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Chapter 1

Introduction

Voting theory is a branch of social choice theory, which studies the process and pro-

cedures of the collective decision. Social choice theory aims to capture the features of

transformation from individual judgements to collective judgements using applied math-

ematics. These studies are not limited to analysing cases such as legislation committees,

expert panels and boards, but also summarising general approaches and models using

mathematical modelling and proofs. Social choice theory impacts many subjects, such as

political science, economics, applied mathematics, sociology, and even computer science.

In addition to helping to comprehend the process of collective decision-making, these

results and models can be applied to designing organisational structures and mecha-

nisms of social welfare. This study focuses on one particular aspect of collective decision

making: the optimal voting order under generalised sequential voting schemes.

The origin of this research goes as far back as the Condorcet Jury Theorem (CJT) (Con-

dorcet 1785). In the CJT model, a jury needs to decide between two alternative states of

nature, saying A “guilty” or B “innocent” in a legal trial. The theorem states that if the

jurors are competent (better than random but worse than perfect), the probability of a

correct by majority rule is higher than that of each individual juror, and this probability

will converge to one when the number of jurors approaches infinity. The results of the

CJT are cited in the works of political science to show the advantages of the democratic

system. However, the idealistic assumptions of the CJT, especially requiring homoge-

neous competence and independence among jurors, should not be neglected. Although

there is a large body of literature on the extensions through relaxing the assumptions

about CJT (see Section 1.1.2), CJT under sequential voting schemes still lacks attention

beyond works of Dekel & Piccione (2000), Sørensen & Ottaviani (2001), and Alpern &

Chen (2017a,b). When jurors’ abilities are homogeneous in classic CJT, the voting order
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makes no difference to the verdict. Under the sequential voting scheme with heteroge-

neous abilities, the voting order is of significance as the voters need to know the ascribed

votes of two states (number of votes for states A and B) and the votes’ composition

(how individual jurors voted). Thus, the voting sequences concerning jurors’ abilities

significantly impact the probability of the correct verdict in sequential voting schemes.

1.1 Literature review

The problems discussed in this thesis lie in the general social choice theory context stud-

ied by many political scientists and public choice theorists. In the first subsection, the

common voting rules will be introduced as the fundamental analysis tool for Chapters

3–6. Although preference voting (with choices more than two) is not the primary con-

cern of this study, works relating to voting rules in that they are significant to form

the foundation of collective decision theory. In the second subsection, CJT as a vital

theme of this research will be discussed in detail, especially in terms of the relaxation of

assumptions.

1.1.1 Voting rules

Before formally introducing the CJT, the three most common voting rules are presented

to provide preparatory knowledge of this topic.

Unanimity rule

The unanimity scheme is that a collective decision is reached, only when all committee

members agree with the motion or no one rejects it. There are two advantages to this

rule. The first advantage is that this scheme is Pareto optimal. According to Wicksell

(1958), every member of the committee decides on whether the issue is beneficial to

them or not. Therefore, this scheme can obtain Pareto efficiency, since no individual’s

interests are compromised. This efficiency guarantees that all committee members will

be at an advantage without putting any one member at a disadvantage. The unanimity

scheme in political science corresponds to a completely competitive market in economics,

where every participant agrees to the same market price. The second advantage of this

scheme is that the free will of every member is guaranteed. Buchanan (1986) believes

that the unanimity scheme is the only one that does not undermine fairness. However,

Reisman (1989) points out that the unanimity scheme, while a good voting rule, may

be expensive. The primary reason is that this rule requires a long time to reach an
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agreement. The second disadvantage is that this may lead to elays or even blackmail,

as every member has the right to veto or reject the issue. Sah & Stiglitz (1985) point

out another drawback of unanimity rule: it can be harder to reach agreements in larger

groups, as subgroups may not agree with each other. In conclusion, the application of

this scheme is limited to collective decision making in small groups.

Simple majority rule

The simple majority rule, as the most common voting rule, states that if more than

half of the committee agrees with the issue, a final decision can be made. In America,

according to Strøm et al. (1990), most states’ legislations and practices are passed using

this method. This voting rule also has two important advantages. Buchanan & Tullock

(1962) state that the primary merit is that the simple majority voting rule will reduce

both the external and decision costs of collective decision making. The second advantage

of this rule is its high efficiency. Unless the number of the committee is even, the

committee will conclude whether they are satisfied with the motion or not as a whole

unless abstaining is allowed. However, this simple majority voting rule suffers from

several shortcomings. The first is that the scheme neglects the strength of preference.

Dahl (1956) thinks that this scheme is only fair in terms of the intensity of its unfairness.

The second shortcoming is discussed in the famous Arrow’s impossibility theorem. When

the options are more than two, there is no ranked voting system can transfer ranked

preferences of individuals into a clear ordered social choice satisfying the some democratic

requirements for its procedure, like non-dictatorship and Pareto efficiency. The third

disadvantage is the Borda effect. Under some circumstances, using the simple majority

rule may lead to results that are unsatisfactory for most members. The fourth drawback

is that this rule may inspire strategic voting behaviour. Rather than following their

preferences, voters may change their votes to favour their groups. The simple majority

rule may be not ideal for the voting with preference, it still can be used for studying

jury voting theories with two alternatives.

Weighted average majority scheme

This is a variation of the simple majority scheme that attempts to overcome the dis-

advantages of the simple majority voting rule. The European Council by Tsebelis &

Garrett (2000) uses the qualified majority voting rule to make decisions (except for mo-

tions regarding fiscal policy, free flow of personnel and right of employers, which require

unanimity). In EU15, 62 out of 87 can pass a motion. The common practice is that

voters are divided into groups based on their importance. Then votes are reallocated
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by groups. This division of voters helps solve the strength of preference in the sim-

ple majority voting rule. However, this scheme fails to resolve other shortcomings of

simple majority voting. Furthermore, when the alternatives are more than two, aggre-

gating different preferences of individuals may be impossible, which means it may fail to

reach equilibrium and cause a cycle among all alternatives. Sen (1966) introduced value

restriction to systematically solve this problem.

1.1.2 Condorcet Jury Theorem

In this subsection, a summary of the underlying assumptions of the CJT will be given,

and the recent works related to these assumptions will be discussed. There are two key

assumptions regarding the CJT: the competence and independence assumptions. First,

the Condorcet ability is defined as the probability of correct decision p ∈ [0, 1]. The

competence assumption requires every juror to have a fixed ability larger than a half

(p > 1/2). Secondly, the independence assumption states that individual decisions made

by Condorcet jurors are statistically independent. Today, there are many versions of the

Condorcet Jury Theorem. Nevertheless, the main results of the CJT can be summarised

into three main parts.

• The probability that an institution of decision-makers would collectively make the

right choice is higher than the probability that any single member of the group

would make such a choice.

• This superiority of the collective decision over the individual decision monotonically

increases with the size of the institution.

• When the size of this institution approaches infinity, this probability will approach

certainty ( Limit limn→∞ pn = 1 , where n is the number of jury members).

The following will discuss these assumptions and recent works related to them. Ta-

ble 1.1 provides a summary of the underlying assumptions regarding CJT. The research

interest of this study is sequential voting with heterogeneous abilities, which relaxes both

individual competence and independence assumptions of the classic CJT. These relax-

ations have been highlighted in bold in Table 1.1. Two subsections discuss the respective

violations of these two assumptions.

Heterogeneous abilities

The assumption of homogeneous abilities in the CJT is too strong to find real-life cases.

However, this assumption is the key to making all three CJT statements valid. A

4



Nature of Problem Features of Jury Voting behaviour

binary alternatives homogeneous abilities independent voting

symmetric alternatives identical goals honest voting

Table 1.1: Assumptions of the Condorcet Jury Theorem

numerical example is easy to find if we violate this assumption. For example, considering

a jury of size three, their Condorcet abilities are (0.99,0.60,0.60). Supposing that the

decision rule is the simple majority (more than half of the jury votes for the same

alternative), the probability of the correct verdict is 0.835. The decision by majority

rule is worse than that of the most senior juror. Therefore, it already violates the

superiority of group decision by CJT. Furthermore, we can reduce the accuracy even

further by increasing both the size of the jury and the variance within the abilities set.

For instance, based on the above jury, say we add two more jurors with lower abilities

(0.5,0.5). Now, the Condorcet abilities set is (0.99,0.60,0.60,0.5,0.5), and the probability

of the correct verdict is now 0.793 (less than 0.835). Thus, it violates the relation between

the size of the institution and the correctness of the collective decision.

For the reasons mentioned above, the existing literature attempts to prove the ro-

bustness of the validity of limit limn→∞ pn = 1 when faced with a heterogeneous abilities

jury. Boland et al. (1989) proposed the concept of an indirect majority rule to replace

the simple majority rule to maintain the CJT limit. Paroush (1998) proved that for the

jurors with different abilities, the necessary and sufficient conditions for the CJT is the

mean of jurors is larger than a half. However, he still emphasised the importance of

independence on survival of CJT. Similar results also have been found in the work of

Fey (2003). He proved the last part of CJT to hold in a jury with adequately large size

“as long as the average competence of the voters is greater than the fraction of votes

needed for passage” (p. 28). He used the supermajority rule, also known as the qualified

majority rule (details see Chapter 2). The validity of the CJT when the supermajority

rule rather than the simple majority rule is used as the basis for the jury’s decision

has also been discussed in Nitzan & Paroush (1984), Ben-Yashar & Paroush (2000) and

Kanazawa (1998). In summary, the last part of the Condorcet Jury Theorem holds

for juries with heterogeneous abilities using supermajority rules, although independence

remains essential. This study concerns violating homogeneities of abilities and indepen-

dence. Based on the above studies, the last part of CJT fails to survive in this study.

However, the interesting relationship between the majority verdict’s correctness and the

size of the jury (a variation of the second part of CJT) will be discussed under different

5



sequential voting schemes.

Correlated jurors

One of the controversial arguments that limit the application of the CJT is the difficulty

of being independent. Actually, on most occasions, discussion between jurors has already

happened before the decision-making process. This interaction among the jurors may

have different effects on the verdict. Scholars like Kahneman et al. (2011) believe that

conversations and discussions among the decision-making institution members can harm

the correctness of the final decision. This statement is supported by Surowiecki (2005),

celebrated author of ‘wisdom of crowds’. In his opinion, social psychology factors such as

herding will damage the independence of individual judgement. These factors will lead

to a decrease in the credibility of the group’s final decision. However, others argue that

the process of learning through information aggregation may help the jurors make better

decisions than independent voting. The recent works on correlation among jurors can be

divided into two categories. The first is the opinion leader model. Boland et al. (1989)

introduced a model with one leader and corresponding followers. They advocate that

the public opinion leader maybe not always beneficial for the group decision making.

Other notable works in this category include extensions with weighted voting rules by

Berg (1994) and the condition on the superiority opinion leader by Estlund (1994). The

second category uses exchangeable random variables. Ladha (1992) and Berg (1993)

found that, given the restricted correlation of conditional probability, the CJT still

holds. The underlying features of both models are homogeneous abilities and correlation

requiring same covariances. Although both results are clear, the condition on covariance

is so strong that it may be contrary to the original intention of introducing correlation.

More recently, Peleg & Zamir (2012) focused on the effect of correlated jurors and the

jury size on the verdict’s correctness. Pivato (2017) conducted a comprehensive survey

on correlated jurors under dichotomous decision settings. He found that decreasing

average covariance is the key to maintain the last part of CJT under more complex

settings (polychotomous decision problems).

Sequential voting provides another way to consider correlated jurors. Here, sequential

voting is defined by Alpern & Chen (2017b) a voting scheme under which labelled jurors

take turns to cast their votes with the knowledge of the votes of a given subset of previous

jurors. Take simultaneous voting as an example. The given subset is empty for every

juror. Nevertheless, for the roll-call voting scheme, the given subset consists of all the

previous jurors’ votes. Six different sequential voting schemes exist for a jury of three

(see Chapter 2). Most existing literature follows the research direction of Condorcet and
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focuses on one type of sequential voting scheme, namely simultaneous voting. Among

the other five voting schemes, only roll-call voting has raised some attention, especially

in the works of Dekel & Piccione (2000) and Ottaviani & Sørensen (2001).

Dekel & Piccione (2000) studied sequential voting under symmetric binary settings.

They found weak and strong equilibriums for some sequential and simultaneous vot-

ing schemes. The underlying finding is that, although sequential voting is superior to

simultaneous voting for decision-making as jurors under roll-call voting hold more infor-

mation, this kind of voting (roll-call voting) is still no better than simultaneous voting in

terms of information collection during group decision-making. The fundamental reason

for this phenomenon is herding. Therefore, it is important to avoid or minimise the

effect of herding. Contrary to the results of this thesis, they believe that the voting

order does not matter as jurors will cast their votes based on their own beliefs. They

also pointed out two future research directions. The first is that more possible states

could be added into the model. More choices can widen the potential applications of this

theory (for example, the primary elections). The second potential research direction is

the introduction of other methods to the model signalling process, such as the common

value. In large group decision-making, one voter may be close to others. The intro-

duction of the common value implies that some jurors are better informed concerning

the preferences of those voters. This topic has been studied intensively by Fain et al.

(2017). This thesis follows the latter direction by introducing a continuous signalling

model with heterogeneous abilities, which reached the opposite conclusion that voting

order is of great significance.

Although the jurors in sequential voting are more informative than Condorcet simul-

taneous voting, it still suffers from the possibility of information cascades and herding.

When the jurors with higher ability vote early, these effects will be more significant.

Under these circumstances, less able jurors are blind to their own private information to

choose the alternative which has already a consensus by previous jurors. Bikhchandani

et al. (1992) studied the possibilities of information cascades and its consequence (the

possibilities of wrong collective decision). They believed that the analysis of information

cascades can be a tool to explain many well-known phenomena like herding. Ottaviani

& Sørensen (2001) found the similar result that the improvement of abilities on some

specialists may result in more serious herding behaviour and deteriorate the quality of

aggregate information collected by the team leader. This is a direct contradiction to

the traditional rule of thumb, seniority rule. They focused on solving the problem of

herding in public decision making. They believed that individual experts may hold their

private information under a certain sequence of speaking in order to maintain their rep-
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utation. Thus, they aim to find the optimal speaking sequence to mitigate the effects of

herding and enhance information aggregation for the whole group. They concluded that

optimising the sequence of speaking could enhance information aggregation. However,

exceptions exist. Thus, they do not find a consistent optimal speaking sequence that

can be applied to all circumstances.

The works of Acemoglu et al. (2011), Acemoglu & Ozdaglar (2011) Gale & Kariv

(2003), Lobel & Sadler (2015) and Lobel & Sadler (2016) provide another method to deal

with information updating processes. They use different Bayesian social learning models

to describe the mental world for individuals and inference process of these individuals.

The main research question for them is finding the optimal way that social observation

integrates with the process of Bayesian inference for rational individuals. Different from

most models in this field, Song (2016) introduced the cost of observation making as no

longer exogenous. He showed that the sufficient condition for individual making the right

decision through expanding observation by Acemoglu et al. (2011) no longer holds. This

introduction of monetary transfer brings the suggestion of changing the models used

in this thesis such that the vote of previous juror(s) is no longer cost-less information.

They need to pay a cost to know this information and are allowed to strategically select

the information sets. This model will be for my future research.

Back to the jury voting problem without preferences, the recent papers of Alpern

& Chen (2017a,b) introduced new signals models to bring more possibilities of private

information. Alpern & Chen (2017a) studied the multiple signals setting model using the

roll-call scheme. The voters are heterogeneous in terms of ability, and the distribution

of the signals is no longer binary, unlike in works related to the CJT. They argued

that the experiences, education levels, and other attributes of voters that could enhance

their competence would affect the probability of finding the true state. Thus, jurors’

abilities should, realistically, be different. Unlike Ottaviani & Sørensen (2001), Alpern

and Chen found the consistent optimal voting order in roll-call voting. They suggested

that, for a jury of three, the median-ability juror should vote first and the sequence of

voting for the other two jurors is immaterial. Another finding of Alpern and Chen’s

work is that voting using the seniority rule that the voters vote in decreasing order of

ability is superior to the anti-seniority rule in roll-call voting. These two findings inspire

this study to explore sequential majority voting with knowledge of the previous voter,

which is similar to roll-call voting but with a more complicated information flow. Similar

patterns have been found in Chapter 5. Alpern & Chen (2017b) conducted a study on

a casting-vote scheme: n − 1 jurors vote simultaneously and, if there is a tie, the last

juror casts the pivotal vote. The problem is who should be the last voter according to
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their abilities. Alpern and Chen proved algebraically that the juror with median ability

should cast the deciding vote. This finding inspires the study on who should take an

initial public vote under the inverse structure of the cast voting (see Chapter 6).

Diversity and degree of independence are essential to make the idealised CJT appli-

cable to the real world. This study intends to identify a set of conditions that uniquely

typify class of solutions to the generalised sequential voting schemes with heterogeneous

abilities and different private information.

The remaining of the thesis is structured as follows. Chapter 2 will formally for-

mulate the model and provide the basic concepts, notations, and fundamental theories.

In Chapter 3, we consider roll-call voting with a concrete ability setting called the

sealed card problem. In Chapter 4, we study the optimal voting order under sequential

voting with an independent voter. In Chapter 5, we consider the order of voting, which

can maximise reliability under sequential voting with knowledge of the previous juror.

Chapter 6 conducts a study on the optimal voting order for sequential voting with an

initial public vote. In Chapter 7, we answer the question of which voting scheme we

should choose to maximise the probability of a correct collective decision among all six

sequential voting schemes. Chapter 8 provides a summary of contributions, potential

future directions and concluding remarks.
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Chapter 2

Preliminaries

In this chapter, we will first define a general framework of sequential voting with a jury

of three. We will then define the basic concepts and notation used in the thesis under

both discrete and continuous signal models.

2.1 Sequential voting schemes

Figure 2.1: Sequential voting schemes for a jury of three (Alpern & Chen 2017b)

We will start with the following assumption. It is impossible for voter i to know

the vote of voter j and for voter j to know simultaneously the vote of voter i. This

time-ordered information transfer indicates that no two voters cannot know each other’s

votes at the same time. In general, the cycle of voters is not allowed, each of whom

knows the vote of his previous voter. An acyclic graph (a directed graph) with no cycles
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fits this situation. A sequential voting scheme can be modelled as a particular directed

acyclic graph with a finite number of nodes. The nodes represent the voters. The arc

from node i to node j implies that voter j knows the vote of voter i when he casts his

votes.

The foundation characteristic of a finite directed acyclic graph is that all the nodes

can be numbered such that any arc from a smaller numbered node to a larger numbered

node is admissive (Bang-Jensen & Gutin 2008). The number shows the chronologically

arranged order of the events. By this characteristic, we give meaning to the arc which is

the relation between each voter i of {0, 1, . . . , n} as knowledge set K(i) ⊆ {1, . . . , i− 1}
under sequential voting schemes. The contents of the information set vary depending

on the specific sequential voting scheme. Knowledge in classic roll-call voting can be

described as follows: when voter i casts his vote, he does so knowing votes of all voters

j in the knowledge set K(i).

There are several approaches to enumerating a finite directed acyclic graph. This

thesis considers the time-consistent numbering of nodes. Take a jury of three as an

example. As mentioned in the previous paragraph, a sequential voting scheme depends

on the specific descriptions of K(1), K(2) and K(3). There are 2(i−1) subsets for the set

{1, . . . , i − 1}. Thus, we have 20 × 21 × 2(3−1) = 8 possible sequential voting schemes.

Figure 2.1 provides the details of these eight sequential voting schemes.

As shown in Figure 2.1, there are six different non-isomorphic voting schemes. The

graphs (b) (c) and (d) are isomorphic. The voting scheme (a) is known as simultaneous

voting, which has been extensively studied after the Condorcet research, such as the

consequences of strategic voting in the CJT model studied by Austen-Smith & Banks

(1996) and extension on correlated voters by Ladha (1992). The voting scheme (h)

is called the roll-call voting scheme, and scheme (e) is called the casting-vote scheme.

Voting schemes (h) and (e) have been thoroughly studied in the works of Alpern & Chen

(2017a,b).

As well as the three schemes mentioned above, another three voting schemes also

exist. The isomorphic schemes (b), (c) and (d) are sequential voting with an independent

voter (type I). Scheme (f) is sequential voting with knowledge of previous voter (type

II), and scheme (g) is sequential voting with an initial public vote (type III). This thesis

mainly concerns these three voting schemes as well as one particular discrete variation of

the roll-call voting called, the sealed card problem. This thesis examines the phenomenon

of jurors voting for the alternative they believe is the more likely (here referred to as

the honest voting strategy, see 2.2.1) and aims to find an optimal voting order related

to jurors’ abilities hat maximises the probability of a correct verdict.
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2.2 Basic concepts and notations

There are two models in this work, a continuous model proposed in Alpern & Chen

(2017a) and a discrete model known as the sealed card problem. Although the two

models have different measures of ability and signal distribution, they share the same

foundation. To summarise the models here, suppose a jury consisting of three members

sequentially votes for the true Nature N of the states between two equiprobable alterna-

tives, state A and state B (colour R(ed) or colour B(lack) for the sealed card problem).

The purpose of the jury is to make a collective decision between these two alternatives.

A priori probability θ is defined as the conditional probability of state A depending

on the vote(s) of the previous juror(s) (see equations (2.10) and (2.11) for a simple

example). When θ = 1/2, this indicates equal probabilities between A and B. Each

juror apart from the first (or independent) juror uses the Bayes’ formula to update this

probability via the votes of previous jurors. If θ = 1/2, the juror will flip a fair coin to

decide which state he should vote for. Aside from this trivial case, the juror will vote for

the state with higher conditional probability (θ > 1/2 for state A while θ < 1/2 for state

B). A priori probability θ0 for the first juror is equal to the unconditional probability

of state A, Pr[A] = θ0. If we assume that two states are equally likely, we have θ0 = 1/2

and this is called neutral binary settings.

The ability of juror is either a probability of making the correct decision or a proxy

of this probability (see Section 2.2.2). The private information is a distribution of signals

(samples). The juror with higher ability will have samples with higher quality. Both of

these depend on a specific decision problem. The only stochastic part of θ is the private

information (his signal s). The signal s indicating when the juror cannot make a decision

(θ = 1/2) is called threshold τ (see Section 2.2.4). By backward calculation of the signal

with θ = 1/2, we can solve for the threshold for each juror. Section 2.2.3 will elaborate

on definitions of the signal distributions in different voting problems.

The probability of vote for each juror is determined by this threshold. After we know

how each juror decides his vote (a set of thresholds), we can calculate the probability of

the correct verdict (reliability) through scenario analysis. Reliability is the standard of

comparison for different voting schemes and orders.

In the following, we will discuss voting behaviour followed by the above definitions

and procedures in details under two different models.

2.2.1 Voting behaviour: honest voting and strategic voting

Lull (1283), cited in McLean & Urken (1995), pointed out that voters’ voting behaviours

12



may not be consistent with his preferences and noted that people would vote strategi-

cally under specific voting rules and procedures. In his work “art of elections” in 1299,

he stated a belief that every voter should swear that they are telling the truth before

voting. Inspired by Lull (1299), Cusanus (1434) cited in McLean & Urken (1995) stated

that jurors should vote under the guidance of conscience and morality, and that the out-

come of this would be most efficient. He believed that voters should vote independently

rather than sequentially as in Lull’s voting method. He proposed a method of compar-

ing every pair of alternatives. This method resembles the famous Borda count. Borda

(1784) proposed the Borda count to overcome the disadvantage of simple majority vot-

ing. However, his voting scheme could easily be manipulated by voting strategically to

change the outcome. He argued that voting should only be carried out by honest people.

Dodgson (1876) found that strategic behaviour is common in practice by conducting

systematic research on elections and committees. He argued that the decision-making

process involves making strategies under a specific voting rule. Arrow et al. (1951) re-

marked that people would find profitable strategies in the voting process rather than

reveal their preference in the most social choice mechanisms. Satterthwaite (1975) and

Gibbard (1973) proposed the Gibbard-Satterthwaite Theorem, which proved the neces-

sity of strategic voting in theory. Nevertheless, scholars in the field of mechanism design

found a way to escape from the impossibility conclusion of the Gibbard-Satterthwaite

Theorem by limiting the classes of preferences. Vickrey (1960) believed that the inde-

pendence condition is the key to solve the strategy problem. He introduced the class of

quasi-linear preferences, whose utility functions are linearly dependent on money. By

restricting the preferences, he successfully designed the Vickrey-Groves-Clarke (VCG)

class of strategy-proof mechanisms. The above works show that, in preference voting,

strategic voting is common and fails to act as a truth-telling device when the voting

scheme is sequential. For this reason, this thesis only admits honest voting behaviour to

avoid the problems caused by strategic voting.

Here, the definition of honest voting is a strategy profile in which every member of

the jury votes for the state that they believe to be most likely given the conditional

probability of the state based on their private information and the votes of the previous

jurors by Alpern & Chen (2017b). The mathematical definition of this voting behaviour

will be discussed in the following Section 2.2.2. This idea is similar to Dekel & Piccione

(2000) in a different sequential model.

13



2.2.2 Juror abilities

Continuous model

In the classic (Condorcet) model, the measurement of each juror’s ability is the proba-

bility of ascertaining the true state, denoted as p. As a binary signal (either A or B) is

provided as each juror’s private information, p is the probability of receiving the right

signal corresponding to the actual state of Nature. This probability can be observed

through the historical records of correct decisions made by individual jurors. One can

consider this as the empirical probability in the probability theory. The range of this

probability p is [1/2, 1]. When p = 1/2, the juror knows nothing about the true state

and guesses it at random. When p = 1, he receives concrete information, and he knows

the true state.

Alpern & Chen (2017b) proposed the model here with more sophisticated private

information than the binary signals in the classic Condorcet model. The key components

of the continuous model here are ability a and signal s. Different from the Condorcet

binary signals (for state A or for state B), each juror in this model receives a signal s

in the interval [−1, 1]. The private information of each juror is no longer the discrete

A,B but a continuous signal s ∈ [−1, 1]. A higher positive signal indicates that state

A is more likely for each juror, while a lower negative signal indicates that state B is

more likely. When the signal is equal to 0, the juror is neutral about the two states.

Section 2.2.3 will provide a more detailed description for this signal distribution.

Unlike the traditional Condorcet’s model with probability p and binary signals, the

model here uses the parameter ability a which acts as a proxy for p but with continuous

signal s. The ability a and signal s are positively related. A juror with higher ability a

will have a higher probability of obtaining a stronger signal indicating the correct state.

Like the Condorcet juror who has the probability of correct decision p, the juror in this

model has the ability a, ranging from 0 to 1. The set of ability profiles is A = [0, 1]n.

The real number a is linearly correlated to the conditional probability pτ of the state A,

given a positive signal s. pτ is an analogue or a sequential version of p. If we define p as a

posteriori probability indicating the state of Nature A, then p = pτ . The mathematical

expression of relation between pτ and ability a is given by the equation (2.1) (See last

part of Section 2.2.3 for derivation). For each juror, the conditional probability of the

state A (pτ ), given that a signal s by his ability a and a threshold τ , τ ∈ [−1,+1], is:

pτ = Pr[A|s ≥ τ ] =
1

2
+

1 + τ

4
a. (2.1)

To better understand this relation, let us start the analysis with a simpler version of the
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equation (2.1) where τ = 0,

p0 =
1

2
+

1

4
a. (2.2)

A juror with ability a = 0, in both the simpler setting in equation (2.2) and the more

general setting in equation (2.1), p0 = pτ = 1/2 is the same value as a priori of the state

A under neutral binary settings. Therefore, this type of juror is without any ability, and

their private information is an empty set (and therefore useless). On the contrary, if a

juror has the full ability a = 1, they will have get a higher probability of ascertaining the

true state. In equation (2.2), the probability that the voter’s opinion is correct is 3/4

when a reaches the maximum value. For the general setting case in equation (2.1), the

situation is somewhat complex as we are also considering the thresholds τ and signal s.

When the juror receives a very high signal above the threshold τ (close to 1), their con-

ditional probability is almost certain (pτ = 1). On the other hand, if the juror receives a

very weak signal above the threshold, say τ = −1, he gets almost nothing from his private

information and expect the settings of the two states (p−1 = pmin = 1/2). Introduction

of the continuous signal model brings sampling process into the classic Condorcet model.

Discrete model (the sealed card problem)

Now we introduce a discrete model called the sealed card problem. The model’s pa-

rameters are the size n of the jury, which is an odd number to allow the existence of a

majority verdict, and the size D = 2m of the deck of cards, where m are red (R), and m

are black (B). Also, the ability ai ∈ {1, . . . , D− 1} of each juror i is known. The model

is dynamic: the first step is a stochastic choice of a card removed hidden (sealed) from

the deck. The colour of the sealed card, R or B, is the state of Nature (N ∈ {R,B})
that the jurors will figure out accurately. This binary setting is similar to the continuous

model. Then each juror who votes in position i ∈ {1, . . . , n} is allowed to see ai cards

drawn randomly from the remaining deck of D−1 cards, which we will call the card pool

from now on. Denoted by Λ = {1, 2, . . . , D − 1}, the set of juror abilities, where D − 1

is the size of the card pool. A juror with ability a suggests that when it is his round of

voting, he draws a cards from the card pool. An ability set A ⊆ Λ is a set of n distinct

abilities, considered as an unordered jury. In other words, no two jurors have exactly

the same ability. Thus the set An of all unordered juries of size n is as follows:

An = {A ⊆ Λ : |A| = n},

where we use |A| to denote the cardinality of set A. We list the abilities of an unordered
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jury in increasing order for convenience, such as A = {4, 5, 6}. Let Πn denote the set of

all n! rank orderings (permutations) of {1, . . . , n}. A jury J of size n is an ordered set of

n distinct abilities. Let Jn denotes the set of all juries of size n. There is a natural way

to apply an ordering r ∈ Πn to an ability set A ∈ An to obtain a jury J . For example, if

n = 3, r = (2, 1, 3) and A = {5, 7, 9}, then we can write r(A) = (7, 5, 9).In other words,

the elements of set A are written in the rank order of r. Thus we can think of each rank

order r as a mapping of ability sets into juries, r : An → Jn. In this work, we only

consider the sealed card problem under the roll-call voting scheme using simple majority

rule.

2.2.3 Signal distributions

Continuous model

The underlying assumption is that there are two states of Nature: A and B. Each juror

has private information about the state of Nature. In this model, this information is

a continuous signal s in the interval [−1,+1]. When juror receives positive signals, he

believes that state A is more likely. Likewise, negative signals are indications of state B.

The neutral signal is simply s = 0. The intensity of the signal depends on the absolute

value of the signal.

The ability of each juror lies in the interval [0, 1]. When the juror’s ability is close to 1,

he generally ascertains the state of Nature better. In classic the Condorcet model, the

ability p is defined as a posteriori probability with binary signal of state A indicating

the state of Nature A. In this model, we define the signal s in a way such that the

conditional probability of the state A is a linear function of juror’s ability a. We denote

fA (a, s) (fB (a, s)) as the probability density function (PDF) of the juror when the state

of Nature is A (B), given that his ability is a and his private information (signal) is

s ∈ [−1, 1]. We make the simplest assumption about this PDF: it is linear function with

the slope a linear function of the ability a. Equations (2.3) and (2.4) provide the forms

of the density functions on signal s ∈ [−1, 1]:

When Nature is state A,

fA (a, s) =
1 + as

2
, s ∈ [−1, 1]; (2.3)

When Nature is state B,

fB (a, s) =
1− as

2
, s ∈ [−1, 1]. (2.4)
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fA(.) and fB(.) satisfy the requirements for the PDF. For any a ∈ [0, 1], the integral

on the whole interval [−1,+1] is 1. For the trivial case, when the ability of the juror is

equal to 0, both fA(0, s) = fB(0, s) = 1/2 (indicating that the juror is no more effective

than tossing a fair coin to guess the state of Nature among two states) on the interval

[−1,+1]. The corresponding cumulative distribution functions of the signal s when the

Nature lies in state A or state B are given by the equation (2.5):

When Nature is state A

FA (a, s) =
(s+ 1)(as− a+ 2)

4
, s ∈ [−1, 1]. (2.5)

Similarly, when Nature is state B;

FB (a, s) =
(s+ 1)(a− as+ 2)

4
, s ∈ [−1, 1]. (2.6)

After knowing his private signal, the juror is interested in understanding the probability

that he is in state A or state B. That is, based on his private signal and the previous

voting, the likelihood that the true state of Nature is A or B. The conditional probability

of state A can be computed using a posteriori probability and signal based on Bayes’

Law:

Pr[A|s] =
θfA (a, s)

θfA (a, s) + (1− θ)fB (a, s)
=

θ + asθ

2asθ − as+ 1
.

Under the neutral conditional θ0 = 1/2, the Pr[A|s] for the first juror can be further

simplified:

Pr[A|s] =
θ0 + asθ0

2asθ0 − as+ 1
=
as+ 1

2
.

The trivial case is a = 0, we will obtain Pr[A|s] = 1/2. The conditional probability of

state A is the same as the neutral setting indicating for no information updating during

the whole process. We can easily convert our definition of the ability to the classic

definition by Condorcet using the integral:

pCondorcet =

∫ 1

0
fA (a, s) ds = 1− FA (a, 0) =

1

2
+

1

4
a.

This is the same as the equation (2.2). It is easy to check that our definition of ability

will lead the minimal probability of being correct for each juror is a half when a = 0.
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The conditional probability formula (2.1) can be derived from pCondorcet as well:

Pr[A|s ≥ τ ] =
θ0(1− FA (a, τ))

θ0(1− FA (a, τ)) + (1− θ0)(1− FB (a, τ))

=
1

2
+

1 + τ

4
a.

Discrete model

For the sealed card problem, given ability a, the probability of randomly sampling X

red cards out of a total m red cards in the card pool is as follows:

Pr[X|m, a] =

(
m
X

)(
m−1
a−X

)(
2m−1
a

) . (2.7)

In other words, the random variable X follows a hypergeometric distribution. On the

basis of the number of red and black cards in his sample and votes of the previous juror,

juror i in this round adopts Bayes’ Law to determine the more likely state of Nature. If

R and B are equally probable, the juror randomizes his vote. He then votes this way

(R or B) and returns his sample to the card pool. After the last juror cast his vote, the

collective decision (the verdict of the colour) is determined by majority voting, denoted

by V , in the odd voting order. We intend to make a comparison among all the voting

orders of the jurors by given abilities with the intention of maximizing the possibility

(which we called the reliability) that the verdict V ∈ {R,B} is correct. For example,

if n = 3 and the abilities are different, say 1, 2, 3, there are 3! = 6 ability orders to be

taken into account.

Figure 2.2: The two states of Nature, D = 6
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Consider, for instance, a deck ofD = 6 cards, with the two states of Nature illustrated

in Figure 2.2. If juror i = 1 with ability a1 = 1 samples a red card, he possesses the

knowledge that he is more likely in State B and consequently votes B. Suppose juror

i = 2 with ability a2 = 4 obtains a sample with two red and two black cards. He would

still think that these two states of Nature are still equally likely based solely on his private

information, and would vote randomly, providing that he votes first. Nevertheless, if he

possesses the knowledge that the first juror voted B with the ability of a1 = 1, this

information raises the conditional probability that Nature is B to above one half, and

he would also vote B. This kind of imitative behaviour is a typical heading. Providing

that there are three black cards in the second juror’s sample, he would vote R.

2.2.4 Thresholds

In this section, we will discuss the threshold for each juror. Firstly, the definition of

the threshold will be provided. Then, the threshold’s determination process will be

presented, given the assumption that voting behaviour is honest. A vote is said to be

honest if every juror votes for the most likely alternative, given the information offered

by his signal, previous voting, and the a priori probability of the two states of Nature.

Two models here assume that each juror votes honestly. Following the classic definition

of game theory, we define the juror’s strategy as the threshold τ . This threshold depends

on his private information signal s or the number of red card in the sample in the sealed

card problem) and all the available information (the updated probabilities of the two

states and the votes of the previous voters). This threshold plays the role of the decision

rule for individual jurors. When the signal s (or the number of red card) is higher than

or equal to τ , he votes for state A (or R). The formal definition of τ will be introduced in

Section 2.2.4 and determined by equation (2.9). The collection of all the jurors involved

in this voting game is called a strategy profile.

The specific formulas for jurors under different sequential voting schemes are distinct.

Details of the thresholds under different voting schemes will also be elaborated on in the

corresponding chapters. Here, we will consider the simplest voting structure under the

continuous signal model. Then an analysis of threshold in the discrete model will be

provided.

Decision rule and thresholds in the continuous model

We define the threshold as the minimal signal s required for the juror to vote for state A

based on the given votes of the previous juror(s) (θ). Under honest voting, we can easily
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calculate the honest threshold for each juror using θ. For the first juror with ability a

given the a priori probability θ0, he just needs solve the equality (2.8) for signal s,

Pr[A|θ0] =
θ0fA (a, s)

θ0fA (a, s) + (1− θ0)fB (a, s)
=

θ0 + asθ0
2asθ0 − as+ 1

=
1

2
. (2.8)

By solving s, we have τ = (1− 2θ0)/a. There are two trivial cases for the thresholds

as the range for the signal is [−1,+1]. If we have τ = (1 − 2θ0)/a is larger than the

unit, the juror will always vote for state B. Similarly, when τ = (1 − 2θ0)/a is less

than negative unit, the juror will always vote for state B. These two extreme cases of τ

are the mathematical expression of herding behaviours, under which circumstances the

juror is completely blind about his private information and follows the votes of previous

jurors. Although we may not have the value for ability a = 0, we can always take the

right-hand limit of zero for it. Now we have the explicit formula for the first juror’s

honest threshold given his ability a and the a priori probability θ0.

τa(θ0) =



0, if θ0 = 1/2;

−1, if a < 2θ0 − 1 and θ0 > 1/2;

+1, if a < 2θ0 − 1 and θ0 > 1/2;

(1− 2θ0)/a, otherwise.

(2.9)

The exact determination of τ for the juror n given the voting behaviour of the

previous juror(s) (1, 2, 3, ..., n − 1) is different for different sequential voting schemes.

However, we can always use equation (2.9) by substituting θ0 with θ.

In summary, τ is determined by θ, and θ contains all the information gained by

observing the behaviour of the previous juror. The following will provide a simple

example of how to calculate τ for the second juror under the simplest voting scheme in

sequential voting schemes.

Threshold under different voting schemes in the continuous model

As shown in Section 2.1, this thesis mainly concerns schemes (b), (c) and (d) or sequential

voting with an independent voter (type I), scheme (f) or sequential voting with knowledge

of the previous voter (type II), and scheme (g) or sequential voting with an initial public

vote (type III). Although different voting schemes have different information aggregation

processes, the sequential voting part includes at least two layers. We call this duo

structure. Therefore, we will start with an analysis of this duo structure.

Duo structure

Figure 2.3 is a visual representation of this basic structure of sequential voting. One
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Figure 2.3: Duo structure in the sequential voting

juror votes first and passes his vote to the second juror (indicated by the arrow). In

this duo sequential structure, the juror in the first layer acts as an independent voter.

His only information that is the states of Nature are equally likely, just as with any

independent juror. From the equation (2.9), it is clear that the threshold for the first

juror is x = 0 given that his a priori probability θ0 = 1/2. The a priori probability for

the second juror can be calculated using the Bayes’ Law,

θ(A) =
1− FA(0)

(1− FA(0)) + (1−GA(0))
=

2 + a

4
. (2.10)

When θ > 1/2, the state A is more likely. From equation (2.10), any positive value of a

will result in favouring for state A. Similarly, if the first juror votes for state B, then a

priori probability for the second juror is

θ(B) =
2− a

4
. (2.11)

When θ < 1/2, the state B is more likely. From equation (2.11), any positive value of

a will result in favouring for state B. Based on equations (2.9) (2.10), and (2.11), the

honest threshold yA for the juror in the second layer is:

yA = yA(a, b) =

{
−1, if b 6 a/2 ;

−a/(2b), otherwise.
(2.12)

By symmetry, we have

yB = yB(a, b) = −yA(a, b). (2.13)

From the honest threshold equation (2.12) for the second juror, it may be noted that

if the ability of the second layer juror is small enough that b 6 a/2, then he will copy

the vote of the previous juror, neglecting all his private information (signal s) and other
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public information. Therefore, we call this condition herding for the second juror. This

condition composes the following voting ordering set (a, b):

h2 = {(a, b) ∈ [0, 1]2 : b 6 a/2} (2.14)

When this herding occurs (satisfying h2) with a jury of three (n = 3), the verdict is

determined. There is no need for the independent juror in type I, the third juror in type

II or the other juror in the second layer in type III to cast his vote. For a jury of three,

only sequential voting with knowledge of the previous juror (type II) has third layer.

The threshold for the third juror under type II will be explicated in Chapter 5.

Voting threshold in the discrete model

The above discussion centres around the continuous model. Now, let us come back to

the sealed card problem. When it is the juror’s round to vote before he knows that

specific contents of his sample, there is a probability θ, conditional on votes of the

previous juror(s) that the sealed card is red. We call this probability the public bias.

We call it public as it is conditioned only on public information (voting) and not private

information (cards in the juror’s sample). The first juror is estimated at θ = 1/2, or

θ1 = 1/2 to indicate it is the first juror’s public bias. It is 1/2 because, as the primary

deck has an equal number of red and black cards, the randomly chosen sealed card has

a one-half probability of being red. After juror i votes R, the bias θi+1 moves up (from

θi) for the next juror i + 1; if he votes B, it moves down. The change from θi to θi+1

does not depend directly on the cards drawn by juror i, as this is not known by juror

i+ 1. The precise method where θ changes after casting a vote is determined by Bayes’

Law. We note that the public bias θi+1 could be calculated by anyone (not necessarily

a juror) who knows the abilities of the first i jurors and how they voted.

Next, suppose it is the turn of a juror with ability a to vote given that the public bias

is θ. By the number X of red cards in his sample of a cards, the probability of N = R

(sealed card red) is either > 1/2, < 1/2 or in rare cases = 1/2. The corresponding vote

will be to vote B, R, or randomize equiprobably. Before seeing his sample of cards he

can calculate a threshold τ such that if X > τ the probability of B is > 1/2; if X < τ

the probability of B is < 1/2; if X = τ the probability of B is 1/2. His corresponding

votes will be B, R, or to randomize. Note that τ = 3.1 and τ = 3.2 are equal thresholds

because they generate the same votes. For convenience, we can take τ = 3.5 in such

cases for uniqueness. So generally τ = (k + 1)/2 for a non-negative integer k. However,

if, say, X = 4 results in equiprobable R and B, and thus randomized voting, we say that

τ = 4. If τ = a+ 1/2, with a denoting his ability, the juror will certainly vote R because
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he cannot have X more than a. In such a case (τ > a) we call this situation herding –

the juror can cast his vote without even looking at his sample. Similarly if τ < 0, the

juror casts his vote B with certainty. Herding might be transitory in our model: one

juror might herd while the next juror (with a higher ability) might not. Given that we

admit jurors without ability a = 0, they would always herd. In general, herding is less

likely for jurors with higher ability.

2.2.5 Reliabilities

Continuous model

For every jury J ∈ J , we define its reliability Q (J) ∈ [0, 1] as the probability that

the jury gets the verdict correct, say verdict A when N = A. Thus Q : J → [0, 1] is

a map from juries to probabilities. In other words, the reliability Q is the probability

of a correct majority verdict under a certain voting scheme with a certain voting order.

We will use the simultaneous voting scheme as a starter. In the following illustrative

examples, there are three jurors with ability a,b and c in voting order (a, b, c). We denote

the reliability Qsimultaneous(a, b, c) for the simultaneous voting scheme and Q(a, b, c) for

the roll-call voting scheme with order (a, b, c). Given that the Nature is in state A, three

voting orders (A,A, any), (A,B,A), and (B,A,A) will lead to a correct verdict. Note

that if the first two jurors vote for the same state, the verdict has already been reached by

majority rule, no matter how the last juror votes. Similarly, the three voting sequences

(B,B, any), (B,A,B) and (A,B,B) lead to the correct verdict if the state of Nature is

B. The formula for qA(a, b, c) is the summation of probabilities of the voting patterns

(A,A, any), (A,B,A) and (B,A,A) when the Nature is A. Here, the thresholds for all

three jurors are just 0 when the state of Nature is equally likely. The following part

shows the calculation of the reliability Q(a, b, c). Let qA(a, b, c) be the probability of the

verdict being A when the Nature is A. Similarly, we define qB(a, b, c). Then, given an

arbitrary a priori probability θ (the probability of state A before voting), we have:

Q(a, b, c) = θqA(a, b, c) + (1− θ)qB(a, b, c).

Because of the neutral settings θ = 1/2, then,

Q(a, b, c) =
1

2
(qA(a, b, c) + qB(a, b, c)).

By symmetry,

Q(a, b, c) = qA(a, b, c) = qB(a, b, c).
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Now we have all the ingredients to calculate the reliability of the simultaneous voting

scheme.

qA(a, b, c)Simultaneous = (1− FA(a, 0))(1− FA(b, 0)) + (1− FA(a, 0))FA(b, 0)

(1− FA(c, 0)) + FA(a, 0)(1− FA(b, 0))(1− FA(c, 0))

= a/8 + b/8 + c/8− (abc)/32 + 1/2.

In the following part, we will evaluate the reliability for a jury of size n = 3 under

the roll-call voting scheme. Under roll-call voting, the first juror with ability a votes

first, followed by the juror with ability b, then the juror with ability c. The first juror’s

threshold is simply 0, as he is under the neutral setting. From the second juror, the

threshold depends on the previous juror’s vote. Here, we denote the y and z as the

second and third juror thresholds respectively. The subscript indicates the vote for the

previous juror. For examples, yA means that the first juror votes for state A and zAB

means that the first juror votes for state A and the second juror votes for the state B.

Given all the thresholds, we can derive the formula for the qA(a, b, c),

qA(a, b, c)roll−call =(1− FA(a, 0))(1− FA(b, yA)) + (1− FA(a, 0))FA(b, yA)

(1− FA(c, zAB)) + FA(a, 0)(1− FA(b, yB))(1− FA(c, zBA)).

Due to the different sequential voting structures, the formula for reliability Q varies

from scheme to scheme. qA(a, b, c)Simultaneous and qA(a, b, c)roll−call are just two illus-

trative examples. Details of the reliabilities under each voting scheme will be presented

in the corresponding chapters.

Discrete model

Similarly, we will define the reliability of the sealed card problem here. Then we will

introduce other measures of voting performance, followed by the formula for reliability.

For every jury J ∈ Jn, we define its reliability Q(J) ∈ [0, 1] as the chance that the

jury gets the verdict correctly, that is, verdict V = R if Nature is R (the same as the

continuous model). Thus, Q : Jn → [0, 1] is a mapping from juries to probabilities. The

problem we intend to solve is which voting order can obtain highest reliability given an

ability set. For every rank ordering r∗ ∈ Πn, we define its optimality fraction φ(r∗) as

the fraction of ability sets A ∈ An for which it provides the highest reliability, that is,

Q(r∗(A)) ≥ Q(r(A)) for all r ∈ Πn. Note that this function φ depends on the deck size.

More accurately,
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φ(r∗) =
|{A ∈ An : Q(r∗(A)) ≥ Q(r(A)) for all r ∈ Πn}|

|An|
. (2.15)

For r ∈ Πn, we define its average reliability Q̄(r) as a measure of how reliable this voting

order is for a random set of abilities. More accurately, Q̄(r) is the average value of

Q(r(A)) for ability sets A ∈ An. It is natural to assume a uniform probability distribu-

tion on An. Thus, Q̄ : Πn → [0, 1] is a mapping from rank orderings to probabilities.

In the continuous model, we also use the discretized ability sets to calculate the average

reliability. Of course, later research can work on other distributions based on the data

in some specific areas.

In the following part, we derive formulas for the reliability of a jury of size n = 3.

Similar analysis has been conducted in the continuous model. Here, we consider state

A in the continuous model as corresponding to state R in the sealed card problem. For

every jury J ∈ Jn of public bias of θ, the reliability Q(J) is calculated as follows:

Q(a, b, c) = θ(Pr[RR] + Pr[RBR] + Pr[BRR])

+ (1− θ)(Pr[BB] + Pr[BRB] + Pr[RBB]).

We use the hypergeometric probability represented in equation (2.7) and its cumu-

lative distribution function (CDF) to compute the above probabilities. When τ is a

half-integer, we introduce the floor function floor taking the largest integer less than or

equal to τ . Let integer-valued random variables Y and Z be defined as follows for all τ :

Pr[Y ≤ τ |a] =

floor(τ)∑
i=0

(
m
i

)(
D−m
a−i

)(
D−1
a

) ,

Pr[Z ≤ τ |a] =

floor(τ)∑
i=0

(
m−1
i

)(
D−m+1)
a−i

)(
D−1
a

) .

Suppose the hidden card is black (i.e., N = B) and hence there are m red cards and

m − 1 black cards in the card pool. Then for a jury J = (a, b, c), we can calculate the

following probabilities, where τ(σ) denotes the threshold of the juror who has the prior
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voting sequence σ:

Pr[RR] = (1− Pr[Y ≤ τ |a])(1− Pr[Y ≤ τr|b]),

Pr[RBR] = (1− Pr[Y ≤ τ |a]) Pr[Y ≤ τ(R)|b](1− Pr[Y ≤ τ(RB)|c]),

Pr[BRR] = Pr[Y ≤ τ |a](1− Pr[Y ≤ τ(B)|b])(1− Pr[Y ≤ τ(BR)|c]),

Pr[BB] = Pr[Z ≤ τ |a] Pr[Z ≤ τ(B)|b],

Pr[BRB] = Pr[Z ≤ τ |a](1− Pr[Z ≤ τ(B)|b]) Pr[Z ≤ τ(BR)|c],

Pr[RBB] = (1− Pr[Z ≤ τ |a]) Pr[Z ≤ τ(B)|b] Pr[Z ≤ τ(RB)|c].

There are some trivial cases. For instance, if all the jurors have ability a = 0, then

the reliability Q = 0.5.
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Chapter 3

The Sealed Card Problem

The sealed card problem is described as follows. A (sealed) card is randomly selected

from a deck with evenly distributed cards (m red and m black). Each juror can draw

a certain amount of cards equivalent to his ability and cast his vote for the color of the

sealed card, on basis of his sample and the votes of prior juror(s). We have found that

the Alpern-Chen order is with the highest reliability in most cases. This voting order

generally is also better than secret ballot (simultaneous voting). When simultaneous

voting is better, the abilities of the jurors have a tendency to be alike. An analogue

of Alpern-Chen order also has high performance for larger juries in terms of reliability.

Example 3.1 is an illustration to give a taste of this model and the significance of voting

order under the roll-call voting scheme.

Example 3.1. Suppose there is a deck with D = 4 cards, two red and two black.

There are three jurors, and juror i = 1, 2, 3 can draw i cards. Note that juror 3 who

can sample all the remaining cards will possess the knowledge of the color of the sealed

card. Therefore, if he votes first or second, the later jurors will copy him to generate

a perfect majority verdict with the accuracy of 1. There are only two orderings for us

to consider where juror 3 votes last. It will be easiest to calculate the probability from

the counterexamples when the verdict is not correct. Suppose N = R, we calculate the

possibility w with prior voting BB: Firstly, we consider the voting order (1, 2, 3). Juror

1 votes B if he samples a red card, which has probability 1/3. The only case where juror

2 will not copy is if he samples two black cards with probability 1/3. Therefore, the

possibility w is (1/3)(2/3) = 2/9 and the reliability is 7/9.

Now, consider the voting order (2, 1, 3). If the Juror 1 draws one red and one black,

he will randomize. In other cases, he votes for R. Therefore, he votes B with probability

(2/3)(1/2) = 1/3. If juror 2 selects a red, he votes B as well. Given that he samples a
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black, he votes R. The probability he samples a red is 1/3; so the probability of BB is

(1/3)(1/3) = 1/9 and consequently the reliability for the jury (2, 1, 3) is 1− 1/9 = 8/9.

Example 3.1 has demonstrated the significance of voting order. In particular, it

should be noted that the Alpern-Chen order (2, 3, 1) is among the optimal orders.

3.1 Optimal voting orders for n = 3

The results on optimal voting order with the jury of size three will be presented as fol-

lows. Firstly, we start in Section 3.1.1 with the research on the smaller deck. In this

section, every juror draws an even number of cards from the deck (even-only ability). In

Section 3.1.2, we will show our findings on the optimality fractions φ. Section 3.1.3 stud-

ies optimal voting orderings regarding the average reliability Q̄. Besides Section 3.1.1,

the rest of this chapter conduct an analysis on the normal 52-card deck with full ability

sets (both even and odd).

3.1.1 On reliability for small decks

In this subsection, we will present that when the deck size D satisfies D ≤ 16 and

all jurors are with even abilities, the Alpern-Chen order is with the highest reliability

among all six orders. It should be noticed that given that the first juror has even ability,

this setting will admit ties (the state of Nature is still evenly likely even after drawing

sampling), where the juror randomizes his vote. The consequence of random voting

has a tendency to smooth out some aspects of the reliability function and provide more

consistent optimal reliability patterns. These findings are shown below.

Observation 3.2. For three-member jury of even-only abilities and deck size D ≤ 16,

the Alpern-Chen ordering gives the strictly highest reliability.

Many existing literatures discuss the superiority between seniority and anti-seniority

order. For small decks, we are able to provide a definitive answer to this relation.

Observation 3.3. For three-member jury of even-only abilities with a < b < c and

deck size D ≤ 16, the seniority ordering (c, b, a) has the higher reliability than the anti-

seniority ordering (a, b, c).

Observation 3.4. Suppose D satisfies D ≤ 16, and we have a three-member jury of

even abilities x, a, b, with a < b. Then the ordering (x, b, a) has a higher reliability than

(x, a, b). That is, it is always better for the last two jurors to vote in decreasing order of

ability.
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Note that Observation 3.4 can be applied to the situation where the first voter is

already appointed by external factors (for instance most often in the board of a listed

company, the chairman (not necessarily with highest ability) voice his opinion in the first

place). Next, the member with the lower ability between the remaining two is supposed

to cast his vote lastly.

3.1.2 On optimality fraction

In this subsection, the optimality fraction for the six orders for the jury of size three is

presented. Recall that this is the fraction of the latent ability sets for which the order

provides the top reliability.

Optimality fraction

Voting Orders
Deck size

D = 6 8 . . . 26 . . . 52

(a, b, c) 0/10=0.0 0.029 . . . 0.006 . . . 0.007
(a, c, b) 8/10=0.8 0.620 . . . 0.298 . . . 0.200
(b, a, c) 0/10=0.0 0.000 . . . 0.000 . . . 0.000
(b,c,a) 9/10=0.9 0.800 . . . 0.652 . . . 0.630
(c, a, b) 6/10=0.6 0.429 . . . 0.167 . . . 0.148
(c, b, a) 6/10=0.6 0.486 . . . 0.305 . . . 0.253

Sum 2.9 2.371 . . . 1.427 . . . 1.238

Table 3.1: Optimality fraction for deck size up to 52, (a < b < c)

Table 3.1 summarizes results on the performance of six voting orders respect to their

optimality fraction φ for decks of sizes range from 6 to 52 (for complete findings the

reader is referred to Table B.2 in the Appendix). To provide taste of our results, observe

Table 3.2, which matches the case of deck size D = 6. Note that for D = 6, there are(
6−1
3

)
= 10 ability sets:

A3 = {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},

{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.

Among these ten ability sets, the Alpern-Chen order (b, c, a) dominates on nine of the

ten ability sets. Table 3.2 illustrates how the records for the column D = 6 in Table 3.1

have been determined. For each order (column), one compares the rows (ability sets)

where that order is optimal. The bottom row provides the fraction of the ten ability sets

where the order is optimal. This is by our definition its optimality fraction. It should be
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noticed that this fraction admits the value, which is higher than one because we allow

ties in reliability.

Ability sets
Orderings

(a, b, c) (a, c, b) (b, a, c) (b, c, a) (c, a, b) (c, b, a)

{1,2,3} 0 X 0 0 0 0

{1,2,4} 0 X 0 X 0 0

{1,2,5} 0 X 0 X X X
{1,3,4} 0 0 0 X 0 0

{1,3,5} 0 X 0 X X X
{1,4,5} 0 X 0 X X X
{2,3,4} 0 0 0 X 0 0

{2,3,5} 0 X 0 X X X
{2,4,5} 0 X 0 X X X
{3,4,5} 0 X 0 X X X

Counts 0 8 0 9 6 6

Fraction 0 0.8 0 0.9 0.6 0.6

Table 3.2: Optimality fraction for deck size D = 6, (a < b < c)

Moreover, Figure 3.1 make a comparison for the optimality fractions with all deck

sizes, in which the vertical axis is the optimality fraction, and the horizontal axis is the

deck size. We have the following result:

Figure 3.1: Optimality fractions of the six voting orderings
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Observation 3.5. Given any deck of size D ≤ 52, the Alpern-Chen ordering (b, c, a)

has the highest optimality fraction.

It should be noticed that order (b, a, c) is never optimal. Above Observations are

statements on the cases with a finite number. The exhaustive analysis is used as the

“proofs” for these cases.

3.1.3 On average reliability

Given a deck of size D with jury size three, without any knowledge of the abilities for all

jurors, we intend to figure out which of the six voting orders is with the highest average

reliability Q̄. That is defined as the average value of reliabilities for the same voting

order divided by all possible ability sets under any deck size less than or equivalent to

52.

For every voting order r, the average reliability is calculated within the range from

the smallest deck size D = 4 until the largest D = 52, via exhaustive search approach

over all possible ability sets. Figure 3.2 shows the results for these deck sizes.

Figure 3.2: Average reliability of the six voting orderings

In Figure 3.2, the legend on the right side demonstrates that the six voting orders

listed from the highest average reliability to the lowest. Table 3.3 provides several cases
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under different deck sizes . The full data is provided in Table B.3 in Appendix.

Average reliability

Voting order
Deck size

D = 4 6 8 . . . 26 . . . 50 52

(a, b, c) 7/9 = 0.78 0.768 0.744 . . . 0.648 . . . 0.610 0.608
(a, c, b) 1 0.901 0.844 . . . 0.703 . . . 0.651 0.648
(b, a, c) 8/9= 0.89 0.703 0.682 . . . 0.609 . . . 0.584 0.582
(b, c, a) 1 0.910 0.856 . . . 0.710 . . . 0.655 0.653
(c, a, b) 1 0.867 0.809 . . . 0.673 . . . 0.631 0.628
(c, b, a) 1 0.890 0.839 . . . 0.695 . . . 0.645 0.643

Table 3.3: Average reliabilities for deck size up to 52

Given that deck size D = 4, there exists merely one ability set {1, 2, 3}. Therefore,

the average reliability Q̄ and reliabilityQ has the same value for this particular ability set.

The reliabilities for this ability set has already calculated in Example 3.1. Observation 3.6

summarises the pattern from Table 3.3 and Figure 3.2.

Observation 3.6. Given any deck of size D ≤ 52, the Alpern-Chen ordering (b, c, a)

has an average reliability larger than any other voting order.

3.2 Sequential vs. simultaneous voting scheme

Up to now, the analysis is around roll-call voting scheme from a internal view, comparing

the reliabilities of six sequential voting orders for a fixed set of abilities. In this section,

the analysis on sequential voting is from a external view, by measuring the performance

(reliability) with the more traditional simultaneous voting scheme. This voting approach

has been extensively studied by Condorcet (1785), under which every juror cast a vote on

the basis of merely on his own private information (his sample drawn from the remaining

deck, here), without knowing any information of other jurors. Due to this feature, this

voting scheme is also knowns as independent voting. We make a comparison of the reli-

ability of roll-call voting via the optimal (Alpern-Chen) order and that of simultaneous

voting. The intuitive reasoning may conclude that sequential voting is always better be-

cause jurors are better informed in this case. However, as demonstrated in this section,

indeed roll-call voting has generally better performance, but not always. The obstacle

with roll-call voting, particularly for a large jury, is that a high ability juror who is not

a perfect predictor (sometimes makes the wrong judgements) may improperly have an

effect on subsequent jurors through herding. Then, their information is not helpful for

the collective decision at all.
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To demontrate this reasoning in a simple setting but with a larger jury, suppose that

there is a deck of size D, one juror of ability 3 and all the rest (n− 1 of them) of ability

1. Suppose the juror of ability 3 votes first. He is with some probability p = p3 that at

least two of the cards from his sample are the opposite colour to the sealed card, and

that he consequently casts his vote accurately. Essentially, this probability is the same

as the juror’s probability of being correct p. Then, all subsequent juror, who obtains a

signal that is right with a probability p1 < p3, will follow voting behaviour of the first

juror and consequently the collective decision by majority voting, for any jury size n, will

be right with probability p = p3). This is when the first juror makes the right decision.

Known from the Condorcet Jury Theorem under the setting of Owen et al. (1989), all

jurors are with p which has the value at least p1 ), then for sufficiently large jury size

n, the probability of the correct verdict(reliability) approaches to 1, will be larger than

that of reliability p3 of the roll-call voting. For sufficiently large juries, the Condorcet

Jury Theorem guarantees that independent voting is better than roll-call voting.

Go back to the typical small jury which this study mainly concerns. To make a

comparison of these two voting schemes with jury size three, we start the analysis via

recalling Example 3.1, under which suppose a deck of two red and two black cards, and

three jurors with abilities 1, 2, and 3 takes turns to vote. In the case, the juror of

ability 3 (called juror 3) casts his vote firstly or secondly. Then his perfect vote will be

followed by subsequent two jurors to generate a perfect collective decision by majority

voting (reliability is 1). The other voting orders (1, 2, 3) and (2, 1, 3) were presented

in Example 3.1 with reliabilities 7/9 and 8/9, respectively. Note that roll-call voting

in the optimal Alpern-Chen ordering (2, 3, 1) is with reliability 1. Then, we analyze

the reliability of simultaneous (independent) voting. By symmetry, we could make an

assumption that the sealed card is R. We wonder the probability that the verdict is not

correct, B. Because the juror with ability 3 is a perfect predictor whose sample is two

blacks and a red and results in the right vote of R. Therefore, the wrong verdict B will

be generated given that the other two juror votes wrongly. The juror with ability 1 will

cast his vote B if and only if he has one red card in his sample with probability 1/3. The

juror with ability 2 will his vote B if he has one red and one black card in his sample and

then randomizes to vote B. This case is with probability (2/3) (1/2) = 1/3. Therefore,

the reliability of simultaneous voting under this setting is 1 − (1/3)2 = 8/9. This value

is inferior to the perfect reliability 1 of roll-call voting in the optimal (Alpern-Chen)

ordering. Note that simultaneous voting in this example is superior to roll-call voting

with the ability order (2, 1, 3) .

Here is an illustration when the relative reliability of these two voting schemes can be
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another story: Given that three jurors have the common ability 1, simultaneous voting

is superior to roll-call voting. For clarity of the proof, we make the assumption that

all jurors vote in the precisely same order under both voting schemes. However, in the

roll-call voting scheme, every juror possesses the knowledge of all prior jurors’ votes.

We denote bl and re for the colour in the jurors’ sample, while B and R for votes he

casts. For instance, we would say ‘the second juror sees re in his sample but he casts

his votes R as he allows the voting behaviour of the first juror’. The trivial ability set

is used in this case with all jurors having the same ability 1. There is merely one card

in the sample of every juror. Here, we consider the extreme case where the abilities of

jurors are homogeneous. It should be noticed that the proof of the following findings is

without any calculating but qualitative analysis.

Theorem 3.7. For any deck size D ≥ 4 and ability set {1, 1, 1} , simultaneous voting has

a higher reliability than sequential voting. Furthermore, for any total private information

(draws of card for all players), simultaneous voting is at least as likely as sequential voting

to have the correct verdict (N) ; for some total private information vectors, it is more

likely.

Proof. We prove the second statement, which indicates the first statement. We start

with dividing the private information vector into three circumstances. In the first two

circumstances, two voting schemes will results in the same collective decision. Under the

rest circumstance, simultaneous voting will always provide the collective decision that

has higher probability be true. On the other hand, the roll-call voting wiil generate the

collective decision with lower probability to be true.

Case 1: draws re,re, (or bl,bl, ). By symmetry, we make the assumption that there

is merely an re. in the first jurors’ sample. When they vote simultaneously, the

first two jurors will cast their votes BB (with verdict V = B). The same is still

true, given that the second juror possesses the knowledge of the first juror’s vote.

Therefore, under these circumstances, two voting schemes will provide the same

collective decision.

Case 2: re,bl,re (or bl,re,bl). By symmetry, we make the assumption that the cards

in samples of the three jurors are re, bl, re. When they vote simultaneously, voting

will be BRB, and the collective decision is V = B. When they take turns to vote,

and the first juror cast his vote B. Then the second juror with the knowledge that

one black and one red card in their samples will randomize and equally likely cast
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his vote R or B. Under both circumstances, the third juror will cast his vote B.

Therefore, the voting order and process are different under different circumstances.

The collective decision is the same.

Case 3: re,bl,bl (or bl,re,re). Again we assume re, bl, bl by symmetry. It should be

noticed that the sealed card may be N = R. This more likely state of Nature R is

the verdict when jurors vote simultaneously with B,R,R. Next we consider roll-call

voting. The first juror casts his vote B and the second juror randomizes between

R and B. He casts his vote B, which provides collective decision V = B. with

some positive probability. Therefore, we will obtain the collective B, with positive

probability where the collective decision is more likely to be wrong. Therefore,

with these samples, the jury’s collective decision with roll-call voting is more likely

to be wrong than the jury with simultaneous voting.

This case analysis is the second part of the proof because these three cases cover full

possibilities. The reliability of every voting scheme can be calculated through the Law

of Total Probability. The comparison asserted above for conditional reliability shows the

claim for reliability in the first sentence.

We will also show the proof with the algebraic calculation: When p = (D/2) / (D − 1) ,

the number of cards of the other colour of the sealed card divided by the size of the re-

maining deck, the reliability of sequential voting is calculated through
(
p+ 3p2 − 2p3

)
/2

and the reliability for the simultaneous voting is p3+3p2 (1− p) . The difference between

these two voting scheme:

(
p+ 3p2 − 2p3

)
/2−

(
p3 + 3p2 (1− p)

)
= (1/2) p (2p− 1) (p− 1) ,

which has a positive value when 1/2 < p < 1, for any value of D.

Now we move to the more general case of the perfectly homogeneous juries (k, k, k),

the reader might think that simultaneous voting is always better than roll-call voting in

terms of reliability. Here is a counterexample.

Observation 3.8. Suppose we have a deck of D = 4 cards (two red, two black) and

three jurors of common ability 2. Then sequential voting has a higher reliability (21/27)

than simultaneous voting (20/27).

Proof. We start the analysis with roll-call voting. If the first two jurors vote the identical

colour, call them Y, then the collective decision by majority voting is already generated.

Suppose first two jurors vote for a different colour, say W,Y. The first vote W may
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result from a tie sample. However, given that the second juror also has a tie in his

sample, he follows the first juror’s vote and votes W . Therefore, the vote of Y is right

with certainty, providing that two cards with identical colour indicate the sealed card

must be the other colour (Y ). This reasoning follows that the third juror will cast his

vote Y. as well. Hence, the collective decision is dependent on the votes of the first two

jurors. In this case, their positions are equivalent. Thus, the only case when the roll-call

voting provides the wrong verdict is when the samples of the first two jurors both are

distinct, the first juror randomizes with the wrong result and the second juror follows.

The probability of distinct samples for first two jurors is 2/3, hence the probability of a

wrong collective decision is (2/3)2 (1/2) = 2/9, hence the reliability of roll-call voting is

1− 2/9 = 7/9 = 21/27.

In simultaneous (independent) voting, the only situation a juror voting inaccurately

is identical if he has a distinct colour of cards in his sample and has the incorrect result

for his randomizing. This case is with probability q = (2/3) (1/2) = 1/3, so p = 2/3.

Simultaneous voting with p = 2/3 is with reliability p3 + 3p2q = 20/27, the probability

that two or three jurors receive the accurate signal (the other colour rather than the

that of the sealed card).

According to the Condorcet Jury Theorem where simultaneous juries’ reliability ap-

proach to one when the size of jury approaches infinity, herding may result in a limiting

upper bound of reliability of roll-call voting which is less than one. For juries of size

three, we have demonstrated that the ability set {1, 2, 3} of Example 3.1 is with roll-call

reliability higher than simultaneous. For perfectly homogeneous juries {k, k, k}, the su-

periority of reliabilities is inconclusive:simultaneous voting better for k = 1 but roll-call

voting better for k = 2.

In the rest of this subsection, we will demonstrate that roll-call voting is generally

with higher reliability. We will also show that the ability sets in which simultaneous is su-

perior are comparatively homogeneous. These findings are discovered through numerical

methods.

3.2.1 Which voting scheme is generally more reliable?

Up to now, we have shown that for specific deck sizes and ability sets either roll-call

voting or simultaneous voting has better performance in terms of reliability. We do

not have a consistent conclusion on which voting scheme can always generate a more

reliable result. Nevertheless, in this Subsection, we will show that the Alpern-Chen roll-

call voting is always superior to simultaneous voting with respects to both the average
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reliability and the optimality fraction.

Average reliability

Recall that the average reliability is defined as follows: for fixed deck size D, the av-

erage value of its reliability over all admitting ability sets with different abilities. The

average reliability measures the expected performance of the reliability for a jury chosen

randomly. It is noticed that in Example 3.1, D = 4 and the only distinct-ability set is

{1, 2, 3} . Thus, average reliability is identical to the reliability for this ability set. There

we have already demonstrated that roll-call voting with Alpern-Chen order (or any order

in which the juror of ability 3 votes first or second) has reliability 1, and simultaneous

voting has reliability 8/9. For values of D from 6 to 52, the results on the average relia-

bilities are shown in two of the curves (yellow line for sequential Alpern-Chen and brown

dashed-line for simultaneous) in Figure 3.2. We have found the following pattern.

Observation 3.9. For deck sizes D, 4 ≤ D ≤ 52, the average reliability of sequen-

tial voting in the Alpern-Chen order is higher than that of simultaneous voting. The

difference exceeds 0.035.

Optimality fraction

In comparison between roll-call and simultaneous voting, for fixed deck size D, we wonder

which can provide higher reliability in terms of the fraction of ability sets. In particular,

let φ̂ (D) denote the fraction of ability sets for which simultaneous voting is with higher

or equivalent reliability. Recall from the analysis above of Example 3.1 for simultaneous

voting in the first part of this subsection that for D = 4 there is only one ability set

{1, 2, 3} and roll-call voting is with the higher reliability, Therefore φ̂ (4) = 0. Through

simple calculation, we observe that φ̂ (D) = 0 for all D < 12. The computational results

for D = 12, 14, . . . , 52 are presented in Table B.4 in the Appendix. To put it in a nutshell,

we have the following observation:

Observation 3.10. The Alpern-Chen sequential voting scheme has a higher optimality

fraction than simultaneous voting scheme. More specifically, the fraction of ability sets

with deck size D, φ̂(D) satisfies the following:

1. For D satisfying 4 ≤ D ≤ 10, φ̂ (D) = 0.

2. For D satisfying 12 ≤ D ≤ 52, φ̂ (D) ≤ 0.0268.
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3.2.2 Which ability sets do better with each scheme?

In Section 3.2.1, we try to solve the problem how many ability sets simultaneous voting

is with a higher reliability than the Alpern-Chen roll-call voting. Now we try to address

the problem for which ability sets simultaneous voting is superior. We are not concerned

with providing a specific list of these sets, but rather a feature of them. Our results show

that a jury’s feature that most decides which voting scheme has better performance is the

heterogeneity level of the abilities. Here, we use the standard deviation of the ability set

or the spread δ = y−w (range), the difference between its highest ability y and its lowest

ability w to measure this level. Higher heterogeneity generally indicates that roll-call

voting is highly possible to be better. We start with considering merely middle centered

ability sets, those ability sets containing the middle ability m = D/2. These ability sets

can be presented in a two-dimensional vector, as in Figure 3.3. Next, we try to address

more general setting, but still, use the spread as the measurement of heterogeneity. It

should be noticed that in this subsection we regress to the restriction on the distinct

abilities, removing common-ability examples of {1, 1, 1} and {2, 2, 2} considered at the

beginning of the subsection for simplicity.

Spread analysis for centered ability sets

One approach to present where these ability sets are located is to generate a two di-

mensional (w, y) vectors for centered ability sets. These ability sets are of the form

{w,m, y} , m = D/2, with w < m < y, within which the middle ability is m = D/2.

These integer pairs (w, y) is used to characterize the ability set {w,m, y} . The ability set

possesses the property that simultaneous voting is superior to sequential voting in the

Alpern-Chen order (m, y,w) is labelled (w, y) with a small dot. These ability sets are

dotted. Figure 3.3 presents these ability sets for the standard deck size D = 52, m = 26.

As shown in Figure 3.3 all the dotted points are located in the triangle under the line

d = y−w = D/4 + 1 = 14, which encompasses the one eighth most homogeneous points

(ability sets) in term of the spread measurement y−w, (range). In Figure 3.3, a line with

constant standard deviation passes the point of ability set {15, 26, 29}( σ = 7.37) as the

parting with all the dotted points lying under. The most homogeneous point (25, 27) ,

(ability set {25, 26, 27} = {m− 1,m,m+ 1} ,) is labelled as dotted point. Nevertheless,

this point is not labelled as the dotted point in Example 3.1 with D = 4 with unique

ability set {1, 2, 3} , under which the roll-call voting is better. However it is dotted for

sufficiently large deck size D. Also note that when D = 52, most of the dotted points

have both coordinates odd - this changes to all such points for smaller deck sizes. Recall
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that jurors with odd abilities cannot draw an equal number of cards of each color – ties

are impossible. The lack of ties seems to favor simultaneous voting. The generalizations

of observations regarding Figure 3.3 (D = 52) that hold for other values of D are listed

in the following Observation.

Figure 3.3: Scatter plot of dotted ability sets {w,m, y} for D = 52.

Observation 3.11. For D ≡ 2m ≤ 52, consider ability sets of the form A = {w,m, y}
with 1 ≤ w < m < y < D. We say that A is dotted (as in Figure 3.3) if the reliability of

simultaneous voting with abilities A is greater than or equal to the reliability of sequential

voting in the Alpern-Chen order. Then

1. If D ≤ 10 or D is not divisible by 4, then there are no dotted points, that is, the

Alpern-Chen sequential voting is always more reliable.

2. Suppose D satisfies 12 ≤ D ≤ 52 and is divisible by 4. Then all dotted ability

sets A are in the triangular set y ≤ w + D/4 + 1 (with the lowest 1/8 of spread

y−w). In particular, the most homogeneous ability set {m− 1,m,m+ 1} is dotted.

Furthermore if D ≤ 32 then all dotted points (ability sets) have both w and y odd.
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The full data regarding this Observation for D < 52 are shown in Figure B.1 in the

Appendix.

Spread analysis for general ability sets

Here, we analyse the normal deck size D = 52 and arbitrary ability sets {a, b, c} with

a < b < c. The spread is defined as δ = c − a. Figure 3.4 shows all the values of δ

starting from 2 to 20, the number of all possible ability sets labelled “#(δ)” in the figure

(blue) and the number of these where roll-call voting is better than simultaneous voting.

The orange line indicated the difference between the total number of the ability and

the dotted ability sets labelled “#Seq(δ)” in the figure. Though the upper bound for

δ is 51 − 1 = 50, when δ ≥ 16, dotted ability sets do not exist. Thus, we limit the

upper bound of δ to 20. For instance, given that δ = 2, there are 50 ability sets (of the

form {w,w + 1, w + 2}). Among these ability sets, 23 of them are dotted with better

performance of simultaneous voting.

Figure 3.4: Relationship between δ, #δ, and #seq(δ) for fixed D = 52.

In summary, when the jury is with high degree of heterogeneity of abilities, the

additional reliability of roll-call voting over Condorcet simultaneous voting is more sig-

nificant.
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3.2.3 Reliability and heterogeneity

The work of Kanazawa (1998) has demonstrated that the reliability of Condorcet simul-

taneous voting, for juries of fixed average of p, is increasing in the standard deviation

σ of the jury. This part shows that this conclusion still holds, even for the roll-call

voting. Additionally, the reliability difference between roll-call and simultaneous voting

also increases with heterogeneity (σ).

In Figure 3.5 , we fix the deck size at D = 52 and juries with ability sets with a

fixed mean of 26. For every ability set A = {a, b, c} we draw two points: (σA, Q (b, c, a))

and (σA, Qsim (A)) , both on the same vertical line with horizontal coordinate σA. The

horizontal coordinate σ ranges from 1 (the only ability set {25, 26, 27}) to 25 (the only

set {1, 26, 51}). By Observation 3.11, the second part, the orange point is below σ =

1({25, 26, 27} is dotted) the blue point. It should be noticed that for any ability set

comprising juror with the highest ability c (51), the reliability of the roll-call voting is

1(as he votes secondly). There exits 13 such ability sets, of the form (a, b) = (w, 27− w) ,

for w = 1, . . . , 13. These are the 13 points at level (reliability) 1.

Figure 3.5: Plots of Qsim(A) and Q(b, c, a) against σ of ability sets {a, b, c}
.

Our observations regarding reliability increasing with heterogeneity are on the basis

of the pattern of the orange dots (sequential reliability) and the blue triangles (simulta-

neous reliability) in Figure 3.5. We also plot the line with respect to the averages of the
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reliabilities for every standard deviation for both sequential and simultaneous reliability.

When the standard deviation is greater than 22, there are 13 ability sets comprising the

ability juror of ability 51 who can see all the cards in the remaining deck. For these

ability sets, the reliability under roll-call scheme is 1 as the juror of ability 51 votes

second and the last juror will always follow him. For the same ability sets, the reliability

is around 0.78 if they vote simultaneously. This is the reason why the lines are volatile

between the standard deviation of 22 and 25. When the average of the ability sets is

fixed to 26, both lines increase with larger standard deviation. This result provides the

support to the finding of Grofman & Feld (1988) that the diversity of voices is an ap-

proach to the right collective decision with democratic majority rules. Figure 3.5 also

shows that when the standard deviation is very small, the blue line is higher than the

orange line. For example, when the standard deviation is unit, ability set 25,26,27, the

blue dot is above the orange dot. When the standard deviation increases, the superiority

of roll-call voting (orange line) over Condorcet simultaneous voting (blue line) increases.

This shows that higher level heterogeneity is required for more significant additional

reliability of roll-call voting over simultaneous voting. The reason for this phenomenon

is herding. The jurors with higher ability (higher quality of samples) in sequential vot-

ing have a greater influence on the reliabilities through the herding than those in the

simultaneous voting. This influence become more significant with the increase of the

most able juror’s ability, especially the jurors with perfect information.

3.3 Average Reliability for n = 5

The jury size three observations make us think whether these findings can be extended to

the larger jury. This section concerns the performance of roll-call voting under different

voting order with jury size five. The exhaustive numerical approach is adopted here to

obtain the average reliability Q̄(r) for all orderings r ∈ Π5.

Voting orderings D = 12 D = 14 . . . D = 30

(d, a, e, c, b) 0.822 0.801 . . . 0.718
(d, b, e, c, a) 0.817 0.798 . . . 0.717
(c, a, e, d, b) 0.815 0.795 . . . 0.715
(c, b, e, d, a) 0.802 0.785 . . . 0.713
(d, c, e, b, a) 0.801 0.783 . . . 0.710

Table 3.4: Average reliabilities of the highest five orderings

Among all Π5 = 120 orders, Table 3.4 provides details of the reliabilities for the top
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five and bottom three orders, ranging from D = 12 to 30. These rankings are consistent,

starting from D = 12. This observation leads to the following finding:

Observation 3.12. Given a deck size between 12 and 30, and a five-member jury of

abilities {a, b, c, d, e} with 0 < a < b < c < d < e < D, the voting orders with the five

highest reliabilites all have the most able juror as the third (middle) voter.

Ordering
voter

1st 2nd 3rd 4th 5th

r1 (Best) d a e c b
r2 d b e c a
r3 c a e d b
r4 c b e d a
r5 d c e b a

vi = average v1 = 3d+2c
5 v2 = 2a+2b+c

5 v3 = e v4 = b+2c+2d
5 v5 = 3a+2b

5

Table 3.5: Average ability of ith juror to vote, among top five ordering

Table 3.5 shows the top five voting orders in terms of reliability. These identical

top five order holds until deck D = 52. It also shows the average ability vi of the ith

juror to vote, for different voting orders. We are intended to make a comparison our

findings on juries of size five with the finding in our earlier work for juries of size three.

In order to do this, we first divide the five jurors in voting order into three subgroups:

Early, Middle and Late (E,M,L). Providing we had the jury with the size of multiples

of three, this division will be easier. To transform five to three, we must consider let the

second juror partly belong to E and partly belong to M . A similar division applies to

the fourth juror. In order to guarantee the equal fractional number of jurors in every

group, we let the second juror fractionally 2/3 belong to E and 1/3 belong M , and

correspondingly for the fourth juror. This process let 5/3 jurors into every the three

subgroups, with total weight 3(5/3) = 5 for the three groups, as required. Subsequently,

the fairly fractional weight for every group is 5/3. We can divide by 5/3 to obtain the

average abilities E,M,L for the three subgroups on the top five ranking order:
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E =
3

5

(
v1 +

2

3
v2

)
,

M =
3

5

(
1

3
v2 + v3 +

1

3
v4

)
, and

L =
3

5

(
2

3
v4 + v5

)
.

Comparing the average abilities among three subgroups, we calculate

25(E − L) = 5(d− a) + 4(c− b) > 0, and

25(M − E) = 15e− (7d+ 5c+ b+ 2a) ≥ 15(e− d) > 0.

Thus, we have shown the following

Observation 3.13. Given any deck size 12 ≤ D ≤ 30, for any five-member jury with

abilities 0 < a < b < c < d < e < D, we have

L < E < M,

which implies that the highest five voting orderings in terms of average ability jointly

form the weighted group order of (E,M,L) — precisely the Alpern-Chen ordering.

3.4 Conclusions

The celebrated paper of Alpern & Chen (2017a) shows that when jurors with distinct

abilities vote sequentially, the probability of correct collective decision between two states

of Nature is influenced by the voting sequence. In that paper, the ability is defined as

a factor regarding the juror’s private information quality. In this chapter, we introduce

a new measurement of a juror’s ability, which is the number of cards he can draw from

a predetermined deck of cards. The introduction of this model brings a discrete voting

game called the sealed card problem.

Under discussion in this model, we have shown that providing that the two states are

equally probable with a jury of size three, then the optimal voting order is predominantly

median ability first, then the highest ability, then the lowest ability, known as the Alpern-

Chen voting order. When the deck of cards is of small size (D ≤ 16), the Alpern-Chen
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order dominates all other six voting orders in terms of the majority verdict’s reliability

for any jury with even-only abilities. For any medium-size decks (D ≤ 52), the Alpern-

Chen Ordering is optimal for more juries than any other voting orders. Our findings

also show that for each deck sizes, the average reliability of Alpern-Chen ordering, taken

over all possible juries, is superior to any other order.

After determining the optimal ordering, we compare reliability with other voting

schemes fixing this voting order. We make a comparison of the reliability of the roll-

call voting with the traditional simultaneous voting scheme. A spread of the set of

juror abilities with larger spread representing more heterogeneous juries is introduced.

Our findings indicate that given that sufficiently heterogeneous juries, roll-call voting is

superior to simultaneous voting. In contrast, when juries are sufficiently homogeneous,

simultaneous voting provides more reliable performance. Similarly, our results show that

a jury’s reliability of fixed average ability increase with its heterogeneity.

For a jury of size five, we have demonstrated that the highest five voting orders

feature the ablest juror votes in the middle (third). Our results also show that by

assigning the abilities in the following fashion: median voters to vote earlier, high ability

voters to vote in the middle, and low ability to vote last, the Alpern-Chen order can still

be at least an exceptional heuristic approach to generating high reliability.
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Chapter 4

Sequential voting with an

independent voter

Under sequential voting with an independent juror (SVI), the voting is divided into two

parts, the roll-call voting part and an independent juror. In the roll-call voting part,

one juror votes first, followed by another juror knowing the vote of the first juror. This

duo voting structure is the same voting scheme that was discussed in Section 2.3. The

independent juror makes his own decision knowing nothing about the votes of others.

Although the timing is vital in the sequential voting schemes, the independent juror

has a time-invariability property. It makes no difference whether the independent juror

votes first, second, or third as shown in Figure 4.1. The voting rule here is the simple

majority rule introduced in Section 1.1.1. When more than half of the jurors vote for the

same alternative, the verdict is generated. Under this voting scheme, the information

flow occurs within the roll-call voting part.

Figure 4.1: Sequential voting with an independent juror
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Under SVI, we are mainly concerned with the following question:

Who should be the independent juror, and what voting order of the sequential part

according to the abilities of jurors such that the probability of correct verdict under ma-

jority rule is maximised?

Order of jurors and reliability under SVI

In this part, we will provide the notation of voting order under SVI along with the

reliability formula under this voting scheme. Let ({v1, (v2, v3)}) be a voting order under

SVI. Then, the first position belongs to the independent juror v1. The second position

v2 and the third position v3 are the first and second layers in the roll-call part. For

example r = ({c, (a, b)}), the independent juror is c and the other jurors follows the

order a then b.

The following shows the calculation of the reliability Q({c, (a, b)}) under this voting

scheme. Let qA({c, (a, b)}) be the probability of the verdict being A when the Nature is

A. Similarly, we define qB({c, (a, b)}). Then, given an arbitrary a priori probability θ0,

we have:

Q({c, (a, b)}) = θ0qA({c, (a, b)}) + (1− θ0)qB({c, (a, b)}).

When θ0 = 1/2,

Q({c, (a, b)}) =
1

2
[qA({c, (a, b)}) + qB({c, (a, b)})].

By symmetry,

Q({c, (a, b)}) = qA({c, (a, b)})) = qB({c, (a, b)}).

Thus, the calculation of Q({c, (a, b)}) just requires qA({c, (a, b)}) as they have the same

value. The formula for qA({c, (a, b)}) is the summation of probabilities of voting order

(A,A, any), (A,B,A) and (B,A,A) when the Nature is A:

qA({c, (a, b)}) = Pr[A,A, any] + Pr[A,B,A] + Pr[B,A,A]

= (1− FA(c, 0))(1− FA(a, 0)) + (1− FA(c, 0))FA(a, 0)(1− FA(b, yB)))

+ FA(c, 0)(1− FA(a, 0))(1− FA(b, yA)).

When we substitute yA and yB formulas to our linear continuous signal model using
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equations (2.12) and (2.13), we need to pay attention to whether or not the pair (a, b)

belongs to h2 (i.e. b 6 a/2 in equation (2.14)). Then,

Q({c, (a, b)}) =

{
c/4 + 1/2, if (a, b) ∈ h2 (b 6 a/2);

Q1({c, (a, b)}), (a, b) /∈ h2,
(4.1)

Where

Q1({c, (a, b)}) =
64a+ 16a2 + 16ab+ 16ac+ 8bc+ bc3 − 4a2bc− 12c2

128a
.

4.1 Optimal voting order under SVI

In this section, we will discuss the optimal voting order under SVI, along with proofs.

The condition of the optimal ordering consists of two parts. The first is that the juror

with the highest ability takes the independent juror position. For the roll-call voting

part, the juror with the least ability casts his vote first, followed by the juror with middle

ability. We have the following proposition:

Proposition 4.1. Given that jurors’ abilities are 0 6 a < b < c 6 1, the highest ability

juror should be the independent voter. For the roll-call voting part, the voting should be

in anti-seniority order (increasing order) unless herding exists.

Proposition 4.1 can be applied to an organizational context. Consider that there are

two senior employees with different levels of experience and one junior employee. The

optimal decision rule for them is that the junior employee reports his decision to the less

experienced senior employee. If they are in agreement, a collective decision is made. If

not, they need to consult the more experienced employee for an independent opinion.

This simple application is consistent with business practice. The unique feature of this

proposition is that it requires only a specific order of jury (such as the most able and

middle juror), instead of a specific numerical value of the ability. The only necessary

condition is the prevention of herding. We can always use equations (2.1) or (2.2) to

calculate the condition on the empirical probability of making a right decision.

Proof of Proposition 4.1

Case 1 without herding

The idea of the proof is simple: first, we will show that for the two-layer voting

structure, voting should be in anti-seniority order. Second, we will show that the juror
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of the highest ability c should be the independent voter. The equations for ∆4.1, ∆4.2

and ∆4.3 define the differences between anti-seniority order and seniority order when we

fix the independent juror:

∆4.1 = Q({a, (b, c)})−Q({a, (c, b)}),

∆4.2 = Q({b, (a, c)})−Q({b, (c, a)}),

∆4.3 = Q({c, (a, b)})−Q({c, (b, a)}).

Substitute with the reliability formula for each order,

∆4.1 =
b(c− b)(2c− b)

32c2
,

∆4.2 =
a(c− a)(2c− a)

32c2
,

∆4.3 =
a(b− a)(2b− a)

32b2
.

We have 0 6 a < b < c 6 1. Therefore, ∆4.1 ∆4.2 and ∆4.3 are positive:

Q({a, (b, c)}) > Q({a, (c, b)}),

Q({b, (a, c)}) > Q({b, (c, a)}),

Q({c, (a, b)}) > Q({c, (b, a)}).

Now we have proven the second part of the statement. For the roll-call part, the juror

with the higher ability between two jurors should always vote last. Then we merely need

to compare Q({a, (b, c)}), Q({b, (a, c)}) and Q({c, (a, b)}). In this step, we try to solve

the problem of who should be the independent juror. To complete this task, we define

the differences of ∆4.4 and ∆4.5,

∆4.4 = Q({b, (a, c)})−Q({a, (b, c)}),

∆4.5 = Q({c, (a, b)})−Q({b, (a, c)}).

Substitute with the reliability formula into ∆4.4 and ∆4.5, we have:

∆4.4 =
b(b− a)

8c
,

∆4.5 =
b(c− b)(2c+ b)

32c2
.
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By the initial setting of the ability (0 6 a < b < c 6 1), ∆4.4 and ∆4.5 are positive.

Therefore, we have the following inequalities:

Q({c, (a, b)}) > Q({b, (a, c)}) > Q({a, (b, c)}).

Now we have partially solved the second part of the problem regarding who should take

an independent judge’s position: the one with the highest ability.

Case 2 with herding

The herding condition (v2, v3) ∈ h2 implies v3 < v2/2. This means that for the roll-

call part, v3 < v2. In other words, the herding condition indicates that for the roll-call

part, the two jurors follow the seniority rule. Thus, we have proved the first part of the

proposition. Now we need to address the problem of who should be the independent

juror. On basis of equation (4.1), we have:

Q({a, (c, b)}) = a/4 + 1/2,

Q({b, (c, a)}) = b/4 + 1/2,

Q({c, (b, a)}) = c/4 + 1/2.

Because a < b < c, we have the following inequalities:

Q({c, (b, a)}) > Q({b, (c, a)}) > Q({a, (c, b)}).

Therefore, the independent juror should be the juror with the highest ability. Based

on the analysis of case 2, the second part of Proposition 4.1 has been proven.

4.2 Comparison with the simultaneous voting scheme

The CJT is based on simultaneous voting. Therefore, it is necessary to compare simulta-

neous voting with the SVI voting scheme (sequential voting with an independent voter,

type I). Based on results of the previous section, we need to compare the optimal voting

order under SVI voting (the highest ability juror is the independent voter, and the other

two jurors vote in anti-seniority order) with the simultaneous voting scheme.

Figure 4.2 shows the result. The blue dots mean that that the optimal voting order

under the SVI voting scheme is better than the simultaneous voting scheme. The green

dots mean that simultaneous voting is superior to the optimal voting order under the

SVI voting scheme. From the mixed Figure 4.2, we know that when the difference in

abilities is large enough, the optimal voting order under SVI voting scheme is better.
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Figure 4.2: SVI (type I) voting scheme and the simultaneous voting scheme

Now, we focus on the boundary of the simultaneous part. From numerical experiments

illustrated in Figure 4.3, the maximum difference between the highest ability juror and

lowest ability juror is approximately 0.3.

Figure 4.3: SVI (type I) voting scheme and simultaneous voting scheme

We can solve this using the boundary condition when the reliability of optimal voting

under SVI is equal to that of simultaneous voting. First, the optimal voting order under
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SVI voting is achieved when the highest ability juror is the independent voter and the

other two jurors vote in anti-seniority order. The corresponding reliability is:

Q({c, (a, b)}) =
64b+ 16ab+ 8ac+ 16bc+ a3c− 12a2 + 16b2 − 4ab2c

128b
. (4.2)

The reliability for the simultaneous voting scheme (see equation (2.2.5)) is,

Q(abc) = a/8 + b/8 + c/8− (abc)/32 + 1/2. (4.3)

The difference between equations (4.2) and (4.3) is,

a(a2c− 12a+ 8c)

128b
.

When the difference is zero, we can obtain the boundary equation:

a2c− 12a+ 8c = 0. (4.4)

We notice that equation (4.4) is not related to b, and it is a quadratic equation in terms

of a. By rearranging equation (4.4), we can obtain the explicit expression for c:

c =
12a

a2 + 8
.

The difference between c and a is given by

c− a =
12a

a2 + 8
− a.

This difference should be positive under the initial setting c > a. The solution is 0 < a <

6−2
√

7. Now we want to ascertain the maximum range of the ability, which is c−a. We

just need to know the monotonicity of c− a = 12a
a2+8

− a on the interval 0 < a < 6− 2
√

7.

The derivative of this difference is:

32− a4 − 28a2

(a2 + 8)2
,

which is obviously positive when 0 < a < 6− 2
√

7.

Therefore, the maximum difference between highest ability juror c and lowest ability

juror a is achieved when a approaches 6 − 2
√

7. When a = 6 − 2
√

7, then c − a =

2
√

7−5 ≈ 0.3. On the other hand, when a approaches 0, the difference c−a approaches

0.
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Voting Scheme Counts(#) Proportion(%)

SVI 90697 86.28%
Simultaneous 14607 13.87%

Table 4.1: Comparison between SVI (b,c,d) and simultaneous voting (a)

In conclusion, in most cases, sequential voting is better than simultaneous voting.

From Table 4.1, it can be seen that sequential voting with an independent voter using

optimal voting order is superior to simultaneous voting in terms of reliability in 86.28%

of the total cases. This advantage will decline with an increase in the ability of highest-

ability juror. The condition for superiority of simultaneous voting is c < 12a
a2+8

.

4.3 Conclusions

Under the sequential voting with an independent voter and for a fixed set of jury abil-

ities, the jury’s reliability can be improved by rearranging the voting sequence. This

arrangement requires two parts. The first part regards who takes the position of the

outsider (independent juror). The second regards that which order the remaining two

jurors should follow. For a jury of three, the optimal order is always as follows: highest

ability takes the independent position, and the other two jurors follow an anti-seniority

order unless herding exists. For sufficiently heterogeneous juries, which can be described

as a linear fractional-cubic function, sequential voting with an independent is more reli-

able than simultaneous voting. However, SVI’s superiority will decrease when the ability

of the highest juror increases statistically.
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Chapter 5

Sequential voting with knowledge

of previous voter

In sequential voting with knowledge of the previous voter (SVKP in Figure 5.1), the

jurors take turns to vote. Each juror can only see the vote of the adjacent juror. That

is, all but the first juror have restricted information of previous jurors. This voting

scheme looks similar to the roll-call voting graph (h) in Figure 5.2. It may be noticed

that there is an additional arc in the graph (h). As we have defined in Section 2.1, the

main characteristic of a sequential voting scheme is the knowledge sets of the jury. In

Figure 5.1, the knowledge sets of the first and remaining two jurors are K(0) and K(1)

respectively. In Figure 5.2, the third juror knows both the votes of the first and the

second juror, In Figure 5.1, the third juror only knows the vote of the second juror and

does not know that of the first juror. To be more precise, the knowledge set is K(2) for

the last juror (all the votes of previous jurors), K(1) for the second juror (only the votes

of the first juror), and K(0) for the first juror (nothing about the votes of other jurors).

In summary, the third juror in the roll-call voting scheme knows the previous two jurors’

votes and abilities and the private information signal s. Unlike the third juror in the

roll-call voting scheme, the third juror under SVKP does not know the first juror’s vote

but still has all the other information. Therefore, the underlying difference is that the

last juror under SVKP does know how the first juror has voted. This uncertainty faced

by the third juror will make the voting process more complicated.
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Figure 5.1: Voting Scheme (f): SVKP Figure 5.2: Voting scheme (h): Roll-call

Under SVKP, our main question is:

What is the optimal voting order in terms of jurors’ abilities such that the probability

of correct verdict is maximised?

Thresholds for the third juror under sequential voting with knowledge of the

previous voter

As discussed in Section 2.2.4, the thresholds of first two jurors are the same as the

duo voting structure. Now let us calculate the voting threshold for the third juror. To

do this, we use Bayes’ Rule to calculate the probability of state A given that the second

voter vote for the state A. Here, U indicates that we do not know the vote of the first

juror. UA represents the vote information for the third voter when he knows the second

juror has voted for state A but knows nothing about first juror’s vote. The numerator is

the probability that the first juror votes A or B when the second juror votes for state A

and the state of nature is A. The denominator is the total probability when the second

juror votes for state A. Equation 5.1 shows the details of the calculation:

θ(UA) =
θ(A)(1− FA(b, yA)) + θ(B)(1− FA(b, yB))

T (AA) + T (BA)
,

T (AA) = θ(A)(1− FA(b, yA) + (1− θ(A))(1− FB(b, yA))),

T (BA) = θ(B)(1− FA(b, yB) + (1− θ(B))(1− FB(b, yB))).

(5.1)

where θ(A) = 2+a
4 and θ(B) = 2−a

4 which are the posterior probabilities of the state A

after the first juror votes for state A (resp. B); yA and yB are provided in the Section 2.

Thus, based on equations (5.1) and (2.9), the honest threshold zXA for the third juror
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in the equation:

ZUA = ZUA(a, b, c) =

{
−1, if c 6 ρ(a, b) ,

−ρ(a, b)/c, otherwise,
(5.2)

where

ρ(a, b) =
(a2 + 4b2)

8b
. (5.3)

Example

The following example considers a jury of three under sequential voting with knowl-

edge of the previous voter. Suppose that the first juror has ability 2/3 and the second

juror has ability 3/4. Given that the second juror votes A, the conditional probability of

A is calculated using the following two methods, the algebraic and numerical methods.

The first method use the equations to calculate the probability directly.

The numerical method by Monte Carlo simulation (Hammersley & Handscomb 1964)

is based on the following procedure. Generate state of nature (equiprobable A or B)

, then signal s1 and vote of the first juror (U , this can either be U = A or U = B).

Finally, signal s2 and vote of the second juror (either be Y = A or Y = B). If the second

juror votes A (Y = A), we calculate the fraction of the simulations had N = A. So far,

we have obtained one trial of simulation. The approximation of θ(UA) is calculated by

averaging a large number of trials. θ(AA) and θ(BA) are also calculated to ensure that

every step of the simulation can be seen from the programming process.

Table 5.1: Simulation results for one trial

# #N = A Ratio(simulation) Ratio(theory) difference

θ(AA) 386719 291644 0.75414965 0.75324675 0.0009029
θ(BA) 113568 71237 0.62753924 0.62711864 0.0004206
θ(XA) 5000287 291644 0.72534565 0.72453703 0.0008086

Table 5, the difference between the estimated and theoretical values for θ(AA) and

θ(BA) is comparatively small. We note that this is just the data from one trial.

Ten thousand trials were conducted to improve accuracy. This process will reduce

random error using Monte Carlo simulation theory, and the numerical value will con-

verge to the actual value. Figure 5.3 shows that the average value of simulations (blue)

approaches the theoretical value (red) when the number of trials increases. This example

provides an intuitive way to show the calculation of the thresholds through simulation.

Now we know the threshold formula for the third juror under SVKP. We note that

the third juror vote is of significance, or as we call it, pivotal, when the second juror
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Figure 5.3: Average of the simulation

does not copy the vote of the first juror. When (a, b) /∈ h2, we have the equation (5.4)

for the third juror under SVKP:

ZUB = −ZUA = ZUB(a, b, c) =

{
1, if c 6 ρ(a, b) ,

ρ(a, b)/c, otherwise,
(5.4)

where

ρ(a, b) =
(a2 + 4b2)

8b
.

which is positive as 0 ≤ a < b ≤ 1. Similar to Section 2, we have the herding condition

for the third juror:

h3 = {(a, b, c) ∈ [0, 1]3 : c 6
(a2 + 4b2)

8b
}. (5.5)

which is useful when h2 does not happen. The verdict is then determined by the latter

two jurors and not related to the first juror at all.

Juror ordering and reliability

Similar to Chapter 4, we will provide the notation here for the orderings under SVKP.

We have two duo voting structures (see Section 2.2.4) facing different θ. The structure

of SVKP is such that one of the jurors votes first, followed by the remaining two. The

latter two jurors vote in the same fashion. For example, in r = (a, b, c), the first juror

is a followed by juror b and then juror c.

The following part shows the calculation of the reliability Q(a, b, c) under SVKP.
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From Section 2, for θ0 = 1/2, we know that

Q(a, b, c) =
1

2
(qA(a, b, c) + qB(a, b, c))

= qA(a, b, c) = qB(a, b, c)

= Pr[A,A, any] + Pr[A,B,A] + Pr[B,A,A]

= (1− FA(a, 0))(1− FA(b, yA)) + (1− FA(a, 0))FA(b, yA)

(1− FA(c, zUB)) + FA(a, 0)(1− FA(b, yB))(1− FA(c, zUA)).

This formula is similar to the reliability formula under the roll-call voting scheme

in Chapter 2. The main difference is the zUA(zUB) for the last juror, as discussed in

the previous section. When we substitute yA(yB) and zuA(zUB) formulas to our linear

continuous signal model, we need to be careful. Herding can exist either in the second or

the third juror. In other words, we are required to check whether the pair (b, c) belongs

to h2 and whether the triple of (a, b, c) belongs to h3. Then we have the reliability

equation under SVKP with the order (a, b, c):

Q(a, b, c) =


a/4 + 1/2, if (a, b) ∈ h2 (a 6 b/2),

a2 + 4b2 + 8b

16b
, if (a, b, c) ∈ h3(c 6 ρ(a, b)) ,

Q2(a, b, c), otherwise,

(5.6)

where

Q2(a, b, c) =
f1(a, b, c)

8192b3c
,

and

f1(a, b, c) =8a5 + 16a4b+ 16a3b4 + 64a3b2c2 + 128a2b3 + 256a2b2c+ 64ab6

+ 1024ab3c5 + 256b4 + 1024b4c+ 1024b3c2 + 4096b3c− a7 − 4a5b2

− 256ab4c2 − 384ab4 − 512ab2c2 − 64a3b2.

5.1 Solutions to SVKP

In this section, we will discuss solutions to SVKP. Lemma 5.1 states the optimal order

for the latter juror under the condition that no herding happens (i.e (a, b) /∈ h2 and

(a, b, c) /∈ h3). This is the best solution for the later duo voting structure. Proposition 5.2

provides the optimal solution to SVKP. Similar results have been found in Alpern & Chen

(2017a) under the roll-call voting scheme. Proposition 5.3 tries to address the problem of

whether the seniority order supported by the Dekel & Piccione (2000) (decreasing order
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of ability) is better than anti-seniority order supported by Ottaviani & Sørensen (2001)

(increasing order of ability). We will first state all three results followed by proofs.

Lemma 5.1. Given that the jurors’ abilities satisfy 0 6 a < b < c 6 1, if there is no

herding ((a, b) /∈ h2 and (a, b, c) /∈ h3), no matter who votes first, the latter two jurors

should follow seniority order (decreasing order).

Proposition 5.2. Given that the jurors’ abilities satisfy 0 6 a < b < c 6 1, the Alpern-

Chen order (median-high-low) is optimal. Q(b, c, a) has the highest reliability among the

six different orderings.

Proposition 5.3. Given that the jurors’ abilities satisfy 0 6 a < b < c 6 1, seniority

ordering (c, b, a) outperforms the anti-seniority ordering (a, b, c).

5.1.1 Seniority order for latter duo

In this part, we will prove Lemma 5.1’s optimal voting order for the latter two jurors:

seniority order. The following proof assumes that, for jurors, their abilities satisfy 0 6

a < b < c 6 1.

The idea of the proof is simple. There are three types of orderings: highest ability

first, middle ability first, and lowest ability first. For each type of voting order, we will

show that seniority order is always better for the latter two jurors than anti-seniority

order. Now, we define ∆5.1, ∆5.2 and ∆5.3:

∆5.1 = Q(a, c, b)−Q(a, b, c),

∆5.2 = Q(b, c, a)−Q(b, a, c),

∆5.3 = Q(c, b, a)−Q(c, a, b).

After substituting with the reliability formula for each order, we can express these

differences. The following contents are divided into three parts to show signs of ∆5.1,

∆5.2 and ∆5.3.

Lowest ability juror vote first

The explicit expression for the ∆5.1 is,

∆5.1 =
f2(a, b, c)

8192b3c3
,
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where

f2(a, b, c) =a7c2 + 8a5b2 + 16a4b2c+ 48a3b4c2 + 128a2b3c2 + 64ab2c6 + 128ab2c4

+ 256b2c5 − a7b2 − 8a5c2 − 16a4bc2 − 128a2b2c3 − 48a3b2c4 − 64ab6c2

− 128ab4c2 − 256b5c2.

By factorisation, we have:

f2(a, b, c) = (c− b)f3(a, b, c).

As b < c, we just need to show f3(a, b, c) > 0, where

f3(a, b, c) =a7b+ a7c+ 64ab5c2 + 64ab4c3 + 64ab3c4 + 128ab3c2 + 64ab2c5 + 128ab2c3

+ 256b4c2 + 256b3c3 + 256b2c4 − 8a5b− 8a5c− 16a4bc− 48a3b3c2

− 48a3b2c3 − 128a2b2c2.

Using a < b to reduce minuend and b < c to enlarge subtrahend, we have

f3(a, b, c) >a
8 + a7c+ 64a6c2 + 64a5c3 + 64a4c4

+ (368a4c2 + 384a3c3 + 128a2c4 − 32a3c5 − 16a5c)

> 368a4c2 + 384a3c3 + 128a2c4 − 32a3c5 − 16a5c.

Denote

f4(a, b, c) =368a4c2 + 384a3c3 + 128a2c4 − 32a3c5 − 16a5c

=16a2c(a2(c− a+ 22c) + 2ac2(12− c2) + 8c3).

As 0 < a < c < 1, we have c− a > 0 and 12− c2 > 0. Therefore, f4(a, b, c) > 0. Then,

Q(a, c, b) > Q(a, b, c) (5.7)

Median ability juror vote first

The explicit expression for the ∆5.2 is,

∆5.2 =
f5(a, b, c)

8192a3c3
,
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where,

f5(a, b, c) =48a4b3c2 + 128a3b2c2 + 8a2b5 + 16a2b4c+ 64a2bc6 + 128a2bc4 + 256a2c5

+ b7c2 − 64a6bc2 − 256a5c2 − 128a4bc2 − a2b7 − 48a2b3c4

− 128a2b2c3 − 16ab4c2 − 8b5c2.

By factorization, we have:

f5(a, b, c) = (c− a)f6(a, b, c).

As a < c, we just need to show f6(a, b, c) > 0, where

f6(a, b, c) =64a5bc2 + 64a4bc3 + 256a4c2 + 64a3bc4 + 128a3bc2 + 256a3c3 + 64a2bc5

+ 128a2bc3 + 256a2c4 + ab7 + b7c− 48a3b3c2 − 48a2b3c3 − 128a2b2c2

− 8ab5 − 16ab4c− 8b5c

The no herding condition implies that a > c/2. Also, we have 0 < a < b < c < 1. We

know b > c/2. Use b > c/2 to reduce minuend and b < c to enlarge subtrahend. Then

we have

f6(a, b, c) >32a5c3 + 32a4c4 + 256a4c2 + 192a2c4 + 320a3c3 − 16a3c5 − 16a2c65

− 24ac−8c6 + ((ac7)/128 + c8/128)

> 32a5c3 + 32a4c4 + 256a4c2 + 192a2c4 + 320a3c3 − 16a3c5 − 16a2c6

− 24ac5 − 8c6.

Denote

f7(a, b, c) = 32a5c3+32a4c4+256a4c2+192a2c4+320a3c3−16a3c5−16a2c6−24ac5−8c6.

Use a > c/2 to reduce minuend and a < c to enlarge subtrahend of f7(a, b, c). Then, we

have,

f7(a, b, c) > c6(72− 29c2) > 0.

Since f7(c) are positive. Then,

Q(b, c, a) > Q(b, a, c). (5.8)
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Highest ability juror vote first

The explicit expression for the ∆5.3 is,

∆5.3 =
f8(a, b, c)

8192a3b3
,

where

f8(a, b, c) =48a4b2c3 + 128a3b2c2 + 64a2b6c+ 256a2b5 + 128a2b4c+ 16a2bc4 + 8a2c5

+ b2c7 − 64a6b2c− 256a5b2 − 128a4b2c− 48a2b4c3 − 128a2b3c2 − a2c7

− 16ab2c4 − 8b2c5.

By factorization, we have

f8(a, b, c) = (b− a)f9(a, b, c).

As 0 < a < b < c < 1, we just need to show f9(a, b, c) > 0 where,

f9(a, b, c) =64a5b2c+ 64a4b3c+ 256a4b2 + 64a3b4c+ 256a3b3 + 128a3b2c+ 64a2b5c

+ 256a2b4 + 128a2b3c+ ac7 + bc7 − 48a3b2c3 − 48a2b3c3 − 128a2b2c2

− 16abc4 − 8ac5 − 8bc5.

If the abilities of the jurors satisfy the condition 0 < a 6 b 6 c 6 1, the minimum of

f9(a, b, c) is obtained when a = b = 1/2, c = 1, namely f9(a, b, c)min = f9(1/2, 1/2, 1) =

0. However, the abilities of the jurors actually satisfy 0 < c/2 < a < b < c < 1.

Therefore, f9(a, b, c) > 0, namely, we have

Q(c, b, a) > Q(c, a, b). (5.9)

Summary

From inequalities (5.7), (5.8) and (5.9), we know that given that the jurors’ abilities

satisfy 0 6 a < b < c 6 1 and there is no herding ((a, b) /∈ h2 and (a, b, c) /∈ h3), no

matter who votes first, the latter two jurors should follow seniority order.

5.1.2 Optimal voting order under SVKP

From Lemma 5.1, we know that the latter two jurors should follow seniority order. Thus,

we just need to compare Q(a, c, b), Q(b, c, a), and Q(c, b, a) . Proposition 5.2 states that
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the Alpern-Chen order is optimal. Thus, the following proof will show that Q(b, c, a) is

higher than the other two. Firstly, we define the ∆5.4 and ∆5.5 as:

∆5.4 = Q(b, c, a)−Q(a, c, b),

∆5.5 = Q(b, c, a)−Q(c, b, a).

We start with the calculation of the ∆5.4:

∆5.4 =
g1(a, b, c)

8192abc3
,

where,

g1(a, b, c) =a8 + 4a6c2 + 64a4c2 + 64a2b4c2 + 384a2c4 + 256ab3c2 + 8b6 + 16b5c

+ 16b4c4 + 128b3c3 + 64b2c6 + 256bc5 − 8a6 − 16a5c− 64a4b2c2

− 16a4c4 − 256a3bc2 − 28a3c3 − 64a2c6 − 256ac5 − b8 − 4b6c2

− 64b4c2 − 384b2c4.

By factorization, we have:

g1(a, b, c) = (b− a)g2(a, b, c).

As a < b, we just need to show g2(a, b, c) > 0,

g2(a, b, c) =8a5 + 8a4b+ 16a4c+ 60a3b2c2 + 8a3b2 + 16a3bc+ 16a3c4 + 60a2b3c2

+ 8a2b3 + 16a2b2c+ 16a2bc4 + 192a2bc2 + 128a2c3 + 8ab4 + 16ab3c

+ 16ab2c4 + 192ab2c2 + 128abc3 + 64ac6 + 8b5 + 16b4c+ 16b3c4

+ 128b2c3 + 64bc6 + 256c5 − a7 − a6b− a5b2 − 4a5c2 − a4b3

− 4a4bc2 − a3b4 − 64a3c2 − a2b5 − ab6 − 4ab4c2 − 384ac4

− b7 − 4b5c2 − 64b3c2 − 384bc4.

Clearly, g2(0, 0, 0) = 0. Thus, by continuity, the infimum of g2(a, b, c) on the region must

be 0. This numerical result includes the two additional conditions implied by the no

herding conditions a > c/2 and b > c/2. All herding cases are discussed in Section 5.1.4.

This indicates the inequality (5.10):

Q(b, c, a) > Q(a, c, b). (5.10)
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The explicit expression of ∆5.5 is:

∆5.5 =
g3(a, b, c)

8192ab3c3
,

where,

g3(a, b, c) =64a2b6c2 + 512a2b2c4 + 256ab5c2 + 8b8 + 16b7c+ 48b4c6 + 128b3c5 + 4b2c8

+ 64b2c6 + c10 − 512a2b4c2 − 64a2b2c6 − 256ab2c5 − b10− 4b8c2 − 48b6c4

− 64b6c2 − 128b5c3 − 16bc7 − 8c8.

By factorization, we have:

g3(a, b, c) = (c− b)g4(a, b, c).

As b < c, we just need to show g4(a, b, c) > 0

g4(a, b, c) =512a2b3c2 + 512a2b2c3 + b9 + b8c+ 5b7c2 + 5b6c3 + 53b5c4 + 40b5c2

+ 53b4c5 + 168b4c3 + 5b3c6 + 168b3c4 + 5b2c7 + 40b2c5 + bc8 + c9

− 64a2b5c2 − 64a2b4c3 − 64a2b3c4 − 64a2b2c5 − 256ab4c2

− 256ab3c3 − 256ab2c4 − 8b7 − 24b6c− 24bc6 − 8c7.

Clearly, g4(0, 0, 0) = 0. Thus, by continuity, the infimum of g4(a, b, c) on the region must

be 0. This indicates the inequity (5.11):

Q(b, c, a) > Q(c, b, a). (5.11)

From inequalities (5.11), (5.10) and Proposition 5.2, we know that if the jurors’ abilities

satisfy 0 6 a < b < c 6 1, the Alpern-Chen order is the optimal order with the highest

reliability.

5.1.3 Seniority order for the triple

In this section, we will show that seniority voting order (decreasing in terms of ability)

has higher reliability of the verdict than anti-seniority order (increasing order of abilities),

given that the ability of a juror are distinct 0 6 a < b < c 6 1. Firstly, we define the

∆5.6 as follows:
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∆5.6 = Q(c, b, a)−Q(a, b, c)

=
g5(a, b, c)

8192ab3c
,

where,

g5(a, b, c) =a8 + 4a6b2 + 64a4b2 + 384a2b4 + 64a2b2c4 + 256ab2c3 + 64b6c2

+ 256b5c+ 16b4c4 + 128b3c3 + 16bc5 + 8c6 − 8a6 − 16a5b− 16a4b4

− 64a4b2c2 − 128a3b3 − 256a3b2c− 64a2b6 − 256ab5 − 384b4c2

− 4b2c6 − 64b2c4 − c8.

By factorisation, we have

g5(a, b, c) = (c− a)g6(a, b, c).

As a < c, we just need to show g6(a, b, c) > 0, where,

g6(a, b, c) =8a5 + 16a4b+ 8a4c+ 16a3b4 + 60a3b2c2 + 16a3bc+ 8a3c2

+ 16a2b4c+ 128a2b3 + 60a2b2c3 + 192a2b2c+ 16a2bc2

+ 8a2c3 + 64ab6 + 16ab4c2 + 128ab3c+ 192ab2c2 + 16abc3

+ 8ac4 + 64b6c+ 256b5 + 16b4c3 + 128b3c2 − 384b4c− 4b2c5

− 64b2c3 + 16bc4 − c7 + 8c5 − a7 − a6c− 4a5b2 − a5c2

− 4a4b2c− a4c3 − 64a3b2 − a3c4 − a2c5 − 384ab4 − 4ab2c4 − ac6.

From g6(a, b, c), we collect the terms of order seven,

g7(a, b, c) =16a3b4 + 60a3b2c2 + 16a2b4c+ 60a2b2c3 + 64ab6

+ 16ab4c2 + 64b6c+ 16b4c3 − a7 − a6c− 4a5b2 − a5c2

− 4a4b2c− a4c3 − a3c4 − a2c5 − 4ab2c4 − ac6

− 4b2c5 − c7.

The no herding condition indicates b/2 < a and c/2 < b. Using b/2 < a to reduce

minuend and a < b to enlarge subtrahend, we have,
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g7(a, b, c) >1/2(58b7 + 126b6c+ 29b5c2 + 60b4c3

− 10b3c4 − 10b2c5 − 2bc6 − 2c7).

Denote

g8(a, b, c) = 58b7 + 126b6c+ 29b5c2 + 60b4c3 − 10b3c4 − 10b2c5 − 2bc6 − 2c7.

Rearrange g8(a, b, c)

g8(a, b, c) =58b7 + 126b6c+ 29b5c2 + 60b4c3 − 10b3c4 − 10b2c5 − 2bc6 − 2c7

=10(8b6c− b3c4) + (56b6c− 7b2c5/2) + (26b4c3 − 13b2c5/2)

+ 2(8b4c3 − c3) + (58b7 + 29b5c2 + 18b4c3 − 2c7)

=10b3c(8b3 − c3) + 7b2c(16b4 − c4)/2 + 13b2c3(4b2 − c2)/2

+ 2bc3(8b3 − c3) + (58b7 + 29b5c2 + 18b4c3 − 2c7).

The no herding condition indicates b/2 < a and c/2 < b. Thus,

g8(a, b, c) =10b3c(8b3 − c3) + 7b2c(16b4 − c4)/2 + 13b2c3(4b2 − c2)/2

+ 2bc3(8b3 − c3) + (58b7 + 29b5c2 + 18b4c3 − 2c7)

> 0 + 0 + 0 + (58(c/2)7 + 29(c/2)5c2 + 18(c/2)4c3 − 2c7)

= 31/64c

> 0.

Now we collect the terms of order five (the rest of the g6(a, b, c) after we collect the terms

of order seven).

g9(a, b, c) =8a5 + 16a4b+ 8a4c+ 16a3bc+ 8a3c2 + 128a2b3

+ 192a2b2c+ 16a2bc2 + 8a2c3 + 128ab3c+ 192ab2c2

+ 16abc3 + 8ac4 + 256b5 + 128b3c2 + 16bc4 + 8c5 − 64a3b2

− 384ab4 − 384b4c− 64b2c3

For minimisation of g9(a, b, c), subject of 0 6 a 6 b 6 c 6 1 and c − 2a > 0, the
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Kuhn-Tucker conditions for the potential minimal points are as follows:

40a4 + 64a3b+ 256ab3 + 32a3c+ 48a2bc+ 384ab2c

+ 128b3c+ 24a2c2 + 32abc2 + 192b2c2 + 16ac3 + 16bc3

+ 8c4 − 192a2b2 − 384b4 − λ1 + λ2 − 2λ5 = 0,

16a4 − 128a3b+ 384a2b2 − 1536ab3 + 1280b4 + 16a3c

+ 384a2bc+ 384ab2c− 1536b3c+ 16a2c2 + 384abc2 + 384b2c2

+ 16ac3 − 128bc3 + 16c4 − λ2 + λ3 + λ5 − 2λ6 = 0,

8a4 + 16a3b+ 192a2b2 + 128ab3 + 16a3c+ 32a2bc

+ 384ab2c+ 256b3c+ 24a2c2 + 48abc2 + 32ac3 + 64bc3

+ 40c4 − 384b4 − 192b2c2 − λ3 + λ4 + λ6 = 0,

λ1a = 0, λ2(b− a) = 0, λ3(c− b) = 0,

λ4(1− c) = 0, λ5(2a− b) = 0, λ6(2b− c) = 0,

λ1, ..., λ6 > 0; 0 6 a 6 b 6 c 6 1 , b− 2a > 0 and c− 2b > 0.

(5.12)

The condition (5.12) has a unique solution of (0,0,0,0,0,0,0,0,0) and g5(0, 0, 0) = 0 .

Hence we have g9(a, b, c) > 0. Combining with g7(a, b, c) > 0, we have g6(a, b, c) > 0.

That is, ∆5.6 > 0. The relative comparison between seniority order and anti-senority

order brings us to a clear conclusion that seniority order is superior.

5.1.4 Herding cases

This section will discuss all the herding cases ((a, b) ∈ h2 and (a, b, c) ∈ h3) under SVKP.

Second juror herding

If herding exists for the second juror, the reliability is the same for the following two

voters in anti-seniority order and seniority order. In this case, the second layer voters’

threshold is either −1 or 1. The condition for this herding is that the second juror’s

ability is less than half that of the first juror. Therefore, the first two jurors must

be in seniority order. In this case, we need to compare Q(b, a, c) = b/4 + 1/2 and

Q(c, a, b) = c/4 + 1/2 . Because 0 6 a < b < c 6 1, we have,

Q(c, a, b) > Q(b, a, c).

If herding exists for the second juror, the majority voting is meaningless as the first

juror makes the decision. Therefore, we should avoid this kind of herding situation. This
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requires that the ability of the second juror is larger than half that of the first juror.

In practice, we can use a different method to measure these abilities, such as working

length or position. In conclusion, the more able juror should vote first if herding exists

for the second juror.

Third juror herding

In this case, we consider cases where the second juror does not copy the previous juror’s

vote (also discussed in the previous section) but the third juror does. Thus, the first two

jurors follow anti-seniority order. We only consider the cases Q(a, c, b) and Q(b, c, a):

Q(a, c, b) =
a2 + 4c2 + 8c

16c
,

Q(b, c, a) =
b2 + 4c2 + 8c

16c
.

Q(b, c, a) is clearly larger than Q(a, b, c), as 0 6 a < b < c 6 1. Thus, the Alpern-Chen

order is optimal in this case.

Summary

Herding cases follow simple reasoning. The experience from two cases is quite straight

forward as well. When the herding happens, whether for the second or the third juror,

we should let the juror with the lowest ability follow the behaviour of the juror with

the highest ability, i.e. (c, a, b) or (b, c, a). In other words, when herding exists, the best

practice is letting the least able juror imitate the ablest juror’s behaviour.
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5.2 Comparison with the simultaneous voting scheme

The most notable feature of simultaneous voting lies in its unique threshold for each

juror, which is independent of the other jurors’ votes and voting behaviour. In SVKP,

the juror knows the previous juror’s vote (additional information). It is interesting to

look at the effect of this change on the performance of the jury. Based on Proposition 5.3,

we will first compare the optimal order under SVKP. Then, we will compare the average

reliability and optimal fraction under six different voting orders.

In this section, we will compare the performance of the optimal voting order under

SVKP and simultaneous voting in term of reliability. As shown in Figure 5.4, we calculate

the reliability of all the points in Alpern-Chen order under SVKP and simultaneous

voting in the tetrahedron with vertex (0, 0, 0), (1, 1, 1), (0, 0, 1), (0, 1, 1) which

contains all the ability sets (a, b, c) satisfy the condition 0 < a < b < c < 1 with step

0.01 starting from (0.01, 0.02, 0.03) to (0.97, 0.98, 0.99).

Figure 5.4: SVKP and the simultaneous voting scheme

The blue dots mean that the optimal voting order under SVKP is better than the

simultaneous voting scheme. The green dots mean that the simultaneous voting is supe-

rior to the optimal voting order under SKVP. From the mixed Figure 5.4, we know that

when the difference in abilities is large enough, the optimal voting order (Alpern-Chen

order) under SVKP voting scheme is superior. Figure 5.5 provides the boundary of the

simultaneous part. Similar to the SVI voting scheme, the maximum difference is around

0.3.
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Figure 5.5: Comparison between optimal order under SVKP and the simultaneous voting
scheme (simultaneous voting part)

Voting Scheme Counts(#) Proportion(%)

SVKP 133936 87.29%
Simultaneous 19489 12.70%

Table 5.2: Comparison between SVKP (f) and simultaneous voting (a)

Table 5.2 shows that in almost 90% of cases SVKP is better than simultaneous voting,

which is an overwhelming advantage. The optimal voting order under SVKP is achieved

when the voting order is done according to Alpern-Chen ordering. Alpern-Chen ordering

dictates that the middle-ability juror votes first, followed by the highest ability juror,

and the lowest juror votes last. The corresponding reliability is:

Q(b, c, a) =(64a2b3c2 − 256a2bc4 − 512a2bc2 + 1024a2c3 + 256ab2c2 + 1024abc3

+ 1024ac4 + 4096ac3 − b7 − 4b5c2 + 8b5 + 16b4c+ 16b3c4 − 64b3c2

+ 128b2c3 + 64bc6 − 384bc4 + 256c5)/(8192ac3).

(5.13)

The reliability of the simultaneous voting scheme has already been calculated in the

previous chapter. The difference between equations (5.13) and (4.3) is,
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Q(b, c, a)−Q(abc) =(64a2b3c2 − 512a2bc2 + 256ab2c2 − b7 − 4b5c2

+ 8b5 + 16b4c+ 16b3c4 − 64b3c2 + 128b2c3

+ 64bc6 − 384bc4 + 256c5)/(8192ac3).

(5.14)

When the difference is zero, we can obtain the boundary equation:

64a2b3c2 − 512a2bc2 + 256ab2c2 − b7 − 4b5c2 + 8b5 + 16b4c

+ 16b3c4 − 64b3c2 + 128b2c3 + 64bc6 − 384bc4 + 256c5 = 0.
(5.15)

By solving the quadratic equation (5.15) in terms of a, we can obtain the explicit ex-

pression for a:

a =
256b2c2 +

√
65536b4c4 − 4 (64b3c2 − 512bc2) g10

128 (8bc2 − b3c2)
, (5.16)

where,

g10 =− b7 − 4b5c2 + 8b5 + 16b4c+ 16b3c4 − 64b3c2 + 128b2c3

+ 64bc6 − 384bc4 + 256c5.

The other solution is negative. This quadratic equation explains the shape of the bound-

ary.

Table 5.3: Average reliabilities for SVKP and simultaneous voting

Voting scheme and ordering Q̄ example rank

(a, b, c) SVKP 0.688865240652835 (1, 2, 3) 1
(a, c, b) SVKP 0.688865240652774 (1, 3, 2) 2
(b, a, c) SVKP 0.688865240652321 (2, 1, 3) 5
(b, c, a) SVKP 0.688865240652561 (2, 3, 1) 3
(c, a, b) SVKP 0.688865240652319 (3, 1, 2) 6
(c, b, a) SVKP 0.688865240652555 (3, 2, 1) 4
Simultaneous 0.685350386718749 (1, 2, 3) 7

Another measure of performance is the average reliability. We want to know which

order is better than the simultaneous voting scheme. As shown in Table 5.3, all six

voting orders under SVKP are better than simultaneous voting.
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To sum up, SVKP under optimal voting order is better than simultaneous voting in

terms of the optimal fraction with spread 0.75. In terms of average reliability, all six

orders under SVKP are superior to simultaneous voting.

5.3 Larger juries

The main results of Proposition 5.2 (Alpern-Chen order as optimal, with the highest

ability juror vote first followed by the median ability juror and the lowest ability juror

vote last) and Proposition 5.3 (seniority order outperforms anti-seniority order) have

been proved algebraically only for juries of three. The natural question to ask is whether

these patterns will still hold for a larger jury. Due to explosion in the combinations of

orderings and the computation of thresholds, the algebraic method seems out of reach

for larger juries. Thus, numerical methods through simulations are adopted to study the

patterns of a larger jury.

Jury size of five

We started with a jury of five using a numerical method to determine the highest re-

liability under honest voting. Take the jury {0.1, 0.2, 0.3, 0.4, 0.5} as an example. For

simplicity, we denote them by {1, 2, 3, 4, 5} for the rest of this section, which can be

considered as an arbitrary ranking of the abilities among members of the jury as shown

in Tables 5.4 and 5.5. There are 5! = 120 voting orders for such a jury. One million

random juries (a, b, c, d, e) were generated to conduct a trial, where a, b, c, d and e were

chosen independently and uniformly in [0, 1]. One million trials were conducted to esti-

mate the fraction of the orders that are optimal. We count the number of a particular

voting ordering (among 120) being optimal divided by the total number of simulation

ability sets. Only 10 of 120 orders are optimal in a significant fraction of cases, which

are presented in Table 5.4. The first two orders occupied around 80% of the total cases.

The similarity between the first two orders is that the three most able jurors vote in

increasing order of ability (anti-seniority order). The latter two judges, meanwhile vote

in seniority order. In other words, the least able among the five jurors vote in decreasing

order of abililty.. This is called Ascending-Descending Order (ADO), which can be seen

as a general form of Alpern-Chen order for a large jury, as proposed by Alpern & Chen

(2020). ADO states that for a jury with an odd number of members (2i+ 1), the ablest

i + 1 jurors vote in ascending order of ability while the least able i jurors vote in de-

scending order. This ordering means that the juror with median ability votes first, the

juror with the highest ability votes in the third (for a jury of five), and the juror with

72



the lowest ability votes last. ADO is an extension of median-high-low (Alpern-Chen)

ordering. Table 5.4 indicates that this ADO ordering, along with anti-seniority order

(AO) for the first three, is a useful heuristic for a jury size of five.

Voting Scheme Counts(#) Proportion(%)

(c, d, e, b, a) 43532 43.532%
(3 4 5 2 1)

(c, d, e, a, b) 37702 37.702%
(3 4 5 1 2)

(b, d, e, c, a) 11083 11.083%
(2 4 5 3 1)

(d, a, e, b, c) 1912 1.912%
(4 1 5 2 3)

(c, a, e, b, d) 1361 1.361%
(3 1 5 2 4)

(e, b, d, a, c) 1267 1.267%
(5 2 4 1 3)

(c, e, d, a, b) 1244 1.244%
(3 5 4 1 2)

(d, b, e, a, c) 1219 1.219%
(4 2 5 1 3)

(b, c, e, d, a) 603 0.603%
(2 3 5 4 1)

(d, c, e, a, b) 73 0.073%
(4 3 5 1 2)

Table 5.4: Optimal fraction for jury of five under SVKP

Another critical measure of performance for the voting order of a random jury is

average reliability. This is the average value of Q for all ability sets in the simulation.

Table 5.5 shows that, among 120 orders, there are precisely ten with average reliabilities

above 80%. These average reliabilities are calculated by taking the average of one thou-

sand simulations. Each simulation contains one million trials. From Table 5.5, it can

be seen that the top two orders keep the median juror in the first position. Although

Tables 5.5 and 5.4 show different results, it is better to let the juror with median ability

vote first in a jury of size five.

Table 5.6 looks at seniority ordering (SO), anti-seniority (AO), and Ascending-

Descending Order (ADO). ADO is no longer optimal among the three orders also seen

in Table 5.5 concerning average reliability. However, SO still dominates the AO in terms

of Q̄. Furthermore, among one billion cases, there are none where SO is inferior to AO

among one billion cases. The superiority of SO over AO holds for a jury of five.
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Table 5.5: Average reliabilities for jury of size five

Voting Scheme Q̄ Ranking example

(c, e, a, b, d) 0.852980176 1 3 5 1 2 4
(c, a, e, b, d) 0.833206006 2 3 1 5 2 4
(a, c, b, e, d) 0.827385278 3 1 3 2 5 4
(b, d, c, e, a) 0.825768673 4 2 4 3 5 1
(c, e, b, d, a) 0.824029849 5 3 5 2 4 1
(d, b, e, c, a) 0.822842006 6 4 2 5 3 1
(a, b, e, d, c) 0.820527564 7 1 2 5 4 3
(b, e, a, d, c) 0.810914093 8 2 5 1 4 3
(b, c, e, a, d) 0.810440233 9 2 3 5 1 4
(d, a, b, c, e) 0.800732075 10 4 1 2 3 5

Table 5.6: Average reliabilities for AO, SO, and ADO

Voting Scheme Q̄ example

SO(e, d, c, b, a) 0.771197681 5 4 3 2 1
ADO(c, d, e, a, b) 0.708619934 3 4 5 1 2

AO(a, b, c, d, e) 0.696238213 1 2 3 4 5
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5.4 Conclusions

The main result of this chapter is an extension of the Alpern-Chen ordering under the

roll-call voting scheme. The Alpern-Chen theorem states that when jurors’ abilities are

heterogeneous, the median ability juror should vote first in the roll-call voting scheme. In

this scheme, the third juror knows the votes of both of the previous jurors, while in SVKP,

he only knows the second juror’s vote. This degradation of information disclosure does

not affect the Alpern-Chen theorem, indicating that the theorem is robust. Furthermore,

under SVKP, the seniority order is superior to anti-seniority order for juries with different

abilities. Seniority order also has the advantage in the duo voting structure. No matter

who votes first, the latter two jurors should vote in decreasing order of ability. FIn

herding cases, we should let the lowest ability juror vote, followed by the juror with the

highest ability, to achieve higher reliability. For a jury of five, ADO has the highest

optimal fraction, and the order (c, e, a, b, d) has the highest average reliability.
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Chapter 6

Sequential voting with an initial

public vote

In sequential voting with an initial public vote (SVP), as shown in Figure 6.1, one juror

votes first and then the rest of the jury simultaneously announce their votes. The latter

two jurors share the same initial information, which is the vote of the first juror.

Figure 6.1: Sequential voting with an initial public vote (SVP)

In SVP, duo voting structures happen at the same time. One juror votes first,

followed by two other jurors. The latter two jurors vote independently. Let (v1, {v2, v3})
be a voting order under SVP. For example r = (a, {b, c}), the first juror having

ability a while the latter two jurors have abilities b and c, respectively. Here, r =

(a, {b, c}) is equivalent to r = (a, {c, b}) as the second layer jurors have the same

positions. Once we understand this variation on the duo structure, we can calculate the

reliabilityQ(a, {b, c}). Based on the analysis in Section 2.2.5, we know thatQ(a, {b, c}) =

qA(a, {b, c}).
The formula for qA(a, {b, c}) is the summation of probabilities of voting patterns

(A, {A,B}), (A, {B,A}), (A, {A,A}) and (B, {A,A}) when the Nature is state A. There
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are potential cases: either the first juror votes for state A or the first juror votes for state

B. When the first juror votes for state A, at least one of the latter two jurors should also

vote state for A ((A, {A,B}), (A, {B,A}), and (A, {A,A}) ). For simpler calculation,

in this case, we just need to exclude the case when the latter two jurors both vote for

state B ((A, {B,B})). When the first juror votes for state B, the latter two jurors must

vote for state A ((B, {A,A})). Denote v1 as the vote of the first juror. The simplified

formula is as follows:

qA(a, {b, c}) = (1− Pr[v1 = A](1− Pr[ABB|v1 = A])) + Pr[v1 = B](1− Pr[BAA|v1 = B])

= (1− FA(a, 0))(1− FA(b, yA)FA(c, yA))

+ FA(a, 0)(1− FA(b, yB))(1− FA(c, yB)).

When we substitute the yA (yB) formula to our linear continuous signal model, we have

two cases depending on whether the pairs (a, b) or (a, c) belong to h2. Then,

Q(a, {b, c}) =

{
a/4 + 1/2, if (a, b) or (a, c) ∈ h2 (b 6 a/2 or c 6 a/2) ;

Q3(a, {b, c}), otherwise,
(6.1)

where,

Q3(a, {b, c}) =
f1(a, b, c)

512bc
,

and,

f1(a, b, c) =4a3b2 + 4a3c2 + 16a2b+ 16a2c+ 64b2c+ 64bc2 + 256bc+ 64abc

− a5 − 16ab2c2 − 32ab2 − 32ac2.

6.1 Optimal voting order under SVP

In this section, we will discuss the optimal voting under SVP. There are three different

propositions, but all emphasise the importance of seniority. In other words, all three

propositions say that the juror with the highest ability should take the initial public vote.

Proposition 6.1 is a strong statement that includes the optimal voting order with ranking

and the conditions for it. Proposition 6.2 states that if we relax the restrictions for the

juror with the lowest ability, we can still have the same optimal voting order (highest-

ability juror goes first) but lose the certainty of ranking for the other two voting orders.

Proposition 6.3 states that if any herding happens (a, b) ∈ h2 or (a, c) ∈ h2, the optimal

voting order is still that the ablest juror casts the initial public vote. The following

contents will be presented in this way: Firstly, three prepositions will be provided along
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with the proofs for strong form and weak form. Then we will discuss herding cases.

Proposition 6.1. (Strong form) Given that the jurors’ abilities satisfy 0.8165 6 a <

b < c 6 1, the reliability is highest when c votes first and lowest when a votes first,

Q(c, {a, b}) > Q(b, {a, c}) > Q(a, {b, c}).

Proposition 6.2. (Weak form) Given that the jurors’ abilities satisfy 0.521 6 a <

b < c 6 1, the reliability is highest when c vote first, Q(c, {a, b}) > Q(b, {a, c}) and

Q(c, {a, b}) > Q(a, {b, c}).

Proposition 6.3. Given that the jurors’ abilities satisfy 0 < a < b < c < 1 and there

is herding behaviour among the jurors, the reliability is highest when c votes first and

lowest when b votes first, Q(c, {a, b}) > Q(b, {a, c}).

Proof of Proposition 6.1

The following proof assumes that for jurors, their abilities have 0.8165 6 a < b <

c 6 1. The idea of this proof is simple: We have three orders: the highest ability juror

voting first, the middle ability juror voting first and the lowest ability juror voting first.

We will show that the highest ability first superior to the middle ability juror first. Then,

we will show that the middle ability juror taking the initial public vote is better than the

lowest ability. By combining these two claims, we can inference that the highest ability

juror first is better than the other two orders.

Firstly, we define ∆6.1, ∆6.2 and ∆6.3:

∆6.1 = Q(c, {a, b})−Q(b, {a, c}),

∆6.2 = Q(c, {a, b})−Q(a, {b, c}),

∆6.3 = Q(b, {a, c})−Q(a, {a, b}).

Substitute with the reliability formula for each order. We will have the explicit equation

for ∆6.1, ∆6.2 and ∆6.3:

∆6.1 =
f2(a, b, c)

512abc
,

where,

f2(a, b, c) =32a2b2 + 4a2c4 + 16ac3 + b6 + 4b2c4 + 16bc3

− 4a2b4 − 32a2c2 − 16ab3 − 4b4c2 − 16b3c− c6,

∆6.2 =
f3(a, b, c)

512abc
,
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f3(a, b, c) =a6 + 32a2b2 + 4a2c4 + 16ac3 + 4b2c4 + 16bc3

− 4a4b2 − 4a4c2 − 16a3b− 16a3c− 32b2c2 − c6,

and,

∆6.3 =
f4(a, b, c)

512abc
,

where,

f4(a, b, c) =a6 + 4a2b4 + 32a2c2 + 16ab3 + 4b4c2 + 16b3c

− 4a4b2 − 4a4c2 − 16a3b− 16a3c− b6 − 32b2c2.

It should be noticed that ∆6.2 = ∆6.1 +∆6.3. Therefore, we just need to prove that both

signs of ∆6.1 and ∆6.3 are positive. We start with the numerator of ∆6.1:

f2(a, b, c) =((4a2b3 + 4a2b2c+ 4a2bc2 + 4a2c3 + 3b3c2 + 3b2c3 − b5 − b4c

− bc4 − c5) + (16ab2 + 16ac2 + 16abc+ 16b2c+ 16bc2 − 32a2b

− 32a2c))(c− b),

For f2(a, b, c), we collect the terms of order five:

4a2b3 + 4a2b2c+ 4a2bc2 + 4a2c3 + 3b3c2 + 3b2c3 − b5 − b4c− bc4 − c5

=(4a2b3 − b5) + (4a2b2c− b4c) + (4a2bc2 − bc4) + (3b2c3 − c5) + 4a2c3

+ 3b3c2

=b3(2a− b)(2a+ b) + b2c(2a− b)(2a+ b) + bc2(2a− c)(2a+ c)

+ c3(
√

3b− c)(
√

3b+ c) + 4a2c3 + 3b3c2

>b3(2× 0.8165− 1)(2a+ b) + b2c(2× 0.8165− 1)(2a+ b) + bc2(2× 0.8165

− 1)(2a+ c) + c3(
√

3× 0.8165− c)(
√

3b+ c) + 4a2c3 + 3b3c2

>0.

We have proven that the sum of all terms of order five for f2(a, b, c) is positive. Now we
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just need to prove the sign of the sum of all terms of order three for f2(a, b, c):

16ab2 + 16ac2 + 16abc+ 16b2c+ 16bc2 − 32a2b− 32a2c

=16(ab2 + ac2 + abc+ b2c+ bc2 − 2a2b− 2a2c)

>16b(ab2 + ab2 + ab2 + b2b+ bb2 − 2a2b− 2a2)

=16(a(3b2 − 2a) + 2b(b− a)(b+ a))

>16a(3b2 − 2a)

>16ab2(3× 0.81652 − 2)

>0

Then, we have:

Q(c, {a, b}) > Q(b, {a, c}), (6.2)

Next, we just need to know the relation between Q(b, {a, c}) and Q(a, {a, b}) to know

the ranking among Q(c, {a, b}), Q(b, {a, c}) and Q(a, {a, b}).
We only consider the sign of the ∆6.3. Then, we just need to focus on the numerators

as we have a, b, c > 0.

f4(a, b, c) =(b− a)(3a3b2 + 4a3c2 + 3a2b3 + 4a2bc2 + 16a2b+ 16a2c+ 4ab2c2

+ 16ab2 + 16abc+ 4b3c2 + 16b2c− a5 − a4b− ab4 − 32ac2 − b5

− 32bc2)

Denote

d1 =3a3b2 + 4a3c2 + 3a2b3 + 4a2bc2 + 16a2b+ 16a2c+ 4ab2c2 + 16ab2 + 16abc

+ 4b3c2 + 16b2c− a5 − a4b− ab4 − 32ac2 − b5 − 32bc2.

Take the partial derivative with respect to a, we have:

∂a(d1(a, b, c)) =(9a2b2 − 5a4 − 4a3b) + (4b2c2 − b4)

+12a2c2 + 6ab3 + 8abc2 + (32ab+ 32ac+ 16b2 + 16bc− 32c2)

=(5a2(b+ a)(b− a) + 4a2b(b− a)) + b2(2c+ b)(c+ c− b))

+12a2c2 + 6ab3 + 8abc2 + 16(2ab+ 2ac+ b2 + bc− 2c2)

>16(6× 0.81652 − 2)

>0

Therefore, d1(a, b, c) is monotonically increasing in a. Similarly, we can take the partial
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derivative with respect to b. Then, we have:

∂b(d1(a, b, c)) =(6a3b− a4) + (12b2c2 − 4ab3 − 5b4) + 9a2b2 + 4a2c2

+8abc2 + (16a2 + 32ab+ 16ac+ 32bc− 32c2)

=a3(5b+ b− a) + 4b2(c2 − ab) + 5b2(c+ b)(c− b) + 3b2c2 + 9a2b2

+4a2c2 + 8abc2 + 16(a2 + 2ab+ ac+ 2bc− 2c2)

>16(6× 0.81652 − 2)

>0.

Therefore, d1(a, b, c) is monotonically increasing in b as well. Because d1(a, b, c) is mono-

tonically increasing in b and a < b , we have:

d1(a, b, c) > d1(a, a, c),

where,

d1(a, a, c) = 32a3 + 2a5 + 48a2c− 64ac2 + 16a3c2.

Take the partial derivative of d1(a, a, c) with respect to c, we have:

∂c(d1(a, a, c)) =16a(2a2c+ 3a− 8c)

<16a(2a2 + 3a− 8a)

=16a2(a− 5/2)

<0.

Therefore, d1(a, a, c) is monotonically decreasing in c. Additionally, d1(a, b, c) is mono-

tonically increasing in a and b. And, we have 0.8165 6 a < b < c 6 1. Thus, we

know

d1(a, b, c) > d1(a, a, c) > d1(a, a, 1) > d1(0.8165, 0.8165, 1) = 0.0046407.

Thus, the sign of ∆6.3 is positive. In other words, we have

Q(b, {a, c}) > Q(a, {b, c}) (6.3)

Given that ∆6.2 = ∆6.1 + ∆6.3, we know that the sign of the ∆6.2 is positive as well.

In other wordss, we have:

Q(c, {a, b}) > Q(a, {b, c}). (6.4)

81



Inequalities (6.2) and (6.4) indicates that the reliability is highest when the highest

ability juror votes first.

From inequalities (6.2) and (6.3), we have:

Q(c, {a, b}) > Q(b, {a, c}) > Q(a, {b, c}).
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Proof of Proposition 6.2

The following proof assumes that for jurors, their abilities have 0.521 6 a < b <

c 6 1. The idea of the proof of Proposition 6.2 is the same as the first part of the proof

of Proposition 6.1. We have three orders: highest ability first, middle ability first, and

lowest ability first. We will show that the highest ability first is better than the other two

orders. Here, Kuhn-Tucker conditions are applied to find the potential minimal points.

Recall, the definition of ∆6.1 and ∆6.1:

∆6.1 = Q(c, {a, b})−Q(b, {a, c}),

∆6.2 = Q(c, {a, b})−Q(a, {b, c}).

Substitute with the reliability formula for each order. We have the explicit expression

for ∆6.1 and ∆6.1:

∆6.1 =
f2(a, b, c)

512abc
,

where,

f2(a, b, c) =32a2b2 + 4a2c4 + 16ac3 + b6 + 4b2c4 + 16bc3

− 4a2b4 − 32a2c2 − 16ab3 − 4b4c2 − 16b3c− c6,

and,

∆6.2 =
f3(a, b, c)

512abc
,

where,

f3(a, b, c) =a6 + 32a2b2 + 4a2c4 + 16ac3 + 4b2c4 + 16bc3

− 4a4b2 − 4a4c2 − 16a3b− 16a3c− 32b2c2 − c6.

We only consider the signs of the ∆6.1 and ∆6.2. Then, we just need to focus on the

numerators as we have a, b, c > 0. By factorisation, we have:

f2(a, b, c) =(4a2b3 + 4a2b2c+ 4a2bc2 + 4a2c3 + 3b3c2 + 3b2c3 − b5 − b4c− bc4

− c5 + 16a2b+ 16ac2 + 16abc+ 16b2c+ 16bc2 − 32a2b− 32a2c)(c− b).

Because b < c, we only need to consider the other factor of f2(a, b, c). Denote

f5(a, b, c) =4a2b3 + 4a2b2c+ 4a2bc2 + 4a2c3 + 3b3c2 + 3b2c3 − b5 − b4c− bc4

− c5 + 16a2b+ 16ac2 + 16abc+ 16b2c+ 16bc2 − 32a2b− 32a2c.
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Similarly, by factorisation, we have:

f3(a, b, c) =(4a3b2 + 3a3c2 + 4a2b2c+ 3a2c3 + 4ab2c2 + 4b2c3 − a5 − a4c− ac4

− c5 + 16a2b+ 16a2c+ 16abc+ 16ac2 + 16bc2 − 32ab2 − 32b2c)(c− a).

Because a < c, we only need to consider the other factor of f3(a, b, c). Denote

f6(a, b, c) =4a3b2 + 3a3c2 + 4a2b2c+ 3a2c3 + 4ab2c2 + 4b2c3 − a5 − a4c− ac4

− c5 + 16a2b+ 16a2c+ 16abc+ 16ac2 + 16bc2 − 32ab2 − 32b2c.

For minimisation of f5(a, b, c), subject of 0.521 6 a 6 b 6 c 6 1 and c − 2a > 0, the

Kuhn-Tucker conditions for the potential minimal points are as follows:

8ab3 + 8ab2c+ 8abc2 + 8ac3 + 16b2 + 16bc+ 16c2

− 64ab− 64ac− λ1 + λ2 − 2λ5 = 0,

32ab+ 12a2b2 + 16ac+ 32bc+ 8a2bc− 4b3c+ 16c2 + 4a2c2 + 9b2c2

+ 6bc3 − 32a2 − 5b4 − c4 − λ2 + λ3 = 0,

16ab+ 16b2 + 4a2b2 + 32ac+ 32bc+ 8a2bc+ 6b3c+ 12a2c2 + 9b2c2

− 32a2 − b4 − 4bc3 − 5c4 − λ3 + λ4 + λ5 = 0,

λ1(a− 0.521) = 0, λ2(b− a) = 0, λ3(c− b) = 0,

λ4(1− c) = 0, λ5(2a− c) = 0,

λ1, ..., λ5 > 0; 0.521 6 a 6 b 6 c 6 1 and c− 2a > 0.

(6.5)

The condition (6.5) has a unique solution of (0.521,1,1,19.6604,39.0179,19.509,0,0) and

f5(0.521, 0.521, 0.521) = 2.95371. Hence we have f5(a, b, c) > 0. That is ∆6.1 > 0,

given 0.521 6 a 6 b 6 c 6 1. Similarly, for minimisation of f6(a, b, c), subject of

0.521 6 a 6 b 6 c 6 1 and c − 2a > 0, the Kuhn-Tucker conditions for the potential

minimal points are as follows:
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32ab+ 12a2b2 + 32ac+ 16bc+ 8ab2c+ 16c2 + 9a2c2

+ 4b2c2 + 6ac3 − 5a4 − 32b2 − 4a3c− c4 − λ1 + λ2 − 2λ5 = 0,

16a2 + 8a3b+ 16ac+ 8a2bc+ 16c2 + 8abc2 + 8bc3

− 64ab− 64bc− λ2 + λ3 = 0,

16a2 + 16ab+ 4a2b2 + 32ac+ 6a3c+ 32bc+ 8ab2c+ 9a2c2

+ 12b2c2 − a4 − 32b2 − 4ac3 − 5c4 − λ3 + λ4 + λ5 = 0,

λ1(a− 0.521) = 0, λ2(b− a) = 0, λ3(c− b) = 0,

λ4(1− c) = 0, λ5(2a− c) = 0,

λ1, ..., λ5 > 0; 0.521 6 a 6 b 6 c 6 1 ; c− 2a > 0.

(6.6)

The condition (6.6) has three solutions of (0.521, 1, 1, 19.6604, 0.151437, 19.509, 0, 0),

(0.521, 0.526302, 0.526302, 19.7553, 0, 19.696, 0, 0), and (0.521, 1, 1, 48.4042, 0, 53.194, 10.4554, 0).

Among these three candidates, f6(0.521, 1, 1) = 0.0270767 is the minimal. Hence we have

f6(a, b, c) > 0. That is, ∆6.2 is positive given 0.521 6 a 6 b 6 c 6 1. Therefore, both

∆6.1 and ∆6.2 are positive. Then,

Q(c, {a, b}) > Q(b, {a, c}) (6.7)

Q(c, {a, b}) > Q(a, {b, c}) (6.8)

In other words, the reliability is highest when the highest ability juror votes first.

6.1.1 Proof of Proposition 6.3 (the herding case)

The following proof assumes that, for jurors in a jury of three, their abilities satisfy

0 6 a < b < c 6 1. Under this circumstance, the threshold for the later two voters is

either −1 or 1. The condition of herding is that the ability of the latter juror is less than

or equal to half the previous juror. This condition indicates that herding only happens

when juror b or c votes first. Based on the equation (6.1), the explicit expressions of the

reliability for all possible voting orders:

Q(b, {a, c}) = b/4 + 1/2,

Q(c, {a, b}) = c/4 + 1/2.

Given that the jurors’ abilities satisfy 0 < b < c 6 1 and there is herding behaviour
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among the jurors, the reliability is highest when c votes first and lowest when b votes

first, Q(c, {a, b}) > Q(b, {a, c}).

6.1.2 Exceptions

Readers may wonder about the performance of the jury when the conditions in Propo-

sition 6.1 and Proposition 6.2 no longer hold. This section, along with appendix A, will

discuss these cases. Among these cases, the optimal voting order under SVP can be

obtained when either the juror with the lowest ability votes first rather than just the

juror with the highest ability votes first. In other words, the optimal voting order is no

longer unique. Figure 6.2 shows the optimal voting order with the step of 0.01. The red

dots mean that the optimal voting order is obtained when the lowest ability juror (juror

a) votes first. The blue dots mean that the optimal voting order is obtained when the

highest ability juror (juror c) votes first.

From the decomposed Figure 6.2, we know that when the lowest juror is able enough,

the optimal voting order is obtained when the highest ability juror votes first. Further-

more, when abilities of juror b and juror c are close and that of the juror a is small, the

optimal voting order is achieved when the lowest ability juror votes first.

Figure 6.2: SVP optimal voting order decomposed
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6.2 Comparison with the simultaneous voting scheme

The underlying assumption of the Condorcet Jury Theorem requires is that jurors are

independent. SVP is a typical voting scheme that violates this assumption as we consider

one of the simultaneous voting jurors voting first. We now investigate whether this

violation is beneficial or not. Here, we compare the performance of sequential voting

with simultaneous voting in terms of reliability. Based on the results from the previous

section, we need to compare the optimal voting order under SVP voting scheme (either

the lowest ability juror voting first or the highest ability juror voting first) with the

simultaneous voting scheme. Figure 6.3 shows the result.

Figure 6.3: Comparision between SVP and the simultaneous voting scheme

The blue dots mean that the optimal voting order (seniority order) under SVP is

superior to the simultaneous voting scheme. It should be noted that there are no red dots,

which we use to represent the optimal order being when the lowest ability juror votes first.

When the optimal voting order has the lowest ability juror voting first, the simultaneous

voting scheme is better than all others. The green dots mean that simultaneous voting

is superior to the optimal voting order under SVP. Figure 6.3 indicates that when the

difference in abilities is large enough, the optimal voting order (seniority order) under

SVP is superior. Figure 6.4 provides the boundary of the sequential part.

We care about the reliability when the juror with the highest ability votes first. The
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Figure 6.4: SVP (Type III) voting scheme and simultaneous voting scheme

corresponding reliability is:

Q(c, {a, b}) =(−16a2b2c+ 64a2b+ 4a2c3 − 32a2c+ 64ab2 + 64abc+ 256ab

+ 16ac2 + 4b2c3 − 32b2c+ 16bc2 − c5)/(512ab).
(6.9)

The reliability for the simultaneous voting scheme has already been calculated in Chap-

ters 4 and 5. The difference between equations (6.9) and (4.3) is:

Q(c, {a, b})−Q(abc) =
c
(
4a2c2 − 32a2 + 16ac+ 4b2c2 − 32b2 + 16bc− c4

)
512ab

. (6.10)

When the difference is zero, we can achieve the boundary equation:

4a2c2 − 32a2 + 16ac+ 4b2c2 − 32b2 + 16bc− c4 = 0.

When c = 1 we get the equation:

16a− 28a2 + 16b− 28b2 = 1.

By rearrangement, we have

(a− 2/7)2 + (b− 2/7)2 = (5/14)2. (6.11)
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The equation (6.11) is a centre-radius form of the circle equation. For different values

of c, we can obtain a series of circle equations. These equations explain the shape of the

boundary shown in Figure 6.4.

Voting Scheme Counts(#) Proportion(%)

SVP 54341 33.86%
Simultaneous 106126 66.13%

Table 6.1: Comparison between SVP (g) and simultaneous voting (a)

To sum up, we note that we have reached the opposite conclusion to a similar com-

parison in Chapters 4 and 5. As shown in Table 6.1, under most scenarios, simultaneous

voting is better than SVP. For juries with adequately homogeneous abilities, which can

be described as the areas outsides a series of circles, SVP has higher reliability than si-

multaneous voting. This advantage increases with the growth of the ability of the ablest

juror.

6.3 Larger jury

The main result of Proposition 6.2 has been proved algebraically only for juries of three.

The natural question to ask is whether this pattern will still hold for a larger jury. Due

to the explosion in terms of combinations of orders and the computation of thresholds

the algebraic method seems out of reach for larger juries. Thus, numerical methods are

adopted to study the patterns of a larger jury.

6.3.1 Jury of five

We started with a jury of five using a numerical method to determine the highest reliabil-

ity under honest voting. We divide the ability interval [0,1] into 20 sub-intervals to form

the pool of the abilities, namely 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,

0.6, 0.65, 0.7, 0.75, 0.8, 0.85,0.9 and 0.95. Then five jury members are selected from this

ability pool: 11628 combinations in total. Table 6.2 shows that the highest reliability

is achieved either when the highest ability juror votes first or, the lowest ability juror

votes first.

In the majority of instances, the highest reliability is still achieved when the highest

ability juror votes first. However, this advantage is no longer overwhelming.
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Table 6.2: Frequency for jury of five under SVP

Frequency

a,{ b,c,d,e } 3297
e,{ a,b,c,d } 8331

6.3.2 Large jury on SVP with uniformly distributed abilities

This section provides another numerical method for further studying a larger jury. Given

that we take a jury of size n with uniformly distributed abilities, we can determine

numerically which juror should be given the initial public vote to maximize reliability

under honest voting. We divide the ability interval [0, 1] into n subintervals of length

1/n and give one juror i the ability of the midpoint of the i th interval, so that ai =

(2i − 1)/(2n) for the ith juror in the jury of size n. As an example, when n = 5, the

abilities of the five jurors are 0.1, 0.3, 0.5, 0.7 and 0.9.

For each jury of size n, let Q̂n denote the reliability of the simultaneous voting

scheme and Qn[i] denote the reliability under the sequential voting scheme (g) with the

initial public vote given to the ith juror, the one with the ability ai. We then define the

increment reliability of SVP and the simultaneous voting scheme:

∆(n, ai) = Qn[i]− Q̂n.

By comparing this with the reliability of simultaneous voting, it is easier to know

which juror should vote first and the difference between simultaneous voting and the

optimal voting order under SVP. For fixed n, the reliability of giving the initial public

vote to juror i is maximised when ∆(n, ai) is maximized over ai. Figure 6.5 plots for

n = 3, 5, 7 the incremental reliability ∆(n, ai) when the initial public vote on the jury of

size n is given to the juror of ability ai, i = 1, 2, 3. . . n. For each n, the plotted points

are connected by straight lines.

The curve for n = 3 has three plot points at abilities 1/6, 1/2 and 5/6. As we

have learned from Proposition 6.2, the juror with the highest ability 5/6 will achieve

the highest reliability, as shown in the curve for n = 3. For a jury of size n = 5,

the abilities of the jurors are 0.1, 0.3, 0.5, 0.7, 0.9. The incremental reliabilities increases

with the increase of the ability of the initial public voter. The incremental reliability

is maximised when the highest ability juror (ability 0.9) has the initial public vote.

Similarly, for n = 7, this pattern continues. The incremental reliabilities monotonically

increase along with the increase of the ability of the initial public voter. The reliability
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Figure 6.5: Incremental reliability as a function of initial public voter ability (n = 3, 5, 7)

is maximised when the juror of the highest ability (ability 13/14) is given the initial

public vote.

However, for n > 9, the patterns do not continue, as shown in Figure 6.6, for juries

of size n = 9, 11, 13, 15, 17, 19, 21, 23, where incremental (or absolute) reliability first

decreases with in the ability of the initial public voter and then increases. To distinguish

between the curves for different values of n, note that, at the right legends, the curves

are n = 9, 11, 13, 15, 17, 19, 21, 23, counting from the top.

The lowest initial public vote’s reliability is achieved when the third-ranking voter

(starting from the lowest) casts the initial public vote. For example, for n = 9, the

lowest reliability is achieved when the third voter casts the initial public vote. When the

juror with comparatively low ability votes first, his vote (public information) actually

degrades the quality of collective decision (worse than simultaneous voting). For n 6 23,

reliability is maximised when the juror with the highest ability is given the initial public

vote. However, this advantage gradually narrows as jury size increases. For n = 23, the

difference between the voter with the lowest ability taking the initial public vote and the

voter with the highest ability taking the initial public vote almost disappears. The effect

of setting an example is not always positive as even the juror with highest ability still

has a chance of getting wrong choice. Furthermore, when n= 23, sequential voting’s op-

timal reliability under initial public voting no longer dominates the simultaneous voting

scheme. The whole increment reliability curve is below zero.
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Figure 6.6: Incremental reliability as a function of initial public voter ability (n =
9, 11, 13, 15, 17, 19, 21, 23)

This observation indicates that for the sufficiently large jury n ≥ 23, the performance

of the Condorcet jury (pmin > 1/2) is better than SVP. Consider the following scenario:

given n appropaching infinity, the reliability of the Condorcet jury will approach to one

limn→∞ pn = 1. We pull out one juror and let him vote first, which is the same voting

scheme described here. Suppose this first juror votes state A, and a juror gets a signal

to vote for state B, then randomises. Now suppose that the state of Nature is A. By the

definition of the Condorcet juror p, he will still vote for state B with probability 1 − p
(incorrect vote). Under this circumstance, all the incorrect jurors who vote for state B

without looking the vote of the first juror and half the correct jurors who will vote for

state A with his private signal (randomisation as mentioned) vote B. As a result, B is

the majority verdict. Then, the reliability of the jury decreases from near one (CJT) to

p.

6.4 Conclusions

The main results on a jury of three under SVP can be categorised into two parts:

• When the minimal ability is lager than 0.521, the probability of a correct verdict is

maximised when the agent of highest ability has the initial public vote (including

in herding cases).

• The performance of SVP is worse than simultaneous voting in most cases.
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These two main results can be extended beyond a jury of three. Due explosion

in terms of combinations of orders and the computation of thresholds, we adopt the

simulation method rather than the algebraic method. From the numerical results, when

the jury size is a medium (n ≤ 23), we find through simulation that the highest reliability

is achieved when the juror with highest ability votes first. Furthermore, the preferable

candidate for the initial public juror is either the juror with the lowest ability or the

juror with the highest ability. In other words, we tell the public that the first vote

either brings insignificant or very significant information, with nothing in between. For

the general public, an example is not necessary as it is highly likely that this limited

information may mislead the public.
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Chapter 7

Comparison

Up to now, we have analysed three sequential voting schemes internally (SVI, SVKP,

SVP) by comparing reliabilities of different sequential voting orders of a fixed set of

abilities. This section analyses the sequential voting scheme from an external point of

view by comparing all the generalised sequential voting schemes for a jury of three. From

Section 2.1, we know that there are six distinct voting schemes for a jury of three, namely

the simultaneous voting scheme (Condorcet), roll-call voting, casting voting, SVI (Type

I, sequential voting with an independent voter), SVKP (Type II, sequential voting with

knowledge of the previous voter) and SVP (Type III, sequential voting with an initial

public vote).

Now we define the information index of a scheme as sum of known votes for all

jurors. In other words, the total number of arcs in Figure 2.1. We start with the

simplest case where simultaneous voting originated from Condorcet has an information

index of zero. Under simultaneous voting, every juror’s decision is based on his private

information without other jurors’ information. Roll-call voting has an information index

of 3, the highest information index among all voting schemes. Under roll-call voting, the

information index is 0 for the first juror who votes without any prior vote from others; 1

for the second juror (the vote of the first juror) and 2 for the third juror (the votes of the

first juror and second juror). The SVP has an information index of 1, under which the

independent juror and the first juror in the duo voting structure have 0 while the second

juror in the duo voting structure has 1. SVKP has an information index of 2 (0 for the

first juror, 1 for the second juror and 1 for the third juror). SVP has an information

index of 2, under which the initial public juror has 0 while the latter two jurors voting

simultaneously have 1.

In this section, the findings will be presented on two main categories of questions for
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juries of three. Section 7.1 addresses the question of which sequential voting scheme has

the highest reliability given that they vote in the optimal order under each scheme given

the fixed ability set of the jury. Section 7.2 discusses the question of which sequential

voting scheme has the highest reliability given that they vote in the optimal order given

the random ability set of the jury.

7.1 Fixed jury

A large body of literature on CJT focuses on simultaneous voting due to the voting

scheme’s independence property. This thesis investigates whether sequential voting is

superior to simultaneous voting or secret ballot in terms of information aggregation.

However, the degree of information exposure must be carefully designed to avoid herding.

The existence of a juror with high ability making the wrong decision may jeopardise the

whole decision chain through herding, even if a less able juror has the correct private

information. In this situation, the truth is hidden by the strong prior probability. There

are two methods of controlling the information flow: using the appropriate sequential

voting method or the order of voting. These two methods have different application

contexts. Here we focus on the fixed jury. We ask the simple question: When the jury’s

abilities are known, which sequential voting scheme has the highest reliability if we use

the optimal order under each voting scheme?

7.1.1 Comparison among generalised sequential voting schemes

Table 7.1 shows the optimal fractions of six different voting schemes for a jury of three

under a typical trial. As can be seen in Table 7.1, the sequential voting schemes family

(SVI, SVKP SVP, roll-call voting and casting voting) is superior to the simultaneous

voting scheme. Furthermore, among five different sequential voting schemes the one with

the highest information index, roll-call voting, is the most reliable. The information

index may explain why roll-call voting occupies more than four-fifths. The remaining

fifth is taken by the casting voting, which is the most reliable of the information index 2

family (SVP and casting voting). Table 7.1 uses the exhaustive method for the distinctive

jury with step 0.01. We have further narrowed the step length to check the optimal

fraction. When the minimal step is 0.001, the optimal fraction stays the same.

Table 7.1 presents an overall ranking of the optimal fraction among six different

sequential voting schemes. Among five sequential voting family members, the casting

voting scheme and SVP are close to Condorcet (simultaneous voting). SVP pulls one

member of the Condorcet jury out and lets him vote first publicly, more like a sequential
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Table 7.1: Frequency for fixed jury size of three under all six voting schemes with optimal
order

Frequency Percentage

SVI (Type I) 0 0
SVKP (Type II) 0 0
SVP (Type III) 0 0

Simultaneous 0 0
Roll-call voting 132348 81.85%
Casting voting 29352 18.15%

voting family. On the other hand, the casting voting scheme is closer to simultaneous

voting as it pulls one member of the Condorcet jury out and let him vote last. The

last juror can see all the available information, the votes of all the previous jurors,

and their abilities. The comparison between simultaneous voting and SVP has been

discussed in Chapter 6, which indicates that simultaneous voting or secret ballot is

generally 66.13% better than SVP. However, casting voting with the median juror voting

lastly is generally superior to the simultaneous voting scheme. We prove this through

the difference between the reliabilities under each voting scheme and its corresponding

optimal order. The reliability of casting voting with the median juror voting lastly is:

Q({a, c}, b) =
1

32

(
−4(a− b)2

c(ab− 4)
+ c(4− ab) + 4(a+ b+ 4)

)
. (7.1)

The reliability for the simultaneous voting scheme has already been calculated in the

previous Chapter 2. The difference between equations (7.1) and (4.3) is:

Q({a, c}, b)−Q(abc) =
(a− b)2

8c(4− ab)
. (7.2)

Given that 0 < a, b < 1, the difference is clearly positive. The casting voting with its

optimal is objectively superior to simultaneous voting. This phenomenon has two conse-

quences. The first consequence is that simply changing the order of the jurors will have

different effects on the probability of a correct collective decision (the jury’s reliability).

If we can control the information flow properly, we can improve the performance of the

jury. The second consequence is that in contrast to intuition, the juror with middle

ability should make the final decision when there is a tie rather than the most senior

juror with highest ability (see Alpern & Chen (2017b)).

Let us go return to which ability sets have the better performance with the roll-call
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voting scheme and which perform better under the casting voting scheme. Figure 7.1

shows a more intuitive way representing the ability sets for roll-call voting and casting

voting being optimal.

Figure 7.1: Comparison among six different sequential voting schemes

In Figure 7.1, the vertical axis represents the ability of the juror c (the highest

ability) and the horizontal axis represents the abilities a (the lowest) and b (the median)

respectively. The green dots mean that roll-call voting (with the Alpern-Chen ordering)

is optimal among all six different voting schemes, occupying 81.85%. The blue dots mean

that the casting voting scheme with the median voter casting the casting vote is optimal

among all six voting schemes, occupying 18.15%. These blue dots are concentrated in

the upright corner of the inverted tetrahedron directed from the origin point (0,0,0) to

the vertex (1,1,1). This implies that when the abilities of jurors are close or relatively

high, the preferred the voting scheme is casting voting scheme. More precisely, we can

use the roll-call with the Alpern-Chen ordering to find out the boundary condition. The

reliability of the roll-call with median-high-low ordering is:

Q(a, b, c) =(
4(a− 2b)3

c (a2 + 2ab− 8)
+ 4(a+ 2b)2 + 64b

+ (a− 2b)(−8 + a2 + 2ab)c)/(128b).

(7.3)

The difference between equations (7.1) and (7.3) is:
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Q(a, b, c)−Q({a, c}, b) =a(
20a3b− 8a2

(
3b2 + 2

)
− 32ab+ 64b2

c(ab− 4) (a2 + 2ab− 8)

4a+
(
a2 − 8

)
c)/(128b).

Thus, the boundary condition is:

4
(
5a3b− 2a2

(
3b2 + 2

)
− 8ab+ 16b2

)
c(ab− 4) (a2 + 2ab− 8)

= (8− a2)c− 4a,

which is the quadratic equation for c.

7.1.2 SVI, SVKP, and SVP

Although SVI, SVKP, and SVP are never optimal among the six sequential voting

schemes, we still need to know the relative performance for these three voting schemes

as they are the focus of this study. Based on previous sections’ results, we need to com-

pare the optimal voting order under three different sequential voting schemes. That is,

comparisions among SVI (Type I, the highest ability juror is the independent voter and

the other two jurors vote in anti-seniority order), SVKP (Type II, the highest ability

juror votes first, followed by the median ability juror, and the lowest ability juror vote

last), and SVP (Type III, the highest ability juror votes first). Figure 7.2 shows the

result. It should be noted that the additional condition for the comparison in this part

is 0.521 < a < b < c < 1 (able jury) to make sure the optimal voting order for the SVP

(Type III) voting scheme is exclusive (see Proposition 6.2).

In Figure 7.2, the red dots mean that the optimal voting scheme is SVI. There are no

blue dots, which means that the SVP voting scheme is excluded from the graph. This

means that SVP with the optimal voting order (the highest ability juror voting first) is

never optimal compared with the optimal orders under SVI and SVKP.

The yellow dots mean that the optimal sequential voting scheme under SVKP is

superior to the optimal voting order under SVI. From the mixed Figure 7.2, it is not

easy to see the pattern for the boundary condition.

However, from the decomposed Figure 7.3, we see that the boundary condition is a

regular shape. The boundary condition can be achieved by solving the equation (7.4)

under the condition that 0.521 < a < b < c < 1:
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Figure 7.2: The optimal voting scheme among SVI, SVKP and SVP

Figure 7.3: Decomposed graph for SVI voting scheme

16b3c(16a+ c3 − 4c) + 128b2c2(2a+ c) + 64bc3(−8a+ c3 − 6c)

−b7 − 4b5(c2 − 2) + 16b4c+ 256c5 = 0.
(7.4)
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The yellow dots envelop the red dots. This shape means that, except in extreme cases

where the juror with the highest ability dominates other jurors, in most cases we should

use SVKP with Alpern-Chen ordering. However, when there is an experienced expert in

the jury, we should use SVI. Furthermore, the experienced expert with relatively high

ability (close to 1) should be the independent voter. The other two jurors adopt duo

roll-call voting in anti-seniority order.

Now we relax our assumption for the abilities of the jury. The condition for the juror

with minimal ability is merely larger than zero 0 < a < b < c < 1. Table 7.2 shows the

results.

Table 7.2: Frequency for general jury of three under SVI, SVKP and SVP

Counts(#) Proportion(%) Information index

SVI (Type I) 32308 19.98% 1 (0,0,1)
SVKP (Type II) 116425 72.00% 2 (0,1,1)
SVP (Type III) 12964 8.020% 2 (0,1,1)

Table 7.2 indicates that SVKP with information index 2 (sequential voting with

knowledge of the previous voter) still prevails.

7.1.3 The simultaneous voting scheme

The CJT is based on simultaneous voting. Comparing simultaneous voting with type I,

type II, and type III voting schemes will provide insights into how information exposure

affects reliability.

Based on the result from the previous section, we just need to compare the optimal

voting orders under type I and type II voting schemes with the simultaneous voting

scheme.

Table 7.3: Frequency for able jury size three under SVI, SVKP, SVP and simultaneous
voting schemes

Counts(#) Proportion(%) Information index

SVI (Type I) 4595 24.94% 1 (0,0,1)
SVKP (Type II) 3678 20.01% 2 (0,1,1)
SVP (Type III) 0 0 2 (0,1,1)

Condorcet(Simultaneous) 10151 55.10% 0 (0,0,0)

As shown in Figure 7.4, the purple dots mean that the simultaneous voting scheme

is the optimal among the three. The red dots mean that the optimal voting scheme is
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Figure 7.4: The optimal voting scheme among SVI, SVKP, SVP and simultaneous voting
schemes

SVI. The yellow dots mean that optimal sequential voting scheme under SVKP. From the

mixed Figure 7.4 , it is hard to see the pattern for the boundary condition. Nevertheless,

if we separate the simultaneous voting scheme from the mixed graph, the boundary

condition is regularly shaped. By studying Figure 7.5, we see that when the abilities are

large and close to 1 or the abilities are close, we should choose the simultaneous voting

scheme. The most substantial difference for the abilities is approximately 0.3.

Now we relax our assumption for the abilities of the jury. The condition now is

0 < a < b < c < 1. Table 7.4 indicates that SVKP still prevails, even after we include

simultaneous voting (Condorcet Jury voting).

Table 7.4: Frequency for general jury of three under SVI, SVKP, SVP and simultaneous
voting schemes

Counts(#) Proportion(%) Information index

SVI (Type I) 21205 13.11% 1 (0,0,1)
SVKP (Type II) 112958 69.86% 2 (0,1,1)
SVP (Type III) 12964 8.020% 2 (0,1,1)

Condorcet(Simultaneous) 14573 9.010% 0 (0,0,0)
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Figure 7.5: Decomposed graph: the optimal voting scheme among SVI, SVKP, SVP and
simultaneous voting schemes for simultaneous voting scheme

7.2 Random jury

In the previous section, we discussed the problem for a fixed jury under where the

jury’s abilities are known. Now, we consider another question: when the abilities of the

jury are unknown (randomly generated), among six different sequential voting schemes,

which scheme has the highest reliability given that they vote in the optimal order of

each voting scheme? The answer to this question try to address the problem of which

sequential voting scheme is more robust in terms of voting orders for the random jury.

In this section, we compare the performance of the six different sequential voting

schemes by simulation. Each sequential voting schemes adopts the optimal voting order.

That is, SVI (the highest ability juror is the independent voter, and the other two jurors

vote in anti-seniority order), SVKP (the highest ability juror votes first, followed by the

median ability juror, and the lowest ability juror vote last), SVKP (either the highest

ability juror or the lowest ability juror votes first) and roll-call voting (Alpern-Chen

ordering).

We generated one million random ability sets of juries of three for each sequential

voting scheme under optimal ordering and counted the frequency of the particular or-

dering being optimal. This number divided by one million is an approximation of the

optimal fraction of the specific ordering. The optimal fraction is the fraction of potential

ability sets for which the ordering provides the highest reliability. Table 7.5 shows the
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average data for one million trials. By Hammersley & Handscomb (1964), this process

will generate a relatively accurate estimation for the optimal fraction for each sequential

voting scheme.

Table 7.5: Optimal fraction for optimal order

Counts(#) Proportion(%) Information index

SVI (Type I) 0 0 1 (0,0,1)
SVKP (Type II) 615583.25 61.55833% 2 (0,1,1)
SVP (Type III) 0 0 2 (0,1,1)

Condorcet(Simultaneous) 0 0 0 (0,0,0)
Roll-call voting 813921.5 81.39215% 3 (0,1,2)
Casting voting 186078.5 18.60785% 2 (0,0,2)

From Table 7.5, we can see that the sum of the optimal fraction of roll-call voting

and casting voting is 1. However, we still can see that SVKP occupies around 60% of

the total cases. When SVKP is optimal, it has the same reliability as roll-call voting.

Figure 7.6: Average optimal fraction of the simulation for casting voting

Figures 7.6 and 7.7 show that one million trials were repeated one thousand times

to improve accuracy. As shown in Figures 7.6 and 7.7, the optimal fractions for both

sequential voting schemes tend to be stable with the increase of trials. This convergence

indicates that the estimation of the optimal fraction is comparatively reliable.
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Figure 7.7: Average optimal fraction of the simulation for roll-call voting

In summary, Table 7.5 and Figures 7.6 and 7.7 further confirm the results in the last

section for the fixed jury.

Table 7.6: Average reliabilities with ranking

Q̄ Ranking Information Index

Roll-call voting 0.712486 1 3 (0,1,2)
SVKP (Type II) 0.711652 2 2 (0,1,1)

Casting voting 0.706455 3 2 (0,0,2)
SVP (Type III) 0.691805 4 2 (0,1,1)

SVI (Type I) 0.690398 5 1 (0,0,1)
Condorcet (Simultaneous) 0.683508 6 0 (0,0,0)

Another important measure of performance for the six different sequential voting

schemes is average reliability. This is the average value of Q for all ability sets in the

simulation. Table 7.6 shows that among the six sequential voting schemes, the roll-call

voting scheme with Alpern-Chen order and information index 3 has the highest average

reliability. Furthermore, simultaneous voting with information index 0 has the lowest

average reliability. The ranking of the average reliability is positively correlated to the

information index. For the same information index group (Casting voting, SVP and

SVP), it is better to inform more people (SVKP) instead just let more people get more
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information (SVP and casting voting). Another consequence is that among all the voting

scheme sharing the same information index, lowest-ability juror should vote last. Finally,

by comparing SVI and simultaneous voting, we know that by adding a duo structure

into the simultaneous voting, the average performance of jury is improved. Sequential

voting enhances the probability of correct verdict by better information aggregation in

terms of the average reliability.

7.3 Herding in generalised sequential voting schemes

In this section, we try to see the extent to which the superiority of sequential voting

can be explained as a consequence of herding. Under the simultaneous voting scheme,

herding does not exist as no one knows any voters’ information, either votes or private

signals. The introduction of the sequential brings more information, as described in the

previous section. However, the cost of more information is the risk of herding. If the prior

voter’s ability is overwhelmingly higher compared to one juror, he may ignore his private

information and copy the behaviour of the previous juror (h2 and h3 conditions). This

herding behaviour may explain why sequential is better than simultaneous voting. The

following will discuss herding under different voting schemes. Now, we define a relative

measurement of the reliability of different voting schemes. For each jury under the

particular sequential voting scheme, let Q̇ denote the reliability of simultaneous voting

scheme and Q[.] denote the reliability under the particular sequential voting scheme.

For example, Q[SV I] is the reliability of adopting sequential voting with an independent

juror. Then the sequential voting performance is measured by the difference between the

reliabilities of the sequential and simultaneous voting schemes. Take sequential voting

with an independent juror as an example:

∆(improvement) = Q[SV I]− Q̇.

Besides this relative measure, we also use the average reliability as the interval mea-

surement with sequential voting scheme for groups with and without herding. It should

be noticed that the analysis of this section is based on the exhaustive method with step

0.01.

Herding under sequential voting with an independent voter

Under sequential voting with an independent voter, the herding occurs in the roll-call

part. As we know from Chapter 4, in the roll-call part, we should use anti-seniority or-

der. Under the optimal voting order, herding does not exist. Therefore, the superiority
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of SVI over simultaneous voting results from a better information aggregation of the SVI

rather than herding.

Herding under sequential voting with the knowledge of the previous voter

In SVKP, the herding can either happen in the first or the second duo structure. The

herding conditions are (v1, v2) ∈ h2(v2 < v1/2) and (v1, v2, v3) ∈ h3 (v3 6 (v21+4v22)

8v22
).

There are three orderings r = (b, a, c), r = (c, a, b) and r = (c, b, a) where herding of the

first duo is possible while three orderings r = (a, c, b), r = (b, c, a) and r = (c, b, a) where

herding of the second duo is possible. As was revealed in Chapter 5, the optimal order

is Alpern-Chen ordering. Thus, the following analysis is based on the r = (b, c, a) (the

optimal voting order). We use the sample with the average ability 1.5 for the whole jury

as this group is the largest sample across different average ability groups.

Group Average reliability ∆(improvement)

Herding 0.724617427 0.039245121
No herding 0.681063145 -0.002698256

Table 7.7: Comparison between herding and no herding groups under SVKP with average
abilities of jury 1.5

Table 7.7 shows that the average reliability of the herding group is higher than the

group without herding, which indicates that herding has a positive effect on the accuracy

of the collective decision. The average ability measures the performance internally as we

compare the absolute value of the reliability. For the relative performance, we use the

∆(improvement) because simultaneous voting eliminates all the effects of herding. The

herding group is better than the group without herding with a positive sign on average.

Now we take a close look at the herding group. There are only 3 cases out of 1110 cases

with negative signs of the ∆(improvement).

Jury (b, c, a) ∆(improvement)

(0.35, 0.56, 0.59) 0.682228595 -0.000519249
(0.35, 0.57, 0.58) 0.682531229 -0.000972928
(0.36, 0.54, 0.60) 0.680980833 -0.000586966

Table 7.8: Cases: ∆ with negative sign

From the above three cases, along with Table 7.10, we know that herding plays an

important role in the superiority of sequential voting over simultaneous voting, especially

for the positive sign of the ∆. However, the existence of counter examples indicates that
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herding cannot fully explain this superiority.

Group # ∆(improvement)[+] #∆(improvement)[−]

Herding 1107 3
No herding 31 115

Table 7.9: Comparison between herding and no herding group under SVKP for signs
of ∆ with mean 1.5

Restricting to the cases where the mean ability is 1.5 may neglect some extreme cases

involving herding like jury (0.01, 0.98, 0.99). If we look at all 1000000 samples from the

numerical simulation without any restrictions on mean, we still find that herding cannot

explain 28% of the superiority of Alpern-Chen ordering under SVKP over simultaneous

voting.

Group # ∆(improvement)[+] #∆(improvement)[−]

Herding 381407 (72 %) 19404 (4 %)
No herding 142021 (28 %) 457123(96 %)

Table 7.10: Comparison between herding and no herding group under SVKP for signs
of ∆

Herding under sequential voting with an initial public vote

In SVP a jury size of three, herding only exists when the first juror has the highest or

the middle ability. As the optimal voting order under SVP is the juror with the highest

ability voting first, we focus on this voting order. The herding condition (v1, v2) ∈ h2 or

(v1, v3) ∈ h2 implies v2 < v1/2 or v3 < v1/2. For a fair comparison, the average abilities

of a jury are the same. The largest sample has an average value of 1.5 for the whole

jury. The Table 7.11 shows the comparison between the herding and no herding groups

using two different measurements.

Group Average reliability ∆(improvement)

Herding 0.706291866 0.020833376
No herding 0.662749759 -0.021093011

Table 7.11: Comparison between herding and no herding groups under SVP with average
abilities of jury 1.5

For the interval comparison, the herding group’s average reliability is better than

that of the group without herding. This finding implies that the herding does improve

the performance of the jury. For the relative comparison, the average value of the ∆ of
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herding group is higher than that of the group without herding. The sign of the herding

group is positive, while the sign of the group without herding is negative. The reason for

this phenomenon may be that herding improves the performance of the jury. However,

if we look at the herding case by case, we find that 234 cases among a total of 1045 have

positive signs.

Interestingly, if we check all the data with a positive ∆ > 0, we find that only 118 out

of 85702 (0.2%) do not have herding phenomena. This ratio provides further evidence

that herding may help explain why SVP is better than simultaneous voting in some

cases. Furthermore, for these 118 exceptions, the latter two jurors’ abilities are similar,

and they are all close to the herding condition.
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Chapter 8

Summary and concluding remarks

In this chapter, we will summarize overall work on generalized sequential voting and

access the contributions, based on research questions of the sealed card problem, SVI,

SVKP and SVP tackled in the previous chapters. In the end, we will have a discussion

on several future directions and some concluding remarks.

8.1 Conclusions

Although there is a large body of literature on CJT, the sequential voting has not re-

ceived enough attention, where studies on the traditional simultaneous voting are still

mainstream. This thesis has addressed several fundamental problems regarding sequen-

tial voting, with the intention of finding a set of optimal voting orders under generalised

sequential voting schemes with heterogeneous abilities under continuous signal model

and eventually providing comprehensive solutions applicable to three agents or even

more agents. The specific problems have been tackled are about the optimal voting

order for a jury of three or even larger under the sealed card model, SVI, SVKP and

SVP, relative performance between simultaneous and sequential voting and numerical

comparisons of the six sequential voting schemes under the optimal voting orders.

The sealed card problem considers roll-call voting with a concrete ability setting. A

(sealed) card is randomly drawn from a deck with an equal number of red and black

cards. According to his ability, ever juror samples a particular number of cards and

then votes for the colour of the sealed card based on their samples and the votes of

the previous jurors. The results of our study show that Alpern-Chen (median-high-

low) ordering dominates all other six voting orders. Compared to simultaneous voting,

Alpern-Chen ordering is superior in most cases, except when jurors’ abilities are similar.
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An analogue of this voting order can be extended to a larger jury.

Under sequential voting with an independent voter, two of the jurors take turns to

vote, and another juror votes independently. For a jury with heterogeneous abilities on

the interval [0, 1], maximum reliability is achieved when the juror with the highest ability

takes the independent vote and the other two jurors adopt duo roll-call voting with anti-

seniority order (increasing) unless herding. Compared with traditional simultaneous

voting, sequential voting with an independent voter adopting the above order is more

reliable, taking up 86.28% of the total cases. Simultaneous voting is better only when

the least able juror lies in the interval [0, 6− 2
√

7] regarding their ability.

In the sequential voting with knowledge of the previous juror, the later juror only

knows the adjacent juror’s vote, which is limited information, and they must guess the

vote(s) before the adjacent juror (if one exists). The probability of a correct verdict (re-

liability) is maximised when the jury adopts Alpern-Chen ordering (median, high, low).

Compared to Condorcet voting (simultaneous voting), sequential voting with knowledge

of previous voter using Alpern-Chen ordering is more reliable, occupying 87.29% of the

total cases. We also find that the seniority ordering (SO) dominates anti-seniority or-

dering (AO) under this sequential voting scheme. The superiority of SO and another

analogue of Alpern-Chen ordering called Ascending-Descending Order (ADO) still holds

true for a larger jury.

In terms of sequential voting with an initial public vote, for an able jury of three

(where the minimal ability is larger than 0.521), the probability of a correct verdict is

maximised when the agent of highest ability has the initial public vote. For medium-

sized juries (n ≤ 23), we find through simulation that the highest-ability juror should

vote first. Compared with simultaneous voting, sequential voting with an initial public

vote and highest ability taking the first vote is inferior, occupying 66.13% of the total

cases for able jury of three. For medium-sized jury (n ≤ 23), the numerical simulation

shows that ablest juror still should vote first.

As for the question of which voting scheme we should choose to maximise the proba-

bility of correct collective decision among all six sequential voting schemes, for the fixed

juror, the sequential voting schemes family (SVI(type I), SVKP(type II), SVP (type III),

roll-call voting and casting voting), 92.47%, is generally better than simultaneous voting,

7.53%, in terms of frequency. The herding may be one of reasons why the sequential

voting schemes family is more reliable than the simultaneous voting.

This work provides comprehensive solutions to three agents sequential voting schemes

under continuous signal distribution rather than binary private information in a large

body of Condorcet Jury Theorem literature. The main contribution is summarised in
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the Table 8.1.

Sequential voting schemes
(SV)

Optimal voting order

Sequential voting with an in-
dependent voter (SVI, type I)

Proposition 4.1 Given that abilities of
jurors satisfy 0 < a < b < c < 1, the high-
est ability juror should be the independent
voter. For the roll-call voting part, the
voting order should be anti-seniority or-
der(AO) (increasing order) unless herd-
ing exists.

Sequential voting with knowl-
edge of the previous voter
(SVKP, type II)

Proposition 5.2 Given that abilities of
jurors satisfy 0 < a < b < c < 1, the
Alpern-Chen order (median high-
low) is the optimal order. Q(b, c, a) has
the highest reliability among six different
orderings.

Sequential voting with initial
public vote (SVP, type III)

Proposition 6.2 Given that abilities of
jurors satisfy 0.521 < a < b < c < 1,
the reliability is highest when the juror of
highest ability votes first (weak form).

Table 8.1: Optimal voting order for SVI, SVKP and SVP (type I, II, III)

8.2 Future work

This thesis discusses research topics explicitly on generalised sequential voting in juries

of three. Potential research directions under this topic are listed and discussed as follows:

Random jury with random order We have discussed the performance of each

sequential voting schemes using optimal order internally in the last section. However,

we can only know the optimal order by knowing the full picture of the ability sets.

However, what if we do not know the ability sets? Consider the following case. The

superior court has launched a new voting rule for the district court. The efficiency of

the new policy depends on reliability. However, it is unrealistic to ask every district

court to meet the same standard regarding the jury’s abilities. In most cases, we do not

know the ability set of the jury. Under this circumstance, we need a sequential voting

scheme that can still guarantee relatively high performance when the jury’s abilities are

unknown. Consider the following research question as a more specific example: Which

voting scheme is best with a random jury (x, y, z), where x, y, z are chosen independently
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and uniformly in [0, 1]? Here, x, y, z are the first, second and third juror’s abilities to

vote.

Transfer payoff No one can obtain information without a cost. For example, the

first juror may charge the second juror for the information he provides considering the

reputation measured by ability (public information). It is natural to consider a model

that quantifies the cost for different jurors according to their abilities. Inspired by Song

(2016), the introduction of monetary transfer will also change the voting behaviour. The

potential research direction may change from the relation between the reliabilities and

voting orders to designing incentives.

Weighted average So far, we have only considered the cases in which each juror

has the same weight. It is reasonable to assume that all the jurors in the jury share

the same weight if all are equipped with the same probability of making the correct

decision. However, a more common case is that the experts will have different abilities

to discern the state of Nature as, their education, experience, and other attributes may

vary. Rae (1969), Straffin (1977) and Fishburn & Gehrlein (1977) show that the simple

majority rule is not the optimal decision rule in most cases. It may be inappropriate to

use the same weight for each juror. Therefore, a more general case is that for each juror,

the weight is different. There are many situations where the weights of members of the

decision-making body are different. In political science, the number of representatives in

parliament is determined by the size of the district. This distribution of representation

means that different districts will have different influence over the outcome of a bill. For

example, the council of the European Union and the United States Electoral College. In

sequential voting, weighted average voting rule has drawn little attention (outside the

works of Berend & Kontorovich (2014)). Further research could investigate the optimal

voting order in generalised sequential voting schemes. Specifically, future researchers

may consider investigating the following questions: If the weights satisfy w1 ≤ w2 ≤
· · · ≤ wn and the jurors’ abilities satisfy a1 ≤ a2 ≤ · · · ≤ an, does there exist an optimal

voting order that is independent of the ability distribution of the jurors? If it does exist,

what is it? Is the optimal order’s reliability superior to that of the simultaneous voting

considering the weights and quota? The answers to these questions could be extremely

illuminating.

Probability model for receiving the signals So far, the arc represents the de-

terminant information transfer. However, the information transfer may be random. For

instance, if the nodes represent the sensor, the transformation between sensors is not

always successful. For this reason, uncertainty regarding the information transfer will

be introduced into the model. Take the SVI voting scheme as an example. As shown in

112



Figure 8.1, the solid arrow represents that the second juror knows the vote of the first

juror for sure, while the arrow with a line of dashes means that the third juror knows

the vote of the first juror with a certain probability.

Figure 8.1: Uncertainty Model

Strategic voting behaviour In honest voting, the juror votes for the state that they

consider most likely based on his private information and observations from other jurors.

The motivation for this kind of voting behaviour is that the juror merely wants his verdict

is correct rather than the jury’s verdict as a group. This assumption indicates that he

is the only pivot voter in the voting process. Nevertheless, recent works by Austen-

Smith & Banks (1996) and McLennan (1998) argue that this traditional assumption

is unreasonable. Another highly related line of notable works is those of Feddersen &

Pesendorfer (Feddersen & Pesendorfer 1996, 1997, 1998, 1999). These scholars believe

that consolidating the private signals and common goals may motivate the juror to vote

strategically. Inspired by the work of Alpern & Chen (2017a), a combination of private

signals and a common goal maximising the probability of correct verdict accounts for

strategic voting behaviour. Take the following case of a jury of three under the roll-call

voting scheme as an example. Consider a jury where two junior jurors have exactly same

low ability and one senior juror has high ability. The two junior jurors vote first, and

the senior juror votes last. One junior juror votes for certain state first say, Guilty. In

the second round, the other junior juror will vote for the same state, as his ability is

the same as the junior juror before and he possesses additional information, i.e. that

previous voters voted Guilty. The conclusion of the juror’s assessment from all existing

information is Guilty. However, if he votes for the Guilty, the jury’s verdict is already

determined by simple majority rule, and the vote of a senior juror does not matter

at all. Under this circumstance, our juror may decide to vote Innocent and leave the

pivotal vote to the senior juror. By adopting this strategy, the possibility of correct jury

verdict increases. Further research could consider the central controller to customise

the thresholds based on the jury’s ability to address strategic voting behaviour and to

improve the reliability of a particular jury further.

Remark The primary assumption in this study is a linear continuous signal distribution
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to model the sampling process. As signal models develop, we may find that other models

better fit the jury’s attributes. This study is the first step toward the signal distribution-

free model. Alternatively, we may find that similar results hold for a family of signal

distribution models.

On the other hand, from the game theory perspective, this study uses Bayesian

probability to capture the learning process in the voting procedure. Furthermore, the

performances of six sequential voting schemes determined in this study are under specific

numerical settings. Due to the lack of data, we are not sure whether jurors in real use

this strategy or not. For instance, in behavioural science, people use a heuristic method

rather than mathematical calculation under certain circumstances. As a continuation

of this study, we will use the behaviour labs to test these sequential voting schemes’

performances with real data as case studies. By analysing real data, we will identify

the heuristic methods jurors use to update their information. We can then modify

the solution under each voting scheme concerning the voting behaviour from data and

evaluate the performance of the sequential voting scheme and ordering policy further to

enhance the probability of the correct collective decision.
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Appendix A

Slice graphs of exceptions under

SVP

In this part, we will present the details of the exception cases by using the slice graphs.

We transfer three dimensions to two dimensions via this method. The slice graphs

provide the details for different lower bound of the abilities. When a = 0.1 and the

optimal voting order is lowest ability juror voting first, the maximal difference between

b and c is 0.4. When a = 0.2 and the optimal voting order is lowest ability juror voting

first, the maximal difference between b and c is 0.3. When a = 0.3 and the optimal

voting order is lowest ability juror voting first, the maximal difference between b and c

is 0.2. When a = 0.4 and the optimal voting order is lowest ability juror voting first, the

maximal difference between b and c is 0.1. When a = 0.5 and the optimal voting order

is lowest ability juror voting first, the maximal difference between b and c is almost 0.

To sum up, the lowest ability juror first being optimal requires the other two jurors with

similar abilities. The tolerance for the difference decreases when the lower bound of the

lowest ability juror increases. The relation between them is linearly negative correlated.
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Figure A.1: SVP (Type III) Optimal voting order a = 0.1

Figure A.2: SVP (Type III) Optimal voting order a = 0.2
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Figure A.3: SVP (Type III) Optimal voting order a = 0.3

Figure A.4: SVP (Type III) Optimal voting order a = 0.4

117



Figure A.5: SVP (Type III) Optimal voting order a = 0.5
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Appendix B

Data for sealed card problem

Table B.1: Reliability Q for D ≤ 16 and even ability

Voting Ordering

D Ability sets (b, c, a)1 > (b, a, c) | (a, c, b) > (a, b, c) < (c, b, a) > (c, a, b)

8 {2, 4, 6} 0.7878 0.6834 0.7551 0.6933 0.7469 0.7143

{2, 4, 6} 0.6882 0.6352 0.6705 0.6403 0.6718 0.6429

{2, 4, 8} 0.7751 0.6526 0.7531 0.6628 0.7275 0.7222

10 {2, 6, 8} 0.8016 0.6429 0.7531 0.6987 0.7538 0.7222

{4, 6, 8} 0.8016 0.7109 0.7751 0.7197 0.7606 0.7285

{2, 4, 6} 0.6383 0.6075 0.6296 0.6107 0.6328 0.6082

{2, 4, 8} 0.6860 0.6172 0.6723 0.6228 0.6575 0.6515

{2, 4, 10} 0.7686 0.6344 0.7521 0.6453 0.7294 0.7273

{2, 6, 8} 0.7007 0.6082 0.6741 0.6469 0.6801 0.6515

{2, 6, 10} 0.7863 0.6082 0.7521 0.6714 0.7361 0.7273

12 {2, 8, 10} 0.8099 0.6515 0.7521 0.7022 0.7578 0.7273

{4, 6, 8} 0.7015 0.6592 0.6883 0.6637 0.6867 0.6586

{4, 6, 10} 0.7863 0.6794 0.7686 0.6869 0.7363 0.7308

{4, 8, 10} 0.8099 0.6620 0.7686 0.7177 0.7628 0.7318

{6, 8, 10} 0.8099 0.7257 0.7863 0.7342 0.7691 0.7379

{2, 4, 6} 0.6125 0.5893 0.6032 0.5916 0.6085 0.5874

1The boldface under (b, c, a) corresponds to Proposition ??, the one “ < ” covers Proposition ??, and
the three “ > ”s indicate Proposition ??.
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{2, 4, 8} 0.6422 0.5959 0.6330 0.5997 0.6224 0.6166

{2, 4, 10} 0.6851 0.6053 0.6743 0.6115 0.6608 0.6573

{2, 4, 12} 0.7647 0.6223 0.7515 0.6338 0.7308 0.7308

{2, 6, 8} 0.6522 0.5874 0.6350 0.6177 0.6413 0.6166

{2, 6, 10} 0.6959 0.5874 0.6743 0.6305 0.6674 0.6573

{2, 6, 12} 0.7778 0.5874 0.7515 0.6549 0.7342 0.7308

{2, 8, 10} 0.7087 0.6166 0.6767 0.6512 0.6853 0.6573

{2, 8, 12} 0.7935 0.6166 0.7515 0.6768 0.7421 0.7308

{2, 10, 12} 0.8155 0.6573 0.7515 0.7047 0.7605 0.7308

14 {4, 6, 8} 0.6514 0.6286 0.6433 0.6315 0.6472 0.6234

{4, 6, 10} 0.6956 0.6398 0.6856 0.6439 0.6677 0.6621

{4, 6, 12} 0.7778 0.6602 0.7647 0.6673 0.7351 0.7308

{4, 8, 10} 0.7089 0.6257 0.6879 0.6643 0.6905 0.6630

{4, 8, 12} 0.7935 0.6284 0.7647 0.6889 0.7422 0.7308

{4, 10, 12} 0.8155 0.6667 0.7647 0.7169 0.7641 0.7308

{6, 8, 10} 0.7103 0.6732 0.6991 0.6775 0.6965 0.6695

{6, 8, 12} 0.7935 0.6943 0.7778 0.7009 0.7424 0.7371

{6, 10, 12} 0.8155 0.6750 0.7778 0.7290 0.7688 0.7388

{8, 10, 12} 0.8155 0.7352 0.7935 0.7435 0.7748 0.7444

{2, 4, 6} 0.5949 0.5764 0.5875 0.5782 0.5919 0.5734

{2, 4, 8} 0.6157 0.5814 0.6089 0.5842 0.6007 0.5952

{2, 4, 10} 0.6435 0.5877 0.6353 0.5920 0.6262 0.6224

{2, 4, 12} 0.6847 0.5968 0.6759 0.6037 0.6630 0.6615

{2, 4, 14} 0.7621 0.6137 0.7511 0.6256 0.7333 0.7333

{2, 6, 8} 0.6214 0.5734 0.6075 0.5985 0.6168 0.5952

{2, 6, 10} 0.6511 0.5734 0.6366 0.6069 0.6323 0.6224

{2, 6, 12} 0.6932 0.5734 0.6760 0.6197 0.6673 0.6615

(2,6,14) 0.7725 0.5734 0.7511 0.6439 0.7338 0.7333

{2, 8, 10} 0.6597 0.5952 0.6388 0.6223 0.6468 0.6224

{2, 8, 12} 0.7025 0.5952 0.6759 0.6357 0.6745 0.6615

{2, 8, 14} 0.7841 0.5952 0.7511 0.6612 0.7377 0.7333

{2, 10, 12} 0.7143 0.6224 0.6786 0.6542 0.6888 0.6615

{2, 10, 14} 0.7986 0.6224 0.7511 0.6807 0.7464 0.7333

{2, 12, 14} 0.8195 0.6615 0.7511 0.7065 0.7623 0.7333

{4, 6, 8} 0.6249 0.6081 0.6189 0.6101 0.6219 0.6017

{4, 6, 10} 0.6518 0.6157 0.6453 0.6184 0.6326 0.6273
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{4, 6, 12} 0.6932 0.6267 0.6848 0.6308 0.6681 0.6643

16 {4, 6, 14} 0.7725 0.6472 0.7621 0.6542 0.7338 0.7333

{4, 8, 10} 0.6564 0.6034 0.6434 0.6335 0.6517 0.6281

{4, 8, 12} 0.7025 0.6049 0.6853 0.6464 0.6747 0.6651

{4, 8, 14} 0.7841 0.6078 0.7621 0.6711 0.7385 0.7333

{4, 10, 12} 0.7139 0.6305 0.6879 0.6650 0.6930 0.6660

{4, 10, 14} 0.7986 0.6332 0.7621 0.6905 0.7464 0.7333

{4, 12, 14} 0.8195 0.6698 0.7621 0.7165 0.7651 0.7333

{6, 8, 10} 0.6607 0.6415 0.6543 0.6442 0.6569 0.6343

{6, 8, 12} 0.7024 0.6532 0.6942 0.6567 0.6751 0.6701

{6, 8, 14} 0.7841 0.6748 0.7725 0.6805 0.7394 0.7339

{6, 10, 12} 0.7148 0.6381 0.6967 0.6753 0.6977 0.6715

{6, 10, 14} 0.7986 0.6425 0.7725 0.6998 0.7466 0.7340

{6, 12, 14} 0.8195 0.6776 0.7725 0.7261 0.7687 0.7341

{8, 10, 12} 0.7166 0.6825 0.7065 0.6867 0.7034 0.6773

{8, 10, 14} 0.7986 0.7041 0.7841 0.7102 0.7469 0.7419

{8, 12, 14} 0.8195 0.6843 0.7841 0.7367 0.7731 0.7439

{10, 12, 14} 0.8195 0.7418 0.7986 0.7500 0.7789 0.7492
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Table B.2: Optimality Fraction φ for D ≤ 52

D
r

(a, b, c) (a, c, b) (b, a, c) (b, c, a) (c, a, b) (c, b, a) Sum

4 0.000 1.000 0.000 1.000 1.000 1.000 4.000

6 0.000 0.800 0.000 0.900 0.600 0.600 2.900

8 0.029 0.629 0.000 0.800 0.429 0.486 2.371

10 0.012 0.524 0.000 0.750 0.345 0.440 2.071

12 0.012 0.479 0.000 0.685 0.291 0.406 1.873

14 0.007 0.444 0.000 0.675 0.248 0.385 1.759

16 0.007 0.398 0.000 0.659 0.235 0.367 1.666

18 0.010 0.372 0.000 0.651 0.212 0.351 1.597

20 0.009 0.348 0.000 0.654 0.199 0.335 1.546

22 0.008 0.328 0.000 0.650 0.182 0.329 1.498

24 0.007 0.318 0.000 0.640 0.177 0.318 1.461

26 0.006 0.298 0.000 0.652 0.167 0.305 1.427

28 0.005 0.281 0.000 0.650 0.162 0.300 1.399

30 0.005 0.264 0.000 0.647 0.162 0.297 1.375

32 0.006 0.255 0.000 0.644 0.156 0.295 1.356

34 0.006 0.247 0.000 0.643 0.151 0.291 1.338

36 0.006 0.238 0.000 0.640 0.153 0.282 1.319

38 0.006 0.230 0.000 0.641 0.150 0.278 1.305

40 0.007 0.225 0.000 0.638 0.152 0.272 1.293

42 0.007 0.220 0.000 0.637 0.148 0.268 1.280

44 0.006 0.217 0.000 0.634 0.147 0.266 1.270

46 0.006 0.211 0.000 0.633 0.148 0.261 1.260

48 0.006 0.206 0.000 0.629 0.151 0.258 1.250

50 0.007 0.204 0.000 0.629 0.147 0.256 1.242

52 0.007 0.200 0.000 0.630 0.148 0.253 1.238
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Table B.3: Average reliability Q̄ for D ≤ 52

D
r

(a,b,c) (a,c,b) (b,a,c) (b,c,a) (c,a,b) (c,b,a) simultaneous

4 0.7778 1 0.8889 1 1 1 0.888999

6 0.7678 0.9006 0.7025 0.9096 0.86695 0.8896 0.8146

8 0.744128 0.843855 0.681486 0.85628 0.8088 0.839024 0.774127

10 0.725061 0.812857 0.659651 0.822672 0.772841 0.803265 0.747348

12 0.704583 0.785297 0.652501 0.796018 0.750056 0.77844 0.727762

14 0.692853 0.768276 0.640532 0.776651 0.730099 0.758285 0.712546

16 0.682228 0.751981 0.635073 0.760459 0.717897 0.743916 0.700239

18 0.672185 0.738815 0.627091 0.746923 0.705303 0.730055 0.689993

20 0.664594 0.727777 0.621887 0.735475 0.695876 0.719259 0.681275

22 0.658326 0.718764 0.616938 0.725789 0.687751 0.709833 0.67373

24 0.652772 0.710041 0.614211 0.716997 0.681314 0.70195 0.667109

26 0.647514 0.702963 0.60912 0.709481 0.673368 0.69456 0.661234

28 0.642993 0.696167 0.60641 0.702621 0.669046 0.688619 0.655971

30 0.638499 0.689947 0.603337 0.696407 0.663914 0.682538 0.651218

32 0.634848 0.684518 0.600855 0.690692 0.658975 0.677337 0.646897

34 0.631287 0.679688 0.598015 0.685594 0.654575 0.672615 0.642943

36 0.62775 0.674934 0.596187 0.680797 0.651382 0.668366 0.639308

38 0.624959 0.670851 0.59369 0.676422 0.647283 0.664191 0.635949

40 0.622059 0.666824 0.592177 0.672309 0.644644 0.660627 0.632833

42 0.619261 0.663077 0.590193 0.66847 0.641029 0.657066 0.62993

44 0.616911 0.659695 0.588524 0.664908 0.638197 0.653857 0.627218

46 0.614529 0.656505 0.586695 0.661634 0.63587 0.650837 0.624676

48 0.612361 0.653408 0.58549 0.65846 0.633715 0.648017 0.622286

50 0.610391 0.650569 0.583772 0.655492 0.630596 0.645235 0.620035

52 0.608398 0.647872 0.582477 0.652719 0.62865 0.64278 0.617907
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Table B.4: fraction of ability sets in which Qsim > Q(b, c, a) given D

D φ̂(D)

12 0.0242
14 0.0210
16 0.0220
18 0.0235
20 0.0268
22 0.0248
24 0.0226
26 0.0204
28 0.0191
30 0.0175
32 0.0165
34 0.0163
36 0.0163
38 0.0156
40 0.0165
42 0.0173
44 0.0168
46 0.0178
48 0.0179
50 0.0181
52 0.0187
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Figure B.1: Graphs of Dotted A for 12 ≤ D < 52.
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