{L}_{t} f_{\varepsilon}\right](x)\right)^{\prime}\right| & \leq \sum_{j=1}^{d}\left|\left(\left|T_{j}^{\prime}(x)\right|^{s} f_{\varepsilon}\left(T_{j}(x)\right)\right)^{\prime}\right| \\
& \leq \sum_{j=1}^{d}\left(\left|\left(\left|T_{j}^{\prime}(x)\right|^{s}\right)^{\prime} f_{\varepsilon}\left(T_{j}(x)\right)\right|+\left|\left|T_{j}^{\prime}(x)\right|^{s+1} f_{\varepsilon}^{\prime}\left(T_{j}(x)\right)\right|\right) \leq r_{2} \varepsilon
\end{aligned}
$$

where $r_{2}=2 d \max \left(\left\|\left(\left|T_{j}^{\prime}\right|^{s}\right)^{\prime}\right\|_{\infty},\left\|\left|\left|T_{j}^{\prime}(x)\right|^{s+1} \|_{\infty}\right)\right.\right.$. By linearity of the transfer operator we have that $\left(\mathcal{L}_{t} f\right)^{\prime}=\left(\mathcal{L}_{t} h\right)^{\prime}+\left(\mathcal{L}_{t} f_{\varepsilon}\right)^{\prime}=\lambda h^{\prime}+\left(\mathcal{L}_{t} f_{\varepsilon}\right)^{\prime}$. Now we have for the derivative of the ratio

$$
\begin{aligned}
\left|\left(\frac{\mathcal{L}_{t} f}{f}\right)^{\prime}\right|= & \left|\frac{\left(\mathcal{L}_{t} f\right)^{\prime} f-f^{\prime}\left(\mathcal{L}_{t} f\right)}{f^{2}}\right| \\
& \leq\left|\frac{\left(\lambda h^{\prime}+\left(\mathcal{L}_{t} f_{\varepsilon}\right)^{\prime}\right) \cdot\left(h+f_{\varepsilon}\right)-\left(h^{\prime}+f_{\varepsilon}^{\prime}\right) \cdot\left(\lambda h+\mathcal{L}_{t} f_{\varepsilon}\right)}{r_{0}^{2}}\right| \\
& \leq \frac{\varepsilon}{r_{0}^{2}}\left(r_{2}\|f\|_{\infty}+\lambda\left\|h^{\prime}\right\|_{\infty}+\left\|\mathcal{L}_{t} f\right\|_{\infty}+r_{2}\left\|h^{\prime}\right\|_{\infty}\right)
\end{aligned}
$$

[^2]Taking into account that $\|f\|_{C^{1}} \leq\|h\|_{C^{1}}+\varepsilon$ we may now choose r_{1}, which depends on the norm of the eigenfunction $\|h\|_{C^{1}}$, but is independent of the choice of approximation f, such that $\left\|\left(\frac{\mathcal{L}_{t} f}{f}\right)^{\prime}\right\|_{\infty} \leq r_{1} \varepsilon$.

In practice, the derivative $\left(\frac{\mathcal{L}_{t} f}{f}\right)^{\prime}$ can be effectively estimated using the following computer-assisted approach to arbitrary precision and without excessive effort. We construct our test function f as a polynomial of degree m and our IFS consists of linear-fractional transformations $T_{j}(x)=\frac{a_{j} x+b_{j}}{c_{j} x+d_{j}}$, the image functions $F^{t}=\mathcal{L}_{t} f$ can be written as

$$
F^{t}(x)=\sum_{j=1}^{d} \frac{\left|a_{j} d_{j}-b_{j} c_{j}\right|^{t}}{\left|c_{j} x+d_{j}\right|^{2 t}} f\left(\frac{a_{j} x+b_{j}}{c_{j} x+d_{j}}\right)=\sum_{j=1}^{d} \frac{\left|a_{j} d_{j}-b_{j} c_{j}\right|^{t}}{\left(c_{j} x+d_{j}\right)^{2 t}\left(c_{j} x+d_{j}\right)^{m}} p_{j}(x)
$$

where p_{j} are polynomials of degree m, whose coefficients can be computed with arbitrary precision. Then for the derivative of the ratio we obtain

$$
\begin{equation*}
\left(\frac{F^{t}(x)}{f(x)}\right)^{\prime}=\sum_{j=1}^{d} \frac{\left|a_{j} d_{j}-b_{j} c_{j}\right|^{t}}{\left(c_{j} x+d_{j}\right)^{2 t}\left(c_{j} x+d_{j}\right)^{m+1} f^{2}(x)} \widehat{p}_{j}(x) \tag{4}
\end{equation*}
$$

where

$$
\widehat{p}_{j}(x)=-(m+2 t) p_{j}(x) f(x)-\left(c_{j} x+d_{j}\right)\left(f(x) p_{j}^{\prime}(x)-f^{\prime}(x) p_{j}(x)\right)
$$

is a polynomial of degree $2 m$ whose coefficients can be computed explicitly with arbitrary precision chosen. The computation of these coefficients, together with the coefficients of f, allowed us to obtain accurate estimates on the derivative $\left(\frac{F^{t}}{f}\right)^{\prime}$ on the entire interval $[0,1]$ using ball arithmetic [27] in all the examples we considered.

Remark 3.7. Since the ratios are analytic functions, one would expect that they can be approximated by polynomials. A heuristic observation suggests that for an IFS of analytic contractions, $\varepsilon \sim 10^{-3 m / 4}$ in Lemma 3.6, where m is the degree of the approximating polynomial.
Remark 3.8. The formulae for $F^{t}, \frac{F^{t}}{f}$ and \widehat{p}_{j} given above have been used in the actual computer program written in C to study the Examples we have in the paper. For the iterated function schemes which are not linear fractional transformations, the formulae, indeed, will be different, and in particular, \widehat{p}_{j} may not be a polynomial. The same method applies, but the computation might require more computer time. The implicit constant r_{2} also affects the accuracy of the estimate.
3.2. Lagrange-Chebyshev interpolation. We might fancifully note that if we had an a priori knowledge of the true eigenfunction \underline{h} for \mathcal{L}_{t} corresponding to the maximal eigenvalue and took this choice for f in Lemma 3.1 then we would immediately have $a=b=e^{P(t)}$. However, in the absence of a knowledge of the eigenfunction our strategy is to find an approximation.
(a) Choose $t_{0}<t_{1}$ as potential lower and upper bounds, respectively, in Lemma 3.3 based on a heuristic estimate on the dimension (for example using the periodic point method, or bounds that we would like to justify from any other source); and
(b) Find candidates for \underline{f} and \underline{g} which are close to the eigenfunctions $\underline{\underline{h}}_{t_{1}}$ and $\underline{\underline{h}}_{t_{0}}$ for the operators $\mathcal{L}_{t_{1}}$ and $\mathcal{L}_{t_{0}}$, respectively. We do this by approximating the
two operators by finite dimensional versions and using their eigenfunctions for \underline{f} and \underline{g} (in the next section).
There are different possible ways to find the functions we require in (b) in the previous section. We will use classical Lagrange interpolation [4, 52].

Step 1 (Points). Fix $m \geq 2$. We can then consider the zeros of the Chebyshev polynomials:

$$
x_{k}=\cos \left(\frac{\pi(2 k-1)}{2 m}\right) \in[-1,1], \text { for } 1 \leq k \leq m .
$$

In the present context it is then convenient to translate them to the unit interval by setting $y_{k}=\left(x_{k}+1\right) / 2 \in[0,1]$.

Step 2 (Functions). We can use the values $\left\{y_{k}\right\}$ to define the associated Lagrange interpolation polynomials:

$$
\begin{equation*}
l p_{k}(x)=\frac{\prod_{i \neq k}\left(x-y_{i}\right)}{\prod_{i \neq k}\left(y_{k}-y_{i}\right)}, \text { for } 1 \leq k \leq m \tag{5}
\end{equation*}
$$

which are the polynomials of the minimal degree with the property that $l p_{k}\left(y_{k}\right)=1$ and $l p_{k}\left(y_{j}\right)=0$ for $j \neq k$ for all $1 \leq j, k \leq m$. These polynomials span an m dimensional subspace $\left\langle l p_{1}, \cdots, l p_{m}\right\rangle \subset C^{\alpha}([0,1])$.

To allow for the Markov condition we need to consider the $(d \times m)$-dimensional subspace of $C^{\alpha}(S)$. To define it we simply consider d copies $l p_{k, i}:[0,1] \times\{i\} \rightarrow \mathbb{R}$ $(1 \leq i \leq d)$ of the Lagrange polynomials given by $l p_{k, i}(x, i) \equiv l p_{k}(x)$.

Step 3 (Matrix). The polynomials $l p_{k, i}$ for $i=1, \ldots, d$ and $k=1, \ldots, m$ constitute a basis of a $(d \times m)$-dimensional subspace $\mathcal{E}:=\left\langle l p_{k, i}\right\rangle \subset C^{\alpha}(S)$. Using Definition2.9 of the transfer operator we can write for any $0<t<1$ and $\left(f_{1}, \ldots, f_{d}\right) \in \mathcal{E}$:

$$
\begin{align*}
& \left(\mathcal{L}_{t}\left(f_{1}, \ldots, f_{d}\right)\right)_{j}=\sum_{i=1}^{d} M(i, j) f_{i}\left(T_{i}\right)\left|T_{i}^{\prime}\right|^{t}, \quad 1 \leq i \leq d, \tag{6}\\
& \left(\mathcal{L}_{t}\left(f_{1}, \ldots, f_{d}\right)\right)_{j}:[0,1] \times\{j\} \rightarrow \mathbb{R} .
\end{align*}
$$

For each $1 \leq i, j \leq d$ and $1 \leq k, l \leq m$ we can introduce the $m \times m$ matrix $B_{i j}^{t}(l, k)$

$$
\begin{equation*}
B_{i j}^{t}(l, k):=l p_{k, i}\left(T_{i}\left(y_{l, j}\right)\right) \cdot\left|T_{i}^{\prime}\left(y_{l, j}\right)\right|^{t} . \tag{7}
\end{equation*}
$$

Then we can apply the operator \mathcal{L}_{t} to a basis function $\left(0, \cdots, 0, l p_{k, i}, 0, \cdots, 0\right) \in \mathcal{E}$ and evaluate the resulting function at the nodes $y_{l, j}=\left(y_{l}, j\right) \in[0,1] \times\{j\}, 1 \leq l \leq$ $m, 1 \leq j \leq d$

$$
\begin{aligned}
\left(\mathcal{L}_{t}\left(0, \cdots, 0, l p_{k, i}, 0, \cdots, 0\right)\right)_{j}\left(y_{l, j}\right) & =M(i, j) l p_{k, i}\left(T_{i}\left(y_{l, j}\right)\right)\left|T_{i}^{\prime}\left(y_{l, j}\right)\right|^{t} \\
& =M(i, j) \cdot B_{i, j}^{t}(l, k) .
\end{aligned}
$$

Taking into account that the polynomials $l p_{k, i}$ constitute a basis of the subspace \mathcal{E} we can approximate the restriction $\mathcal{L}_{t} \mid \mathcal{E}$ by an $m d \times m d$ matrix:

$$
B^{t}=\left(\begin{array}{ccc}
M(1,1) B_{11}^{t} & \cdots & M(1, d) B_{1 d}^{t} \tag{8}\\
\vdots & \ddots & \vdots \\
M(d, 1) B_{d 1}^{t} & \cdots & M(d, d) B_{d d}^{t}
\end{array}\right) .
$$

For large values of m the maximal eigenvalue of the matrix B^{t} will be arbitrarily close to the maximal eigenvalue $e^{P(t)}$ of the transfer operator \mathcal{L}_{t}, see $\$ 3.4$

Step 4 (Eigenvector). We can consider the left eigenvector of B^{t}

$$
\begin{equation*}
v^{t}=\left(v_{1,1}^{t}, \cdots, v_{1 m}^{t}, v_{21}^{t}, \cdots, v_{2, m}^{t} \cdots, v_{d 1}^{t}, \cdots v_{d m}^{t}\right) \tag{9}
\end{equation*}
$$

corresponding to the maximal eigenvalue and use it to define a function $\left(f_{1}^{t}, \cdots, f_{d}^{t}\right)$ $\in \mathcal{E}$ as a linear combination of Lagrange polynomials

$$
\begin{equation*}
f_{i}^{t}=\sum_{j=1}^{m} v_{i j}^{t} l p_{i, j}, \quad 1 \leq i \leq d \tag{10}
\end{equation*}
$$

Remark 3.9. In many cases the calculation can be simplified. More precisely, in the construction above, the points $y_{l, j} \equiv y_{l}$ do not depend on j. Therefore the matrices $B_{i j}(l, k)$ do not depend on j either, and instead of computing d^{2} matrices $B_{i j}(l, k)$ it is sufficient to compute d matrices $B_{i}^{t}(l, k)$.

It is not immediately clear that the polynomials given by (10) are positive. In Proposition 3.10 in 83.4 we show that for an iterated function scheme of analytic contractions the algorithm presented above gives positive functions provided m is sufficiently large. However, we don't have a priori bounds on m. Therefore, for every example we consider, we rigorously verify that the function constructed is positive using the following simple method (and if the function turns out not to be positive, we increase m).

Since our f_{j}^{t} 's are polynomials, their derivatives are easy to compute symbolically. We then take a uniform partition of the interval into 2^{10} intervals. For each interval (a, b) of the partition, we compute the following:
(1) The middle point $c=\frac{1}{2}(a+b)$ and half-length $r=\frac{1}{2}(b-a)$.
(2) The first $m-1$ derivatives at $c: f_{j}^{(k)}(c)$ for $k=1, \ldots, m-1$.
(3) The image of the interval under the m 'th derivative: $\left(a_{1}, b_{1}\right)=\left|f_{j}^{(m)}(a, b)\right|$, this is done using ball arithmetic. The inequality $\max _{(a, b)}\left|f_{j}^{(m)}\right| \leq b_{1}$ is guaranteed by the Arb library [27.
Then we can calculate a lower bound on f_{j} on (a, b) :
$f_{j}(x) \geq f_{j}(c)-\left(r\left|f_{j}^{(1)}(c)\right|+r^{2}\left|f_{j}^{(2)}(c)\right|+\ldots+r^{m-1}\left|f_{j}^{(m-1)}(c)\right|+r^{m} b_{1}\right)$ for all $x \in(a, b)$.
3.3. Bisection method. The approach described in the previous two sections can be used not only to verify given estimates $t_{0}<\operatorname{dim}_{H} X<t_{1}$ but also to compute the Hausdorff dimension of a limit set of a Markov iterated function scheme with any desired accuracy using a basic bisection method. Assume that given $\varepsilon>0$ we would like to find an interval $\operatorname{dim}_{H} X \in\left(d_{0}, d_{1}\right)$ of length $d_{1}-d_{0}=\varepsilon$.

We begin by fixing a value of m, say $m=6$. Then we pick $t_{0}<t_{1}$ for which we know $P\left(t_{0}\right)>1>P\left(t_{1}\right)$ (for a one-dimensional Iterated Function Scheme a safe choice is $t_{0}=0, t_{1}=1$) and compute $q=\frac{1}{2}\left(t_{0}+t_{1}\right)$. Using Lagrange-Chebyshev interpolation, the method described in 93.2 , we compute the matrix B^{q} defined by (8). We then calculate its left eigenvector v^{q} using the classical power method and construct the corresponding function $\underline{f}^{q} \in \mathcal{E}$ according to (10) as a sum of Lagrange polynomials. We verify that \underline{f}^{q} is positive, using the approach explained above. Having the function \underline{f}^{q} we compute the minima and the maxima of the ratio

$$
a^{\prime}:=\inf _{S} \frac{\mathcal{L}_{q} \underline{f}^{q}}{\underline{f}^{q}}, \quad b^{\prime}:=\sup _{S} \frac{\mathcal{L}_{q} \underline{f}^{q}}{\underline{f}^{q}} .
$$

Then there are three possibilities

Figure 4. The flow diagram summarizes how a computer program implements the bisection procedure to find a small interval $\left[t_{0}, t_{1}\right]$ of small size $\varepsilon>0$ containing $\operatorname{dim}_{H}(X)$
(1) if $a^{\prime}>1$ we deduce by Lemma 3.3 that $\operatorname{dim}_{H} X \geq q$ and move the left bound of the interval to $t_{0}=q$,
(2) if $b^{\prime}<1$ we deduce from Lemma 3.3 that $\operatorname{dim}_{H} X \leq q$ and move the right bound of the interval to $t_{1}=q$,
(3) if $a^{\prime} \leq 1 \leq b^{\prime}$ we increase m,
and repeat the process described above, see Figure 4 for a flowchart.
3.4. The convergence of the algorithm. In this section we show that our method gives estimates on the dimension which are arbitrarily close to the true value, thus opening up the possibility of arbitrarily close estimates with further computation.

All of the examples we consider in the present work have an iterated scheme consisting of one-dimensional real analytic contractions. For simplicity we state Proposition 3.10 for a single interval I, which corresponds to the Bernoulli case with $d=1$ in 93.2 , but it will be clear how to extend this case to the more general Markov setting.

Proposition 3.10. Let $T_{1}, \ldots, T_{d}: I \rightarrow I$ be an iterated function scheme with real analytic contractions with $0<\inf _{x \in I}\left|T_{j}^{\prime}(x)\right| \leq \sup _{x \in I}\left|T_{j}^{\prime}(x)\right|<1$ for $j=1, \ldots$, d. Assume that $P(t) \neq 0$ (i.e. $\operatorname{dim}_{H}(X) \neq t$). Then for any m sufficiently large the polynomial f^{t} defined by (10) satisfies one of the inequalities of Lemma 3.3, in other words we have either $\inf _{I} \frac{\mathcal{L}_{t} f^{t}}{f^{t}}>1$ or $\sup _{I} \frac{\mathcal{L}_{t} f^{t}}{f^{t}}<1$.

The proof of Proposition 3.10 which we will give here consists of two steps: The first step is to construct a subspace of analytic functions in $C^{\alpha}(I)$ such that the restriction of the transfer operator onto it has the right spectral properties. The second step is to construct an approximation of the operator acting on the subspace of analytic functions by a finite rank operator acting on the subspace of polynomials of degree m. We begin our preparations for the proof of Proposition 3.10 by introducing the subspace of analytic functions and defining the operator there. First, we need to introduce a suitable domain of analyticity.

Definition 3.11. Given $\rho>1$ we define an ellipse with the foci 0 and 1 by

$$
\begin{equation*}
\partial U_{\rho}=\left\{z=\frac{1}{2}+\frac{1}{4}\left(\rho e^{i \theta}+\frac{e^{-i \theta}}{\rho}\right): 0 \leq \theta<2 \pi\right\} . \tag{11}
\end{equation*}
$$

It is often referred to as a Bernstein ellipse [52].
In the setting and under the hypothesis of Proposition 3.10 without loss of generality we may assume the following:
(a) There exists $\rho>1$ such that each contraction T_{j} extends to a complex domain $U_{\rho} \supset[0,1]$ bounded by the ellipse ∂U_{ρ}, such that $T_{j}^{\prime}(z) \neq 0$ for any $z \in U_{\rho}$; and
(b) The closures $\operatorname{cl}\left(T_{j} U_{\rho}\right)$ of the images $T_{j} U_{\rho}$ satisfy $\operatorname{cl}\left(T_{i} U_{\rho}\right) \subset U_{\rho}$ for all $j=1$, \ldots, k.

It is clear that an ellipse satisfying (a) and (b) exists. More precisely, since we assume real analyticity of the T_{j} we can choose an elliptical domain sufficiently close to $[0,1]$ and by the hypotheses of Proposition 3.10 we can deduce (a). Since the T_{j} contract we can choose the ellipse in (a) sufficiently close to I (by making ρ close to 1) that (b) holds. In what follows, we shall simplify notation and omit the index ρ.

After introducing the domain of analyticity, we now define a Banach space of analytic functions.

Definition 3.12. Let H^{∞} denote the space of bounded analytic functions on U_{ρ} with the norm $\|f\|=\sup _{z \in U_{\rho}}|f(z)|$.

The space H^{∞} is special case of Hardy spaces (hence the choice of notation), and it is known to be a Banach space [33]. For any function $f \in H^{\infty}$ the restriction $\left.f\right|_{I}$ is a continuously differentiable function on I and, in particular, it is contained in $C^{\alpha}(I)$ for any $0<\alpha \leq 1$. More precisely, we can choose a simple closed curve $\Gamma \subset U_{\rho}$ close to ∂U_{ρ} and use Cauchy's theorem to write the derivative for the restriction $\left.f\right|_{I}$ by

$$
f^{\prime}(x)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{(z-x)^{2}} d z
$$

which is continuous as a function of $x \in I$.
Note that T_{j}^{\prime} is real analytic and non-vanishing on I and the same holds true for $\left|T_{j}^{\prime}\right|^{t}$. Thus by slight abuse of notation we may also denote by $\left|T_{j}^{\prime}(z)\right|^{t}$ its analytic extension to the domain bounded by the sufficiently small Bernstein ellipse U_{ρ}. Therefore we may now introduce a restriction of the transfer operator (11) onto H^{∞}.

Definition 3.13. For $t>0$, the transfer operator $\mathcal{L}_{t}: H^{\infty} \rightarrow H^{\infty}$ will again be given by the formula

$$
\begin{equation*}
\left[\mathcal{L}_{t} f\right](z)=\sum_{j=1}^{k}\left|T_{j}^{\prime}(z)\right|^{t} f\left(T_{j} z\right), \quad z \in U_{\rho} \tag{12}
\end{equation*}
$$

The operator $\mathcal{L}_{t}: H^{\infty} \rightarrow H^{\infty}$ given by (12) is actually compact and even nuclear [39, [46] although this will not be needed. We will use the following simpler fact instead.

Lemma 3.14. The operator $\mathcal{L}_{t}: H^{\infty} \rightarrow H^{\infty}$ shares the same maximal eigenvalue $\lambda=e^{P(t)}$ as $\mathcal{L}_{t}: C^{\alpha}(I) \rightarrow C^{\alpha}(I)$ and the rest of the spectrum is contained in a disk of strictly smaller radius.

Proof. Indeed, if we let $\mathbb{1}$ denote the constant function on $[0,1]$ then by Lemma 2.12 we see that $e^{-n P(t)} \mathcal{L}_{n}^{t} \mathbb{1}$ converges uniformly to $\eta(\mathbb{1}) \in\langle\underline{h}\rangle$. However, since $\mathbb{1} \in$ H^{∞} and \mathcal{L}_{t}^{n} preserves H^{∞} we can conclude that $\eta(\mathbb{1}) \in H^{\infty}$ and thus \underline{h} has an extension in H^{∞} and $e^{P(t)}$ is a simple eigenvalue for $\mathcal{L}_{t}: H^{\infty} \rightarrow H^{\infty}$. Similarly, any eigenvalue for $\mathcal{L}_{t}: H^{\infty} \rightarrow H^{\infty}$ must be an eigenvalue for $\mathcal{L}_{t}: C^{\alpha}(I) \rightarrow C^{\alpha}(I)$ since $H^{\infty} \subseteq C^{\alpha}(I)$. Therefore, since $\mathcal{L}_{t}: C^{\alpha}(I) \rightarrow C^{\alpha}(I)$ has the rest of the spectrum in a disk of the radius strictly small than $e^{P(t)}$ this property persists for the operator on H^{∞}.

This completes the first step of the proof of Proposition 3.10 outlined above.
Recall that the Lagrange polynomials $l p_{1}, \ldots, l p_{m}$ given by (5) form a basis of the subspace of polynomials of degree $m-1$ in H^{∞}; in $\$ 3.2$ we named this subspace \mathcal{E}. Let $\mathcal{P}_{m}: H^{\infty} \rightarrow \mathcal{E}$ be the natural projection given by the collocation formula

$$
\begin{equation*}
\left[\mathcal{P}_{m} f\right](x)=\sum_{j=1}^{m} f\left(x_{j}\right) l p_{j}(x), \quad x \in I \tag{13}
\end{equation*}
$$

We see immediately that the restriction $\left.\mathcal{P}_{m}\right|_{\mathcal{E}}$ of \mathcal{P}_{m} to \mathcal{E} is the identity.
The second step is to approximate the transfer operator on H^{∞} by a finite rank operator. We now recall an estimate on the norm of the difference $\left\|\mathcal{L}_{t}-\mathcal{L}_{t} \mathcal{P}_{m}\right\|_{H^{\infty}}$.
Lemma 3.15 (See [5, Theorem 3.3]). For the transfer operator on H^{∞} given by (12) there exist $C>0$ and $0<\theta<1$ such that $\left\|\mathcal{L}_{t}-\mathcal{L}_{t} \mathcal{P}_{m}\right\|_{H^{\infty}} \leq C\left\|\mathcal{L}_{t}\right\|_{H} \infty \theta^{m}$ for $m \geq 1$.

This is also implicit in [55, §2.2].
Remark 3.16. The proof of Lemma 3.15 relies on the fact that for any function f analytic on a domain bounded by a Bernstein ellipse the image $\mathcal{L}_{t} f$ is analytic on a larger domain bounded by another Bernstein ellipse. This form of analyticity improving property is also essential in showing that \mathcal{L}_{t} is nuclear [46].

It follows from Lemmas 3.14 3.15 and classical analytic perturbation theory (see the book of Kato [31, Chapter VII]) that we have the following:
Corollary 3.17. For any $\varepsilon>0$ there exists $\delta>0$ sufficiently small such that for all m sufficiently large we have
(1) $\mathcal{L}_{t} \mathcal{P}_{m}: H^{\infty} \rightarrow H^{\infty}$ has a simple maximal eigenvalue λ_{m} with $\left|\lambda_{m}-\lambda\right|<\varepsilon$;
(2) The rest of the spectrum of $\mathcal{L}_{t} \mathcal{P}_{m}$ is contained in $\{z \in \mathbb{C}:|z|<\lambda-2 \delta\}$; and
(3) The eigenfunctions h_{m} of $\mathcal{L}_{t} \mathcal{P}_{m}$ converge to the eigenfunction h of \mathcal{L}_{t}, more precisely $\left\|h_{m}-h\right\|_{H^{\infty}} \rightarrow 0$ as $m \rightarrow \infty$.
(4) The exists a constant $c>0$, independent of m, such that the eigenfunction h_{m} for $\mathcal{L}_{t} \mathcal{P}_{m}$ corresponding to λ_{m} satisfies $\left|h_{m}(z)\right|>c$ for all $z \in U_{\rho}$.

We are now ready to prove Proposition 3.10
Proof of Proposition 3.10. It follows from (13) that the restriction $\mathcal{P}_{m} \mathcal{L}_{t} \mid \mathcal{E}$ to \mathcal{E} is a finite rank operator $\mathcal{P}_{m} \mathcal{L}_{t}: \mathcal{E} \rightarrow \mathcal{E}$ given by

$$
\mathcal{P}_{m} \mathcal{L}_{t}: f \mapsto \sum_{j=1}^{n}\left[\mathcal{L}_{t} f\right]\left(x_{j}\right) \cdot l p_{j} .
$$

On the basis of Lagrange polynomials $\left\{l p_{j}\right\}_{j=1}^{m}$ the operator $\mathcal{P}_{m} \mathcal{L}_{t}$ is given by the $m \times m$-matrix $B^{t}=B^{t}(j, k), j, k=1, \ldots, m$, where

$$
B^{t}(j, k)=\sum_{i=1}^{m}\left[\mathcal{L}_{t} l p_{j}\right]\left(x_{i}\right) \cdot l p_{i}\left(x_{k}\right)=\left[\mathcal{L}_{t} l p_{j}\right]\left(x_{k}\right) \quad \text { for } 1 \leq j, k \leq m
$$

which agrees with the matrix given by (7) in a special case $d=1$. A straightforward computation gives that the eigenvalue λ_{m} for $\mathcal{L}_{t} \mathcal{P}_{m}$ is also an eigenvalue for the matrix B^{t} corresponding to the eigenvector $\mathcal{P}_{m} h_{m} \in \mathcal{E}$. Since we have chosen the basis of Lagrange polynomials to define the matrix B^{t}, we conclude that

$$
\left[\mathcal{P}_{m} h_{m}\right](x)=\sum_{j=1}^{m} v_{j} l p_{j}(x)
$$

where $\left(v_{1}, \ldots, v_{m}\right)$ is the eigenvector of B^{t}.
To see that $\mathcal{P}_{m} h_{m}$ is a positive function, we apply a classical result by Chebyshev [52], which gives

$$
\begin{equation*}
\sup _{I}\left|h_{m}-\mathcal{P}_{m} h_{m}\right| \leq \frac{1}{2^{m-1} m!} \sup _{I}\left|h_{m}^{(m)}\right| . \tag{14}
\end{equation*}
$$

Since $h_{m} \rightarrow h$ as $m \rightarrow \infty$ in the space of analytic functions H^{∞}, the derivatives $h_{m}^{(m)}$ are uniformly bounded on I. Therefore the positivity of h_{m} on I guarantees the positivity of the projection $\mathcal{P}_{m} h_{m} \in \mathcal{E}$ on I for sufficiently large m.

It remains to show that one of the inequalities in Lemma 3.3 holds true for $\mathcal{P}_{m} h_{m}$. Without loss of generality we may assume that $P(t)>0$, which implies $\frac{\mathcal{L}_{t} h}{h}=$ $e^{P(t)}>1$. Therefore the part (4) of Corollary 3.17] together with (14) gives $\| \mathcal{P}_{m} h_{m}-$ $h \|_{H^{\infty}} \rightarrow 0$ as $m \rightarrow \infty$. Hence for m sufficiently large we shall have $\frac{\mathcal{L}_{t} \mathcal{P}_{m} h_{m}}{\mathcal{P}_{m} h_{m}}>1$ everywhere on I. The case $P(t)<0$ is similar.

This completes the proof of Proposition 3.10
Remark 3.18. To avoid confusion we should stress that positivity of the polynomial $P_{m} h_{m} \in \mathcal{E}$ and positivity of the entries of B^{t} are not related; furthermore, in the examples we consider the matrices B^{t} typically have entries of both signs.

The convergence of the algorithm we presented in $\$ 3.2$ - $\$ 3.3$ follows immediately from Proposition 3.10

Corollary 3.19. After applying the bisection method sufficiently many times we obtain an approximation to $\operatorname{dim}_{H} X$ which is arbitrarily close to the true value.

Remark 3.20. We would like to note that although Proposition 3.10 guarantees the convergence of our algorithm, it doesn't give any explicit estimates on how large m one will need to take in practical realisation. Our heuristic observation shows that it takes of order $N=-\frac{\log \varepsilon}{\log 2}$ iterations of the bisection method to find an interval of length ε containing the value of $\operatorname{dim}_{H} X$ for a scheme of analytic contractions.

For instance, for many of our examples it is sufficient to take $m=6$ to obtain an estimate accurate to 4 decimal places which makes the matrices small and the computation very fast. However, when we require greater accuracy we need to choose m larger to provide test functions for Lemma 3.3 which will be a more close approximation of the eigenfunction. For example, to verify $\operatorname{dim}_{H}\left(E_{2}\right)$ to over 200 decimal places we choose $m=275$.

Example 3.21 (Contractions with less regularity). When the contractions have less regularity the present interpolation method is not very efficient. For instance Falk and Nussbaum [9, §3.3] considered the limit set X corresponding to the contractions

$$
T_{1}(x)=\frac{x+a x^{7 / 2}}{3+2 a} \quad \text { and } \quad T_{2}(x)=\frac{x+a x^{7 / 2}}{3+2 a}+\frac{2+a}{3+2 a}
$$

for $0<a<1$. For example, when $a=\frac{1}{2}$ they show that

$$
\mathbf{0 . 7 3 3 4 7 4 5 7 3 0} 00780 \leq \operatorname{dim}_{H}(X) \leq \mathbf{0 . 7 3 3 4 7 4 6 2 2 2} 22678,
$$

giving an estimate accurate to 6 decimal places. By increasing the number of Chebyshev nodes to $m=100$ we obtain test functions that using Lemma 3.3 give

$$
\operatorname{dim}_{H}(X)=0.73347461515 \pm 1.5 \cdot 10^{-10}
$$

This is a modest improvement in accuracy to 9 decimal places.

4. Applications

We will now apply the method in $\$ 3$ to the problems described in $\$ 1$
4.1. Markov-Lagrange theorems. The bounds on the Hausdorff dimension on various parts of the difference of the Markov and Lagrange spectra as stated in Theorem 1.3 are built on the comprehensive analysis of Matheus and Moreira 35, where the Hausdorff dimension bounds are given in terms of the Hausdorff dimension of certain linear-fractional Markov Iterated Function Schemes.

Therefore we set ourselves the task of establishing with an accuracy of $\varepsilon=10^{-5}$, say, the Hausdorff dimension of the limit sets involved. We need to consider five different Iterated Function Schemes corresponding to five cases of Theorem 1.3,

We begin by formulating a general framework which embraces many of our numerical results. In the proof of Theorem 1.3 the set X_{M} is given in terms of sequences from an alphabet $\{1,2, \ldots, d\}$ with certain forbidden words \underline{w} (of possibly varying lengths). For example, in Parts (2) and (3) the basic forbidden words are of length 2 and Markov condition is easy to write. However, in Parts (1), (4) and (5) the basic forbidden words are of length 3 and 4. If the maximum length of a word is N, then we can consider the alphabet of "letters"
$\underline{w}=w_{1} w_{2} \cdots w_{N-1} \in\{1,2, \cdots, d\}^{N-1}$, which are sequences of length $N-1$ and define a $d N \times d N$ matrix M^{\prime}, where

$$
M_{j k}= \begin{cases}1 & \text { if } w_{2}^{j} \cdots w_{N-1}^{j}=w_{1}^{k} \cdots w_{N-2}^{k} \text { and } w_{1}^{j} \cdots w_{N-1}^{j} w_{N-1}^{k} \text { is allowed } \\ 0 & \text { otherwise }\end{cases}
$$

where we say that the word is allowed if it doesn't contain any forbidden subwords. We can then define a matrix M by changing the entry in the row indexed by a word $i_{1} i_{2} \cdots i_{N}$ and column indexed by $j_{1} j_{2} \cdots j_{N}$ to 0 whenever the concatenation $i_{1} i_{2} \cdots i_{N-1} j_{N-1}$ contains any of the forbidden words as a substring 6 The transformation associated to the word \underline{w} is defined by the first term, i.e., $T_{\underline{w}}=T_{w_{1}}$.
4.1.1. Proof of Theorem 1.3. We can divide the proof of Theorem 1.3 into its five constituent parts.
Part (1): $(\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{5}, \sqrt{13})$. It is proved in \S B. 1 of [35] that

$$
\begin{equation*}
\operatorname{dim}_{H}(\mathcal{M} \backslash \mathcal{L} \cap(\sqrt{5}, \sqrt{13})) \leq 2 \operatorname{dim}_{H}\left(X_{M}\right) \tag{15}
\end{equation*}
$$

where $X_{M} \subset[0,1]$ is a set of numbers whose continued fraction expansions contain only digits 1 and 2 , except that subsequences 121 and 212 are not allowed. We can relabel the contractions $T_{i j}, i, j \in\{1,2\}$ for the Markov iterated function scheme on $[0,1]$ as

$$
T_{1}(x)=T_{2}(x)=\frac{1}{1+x}, T_{3}(x)=T_{4}(x)=\frac{1}{2+x} \text { and } M=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) .
$$

The associated transfer operator is acting on the Hölder space of functions $C^{\alpha}(S)$ where $S=\oplus_{j=1}^{4}[0,1] \times\{j\}$. We choose $m=8$ and apply the bisection method starting with the bounds $t_{0}^{\prime}=0.35, t_{1}^{\prime}=0.38$. It gives the estimate

$$
\begin{equation*}
t_{0}:=0.3640546<\operatorname{dim}_{H} X_{M}<0.3640548 \tag{16}
\end{equation*}
$$

To justify the bounds, the functions $\underline{f}=\left(f_{1}, \ldots, f_{4}\right), \underline{g}=\left(g_{1}, \ldots, g_{4}\right) \in C^{\alpha}(S)$ are explicitly computed using eigenvectors of the matrices $B^{t_{0}}$ and $B^{t_{1}}$, respectively. These are polynomials of degree 7 given by

$$
f_{j}(x)=\sum_{k=0}^{7} a_{k}^{j} x^{k}, \quad g_{j}=\sum_{k=0}^{7} b_{k}^{j} x^{k}, \quad j=1, \ldots, 4,
$$

whose coefficients a_{k}^{j}, b_{k}^{j} are tabled in A.1.1. We can obtain the following inequalities

$$
\begin{equation*}
\sup _{S} \frac{\mathcal{L}_{t_{1}} \underline{f}}{\underline{f}}<1-10^{-9} ; \quad \inf _{S} \frac{\mathcal{L}_{t_{0}} \underline{g}}{\underline{g}}>1+10^{-7} \tag{17}
\end{equation*}
$$

and the bound (16) follows from Lemma 3.3. Substituting the bounds from (16) into the inequality (15) we obtain

$$
\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{5}, \sqrt{13}))<0.7281096
$$

The estimates from (16) confirm the conjectured upper bound of $\operatorname{dim}_{H}\left(X_{M}\right)<$ 0.365 obtained in [35, §B.1] using the periodic point method.

[^3]Part $(2):(\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{13}, 3.84)$. In [35, §B.2] it is shown that

$$
\begin{equation*}
\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{13}, 3.84))<0.281266+\operatorname{dim}_{H} X_{M} \tag{18}
\end{equation*}
$$

where $X_{M} \subset[0,1]$ is a set of numbers whose continued fraction expansions contain only digits $1,2,3$, except subsequences 13 and 31 are not allowed. This is also the limit set of the IFS

$$
T_{1}(x)=\frac{1}{1+x}, \quad T_{2}(x)=\frac{1}{2+x}, T_{3}(x)=\frac{1}{3+x}, \quad M=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) .
$$

Following the same strategy as above, with $S=\oplus_{j=1}^{3}[0,1] \times\{j\}$ and $m=8$, and using $t_{0}^{\prime}=0.56$ and $t_{1}^{\prime}=0.58$ as initial guesses for bisection method ${ }^{7}$ we get the following upper and lower bounds

$$
\begin{equation*}
t_{0}:=0.5739612 \leq \operatorname{dim}_{H}\left(X_{M}\right) \leq 0.5739617=: t_{1} . \tag{19}
\end{equation*}
$$

The leading eigenvectors of the corresponding matrices $B^{t_{0}}$ and $B^{t_{1}}$ give polynomial functions

$$
f_{j}(x)=\sum_{k=0}^{7} a_{k}^{j} x^{k}, \quad g_{j}=\sum_{k=0}^{7} b_{k}^{j} x^{k}, \quad j=1,2,3,
$$

whose coefficients a_{k}^{j}, b_{k}^{j} are tabled in A.1.2. We can obtain the following inequalities

$$
\begin{equation*}
\sup _{S} \frac{\mathcal{L}_{t_{1}} \underline{f}}{\underline{f}}<1-10^{-7} ; \quad \inf _{S} \frac{\mathcal{L}_{t_{0}} \underline{g}}{\underline{g}}>1+10^{-7} \tag{20}
\end{equation*}
$$

and the bound (19) follows from Lemma 3.3. Substituting the bounds from (19) into the inequality (18) we obtain

$$
\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{13}, 3.84))<0.855228
$$

The upper bound in estimate (19) confirms the conjectural bound $\operatorname{dim}_{H}\left(X_{M}\right)<$ 0.574 [35, §B.2] which has been obtained using the periodic point approach.

Part (3): $(\mathcal{M} \backslash \mathcal{L}) \cap(3.84,3.92)$. The following inequality was established in 35, §B.3]:

$$
\begin{equation*}
\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(3.84,3.92))<\operatorname{dim}_{H}\left(X_{M}\right)+0.25966 \tag{21}
\end{equation*}
$$

where $X_{M} \subset[0,1]$ is the set of all numbers such that its continued fraction expansions contain only digits 1,2 , and 3 with an extra condition that subsequences 131, 132, 231, and 313 are not allowed. This corresponds to a Markov IFS with 9 contractions

$$
T_{i j}=\frac{j+x}{1+i(j+x)}, \quad i, j \in\{1,2,3\}
$$

with Markov condition given by the 9×9 matrix

$$
M_{i j, k l}= \begin{cases}0 & \text { if }\{i j k, j k l\} \cap\{131,132,231,313\} \neq \varnothing \\ 1 & \text { otherwise }\end{cases}
$$

Ordering the 2-element sequences ij in lexicographical order, we see that some columns of the resulting 9×9 matrix agree, more precisely, $M(j, 1) \equiv M(j, 2)$ and $M(j, 4) \equiv M(j, 5) \equiv M(j, 6)$ for all $1 \leq j \leq 9$. Therefore, the matrix B^{t} defined

[^4]by (8) has the same property. Let $v^{t}=\left(\overline{v_{1}}, \ldots, \overline{v_{d}}\right)$, where $\bar{v}_{j} \in \mathbb{R}^{m}$ be its left eigenvector corresponding to the leading eigenvalue λ. Then
$$
\sum_{k=1}^{d} \overline{v_{k}} M(k, j) \cdot B_{k}^{t}=\lambda \overline{v_{j}}, \quad 1 \leq j \leq 9
$$

Therefore the equality between matrix columns implies $\overline{v_{1}}=\overline{v_{2}}$ and $\overline{v_{4}}=\overline{v_{5}}=\overline{v_{6}}$.
The bisection method with $m=8$ gives the following lower and upper bounds on dimension

$$
\begin{equation*}
t_{0}:=0.6113922<\operatorname{dim}_{H} X_{M}<0.6113925=: t_{1} \tag{22}
\end{equation*}
$$

The coefficients of the test functions $\underline{f}=\left(f_{1}, \ldots, f_{9}\right)$ for $\mathcal{L}_{t_{1}}$ and $\underline{g}=\left(g_{1}, \ldots, g_{9}\right)$ for $\mathcal{L}_{t_{0}}$ which are polynomials of degree $\overline{7}$ are tabled in A.1.3 The equalities between elements of the eigenvectors imply $f_{1}=f_{2}, f_{4}=f_{5}=f_{6}$ and $g_{1}=g_{2}, g_{4}=g_{5}=g_{6}$. Using ball arithmetic we get bounds for the ratios

$$
\begin{equation*}
\sup _{S} \frac{\mathcal{L}_{t_{1}} \underline{f}}{\underline{f}}<1-10^{-7} ; \quad \inf _{S} \frac{\mathcal{L}_{t_{0}} \underline{g}}{\underline{g}}>1+10^{-7} \tag{23}
\end{equation*}
$$

and the estimates (22) follow from Lemma 3.3 Substituting the upper bound from (22) into the inequality (21) we obtain

$$
\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(3.92,4.01))<0.8710525
$$

The estimates (22) confirm the heuristic bound of $\operatorname{dim}_{H}\left(X_{M}\right)<0.612$ given in [35, §B.3].

In the remaining two cases, corresponding to intervals $(3.92,4.01)$ and $(\sqrt{20}, \sqrt{21})$ the Markov condition is a little more complicated and instead of numbering the contractions defining the Iterated Function Scheme by single numbers it is more convenient to index them by pairs or triples.
Part (4): $\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(3.92,4.01))$. In [35, §B.4] the following inequality is proved:

$$
\begin{equation*}
\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(3.92,4.01))<\operatorname{dim}_{H}\left(X_{M}\right)+0.167655 \tag{24}
\end{equation*}
$$

where $X_{A} \subset[0,1]$ is the set of all numbers such that its continued fraction expansions contain only digits 1,2 , and 3 with an extra condition that subsequences 131, 313, 2312, and 2132 are not allowed. This corresponds to a Markov iterated function scheme

$$
T_{i j k}=\frac{1+j(k+x)}{i+(i j+1)(k+x)}, \quad i, j, k \in\{1,2,3\}
$$

with Markov condition given by the 27×27 matrix

$$
M(i j k, q r s)= \begin{cases}0 & \text { if }\{i j k, j k q, k q r, q r s\} \cap\{131,313\} \neq \varnothing, \text { or } \\ 0 & \text { if }\{i j k q, j k q r, k q r s\} \cap\{2312,2132\} \neq \varnothing \\ 1 & \text { otherwise. }\end{cases}
$$

Again we see that there are equalities between columns of the matrix M. In particular, for any triple $i j k$

$$
\begin{align*}
& M(i j k, 111)=M(i j k, 112)=M(i j k, 113), \\
& M(i j k, 121)=M(i j k, 122)=M(i j k, 123), \\
& M(i j k, 131)=M(i j k, 313)=0, \tag{25}\\
& M(i j k, 321)=M(i j k, 322)=M(i j k, 323), \\
& M(i j k, 331)=M(i j k, 332)=M(i j k, 333), \\
& M(i j k, 211)=M(i j k, 2 r s) \quad 1 \leq r, s \leq 3 .
\end{align*}
$$

As in the previous case, these equalities imply that the corresponding components of the eigenfunctions are identical. The bisection method with $m=8$ and $\varepsilon=6 \cdot 10^{-8}$ gives the following lower and upper bounds on dimension

$$
\begin{equation*}
t_{0}:=0.6433544<\operatorname{dim}_{H} X_{A}<0.6433548=: t_{1} \tag{26}
\end{equation*}
$$

The coefficients of the test functions \underline{f} for $\mathcal{L}_{t_{1}}$ and g for $\mathcal{L}_{t_{0}}$ which are polynomials of degree 7 are tabled in \S A.1.4 Using $\overline{\text { ball }}$ arithmetic we get bounds for the ratios

$$
\begin{equation*}
\sup _{S} \frac{\mathcal{L}_{t_{1}} \underline{f}}{\underline{f}}<1-10^{-7} ; \quad \inf _{S} \frac{\mathcal{L}_{t_{0}} g}{\underline{g}}>1+10^{-7} \tag{27}
\end{equation*}
$$

and the estimates (26) follow from Lemma 3.3. Substituting the upper bound from (26) into the inequality (24) we obtain

$$
\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{20}, \sqrt{21}))<0.8110098
$$

The upper bound from (26) makes rigorous the heuristic bound $\operatorname{dim}_{H}\left(X_{M}\right)<0.65$ in [35, §B.5] which was based on the non-validated periodic point method.

Remark 4.1. In 35] there are also bounds on $\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(4.01, \sqrt{20}))$ which use estimates on $\operatorname{dim}_{H}\left(X_{1,2,3}\right)$ due to Hensley. We reconfirm and improve these in Table 3

Part (5): $\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{20}, \sqrt{21}))$. In [35, §B.5] Matheus and Moreira established the following inequality:

$$
\begin{equation*}
\operatorname{dim}_{H}\left((\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{20}, \sqrt{21})<\operatorname{dim}_{H}\left(X_{M}\right)+0.172825\right. \tag{28}
\end{equation*}
$$

where $X_{M} \subset[0,1]$ is a set of numbers whose continued fraction expansions contain only digits $1,2,3$, and 4 , except that subsequences $14,24,41$ and 42 are not allowed. This is the limit set of the Markov Iterated Function Scheme

$$
T_{1}(x)=\frac{1}{1+x}, T_{2}(x)=\frac{1}{2+x}, T_{3}(x)=\frac{1}{3+x}, T_{4}(x)=\frac{1}{4+x} ; M=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) .
$$

The bisection method with $m=10$ and $\varepsilon=6 \cdot 10^{-8}$ as before and the initial guess $t_{0}^{\prime}=0.7, t_{1}^{\prime}=0.71$ gives upper and lower bounds on the dimension:

$$
\begin{equation*}
t_{0}:=0.7093943<\operatorname{dim}_{H} X_{M}<0.7093945=: t_{1} \tag{29}
\end{equation*}
$$

The coefficients of the test functions \underline{f} for $\mathcal{L}_{t_{1}}$ and \underline{g} for $\mathcal{L}_{t_{0}}$ which are polynomials of degree 9 are tabled in $\$$ A.1.5. Using ball arithmetic we get bounds for the ratios

$$
\begin{equation*}
\sup _{S} \frac{\mathcal{L}_{t_{1}} f}{\underline{f}}<1-10^{-7} ; \quad \inf _{S} \frac{\mathcal{L}_{t_{0}} \underline{g}}{\underline{g}}>1+10^{-8} \tag{30}
\end{equation*}
$$

and the estimates (29) follow from Lemma 3.3. Substituting the upper bound from (29) into the inequality (28) we obtain

$$
\operatorname{dim}_{H}((\mathcal{M} \backslash \mathcal{L}) \cap(3.84,3.92))<0.8822195
$$

The upper bound from (29) confirms a heuristic estimate $\operatorname{dim}_{H}\left(X_{M}\right)<0.715$ (in [35, §B.6]) obtained using the periodic points method.
Remark 4.2. We can very easily increase the accuracy significantly, at the expense of greater computation, but the present estimates seem sufficient for our needs.
Remark 4.3. The initial calculations were carried out on a MacBook Pro with a 2.8 GHz Quad-Core Intel in with 16 GB DDR3 2133 MHz RAM running MacOS Catalina using Mathematica. The bounds have been confirmed rigorously using a C program written by the second author based on Arb library for arbitrary precision ball arithmetic.

Remark 4.4. The periodic point method does not allow such accurate estimates on the computational error. In particular, it is possible to estimate the error in the case of Bernoulli iterated function schemes, but the estimate is ineffective for Markov systems. Similarly, for the McMullen algorithm [40 the errors are more difficult to estimate.
4.1.2. Lower bounds and the proof of Theorem 1.5. A further estimate on the Hausdorff dimension of the difference of the Lagrange and Markov spectra uses the dimension of the Cantor set of numbers in $(0,1)$ whose continued fraction expansion contains only digits 1 and 2:

$$
\begin{equation*}
E_{2}:=\left\{\left[0 ; a_{1}, a_{2}, a_{3}, \ldots\right] \mid a_{n} \in\{1,2\} \text { for all } n \in \mathbb{N}\right\} \tag{31}
\end{equation*}
$$

In particular, Matheus and Moreira [35] showed that $\mathcal{M} \backslash \mathcal{L}$ contains the image under a Lipschitz bijection of the set E_{2} [35] Theorem 5.3] from which they immediately deduce the following.
Theorem 4.5 (Matheus-Moreira). $\operatorname{dim}_{H}(\mathcal{M} \backslash \mathcal{L}) \geq \operatorname{dim}_{H}\left(E_{2}\right)$.
Remark 4.6. Theorem 4.5 is a corollary of the slightly stronger local result that $\operatorname{dim}_{H}(\mathcal{M} \backslash \mathcal{L} \cap(3.7096,3.7097)) \geq \operatorname{dim}_{H}\left(E_{2}\right)$, cf. [35, Corollary 5.4].

It is easy to see that the set E_{2} is the limit set for the contractions T_{1}, T_{2} : $[0,1] \rightarrow[0,1]$ defined by

$$
T_{1}(x)=\frac{1}{1+x} \text { and } T_{2}(x)=\frac{1}{2+x} .
$$

In [24] there is a validated value for the Hausdorff dimension of $\operatorname{dim}_{H}\left(E_{2}\right)$ to 100 decimal places using periodic points method and a careful analysis of the error bounds. In this case the error estimates are easier because the system is Bernoulli. In [40] Theorem 4.5 is combined with the numerical value from [24] to give a lower bound on the dimension of the difference of the Markov and Lagrange spectrum.

We can use the approach in 93 of this note to rigorously (re-)verify this bound. We begin with the lower bound. We choose $S=[0,1]$ since the iterated function scheme is Bernoulli. Let $m=120$ and

$$
\begin{align*}
t_{0}^{\prime}= & 0.53128050627720514162446864736847178549305910901839 \tag{32}\\
& 87798883978039275295356438313459181095701811852398 \\
t_{1}^{\prime}= & t_{0}+10^{-100} \tag{33}
\end{align*}
$$

(taken from [24]). We can then use the Chebyshev-Lagrange interpolation to find a test function $g:[0,1] \rightarrow \mathbb{R}$ which is a polynomial of degree 119 . We can then check that

$$
\inf _{S} \frac{\mathcal{L}_{t_{0}^{\prime}} g}{g}>1+10^{-100}
$$

and then applying Lemma 3.3 we can deduce that $\operatorname{dim}_{H}\left(E_{2}\right)>t_{0}$.
We proceed similarly to verify the upper bound t_{1}^{\prime}. Namely, the ChebyshevLagrange interpolation gives another test function $f:[0,1] \rightarrow \mathbb{R}$ which is also a polynomial of degree 119 with the property that

$$
\sup _{S} \frac{\mathcal{L}_{t_{1}^{\prime}} f}{f}<1-10^{-101} .
$$

Thus by Lemma 3.3 we conclude that $\operatorname{dim}_{H}\left(E_{2}\right)<t_{1}^{\prime}$.
Remark 4.7. This example demonstrates that, despite the fact that at first sight estimating the ratio of the image of the test function and the function itself could be potentially very time consuming and challenging, for many systems of particular interest, the derivative $\left(\frac{\mathcal{L}_{q} f}{f}\right)^{\prime}$ turns out to decrease sufficiently fast as $m \rightarrow \infty$ to make realisation possible in practice.

In 24 the estimates involved computing $2^{25}=33,554,432$ periodic points up to period 25 and the exponentially increasing amount of data needed makes it impractical to improve the rigorous estimate on $\operatorname{dim}_{H}\left(E_{2}\right)$ significantly. On the other hand, using the approach via Chebyshev-Lagrange interpolation and Lemma 3.3 we were able to confirm this result with the same accuracy using only two 120×120 matrices, and it would require about 600 matrices (of increasing size from 6×6 up to 120×120) in total to recompute this estimate starting with the initial guess $t_{0}=0$ and $t_{1}=1$. This represents a significant saving in memory usage at expense of computing 400 coefficients for the derivative estimates.

Moreover, we can now easily improve on the estimate using the bisection method combined with interpolation and Lemma 3.3 where the amount of data required by our analysis grows linearly with the accuracy required. Indeed, letting $m=270$ and $\varepsilon=10^{-200}$ we apply the bisection method choosing t_{0}^{\prime} given by (32) and t_{1}^{\prime} given by (33) as initial guess. It gives

$$
\begin{align*}
t_{0}= & 0.531280506277205141624468647368471785493059109018398779888397 \tag{34}\\
& 803927529535643831345918109570181185239880428057243075187633 \\
& 422389339480822309017869596532871223546429979489663784033728 \\
& 7630454110150804519139697680712,
\end{align*}
$$

and

$$
\begin{equation*}
t_{1}=t_{0}+2 \cdot 10^{-201} \tag{35}
\end{equation*}
$$

Then we can use the interpolation method to construct test functions f and g which are polynomials of degree 269 defined on the unit interval ${ }^{8}$

[^5]We can then explicitly compute

$$
\inf _{S} \frac{\mathcal{L}_{t_{0}} f}{f}>1+10^{-213}, \quad \sup _{S} \frac{\mathcal{L}_{t_{1}} g}{g}<1-10^{-211}
$$

which implies that $t_{0} \leq \operatorname{dim}_{H}\left(E_{2}\right) \leq t_{1}$.
4.2. Zaremba theory. In $\mathbb{1}$ we described interesting results of BourgainKontorovich [2], Huang [20], and Kan [28], [29], [30], which made progress towards the Zaremba Conjecture. These results have a slightly more general formulation, which we will now recall. For a finite alphabet set $A \subset \mathbb{N}$ consider the iterated function scheme

$$
T_{n}:[0,1] \rightarrow[0,1], \quad T_{n}(x)=\frac{1}{x+n} \text { for } n \in A
$$

and denote its limit set by X_{A}.
For any $N \in \mathbb{N}$ we can in addition consider a set

$$
\begin{aligned}
& D_{A}(N):= \\
& \qquad\left\{q \in \mathbb{N} \mid 1 \leq q \leq N, \exists p \in \mathbb{N},(p, q)=1 ; a_{1}, \cdots, a_{n} \in A \text { with } \frac{p}{q}=\left[0 ; a_{1}, \cdots, a_{n}\right]\right\} .
\end{aligned}
$$

In particular, when $A=\{1,2, \cdots, m\}$ then D_{A} reduces to D_{m} as defined in $\S 1$,
We begin with the density one result [20], [21].
Theorem 4.8 (Bourgain-Kontorovich, Huang). Let $A \subset \mathbb{N}$ be a finite subset for which the associated set X_{A} satisfies $\operatorname{dim}_{H}\left(X_{A}\right)>\frac{5}{6}=0.83 \dot{3}$. Then

$$
\lim _{N \rightarrow+\infty} \frac{\# D_{A}(N)}{N}=1
$$

The statement of Theorem 1.6 corresponds to the particular choice of alphabet $A=\{1,2,3,4,5\}$ in Theorem 4.8. Similarly, Theorem 1.7 has a slightly more general formulation (from [28]) as a positive density result.

We begin by recalling the following useful notation. Given two real-valued functions f and g we say that $f \gg g$ if there exists a constant c such that $f(x)>c g(x)$ for all x sufficiently large.

The statement of Theorem [1.7 corresponds to the particular choice of alphabet of $A=\{1,2,3,4\}$ in Theorem 4.9.

Theorem 4.9 (Kan [28, Theorem 1.4]). Let $A \subset \mathbb{N}$ be a finite set for which the associated limit set X_{A} has dimension $\operatorname{dim}_{H}\left(X_{A}\right)>\frac{\sqrt{19}-2}{3}=0.7862 \ldots$. Then

$$
\#\left\{q \in \mathbb{N} \mid 1 \leq q \leq N: \exists p \in \mathbb{N} ; a_{1}, \cdots, a_{n} \in A \text { with } \frac{p}{q}=\left[0 ; a_{1}, \cdots, a_{n}\right]\right\} \gg N
$$

The derivation of Theorem 4.9 is conditional on the inequality $\operatorname{dim}_{H}\left(E_{4}\right)>$ $\frac{\sqrt{19}-2}{3}$ which was based on the empirical computations by Jenkinson [23], but which were rigorously justified in [25]. We will rigorously (re)confirm this inequality in the next section using the approach in 83 .

In the case that the Hausdorff dimension of the limit set X_{A} is smaller, in particular, $\operatorname{dim}_{H}\left(X_{A}\right)<\frac{5}{6}$ there are still some interesting lower bounds on $\# D_{A}(N)$. For convenience we denote (omitting dependence on A)

$$
\delta:=\operatorname{dim}_{H}\left(X_{A}\right),
$$

then a classical result of Hensley showed that $\# D_{A}(N) \gg N^{2 \delta}$ 19. Subsequently, this was refined in different ranges of δ as follows:
(i) If $\frac{1}{2}<\delta<\frac{5}{6}$ then $\# D_{A}(N) \gg N^{\delta+(2 \delta-1)(1-\delta) /(5-\delta)-\varepsilon}$, for any $\varepsilon>0$ [2].
(ii) If $\frac{\sqrt{17}-1}{4}<\delta<\frac{5}{6}$ then $\# D_{A}(N) \geq N^{1-\varepsilon}$ for all $\varepsilon>0$ [28].
(iii) If $3-\sqrt{5}<\delta<\frac{\sqrt{17}-1}{4}$, then $\# D_{A}(N) \geq N^{1+\frac{2 \delta^{2}+5 \delta-5}{2 \delta-1}-\varepsilon}$ [30].

As a concrete application, Kan considered the finite set $A=\{1,2,3,5\}$ and by applying the inequality in (iii) obtained the following lower bound.
Theorem 4.10 (Kan [30, Theorem 1.5, Remark 1.3]). For the alphabet $A=$ $\{1,2,3,5\}$ one has $\# D_{A}(N) \gg N^{0.85}$.

This gave an improvement on the bound of $\# D_{A}(N) \gg N^{0.80}$ arising from (i). However, this required that $\operatorname{dim}_{H}\left(X_{A}\right)>3-\sqrt{5}$, an estimate conjectured by Jenkinson in [23], but which was not validated. We will present a rigorous bound in the next subsection.

To further illustrate this theme we will use the present method to confirm the following local version of the Zaremba conjecture proposed by Huang.

Theorem 4.11 (After Huang). Let $A=\{1,2,3,4,5\}$ and consider $D_{A}=\cup_{n \in \mathbb{N}} D_{A}(n)$, in other words
$D_{A}:=\left\{q \in \mathbb{N} \mid \exists p \in \mathbb{N},(p, q)=1\right.$ and $a_{1}, \cdots, a_{n} \in A$ with $\left.\frac{p}{q}=\left[0 ; a_{1}, \cdots, a_{n}\right]\right\}$.
Then for every $m>1$ we have that $D_{A}=\mathbb{N}(\bmod m)$. In other words, for every $m>1$ and every $q \in \mathbb{N}$ we have $q(\bmod m) \in D_{A}$.
4.2.1. Dimension estimates for E_{5}. A crucial ingredient in the analysis in the proof of density one Theorem [1.6] used in [20] is that the limit set E_{5} for the iterated function scheme

$$
T_{j}:[0,1] \rightarrow[0,1], \quad T_{j}(x)=\frac{1}{j+x}, \quad 1 \leq j \leq 5
$$

satisfies $\operatorname{dim}_{H}\left(E_{5}\right)>\frac{5}{6}=0.83 \dot{3}$. In [25], this was confirmed with rigorous bounds

$$
\operatorname{dim}_{H}\left(E_{5}\right)=0.836829445 \pm 5 \cdot 10^{-9}
$$

using the periodic points method. For this particular example, the error estimates are more tractable because the iterated function scheme is Bernoulli, rather than just Markov.

However, we can use the method in this note to reconfirm this bound, and improve it, with very little effort, to the following:

Theorem 4.12.

$$
\operatorname{dim}_{H}\left(E_{5}\right)=0.836829443680 \pm 10^{-12}
$$

Proof. We can choose $S=[0,1]$ since the iterated function scheme is Bernoulli. Applying the bisection method with $m=15$ and $\varepsilon=10^{-11}$, we get lower and upper bounds

$$
\begin{aligned}
& t_{0}=0.8368294436802, \text { and } \\
& t_{1}=t_{0}+2 \cdot 10^{-12}=0.8368294436820 .
\end{aligned}
$$

The Chebyshev-Lagrange interpolation method then gives two polynomials of degree 14 that can serve as test functions. Their coefficients are listed in A.2.1.

We can then explicitly compute

$$
\begin{equation*}
\sup _{S} \frac{\mathcal{L}_{t_{1}} f}{f}<1-10^{-13} ; \quad \inf _{S} \frac{\mathcal{L}_{t_{0}} g}{g}>1+10^{-13} \tag{36}
\end{equation*}
$$

and the result follows from Lemma 3.3
Remark 4.13. In terms of the practical application to Theorem 1.6, there is no need to have accurate estimates of $\operatorname{dim}_{H}\left(E_{5}\right)$, it is sufficient to show $\operatorname{dim}_{H}(X)>\frac{5}{6}$. This can be achieved using a simple calculation "by hand". We can take

$$
f(x)=\frac{2}{3}-\frac{11}{20} x+\frac{1}{3} x^{2}-\frac{1}{10} x^{3} .
$$

We can then compute that $\frac{\mathcal{L}_{5 / 6} f(x)}{f(x)}>1.0029$. It then follows from Lemma 3.3 that $\operatorname{dim}_{H}\left(E_{5}\right)>\frac{5}{6}$.
4.2.2. Dimension estimates for E_{4}. A crucial ingredient in the analysis in the proof of Theorem [1.7] used in [29] is that the limit set E_{4} for the iterated function scheme

$$
T_{j}:[0,1] \rightarrow[0,1], \quad T_{j}(x)=\frac{1}{j+x}, \quad 1 \leq j \leq 4
$$

satisfies $\operatorname{dim}_{H}\left(E_{4}\right)>\frac{\sqrt{19}-2}{3} \approx 0.7862 \ldots$.
We can validate this result by showing the following bounds on the dimension
Theorem 4.14. $\operatorname{dim}_{H}\left(E_{4}\right)=0.788945557483 \pm 10^{-12}$.
Proof. We can choose $S=[0,1]$ since the iterated function scheme is Bernoulli. Applying the bisection method with $m=15$ and $\varepsilon=10^{-11}$, we obtain the lower and upper bounds

$$
\begin{aligned}
& t_{0}=0.788945557481 \text { and } \\
& t_{1}=t_{0}+2 \cdot 10^{-12}=0.788945557484 .
\end{aligned}
$$

The Chebyshev-Lagrange interpolation method then gives two polynomials of degree 14 that can serve as test functions. Their coefficients are listed in $\$$ A.2.2,

We can then explicitly compute

$$
\begin{equation*}
\sup _{S} \frac{\mathcal{L}_{t_{1}} f}{f}<1-10^{-13} ; \quad \inf _{S} \frac{\mathcal{L}_{t_{0}} g}{g}>1+10^{-12} \tag{37}
\end{equation*}
$$

and the result follows from Lemma 3.3
Remark 4.15. In terms of the practical application to Theorem 1.7, there is no need to have accurate estimates of $\operatorname{dim}_{H}\left(E_{4}\right)$, it is sufficient to show $\operatorname{dim}_{H}(X)>\frac{\sqrt{19}-2}{3}$. This can be achieved using a simple calculation "by hand". We can take

$$
f(x)=\frac{27}{50}-\frac{11}{25} x+\frac{33}{100} x^{2}-\frac{11}{50} x^{3}+\frac{21}{200} x^{4}-\frac{1}{40} x^{5} .
$$

We can then compute that $\left[\mathcal{L}_{\frac{\sqrt{19}-2}{}} f\right](x) / f(x)>1.00205$. It then follows from Lemma 3.3 that $\operatorname{dim}_{H}\left(E_{4}\right)>\frac{\sqrt{19}-2}{3}$.
4.2.3. Dimension estimates for alphabet $A=\{1,2,3,5\}$.

Theorem 4.16. Let $A=\{1,2,3,5\}$. Then $\operatorname{dim}_{H}\left(X_{A}\right)=0.7709149399375 \pm 1.5$. 10^{-12}.

Proof. The estimate can be recovered following the same approach as in the proof of Theorem 4.14 and coefficients of the corresponding test functions listed in \S A.2.3 We choose $S=[0,1]$. Applying the bisection method with $m=16$ and $\varepsilon=3 \cdot 10^{-12}$, we obtain the lower and upper bounds

$$
\begin{aligned}
& t_{0}=0.770914939936 \text { and } \\
& t_{1}=t_{0}+3 \cdot 10^{-12}=0.770914939939 .
\end{aligned}
$$

The Chebyshev-Lagrange interpolation method then gives two polynomials of degree 15 that can serve as test functions. Their coefficients are listed in $\$$ A.2.3.

We can then explicitly compute

$$
\sup _{S} \frac{\mathcal{L}_{t_{1}} f}{f}<1-10^{-12}, \quad \inf _{S} \frac{\mathcal{L}_{t_{0}} g}{g}>1+10^{-12}
$$

and the result follows from Lemma 3.3
Remark 4.17. In terms of the practical application to Theorem4.10, there is no need to have accurate estimates of $\operatorname{dim}_{H}\left(E_{\{1,2,3,5\}}\right)$, it is sufficient to show $\operatorname{dim}_{H}(X)>$ $3-\sqrt{5}$. This can be achieved using a simple calculation "by hand". We can take

$$
f(x)=\frac{9}{10}-\frac{2}{5} x .
$$

We can then compute that $\left[\mathcal{L}_{3-\sqrt{5}} f(x) / f(x)>1.00042\right.$. It then follows from Lemma 3.3 that $\operatorname{dim}_{H}(X)>3-\sqrt{5}$.

Remark 4.18. The periodic point method and McMullen's approach 40 cannot give such accurate estimates because of the prohibitive computer resources required. In a recent paper 10 Falk and Nussbaum computed Hausdorff dimension of the sets E_{5}, E_{4}, E_{1235} and some of the Hensley examples we give below. Their method is also rooted in the interpolation, but uses different machinery.
4.3. Counter-example to a conjecture of Hensley. In [2] Bourgain and Kontorovich gave a counter-example to a conjecture of Hensley [19, Conjecture 3, p.16]. The conjecture stated that for any finite alphabet $A \subset \mathbb{N}$ for which the Hausdorff dimension of the associated limit set (corresponding to the iterated function scheme with contractions $T_{j}(z)=\frac{1}{j+x}$ for $j \in A$) satisfies $\operatorname{dim}_{H}\left(X_{A}\right)>\frac{1}{2}$ the analogue of the Zaremba conjecture holds true for q sufficiently large, i.e., there exists $q_{0}>0$ such that for any natural number $q \geq q_{0}$ there exists $p<q$ and $a_{1}, \ldots, a_{n} \in A$ such that $\frac{p}{q}=\left[a_{1}, \cdots, a_{n}\right]$.

The construction of the counter-example hinged on the observation that the denominators q corresponding to such restricted continued fraction expansions cannot ever satisfy $q=3(\bmod 4)$ and on showing that for the iterated function scheme $\left\{\left.T_{j}=\frac{1}{x+j} \right\rvert\, a=2,4,6,8,10\right\}$ the limit set X has dimension $\operatorname{dim}_{H}(X)>\frac{1}{2}$ (cf. [2] p. 139]). This was rigorously confirmed in [25, Theorem 7] by a fairly elementary argument, where it was also suggested by a non-rigorous computation that

$$
\begin{equation*}
\operatorname{dim}_{H} X=0.5173570309370173046666284748364397337 \ldots \tag{38}
\end{equation*}
$$

To rigorously justify this estimate, we apply the bisection method with $S=[0,1]$, $m=40, \varepsilon=10^{-36}$ and the initial guess

$$
\begin{aligned}
& t_{0}=0.5173570309370173046666284748364397337, \\
& t_{1}=t_{0}+10^{-37}
\end{aligned}
$$

The Chebyshev-Lagrange interpolation gives two polynomials f and g of degree 39 which satisfy

$$
\sup _{S} \frac{\mathcal{L}_{t_{1}} f}{f}<1-10^{-38} \text { and } \inf _{S} \frac{\mathcal{L}_{t_{0}} g}{g}>1+10^{-37}
$$

The equality (38) follows from Lemma 3.3.
Remark 4.19 (An elementary bound). As in the previous examples it is not necessary to have a very precise knowledge of the value of $\operatorname{dim}_{H}\left(X_{A}\right)$ in order to establish that this is a counter-example to the Hensley conjecture. It would be sufficient to know that $\operatorname{dim}_{H}\left(X_{A}\right)>\frac{1}{2}$. This can again be achieved using a simple calculation. We can consider instead the linear function $f(x)=8-2 x$. It is easy to compute its image under the transfer operator $\mathcal{L}_{0.5} f$:

$$
\begin{aligned}
\mathcal{L}_{0.5} f(x) & =\left(\frac{8}{2+x}-\frac{2}{(2+x)^{2}}\right)+\left(\frac{8}{4+x}-\frac{2}{(4+x)^{2}}\right)+\left(\frac{8}{6+x}-\frac{2}{(6+x)^{2}}\right) \\
& +\left(\frac{8}{8+x}-\frac{2}{(8+x)^{2}}\right)+\left(\frac{8}{10+x}-\frac{2}{(10+x)^{2}}\right) .
\end{aligned}
$$

Clearly, this is a monotone decreasing function.
By taking derivatives or otherwise we can justify that

$$
\inf _{S} \frac{\mathcal{L}_{0.5} f}{f}=\frac{1}{6} \mathcal{L}_{0.5} f(1)>1 .
$$

The result now follows from Lemma 3.3
Although the original Hensley conjecture is false, Moshchevitin and Shkredov recently proved an interesting modular version.

Theorem 4.20 (42]). Let $A \subset \mathbb{N}$ be a finite set for which $\operatorname{dim}_{H}\left(X_{A}\right)>\frac{1}{2}$. Then for any prime p there exist $q=0(\bmod p), r($ coprime to $q)$ and $a_{1}, \ldots, a_{n} \in A$ such that

$$
\frac{r}{q}=\left[a_{1}, \cdots, a_{n}\right] .
$$

Thus there is some interest in knowing which examples of $A \subset \mathbb{N}$ satisfy $\operatorname{dim}_{H}\left(X_{A}\right)$ $>\frac{1}{2}$ so that this result applies. For example, one can easily check that for $A_{1}=$ $\{1,4,9\}$ we have $\operatorname{dim}_{H}\left(X_{A_{1}}\right)=0.500790232142100396 \pm 10^{-18}$ or for $A_{2}=\{2,3,6,9\}$ we have $\operatorname{dim}_{H}\left(X_{A_{2}}\right)=0.500322800596840463 \pm 10^{-18}$.
4.4. Primes as denominators. There is an interesting variation on Theorem4.8 where we consider only the denominators which are prime numbers.

Theorem 4.21 (Bourgain-Kontorovich, Huang). There are infinitely many prime numbers q which have a primitive roo ${ }^{9} a \bmod q$ such that the partial quotients of $\frac{a}{q}$ are bounded by 7 .

[^6]This was originally proved by Bourgain and Kontorovich with the weaker conclusion that the partial quotients of $\frac{a}{q}$ are bounded by 51 . The improvement of Huang was conditional on the Hausdorff dimension of limit set E_{6} for the iterated function scheme $\left\{\left.T_{j}(x)=\frac{1}{x+j} \right\rvert\, 1 \leq j \leq 6\right\}$ satisfying $\operatorname{dim}_{H} E_{6}>\frac{19}{22}$. In [25] it was rigorously shown using the periodic point method that

$$
\operatorname{dim}_{H} E_{6}=0.86761915 \pm 10^{-8}
$$

Furthermore, there was a heuristic estimate of $\operatorname{dim}_{H}\left(E_{6}\right)=0.8676191732401 \ldots$. We can apply Chebyshev-Lagrange interpolation with $S=[0,1], m=20$ to confirm this estimate.

Theorem 4.22.

$$
\operatorname{dim}_{H} E_{6}=0.86761917324015 \pm 10^{-13} .
$$

Proof. By Chebyshev-Lagrange interpolation applied to the operators $\mathcal{L}_{t_{0}}$ and $\mathcal{L}_{t_{1}}$ we obtain two polynomials f and g of degree 19 which satisfy

$$
\sup _{S} \frac{\mathcal{L}_{t_{1}} f}{f}<1-10^{-13} \text { and } \inf _{S} \frac{\mathcal{L}_{t_{0}} g}{g}>1+10^{-14}
$$

The statement now follows from Lemma 3.3.
Remark 4.23 (An elementary bound). As in the previous two examples, it is not necessary to have a very precise knowledge of the value of $\operatorname{dim}_{H}\left(E_{6}\right)$ in order to establish the conditions necessary for Theorem 4.21 It would be sufficient to know that $\operatorname{dim}_{H}\left(E_{6}\right)>\frac{19}{22}$. This can again be achieved using a simplified choice of f, although it might be a slight exaggeration to say that this is entirely elementary. We can consider the degree 3 polynomial $f:[0,1] \rightarrow \mathbb{R}^{+}$defined by $f(x)=0.67-$ $0.57 x+0.35 x^{2}-0.107 x^{3}$. Letting $t=\frac{19}{22}$ we can consider the image under the transfer operator \mathcal{L}_{t}. In particular, one can readily check that

$$
\inf _{S} \frac{\mathcal{L}_{t} f}{f}>1+10^{-4}
$$

It follows from Lemma 3.3 that $P(t)>0$ and thus we conclude that $\operatorname{dim}_{H}\left(E_{6}\right)>$ $t=\frac{19}{22}$.

In the remainder of this section we will consider applications where the alphabets, and thus the number of contractions in the iterated function scheme, are infinite.
4.5. Modular results and countable iterated function schemes. Given $N \geq$

2 and $0<r \leq N$, we want to consider a set

$$
X_{r(N)}=\left\{\left[0 ; a_{1}, a_{2}, a_{3}, \cdots\right] \mid a_{n} \equiv r(\bmod N)\right\}
$$

consisting of those numbers whose continued fraction expansion only has digits equal to $r(\bmod N)$. This can be interpreted as a limit set for the countable family of contractions $T_{i}(x)=\frac{1}{x+r+N k}(k \geq 0)$. However, unlike the case of a finite iterated function scheme the limit set $X_{r(N)}$ is not a compact set.

Similarly to the case of a finite alphabet, a key ingredient in determining the Hausdorff dimension $\operatorname{dim}_{H}\left(X_{r(N)}\right)$ is to consider a one-parameter family of transfer operators $\mathcal{L}_{t}: C^{1}\left([0,1] \rightarrow C^{1}([0,1])\right.$ given by

$$
\begin{equation*}
\left(\mathcal{L}_{t} w\right)(x)=\sum_{k=0}^{\infty}(x+r+N k)^{-2 t} w\left((x+r+N k)^{-1}\right) . \tag{39}
\end{equation*}
$$

It is well defined for $\Re(t)>\frac{1}{2}$. A common approach to the analysis of these operators is to truncate the series to a finite sum of first K, which contributes an error of $O\left(K^{-2 t}\right)$ to the estimates of leading eigenvalue. Then this would require K to be chosen quite large for even moderate error bounds.

A more successful alternative approach in the present context is to employ the classical Hurwitz zeta function from analytic number theory.

Definition 4.24. The Hurwitz zeta function is a complex analytic function on a half-plane $\Re x>0, \Re s>1$ defined by the series

$$
\zeta(x, s)=\sum_{k=0}^{\infty}(x+k)^{-s}
$$

It can be extended to a meromorphic function on \mathbb{C} for $s \neq 1$. The famous Riemann zeta function is a particular case $\zeta(1, s)$.

We would like to consider monomials $w_{n}(x):=x^{n}, n \geq 0$ and to rewrite $\mathcal{L}_{t} w_{n}$ using the Hurwitz zeta function as follows

$$
\begin{align*}
\mathcal{L}_{t} w_{n}(x) & =\sum_{k=0}^{\infty}(x+k N+r)^{-2 t} \cdot(x+k N+r)^{-n} \\
& =N^{-2 t-n} \sum_{k=0}^{\infty}\left(\frac{x+r}{N}+k\right)^{-2 t-n} \\
& =N^{-n-2 t} \zeta\left(\frac{x+r}{N}, n+2 t\right) \tag{40}
\end{align*}
$$

From a computational viewpoint, the advantage we gain from expressing the transfer operator in terms of the Hurwitz zeta function stems from fact that there are very efficient algorithms for evaluation of $\zeta(x, s)$ to arbitrary numerical precision (cf. 26 and references therein). In particular, the Hurwitz zeta function is implemented both in Mathematica and within the Arb library.

We can now return to our usual strategy to estimate $\operatorname{dim}\left(X_{r(N)}\right)$. We begin with the following simple result.
Lemma 4.25. For $t>\frac{1}{2}$ the operator \mathcal{L}_{t} has a simple maximal eigenvalue $e^{P(t)}$. The function P is real analytic and strictly decreasing on the interval $\left(\frac{1}{2},+\infty\right)$. Moreover, there is a unique $t_{0} \in\left(\frac{1}{2},+\infty\right)$ such that $P\left(t_{0}\right)=0$ and $t_{0}=\operatorname{dim}\left(X_{r(N)}\right)$.
Proof. The analyticity comes from analytic perturbation theory and the simplicity of the maximal eigenvalue (see [36, Theorem 6.2.12]). The strict monotonicity of the function P comes from the perturbation identity $P^{\prime}(t)=-2 \int(\log x) h(x) d \mu(x) / \int h d \mu$ <0 where $\mathcal{L}_{t} h=e^{P(t)} h$ and $\mathcal{L}_{t}^{*} \mu=e^{P(t)} \mu$. The interpretation of $\operatorname{dim}\left(X_{r(N)}\right)$ in terms of the pressure was shown in [36, Theorem 4.2.13].

Proceeding as in 93.2 we can fix m, compute the zeros of the m 'th Chebyshev polynomials $\left\{y_{k}\right\}_{k=1}^{m} \in[0,1]$ and define Lagrange interpolation polynomials $l p_{k}(x)$ for $0 \leq k \leq m$ as before using (5). These polynomials can also be written in a standard form

$$
l p_{k}(x)=\sum_{n=0}^{m-1} a_{n}^{(k)} x^{n}=\sum_{n=0}^{m-1} a_{n}^{(k)} w_{n}(x), \quad \text { for } 0 \leq x \leq 1
$$

Since the operator \mathcal{L}_{t} is linear, we can write using equation (40)

$$
\begin{equation*}
\left(\mathcal{L}_{t} l p_{k}\right)(x)=\sum_{n=0}^{m-1} a_{n}^{(k)}\left(\mathcal{L}_{t} w_{n}\right)(x)=\sum_{n=0}^{m-1} a_{n}^{(k)} N^{-n-2 t} \zeta\left(\frac{x+r}{N}, n+2 t\right) . \tag{41}
\end{equation*}
$$

Since the Hurwitz zeta function can be evaluated to arbitrary precision, we can now compute the $m \times m$ matrix $\left(\mathcal{L}_{t} l p_{k}\right)\left(y_{j}\right)_{k, j=1}^{m}$, the associated left eigenvector $v=\left(v_{1}, \cdots, v_{m}\right)$ and construct a test function $f=\sum_{j=1}^{m} v_{j} l p_{j}$ to use in Lemma3.3,

Example 4.26. To illustrate the efficiency of the approach, we apply this general construction in a number of cases, which we borrow from a recent work by Chousionis et al. [7], where the estimates are obtained using a combination of a truncation technique with the method of Falk and Nussbaum. We apply the bisection method with $m=12$ and summarize our results in the Table (1) For comparison, we include estimates from [7].

Table 1. The estimates for $\operatorname{dim}_{H}\left(X_{r(N)}\right)$ based on the bisection method with Hurwitz function employed and the bounds on $\operatorname{dim}_{H}\left(X_{r(N)}\right) \in\left[s_{0}, s_{1}\right]$ from [7]

$r(N)$	New estimate $\operatorname{dim}_{H}\left(X_{r(N)}\right)$	Old bounds	
		s_{0}	s_{1}
$2(2)$	$0.7194980248366 \pm 3 \cdot 10^{-13}$	0.719360	0.719500
$1(2)$	$0.82117649065 \pm 3.5 \cdot 10^{-10}$	0.821160	0.821177
$3(3)$	$0.640725314383684 \pm 2 \cdot 10^{-15}$	0.639560	0.640730
$3(2)$	$0.66546233804075 \pm 2.5 \cdot 10^{-13}$	0.664900	0.665460
$3(1)$	$0.74358628045 \pm 2.5 \cdot 10^{-10}$	0.743520	0.743586
$1(8)$	$0.61943819215 \pm 1.5 \cdot 10^{-10}$	N/A	N/A

4.6. Lower bounds for deleted digits. We can also use the method in the previous section to address the following natural problem: Given $N \geq 1$ give a uniform upper bound on the dimension $\operatorname{dim}_{H}\left(X_{\mathcal{A}}\right)$ where \mathcal{A} ranges over all families of symbols satisfying $\mathcal{A} \cap\{1, \cdots, N\} \neq \emptyset$.

By the natural monotonicity (by inclusion) of $\mathcal{A} \mapsto \operatorname{dim}_{H}\left(X_{\mathcal{A}}\right)$ we see that such an upper bound will be given by $\operatorname{dim}_{H}\left(X_{\mathcal{A}_{N+1}}\right)$ where we let

$$
\mathcal{A}_{N+1}=\{N+1, N+2, N+3, \cdots\} .
$$

As in the preceding subsection we can write the transfer operator associated to the infinite alphabet \mathcal{A}_{N+1} acting on w_{n} in terms of the Hurwitz zeta function:

$$
\begin{align*}
\mathcal{L}_{t} w_{n}(x) & =\sum_{k=N+1}^{\infty}(x+k)^{-2 t} \cdot(x+k)^{-n} \\
& =\sum_{k=0}^{\infty}(x+N+1+k)^{-2 t-n} \\
& =\zeta(x+N+1, n+2 t) . \tag{42}
\end{align*}
$$

We have the natural analogue of Lemma 4.25.

Lemma 4.27. For $t>\frac{1}{2}$ the operator \mathcal{L}_{t} has a simple maximal eigenvalue $e^{P(t)}$. The function P is real analytic and strictly decreasing on the interval $\left(\frac{1}{2},+\infty\right)$. Moreover, there is a unique $t_{0} \in\left(\frac{1}{2},+\infty\right)$ such that $P\left(t_{0}\right)=0$ and $t_{0}=\operatorname{dim}\left(X_{\mathcal{A}_{N+1}}\right)$.

Again proceeding as in $\S 3.2$ we can fix m, compute the zeros of the m 'th Chebyshev polynomials $\left\{y_{k}\right\}_{k=1}^{m} \in[0,1]$ and define Lagrange interpolation polynomials $l p_{k}(x)$ for $0 \leq k \leq m$ as before using (5). By analogy with (39) we can write using equation (42)

$$
\begin{equation*}
\left(\mathcal{L}_{t} l p_{k}\right)(x)=\sum_{n=0}^{m-1} a_{n}^{(k)}\left(\mathcal{L}_{t} w_{n}\right)(x)=\sum_{n=0}^{m-1} a_{n}^{(k)} \zeta(x+N+1, n+2 t) . \tag{43}
\end{equation*}
$$

Since the Hurwitz zeta function can be evaluated to arbitrary precision, we can now compute the $m \times m$ matrix $\left(\mathcal{L}_{t} l p_{k}\right)\left(y_{j}\right)_{k, j=1}^{m}$, the associated left eigenvector $v=\left(v_{1}, \cdots, v_{m}\right)$ and construct a test function $f=\sum_{j=1}^{m} v_{j} l p_{j}$ to use in Lemma3.3.3, The results are presented in Table 2,

Table 2. Estimates on $\operatorname{dim}_{H}\left(X_{\mathcal{A}_{N+1}}\right)$ which give upper bounds on $\operatorname{dim}_{H}\left(X_{\mathcal{A}}\right)$ for those alphabets \mathcal{A} with $\mathcal{A} \cap\{1, \cdots, N\}=\emptyset$

N	Estimate on $\operatorname{dim}_{H}\left(X_{\mathcal{A}_{N+1}}\right)$
1	0.840884586 ± 10^{-8}
2	0.785953471 ± 10^{-8}
3	0.757889122 ± 10^{-8}
4	0.757889122 ± 10^{-8}
5	0.728307126 ± 10^{-8}

4.7. Local obstructions. In his thesis, Huang makes an interesting conjecture on local obstructions for the Zaremba conjecture (see [20, p. 18]). More precisely, to every $m \in \mathbb{N}$ we can associate the "modulo m map" which we denote by

$$
\pi_{m}: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{m}=\{0,1,2, \cdots, m-1\} \text { given by } \pi_{m}(q)=q(\bmod m)
$$

We say that a finite set $A \subset \mathbb{N}$ has no local obstructions if for all $m \geq 1$,
$\pi_{m}\left(\left\{q \in \mathbb{N} \mid \exists p \in \mathbb{N},(p, q)=1 ; a_{1}, \cdots, a_{n} \in\{1,2,3,4,5\}: \frac{p}{q}=\left[0 ; a_{1}, \cdots, a_{n}\right]\right\}\right)=\mathbb{Z}_{m}$, i.e., for each m the map π_{m} is surjective.

Conjecture 4.28 (Huang, [20). If the limit set X_{A} of the alphabet $A \subset \mathbb{N}$ has dimension $\operatorname{dim}_{H}\left(X_{A}\right)>\frac{5}{6}$ then there are no local obstructions.

Huang also reduced this to a statement about dimensions of specific limit sets.
Proposition 4.29 ([20, Theorem 1.3.11]). In notation introduced above, a finite alphabet A has no local obstructions provided $\operatorname{dim}_{H} X_{A}>\max \left(\operatorname{dim}_{H}\left(X_{2(2)}\right)\right.$, $\left.\operatorname{dim}_{H}\left(X_{1(8)}\right)\right)$.

In particular, in light of the use of Proposition 4.29 to establish Conjecture 4.28 it is sufficient to know that $\operatorname{dim}_{H}\left(X_{2(2)}\right)$ and $\operatorname{dim}_{H}\left(X_{1(8)}\right)$ both have dimension at most $\frac{5}{6}$. Fortunately, we have rigorously established these inequalities as Table \square shows.

Proposition 4.30. Conjecture 4.28 is correct.
4.7.1. Truncation method. The use of the Hurwitz zeta function works well for the modular examples considered above. For more general countable alphabets $A \subset \mathbb{N}$ we may have to resort to a cruder approximation argument. To illustrate this we can consider the restriction to a finite alphabet $A_{N}=A \cap\{1,2, \cdots, N\}$. If we let $\mathcal{L}_{A, t} f(x)=\sum_{n \in A} f\left((x+n)^{-1}\right)(x+n)^{-2 t}$ and $\mathcal{L}_{A_{N}, t} f(x)=\sum_{n \in A_{N}} f\left((x+n)^{-1}\right)(x+$ $n)^{-2 t}$. Given t we can pick an m and apply the Chebyshev-Lagrange interpolation with m nodes to find a polynomial test function

$$
f_{N, m}(x)=\sum_{j=0}^{m-1} a_{j} x^{j}
$$

approximating the eigenfunction for $\mathcal{L}_{A_{N}, t}$. But if we subsequently want to use this function in Lemma 3.3 to study $\mathcal{L}_{A, t}$ we also need to obtain an upper bound for the remainder

$$
E(x)=\sum_{n \in A \backslash A_{N}} f_{N, m}\left(\frac{1}{x+n}\right) \frac{1}{(x+n)^{2 t}}=\sum_{j=0}^{m} a_{j} \sum_{n \in A \backslash A_{N}} \frac{1}{(x+n)^{j+2 t}} .
$$

We can also bound

$$
\sum_{n \in A \backslash A_{N}}(x+n)^{-j-2 t} \leq \sum_{N+1}^{\infty}(x+n)^{-j-2 t} \leq \int_{N}^{\infty} x^{-j-2 t} d x=\frac{1}{(j+2 t-1) \cdot N^{j+2 t-1}}
$$

and then

$$
|E(x)| \leq \sum_{j=0}^{m}\left|a_{j}\right| \frac{1}{(j+2 t-1) \cdot N^{j+2 t-1}} .
$$

This bound is only polynomial in N giving this approach limited use in precise estimates, in comparison with limits sets generated by a finite number of contractions.

However, this elementary approach leads to a simple direct proof of Conjecture 4.28 (without resorting to introducing the Hurwitz zeta function).

Example 4.31 (An elementary bound for $\operatorname{dim}_{H} X_{0(2)}$ revisited). We will use a more elementary proof based on the interpolation method. We can consider the transfer operator

$$
\left(\mathcal{L}_{t} f\right)(x)=\sum_{n=1}^{\infty} f\left(\frac{1}{x+2 n}\right) \frac{1}{(x+2 n)^{2 t}}
$$

We can separate the first term of the infinite series and estimate the remaining sum by an integral. More precisely, we may write

$$
\left(\mathcal{L}_{t} f\right)(x)=f\left(\frac{1}{x+2}\right) \frac{1}{(x+2)^{2 t}}+\sum_{n=2}^{\infty} f\left(\frac{1}{x+2 n}\right) \frac{1}{(x+2 n)^{2 t}}
$$

We can consider the trivial test function $f=\mathbb{1}_{[0,1]}$ and obtain an upper bound

$$
\begin{aligned}
|E(x)|: & =\sum_{n=2}^{\infty} f\left(\frac{1}{x+2 n}\right) \frac{1}{(x+2 n)^{2 t}} \leq\|f\|_{\infty}\left(\sum_{n=2}^{\infty} \frac{1}{(x+2 n)^{2 t}}\right) \leq \int_{1}^{\infty} \frac{1}{(2 u)^{2 t}} d u \\
& =\frac{1}{(2 t-1) 2^{2 t}}
\end{aligned}
$$

In particular, if we take $t=\frac{5}{6}$ then $|E(x)| \leq 3 \cdot 2^{-7 / 3}$. Thus

$$
\sup _{[0,1]} \frac{\mathcal{L}_{t} \mathbb{1}_{[0,1]}}{\mathbb{1}_{[0,1]}} \leq \sup _{[0,1]}\left(\frac{1}{(2+x)^{5 / 3}}+E(x)\right) \leq 2^{-5 / 3}+3 \cdot 2^{-7 / 3}<0.95
$$

We conclude that $P\left(\frac{5}{6}\right)<0$ and Lemma 3.3 implies that $\operatorname{dim}_{H}\left(X_{\text {even }}\right)<\frac{5}{6}$.
Example 4.32 (An elementary bound for $\operatorname{dim}_{H}\left(X_{1(8)}\right)$ revisited). This time we can take $f(x)=1-\frac{x}{2}$ and consider the image under the transfer operator

$$
\begin{equation*}
\mathcal{L}_{t} f(x)=f\left(\frac{1}{x+1}\right) \frac{1}{(x+1)^{2 t}}+\sum_{n=2}^{\infty} f\left(\frac{1}{x+8 n-7}\right) \frac{1}{(x+8 n-7)^{2 t}} \tag{44}
\end{equation*}
$$

We have an upper bound for the remainder term

$$
\begin{aligned}
|E(x)|: & =\sum_{n=2}^{\infty} f\left(\frac{1}{x+8 n-7}\right) \frac{1}{(x+8 n-7)^{2 t}} \\
& =\sum_{n=2}^{\infty} \frac{1}{(x+8 n-7)^{2 t}}\left(1-\frac{1}{2(x+8 n-7)}\right) \\
& \leq\left(\int_{1}^{\infty} \frac{1}{(8 u-7)^{2 t}} d u-\frac{1}{2} \int_{2}^{\infty} \frac{1}{(8 u-7)^{2 t+1}} d u\right) \\
& =\frac{1}{8}\left(\frac{1}{2 t-1}-\frac{1}{4 t \cdot 9^{2 t}}\right)
\end{aligned}
$$

Substituting $t=\frac{5}{6}$ we obtain

$$
\begin{equation*}
|E(x)| \leq \frac{3}{16}\left(1-\frac{1}{5 \cdot 9^{5 / 3}}\right) \tag{45}
\end{equation*}
$$

In particular, we can now estimate

$$
\begin{aligned}
\sup _{[0,1]} \frac{\mathcal{L}_{t} f(x)}{f(x)} & =\sup _{[0,1]}\left(\frac{f\left(\frac{1}{x+1}\right)}{f(x)(x+1)^{5 / 3}}+\frac{E(x)}{f(x)}\right) \leq \sup _{[0,1]} \frac{f\left(\frac{1}{x+1}\right)}{f(x)(x+1)^{5 / 3}}+\frac{\sup _{[0,1]} E(x)}{\inf _{[0,1]} f(x)} \\
& =\sup _{[0,1]} \frac{1-\frac{1}{2(x+1)}}{\left(1-\frac{x}{2}\right)(x+1)^{5 / 3}}+\frac{3}{8}\left(1-\frac{1}{5 \cdot 9^{5 / 3}}\right)<1
\end{aligned}
$$

The result follows from Lemma 3.3 .
4.8. Symmetric Schottky group. We can represent the limit set $X_{\Gamma} \subset\{z \in$ $\mathbb{C}||z|=1\}$ of a Fuchsian Schottky group as the limit set of an associated Markov iterated function scheme. To construct the contractions it is more convenient to use the alternative model for hyperbolic space consisting of the upper half-plane $\mathbb{H}^{2}=$ $\{x+i y \mid y>0\}$ supplied with the Poincaré metric $d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}$. Geodesics on the upper half plane \mathbb{H}^{2} are either circular arcs which meet the boundary orthogonally or vertical lines. Applying the transformation $T: \mathbb{D} \rightarrow \mathbb{H}^{2}$ given by $T: z \mapsto-i \frac{z-1}{z+1}$ we obtain three geodesics on \mathbb{H}^{2}. The group generated by reflections with respect to three geodesics with end points $e^{\pi i(2 j \pm 1) / 6}, j=0,1,2$ in the unit disk when transferred to the half-plane becomes a group generated by reflections with respect to half-circles, see Figure 5 .

Figure 5. Group Γ generated by three reflections R_{0}, R_{1}, R_{2}

A reflection with respect to a circle of radius r centred at c is given by the formula

$$
\begin{equation*}
R(z)=\frac{r^{2}}{(z-c)}+c \tag{46}
\end{equation*}
$$

To compute the radius and the centre of the circle of reflection, we calculate the end points by the formula $T\left(e^{i 2 \varphi}\right)=\tan \varphi$ and applying (46), we obtain

$$
\begin{gather*}
R_{0}(z)=\frac{7-4 \sqrt{3}}{z}, \quad R_{1}(z)=\frac{(3+\sqrt{3}) z-4-2 \sqrt{3}}{2 z-3-\sqrt{3}} \\
R_{2}(z)=-\frac{(3+\sqrt{3}) z+4+2 \sqrt{3}}{2 z+3+\sqrt{3}} \tag{47}
\end{gather*}
$$

Then the limit set $X_{\Gamma} \subset \cup_{j=0}^{2} X_{j} \subset \mathbb{R}$ consists of accumulation points of the set

$$
\left\{R_{j_{1}} R_{j_{2}} \cdots R_{j_{n}}(i) \mid j_{1}, j_{2}, \cdots, j_{n} \in\{0,1,2\} \text { where } j_{r} \neq j_{r+1} \text { for } 1 \leq r \leq n-1\right\} .
$$

Since $T:\{z:|z|=1\} \rightarrow \mathbb{R} \cup\{\infty\}$ is a conformal map we know that X_{Γ} has the same dimension as the corresponding limit set in the unit circle.

Proof of Theorem 1.9. In order to apply the technique developed in $\S 3$ we need to define a Markov iterated function scheme consisting of contractions whose limit set coincides with X_{Γ}. For instance we may consider the three intervals enclosed by the geodesics, more precisely, we define

$$
\begin{equation*}
X_{0}:=[-2+\sqrt{3}, 2-\sqrt{3}], \quad X_{1}:=[1,2+\sqrt{3}], \quad X_{2}:=[-2-\sqrt{3},-1] . \tag{48}
\end{equation*}
$$

Then the limit set X_{Γ} for Γ can be identified with the limit set $X_{A} \subset \cup_{j=0}^{2} X_{j} \subset \mathbb{R}$ of the Markov iterated function scheme with contractions $R_{j}: \cup_{k \neq j} X_{k} \rightarrow X_{j}$ for $j=0,1,2$ with transition matrix

$$
M=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

The associated transfer operator takes the form

$$
\begin{array}{ll}
\left(\mathcal{L}_{t} \underline{f}\right)_{0}(z)=f_{1}\left(R_{1}(z)\right) \cdot\left|R_{1}^{\prime}(z)\right|^{t}+f_{2}\left(R_{2}(z)\right) \cdot\left|R_{2}^{\prime}(z)\right|^{t}, & z \in X_{0}, \\
\left(\mathcal{L}_{t} \underline{f}\right)_{1}(z)=f_{0}\left(R_{0}(z)\right) \cdot\left|R_{0}^{\prime}(z)\right|^{t}+f_{2}\left(R_{2}(z)\right) \cdot\left|R_{2}^{\prime}(z)\right|^{t}, & z \in X_{1}, \\
\left(\mathcal{L}_{t} \underline{f}\right)_{2}(z)=f_{0}\left(R_{0}(z)\right) \cdot\left|R_{0}^{\prime}(z)\right|^{t}+f_{1}\left(R_{1}(z)\right) \cdot\left|R_{1}^{\prime}(z)\right|^{t}, & z \in X_{2} .
\end{array}
$$

Looking at the formulae (47) we may observe that $R_{1}(z)=-R_{2}(-z), R_{1}^{\prime}(z)=$ $R_{2}^{\prime}(-z)$, and $R_{0}(z)=-R_{0}(-z)$ and therefore \mathcal{L}_{t} preserves the subspace

$$
V_{0}:=\left\{\left(f_{0}, f_{1}, f_{2}\right) \in C^{\alpha}(S) \mid f_{1}(z)=f_{2}(-z), f_{0}(z)=f_{0}(-z)\right\} .
$$

We can apply the bisection method to get rigorous estimates on the dimension of the limit set $X_{\Gamma}=X_{A}$ with the setting $S=\cup_{j=0}^{2} X_{j}, m=20$ and $\varepsilon=10^{-7}$. We take the interpolation nodes to be zeros of Chebyshev polynomials transferred to each of the intervals X_{j} affinely. It gives

$$
\begin{equation*}
t_{0}:=0.29554647<\operatorname{dim}_{H} X_{A}<0.29554648=: t_{1} . \tag{49}
\end{equation*}
$$

Lagrange-Chebyshev interpolation gives test functions $\underline{f}, \underline{g} \in V_{0}$, whose components are presented in Figure 6

Figure 6. Theorem 1.9 The graphs of $f_{0}: X_{0} \rightarrow \mathbb{R}$ and $f_{1}:$ $X_{1} \rightarrow \mathbb{R}$ (the plots of $g_{k}, k=0,1$ are similar). The plot of f_{2} is the mirror image of f_{1}.

We can estimate numerically

$$
\sup _{S} \frac{\mathcal{L}_{t_{1}} \underline{f}}{\underline{f}}<1-10^{-10}, \quad \inf _{S} \frac{\mathcal{L}_{t_{0}} \underline{g}}{\underline{g}}>1+10^{-8}
$$

The result follows from Lemma 3.3,
There is a simple connection between the dimension $\operatorname{dim}_{H}(X)$ of the limit set X and the smallest eigenvalue $\lambda_{0}>0$ of the Laplace-Beltrami operator on the non-compact surface \mathbb{H}^{2} / Γ [50]. More precisely, $\lambda_{0}=\operatorname{dim}_{H}\left(X_{\Gamma}\right)\left(1-\operatorname{dim}_{H}\left(X_{\Gamma}\right)\right)$. Applying the estimates (49), we obtain $\lambda_{0}=0.2081987565 \pm 2.5 \cdot 10^{-9}$.

Remark 4.33. By increasing m it is an easy matter to get better estimates on the dimension of the limit set. For example, taking $m=25$ we can improve the bounds to $\operatorname{dim}\left(X_{\Gamma}\right)=0.2955464798845 \pm 4.5 \cdot 10^{-12}$ and $\lambda_{0}=0.208198758112 \pm 2.5 \cdot 10^{-13}$. The coefficients of the corresponding test functions are given in A.3

Figure 7. The group Γ_{θ} generated by three reflections in geodesics γ_{0}, γ_{1}, and γ_{2}
4.8.1. Other symmetric Schottky groups. More generally, McMullen 40 considered the Schottky group $\Gamma_{\theta}=\left\langle R_{0}, R_{1}, R_{2}\right\rangle$ generated by reflections $R_{0}, R_{1}, R_{2}: \mathbb{D}^{2} \rightarrow \mathbb{D}^{2}$ in three symmetrically placed geodesics (with respect to the Poincaré metric) with six end points $e^{2 \pi i j / 3 \pm \theta / 2}, j=0,1,2$ on the unit circle (Figure 7).

Similarly to the special case that $\theta=\frac{\pi}{3}$ which we have already considered, one can transform the unit disk \mathbb{D}^{2} to the upper half plane \mathbb{H}^{2} and compute the centres and the radii of reflections

$$
\begin{aligned}
& c_{j}=\frac{1}{2}\left(\tan \left(\frac{\pi j}{3}+\frac{\theta}{4}\right)+\tan \left(\frac{\pi j}{3}-\frac{\theta}{4}\right)\right), \text { and } \\
& r_{j}=\frac{1}{2}\left|\tan \left(\frac{\pi j}{3}+\frac{\theta}{4}\right)-\tan \left(\frac{\pi j}{3}-\frac{\theta}{4}\right)\right|, j=0,1,2 .
\end{aligned}
$$

The limit set $X_{\Gamma_{\theta}}$ is again defined as the accumulation points of the orbit $\Gamma_{\theta} i$. We can introduce a corresponding Markov iterated function scheme whose limit set coincides with $X_{\Gamma_{\theta}}$. We can consider two representative examples and estimate the Hausdorff dimension of the associated limit set.

Example $4.34(\theta=2 \pi / 9)$. In this case setting $m=15$ we can obtain an estimate to 11 decimal places of the form

$$
\operatorname{dim}_{H}\left(X_{\Gamma_{\theta}}\right)=0.217765810255 \pm 5 \cdot 10^{-12} .
$$

This agrees with McMullen's result (given to 8 decimal places).
Example $4.35(\theta=\pi / 9)$. In this case we can let $m=12$ to deduce an estimate to 11 decimal places of the form

$$
\operatorname{dim}_{H}\left(X_{\Gamma_{\theta}}\right)=0.151183682035 \pm 5 \cdot 10^{-12} .
$$

This agrees with McMullen's result (given to 8 decimal places).
4.9. Other iterated function schemes. To conclude we will collect together a number of other examples of iterated function schemes that have attracted attention of other authors and give estimates on the Hausdorff dimension of their limit sets.
4.9.1. Non-linear fractional example. So far we have been studying iterated function schemes generated by linear fractional transformations. Following [40, §6] we will consider a simple example of a map of \mathbb{H}^{2} of a different nature. For any $0<t \leq 1$ we can define

$$
f_{t}(z)=\frac{z}{t}-\frac{1}{z}
$$

If $t=1$ then the real line is f-invariant and there is no strictly smaller closed invariant set. If $0<t<1$ then there exists an f-invariant Cantor $X_{t} \subset \mathbb{R} 48$.
Example $4.36\left(t=\frac{1}{2}\right)$. The map $f(z)=2 z-\frac{1}{z}$ has a limit set $X \subset[-1,1]$ and there are two inverse branches $T_{1}, T_{2}:[-1,1] \rightarrow[-1,1]$ given by

$$
\begin{align*}
& T_{1}(x)=\frac{1}{4}\left(x-\sqrt{\left.8+x^{2}\right]}\right), \\
& T_{2}(x)=\frac{1}{4}\left(x+\sqrt{8+x^{2}}\right), \tag{50}
\end{align*}
$$

which define a Bernoulli system on $[-1,1]$. The transfer operator defined by (1) takes the form

$$
\left(\mathcal{L}_{t} f\right)(x)=f\left(T_{1}(x)\right)\left|T_{1}^{\prime}(x)\right|^{t}+f\left(T_{2}(x)\right)\left|T_{2}^{\prime}(x)\right|^{t}
$$

We may observe that $T_{1}(x)=-T_{2}(-x)$ and $T_{1}^{\prime}(x)=T_{2}^{\prime}(-x)$. It follows that the transfer operator preserves subspaces consisting of odd and even functions. Applying the bisection method with $S=[-1,1], m=10$ we obtain that 10

$$
\operatorname{dim}_{H} X=0.4934480908025 \pm 5 \cdot 10^{-13}
$$

The corresponding test functions f and g for $t_{0}=0.49344808802$ and $t_{1}=0.493448090803$, respectively, turn out to be even and given by

$$
f(x)=\sum_{n=0}^{7} a_{2 n} x^{2 n} \quad g(x)=\sum_{n=0}^{7} b_{2 n} x^{2 n}
$$

which are plotted in Figure 8 and whose coefficients are given in A. 4
We can also compute

$$
\inf _{S} \frac{\mathcal{L}_{t_{0}} f}{f}>1+10^{-13} \quad \sup _{S} \frac{\mathcal{L}_{t_{1}} g}{g}<1-10^{-13}
$$

to justify the dimension estimates above.
Remark 4.37. These estimates can easily be improved by increasing the number of Chebyshev points. For example, letting $m=20$ gives a better estimate

$$
\operatorname{dim}_{H}(X)=0.493448090802613 \pm 10^{-15}
$$

4.9.2. Hensley examples. In a well known article from 1992, Hensley 18 presented an algorithm for calculating the Hausdorff dimension of the limit sets for suitable iterated function schemes. In this article there was included a table containing estimates on selected examples which were good for the computational resources available at the time and continued to be quoted up to the present time. It is a simple matter to apply the method in $\S 3$ to improve these estimates. We give lower and upper bounds in Table 3 ,

[^7]

Figure 8. A plot of the function f for the system (50) (the function g being similar)

In Table 1 in another paper by Hensley [19, there are a number of numerical results on Hausdorff dimension various of limit sets. Let us consider two typical examples from the list.
(i) Let $X_{1,2,7}=\left\{\left[0 ; a_{1}, a_{2}, a_{3}, \cdots\right] \mid a_{n} \in\{1,2,7\}\right\}$. Hensley presents an estimate

$$
\operatorname{dim}_{H}\left(X_{1,2,7}\right)=0.61790369546338
$$

accurate to 13 decimal places. The bisection method with $S=[0,1], \varepsilon=$ 10^{-23} and $m=30$ gives

$$
\operatorname{dim}_{H}(X)=0.617903695463375650663413 \pm 10^{-24}
$$

with the corresponding test functions \underline{f} and \underline{g} satisfying

$$
\inf _{S} \frac{\mathcal{L}_{t_{0}} g}{g}>1+10^{-24}, \quad \sup _{S} \frac{\mathcal{L}_{t_{1}} f}{f}<1-10^{-24}
$$

(ii) Let $X_{1,3,4}=\left\{\left[0 ; a_{1}, a_{2}, a_{3}, \cdots\right] \mid a_{n} \in\{1,3,4\}\right\}$. Hensley presents an estimate $\operatorname{dim}_{H}\left(X_{1,3,5}\right)=0.60424226069111965$. However, this is only accurate to seven decimal places (there seeming to be a typographical error) and applying the bisection method with $S=[0,1], \varepsilon=10^{-23}$ and $m=30$ we can correct the estimate as follows:

$$
\operatorname{dim}_{H}(X)=0.604242257756489565510773 \pm 10^{-24}
$$

4.9.3. Other limit sets. In 41 Moreira considered a limit set X for the IFS

$$
T_{1}(x)=\frac{1}{1+x} \text { and } T_{2}(x)=\frac{1}{2+\frac{1}{2+x}}
$$

TAble 3. Numerical data for Hensley examples from [18; $\operatorname{dim}_{H} X_{A}=d \pm 10^{-20}$

Alphabet A	Hensley Estimate	d
1,2	0.5312805062772051416	0.531280506277205141624
1,3	0.4544827	0.454489077661828743845
1,4	0.4111827	0.411182724774791776844
2,3	0.337437	0.337436780806063636304
2,4	0.306313	0.306312768052784030277
3,4	0.263737	0.263737482897426558750
$1,2,3$	0.7056609080	0.705660908028738230607
$1,2,4$	0.66922149	0.669221486910286076432
$1,3,4$	0.60424226069111965	0.604242257756489565510
$2,3,4$	0.480696	0.480696222317573041322
$1,2,3,4$	0.788946	0.788945557483153972540
$1,2,7$	0.61790369546338	0.617903695463375650662
$1,3,7$	0.55324225	0.553242250567310968816
$1,4,7$	0.51788376	0.517883757006916965284
$2,3,7$	0.43801241	0.438012405714031182301
$2,4,7$	0.410329	0.410329315837687004087
$3,4,7$	0.36757914	0.367579139591900931763
$1,2,3,7$	0.75026306	0.750263061337143043252
$1,2,4,7$	0.7185418875	0.718541887470369949818
$2,3,4,7$	0.540036	0.540035812154759519026
$1,2,3,4,7$	0.820004	0.820003947126869007465
10,11	0.146921	0.146921235390783463310
100,10000	0.052247	0.052246592638658878651
2,7	0.26022398	0.260223877422178671707
$1,3,4,7$	0.66015538	0.660155379832378077766
1,7	0.34623824	0.346238243533957879830
4,7	0.20525334194	0.205253419367364932215
3,7	0.2249239471918	0.224923947191778989183
$1,2,3,4,5$	0.8368294437	0.836829443681208824442
$2,3,4,5$	0.55963645	0.559636450164776713310
$2,3,5$	0.4616137	0.461613684018289222674
1,500	0.109476011737	0.109476011737232752745

After Theorem 3.4 therein he gives a rigorous estimate $0.353<\operatorname{dim}_{H}(X)<$ 0.3572 Applying the bisection method with $\varepsilon=10^{-30}$ and $m=40$ we obtain

$$
\operatorname{dim}_{H} X=0.35540047683384079791630628949045 \pm 5 \cdot 10^{-32}
$$

There are also additional examples studied by Jenkinson, in connection with his numerical investigation of the Texan conjecture. It is a simple matter to apply the bisection method to compute intervals $\left[t_{0}, t_{1}\right]$ containing the actual values and these are presented in Table 4.

[^8]Table 4. Numerical data for Jenkinson examples from [23]; $\operatorname{dim}_{H} X_{A}=d \pm 2 \cdot 10^{-24}$

Alphabet A	Jenkinson Estimate	d
$1,3,8$	0.5438	0.5438505824069662012910871
$1,3,6$	0.5652	0.5652752192862325053707768
$1,3,5$	0.5813	0.5813668211346973144944763
$1,2,10$	0.5951	0.5951117365456075518418957
$1,3,4$	0.6042	0.6042422576954184814050596
$1,2,7,40$	0.6265	0.626574116892294038664271
$1,2,5$	0.6460	0.6460620828348262199126074
$1,2,5,40$	0.6532	0.6532480771577487272788226
$1,2,4$	0.6692	0.669221486861360129910582
$1,2,4,40$	0.6754	0.6754204446697040565886491
$1,2,4,15$	0.6899	0.6899117699492364036939765
$1,2,4,6$	0.7275	0.7275240485584473607017215
$1,2,4,5$	0.7400	0.7400268606020775066359866
$1,2,3,6$	0.7588	0.7588596765752234847834758
$1,2,3,5$	0.7709	0.7709149398441822256066922
$1,2,3,4,10$	0.8081	0.8081711218950847194806225
$1,2,3,4,6$	0.8269	0.8269084945916311683724267
$1,2,3,4,5,9$	0.8541	0.8541484705393266154270362
$1,2,3,4,5,7$	0.8616	0.8616561744062649105699743
$1,2,3,4,5,6$	0.8676	0.867619173067183780912243
$1,2,3,4,5,6,8$	0.8851	0.8851175915564489482312343
$1,2,3,4,5,6,7$	0.8889	0.8889553164919516784364394
$1,2, \ldots, 8$	0.9045	0.9045526893291614272820095
$1,2, \ldots, 9$	0.9164	0.9164211122683517404064645
$1,2, \ldots, 10$	0.9257	0.9257375908875461236725506
$1,2, \ldots, 13$	0.9445	0.9445341091712615877676671
$1,2, \ldots, 18$	0.961	0.961931848159923051644346
$1,2, \ldots, 34$	0.980	0.9804196247795825596958015

Appendix A. Coefficients for polynomials

For completeness, we collect together the coefficients of the polynomials which appear in the proofs of the theorems. The exceptions to this is Theorem 1.5 where the polynomials are of degree 200. However, in all of these examples the reader may easily reconstruct these polynomials using the method described in 3.2 and 43.3

Coefficients given in this section are exact rational numbers.

A.1. Estimates of $\operatorname{dim}_{H} \mathcal{M} \backslash \mathcal{L}$.

A.1.1. Part 1: $(\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{5}, \sqrt{13})$. We present coefficients of the test functions $\underline{f}=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ and $\underline{g}=\left(g_{1}, g_{2}, g_{3}, g_{4}\right)$ used in (17).

$$
f_{j}=\sum_{k=0}^{7} a_{k}^{j} x^{k} \quad g_{j}=\sum_{k=0}^{7} b_{k}^{j} x^{k}, \quad j=1,2,3,4 .
$$

Straightforward calculation shows that the functions f_{j} and g_{j} are monotone decreasing on $[0,1]$ and achieve their minima at 1 . For convenience, we give a lower bound $s_{j}<\min \left(f_{j}(1), g_{j}(1)\right)$.

f_{1}		f_{2}		f_{3}		f_{4}	
a_{0}^{1}	0.9719420630	a_{0}^{2}	0.6996881504	a_{0}^{3}	0.5151068706	a_{0}^{4}	1.0035153909
a_{1}^{1}	-0.4083622154	a_{1}^{2}	-0.3257856180	a_{1}^{3}	-0.1503102708	a_{1}^{4}	-0.3675009146
a_{2}^{1}	0.2105627503	a_{2}^{2}	0.1808409982	a_{2}^{3}	0.0521402712	a_{2}^{4}	0.1667939317
a_{3}^{1}	-0.1166905024	a_{3}^{2}	-0.1054480473	a_{3}^{3}	-0.0190434708	a_{3}^{4}	-0.0824212096
a_{4}^{1}	0.0649256757	a_{4}^{2}	0.0606297675	a_{4}^{3}	0.0070462566	a_{4}^{4}	0.0416454207
a_{5}^{1}	-0.0321113965	a_{5}^{2}	-0.0305675512	a_{5}^{3}	-0.0024652813	a_{5}^{4}	-0.0191792606
a_{6}^{1}	0.0114531320	a_{6}^{2}	0.0110148596	a_{6}^{3}	0.0006866462	a_{6}^{4}	0.0065321353
a_{7}^{1}	-0.0020311821	a_{7}^{2}	-0.0019639179	a_{7}^{3}	-0.0001041463	a_{7}^{4}	-0.0011267545
s_{1}	0.6	s_{2}	0.4	s_{3}	0.4	s_{4}	0.7
	g_{1}		g_{2}		g_{3}		g_{4}
b_{0}^{1}	0.9719420489	b_{0}^{2}	0.6996881913	b_{0}^{3}	0.5151068139	b_{0}^{4}	1.0035153929
b_{1}^{1}	-0.4083624405	b_{1}^{2}	-0.3257858144	b_{1}^{3}	-0.1503103363	b_{1}^{4}	-0.3675011259
b_{2}^{1}	0.2105629174	b_{2}^{2}	0.1808411480	b_{2}^{3}	0.0521403058	b_{2}^{4}	0.1667940700
b_{3}^{1}	-0.1166906125	b_{3}^{2}	-0.1054481493	b_{3}^{3}	-0.0190434862	b_{3}^{4}	-0.0824212916
b_{4}^{1}	0.0649257436	b_{4}^{2}	0.0606298318	b_{4}^{3}	0.0070462630	b_{4}^{4}	0.0416454670
b_{5}^{1}	-0.0321114321	b_{5}^{2}	-0.0305675854	b_{5}^{3}	-0.0024652837	b_{5}^{4}	-0.0191792835
b_{6}^{1}	0.0114531451	b_{6}^{2}	0.0110148723	b_{6}^{3}	0.0006866469	b_{6}^{4}	0.0065321434
b_{7}^{1}	-0.0020311845	b_{7}^{2}	-0.0019639202	b_{7}^{3}	-0.0001041464	b_{7}^{4}	-0.0011267559
s_{1}	0.6	s_{2}	0.4	s_{3}	0.4	S_{4}	0.7

A.1.2. Part 2: $(\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{13}, 3.84)$. We present coefficients of the test functions $\underline{f}=\left(f_{1}, f_{2}, f_{3}\right)$ and $\underline{g}=\left(g_{1}, g_{2}, g_{3}\right)$ used in (20).

$$
f_{j}=\sum_{k=0}^{7} a_{k}^{j} x^{k} \quad g_{j}=\sum_{k=0}^{7} b_{k}^{j} x^{k}, \quad j=1,2,3
$$

Straightforward calculation shows that the functions f_{j} and g_{j} are monotone decreasing on $[0,1]$ and achieve their minima at 1 . For convenience, we give a lower bound $s_{j}<\min \left(f_{j}(1), g_{j}(1)\right)$.

f_{1}		f_{2}		f_{3}	
a_{0}^{1}	0.8909247279	a_{0}^{2}	1.0057862651	a_{0}^{3}	0.4637543240
a_{1}^{1}	-0.5666958388	a_{1}^{2}	-0.6057959903	a_{1}^{3}	-0.1989455013
a_{2}^{1}	0.3563184411	a_{2}^{2}	0.3687733983	a_{2}^{3}	0.0812067365
a_{3}^{1}	-0.2268317558	a_{3}^{2}	-0.2307067719	a_{3}^{3}	-0.0328166697
a_{4}^{1}	0.1399500506	a_{4}^{2}	0.1411336470	a_{4}^{3}	0.0130694788
a_{5}^{1}	-0.0741972949	a_{5}^{2}	-0.0745402261	a_{5}^{3}	-0.0048273012
a_{6}^{1}	0.0275558152	a_{6}^{2}	0.0276379657	a_{6}^{3}	0.0013941859
a_{7}^{1}	-0.0049924560	a_{7}^{2}	-0.0050037264	a_{7}^{3}	-0.0002161328
s_{1}	0	s_{2}	0.6	s_{3}	0

g_{1}		g_{2}		g_{3}	
b_{0}^{1}	0.8909246136	b_{0}^{2}	1.0057862594	b_{0}^{3}	0.4637545188
b_{1}^{1}	-0.5666952424	b_{1}^{2}	-0.6057953968	b_{1}^{3}	-0.1989454076
b_{2}^{1}	0.3563178857	b_{2}^{2}	0.3687728381	b_{2}^{3}	0.0812066594
b_{3}^{1}	-0.2268313254	b_{3}^{2}	-0.2307063388	b_{3}^{3}	-0.0328166280
b_{4}^{1}	0.1399497528	b_{4}^{2}	0.1411333481	b_{4}^{3}	0.0130694591
b_{5}^{1}	-0.0741971263	b_{5}^{2}	-0.0745400571	b_{5}^{3}	-0.0048272932
b_{6}^{1}	0.0275557503	b_{6}^{2}	0.0276379006	b_{6}^{3}	0.0013941834
b_{7}^{1}	-0.0049924440	b_{7}^{2}	-0.0050037144	b_{7}^{3}	-0.0002161324
s_{1}	5	s_{2}	0.6	s_{3}	0

A.1.3. Part 3: $(\mathcal{M} \backslash \mathcal{L}) \cap(3.84,3.92)$. We present coefficients of the polynomial test functions $\underline{f}=\left(f_{1}, \ldots, f_{7}\right)$ and $\underline{g}=\left(g_{1}, \ldots, g_{7}\right)$ used in (23). It follows from the equality between columns of the transition matrix M that certain components are identical.

$$
\begin{array}{ll}
f_{1}=f_{2}=\sum_{k=0}^{7} a_{k}^{1} x^{k}, & g_{1}=g_{2}=\sum_{k=0}^{7} b_{k}^{1} x^{k} ; \\
f_{4}=f_{5}=f_{6}=\sum_{k=0}^{7} a_{k}^{4} x^{k}, & g_{4}=g_{5}=g_{6}=\sum_{k=0}^{7} b_{k}^{4} x^{k} ; \\
f_{j}=\sum_{k=0}^{7} a_{k}^{j} x^{k}, & g_{j}=\sum_{k=0}^{7} b_{k}^{j} x^{k} ; \quad j=3,7,8,9 .
\end{array}
$$

Straightforward calculation shows that the functions f_{j} and g_{j} are monotone decreasing on $[0,1]$ and achieve their minima at 1 . For convenience, we give a lower bound $s_{j}<\min \left(f_{j}(1), g_{j}(1)\right)$.

f_{1}		f_{3}		f_{4}			
a_{0}^{1}	0.8752491446	a_{0}^{3}	0.8242977486	a_{0}^{4}	0.9435673129		
a_{1}^{1}	-0.5862938673	a_{1}^{3}	-0.5673413247	a_{1}^{4}	-0.6108763701		
a_{2}^{1}	0.3817921234	a_{2}^{3}	0.3753845810	a_{2}^{4}	0.3898319394		
a_{3}^{1}	-0.2509102043	a_{3}^{3}	-0.2488176120	a_{3}^{4}	-0.2534505061		
a_{4}^{1}	0.1594107381	a_{4}^{3}	0.1587442151	a_{4}^{4}	0.1601941335		
a_{5}^{1}	-0.0866513835	a_{5}^{3}	-0.0864513792	a_{5}^{4}	-0.0868796783		
a_{6}^{1}	0.0328162711	a_{6}^{3}	0.0327671074	a_{6}^{4}	0.0328711315		
a_{7}^{1}	-0.0060331410	a_{7}^{3}	-0.0060262852	a_{7}^{4}	-0.0060406787		
s_{1}	0.4	s_{3}	0.4	0.5			
f_{7}		f_{8}					f_{9}
a_{0}^{7}	0.2183470684	a_{0}^{8}	0.5232653503	a_{0}^{9}	1.0058222185		
a_{1}^{7}	-0.0767355580	a_{1}^{8}	-0.2253827130	a_{1}^{9}	-0.6095554508		
a_{2}^{7}	0.0245616045	a_{2}^{8}	0.0906682129	a_{2}^{9}	0.3705808500		
a_{3}^{7}	-0.0076106356	a_{3}^{8}	-0.0360797100	a_{3}^{9}	-0.2326605853		
a_{4}^{7}	0.0023068479	a_{4}^{8}	0.0141972990	a_{4}^{9}	0.1434620328		
a_{5}^{7}	-0.0006627640	a_{5}^{8}	-0.0052036970	a_{5}^{9}	-0.0765436603		
a_{6}^{7}	0.0001576564	a_{6}^{8}	0.0014967921	a_{6}^{9}	0.0286722918		
a_{7}^{7}	-0.0000215279	a_{7}^{8}	-0.0002316038	a_{7}^{9}	-0.0052379012		
s_{7}	0.1	s_{8}	0.3	s_{9}	0.5		

g_{1}		g_{3}		g_{4}									
b_{0}^{1}	0.8752491756	b_{0}^{3}	0.8242978103	b_{0}^{4}	0.9435673145								
b_{1}^{1}	-0.5862941999	b_{1}^{3}	-0.5673416594	b_{1}^{4}	-0.6108767042								
b_{2}^{1}	0.3817924531	b_{2}^{3}	0.3753849098	b_{2}^{4}	0.3898322718								
b_{3}^{1}	-0.2509104702	b_{3}^{3}	-0.2488178772	b_{3}^{4}	-0.2534507734								
b_{4}^{1}	0.1594109280	b_{4}^{3}	0.1587444046	b_{4}^{4}	0.1601943239								
b_{5}^{1}	-0.0866514938	b_{5}^{3}	-0.0864514894	b_{5}^{4}	-0.0868797888								
b_{6}^{1}	0.0328163145	b_{6}^{3}	0.0327671507	b_{6}^{4}	0.0328711749								
b_{7}^{1}	-0.0060331491	b_{7}^{3}	-0.0060262933	b_{7}^{4}	-0.0060406868								
s_{1}	0.4	s_{3}	0.4	0.5									
g_{7}							g_{8}					g_{9}	
b_{0}^{7}	0.2183469977	b_{0}^{8}	0.5232652393	b_{0}^{9}	1.0058222217								
b_{1}^{7}	-0.0767355702	b_{1}^{8}	-0.2253827769	b_{1}^{9}	-0.6095557922								
b_{2}^{7}	0.0245616149	b_{2}^{8}	0.0906682634	b_{2}^{9}	0.3705811764								
b_{3}^{7}	-0.0076106401	b_{3}^{8}	-0.0360797369	b_{3}^{9}	-0.2326608405								
b_{4}^{7}	0.0023068496	b_{4}^{8}	0.0141973115	b_{4}^{9}	0.1434622111								
b_{5}^{7}	-0.0006627646	b_{5}^{8}	-0.0052037021	b_{5}^{9}	-0.0765437625								
b_{6}^{7}	0.0001576566	b_{6}^{8}	0.0014967937	b_{6}^{9}	0.0286723317								
b_{7}^{7}	-0.0000215279	b_{7}^{8}	-0.0002316041	b_{7}^{9}	-0.0052379086								
s_{7}	0.1	s_{8}	0.3	s_{9}	0.5								

A.1.4. Part 4: $(\mathcal{M} \backslash \mathcal{L}) \cap(3.92,4.01)$. It follows from the equalities between columns of the transition matrix M (25) that components of the test function $\underline{f}=\left(f_{111}, \ldots, f_{333}\right)$ and $\underline{g}=\left(g_{111}, \ldots, g_{333}\right)$ used in (27) satisfy the following identities.

$$
\begin{array}{ll}
f_{111}=f_{112}=f_{113}=\sum_{k=0}^{7} a_{k}^{111} x^{k} & g_{111}=g_{112}=g_{113}=\sum_{k=0}^{7} b_{k}^{111} x^{k}, \\
f_{211}=f_{2 r s}=\sum_{k=0}^{7} a_{k}^{211} x^{k} & g_{211}=g_{2 r s}=\sum_{k=0}^{7} b_{k}^{211} x^{k}, 1 \leq r, s \leq 3, \\
f_{121}=f_{122}=f_{123}=\sum_{k=0}^{7} a_{k}^{121} x^{k} & g_{121}=g_{122}=g_{123}=\sum_{k=0}^{7} b_{k}^{121} x^{k}, \\
f_{321}=f_{322}=f_{323}=\sum_{k=0}^{7} a_{k}^{123} x^{k} & g_{321}=g_{322}=g_{323}=\sum_{k=0}^{7} b_{k}^{123} x^{k}, \\
f_{331}=f_{332}=f_{333}=\sum_{k=0}^{7} a_{k}^{133} x^{k} & g_{331}=g_{332}=g_{333}=\sum_{k=0}^{7} b_{k}^{133} x^{k} .
\end{array}
$$

Straightforward calculation shows that the functions f_{j} and g_{j} are monotone decreasing on $[0,1]$ and achieve their minima at 1 . For convenience, we give a lower bound $s_{\text {qrs }}<\min \left(f_{\text {qrs }}(1), g_{q r s}(1)\right)$.

f_{111}		f_{121}		f_{132}	
a_{0}^{111}	0.9884535079	a_{0}^{121}	0.9249363898	a_{0}^{132}	0.5745876575
a_{1}^{111}	-0.6902235127	a_{1}^{121}	-0.6661893079	a_{1}^{132}	-0.4908751097
a_{2}^{111}	0.4629840472	a_{2}^{121}	0.4549027221	a_{2}^{132}	0.3761466270
a_{3}^{111}	-0.3124708511	a_{3}^{121}	-0.3098685263	a_{3}^{132}	-0.2757231992
a_{4}^{111}	0.2030567394	a_{4}^{121}	0.2022427698	a_{4}^{132}	0.1878939498
a_{5}^{111}	-0.1122167788	a_{5}^{121}	-0.1119770597	a_{5}^{132}	-0.1064665719
a_{6}^{111}	0.0429529760	a_{6}^{121}	0.0428949582	a_{6}^{132}	0.0412628171
a_{7}^{111}	-0.0079480141	a_{7}^{121}	-0.0079400087	a_{7}^{132}	-0.0076832222
s_{111}	0.5	s_{121}	0.4	s_{132}	0.2
f_{133}		f_{211}		f_{311}	
a_{0}^{133}	0.8813943456	a_{0}^{211}	1.0003583962	a_{0}^{311}	0.5081203394
a_{1}^{133}	-0.6491441142	a_{1}^{211}	-0.6654322134	a_{1}^{311}	-0.2326160640
a_{2}^{133}	0.4489736082	a_{2}^{211}	0.4295333392	a_{2}^{311}	0.0972736889
a_{3}^{133}	-0.3078936043	a_{3}^{211}	-0.2812396746	a_{3}^{311}	-0.0398841238
a_{4}^{133}	0.2016042974	a_{4}^{211}	0.1785878079	a_{4}^{311}	0.0160797615
a_{5}^{133}	-0.1117833249	a_{5}^{211}	-0.0971302423	a_{5}^{311}	-0.0060041586
a_{6}^{133}	0.0428469743	a_{6}^{211}	0.0368077301	a_{6}^{311}	0.0017487411
a_{7}^{133}	-0.0079332871	a_{7}^{211}	-0.0067699556	a_{7}^{311}	-0.0002726247
s_{133}	0.4	s_{211}	0.5	s_{311}	0.3
f_{312}		f_{321}		f_{331}	
a_{0}^{312}	0.2013136	a_{0}^{321}	0.807263	a_{0}^{331}	1.0061848844
a_{1}^{312}	-0.0743470595	a_{1}^{321}	-0.4648188145	a_{1}^{331}	-0.6476491585
a_{2}^{312}	0.0244467077	a_{2}^{321}	0.2575884636	a_{2}^{331}	0.4067501349
a_{3}^{312}	-0.0077137186	a_{3}^{321}	-0.1452652325	a_{3}^{331}	-0.2603687665
a_{4}^{312}	0.0023694138	a_{4}^{321}	0.0809083385	a_{4}^{331}	0.1624071150
a_{5}^{312}	-0.0006874054	a_{5}^{321}	-0.0398683005	a_{5}^{331}	-0.0872158384
a_{6}^{312}	0.0001645838	a_{6}^{321}	0.0141619841	a_{6}^{331}	0.0327839671
a_{7}^{312}	-0.0000225	a_{7}^{321}	-0.0025036826	a_{7}^{331}	-0.0060002449
s_{312}	0.1	321	0.4	s_{331}	0.5
g_{111}		g_{121}		g_{132}	
b_{0}^{111}	0.9884535050	b_{0}^{121}	0.9249364233	b_{0}^{132}	0.5745877791
b_{1}^{111}	-0.6902239809	b_{1}^{121}	-0.6661897749	b_{1}^{132}	-0.4908755105
b_{2}^{111}	0.4629845398	b_{2}^{121}	0.4549032114	b_{2}^{132}	0.3761470588
b_{3}^{111}	-0.3124712630	b_{3}^{121}	-0.3098689364	b_{3}^{132}	-0.2757235761
b_{4}^{111}	0.2030570414	b_{4}^{121}	0.2022430710	b_{4}^{132}	0.1878942344
b_{5}^{111}	-0.1122169575	b_{5}^{121}	-0.1119772381	b_{5}^{132}	-0.1064667431
b_{6}^{111}	0.0429530470	b_{6}^{121}	0.0428950291	b_{6}^{132}	0.0412628857
b_{7}^{111}	-0.0079480275	b_{7}^{121}	-0.0079400220	b_{7}^{132}	-0.0076832353
s_{111}	0.5	s_{121}	0.4	s_{132}	0.2

g_{133}		g_{211}		g_{311}	
b_{0}^{133}	0.8813944143	b_{0}^{211}	1.0003583991	b_{0}^{311}	0.5081201992
b_{1}^{133}	-0.6491445844	b_{1}^{211}	-0.6654326742	b_{1}^{311}	-0.2326161465
b_{2}^{133}	0.4489740965	b_{2}^{211}	0.4295338070	b_{2}^{311}	0.0972737581
b_{3}^{133}	-0.3078940138	b_{3}^{211}	-0.2812400555	b_{3}^{311}	-0.0398841619
b_{4}^{133}	0.2016045985	b_{4}^{211}	0.1785880816	b_{4}^{311}	0.0160797798
b_{5}^{133}	-0.1117835035	b_{5}^{211}	-0.0971304019	b_{5}^{311}	-0.0060041662
b_{6}^{133}	0.0428470454	b_{6}^{211}	0.0368077929	b_{6}^{311}	0.0017487435
b_{7}^{133}	-0.0079333006	b_{7}^{211}	-0.0067699674	b_{7}^{311}	-0.0002726251
s_{133}	0.4	${ }_{2}$	0.5	S_{311}	0.3
	g_{312}		g_{321}		g_{331}
b_{0}^{312}	0.2013135639	b_{0}^{321}	0.8072631281	b_{0}^{331}	1.0061848887
b_{1}^{312}	-0.0743470726	b_{1}^{321}	-0.4648191338	b_{1}^{331}	-0.6476496175
b_{2}^{312}	0.0244467204	b_{2}^{321}	0.2575887534	b_{2}^{331}	0.4067505913
b_{3}^{312}	-0.0077137243	b_{3}^{321}	-0.1452654416	b_{3}^{331}	-0.2603691317
b_{4}^{312}	0.0023694160	b_{4}^{321}	0.0809084732	b_{4}^{331}	0.1624073740
b_{5}^{312}	-0.0006874061	b_{5}^{321}	-0.0398683727	b_{5}^{331}	-0.0872159881
b_{6}^{312}	0.0001645840	b_{6}^{321}	0.0141620110	b_{6}^{331}	0.0327840257
b_{7}^{312}	-0.0000225598	b_{7}^{321}	-0.0025036874	b_{7}^{331}	-0.0060002559
s_{312}	0.1	s_{321}	0.4	S_{331}	0.5

A.1.5. Part 5: $(\mathcal{M} \backslash \mathcal{L}) \cap(\sqrt{20}, \sqrt{21})$. We present coefficients of the polynomial components of test functions $\underline{f}=\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$ and $\underline{g}=\left(g_{1}, g_{2}, g_{3}, g_{4}\right)$ used in (30). It follows from the equality between the first and second columns of the matrix M that $f_{1}=f_{2}$ and $g_{1}=g_{2}$.

$$
f_{j}=\sum_{k=0}^{9} a_{k}^{j} x^{k} \quad g_{j}=\sum_{k=0}^{9} b_{k}^{j} x^{k}, \quad j=1,2,3,4 .
$$

Straightforward calculation shows that the functions f_{j} and g_{j} are monotone decreasing on $[0,1]$ and achieve their minima at 1 . For convenience, we give a lower bound $s_{j}<\min \left(f_{j}(1), g_{j}(1)\right)$.

f_{1}		f_{3}		f_{4}	
a_{0}^{1}	0.9799928531	a_{0}^{3}	1.0045893915	a_{0}^{4}	0.1934516264
a_{1}^{1}	-0.7406258897	a_{1}^{3}	-0.7487821988	a_{1}^{4}	-0.0765314787
a_{2}^{1}	0.5273926877	a_{2}^{3}	0.5296982401	a_{2}^{4}	0.0259667329
a_{3}^{1}	-0.3800229054	a_{3}^{3}	-0.3806370202	a_{3}^{4}	-0.0083489461
a_{4}^{1}	0.2763248479	a_{4}^{3}	0.2764834085	a_{4}^{4}	0.0026152698
a_{5}^{1}	-0.1955487122	a_{5}^{3}	-0.1955888334	a_{5}^{4}	-0.0008056462
a_{6}^{1}	0.1241717000	a_{6}^{3}	0.1241816277	a_{6}^{4}	0.0002419581
a_{7}^{1}	-0.0622409671	a_{7}^{3}	-0.0622432782	a_{7}^{4}	-0.0000670179
a_{8}^{1}	0.0206092394	a_{8}^{3}	0.0206096817	a_{8}^{4}	0.0000146636
a_{9}^{1}	-0.0032442178	a_{9}^{3}	-0.0032442666	a_{9}^{4}	-0.0000017681
s_{1}	0.4	s_{3}	0.4	s_{4}	0

g_{1}		g_{3}		g_{4}	
b_{0}^{1}	0.9799928382	b_{0}^{3}	1.0045893900	b_{0}^{4}	0.1934516765
b_{1}^{1}	-0.7406256446	b_{1}^{3}	-0.7487819559	b_{1}^{4}	-0.0765314768
b_{2}^{1}	0.5273924149	b_{2}^{3}	0.5296979674	b_{2}^{4}	0.0259667280
b_{3}^{1}	-0.3800226607	b_{3}^{3}	-0.3806367755	b_{3}^{4}	-0.0083489435
b_{4}^{1}	0.2763246450	b_{4}^{3}	0.2764832054	b_{4}^{4}	0.0026152687
b_{5}^{1}	-0.1955485561	b_{5}^{3}	-0.1955886769	b_{5}^{4}	-0.0008056458
b_{6}^{1}	0.1241715958	b_{6}^{3}	0.1241815227	b_{6}^{4}	0.0002419578
b_{7}^{1}	-0.0622409134	b_{7}^{3}	-0.0622432239	b_{7}^{4}	-0.0000670177
b_{8}^{1}	0.0206092213	b_{8}^{3}	0.0206096634	b_{8}^{4}	0.0000146636
b_{9}^{1}	-0.0032442150	b_{9}^{3}	-0.0032442637	b_{9}^{4}	-0.0000017681
s_{1}	0.4	s_{3}	0.4	s_{4}	0.05

A.2. Zaremba theory.

A.2.1. $\operatorname{dim}_{H}\left(E_{5}\right)$. We present coefficients of the polynomial test functions f and g used in (36).

$$
f=\sum_{k=0}^{15} a_{k} x^{k}, \quad g=\sum_{k=0}^{15} b_{k} x^{k} .
$$

Similarly to the previous examples, the functions f and g are monotone and they can be bounded from below by their value at 1 . In particular, we have $f(1), g(1) \geq 0.4$.

f		g	
a_{0}	1.002075775192587	b_{0}	1.002075775192580
a_{1}	-0.863832791554195	b_{1}	-0.863832791551160
a_{2}	0.694904605500679	b_{2}	0.694904605500778
a_{3}	-0.563982609501401	b_{3}	-0.563982609938672
a_{4}	0.462936795376894	b_{4}	0.462936803438964
a_{5}	-0.382787786278096	b_{5}	-0.382787860060200
a_{6}	0.317798375235142	b_{6}	0.317798788806115
a_{7}	-0.263717774563333	b_{7}	-0.263719322983292
a_{8}	0.216187532791877	b_{8}	0.216191581202906
a_{9}	-0.170354610076857	b_{9}	-0.170362167218400
a_{10}	0.123046705346496	b_{10}	0.123056842712685
a_{11}	-0.076412879097916	b_{11}	-0.076422574631579
a_{12}	0.037844499485800	b_{12}	0.037850946915568
a_{13}	-0.013650349050295	b_{13}	-0.013653178641107
a_{14}	0.003133011516183	b_{14}	0.003133747261017
a_{15}	-0.000339760445059	b_{15}	-0.000339846126736

A.2.2. $\operatorname{dim}_{H}\left(E_{4}\right)$. We present coefficients of the polynomial test functions f and g used in (37).

$$
f=\sum_{k=0}^{15} a_{k} x^{k}, \quad g=\sum_{k=0}^{15} b_{k} x^{k} .
$$

Similar to the previous examples, the functions f and g are monotone and they can be bounded from below by their value at 1 . In particular, we have $f(1), g(1) \geq 0.4$.

a_{0}	1.001981557057916	b_{0}	1.001981
a_{1}	-0.824549641777407	b_{1}	-0.824549641773357
a_{2}	0.632377740413372	b_{2}	0.632377740394589
a_{3}	-0.489751892709023	b_{3}	-0.489751892404770
a_{4}	0.384644919648888	b_{4}	0.384644915987248
a_{5}	-0.305093638471734	b_{5}	-0.305093610668140
a_{6}	0.243481281464752	b_{6}	0.243481142895873
a_{7}	-0.194635007255869	b_{7}	-0.194634539676458
a_{8}	0.154196605135780	b_{8}	0.154195521320957
a_{9}	-0.118018014953805	b_{9}	-0.118016296613633
a_{10}	0.083325052299187	b_{10}	0.083323249134991
a_{11}	-0.050893608677143	b_{11}	-0.050892477178423
a_{12}	0.024910421954700	b_{12}	0.024910155247198
a_{13}	-0.008908424701076	b_{13}	-0.008908569288906
a_{14}	0.002031148876994	b_{14}	0.002031269948929
a_{15}	-0.000219053588808	b_{15}	-0.000219079665840

A.2.3. $\operatorname{dim}_{H}\left(E_{1235}\right)$. We present coefficients of the polynomial test functions f and g corresponding to $t_{1}=0.770914939936$ and $t_{0}=t_{1}+3 \cdot 10^{-12}$ respectively.

$$
f=\sum_{k=0}^{15} a_{k} x^{k}, \quad g=\sum_{k=0}^{15} b_{k} x^{k} .
$$

Similar to the previous examples, the functions f and g are monotone and they can be bounded from below by their value at 1 . In particular, we have $f(1), g(1) \geq 0.4$.

f		f	g
a_{0}	1.001943825796940	b_{0}	1.001943825796930
a_{1}	-0.808837588421526	b_{1}	-0.808837588417559
a_{2}	0.615494218966991	b_{2}	0.615494218954915
a_{3}	-0.474372511899657	b_{3}	-0.474372511806688
a_{4}	0.371576736077143	b_{4}	0.371576735828591
a_{5}	-0.294687522275668	b_{5}	-0.294687526007311
a_{6}	0.235767134415525	b_{6}	0.235767178162078
a_{7}	-0.189403864881314	b_{7}	-0.189404097267897
a_{8}	0.151071322536495	b_{8}	0.151072090158663
a_{9}	-0.116493763140853	b_{9}	-0.116495485397309
a_{10}	0.082822264062997	b_{10}	0.082824975856055
a_{11}	-0.050871691397334	b_{11}	-0.050874703061709
a_{12}	0.025002624053740	b_{12}	0.025004941184306
a_{13}	-0.008966855413747	b_{13}	-0.008968032838312
a_{14}	0.002048316877335	b_{14}	0.002048672642558
a_{15}	-0.000221169553698	b_{15}	-0.000221217982471

A.3. Fuchsian Schottky groups. We present coefficients of the polynomial test functions $\underline{f}=\left(f_{0}, f_{1}, f_{2}\right)$ and $\underline{g}=\left(g_{0}, g_{1}, g_{2}\right)$, where each f_{j} and g_{j} for $j=0,1,2$, are defined on the interval X_{j}, respectively.

$$
f_{j}=\sum_{k=0}^{24} a_{k}^{j} x^{k}, \quad g_{j}=\sum_{k=0}^{24} b_{k}^{j} x^{k}, \quad j=0,1,2 .
$$

The functions f_{0} and g_{0} are even and therefore their odd coefficients vanish: $a_{2 k+1}^{0}=$ $b_{2 k+1}^{0} \equiv 0$. Moreover, $f_{1}(x)=f_{2}(-x)$ and $g_{1}(x)=g_{2}(-x)$ therefore their even coefficients agree and their odd coefficients have the opposite signs: $a_{2 k}^{1}=a_{2 k}^{2}$, $a_{2 k+1}^{1}=-a_{2 k+1}^{2} ; b_{2 k}^{1}=b_{2 k}^{2}, b_{2 k+1}^{1}=-b_{2 k+1}^{2}$.

	f_{1}
a_{0}^{1}	2.8770704827462130787849251492030
a_{1}^{1}	-11.4401515732168029128293331165380
a_{2}^{1}	41.2783414403998127337761764215520
a_{3}^{1}	-111.0688407519945991015658074607160
a_{4}^{1}	229.2359826830719504436183231429020
a_{5}^{1}	-374.1839317918421651508580498351190
a_{6}^{1}	494.2486182891231866860550011193190
a_{7}^{1}	-537.1550718818002043450127874148360
a_{8}^{1}	486.1852872370976132985936371604760
a_{9}^{1}	-369.6791357119376158018979254258860
a_{10}^{1}	237.5656093180881359651809836821330
a_{11}^{1}	-129.5193450984147750120850142699940
a_{12}^{1}	60.0196876244694040557343257845630
a_{13}^{1}	-23.6421320534647605005954912805860
a_{14}^{1}	7.9021374699139922100387246571970
a_{15}^{1}	-2.2327574635963721814894503262740
a_{16}^{1}	0.5301045742621054501101376372390
a_{17}^{1}	-0.1048257433528365630840057396770
a_{18}^{1}	0.0170498220734007394058868515300
a_{19}^{1}	-0.0022409149968744747201392201870
a_{20}^{1}	0.0002320048619867762156560576330
a_{21}^{1}	-0.0000182076188328122444526479340
a_{22}^{1}	$1.017711979517475899435180 \cdot 10^{-6}$
a_{23}^{1}	$-3.60864141942206682494120 \cdot 10^{-8}$
a_{24}^{1}	$6.09941161252684275320 \cdot 10^{-10}$
a_{0}^{0}	0.988509120501286981726492299097
a_{2}^{0}	0.157542850847455232142931716289
a_{4}^{0}	0.042904006074342082007020639894
a_{6}^{0}	0.013311224077669383683707536427
a_{8}^{0}	0.004429850096065885316293787561
a_{10}^{0}	0.001543440394063281474032350116
a_{12}^{0}	0.000555351173373256765356036270
a_{14}^{0}	0.000204517408718030083947390234
a_{16}^{0}	0.000076609680108249015238001359
a_{18}^{0}	0.000029061155169646923244681761
a_{20}^{0}	0.000011137276040685233840494967
a_{22}^{0}	$4.2275802352717104321010360 \cdot 10^{-6}$
a_{24}^{0}	$1.9876322730511567993854040 \cdot 10^{-6}$

g_{1}	
b_{0}^{1}	2.877070483741637235339396793709
b_{1}^{1}	-11.440151580102508283298777329005
b_{2}^{1}	41.278341467154591279141888564443
b_{3}^{1}	-111.068840826093040583068331287781
b_{4}^{1}	229.235982838419674330781933540686
b_{5}^{1}	-374.183932047938578510658766660908
b_{6}^{1}	494.248618629707611522216515713345
b_{7}^{1}	$-537.155072253799253891555878102640$
b_{8}^{1}	486.185287575077537070728753265866
b_{9}^{1}	$-369.679135969693151986947450814820$
b_{10}^{1}	237.565609484126480000044027316791
b_{11}^{1}	$-129.519345189116330520934728232633$
b_{12}^{1}	60.019687666569911991602610502470
b_{13}^{1}	-23.642132070071466367919223736091
b_{14}^{1}	7.902137475471208082330326553248
b_{15}^{1}	$-2.232757465168180629595168192690$
b_{16}^{1}	0.530104574635619914117715916573
b_{17}^{1}	-0.104825743426755206788900861842
b_{18}^{1}	0.017049822085431863890249313609
b_{19}^{1}	$-0.002240914998456736922493194695$
b_{20}^{1}	0.000232004862150679716335333676
b_{21}^{1}	$-0.000018207618845681630026751529$
b_{22}^{1}	$1.0177119802371267732818260 \cdot 10^{-6}$
b_{23}^{1}	$-3.60864142197485386059250 \cdot 10^{-8}$
b_{24}^{1}	$6.099411616843192081320 \cdot 10^{-10}$
g_{0}	
b_{0}^{0}	0.988509120496506332431826934199
b_{2}^{0}	0.157542850912623683440552637873
b_{4}^{0}	0.042904006097255254396958615314
b_{6}^{0}	0.013311224085738465758389603856
b_{8}^{0}	0.004429850098979983540304963280
b_{10}^{0}	0.001543440395140704805733043742
b_{12}^{0}	0.000555351173779220956618567711
b_{14}^{0}	0.000204517408873232993380371066
b_{16}^{0}	0.000076609680168235804587352199
b_{18}^{0}	0.000029061155193021143267002387
b_{20}^{0}	0.000011137276049855568024571829
b_{22}^{0}	$4.2275802388232323523285170 \cdot 10^{-6}$
b_{24}^{0}	$1.9876322747582711067418060 \cdot 10^{-6}$

A.4. Non-linear example. We present coefficients of the polynomial test functions f and g corresponding to $t_{0}=0.493448090802$ and $t_{1}=t_{0}+10^{-12}$ respectively.

$$
f=\sum_{k=0}^{7} a_{2 k} x^{2 k}, \quad g=\sum_{k=0}^{7} b_{2 k} x^{2 k} .
$$

f		g	
a_{0}	0.260509445190371	b_{0}	0.260509445190371
a_{2}	$-4.8850887219182 \cdot 10^{-3}$	b_{2}	$-4.88560887219092 \cdot 10^{-3}$
a_{4}	$3.65942002704976 \cdot 10^{-4}$	b_{4}	$3.65942002704768 \cdot 10^{-4}$
a_{6}	$-3.48521776330216 \cdot 10^{-5}$	b_{6}	$-3.48521776329928 \cdot 10^{-5}$
a_{8}	$3.61101766657243 \cdot 10^{-6}$	b_{8}	$3.61101766656879 \cdot 10^{-6}$
a_{10}	$-3.88502731592718 \cdot 10^{-7}$	b_{10}	$-3.88502731592271 \cdot 10^{-7}$
a_{12}	$4.09696977259504 \cdot 10^{-8}$	b_{12}	$4.09696977258989 \cdot 10^{-8}$
a_{14}	$-3.23465524617897 \cdot 10^{-9}$	b_{14}	$-3.23465524617468 \cdot 10^{-9}$

References

[1] K. I. Babenko and S. P. Jur'ev, Discretization of a problem of Gauss (Russian), Dokl. Akad. Nauk SSSR 240 (1978), no. 6, 1273-1276. MR499751
[2] Jean Bourgain and Alex Kontorovich, On Zaremba's conjecture, Ann. of Math. (2) $\mathbf{1 8 0}$ (2014), no. 1, 137-196, DOI 10.4007/annals.2014.180.1.3. MR3194813
[3] Rufus Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11-25. MR556580
[4] John P. Boyd, Chebyshev and Fourier spectral methods, 2nd ed., Dover Publications, Inc., Mineola, NY, 2001. MR1874071
[5] O. F. Bandtlow and J. Slipantschuk, Lagrange approximation of transfer operators associated with holomorphic data, arXiv:2004.03534 2020.
[6] Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
[7] Vasileios Chousionis, Dmitriy Leykekhman, and Mariusz Urbański, On the dimension spectrum of infinite subsystems of continued fractions, Trans. Amer. Math. Soc. 373 (2020), no. 2, 1009-1042, DOI 10.1090/tran/7984. MR 4068257
[8] Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, Mathematical Surveys and Monographs, vol. 30, American Mathematical Society, Providence, RI, 1989, DOI 10.1090/surv/030. MR1010419
[9] Richard S. Falk and Roger D. Nussbaum, C^{m} eigenfunctions of Perron-Frobenius operators and a new approach to numerical computation of Hausdorff dimension: applications in \mathbb{R}^{1}, J. Fractal Geom. 5 (2018), no. 3, 279-337, DOI 10.4171/JFG/62. MR3827801
[10] Richard S. Falk and Roger D. Nussbaum, Hidden positivity and a new approach to numerical computation of Hausdorff dimension: higher order methods, J. Fractal Geom. 9 (2022), no. 1, 23-72, DOI 10.4171/jfg/111. MR4461209
[11] Kenneth Falconer, Fractal geometry, John Wiley \& Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
[12] G. A. Freĭman, Non-coincidence of the spectra of Markov and of Lagrange (Russian), Mat. Zametki 3 (1968), 195-200. MR227110
[13] G. A. Freĭman, The initial point of Hall's ray (Russian, with English summary), Numbertheoretic studies in the Markov spectrum and in the structural theory of set addition (Russian), Kalinin. Gos. Univ., Moscow, 1973, pp. 87-120, 121-125. MR0429771
[14] I. D. Kan and D. A. Frolenkov, A strengthening of the Bourgain-Kontorovich theorem (Russian, with Russian summary), Izv. Ross. Akad. Nauk Ser. Mat. 78 (2014), no. 2, $87-$ 144, DOI 10.1070/im2014v078n02abeh002689; English transl., Izv. Math. 78 (2014), no. 2, 293-353. MR3234819
[15] Dmitrii A. Frolenkov and Igor D. Kan, A strengthening of a theorem of Bourgain-Kontorovich II, Mosc. J. Comb. Number Theory 4 (2014), no. 1, 78-117. MR3284129
[16] I. J. Good, The fractional dimensional theory of continued fractions, Proc. Cambridge Philos. Soc. 37 (1941), 199-228, DOI 10.1017/s030500410002171x. MR4878
[17] Marshall Hall Jr., On the sum and product of continued fractions, Ann. of Math. (2) 48 (1947), 966-993, DOI 10.2307/1969389. MR 22568
[18] Doug Hensley, Continued fraction Cantor sets, Hausdorff dimension, and functional analysis, J. Number Theory 40 (1992), no. 3, 336-358, DOI 10.1016/0022-314X(92)90006-B. MR1154044
[19] Douglas Hensley, A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets, J. Number Theory 58 (1996), no. 1, 9-45, DOI 10.1006/jnth.1996.0058. MR 1387719
[20] ShinnYih Huang, An improvement to Zaremba's conjecture, ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)-Yale University. MR 3407292
[21] ShinnYih Huang, An improvement to Zaremba's conjecture, Geom. Funct. Anal. 25 (2015), no. 3, 860-914, DOI 10.1007/s00039-015-0327-6. MR3361774
[22] Marius Iosifescu and Cor Kraaikamp, Metrical theory of continued fractions, Mathematics and its Applications, vol. 547, Kluwer Academic Publishers, Dordrecht, 2002, DOI 10.1007/978-94-015-9940-5. MR 1960327
[23] Oliver Jenkinson, On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture, Stoch. Dyn. 4 (2004), no. 1, 63-76, DOI 10.1142/S0219493704000900. MR2069367
[24] Oliver Jenkinson and Mark Pollicott, Calculating Hausdorff dimensions of Julia sets and Kleinian limit sets, Amer. J. Math. 124 (2002), no. 3, 495-545. MR 1902887
[25] Oliver Jenkinson and Mark Pollicott, Rigorous dimension estimates for Cantor sets arising in Zaremba theory, Dynamics: topology and numbers, Contemp. Math., vol. 744, Amer. Math. Soc., [Providence], RI, [2020] © 2020, pp. 83-107, DOI 10.1090/conm/744/14980. MR4062559
[26] Fredrik Johansson, Rigorous high-precision computation of the Hurwitz zeta function and its derivatives, Numer. Algorithms 69 (2015), no. 2, 253-270, DOI 10.1007/s11075-014-9893-1. MR3350381
[27] Fredrik Johansson, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE Trans. Comput. 66 (2017), no. 8, 1281-1292, DOI 10.1109/TC.2017.2690633. MR 3681746
[28] I. D. Kan, A strengthening of a theorem of Bourgain and Kontorovich. IV (Russian, with Russian summary), Izv. Ross. Akad. Nauk Ser. Mat. 80 (2016), no. 6, 103-126, DOI 10.4213/im8360; English transl., Izv. Math. 80 (2016), no. 6, 1094-1117. MR 3588815
[29] I. D. Kan, A strengthening of a theorem of Bourgain and Kontorovich. V (Russian, with Russian summary), Tr. Mat. Inst. Steklova 296 (2017), no. Analiticheskaya i Kombinatornaya Teoriya Chisel, 133-139, DOI 10.1134/S0371968517010101; English transl., Proc. Steklov Inst. Math. 296 (2017), no. 1, 125-131. MR3640778
[30] I. D. Kan, Is Zaremba's conjecture true? (Russian, with Russian summary), Mat. Sb. 210 (2019), no. 3, 75-130, DOI 10.4213/sm9018; English transl., Sb. Math. 210 (2019), no. 3, 364-416. MR3920447
[31] Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, SpringerVerlag, Berlin, 1995. Reprint of the 1980 edition. MR1335452
[32] Alex Kontorovich, From Apollonius to Zaremba: local-global phenomena in thin orbits, Bull. Amer. Math. Soc. (N.S.) 50 (2013), no. 2, 187-228, DOI 10.1090/S0273-0979-2013-01402-2. MR3020826
[33] Paul Koosis, Introduction to H_{p} spaces, 2nd ed., Cambridge Tracts in Mathematics, vol. 115, Cambridge University Press, Cambridge, 1998. With two appendices by V. P. Havin [Viktor Petrovich Khavin]. MR 1669574
[34] Michael Magee, Hee Oh, and Dale Winter, Uniform congruence counting for Schottky semigroups in $\mathrm{SL}_{2}(\mathbf{Z})$, J. Reine Angew. Math. 753 (2019), 89-135, DOI 10.1515/crelle-2016-0072. With an appendix by Jean Bourgain, Alex Kontorovich and Michael Magee. MR 3987865
[35] Carlos Matheus and Carlos Gustavo Moreira, Fractal geometry of the complement of Lagrange spectrum in Markov spectrum, Comment. Math. Helv. 95 (2020), no. 3, 593-633, DOI 10.4171/CMH/498. MR4152626
[36] R. Daniel Mauldin and Mariusz Urbański, Graph directed Markov systems, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, 2003. Geometry and dynamics of limit sets, DOI 10.1017/CBO9780511543050. MR2003772
[37] A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879): 381-406.
[38] A. Markoff, Sur les formes quadratiques binaires indéfinies (French), Math. Ann. 17 (1880), no. 3, 379-399, DOI 10.1007/BF01446234. MR 1510073
[39] Dieter H. Mayer, Continued fractions and related transformations, Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989), Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 175-222. MR1130177
[40] Curtis T. McMullen, Hausdorff dimension and conformal dynamics. III. Computation of dimension, Amer. J. Math. 120 (1998), no. 4, 691-721. MR1637951
[41] Carlos Gustavo Tamm de Araujo Moreira, Dynamical systems, fractal geometry and Diophantine approximations, Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. I. Plenary lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 731-757. MR3966744
[42] Nikolay G. Moshchevitin and Ilya D. Shkredov, On a modular form of Zaremba's conjecture, Pacific J. Math. 309 (2020), no. 1, 195-211, DOI 10.2140/pjm.2020.309.195. MR 4202008
[43] William Parry and Mark Pollicott, Zeta functions and the perodic orbit structure of hyperbolic dynamics (English with French summary), Astérisque 187-188 (1990), 268. MR1085356
[44] Yakov B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications, DOI 10.7208/chicago/9780226662237.001.0001. MR1489237
[45] Yakov Pesin and Howard Weiss, On the dimension of deterministic and random Cantorlike sets, Math. Res. Lett. 1 (1994), no. 4, 519-529, DOI 10.4310/MRL.1994.v1.n4.a12. MR1302395
[46] David Ruelle, Thermodynamic formalism, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. The mathematical structures of equilibrium statistical mechanics, DOI 10.1017/CBO9780511617546. MR2129258
[47] David Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys. 125 (1989), no. 2, 239-262. MR1016871
[48] David Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 99-107, DOI 10.1017/s0143385700009603. MR684247
[49] E. Seneta, Non-negative matrices, Halsted Press [John Wiley \& Sons], New York, 1973. An introduction to theory and applications. MR.0389944
[50] Dennis Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), no. 3, 327-351. MR882827
[51] Leonard Tornheim, Asymmetric minima of quadratic forms and asymmetric Diophantine approximation, Duke Math. J. 22 (1955), 287-294. MR69221
[52] Lloyd N. Trefethen, Approximation theory and approximation practice, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, [2020] © 2020 . Extended edition [of 3012510]. MR4050406
[53] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR648108
[54] Eduard Wirsing, On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces, Acta Arith. 24 (1973/74), 507-528, DOI 10.4064/aa-24-5-507-528. MR337868
[55] Caroline Wormell, Spectral Galerkin methods for transfer operators in uniformly expanding dynamics, Numer. Math. 142 (2019), no. 2, 421-463, DOI 10.1007/s00211-019-01031-z. MR3941936
[56] S. K. Zaremba, La méthode des "bons treillis" pour le calcul des intégrales multiples (French, with English summary), Applications of number theory to numerical analysis (Proc. Sympos., Univ. Montréal, Montreal, Que., 1971), Academic Press, New York, 1972, pp. 39-119. MR.0343530

Department of Mathematics, Warwick University, Coventry CV4 7AL, United KingDOM

Email address: masdbl@warwick.ac.uk
Department of Mathematics, Warwick University, Coventry CV4 7AL, United KingDOM

Current address: Department of Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

Email address: p.vytnova@surrey.ac.uk

[^0]: ${ }^{2}$ A slight improvement on this lower bound is described in the book "Classical and Dynamical Markov and Lagrange Spectra: Dynamical, Fractal and Arithmetic Aspects" by D. Lima, C. Matheus, C. G Moreira, S. Romana.
 ${ }^{3}$ The calculation was done using Mathematica. The validity of the estimate depends on the internal error estimates of the software.

[^1]: ${ }^{4}$ For a general introduction see [31, Ch.3, §6]; we say that the eigenprojection is positive if elements of the positive cone are mapped into $\mathbb{R}^{+} \underline{h}$.

[^2]: ${ }^{5}$ Here by $\|f\|_{\infty}$ we understand $\sup _{\left[t_{0}, t_{1}\right]}|f|$.

[^3]: ${ }^{6}$ In the special case $N=2$ this corresponds to the usual 1-step Markov condition.

[^4]: ${ }^{7}$ Based on (35) §B.2].

[^5]: ${ }^{8} \mathrm{We}$ omit a detailed listing of all the 540 coefficients of \underline{f} and \underline{g}. However, they are easily recovered by Mathematica.

[^6]: ${ }^{9}$ In other words, there exists n such that $a^{n}=1 \bmod q$.

[^7]: ${ }^{10}$ Table 14 in 40 gives an estimate 0.49344815 , which is correct except for the last two significant figures. An inconsequential typographical mistake in 40 is that there is an incorrect sign in the equation in the caption to Table 14.

[^8]: ${ }^{11}$ This application was superseded by other work, so the interest in this bound is mainly academic.

