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“What is not surrounded by uncertainty cannot be the truth.”

—Perfectly Reasonable Deviations from the Beaten Track

Richard P. Feynman
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Abstract

Interacting particle methods are widely used to perform inference in complex

models, with applications ranging from Bayesian statistics to applied sciences. This

thesis is concerned with the study of families of interacting particles which present

non-standard interactions. The non-standard interactions that we study arise from

the particular class of problems we are interested in, Fredholm integral equations of

the first kind or from algorithmic design, as in the case of the Divide and Conquer

sequential Monte Carlo algorithm.

Fredholm integral equations of the first kind are a class of inverse ill-posed prob-

lems for which finding numerical solutions remains challenging. These equations are

ubiquitous in applied sciences and engineering, with applications in epidemiology,

medical imaging, nonlinear regression settings and partial differential equations. We

develop two interacting particle methods which provide an adaptive stochastic dis-

cretisation and do not require strong assumptions on the solution. While similar

to well-studied families of interacting particle methods the two algorithms that we

develop present non-standard elements and require a novel theoretical analysis. We

study the theoretical properties of the two proposed algorithms, establishing a strong

law of large numbers and Lp error estimates, and compare their performances with

alternatives on a suite of examples, including simulated data and realistic systems.

The Divide and Conquer sequential Monte Carlo algorithm is an interacting par-

ticle method in which different sequential Monte Carlo approximations are merged

together according to the topology of a given tree. We study the effect of the addi-

tional interactions due to the merging operations on the theoretical properties of the

algorithm. Specifically, we show that the approximation error decays at rate N−1/2

in the number of particles, establish a strong law of large numbers and show that

the approximations of the normalising constant are unbiased.

xii
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Introduction

1.1 Context and Motivation

Interacting particle methods refer to Monte Carlo methods which approximate

non-linear processes evolving in time. The non-linearity of these processes induces

a natural interaction in the evolution of the particle approximation models which

interact in a mean-field sense, i.e. the particle system acts over one fixed particle

through the empirical measure of the system only (Méléard, 1996).

The study of interacting particle systems originated in the field of statistical me-

chanics with the work of McKean (1966); finding its main application in the study

of the dynamics of gases. In the mid-1990s interacting particle methods were intro-

duced in the filtering literature as a powerful tool to perform inference in non-linear

settings (Del Moral, 1996; Gordon et al., 1993). Their applicability widened over

the subsequent years to include general inference for state space models (Chopin

and Papaspiliopoulos, 2020, Chapters 10, 12), approximation of Bayesian posteriors

(Chopin, 2002; Del Moral et al., 2006a), rare event simulation (Kroese et al., 2013,

Chapter 10), optimisation (Borovykh et al. (2021); Finke (2015, Chapter 15)), in-

ference for differential equations (Wang and Wang, 2020). In recent years families

of interacting particles have also been used to describe interactions between neurons

(Baladron et al., 2012), social and financial interactions (Carmona, 2016) and game

theory (Lasry and Lions, 2007).

The main objective of this work is to study families of interacting particles which

present non-standard interactions. The particular interacting particle methods that

we study in this work arise from two different perspectives: the need for stable

numerical methods to solve Fredholm integral equations of the first kind and the

merging of different particle populations which characterises Divide and Conquer

1



1. Introduction

sequential Monte Carlo (Lindsten et al., 2017).

Fredholm integral equations of the first kind are the prototypical example of

ill-posed linear inverse problems in the sense that the solution is often non-unique

and unstable to small changes is the observed data (Kress, 2014). These integral

equations are ubiquitous in applied sciences and engineering; they model, among

other things, density deconvolution (Delaigle, 2008; Ma, 2011; Pensky et al., 2017;

Yang et al., 2020) and image reconstruction (Aster et al., 2018; Clason et al., 2020;

Zhang et al., 2019), find applications in epidemiology (Goldstein et al., 2009; Gostic

et al., 2020; Marschner, 2020), statistics (Hall et al., 2005; Miao et al., 2018) and

naturally arise as a counterpart to partial differential equations (Colton and Kress,

2012; Tanana et al., 2016).

A common technique to overcome non-uniqueness and instability is to consider

regularisation. However, solving the regularised problem remains computationally

very challenging. In most cases, an approximate solution is obtained iteratively

using a fixed discretisation of its domain (Burger et al., 2019; Chae et al., 2018a;

Green, 1990; Yang et al., 2020) or by assuming that the solution can be expressed as

a linear combination of basis functions (Islam and Smith, 2020; Jin and Ding, 2016;

Kopeć, 1993; Mead, 1986). While these assumptions are common, they are rarely

satisfied in practice.

In this work we show that interacting particle methods offer a valuable alter-

native to standard discretisation schemes and basis expansion for the solution of

Fredholm integral equations. On one hand, Monte Carlo methods require less strin-

gent assumptions on the solution of the integral equation, on the other hand the

convergence rate of Monte Carlo does not depend on the dimension of the domain

of the solution and is therefore suitable to tackle problems in higher dimension than

those normally dealt by deterministic discretisation.

The Divide and Conquer sequential Monte Carlo algorithm introduced in Lind-

sten et al. (2017) is a natural extension of a particular class of particle methods,

sequential Monte Carlo methods, in which several particle populations are merged

sequentially. While some preliminary work was done in Lindsten et al. (2017), the

algorithm’s theoretical properties remain underexplored. We extend some of the

results of standard sequential Monte Carlo to its Divide and Conquer version.

1.2 Overview and Contributions

This thesis is divided into two parts: in Part I we explore the use of interacting

methods to solve Fredholm integral equations of the first kind, while in Part II we

2



1. Introduction

focus on the theoretical characterisation of the the Divide and Conquer sequential

Monte Carlo (DaC-SMC) algorithm proposed in Lindsten et al. (2017).

In Part I the non-standard interactions arise from the particular class of problems

we are interested in, Fredholm integral equations of the first kind. We propose two

interacting particle methods to solve Fredholm integral equations: the first one is

a sequential Monte Carlo (SMC) algorithm whose weights are intractable and are

approximated using the particle population itself, giving rise to an additional layer of

interaction with respect to standard SMC algorithms. In the second case we describe

the solution of the Fredholm integral equation as the law of a process satisfying a

a particular mean-field stochastic differential equation (SDE), by discretising this

SDE we obtain a family of interacting particles.

In Part II the non-standard interactions arise from algorithmic design: Divide

and Conquer SMC evolves populations of particles on a tree, with independent

populations merging whenever two branches of the tree coalesce. This coalescence

step introduces extra-interactions which are not found in standard SMC algorithms.

Chapter 2 is foremost an introductory chapter to two families of interacting

particle methods: sequential Monte Carlo (SMC) and interacting particle systems

for mean-field stochastic differential equations (SDEs). Both families can be thought

of Monte Carlo approximations of a limiting object, Feynman-Kac measure flows

and mean-field SDEs respectively. We discuss the numerical implementation and

theoretical properties of both families.

Part I In the first part of this thesis we introduce and study the properties of

two interacting particle methods for solving Fredholm integral equations and we

demonstrate their performances on a number of examples. The main contributions

are in Chapters 4–7.

Chapter 3 is a brief introduction to Fredholm integral equations of the first kind

and serves as motivation for the following chapters. Fredholm integral equations are

ubiquitous in science and engineering and in this chapter we list some of their appli-

cations and review standard regularisation techniques for their solution. Particular

emphasis is given to maximum likelihood methods and Expectation Maximisation

(EM) algorithms.

In Chapter 4 we introduce a continuous version of the Expectation Maximisation

Smoothing (EMS) of Silverman et al. (1990) and discuss its properties and limita-

tions. In particular, we show that the continuous EMS map admits a fixed point in

the space of probability measures under mild assumptions and extend the results on

uniqueness of the fixed point for the discretised EMS to smoothing matrices with

3



1. Introduction

positive entries.

Chapter 5 introduces a sequential Monte Carlo (SMC) algorithm to approximate

the continuous EMS recursion. Our contributions are three-fold.

• We show that the EMS recursion can be interpreted as a Feynman-Kac measure

flow and use this connection to build a novel particle version of EMS which

does not suffer from the limitations of the original scheme;

• Since standard SMC convergence results do not apply, we provide an original

theoretical analysis of the algorithm and show that this Monte Carlo scheme

enjoys the usual 1/
√
N rate of convergence;

• We demonstrate the algorithm on toy models as well as realistic image recon-

struction problems.

Chapter 6 introduces a penalised maximum likelihood estimator for the solution

of the integral equation and shows how to use a gradient flow construction to ob-

tain a partial differential equation (PDE) whose solution maximises the penalised

likelihood. In particular, we establish that the gradient flow PDE admits a (unique)

solution under the conditions we consider.

In Chapter 7 we connect the gradient flow PDE with its corresponding stochas-

tic differential equation (SDE), discuss the numerical implementation and present

results on both toy models and real data.

Part II The second part of this thesis is concerned with the study of Divide and

Conquer SMC (Lindsten et al., 2017). In Chapter 8 we describe the algorithm and

extend some of the standard results for SMC to this algorithm. In particular, we

show that DaC-SMC estimators of both the unnormalised and normalised targets

are consistent and satisfy Lp inequalities. In the case of the unnormalised target,

we also show that the estimators are unbiased, while in that of the normalised one,

we show that the estimators’ bias decays linearly with the number of particles. The

study of DaC-SMC, and in particular of the merging operations necessary to combine

two particle populations into one, lead us to study a class of Monte Carlo estimators

for multi-dimensional targets that we named product-form estimators (Kuntz et al.,

2021b). While product for estimators heavily feature in DaC-SMC their use is not

limited to this setting, and we anticipate that they could be embedded within more

complicated Monte Carlo routines to tackle the aspects of the problem exhibiting

product structure.

4



1. Introduction

1.3 Notation

We collect in this section the notation which will be used throughout this work.

For easy reference, we also provide a list of frequently used symbols on page 192

along with a list of abbreviations on page 193.

Sets and Vectors Let us denote by N the set of positive integers, and by R the set

of real numbers. We endow any subset H of Rd with the Borel σ-algebra B(H) with

respect to the Euclidean norm, and we endow any product space with the product

σ-algebra. For a vector x ∈ H ⊆ Rd we denote by

‖x‖1 :=

d∑
i=1

|xi| and ‖x‖2 :=

(
d∑
i=1

|xi|2
)1/2

the l1 and l2 norm, respectively. We denote by xi1:n := (xi1, . . . , x
i
n).

Functions Let the Banach space of real-valued bounded measurable functions on

H, endowed with the supremum norm, ‖ϕ‖∞ = supu∈H |ϕ(u)|, be denoted by Bb(H).

We denote by Cb(H) ⊂ Bb(H) the subset of bounded continuous functions and by

BL(H) ⊂ Cb(H) the subset of bounded Lipschitz continuous functions endowed with

the bounded-Lipschitz norm

‖ϕ‖BL := ‖ϕ‖∞ + sup
x 6=y

|ϕ(x)− ϕ(y)|
‖x− y‖2

.

For a set A ∈ B(H) we denote by I(A) the indicator function taking value 1 on

A and 0 otherwise.

Measures LetM(H) be the Banach space of signed finite measures on (H, B(H))

endowed with the bounded Lipschitz norm (e.g. Dudley (2002, page 394))

β(η) := sup
‖ϕ‖BL≤1

∣∣∣∣∫
H
η(dx)ϕ(x)

∣∣∣∣ . (1.1)

For ease of notation, for every measure ν ∈ M(H) and every ϕ ∈ Bb(H) we

denote the integral of ϕ with respect to ν by ν(ϕ) :=
∫
H ν(du)ϕ(u).

We denote by M+(H) ⊂M(H) the set of (unsigned) measures of nonzero mass

and by P(H) ⊂M+(H) the set of all probability measures on (H, B(H)). For every

5
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η ∈ P(H) we have

β(η) = sup
‖ϕ‖BL≤1

∣∣∣∣∫
H
η(dx)ϕ(x)

∣∣∣∣ ≤ sup
‖ϕ‖BL≤1

‖ϕ‖∞η(H) ≤ 1.

The β norm induces a metric on M(H)

β(µ, η) ≡ β(µ− η) = sup
‖ϕ‖BL≤1

∣∣∣∣∫
H
µ(dx)ϕ(x)−

∫
H
η(dx)ϕ(x)

∣∣∣∣
for µ, η ∈ M(H). This metric metrises weak convergence (Dudley, 2002, Theorem

11.3.3) inM(X): for every µ ∈M(H) and sequence {µn}n≥1 taking values inM(H),

β(µn, µ) → 0 is equivalent to µn(ϕ) → µ(ϕ) for all continuous bounded functions

ϕ ∈ Cb(H).

Let us denote the set of probability measures with finite second moment on H
by

P2(H) =

{
µ ∈ P(H) :

∫
µ(dx)‖x‖22 <∞

}
and we define the 2-Wasserstein distance on this set

W2(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
‖x− y‖22π (d(x, y))

)1/2

where Π(µ, ν) is the set of all possible couplings between µ and ν. We denote by

Pac2 (H) ⊂ P2(H) the subset of these measures which is absolutely continuous w.r.t.

the appropriate Lebesgue measure.

For any ν ∈M+(H) and any positive function G which is integrable with respect

to ν we denote by ΨG(ν)(dx) the Boltzmann-Gibbs transform

ΨG(ν)(dx) =
1

ν(G)
G(x)ν(dx).

For each ω ∈ Ω, we obtain a realisation of the particle system with N particles

at time n and a corresponding random measure denoted by ηNn : ω ∈ Ω 7→ ηNn (ω) ∈
P(H)

ηNn (ω)(·) =
1

N

N∑
i=1

δ(Xi
n(ω),Y in(ω))(·),

where we suppress from the notation the dependence of Xi
n(ω) and Y i

n(ω) upon N ,

6



1. Introduction

as we shall throughout in the interest of readability.

Operators For every operator O acting from M(X) into itself we define the op-

erator norm

‖O ‖op = sup

{
β(O ν)

β(ν)
: ν ∈M(X), β(ν) 6= 0

}
.

For bounded linear operators, we have the equivalent definition

‖O ‖op = sup {β(O ν) : ν ∈M(X), β(ν) = 1} .

A Markov kernel M from H to H induces two operators. One acts upon measures

in M(H) and takes values in M(H) and is defined by

∀ν ∈M(H) νM(·) =

∫
H
ν(du)M(u, ·)

and the other acts upon functions in Bb(H) and takes values in Bb(H) and may be

defined as

∀u ∈ H ∀ϕ ∈ Bb(H) M(ϕ)(u) =

∫
H
M(u,dv)ϕ(v).

7
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Interacting Particle Methods

2.1 Introduction

Interacting particle methods are a family of Monte Carlo methods which approx-

imate a probability distribution through an interacting population of (weighted)

samples evolving over time. We focus here on particle systems interacting in a

mean-field sense, that is systems in which each sample interacts with the rest of the

population through the empirical measure of the system (Méléard, 1996).

We introduce two classes of interacting particle methods, sequential Monte Carlo

(SMC) and interacting particle systems for mean-field stochastic differential equa-

tions (SDEs). Broadly speaking, both classes are Monte Carlo approximations of

limiting processes, sequential Monte Carlo algorithms can be seen as mean field ap-

proximations of an appropriate Feynman-Kac measure flow while mean-field SDEs

are the population limit of a family of interacting particles.

Sequential Monte Carlo (SMC) methods allow to approximate distributions and

integrals with respect to those distributions through a population of weighted sam-

ples (or particles). After their introduction in the context of filtering for state-space

models in the seminal works of Gordon et al. (1993) and Del Moral (1996), SMC

methods have been growing in popularity and have found application in a wide

range of fields, including posterior approximation (e.g. Chopin (2002)), smoothing

for state-space models (e.g. Del Moral et al. (2009), Briers et al. (2010)), parame-

ter estimation (e.g. Kantas et al. (2015)), Bayesian model comparison (e.g. Zhou

et al. (2016)), maximum likelihood estimation (e.g. Finke (2015, Chapter 6) and

references therein). A book-length introductory treatment is given in Chopin and

Papaspiliopoulos (2020).

Mean-field SDEs are stochastic differential equations whose coefficients depend

8



2. Interacting Particle Methods

not only on the process itself but also on its distribution. The evolution of the process

solving the SDE is approximated by considering several copies of the SDE which

interact through their drift and diffusion coefficients where the empirical distribution

of the copies approximates the distribution of the solution. Originally introduced to

study the dynamics of gases (McKean, 1966; Méléard, 1996), mean-field SDEs also

find wide applications in the theory of mean-field games (Lasry and Lions, 2007)

describing large scale social and financial interactions (Carmona, 2016; Carmona

et al., 2016), in neuroscience, to describe the interactions between neurons (Baladron

et al., 2012) and in the analysis of the limiting behaviour of neural networks (e.g.

De Bortoli et al. (2020) and references therein).

In the first part of this chapter, we briefly review the fundamental ideas of

Feynman-Kac measure flows and their approximation via sequential Monte Carlo.

The connection with Feynman-Kac measure flows is particularly convenient, as it

allows to study the properties of a wide range of SMC algorithms (Del Moral, 2004,

2013). We present selected results on the convergence of these Monte Carlo algo-

rithms, and a number of algorithms which fall into the broader class of sequential

Monte Carlo methods, with particular focus on works related to the topic of this

thesis. In the second part of this chapter we introduce mean-field SDEs, their numer-

ical implementation and corresponding theoretical properties with particular focus

on the results which will be relevant in the development of this work.

2.2 Feynman-Kac Measure Flows

Feynman-Kac measure flows are a class of mathematical models used to describe

the evolution of a sequence of measures through time. These models can be defined

both in continuous and in discrete time, but, for the sake of brevity, we will only

discuss the discrete time formulation as this is the only one needed in the develop-

ment of this thesis. A comprehensive review of the discrete case can be found in

Del Moral (2004, 2013), while the continuous case is studied in e.g. Del Moral and

Miclo (2000).

Consider a collection of measurable spaces (Hn,Hn), n ∈ N. For simplicity,

we assume that Hn is endowed with a separable topology, so that we can select

Hn to be the Borel σ-algebras B(Hn), n ∈ N. Let us denote the set of signed

finite measures on (Hn, B(Hn)) by M(Hn) and the set of all probability measures

on (Hn, B(Hn)) by P(Hn) ⊂ M(Hn) for all n ∈ N. Let the Banach space of real-

valued bounded measurable functions on H, endowed with the supremum norm,

‖ϕ‖∞ = supu∈H |ϕ(u)|, be denoted by Bb(H). For ease of notation, for every measure

9



2. Interacting Particle Methods

η ∈ M(H) and every ϕ ∈ Bb(H) we denote the integral of ϕ with respect to η by

η(ϕ) :=
∫
H η(du)ϕ(u).

A sequence of probability measures {η̂n(x1:n)}n≥1 of increasing dimension defined

on the measurable spaces (Hn, B(Hn))n≥1 follows a Feynman-Kac evolution flow if

η̂n(dx1:n) ∝ η̂n−1(dx1:n−1)Mn(xn−1, dxn)Gn(xn) (2.1)

where Mn are Markov mutation kernels

Mn : H×B(H)→ [0, 1] , Mn : (x1:n−1, A) 7→Mn(x1:n−1, A)

and Gn(xn) are non-negative potential functions which are integrable with respect

to η̂n for all n ≥ 1 (Del Moral, 2004, 2013).

Recursion (2.1) can be decomposed into two steps. In the mutation step, a

new state is proposed according to Mn, the resulting distribution is the predictive

distribution. In the selection step, the proposed state is weighted according to the

potential function Gn, the weighted distribution is the updated distribution:

Prediction: ηn(dx1:n) ∝ η̂n−1(dx1:n−1)Mn(x1:n−1, dxn)

Update: η̂n(dx1:n) ∝ ηn(dx1:n)Gn(xn).

It follows that the predictive distributions {ηn(dx1:n)}n≥1 satisfy the recursion

ηn+1(dx1:n+1) ∝ ηn(dx1:n)Gn(xn)Mn+1(x1:n,dxn+1). (2.2)

It is easy to show that (2.1) and (2.2) describe the same evolution model, and that

analysing (2.1) is equivalent to analysing (2.2) (Del Moral, 2004, Proposition 2.4.1).

Of complementary interest is the unnormalised flow of the updated distribution,

γ̂n ∈M+(Hn)

γ̂n(dx1:n) = γ̂n−1(dx1:n−1)Mn(x1:n−1, dxn)Gn(xn) (2.3)

with η̂n(dx1:n) = γ̂n(dx1:n)/Ẑn and Ẑn := γ̂n(Hn) denoting the normalising con-

stant of η̂n(dx1:n). In particular, the integral of ϕ(x1:n) ≡ 1 with respect to the

unnormalised flow provides the normalising constant Ẑn = γ̂n(1).

Remark 2.1. Our notation slightly differs from that of Del Moral (2004, 2013) as

we denote the joint path-space distribution, i.e. the distribution of x1:n, by ηn and

its unnormalised version by γn. On one hand, this choice reduces the amount of
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2. Interacting Particle Methods

notation introduced, on the other hand, in the remainder of this work we are mostly

interested in the marginal distribution at time n that we denote, with a slight abuse

of notation, by ηn(dxn).

A wide class of models satisfy (2.1). We present here two classical examples, one

from statistical physics and the well-known filtering problem for state-space models.

Example 2.1 (Particle absorption models). Consider a particle evolving on the

measurable space (Hn, B(Hn)) to which a cemetery state {c} is added, so that when

the particle reaches the cemetery state it is killed. The evolution of the particle

is described by a Markov chain {Xn}n≥1 with transition kernel Mn and a killing

probability 1 − Gn(x) with Gn(x) ∈ [0, 1] for all x ∈ H. Assume the particle is

at location Xn at time n, then with probability 1 − Gn(Xn) it is killed, otherwise

the particles moves to Xn+1 ∼ Mn+1(Xn, ·). If we denote by T the first time at

which the particle enters the cemetery state, then the law of (X1:n) conditioned on

T ≥ n is described by the Feynman-Kac flow (2.1) while the normalising constant

Ẑn corresponds to P(T ≥ n), the probability of the particle surviving up to time n

(Del Moral, 2013, Section 7.1.1).

Example 2.2 (Filtering for State Space Models). Consider a discrete-time Markov

process {Xn}n≥1 such that

X1 ∼ η1(x1) and Xn | (Xn−1 = xn−1) ∼ f(xn−1, xn),

where f(x′, x) is the probability density associated with moving from x′ to x, and a

sequence of conditionally independent observations {Yn}n≥1

Yn | (Xn = xn) ∼ g(yn | xn),

where g is the likelihood of observation yn given the latent state xn (e.g. Doucet

and Johansen (2011)). The distributions of interest are the filtering distributions,

i.e. the laws of the hidden state, Xn at time n, given observations y1:n, η̂n(dx1:n) =

p(dx1:n | y1:n) for each n ≥ 1. These distributions satisfy the Feynman-Kac flow

in (2.1) with Mn ≡ f and Gn ≡ g. The unnormalised flow (2.3) describes the

evolution of the marginal likelihood Ẑn = p(y1:n).

2.3 Sequential Monte Carlo Methods

Sequential Monte Carlo (SMC) methods approximate η̂n and ηn for n ≥ 1

through a particle population. The population consists of a set of N weighted parti-
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Figure 1: Evolution of the particle population in SMC.

cles {Xi
n,W

i
n}Ni=1 evolved in time according to the dynamic in (2.2). The evolution

has two fundamental steps: mutation according to Mn and selection via the poten-

tial function Gn and a resampling mechanism. In the mutation step, the equally

weighted population at time n − 1, {X̃i
n−1,

1
N }

N
i=1, evolves into the population at

time n, {Xi
n,

1
N }

N
i=1 where Mn(X̃i

n−1, dxn) is a Markov kernel. In the selection step,

the fitness of the new particles is measured through Gn, which gives the weights

W i
n =

Gn(Xi
n)∑N

j=1Gn(Xj
n)
. (2.4)

The new particles are then replicated or discarded according to the Boltzmann-Gibbs

transform associated with the potential Gn

ΨGn(ηn)(dx1:n) :=
1

ηn(Gn)
Gn(xn)ηn(dx1:n).

The equally weighted population at time n, {X̃i
n,

1
N }

N
i=1, is obtained by resampling

from {Xi
n,W

i
n}Ni=1. Resampling consists of selecting with replacement N particles

from {Xi
n}Ni=1 to get N equally weighted new positions {X̃i

n}Ni=1. There are a number

of options for the selection mechanism. We review some of them in Section 2.3.1.

Figure 1 gives a schematic representation of the evolution of the particle popula-

tion from time n−1 to time n. Iterating this simple mutation-reweighting-resampling

scheme gives Algorithm 1, often called sequential importance resampling (SIR). The

SIR strategy is the basis of every SMC algorithm.

At each time step n, the particle population provides estimators of both the

predictive distribution ηn and the updated distribution η̂n. The predictive distribu-

tion ηn is approximated through the distribution of the particle population after the

12
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Algorithm 1: Sequential Importance Resampling (SIR)

At time n = 1
1 Given η1: Sample Xi

1 ∼ η1 for i = 1, . . . , N
2 Compute the the normalised weights (2.4) for i = 1, . . . , N

At time n > 1
3 (Re)Sample

{
Xi

1:n−1,W
i
n

}
to get

{
X̃i

1:n−1,
1
N

}
for i = 1, . . . , N

4 Sample Xi
n ∼Mn(X̃i

n−1, ·) and set Xi
1:n = (X̃i

1:n−1, X
i
n) for i = 1, . . . , N

5 Compute the the normalised weights (2.4) for i = 1, . . . , N

mutation step

ηNn (dx1:n) =
1

N

N∑
i=1

δXi
1:n

(dx1:n),

while the updated distribution η̂n is approximated by both the distribution after the

reweighting step

ΨGn(ηNn )(dx1:n) =

∑N
i=1Gn(Xi

n)δXi
1:n

(dx1:n)∑N
j=1Gn(Xj

n)
, (2.5)

and the distribution after the resampling step

η̂Nn (dx1:n) =
1

N

N∑
i=1

δ
X̃i

1:n
(dx1:n). (2.6)

The approximation (2.5) is usually preferred to (2.6), as the variance of (2.5) is

smaller than that of (2.6) as a consequence of the Rao-Blackwell Theorem (Blackwell,

1947; Rao, 1992). Algorithm 1 also provides estimates of the normalising constant

Ẑn

ẐNn =

n∏
p=1

1

N

N∑
i=1

Gp(X
i
p)

and of the corresponding unnormalised flow γ̂Nn (dx1:n) = ẐNn η̂Nn (dx1:n).

2.3.1 Resampling

Resampling is a key idea in SMC, since the introduction of a resampling step,

despite increasing the variance at time n, leads to more stable approximations in

the long run and avoids path degeneracy (Douc et al., 2005). Broadly speaking, a

resampling scheme is a selection mechanism which given a set of weighted samples

13
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{Xi,W i}Ni=1 outputs a sequence of equally weighted samples {X̃i, 1/N}Ni=1 in which

for all i = 1, . . . , N X̃i = Xj for some j.

Several resampling mechanisms have been considered in the literature. We con-

sider the most widely used class of schemes, those in which the selection mechanism

is random and the expected number of copies of Xi is proportional to Wi for each

i = 1, . . . , N (Douc et al., 2005). In particular, we focus on multinomial resam-

pling (Gordon et al., 1993) and adaptive multinomial resampling (Liu, 2008, page

35). This choice is motivated by the following observations. First, many theoretical

results (e.g. the central limit theorem of Chopin (2004)) are obtained for multino-

mial resampling, as lower variance resampling strategies (e.g. stratified/systematic

resampling) can substantially complicate the theoretical analysis. Secondly, lower

variance resampling schemes could easily replace the multinomial scheme and would

be expected to improve performances. Douc et al. (2005) provides a comparative

survey of multinomial, residual, stratified and systematic resampling and Gerber

et al. (2019) analyses the consistency properties of resampling schemes.

In multinomial resampling (Gordon et al., 1993) the number of copies of particle

Xi
n is a multinomial random variable with N trials and probabilities given by W i

n

for all particles i = 1, . . . , N .

In adaptive multinomial resampling the resampling step is performed only if a

given condition is satisfied. Following Liu (2008), we consider the effective sample

size (ESS)

ESS =

 N∑
j=1

W j
n

2(
N∑
i=1

(W i
n)2

)−1

and we perform a multinomial resampling step only if ESS < N/2. Recently, Del

Moral et al. (2012) showed that this approach shares many favourable convergence

properties with its non-adaptive counterpart.

2.3.2 Convergence Properties of SMC

The particle approximations provided by SMC possess various convergence prop-

erties. A complete survey of the convergence results available in the literature is

beyond the scope of this work, for the convenience of the reader we present here

selected results and refer to e.g. Del Moral (2004, 2013) for a deeper discussion.

Our aim in presenting these results is twofold. On one hand, they provide formal

justification for the use of SMC methods, on the other hand the SMC algorithms

that we will study in the following are non-standard, and we will show how to extend
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some of these results to the particular non-standard cases at hand.

In the literature, two approaches have been widely used to establish convergence

results. As SMC methods are interpreted as mean field approximations of Feynman-

Kac measure flows (Del Moral, 2004, 2013), it is natural to use this connection to

analyse the particle approximations provided by SMC. Secondly, one could directly

analyse Algorithm 1 as in, e.g., Crisan and Doucet (2000), Crisan and Doucet (2002),

Mı́guez et al. (2013), Chopin (2004), Andrieu et al. (2010).

We only present results on the final time marginals

η̂Nn (dxn) =
1

N

N∑
i=1

δ
X̃i
n
(dxn),

of the updated distribution (2.6) because the final time marginals are the quantities

we will focus on the remainder of this work. In addition, when the potential functions

Gn only depend on the terminal point xn and not on x1:n−1 (as in the SIR algorithm

described above) the path measure η̂Nn (dx1:n) and its marginal η̂Nn (dxn) have the

same structure (Del Moral, 2004, Section 2.4.1) and the results below (with the

exception of Proposition 2.2) hold for η̂Nn (dx1:n) too. Equivalent results hold for

the predictive distribution ηn and its particle approximation (5) (Del Moral, 2004,

Section 2.4.1).

We begin by presenting those results concerning expectations with respect to η̂Nn ,

η̂Nn (ϕ) := N−1
∑N

i=1 ϕ(X̃i
n), and its unnormalised version γ̂Nn , γ̂Nn (ϕ) := ẐNn η̂Nn (ϕ),

for measurable bounded test functions ϕ ∈ Bb(H). These results are presented under

fairly strong assumptions:

Assumption 2.1. The potentials Gn are bounded for all n ≥ 1 and positive every-

where, Gn(xn) > 0 for every xn ∈ H.

This assumption is common in the SMC literature (Del Moral, 2004, 2013), in

particular Gn(xn) > 0 for every xn ∈ H ensures that the system does not become

extinct (i.e. the weights have never all simultaneously taken the value zero), and

can be relaxed introducing stopping times (Del Moral, 2004) or considering local

boundedness (Whiteley, 2013).

The first result we present is the Lp-inequality,

Proposition 2.1 (Lp-inequality). Under Assumption 2.1, for every time n ≥ 1

and every p ≥ 1 there exists a finite constant Cp,n such that for every measurable
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bounded function ϕ ∈ Bb(H)

E
[
|η̂Nn (ϕ)− η̂n(ϕ)|p

]1/p ≤Cp,n ‖ϕ‖∞√
N

,

where the expectations are taken with respect to the law of all random variables

generated within the SMC algorithm.

This result was established for p = 2 using the direct approach in Crisan and

Doucet (2000, 2002) and generalised to any p in Mı́guez et al. (2013) (under slightly

different assumptions). The mean field approximation approach is detailed in The-

orem 7.4.3 of Del Moral (2004).

This statement can be strengthened to a time uniform bound (Del Moral, 2004,

Theorem 7.4.4) under an additional mixing assumption on the Markov kernels Mn

detailed in Del Moral (2004, page 116):

Proposition 2.2 (Time uniform bounds). Under Assumption 2.1 and additional

mixing assumptions on the Markov kernels Mn, for every p ≥ 1

sup
n≥1

sup
ϕ∈Bb(H)

E
[
|η̂Nn (ϕ)− η̂n(ϕ)|p

]1/p ≤Cp ‖ϕ‖∞√
N

,

where the expectations are taken with respect to the law of all random variables

generated within the SMC algorithm and the finite constant Cp depends on the

mixing conditions on Mn and on the boundedness conditions on Gn.

Closely related to the Lp inequality is the strong law of large numbers (SLLN)

Proposition 2.3 (Strong law of large numbers). Under Assumption 2.1, for all

n ≥ 1 and for every ϕ ∈ Bb(H), we have η̂Nn (ϕ)
a.s.→ η̂n(ϕ).

The SLLN can be obtained using a direct inductive argument as in Crisan and

Doucet (2000, 2002), the mean field approximation approach as in Del Moral (2004,

Corollary 7.4.2) or from the Lp inequality using Markov’s inequality within a Borel-

Cantelli argument as shown in e.g. Boustati et al. (2020, Appendix D).

We then focus on the bias of the approximations. The approximations of the

unnormalised flow γn are unbiased:

Proposition 2.4 (Unbiasedness of unnormalised flow). Under Assumption 2.1, for

any N ≥ 1, n ≥ 1 and any ϕ ∈ Bb(H) we have

E
[
γ̂Nn (ϕ)

]
= γ̂n(ϕ).
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In particular, the normalising constant estimate is unbiased: E
[
ẐNn
]

= Ẑn.

The unbiasedness result is given in Del Moral (2004, Theorem 7.4.2), while An-

drieu et al. (2010) obtain the same result by directly analysing Algorithm 1. Under

the additional assumption that the potential functions are bounded below for all

n, i.e. Gn(·) ≥ β > 0 it is possible to obtain the following bias estimates (e.g.

Del Moral (2013, Proposition 9.5.6) and Olsson and Rydén (2004))

Proposition 2.5 (Bias estimate). Under Assumption 2.1, if the potential functions

are bounded below Gn(·) ≥ β > 0, n ≥ 1 and any ϕ ∈ Bb(H) we have

∣∣E [η̂Nn (ϕ)
]
− η̂n(ϕ)

∣∣ ≤ Cn‖ϕ‖∞
N

(2.7)

for some finite Cn. The expectations are taken with respect to the law of all random

variables generated within the SMC algorithm.

Similar bias estimates can be obtained without the additional assumption on the

lower bound of the potentials by considering stopping times as in Del Moral (2004,

Theorem 7.4.3) with the addition on the right hand-side of (2.7) of a term depending

on the properties of Mn which decays exponentially fast with N .

The last result on convergence of integrals that we present is the central limit

theorem

Proposition 2.6 (CLT). Under Assumption 2.1, for every time n ≥ 1 and every

continuous bounded function ϕ ∈ Cb(H)

√
N
[
η̂Nn (ϕ)− η̂n(ϕ)

] d−→ N
(
0, σ2

n(ϕ)
)

for some finite positive σ2
n(ϕ).

The CLT is proven in Del Moral (2004, Chapter 9) using the mean field approx-

imation approach and in Chopin (2004) using the direct approach (for a wider class

of test functions). In the first case the asymptotic variance σ2
n(ϕ) is given as sum

of integral expressions, while in the second case the σ2
n(ϕ) is obtained recursively;

the two expression can be shown to be equal (see Chopin (2004) and Johansen and

Doucet (2007, Proposition A.1.1))

Among the results which do not involve expectations of test functions ϕ, we

present the almost sure convergence in the weak topology of measures:

Proposition 2.7 (Almost sure convergence in the weak topology). Under Assump-

tion 2.1, η̂Nn converges almost surely in the weak topology to η̂n, η̂Nn ⇀ η̂n as N →∞
for all n ≥ 1.
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This result is a corollary of the SLLN, as shown in Crisan and Doucet (2002)

and more recently in Schmon et al. (2021).

2.3.3 Some Examples of SMC Algorithms

This section provides some popular examples of SMC algorithms, making the

connection with Feynman-Kac flows explicit.

Consider the filtering problem for state space models described in Example 2.2

and the corresponding Feynman-Kac flow (2.1) with Mn ≡ f and Gn ≡ g. Then,

the SMC algorithm approximating this flow is the bootstrap particle filter of Gordon

et al. (1993).

The filtering problem has an intrinsic sequential structure. When this is not

the case, it is often possible to give a sequential structure to the problem at hand.

An excellent example is posterior estimation. In this context, one could sequentially

introduce the available data y1:n in the likelihood evaluation (Chopin, 2002) or grad-

ually increase the influence of the likelihood over the prior (using for example the

geometric construction of Neal (2001)). SMC algorithms for these scenarios have

been considered in e.g. Chopin (2002); Del Moral et al. (2006a).

Often, in order to introduce a sequential structure in the problem, new parame-

ters influencing Mn and Gn have to be introduced. To improve algorithmic efficiency,

it is natural to choose the values of these parameters adaptively. This approach is

named adaptive SMC and has been recently shown to satisfy some of the conver-

gence properties of its non-adaptive counterpart, specifically, a weak law of large

numbers and a central limit theorem (Beskos et al., 2016).

Recently, SMC methods have also been implied to find eigenvalues and eigen-

functions of a given integral kernel (Whiteley and Kantas, 2017). This algorithm is

somewhat similar in spirit to the algorithms we will introduce in this thesis, as both

aim at finding a fixed point of a particular expression.

SMC algorithms for Fredholm Integral Equations

The use of SMC methods to solve Fredholm integral equations is not new. In

particular, sequential importance sampling (SIS), a version of the SIR algorithm

without resampling, has been employed to solve Fredholm integral equations of the

second kind:

f(x1) =

∫
X
g(x1, x2)f(x2)dx2 + h(x1), (2.8)
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where h : X → R and g : X × X → R are known functions on some space X and

f : X→ R is unknown (Halton, 1994; Spanier and Gelbard, 2008, Chapter 2).

When the operator f 7→
∫
X g(·, x2)f(x2)dx2 is a contraction (i.e. if maxy∈Y

∫
X |g(y |

x)dx| < 1), the solution of (2.8) admits the following Von-Neumann series represen-

tation (see Kress (2014, Section 2.4) and Doucet et al. (2010) for details):

f(x1) = h(x1) +

∞∑
n=2

∫
Xn

n∏
k=2

g(xk−1, xk)h(xn)dx1:n (2.9)

and then use SIS to approximate the right-hand-side of (2.9).

We detail here the approach adopted in Spanier and Gelbard (2008, Chapter 2);

see also Doucet et al. (2010). The Feynman-Kac flow (2.1) is obtained by selecting

an initial probability distribution µ such that µ(dx) > 0 on X and a Markov kernel

M on X×X such that M(x1, x2) > 0 if g(x1, x2) 6= 0 and with an absorbing state xa

such that M(x, xa) = p for all x ∈ X. At the first time step the mutation kernel Mn

is given by µ and the potential function Gn is h(x1)/(pµ(x1)) so that the product

of the two (conditional on no-absorption) gives the first term in (2.9).

Similarly, at following time steps, Mn ≡M and the potential functions are

Gn(xn) = h(xn)
g(xn−1, xn)

M(xn−1, xn)
.

Then, the normalising constant of η̂n in (2.1) corresponds to the integral in (2.9) at

given n.

2.4 Mean-Field Stochastic Differential Equations

Mean-field stochastic differential equations (SDEs), also known as McKean-

Vlasov SDEs, are stochastic differential equations whose coefficients depend on the

law ρt of the process itself

dXt = b(Xt, ρt)dt+ s(Xt, ρt)dWt, (2.10)

with Xt a d-dimensional process, Wt a d-dimensional Brownian motion, X0 ∼ ρ0

square integrable, b : Rd × P(Rd) → Rd and b : Rd × P(Rd) → Rd×d where P(Rd)
denotes the set of probability measures on Rd.

These equations provide a probabilistic representation of non-linear partial dif-

ferential equations (PDEs) describing the limiting behaviour of a particle evolving

within a large system of particles interacting in a mean-field sense and where first
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studied by McKean (1966).

Example 2.3 (Burgers’ Equation). Burgers’ partial differential equation describes

the speed u(t, x) of a fluid with viscosity σ2

∂u
∂t (t, x) = 1

2σ
2 ∂2u
∂x2

(t, x)− u(t, x)∂u∂x(t, x), in [0, T ]× R,

u(0, x) = u0(x)
(2.11)

As a consequence of Itô’s Lemma (Itô, 1951), the process Xt with cumulative dis-

tribution function u(t, x) satisfies

dXt =

[∫
R
ρt(dy)H(Xt − y)

]
dt+ σdWt,

where H is the Heaviside function and ρt is the law of Xt.

2.4.1 Numerical Implementation

Since mean-field SDEs have coefficients which depend on the law ρt of the process,

the first step towards numerically approximating (2.10) is the introduction of a space

discretisation. This can be achieved by considering N copies of (2.10) and replacing

the non linearity of the coefficients by interaction (Bossy and Talay, 1997). Given

N copies (X1,N
t , ..., XN,N

t ), at t = 0 sample i.i.d. Xi,N
0 ∼ ρ0 and then evolve each

particle according to the non-linear SDE

dXi,N
t = b(Xi,N

t , ρNt )dt+ s(Xi,N
t , ρNt )dW i

t , (2.12)

where W i
t for i = 1, . . . , N are N independent d-dimensional standard Brownian

motions and ρNt is the empirical measure given by the N particles

ρNt (dx) :=
1

N

N∑
i=1

δ
Xi,N
t

(dx).

The limit behaviour of (2.12) as N → ∞ depends on the continuity properties

of the coefficients b, s, in particular we distinguish between the case in which b, s are

Lipschitz continuous which is widely studied and the general case for which fewer

results exist (see Section 2.4.2 below). Generally, we are interested in the propagation

of chaos result:

Proposition 2.8 (Propagation of Chaos). Under continuity assumptions on b, s

which will be made explicit in Section 2.4.2, for any T ≥ 0 there exist C1 <∞ and

20



2. Interacting Particle Methods

γ > 0 such that for any N ∈ N

sup
1≤i≤N

E

[
sup

0≤t≤T

∣∣∣Xi,N
t −Xi

t

∣∣∣2] ≤ C1N
−γ . (2.13)

Intuitively, the results above tells us that if at time t = 0 the N particles are

i.i.d. from ρ0, then the law of N fixed particles tends to the distribution of N

independent particles with same law ρt when the size of the system goes to infinity

(Méléard, 1996). From a practical point of view, (2.13) justifies the use of Monte

Carlo methods to approximate the process Xt solving (2.10).

Numerical implementation of (2.12) requires a time discretisation scheme. We

focus here on Euler type discretisations; schemes with higher order of convergence

exist (Bao et al., 2020; Kumar and Neelima, 2021) but require Lions derivatives on

measure spaces (Lasry and Lions, 2007) and are therefore not considered here. The

explicit Euler scheme for (2.12) with discretisation step ∆t is

Y i,N
k+1 = Y i,N

k + b(Y i,N
k , ρNk ) ∆t+ s(Y i,N

k , ρNk )∆W i
k, (2.14)

where ∆W i
k are independent centred Gaussian random variables with variance ∆t

and ρNk is the empirical measure corresponding to the time-discretised N -particle

system

ρNk (dy) :=
1

N

N∑
i=1

δ
Y i,Nk

(dy). (2.15)

As for standard SDEs the time continuous interpolation of the Euler scheme with

time step ∆t

dY i,N
t = b

(
Y i,N
tk

, ρNtk

)
dt+ s

(
Y i,N
tk

, ρNtk

)
dW i

t , ρNtk(dy) :=
1

N

N∑
i=1

δ
Y i,Ntk

(dy),

where W i
t for i = 1, . . . , N are N independent d-dimensional standard Brownian

motions and tk := max{k : k ≤ t}, is then compared to the N -particle system (2.12)

to check its convergence properties:

Proposition 2.9 (Time Discretisation). Under continuity assumptions on b, s which

will be made explicit in Section 2.4.2, for any T ≥ 0 there exist δ > 0 and a constant
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C2 > 0 independent on N and δ such that

sup
1≤i≤N

E

[
sup

0≤t≤T

∣∣∣Xi,N
t − Y i,N

t

∣∣∣2] ≤ C2(∆t)δ.

Combining the two results above we obtain the rate of convergence of (2.14)

with respect to the time discretisation ∆t and the number of particles N :

Proposition 2.10. Under continuity assumptions on b, s which will be made explicit

in Section 2.4.2, for any T ≥ 0 there exist δ, γ > 0 and a constant C > 0 independent

on N and δ such that

sup
1≤i≤N

E

[
sup

0≤t≤T

∣∣∣Xi
t − Y

i,N
t

∣∣∣2] ≤ C (N−γ + (∆t)δ
)
.

While results for general b, s require some continuity assumptions, it is possible

to obtain estimates like that in Proposition 2.10 also for models with discontinuous

b, s as the Burgers’ equation in Example 2.3 (Bossy and Talay, 1997):

Example 2.4 (Burgers’ equation). consider the model for fluid diffusion given by

the Burgers’ equation in Example 2.3. Burgers’ PDE can be solved numerically

through (2.14), Bossy and Talay (1997) show that the empirical distribution function

of the particles (2.14) satisfies an estimate like that in Proposition 2.10 with γ =

δ = 1/2.

While in Example 2.4 we are interested in letting N → ∞,∆t → 0 to obtain

a approximate solution for (2.11), in the theory of mean-field games the behaviour

of (2.12) for finite N is often more interesting (Carmona and Delarue, 2018):

Example 2.5 (A Toy Model of Systemic Risk; Carmona et al. (2015)). Consider a

toy example in which each particle Xi
t represents the logarithm of the cash reserves

of bank i = 1, . . . , N at time t. The following SDE describes a simple model for

borrowing and lending between banks

dXi,N
t = a(X̄t −Xi,N

t )dt+ σdBi
t, i = 1, . . . , N

where for ρ ∈ [−1, 1]

dBi
t =

√
1− ρ2dW i

t + ρdW 0
t

with W i
t for 0 = 1, . . . , N are independent one-dimensional Brownian motions, mod-

els the correlations between banks, a, σ > 0 and X̄N
t denotes the sample mean at
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time t. The sample mean in the drift coefficient represents the interaction between

banks.

This model can be solved explicitly observing that the process X̄t is a Brownian

motion with diffusion coefficient σ/
√
N and thus in the limit N → ∞ each Xi,N

t

converge to independents Ornstein-Uhlenbeck processes.

2.4.2 Properties of mean-field SDEs

We collect here some results on mean-field SDEs (2.10) and their particle im-

plementation (2.12). We focus on existence and uniqueness results and convergence

results like those in Propositions 2.8– 2.9. First, we consider the case in which b, s

are Lipschitz continuous as this is the case for which the majority of the results hold,

then we move onto some results which require less stringent assumptions on b, s.

The Lipschitz Case

The case in which both b and s are Lipschitz continuous is well studied, and

one can establish existence and uniqueness for both the mean-field SDE (2.10) and

the particle system (2.12). Existence and uniqueness of a strong solution of (2.10)

can be obtained, under the assumption that X0 is square integrable, exploiting fixed

point arguments (e.g. Jourdain et al. (2008); McKean (1967); Sznitman (1991))

or considering (2.10) as the limit for N → ∞ of the particle system (2.12) and

exploiting the propagation of chaos result in Proposition 2.8 (Méléard, 1996).

In the case in which the drift can be decomposed into a term involving the

interaction and one which only depends on the process itself

b(Xt, ρt) = b1(Xt) + εb2(Xt, ρt)

for ε > 0 small (i.e. if the interaction term is small), a number of results on the uni-

form ergodicity of (2.10) have been established (Bogachev et al., 2019; Butkovsky,

2014; Eberle, 2016; Malrieu, 2001). Similar results also exists for mean-field SDEs

with unit diffusion coefficient (Benachour et al., 1998; Veretennikov, 2006) The gen-

eral case has been considered in Song (2020) under smoothness assumptions on b, s

involving Lions derivatives in measure spaces.

In the Lipschitz case, existence and uniqueness of a solution for the N -particle

system (2.12) carries over from the existence and uniqueness of (2.10) (e.g. Protter
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(2005, Theorem 7, page 259)). In the particular case

b(Xt, ρt) =

∫
ρt(dy)β(Xt, y) s(x, ρt) =

∫
ρt(dy)σ(Xt, y)

with β, σ Lipschitz, propagation of chaos results appeared early on in the literature,

in this case the rate in Proposition 2.8 is γ = 1 (McKean, 1967; Sznitman, 1991).

The general case has first been addressed in Oelschlager (1984), in which convergence

of the left-hand-side of (2.13) is established without providing explicit rates. Under

strong integrability assumptions on X0, Jourdain et al. (2008) and Carmona (2016,

Theorem 1.10) show that the rate deteriorates with the dimension d of Xt, γ =

2/(d+ 4), however, sharper results exist in particular contexts (e.g. convergence of

neural networks; De Bortoli et al. (2020)).

Given the generator of the N -particle system (2.12) for any twice-differentiable

function V : RN × Rd → R with bounded derivatives

LNV (x1:N ) =
N∑
i=1

Li,N
ρN (x)

V (x1,N , . . . , xi,N , . . . , xN,N ),

where Li,N
ρN (x)

is the generator of the mean-field SDE (2.10) acting over any twice-

differentiable function V : Rd → R with bounded derivatives

Lρ(x)V (x) :=
d∑

k=1

b(x, ρ)
∂V

∂xk
(x) +

1

2

d∑
k=1

d∑
l=1

(
s(x, ρ)s(x, ρ)T

) ∂2V

∂xk∂xl
, (2.16)

applied to component i of V , the superscript T denotes the matrix transpose and

ρN (x) is the empirical measure associated with the particle system; the ergodic

properties of the particle system (2.12) can be established using standard Foster–

Lyapunov conditions (Meyn and Tweedie, 1993).

The Euler scheme (2.14) is analysed in Bossy and Talay (1997) and, in the Lips-

chitz case, admits strong order of convergence 0.5 and thus δ = 1 in Proposition 2.9.

As observed by the authors, this rate is sub-optimal; indeed Antonelli and Kohatsu-

Higa (2002) show that the rate can be improved to δ = 2. In the case of mean-field

SDEs, convergence of the empirical measure (2.15) to ρt is also of interest. In partic-

ular, if b, s are bounded and sufficiently smooth, then ρt ∈ P(Rd) admits a density

with respect to the Lebesgue measure for all t (Antonelli and Kohatsu-Higa, 2002)

and smooth approximations of ρt can be obtained from the particle system using
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standard kernel density estimator (KDE) procedures:

ρ̃Nk (x) :=
1

N

N∑
i=1

|Σ|−1/2φ
(

Σ−1/2(Xi,N
k − x)

)
where φ is the density of d-dimensional standard Gaussian and Σ is a bandwidth

matrix. In the one dimensional case, if H = ∆t2 we have the following bound on

the error of the KDE estimator for any fixed t ∈ (0, T ]∫
E
[∣∣ρt(x)− ρ̃Nt (x)

∣∣]dx ≤ D
(
N−1/2 + ∆t+N−1/2∆t1/4

)
where with a slight abuse of notation we denote by ρt both the measure and its

density and D is a finite constant independent of N,∆t (Antonelli and Kohatsu-

Higa, 2002, Theorem 3.1). The generalisation for d > 1 follows straightforwardly.

Non-Lipschitz Coefficients

The case in which the drift and diffusion coefficients are not Lipschitz continuous

is less understood and fewer results exist. A complete review is out of the scope of

this thesis, however we collect here some recent results which extend the results

above to the non-Lipschitz case.

A case of particular interest is that in which b(x, ρ) is not Lipschitz continuous

with respect to the state x but is globally Lipschitz with respect to ρ. In this

setting, existence and uniqueness of strong solutions of (2.10) can be obtained if b

is locally Lipschitz continuous with polynomial growth in x (Dos Reis et al., 2019).

Propagation of chaos results have also been established with rate γ = 1/2 in the one

dimensional case and with rate deteriorating with dimension for d > 1 (Dos Reis

et al., 2021).

When the coefficients of the SDE are only locally Lipschitz, the explicit Euler

scheme does not perform well (Hutzenthaler et al., 2012). Bao et al. (2020) study

tamed Euler schemes for (2.12)

Xi,N
k+1 = Xi,N

k +
b(Xi,N

k , ρNk )

1 + ∆t‖b(Xi,N
k , ρNk )‖2

∆t+ σ(Xi,N
k , ρNk )∆W i

k, (2.17)

and show that Proposition 2.9 holds with δ = 1. This modification of the drift

guarantees that the norm of ∆tb(Xi,N
k , ρNk )/(1 + ∆t‖b(Xi,N

k , ρNk )‖2) is bounded by 1

for all k,∆t and therefore prevents the drift term from taking extraordinarily large

values. Additionally, the tamed Euler scheme (2.17) coincides with the explicit Euler
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method (2.14) up to terms of second order (Hutzenthaler et al., 2012).

2.5 Summary

We have introduced two families of interacting particle systems, sequential Monte

Carlo and systems approximating mean-field SDEs. Both classes allow us to approx-

imate a limiting object by evolving a population of N particles through time, as the

population size goes to infinity a number of convergence properties hold which guar-

antee the effectiveness of the Monte Carlo methods.

We have collected in this chapter all the definitions and results we rely on in the

development of this work. The algorithms proposed in Chapter 5 and 7 are non-

standard versions of those introduced in this chapter, thus their theoretical analysis

will exploit some of the results introduced here.
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Interacting Particle Methods for

Fredholm Integral Equations
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3

Fredholm Integral Equations of the First Kind

3.1 Introduction

Integral equations, in contrast to differential equations, is the name given by

du Bois-Reymond (1888) to a class of mathematical models in which the unknown

function appears within an integral sign. Integral equations gained popularity dur-

ing the 20th century, thanks to the work of Volterra (1913) and Fredholm (1903)

who started studying integral equations systematically. Their studies led to one of

the main results in the theory of integral equations, the Fredholm alternative, which

addresses the existence of solutions. Integral equations have been the topic of sev-

eral reviews and monographs over the years: an introduction to the origins of the

field is given in Michal (1950); Groetsch (2007) provides a short review of integral

equations of the first kind while a complete discussion is given in e.g. Kress (2014).

The series of publications Integral Equations and Operator Theory provides recent

developments in the field.

The particular type of integral equations considered in this work was first in-

troduced by Fredholm (1903) as a generalisation of linear systems of equations to

the infinite-dimensional setting. These equations arise in a variety of fields, ranging

from the study of partial differential equations (Colton and Kress, 2012; Tanana

et al., 2016) to image reconstruction (Aster et al., 2018; Clason et al., 2020; Zhang

et al., 2019) and density deconvolution (Delaigle, 2008; Ma, 2011; Pensky et al.,

2017; Yang et al., 2020).

In the last century, there has been a great interest in studying the existence of

solutions and solution methods for Fredholm integral equations of the first kind.

While existence theorems appeared early in the literature (e.g. Fredholm (1903);

Picard (1910)), finding good solution methodologies is an ongoing area of research.
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In fact, these integral equations are the prototypical example of ill-posed linear

inverse problems, as the solution is often non-unique and unstable to changes in

g. The lack of stability of (3.1) is the primary concern when attempting to solve

Fredholm integral equations: in practical applications we often only have access to

(noisy) observations from g and not to its analytic form, and the instability of (3.1)

means that small errors in g do not necessarily correspond to small errors in the

recovered solution f (Groetsch, 2007).

A common technique to overcome non-uniqueness and instability is to consider

regularisation. Regularised solutions can be obtained by projecting the infinite di-

mensional integral equation onto finite dimensional spaces (Kress, 2014, Chapter

17) or by solving a minimisation problem associated with the integral equation (e.g.,

Tikhonov’s regularisation (Phillips, 1962; Tikhonov, 1963), maximum likelihood esti-

mation (Mülthei et al., 1989) and maximum entropy methods (Kopeć, 1993; Mead,

1986)). However, solving the regularised problem remains computationally very

challenging. In most cases, an approximate solution is obtained iteratively using

a fixed discretisation of its domain (Burger et al., 2019; Chae et al., 2018a; Green,

1990; Yang et al., 2020) or by assuming that the solution can be expressed as a linear

combination of basis functions. Common choices of basis functions are polynomials

(Mead, 1986), piecewise linear functions (Jin and Ding, 2016), B-splines (Islam and

Smith, 2020); wavelets are also widely used, as they lead to faster algorithms com-

pared to the other methods (Maleknejad and Sohrabi, 2007). While these approaches

are common, they have several drawbacks: using a fixed discretisation of the domain

leads to approximate solutions which are piecewise constant or linear; on the other

hand, in order to implement algorithms based on basis functions expansions, the

number of basis functions involved needs to be finite. In practice, the solutions of

(non-degenerate) integral equations are rarely given by a finite combination of basis

functions, nor can be expressed as piecewise constant or linear functions.

We briefly review Fredholm integral equations of the first kind in Section 3.2

and provide some examples of applications of Fredholm integral equations in Sec-

tion 3.2.1. A short summary of popular regularisation techniques is given in Sec-

tion 3.2.2. Section 3.3 focuses on the solution method of Kondor (1983), based on an

infinite dimensional expectation maximisation algorithm (Dempster et al., 1977), the

issues encountered by this method because of the ill-posedness of Fredholm integral

equations of the first kind motivate the following evolution of this thesis.
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3.2 Fredholm Integral Equations of the First Kind

Fredholm integral equations of the first kind

h(y) =

∫
X
f(x)g(y | x)dx ∀y ∈ Y, (3.1)

with X, Y suitable subsets of RdX ,RdY respectively, are inverse problems in which f

is the unknown object to be inferred and h, g are known functions.

Example 3.1. (Gaussian integral) Consider two one-dimensional Gaussian distri-

butions on X = Y = R

h(y) = N (y;µ, σ2
h), g(y | x) = N (y;x, σ2

g),

such that σ2
h = σ2

f +σ2
g . One can easily show that setting f(x) = N (x;µ, σ2

f ) satisfies

equation (3.1) and the Fredholm integral equation can be solved analytically.

We now introduce the framework in which we will work for the remainder of this

thesis.

Assumption 3.1. The functions f, g, h and the sets X,Y in (3.1) satisfy

(a) X ⊆ RdX and Y ⊆ RdY are subsets of Euclidean spaces endowed with the Borel

σ-algebras B(X) and B(Y) respectively.

(b) f and h are (Lebesgue) probability densities on X and Y, respectively, and

g(y | x) is the density of a Markov kernel from X to Y.

We distinguish two sub-cases of Assumption 3.1-(a), in Chapters 4-5 we take

X ⊂ RdX and Y ⊂ RdY compact subsets of Euclidean spaces, while in Chapters 6-7

we take X = RdX and Y = RdY . These two cases cover most applications of Fredholm

integral equations of the first kind, we give some examples in Section 3.2.1.

As observed by Chae et al. (2018a, Section 6), Assumption 3.1-(b) is not too

restrictive. Many applications of Fredholm integral equations are concerned with

the reconstruction of functions f that are a priori known to be non-negative (Clason

et al., 2020); in addition, a wide class of Fredholm integral equations of the first

kind can be cast into this framework: if f , h and g are positive and appropriately

integrable functions, using the following transformations

h̃(y) =
h(y)∫

Y h(y′)dy′
, g̃(y | x) =

g(y | x)∫
Y g(y′ | x)dy′

, f̃(x) =
f(x)

∫
Y g(y′ | x)dy′∫

Y h(y′)dy′
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we obtain an integral equation

h̃(y) =

∫
X
f̃(x)g̃(y | x)dx ∀y ∈ Y,

involving densities as in Assumption 3.1-(b). If f, h are bounded below and g is

positive, the shifted functions f(x) + t, h(y) + t
∫
X g(y | x)dx are positive for some

appropriate t > 0, and, assuming integrability, we can apply the normalisation de-

scribed above. Finally, if g is not necessarily non-negative, (3.1) can be transformed

into a non-negative integral equation by considering the positive and negative parts

of g (Chae et al., 2018a, Section 6).

In applications the analytic form of h is often unknown, and the available data

arise from discretisation of h over Y or from sampling. In the first case, the functional

representation of h is obtained by assuming that h is piecewise constant, so that h

takes constant values on a partition of Y, as in e.g. Vardi and Lee (1993). In the

second case, a functional representation of h can be obtained through an histogram

or a kernel density estimator, the latter is considered in, e.g. Ma (2011).

In the remainder of this thesis we do not consider degenerate kernels, g(y | x) =∑n
i=1 an(x)bn(y) for some n ∈ N, as in this case solving the integral equation (3.1)

reduces to solving a finite system of linear equations (Groetsch, 2007). We point out

that there is another class of integral equations to which the algorithms developed

in this thesis could be applied: Volterra integral equations of the second kind, which

can be seen as a special case of Fredholm integral equations of the first kind for

which X = Y and g(y | x) = 0 for x > y. However, Volterra integral equations are

not ill-posed and can be efficiently solved using the Von-Neumann representation

discussed in Section 2.3.3.

3.2.1 Applications

Fredholm integral equations of the first kind are often used to model the task

of reconstructing a signal f from an observed distorted signal h when the type

of distortion g is known. This is a common problem in engineering, science and

statistics.

The earliest applications of Fredholm integral equations arise in physics. For in-

stance, in potential theory, (3.1) relates the gravitational potential of an object to its

mass density (Joachimsthal, 1861). Often, integral equations arise as a counterpart

to partial differential equations (PDEs) with boundary conditions (Green, 1828). In

particular, inverse boundary problems are modelled through (3.1) (Tanana et al.,
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2016). An example of inverse boundary problem is the reconstruction of the shape

of an object from the diffusion of an acoustic/electromagnetic wave which hits the

object itself (Colton and Kress, 2012).

In image processing, (3.1) describes the deconvolution problem, i.e. the recon-

struction of images from distorted observations. Simple examples are motion de-

blurring, in which h represents a blurred version of the image f and g describes the

type of motion causing the blur (see e.g. Lee and Vardi (1994) for some examples)

and positron emission tomography (PET) (Phelps, 2000), in which reconstructions

of brain cross-sections are obtained from the radial data provided by the PET scan-

ner (Vaquero and Kinahan, 2015). 3-dimensional examples arise in e.g. electron

microscopy (Scheres et al., 2007).

From the statistical point of view, (3.1) describes the task of reconstructing the

density f from a set of observations from h (Laird, 1978). This problem is known as

density deconvolution or indirect density estimation (Delaigle et al., 2008; Ma, 2011;

Pensky et al., 2017; Yang et al., 2020); and appears in e.g., causal inference with

missing confounders, where the missing data mechanism has to be inferred from

the distribution of the non-missing observed data (Miao et al., 2018; Yang et al.,

2019), inference with spatially censored data (Fan et al., 2011) and estimation of

nonlinear regression functions (Hall et al., 2005). In epidemiology, these equations

link the unknown reproduction number of a disease to the observed number of deaths

(Goldstein et al., 2009; Gostic et al., 2020; Marschner, 2020).

Similar indirect density estimation problems also arise in stereology, when the

size distribution of a set of spherical particles has to be recovered from the distribu-

tion of the diameters of the section profiles (Wicksell’s corpuscle problem; Wicksell

(1925) and Silverman et al. (1990)).

3.2.2 Regularisation Methods

Since Fredholm integral equations of the first kind can be seen as an infinite

dimensional linear system, it is natural to consider least squares solutions

f? := arg min

∫
Y

∣∣∣∣h(y)−
∫
X
f(x)g(y | x)dx

∣∣∣∣2 dy

over an appropriate set of functions f ; Tikhonov’s regularisation (Phillips, 1962;

Tikhonov, 1963) consists of approximating the solution of the integral equation with
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the least square solution of minimum L2-norm

f? := arg min

∫
Y

∣∣∣∣h(y)−
∫
X
f(x)g(y | x)dx

∣∣∣∣2 dy + α

∫
X
|f(x)|2dx (3.2)

for some regularisation parameter α > 0. This regularisation is particularly con-

venient, as the regularised integral equation is a Fredholm equation of the second

kind, a well-posed problem for which stable solution methods exist (Kress, 2000,

Chapter 12-14). An iterative method to minimise the square loss has been pro-

posed in Landweber (1951). Alternatives to the Tikhonov regularisation for the

least squares problem include total variation regularisation (Rudin et al., 1992),

sparsity regularisation through the L1 norm of the solution (Donoho, 1992) and

entropy regularisation (Amato and Hughes, 1991).

Maximum entropy methods (Jaynes, 1957a,b) have been widely studied; these

methods approximate f by finding a function maximising the differential entropy

subject to moment constraints obtained by integrating both sides of (3.1) with re-

spect to a set of basis functions (Beylkin et al., 1991; Islam and Smith, 2020; Jin

and Ding, 2016; Kopeć, 1993; Mead, 1986). Methods involving the Kullback–Leibler

divergence rather than the L2 distance have also been considered (Kondor, 1983;

Resmerita and Anderssen, 2007). This class of algorithms is particularly interest-

ing due to its link with maximum likelihood estimation and will be described in

Section 3.3.

Regularisation can also be obtained by discretisation, i.e. by projecting the

integral equation onto a finite dimensional space (e.g. Kress (2014, Chapter 17)). A

recent review of regularisation techniques for inverse problems is given in Benning

and Burger (2018), while the monograph Engl et al. (1996) focuses on classical

regularisation techniques. Yuan and Zhang (2019) provide a recent and extensive

review of numerical methods for integral equations.

3.3 Expectation Maximisation Algorithms

If we consider (3.1) as an indirect density estimation problem, it is natural to

consider maximum likelihood estimates for f . This can in principle be achieved by

maximising an incomplete data likelihood for f through the Expectation Maximisa-

tion (EM) algorithm (Dempster et al., 1977). Nevertheless, the maximum likelihood

estimator is not consistent, as the parameter to be estimated (i.e. f) is infinite

dimensional and the lack of continuous dependence on h of (3.1) discussed in the

introduction aggravates this problem (Laird, 1978; Silverman et al., 1990).
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To overcome these issues, several regularisation techniques have been proposed

in the literature. We briefly review a number of iterative schemes based on the EM

algorithm which aim to find approximate solutions of (3.1) through regularisation.

The starting point is the iterative method of Kondor (1983), an infinite dimen-

sional EM algorithm

fn+1(x) = fn(x)

∫
g(y | x)∫

fn(z)g(y | z)dz
h(y)dy, (3.3)

which minimises the Kullback–Leibler divergence

KL

(
h,

∫
X
f(x)g(· | x)dx

)
=

∫
Y
h(y) log

(
h(y)∫

X f(x)g(y | x)dx

)
dy, (3.4)

with respect to f over the set of probability densities on X (Mülthei et al., 1989).

Minimising (3.4) is equivalent to maximising

Λ(f) :=

∫
Y
h(y) log

∫
X
f(x)g(y | x)dxdy.

The functional Λ can be seen as a continuous or asymptotic version of the incomplete

data log-likelihood for the function f given a finite sample from h, y1, . . . , yM , in

fact, in the case of a finite number of observations the log-likelihood is given by

(Chae et al., 2018b)

L(f) =
M∑
m=1

log

∫
X
g(ym | x)f(x)dx,

and Λ(f) = limM→+∞M
−1L(f).

The EM iteration (3.3) has a number of good properties: iterating (3.3) monoton-

ically decreases (3.4) (Mülthei et al., 1987, Theorem 7) and if the iterative formula

converges to a limit, then this is a minimiser of (3.4) (Mülthei et al., 1987, The-

orem 8). However, the minimiser need not to be unique. Convergence of the EM

iteration (3.3) to a fixed point has recently been proved under the existence of a

sequence (f?s )s≥1 with h?s(y) =
∫
X f

?
s (x)g(y | x)dx, such that KL(h, h?s) converges

to the infimum of (3.4) and some additional integrability conditions (Chae et al.,

2018a).

In general, implementing the recursive formula (3.3) analytically is not possible

and approximations are needed. Under the assumption of piecewise constant signals

f , h and g, we can discretise the EM recursion (3.3) over a discretisation grid
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obtained by dividing X and Y into bins X1, . . . ,XB and Y1, . . . ,YD

fb =
1

|Xb|

∫
Xb
f(x)dx, hd =

1

|Yd|

∫
Yd
h(y)dy, gbd =

1

|Xb||Yd|

∫
Yd

∫
Xb
g(y | x)dy,

where |A| denotes the Lebesgue measure of set A, for b = 1, . . . , B and d = 1, . . . , D.

In practice, for a large enough number of bins B,D and if the densities f , h, g

are continuous, we can approximate the value of each density on a given bin by its

value at the bin centre, e.g. fb ≈ f(xb), where xb is the centre of bin b. With this

discretisation, the EM recursion (3.3) reduces to the EM algorithm for Poisson data

(Vardi and Lee, 1993), known as the Richardson-Lucy (RL) algorithm in the image

processing field (Lucy, 1974; Richardson, 1972), where the intensities of pixels are

modelled as Poisson counts,

f
(n+1)
b = f

(n)
b

D∑
d=1

(
hdgbd∑B

k=1 f
(n)
k gkd

)
. (3.5)

The Iterative Bayes (IB) algorithm of Ma (2011) considers the case in which

only samples from h are available. These samples are used to build a kernel density

estimator (KDE) for h, which is then plugged into the discretised EM iteration (3.5).

Example 3.2. (Gaussian integral) Consider the Fredholm integral equation defined

in Example 3.1 with σ2
f = 0.0432, σ2

g = 0.0452 and X = Y = R (although note that

|1−
∫ 1

0 f(x)dx| < 10−30 and restricting out attention to [0, 1] would not significantly

alter the results). We apply the EM iteration (3.5) for 100 steps with initial distri-

bution f1 Uniform on [0, 1] and discretisation grid given by B = 100 equally spaced

intervals in [0, 1], noting that discretisation schemes essentially require known com-

pact support and this interval contains almost all of the probability mass (Figure 2).

Even for this simple one-dimensional example, the reconstructions provided by EM

are non-smooth and fail to recover the shape of f .

As discussed earlier, despite being popular and easy to implement, the EM al-

gorithm (3.5) has a number of drawbacks. In particular, after a certain number of

iterations the EM approximations deteriorate resulting in high variance estimates

that lack smoothness and give non-regular estimates of f (Nychka, 1990; Silverman

et al., 1990). Byrne and Eggermont (2015) emphasize that (3.4) does not deal with

the ill-posedness of the problem and further regularisation is needed.

A natural way to introduce regularisation is considering maximum penalised
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Figure 2: Reconstruction given by the EM algorithm. The target density is
N (x; 0.5, 0.0432).

likelihood estimation (MPLE)

Λ′(f) :=

∫
Y
h(y) log

∫
X
f(x)g(y | x)dxdy − P (f),

where P is a penalty term (e.g. Green (1990)). Popular choices of P are Gibbs

smoothing, which penalises large differences in neighbouring values of f (e.g. Lange

(1990)), L1 penalty of the first order derivative of f , leading to Total Variation

regularisation (Dey et al., 2004) and general roughness penalties (e.g. Good (1971)).

In most cases, an updating formula like (3.5) cannot be obtained straightfor-

wardly for MPLE because the derivative of P (f) usually involves several derivatives

of f (Green, 1990). A possible solution is to update the estimate of f from iter-

ation fn to fn+1 evaluating the penalty term at fn, rather than at the new value

fn+1. This is known as the one-step late (OSL-EM) algorithm (Green, 1990). The

resulting update formula is usually easier to compute but there is no guarantee that

each iteration will increase the penalised log-likelihood. However, if convergence

occurs, the OSL-EM algorithm converges more quickly that the corresponding EM

for penalised likelihood.
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3.4 Connections with Other Works

Among the numerous solution methodologies for Fredholm integral equations the

two presented below share some connections with those that will be explored in this

work. Section 3.4.1 explores the use of divergences other than the Kullback–Leibler

divergence while Section 3.4.2 presents a particle method which performs Tikhonov

regularisation.

3.4.1 Alternative Divergences

In recent years, there has been an increasing interest in considering families of

divergences between probability measures which are more flexible than the Kullback–

Leibler divergence, examples of such divergences are α-, β- and γ- divergences (Ci-

chocki and Amari, 2010). This direction has been explored in e.g., Bayesian in-

ference (Bissiri et al., 2016; Jewson et al., 2018), variational inference (Blei et al.

(2017, Section 5.4)), Knoblauch et al. (2019) and sequential Monte Carlo methodol-

ogy (Boustati et al., 2020). These families of divergences are very flexible, and, with

careful choice of the parameters α, β and γ, allow to enforce desirable properties

such as robustness to outliers, ability to capture tail behaviour or to target the mode

and many others (Regli and Silva, 2018).

In the context of Fredholm integral equations, distances other than the Kullback-

Leibler divergence (leading to maximum likelihood estimation) and the Euclidean

distance (leading to Tikhonov’s regularisation) have been little explored. We sum-

marise here two examples of use of β- and α-divergences; β-divergences guarantee

robustness to outliers, while α-divergences guarantee better coverage of regions of

small probability than the Kullback–Leibler divergence (Regli and Silva, 2018).

Pouchol and Verdier (2020, Section 4.2) consider β-divergences between two

density functions p1, p2

Dβ(p1, p2) :=

∫
1

β(β − 1)

(
p1(t)β + (β − 1)p2(t)β − βp1(t)p2(t)β−1

)
dt,

for β ∈ [0, 2], and propose to solve (3.1) by minimising Dβ

(
h,
∫
X f(x)g(· | x)dx

)
.

Pouchol and Verdier (2020, Theorem 1.1) shows that in the high-noise regime (i.e.

when we only have access to a noisy version of h), which corresponds to the presence

of outliers in the standard statistical setting, the solution f obtained by minimising

the β-divergence will be sparse, an undesirable property for f which is usually ex-

pected to be smooth. This behaviour is closely related to the inconsistency of the
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maximum likelihood estimator minimising (3.4) and could be, in principle, addressed

by considering penalties such as those for maximum penalised likelihood estimation.

As in the case of the Kullback-Leibler divergence, it is possible to obtain an

iterative scheme which monotonically decreases Dβ (Pouchol and Verdier, 2020,

Proposition C.1); this scheme admits the EM iteration as a special case, obtained

with β → 1. However, the iterative scheme of Pouchol and Verdier (2020) requires

the computation of the adjoint of the operator f 7→
∫
X f(x)g(y | x)dx, which can

be rarely obtained in the continuous setting. The discretised version of the iterative

scheme for β-divergences only requires the adjoint of the matrix discretisation of

f 7→
∫
X f(x)g(y | x)dx and is therefore easier to implement, but requires knowledge

of a functional form of h, a condition which is not generally satisfied (e.g. Delaigle

(2008); Hall et al. (2005); Marschner (2020)). In fact, most of this thesis is concerned

with algorithms which can be implemented when h is known only through a sample.

An alternative to β-divergences is given by α-divergences

Dα(p1, p2) :=

∫
1

α(α− 1)

[(
p1(t)

p2(t)

)α
− 1

]
p2(t)dt, (3.6)

with α ∈ R \ {0, 1}. These divergences provide generalisations of the KL divergence

which are more robust with respect to outliers (Cichocki and Amari, 2010) and

admit the KL divergence and the reverse KL divergence as special cases, obtained

for α→ 1 and α→ 0 respectively.

In the context of variational inference, Daudel et al. (2020) develop an itera-

tive algorithm, named (α,Γ)-descent, which minimises (3.6) when p1 is a mixture

distribution

p1(t) =

∫
µ(dθ)q(θ, t),

where µ is a probability measure and q is the density of a Markov kernel. The

(α,Γ)-descent algorithm can be seen as a generalisation of the EM algorithm (3.3)

for α-divergences.

We now derive the corresponding (α,Γ)-descent algorithm for the Fredholm in-

tegral equation (3.1). The (α,Γ)-descent algorithm for Dα

(
h,
∫
X f(x)g(· | x)dx

)
consists of an expectation step

f̃n(x) =
1

(α− 1)

∫
Y
g(y | x)

(∫
X fn(z)g(y | z)dz

h(y)

)α−1

dy, (3.7)
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and an iteration step

fn+1(x) = fn(x)
Γ
(
f̃n(x)

)
Z

, (3.8)

where Γ : R → (0,∞) is a decreasing, continuously differentiable function which

satisfies a particular set of inequalities and Z is the appropriate normalising constant.

This scheme shares a number of properties with the EM algorithm: it monotonically

decreases Dα (Daudel et al., 2020, Theorem 1) and, for a particular choice of Γ, if

a limit exists then this is a fixed point of the iterative map and a minimiser of Dα

(Daudel et al., 2020, Theorem 4).

As for the EM scheme of Kondor (1983), the (α,Γ)-descent iteration cannot be

implemented analytically. Daudel et al. (2020) propose a stochastic version of the

(α,Γ)-descent which requires sampling from
∫
X fn(x)g(y | x)dx at each iteration. To

simplify the algorithm, one can select the initial distribution f1 to be a weighted sum

of Dirac δs, in this case the (α,Γ)-descent corresponds to an update of the weights

of the mixture and the approximation fn is a mixture of Dirac delta at each n. In

the case of Fredholm integral equations, a smooth reconstruction could be obtained

by, e.g., standard kernel density estimation procedures (Silverman, 1986).

The (α,Γ)-descent algorithm, although introduced in a different context, is sim-

ilar in spirit to the algorithms we study in this thesis. However, the EM algorithm

which minimises the Kullback–Leibler divergence does not require the specification

of the function Γ (which guarantees that the iterates are non-negative and influ-

ences the resulting reconstructions; see Daudel et al. (2020, Section 5)) and the

additional normalisation in (3.8), as the iterates provided by (3.3) and its discrete

counterpart (3.5) are already normalised.

Since the EM algorithm seems the most appropriate in the context of Fredholm

equations, alternative divergences are not further considered in the remainder of this

work.

Remark 3.1. The β-divergence considered in this section addresses the noise in

the observations from h; however, there is another form of robustness which could

be considered when solving (3.1): the misspecification of the kernel g. In practical

applications the analytic form of g will often be unknown, and it is necessary to

model g to fit the available information on the distortion process and taking into

account computational considerations as well (see, e.g, 7.4.2). To the best of our

knowledge, a systematic study of the effect of misspecification on g as so far not

been conducted; nevertheless, we believe it would be of great interest for the broader
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community working on integral equations.

3.4.2 A Particle Method for Inverse Problems

Fredholm integral equations (3.1) are one of the most popular examples of linear

inverse problems; in this section we make the connection with an interacting particle

method for generic (possibly nonlinear) inverse problems which is similar to the

particle methods that we will study in this thesis.

Consider the inverse problem of finding f ∈ RB from h ∈ RD where

h = G(f) + ε, (3.9)

and G : RB → RD is a known non-linear forward operator. Under the assumption

of piecewise constant signals over a fixed grid with B equally spaced bins in X and

D equally spaced bins in Y, the linear Fredholm integral equation (3.1) is a special

case of (3.9) with G a D ×B matrix

h = Gf ,

where f = (fb)
B
b=1, h = (hd)

D
d=1 and G is the matrix with entries gbd for b = 1, . . . , B

and d = 1, . . . , D.

Garbuno-Inigo et al. (2020) propose an interacting particle method, called en-

semble Kalman sampler (EKS), to provide approximate solutions of (3.9) without

requiring the use of derivatives or adjoints of the forward model G. Consider the

following noisy version of (3.9) with additive Gaussian noise ε ∼ N (0,Γ) with co-

variance matrix Γ,

h = G(f) + ε,

and adopt a Bayesian approach: given a Gaussian prior on f with covariance matrix

Γα := Γ0/α
2 for some α > 0 and Γ0 a positive-definite symmetric matrix, and using

the l2 norm as loss function, one can obtain the posterior for f

π(f) ∝ exp

(
−1

2

(
‖h−G(f)‖2Γ + ‖f‖2Γα

))
(3.10)

where for any positive-definite symmetric Γ

‖f‖2Γ :=
〈
f , fT

〉
Γ

=
〈

Γ−1/2f ,Γ−1/2fT
〉

= ‖Γ−1/2f‖22
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with 〈·, ·〉 denoting the dot-product and superscript T the matrix transpose. The

maximum a posteriori given by (3.10) corresponds to the solution of (3.9) obtained

by Tikhonov’s regularisation, i.e. minimising the discretised version of (3.2)

Φ(f) :=
1

2
‖h−G(f)‖2Γ +

α

2
‖f‖2Γ0

To sample from (3.10), Garbuno-Inigo et al. (2020) propose an ensemble Kalman

sampler (EKS): take N particles f1,N , . . . , fN,N ∈ RD and evolve them according to

a non-linear SDE with drift

b

(
f i,Nt ,

1

N

N∑
i=1

δ
f i,Nt

)
=

1

N

N∑
k=1

〈
G(fk,Nt )− Ḡ), Gf i,Nt − h

〉
Γ

fk,Nt − C(f1:N
t )Γ−1

α f i,Nt

involving the covariance matrix of the particles and the average Ḡ

Ḡ :=
1

N

N∑
i=1

G(f i,Nt ), C(f1:N
t ) :=

1

N

N∑
i=1

(f i,Nt − f̄t)⊗ (f i,Nt − f̄t)

and diffusion coefficient σ
(
f i,Nt , 1

N

∑N
i=1 δf i,Nt

)
=
√

2C(f1:N
t ). The term G(fk,Nt )−Ḡ

in the drift b is an approximation of the derivative of G, which in the linear case

coincide with the derivative itself.

In the limit N → ∞ the particle system converges to a mean-field SDE whose

stationary states minimise a functional involving Φ(f) (Garbuno-Inigo et al., 2020).

The EKS described above is similar in spirit to the mean-field SDE approach

we will introduce in Chapters 6-7, with two key differences. We are concerned with

linear operators for which computation of the derivative is straightforward and no

approximations are needed. This allows us to avoid the discretisation step in (3.9)

and to work directly with the densities f, h. To give some intuition on the difference

between the two approaches consider again the toy model in Example 3.1. As we did

for the EM algorithm discussed in Example 3.2 we fix the discretisation grid over

[0, 1] and set D = B = 100, that is each particle f i,N is a 100-dimensional vector.

On the contrary, in Chapter 7 we do not introduce any discretisation of the integral

equation (3.1) and consider particles which are samples drawn from f . Thus, while

in the EKS approach the particle population at any given time can be stored in

a D × N matrix, in the case of the approach described in Chapter 7 this reduces

to a N dimensional vector. Since the memory cost of EKS is considerably higher

than that of the particle methods developed in this thesis, this approach will not be

further discussed.
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3.5 Summary

In this chapter we introduced Fredholm integral equations of the first kind and

the framework in which we will work (i.e. that of probability densities in Euclidean

spaces). Among the many regularisation techniques available in the literature, our

focus is on maximum-likelihood based methods; in the following development of this

work we will study two maximum penalised likelihood methods which aim at con-

structing smooth reconstructions of f . In Chapters 4-5 the penalty term is implicit,

as we directly modify the iteration (3.1) introducing a smoothing component; in

Chapters 6-7 we consider a maximum penalised likelihood with an entropic penalty.
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Expectation Maximisation Smoothing for

Fredholm Equations of The First Kind

A short version of this chapter is presented in (Crucinio et al., 2021b).

4.1 Introduction

As is the case for many inverse problems, Fredholm integral equations of the first

kind are ill-posed and some type of regularisation is needed. Maximum penalised

likelihood estimation (MPLE) is a natural way to introduce regularisation, but very

often leads to an iterative scheme which cannot be implemented in practice. An

easy-to-implement regularised version of the EM recursion (3.5) is the expectation

maximization smoothing (EMS) algorithm of Silverman et al. (1990), an EM-like

algorithm in which a smoothing matrix K is applied to the EM estimates at each

iteration

f
(n+1)
b =

B∑
κ=1

Kbκ f
(n)
κ

D∑
d=1

(
hdgκd∑B

k=1 f
(n)
k gkd

)
. (4.1)

This algorithm has long been attractive from a practical point of view as the addition

of the smoothing step to the EM recursion (3.5) gives good empirical results, with

convergence occurring in a relatively small number of iterations (e.g. Li et al. (2017,

2020); Silverman et al. (1990)).

Example 4.1. (Gaussian integral) For the Gaussian integral Example 3.1 with

σ2
f = 0.0432, σ2

g = 0.0452 and X = Y = R the EMS iteration for 100 steps with

initial distribution f1 Uniform on [0, 1] and discretisation grid given by B = 100

equally spaced intervals in [0, 1] gives smooth reconstructions (Figure 3).

The aim of this chapter is to introduce a continuous version of the EMS of
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Figure 3: Reconstructions given by the EM algorithm without and with smoothing
step. The target density is N (x; 0.5, 0.0432), which solves the toy Fredholm integral
equation in Example 3.1.

Silverman et al. (1990), to study its properties and establish existence of a fixed

point of the corresponding iterative scheme.

4.2 Continuous EMS

In order to introduce a continuous version of the EMS iteration (4.1) we consider

the EM iteration (3.3) and smoothing operators OK : f 7→ OK f , with OK f(·) :=∫
XK(u, ·)f(u)du, rather than smoothing matrices. The resulting iterative scheme is

fn+1(x) =

∫
X
K(x′, x)fn(x′)

∫
Y

g(y | x′)h(y)∫
X fn(z)g(y | z)dz

dydx′ (4.2)

=

∫
X
K(x′, x)fn(x′)

∫
Y

g(y | x′)h(y)

hn(y)
dydx′,

where hn(y) :=
∫
X fn(z)g(y | z)dz.

A similar approach in which a non linear smoothing operator

ÕKf := exp (OK(log f))

is applied to fn both in the numerator and in the denominator of (3.3) has been

considered by Eggermont and LaRiccia (1995). In this case the fixed point of the
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iteration maximises the modified log-likelihood∫
Y
h(y) log

∫
X

(ÕKf)(x)g(y | x)dxdy −
∫
X
f(x)dx.

However, because of the non-linearity of the smoothing operator ÕK, the algorithm

of Eggermont and LaRiccia (1995) cannot easily be implemented without further

approximation and requires the knowledge of the analytic form of h.

In order to study the properties of the EMS recursion (4.2), we consider the

corresponding map from the set of unsigned measures of nonzero mass M+(X) to

the set of probability measures P(X).

Hence, we consider the EMS map, FEMS :M+(X)→ P(X) such that

FEMS : η 7→ FEMS η :=

∫
X
η(dx′)K(x′, ·)

∫
Y

g(y | x′)h(dy)∫
X η(dz)g(y | z)

. (4.3)

This map is the composition of the linear smoothing map OK and the non-linear

Boltzmann-Gibbs transform corresponding to the EM iteration FEM : M+(X) →
P(X),

FEM(η)(dx) =
1

η(Ḡη)
Ḡη(x)η(dx) (4.4)

associated with the potential function Ḡη

Ḡη(·) :=

∫
Y

g(y | ·)h(dy)∫
X η(dz)g(y | z)

,

where the normalising constant η(Ḡη) ≡ 1 is introduced to highlight the connec-

tion with the SMC methods we will introduce in Chapter 5; so that FEMS η =

OK (FEM(η)) = (FEM η)K.

In order to prove that the FEMS admits a fixed point, a number of properties of

the EM map, FEM, of the smoothing operator OK and of the EMS map itself must

be established. To do so, we work with the following set of assumptions:

Assumption 4.1. In addition to Assumption 3.1-(b), the following hold:

(a) X ⊂ RdX and Y ⊂ RdY are compact subsets of Euclidean spaces endowed with

the Borel σ-algebras B(X) and B(Y) respectively.

(b) The density of the positive kernel g(y | x) is continuous, bounded and bounded
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away from 0

∃mg > 0 such that 0 < m−1
g ≤ g(y | x) ≤ mg <∞ ∀(x, y) ∈ H = X× Y.

(c) The smoothing operator

OK : η 7→ ηK :=

∫
X
η(dv)K(v, ·)

is such that, for any A ∈ B(X),

K(v,A) =

∫
A∩X T (u− v)du∫
X T (u′ − v)du′

where T is a bounded density in RdX , such that infv∈X
∫
X T (u− v)du > 0.

It is easy to see that Assumption 4.1-(a) is satisfied by most of the examples

in Section 3.2.1. For instance, in image processing both X and Y are typically of

the form [−a, a] × [−b, b] for a, b > 0, f and h are continuous densities on X and

Y respectively, and the available data are the values of h over the discretisation of

Y induced by the pixels of the image (e.g. an image with 10 × 10 pixels induces a

discretisation on Y in which the intervals [−a, a] and [−b, b] are each divided into 10

bins). Similarly, when integral equations arise in connection to PDEs with boundary

conditions (e.g. the Dirichlet problem for the Laplace’s equation first described by

Green (1828)) the domain on which the PDE is defined is bounded.

Assumption 4.1-(b) is a common assumption in the literature on Fredholm inte-

gral equations. In particular, if X is compact and g is continuous, then the integral

operator is compact in L2(H) (Kress, 2014, Theorem 2.28), ruling out degenerate

integral equations which require special treatment (Kress, 2014, Chapter 5). The

boundedness condition on g gives compactness of {hf : hf (y) =
∫
X f(x)g(y | x)dx},

for f a probability density, in the set of continuous functions endowed with the

supremum norm (Mülthei, 1992) and ensures the existence of a minimizer of (3.4)

(Mülthei, 1992, Theorem 1).

Under Assumption 4.1-(c), K is a Markov kernel on X which admits the following

density with respect to the Lebesgue measure

dK(v, ·)
dλ

(u) =
T (u− v)IX(u)∫
X T (u′ − v)du′

. (4.5)

Assumption 4.1-(c) on T is mild and is satisfied by most commonly used kernels for
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density estimation (Silverman, 1986) and implies that K(v, ·) is a density over X for

any fixed v. We can draw samples from K(v, ·), e.g. by rejection sampling whenever

T is proportional to a density from which sampling is feasible.

Remark 4.1. The choice of the smoothing kernel K is crucial for the EMS iteration.

A natural choice is to consider kernels K depending on a parameter ε which controls

the level of smoothing; a classic example is Gaussian smoothing, i.e. T (u − v) =

N (u − v; 0, ε2) with variance ε2. As a rule of thumb, ε should not be too small, as

arbitrarily small levels of smoothing would make the EMS recursion (4.2) collapse

onto the EM one (3.3). On the other hand, ε should not excessively large, as over-

smoothing results in flatter reconstructions of f which do not allow to recover e.g.

local maxima. A common approach to the selection of regularisation parameters

for Fredholm integral equations is cross validation (see, e.g. Amato and Hughes

(1991); Wahba (1977)). In the remainder of this chapter, we will consider K to

be given as we are mostly interested in the theoretical properties of the continuous

EMS recursion.

Remark 4.2. The theoretical results established in this chapter hold regardless

of the particular form of K (as long as Assumption 4.1-(c) is satisfied). In the

following chapters we will always consider K to be an isotropic Gaussian kernel

with marginal variance ε2; however, non-isotropic kernels might be expected to lead

to better results when the smoothness properties of f vary between dimensions

(Genton, 2001).

4.2.1 Properties of the EMS map

This section summarises a number of properties of the EM map, FEM, of the

smoothing kernel K and of the EMS map, FEMS, which will be used to establish

existence of a fixed point. The results are obtained with respect to the the bounded

Lipschitz norm (e.g. Dudley (2002, page 394))

β(η) := sup
‖ϕ‖BL≤1

∣∣∣∣∫
H
η(dx)ϕ(x)

∣∣∣∣ , (4.6)

where ‖ · ‖BL denotes the bounded Lipschitz norm for bounded Lipschitz functions

ϕ

‖ϕ‖BL := ‖ϕ‖∞ + sup
x 6=y

|ϕ(x)− ϕ(y)|
‖x− y‖2

;
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this norm metrises weak convergence of measures and we will make often use of the

following equivalence (Dudley, 2002, Theorem 11.3.3): for every µ ∈ M(H), and

sequence {µn}n≥1 taking values in M(H), β(µn, µ) → 0 is equivalent to µn(ϕ) →
µ(ϕ) for all continuous bounded functions ϕ ∈ Cb(H).

The following properties of FEM and OK lead to compactness of FEMS:

Proposition 4.1. Under Assumption 4.1-(a),(b), the Boltzmann-Gibbs transform

FEM in (4.4) is a continuous and bounded operator on M+(X) endowed with the

weak topology.

Proof. Let η ∈M+(X) and {ηn}n≥1 be a sequence of measures inM+(X) converging

to η in the weak topology as n→∞. For any ϕ ∈ Cb(X) consider∣∣∣∣∫
X

FEM(ηn)(dx)ϕ(x)−
∫
X

FEM(η)(dx)ϕ(x)

∣∣∣∣
=

∣∣∣∣∫
X
ηn(dx)ϕ(x)

∫
Y

g(y|x)h(dy)

ηn (g(y|·))
−
∫
X
η(dx)ϕ(x)

∫
Y

g(y|x)h(dy)

η (g(y|·))

∣∣∣∣
=

∣∣∣∣∫
X

∫
Y
ϕ(x)g(y|x)h(dy)

[
ηn(dx)

ηn (g(y|·))
− η(dx)

η (g(y|·))

]∣∣∣∣
≤
∣∣∣∣∫

X

∫
Y

ηn(dx)ϕ(x)g(y|x)h(dy)

ηn (g(y|·)) η (g(y|·))
[η (g(y|·))− ηn (g(y|·))]

∣∣∣∣
+

∣∣∣∣∫
X

∫
Y

(ηn(dx)− η(dx))
ϕ(x)g(y|x)h(dy)

η (g(y|·))

∣∣∣∣ ,
where the second equality follows from Fubini’s Theorem since g, ϕ are bounded

functions.

The first term can be bounded by∣∣∣∣∫
X

∫
Y

ηn(dx)ϕ(x)g(y|x)h(dy)

ηn (g(y|·)) η (g(y|·))
[η (g(y|·))− ηn (g(y|·))]

∣∣∣∣
≤ ‖ϕ‖∞

∫
Y

h(dy)
∫
X ηn(dx)g(y|x)

ηn (g(y|·)) η (g(y|·))
|η (g(y|·))− ηn (g(y|·))|

≤ ‖ϕ‖∞
∫
Y

h(dy)

η (g(y|·))
|η (g(y|·))− ηn (g(y|·))| .

Under Assumption 4.1-(b), g is bounded below by 1/mg and we have

η (g(y|·)) =

∫
X
η(dx)g(y|x) ≥ 1

mg

∫
X
η(dx) =

1

mg
η(X) > 0
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since η ∈M+(X) is an unsigned measure with nonzero mass. Therefore we obtain∣∣∣∣∫
X

∫
Y

ηn(dx)ϕ(x)g(y|x)h(dy)

ηn (g(y|·)) η (g(y|·))
[η (g(y|·))− ηn (g(y|·))]

∣∣∣∣
‖ϕ‖∞

∫
Y

h(dy)

η (g(y|·))
|η (g(y|·))− ηn (g(y|·))|

≤ ‖ϕ‖∞
mg

η(X)

∫
Y
h(dy) |η (g(y|·))− ηn (g(y|·))|

For fixed y, g(y|·) ∈ Cb(X), and we have that

|η (g(y|·))− ηn (g(y|·))| → 0

as n→∞ since ηn converges to η in the weak topology. Since g is uniformly bounded

by mg, the Dominated Convergence Theorem then gives∫
Y
h(dy) |η (g(y|·))− ηn (g(y|·))| → 0

as n→∞, from which we obtain∣∣∣∣∫
X

∫
Y

ηn(dx)ϕ(x)g(y|x)h(dy)

ηn (g(y|·)) η (g(y|·))
[η (g(y|·))− ηn (g(y|·))]

∣∣∣∣→ 0 (4.7)

as n→∞.

For the second term, consider the function

x 7→
∫
Y

ϕ(x)g(y|x)h(dy)

η (g(y|·))
. (4.8)

This function is bounded by m2
g‖ϕ‖∞/η(X); to see that it is also continuous, recall

that ϕ, g are continuous functions while the continuity of y 7→ η (g(y|·)) follows

from the continuity of g and the Dominated Convergence Theorem. The Dominated

Convergence theorem and the fact that g is continuous, bounded above and below

give continuity of (4.8).

Using Fubini’s Theorem, whose applicability is granted by the boundedness of

g, ϕ, we obtain∣∣∣∣∫
X

∫
Y

(ηn(dx)− η(dx))
ϕ(x)g(y|x)h(dy)

η (g(y|·))

∣∣∣∣
=

∣∣∣∣∫
X

(ηn(dx)− η(dx))

∫
Y

ϕ(x)g(y|x)h(dy)

η (g(y|·))

∣∣∣∣→ 0 (4.9)
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as n→∞.

Combining (4.7) and (4.9) we obtain convergence of FEM ηn(ϕ) to FEM η(ϕ) for

every ϕ ∈ Cb(X), and thus convergence in the weak topology of FEM ηn to FEM η

(Dudley, 2002, Theorem 11.3.3) whenever ηn converges weakly to η, proving that

the EM map is continuous in M+(X).

Finally, consider boundedness. A non-linear operator is bounded if and only if

it maps bounded sets into bounded sets (e.g. Zeidler (1985, page 757)). The EM

map maps the space of unsigned measures of nonzero mass M+(X) into the space

of probability measures P(X), whose elements have β norm uniformly bounded by

1; in particular FEM maps any bounded subset ofM+(X) into a uniformly bounded

subset of P(X), showing that FEM is a bounded operator.

Proposition 4.2. Under Assumption 4.1-(a),(c), the smoothing operator OK is

compact on P(X) endowed with the weak topology.

Proof. To prove that OK is compact we need to prove that it maps bounded subsets

into relatively compact subsets (Kress, 2014, Definition 2.17). It is sufficient to

observe that X is a complete subset of RdX (as it is a compact subset of a metric

space) from which it follows that P(X) is complete by Prokhorov’s Theorem (e.g.

Dudley (2002, Corollary 11.5.5)). Completeness of P(X) implies that every sequence

in P(X) admits a convergence subsequence, using the fact that the β norm metrises

weak convergence and the equivalence of compactness and existence of convergent

subsequences in metric spaces we obtain that P(X) is relatively compact (Dudley,

2002, Theorem 11.5.4).

Given the two results above, compactness of FEMS follows straightforwardly:

Proposition 4.3 (Compactness of FEMS). Under Assumption 4.1, the EMS map,

FEMS, is compact on M+(X) endowed with the weak topology.

Proof. The EMS map is the composition of the continuous and bounded operator

FEM (by Proposition 4.1) which maps bounded sets into bounded sets, with the

compact smoothing operator OK (by Proposition 4.2) which maps bounded sets

into relatively compact sets. It follows that FEMS is continuous and maps bounded

sets into relatively compact sets, hence FEMS is compact (e.g. Zeidler (1985, page

54)).
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4.2.2 Existence of the Fixed Point

Thanks to the properties of the EMS map established in the previous section, we

can show that the continuous EMS map admits a fixed point in the set of probability

measures:

Corollary 4.1 (Existence of Fixed Point). Under Assumption 4.1, the EMS map

FEMS admits a fixed point in P(X) endowed with the weak topology.

Proof. Since X is a compact metric space (and therefore complete), the set of prob-

ability measures P(X) ⊂ M(X) is complete by Prokhorov’s Theorem (e.g. Dudley

(2002, Corollary 11.5.5)) and therefore P(X) is closed. Moreover, P(X) is non-

empty, bounded (since all of its elements have β norm bounded by 1) and convex:

take µ, ν ∈ P(X) and t ∈ [0, 1], then for every A ∈ B(X)

tµ(A) + (1− t)ν(A) ≥ 0 tµ(X) + (1− t)ν(X) = 1

as t, 1−t ≥ 0 and P(X) ⊂M+(X), showing that tµ+(1−t)ν ∈ P(X) for all t ∈ [0, 1]

and all µ, ν ∈ P(X).

These properties and the compactness of the EMS map (Proposition 4.3) give

the existence of a fixed point by Schauder’s fixed point theorem (e.g. Zeidler (1985,

Theorem 2.A)).

4.2.3 Towards Uniqueness of the Fixed Point

It is well known that the EM iteration generally does not admit a unique solution

(Dempster et al., 1977), the discretised EM for Fredholm integral equations (3.5) is

no exception (Latham, 1995, Remark 4). Silverman et al. (1990, Section 5.4) and

Latham (1995, Section 5.3) conjecture that the introduction of a smoothing step,

leading to EMS, guarantees existence of a unique solution of the EMS iteration.

Uniqueness of the fixed point can be obtained for analytic maps through the

following result (Zeidler, 1985, Theorem 14.B):

Theorem 4.1. Suppose that the compact mapping m : Ḡ → X is analytic on the

non-empty, open, bounded, convex subset G of the complex Banach space S, and

that m(∂G) ⊆ G. Then m has exactly one fixed point on G.

In this section, we establish that the FEMS is analytic in M+(X). However,

we have so far been unable to identify an appropriate open set G containing P(X)

which satisfies the conditions of Theorem 4.1 and over which the continuous EMS
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map is defined. Showing that the EMS is analytic overM+(X) is a first step towards

establishing the uniqueness of the fixed point. We study the uniqueness of the fixed

point for the discretised EMS scheme (4.1) in Section 4.3.1.

Before showing that FEMS is analytic we prove the following two Lemmata, giving

a closed form expression its the Fréchet derivative of order k. Since the computation

of the derivatives is rather involved, we only give their expression here and postpone

the proofs to Appendix A.

Lemma 4.1 (First order Fréchet derivative). The first order Fréchet derivative of

FEMS at η ∈ M+(X) is the bounded linear operator D
(1)
η FEMS : M(X) → M(X)

which maps ν ∈M(X) to

D(1)
η FEMS ν(dx′) :=

∫
X
ν(dx)K(x, x′)

∫
Y

g(y | x)h(dy)

η (g(y | ·))
dx′ (4.10)

−
∫
X
η(dx)K(x, x′)

∫
Y

g(y | x)h(dy)

η (g(y | ·))2 ν (g(y | ·)) dx′.

In particular,

β
(
D(1)
η FEMS ν

)
≤ 2

m2
g

η(X)
β(ν). (4.11)

Proof. See Appendix A.

A similar result for the EM map, FEM, is proved in Mülthei et al. (1987, Lemma

1); the first order Fréchet derivative is derived with respect to (L1, ‖ ·‖1) for positive

continuous functions. An analogous result for positive measures is obtained by

taking the smoothing operator OK equal to the identity in (4.10).

As a consequence of Lemma 4.1 we can define the derived mapping DFEMS :

M+(X) → L(M(X),M(X)) which for each η ∈ M+(X) gives the corresponding

bounded linear operator D
(1)
η FEMS. In order to show that the EMS map is analytic

we need to compute the derivatives of order k ≥ 2, D(k) FEMS. These maps are

defined inductively: FEMS is k times differentiable at η ∈ M+(X) if D(k−1) FEMS

is differentiable at η (Cartan, 1971, page 58). The map D(k) FEMS maps each η ∈
M+(X) to the k-linear map D

(k)
η FEMS (Cartan, 1971, page 63). Fortunately, to

show that FEMS is analytic we only need to compute D
(k)
η νk = D

(k)
η ν · · · ν (Zeidler,

1985, page 362):

Lemma 4.2 (Higher order Fréchet derivatives of FEMS). The Fréchet derivative of
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FEMS at η ∈M+(X) of order k ≥ 2 satisfies

D(k)
η FEMS ν

k = (−1)k+1k!

∫
X
ν(dx)K(x, ·)

∫
Y

g(y | x)h(dy)

η (g(y | ·))k
ν (g(y | ·))k−1 (4.12)

+ (−1)kk!

∫
X

[η + (k − 1)ν] (dx)K(x, ·)
∫
Y

g(y | x)h(dy)

η (g(y | ·))k+1
ν (g(y | ·))k .

Moreover, D
(k)
η FEMS ν

k is bounded for all k ≥ 2

β
(
D(k)
η FEMS ν

k
)
≤ (k + 1)!m2k+2

g

β(ν)k

η(X)k+1
(η(X) + |ν(X)|) . (4.13)

Proof. See Appendix A.

The analyticity of FEMS is obtained showing that the Taylor expansion of FEMS

at each η ∈M+(X) is converging in a neighbourhood of η.

Proposition 4.4 (Analyticity of FEMS). Under Assumption 4.1, the EMS map,

FEMS, is analytic on M+(X) endowed with the weak topology.

Proof. The EMS map FEMS is analytic at η ∈M+(X) if the series

FEMS(ν − η) +
∞∑
k=1

1

k!
D(k)
η FEMS(ν − η)k (4.14)

is converging in a neighbourhood of η, {ν : β(ν, η) < r}, with r > 0 and ν ∈M+(X)

(Zeidler, 1985, page 362).

To show that the series above is converging we use

FEMS(ν − η) +

∞∑
k=1

1

k!
D(k)
η FEMS(ν − η)k

≤ β (FEMS(ν − η)) +

∞∑
k=1

1

k!
β
(
D(k)
η FEMS(ν − η)k

)
.

The definition of FEMS gives β (FEMS(ν − η)) ≤ 1. Then, we bound the derivative

of order 1 with (4.11) and that of order k with (4.13)

β
(
D(1)
η FEMS(ν − η)

)
≤ 2

m2
g

η(X)
β(ν − η)

β
(
D(k)
η FEMS(ν − η)k

)
≤ 2(k + 1)!m2k+2

g

β(ν − η)k

η(X)k+1
(|ν(X)|+ |η(X)|) .
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Therefore, the series (4.14) is bounded by

FEMS(ν − η) +D(1)
η FEMS(ν − η) +

∞∑
k=2

1

k!
D(k)
η FEMS(ν − η)k

≤ β (FEMS(ν − η)) + β
(
D(1)
η FEMS(ν − η)

)
+
∞∑
k=2

1

k!
β
(
D(k)
η FEMS(ν − η)k

)

≤ 1 + 2
m2
g

η(X)
β(ν − η) + 2

m2
g (|ν(X)|+ |η(X)|)

η(X)

∞∑
k=2

(k + 1)

(
m2
gβ(ν − η)

β(η)

)k
.

The series on the right-hand side is a power series of the form
∑∞

k=2(k+1)xk, which,

by the ratio test, converges when |x| < 1, thus

m2
gβ(ν − η)

β(η)
< 1 ⇒ β(ν − η) <

β(η)

m2
g

.

Hence, since β(ν − η) = β(ν, η), for any r ∈
(
0, β(η)/m2

g

)
and for any ν such that

β(ν, η) < r the series

FEMS(ν − η) +

∞∑
k=1

1

k!
D(k)
η FEMS(ν − η)k

is converging and the FEMS is analytic at η ∈M+(X) (Zeidler, 1985, page 362). The

same argument applies to all η ∈M+(X), hence FEMS is analytic on M+(X).

4.3 Additional Results for the Discretised EMS

After its introduction in Silverman et al. (1990), a number of properties of the

discretised EMS iteration

f
(n+1)
b =

B∑
κ=1

OKbκ f
(n)
κ

D∑
d=1

(
hdgκd∑B

k=1 f
(n)
k gkd

)
, f (n+1) := (f

(n+1)
1 , . . . , f

(n+1)
B )

have been established. In the discrete setting, the set of finite measures with nonzero

mass coincides with the set of positive vectors with at least one non-zero entry

C :=
{
f ∈ RB : fb ≥ 0, b = 1, . . . , B

}
\ {0} (4.15)
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and the set of probability measures with the set of positive vectors with sum equal

to 1, P := H ∩ C where H is the hyperplane

H =

{
f ∈ RB : ‖h‖−1

1

B∑
b=1

fb = 1

}
, (4.16)

where h := (h1, . . . , hD) is the vector obtained by approximating h with its value at

the mid-point of each of the D bins of the discretisation of Y and ‖h‖1 :=
∑D

d=1 |hd|
(Latham and Anderssen, 1992). Existence of a fixed point for the discrete EMS

recursion (4.1) has been proved under mild assumptions on the smoothing matrix

OK (Latham and Anderssen, 1992).

Nychka (1990) shows that with a particular choice of smoothing matrix, the

fixed point of the EMS recursion minimises a penalised likelihood with a particular

roughness penalty. With this choice of penalty, the OSL-EM and the EMS recursion

have the same fixed point (Green, 1990). The proof of Nychka (1990) does not

extend straightforwardly to the continuous case, since the smoothing operator OK is

not invertible, a key feature of the smoothing matrix considered in Nychka (1990).

Fan et al. (2011) establish convergence of the discrete EMS recursion to local-

EM, an expectation maximisation algorithm for maximum local-likelihood estima-

tion, when the smoothing kernel K is a symmetric, positive convolution kernel with

compact support and with positive bandwidth ε. Under the same assumptions on

the kernel K, Fan et al. (2011) show that the spectral radius of the discrete EMS

mapping at the fixed point monotonically decreases below 1 as the bandwidth ε

increases, giving local convergence to a fixed point. Moreover, if the space on which

the EMS mapping is defined is bounded, the discrete EMS mapping is globally con-

vergent when the bandwidth is sufficiently large. Unfortunately, the result of Fan

et al. (2011) does not give an estimate of the order of magnitude of the bandwidths

for which convergence occurs, clearly, if ε→∞ and the space is bounded, then the

EMS recursion will convergence to a Uniform distribution, regardless of h and g (see

Remark 4.1). If the discrete EMS iteration (4.1) converges, the convergence occurs

at a geometric rate, improving on the notoriously slow convergence of the EM algo-

rithm (Nychka, 1990). Convergence results for the continuous EMS iteration (4.2)

are not yet available.

4.3.1 Uniqueness of the Fixed Point

Silverman et al. (1990, Section 5.4) and Latham (1995, Section 5.3) conjecture

that the introduction of a smoothing step, leading to EMS, leads to existence of a
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unique solution of the discretised EMS iteration.

We showed in Proposition 4.4 that the EMS map is analytic, we can now apply

the result above to obtain uniqueness of the fixed point for the discretised EMS (4.1).

In the discrete setting, the EMS map is a map from C in (4.15) into the set of

positive vectors with sum equal to 1, P; however, the set C on which the EMS is

defined is not bounded. To circumvent this issue we restrict the EMS map to an

appropriate subset G of C and assume that we are able to initialise the discrete

EMS iteration (4.1) at a vector f (1) = (f
(1)
1 , . . . , f

(1)
B ) ∈ G.

To show that the fixed point of the discrete EMS map is unique, consider the

open (as intersection of open sets) set

G :=

{
f ∈ RB : 1− ε < ‖f‖1

‖h‖1
< 1 + ε

}⋂{
f ∈ RB : fb > 0, b = 1, . . . , B

}
whose closure

Ḡ ⊆
{

f ∈ RB : 1− ε ≤ ‖f‖1
‖h‖1

≤ 1 + ε

}⋂
(C ∪ {0}) ⊂ C

is a subset of C, over which the EMS map is defined. We can then show the following

result using Theorem 4.1

Proposition 4.5. If OK is a stochastic matrix with positive entries, and g is as in

Assumption 4.1-(b), then the discretised EMS map (4.1) has a unique fixed point in

P ∩
{
f ∈ RB : fb > 0, b = 1, . . . , B

}
.

Proof. Clearly, G is non-empty, bounded, and convex: take v,w in G and t ∈ [0, 1],

then

‖tv + (1− t)w‖1 =
B∑
b=1

|tvb + (1− t)wb|

=

B∑
b=1

tvb + (1− t)wb = t‖v‖1 + (1− t)‖w‖1

since t ≥ 0 and vb, wb ≥ 0 for all b = 1, . . . , B. To show that for every f ∈ Ḡ,
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FEMS f ∈ G consider (4.1). For every f ∈ Ḡ, FEMS f ∈ H:

‖h‖−1
1

B∑
b=1

(FEMS f)b = ‖h‖−1
1

B∑
b=1

B∑
κ=1

Kbκ fκ

D∑
d=1

(
hdgκd∑B
k=1 fkgkd

)

= ‖h‖−1
1

B∑
κ=1

fκ

D∑
d=1

(
hdgκd∑B
k=1 fkgkd

)
= ‖h‖−1

1

D∑
d=1

hd = 1

and, since under Assumption 4.1-(b) each gkd is bounded below, each element FEMS f

is strictly positive

(FEMS f)b =
B∑
κ=1

Kbκ fκ

D∑
d=1

(
hdgκd∑B
k=1 fkgkd

)

≥ 1

m2
g

B∑
κ=1

Kbκ fκ

D∑
d=1

(
hd∑B
k=1 fk

)
=

1

m2
g

B∑
κ=1

Kbκ fκ
‖h‖1
‖f‖1

> 0,

where the last inequality follows from the fact that
∑B

κ=1 Kbκ fκ > 0 since K is a

positive matrix and at least one of the entries of f is strictly positive. Therefore

(FEMS f)b > 0 for all b = 1, . . . , B and

FEMS f ∈ P ∩
{
f ∈ RB : fb > 0, b = 1, . . . , B

}
⊂ G.

Since the EMS map is analytic by Proposition 4.4, the discretised EMS map (4.1)

has a unique fixed point by Theorem 4.1.

As discussed in Section 4.2.3, this result does not straightforwardly extend to the

continuous EMS iteration, as the space of probability measures P(X) is a manifold in

the Banach space of finite measuresM(X) which is not contained in an open set on

which FEMS is defined. However, in our experiments (see Section 5.5.1) we observed

that convergence occurs to a unique fixed point regardless of the initial distribution

f1, giving further evidence that the continuous EMS mapping (4.2) indeed admits a

unique fixed point. We conjecture that, as in the case of Proposition 4.5, uniqueness

of the fixed point is guaranteed under some assumptions on the smoothing kernel

K, in particular, it is well known that if the smoothing kernel K is close to a Dirac δ

(e.g., if the bandwidth ε→ 0) the EMS iteration collapses onto the EM one, ruling

out the existence of a unique fixed point.
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4.4 Summary

We introduced an EMS recursion on continuous spaces and studied its theoretical

properties showing the existence of a fixed point in the set of probability measures.

In the following chapter we will present a way to implement the continuous EMS

recursion which provides an adaptive stochastic discretisation of the domain of f ,

does not require strong assumptions on the regularity of f and can be implemented

when only samples from h are available.
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5

Particle Implementation of Expectation

Maximisation Smoothing

A short version of this chapter is presented in (Crucinio et al., 2021b).

5.1 Introduction

The Expectation Maximisation Smoothing (EMS) algorithm provides an attrac-

tive approach to deal with the ill-posedness of Fredholm integral equations of the

first kind, unfortunately, the iterative scheme can rarely be implemented analytically

and some kind of discretisation is needed. The standard approach in the literature

requires discretisation of the domain, X, and the assumption that the signals h,f are

piecewise constant, which restricts their applications to low-dimensional scenarios

(Li et al., 2020; Silverman et al., 1990). Under this assumption, the support of h,

f is divided into bins and the value of the signal in each of those bins is obtained

by iterating the discretised version of the EMS scheme (4.1). This scheme has two

main drawbacks: the assumption of piecewise constant signals is rarely satisfied in

practice and a functional form of the observed signal h is needed for the implemen-

tation. If only observations from h are available, a functional representation can be

obtained by e.g., kernel density estimation, but this is not fully satisfactory.

In the previous chapter we introduced a continuous version of the EMS iteration,

and showed that a fixed point of the iterative scheme exists also in this setting.

We propose a stochastic discretisation of the continuous EMS recursion through

sequential Monte Carlo (SMC) which does not need the assumption of piecewise

constant signals, provides an adaptive stochastic discretisation of the domain and

outputs a sample approximation of f through which a smooth approximation can be

obtained via a natural kernel density estimation procedure. This approach naturally
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deals with observations from h, therefore we assume that

Assumption 5.1. The function g can be evaluated pointwise and a sample Y from

h is available.

The existence of a fixed point of the continuous EMS recursion (Corollary 4.1)

is established taking h to be any probability distribution over Y, and shows that a

fixed point exists both in the case in which h admits a density and that in which h

is the empirical distribution of a sample Y

m(Y) :=
1

|Y|

|Y|∑
j=1

δYj (5.1)

where |Y| denotes the number of samples from h available. This setting is the most

common in applications, and is the setting we are concerned with.

The construction of this novel SMC scheme is based on the connection between

the EMS recursion and Feynman-Kac measure flows, which we make explicit in

this chapter. The resulting SMC scheme is not standard, thus we extend some of

the results known for standard SMC to this case (e.g. Lp inequality, strong law of

large numbers, almost sure convergence in the weak topology and bias estimate).

Finally, we compare the novel method with alternatives using a simulation study and

present results for realistic systems, including motion deblurring and reconstruction

of cross-section images of the brain from positron emission tomography.

5.2 A Stochastic Interpretation of EMS

The EMS recursion

fn+1(x) =

∫
X
K(x′, x)fn(x′)

∫
Y

g(y | x′)h(y)∫
X g(y | z)fn(z) dz

dydx′,

can be modelled as a Feynman-Kac measure flow by considering an extended state

space. Denote by ηn(x, y) the joint density at (x, y) ∈ H defined by ηn(x, y) =

fn(x)h(y) so that fn(x) = ηn|X(x) =
∫
Y ηn(x, y) dy. This density satisfies a recursion

similar to that above

ηn+1(x, y) =

∫
X

∫
Y
ηn(x′, y′)K(x′, x)h(y)

g(y′ | x′)
hn(y′)

dy′ dx′, (5.2)

where hn(y′) :=
∫
g(y′ | z)fn(z)dz. With a slight abuse of notation, we also denote

by ηn the joint density of (x1:n, y1:n) ∈ Hn obtained by iterative application of (5.2)
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with the integrals removed and consider the corresponding measure (also denoted

by ηn).

The following result connects the augmented EMS recursion to the Feynman-Kac

measure flows introduced in Chapter 2:

Proposition 5.1. The sequence of measures {ηn}n≥1 defined over the product

spaces Hn by (2.2) with

Mn+1 ((xn, yn),d(xn+1, yn+1)) = K(xn,dxn+1)h(dyn+1) (5.3)

and

Gn(xn, yn) =
g(yn | xn)∫

X ηn|X(dz)g(yn | z)
(5.4)

satisfies, marginally, recursion (5.2). In particular, the marginal distribution over

xn of ηn,

ηn|X(A) = ηn
(
(Xn−1 ×A)× Yn

)
= ηn (A× Y) , (5.5)

for all A ⊂ X, satisfies the EMS recursion if we make the identification fn(x) =

ηn|X(dx).

Proof. Starting from (2.2) with Mn+1 and Gn as in (5.3)-(5.4)

ηn+1 (d(xn+1, yn+1)) =
ηn (d(x1:n, y1:n))Gn(xn, yn)

ηn(Gn)
Mn+1 ((xn, yn), d(xn+1, yn+1)) ,

(5.6)

where ηn(Gn) :=
∫
H ηn (d(x1:n, y1:n))Gn(xn, yn) = 1, and integrating out (x1:n, y1:n)

ηn+1 (d(xn+1, yn+1))

=

∫
Hn

ηn (d(x1:n, dy1:n))Gn(xn, yn)

ηn(Gn)
Mn+1 ((xn, yn), d(xn+1, yn+1))

=

∫
H

∫
Hn−1

{
ηn (d(x1:n, y1:n))

× g(yn | xn)∫
ηn|X(dz)g(yn|z)

K(xn,dxn+1)h(dyn+1)
}

=

∫
H
ηn (d(xn, yn))

g(yn | xn)∫
ηn|X(dz)g(yn|z)

K(xn, dxn+1)h(dyn+1).

The above shows that the marginals of (5.6) at time n + 1 satisfy the augmented

EMS recursion (5.2).
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We can then compute the marginal over X, ηn+1|X

ηn+1|X(dxn+1) =

∫
Y
ηn+1 (d(xn+1, yn+1))

=

∫
Y
h(dyn+1)

∫
H
ηn (d(xn, yn))

g(yn | xn)∫
ηn|X(dz)g(yn|z)

K(xn, dxn+1)

=

∫
X
ηn|X(dxn)K(xn,dxn+1)

∫
Y
h(dyn)

g(yn | xn)∫
ηn|X(dz)g(yn|z)

which, with the given identifications, satisfies the EMS recursion (4.2).

To facilitate the theoretical analysis we separate the contribution of the muta-

tion kernels (5.3) and of the potential functions (5.4), in particular, we denote the

weighted distribution obtained from ηn by

ΨGn(ηn) (d(xn, yn)) :=
1

ηn(Gn)
ηn (d(xn, yn))Gn(xn, yn).

5.3 SMC Implementation of the EMS Recursion

Having shown that the EMS recursion describes a sequence of densities satisfy-

ing a Feynman-Kac flow, it is possible to use SMC techniques to approximate this

recursion. This involves replacing the true density at each step with a sample ap-

proximation obtained at the previous iteration, giving rise to Algorithm 2, which

describes the case in which only a fixed number of samples from h are available and

in line 1-2 we draw Y i
n from their empirical distribution; when sampling freely from

h is feasible one could instead draw these samples from it.

Algorithm 2: Sequential Monte Carlo for Expectation Maximisation
Smoothing (SMC-EMS)

At time n = 1
1 Sample X̃i

1 ∼ f1, Ỹ i
1 from m(Y) for i = 1, . . . , N and set W i

1 = 1
N

At time n > 1
2 Sample Xi

n ∼ K(X̃i
n−1, ·) and Y i

n from m(Y) for i = 1, . . . , N
3 Compute the approximated potentials GNn (Xi

n, Y
i
n) in (5.8) and obtain the

normalized weights W i
n = GNn (Xi

n, Y
i
n)
/∑N

j=1G
N
n (Xj

n, Y
j
n ) for i = 1, . . . , N

4 (Re)Sample
{

(Xi
n, Y

i
n),W i

n

}
to get

{
(X̃i

n, Ỹ
i
n), 1

N

}
for i = 1, . . . , N

5 Estimate fn+1(x) as in (5.10)

The resulting SMC scheme is not a standard particle approximation of Feynman-

Kac measure flows, because of the definition of the potential (5.4). Indeed, Gn
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cannot be computed exactly, because fn(z) is not known. However, the SMC scheme

provides an approximation for fn at time n. Let us denote by ηNn |X the particle

approximation of the marginal ηn|X = fn in (5.5)

ηNn |X(A) :=

∫
A×Y

ηNn (d(x, y))

for all A ⊂ X. We can approximate

Gn(xn, yn) =
g(yn | xn)

hn(yn)
=

g(yn | xn)∫
X ηn|X(dz)g(yn | z)

by using the particle approximation of the denominator hn(yn)

hNn (yn) :=

∫
X
ηNn |X(dz)g(yn | z) = ηNn |X (g(yn | ·)) (5.7)

to get the approximate potentials

GNn (xn, yn) :=
g(yn | xn)

hNn (yn)
. (5.8)

The use of GNn within the importance weighting corresponds to an additional

approximation which is not found in standard SMC algorithms. In particular, (5.8)

are biased estimators of the true potentials (5.4). As a consequence, it is not possible

to use arguments based on extensions of the state space (as in particle filters using

unbiased estimates of the potentials (Del Moral et al., 2006b; Fearnhead et al., 2008;

Liu and Chen, 1998)) to provide theoretical guarantees for this SMC scheme. If Gn

itself were available then it would be preferable to make use of it; in practice this

will never be the case but the idealized algorithm which employs such a strategy is

of use for theoretical analysis.

At time n + 1, we estimate fn+1(x) by computing a kernel density estimate

(KDE) of

ΨGNn
(ηNn )|X(dx) =

N∑
i=1

GNn (Xi
n, Y

i
n)∑N

j=1G
N
n (Xj

n, Y
j
n )
δ(Xi

n)(dx),

where ΨGNn
is the Boltzmann-Gibbs transform associated with the approximated

potentials GNn , and then applying the EMS smoothing kernel K. This approach

may seem counter-intuitive but the KDE kernel and the EMS kernel are fulfilling

different roles. The KDE gives a good smooth approximation of the density asso-
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ciated with the EMS recursion at a point in that recursion which we expect to be

under-smoothed and is driven by the usual considerations of KDE when obtaining

a smooth density approximation from an empirical distribution; going on to apply

the EMS smoothing kernel is simply part of the EMS regularisation procedure. One

could instead apply kernel density estimation after step 2 of the subsequent iteration

of the algorithm but this would simply introduce additional Monte Carlo variance,

with the described approach corresponding to a Rao-Blackwellisation of that slightly

simpler strategy. Using the kernel of Fredholm equations of the second kind to ex-

tract smooth approximations of their solution from Monte Carlo samples has also

been found empirically to perform well (Doucet et al., 2010). Depending on the

intended use of the approximation, the KDE step can be omitted entirely; the em-

pirical distribution provides a good (in the sense of Proposition 5.3) approximation

to that given by the EMS recursion but one which does not admit a density.

We consider standard dX-dimensional kernels for KDE with smoothing band-

width sN and bounded kernel S (Silverman, 1986), u 7→ s−dXN |Σ|−1/2S
((
s2
NΣ
)−1/2

u
)

.

To account for the dependence between samples, when computing the bandwidth,

sN , instead of N we use the effective sample size (Kong et al., 1994)

ESS =

(
N∑
i=1

GNn (Xi
n, Y

i
n)2

)−1
 N∑
j=1

GNn (Xj
n, Y

j
n )

2

. (5.9)

The resulting estimator,

fNn+1(x) =
N∑
i=1

GNn (Xi
n, Y

i
n)∑N

j=1G
N
n (Xj

n, Y
j
n )
s−dXN |Σ|−1/2

×
∫
X
K(x′, x)S

((
s2
NΣ
)−1/2

(Xi
n − x′)

)
dx′ (5.10)

satisfies the standard KDE convergence results in L1 (Devroye and Wagner, 1979)

and in L2 (Silverman, 1986) (see Section 5.4.3).

As the EMS recursion (4.2) aims at finding a fixed point, after a certain number

of iterations the approximation of f provided by the SMC scheme stabilises. We

could therefore average over approximations obtained at different iterations to get

more stable reconstructions. When the storage cost is prohibitive, a thinned set of

iterations could be used.

In principle, one could reduce the variance of associated estimators by using

a different proposal distribution within Algorithm 2 just as in standard particle
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methods (see, e.g., Del Moral (2004, Section 2.4.2), Doucet and Johansen (2011,

Section 25.4.1)) but this proved unnecessary in all of the examples which we explored

as we obtained good performance with this simple generic scheme (the effective

sample size was above 70% in all the examples considered).

5.3.1 Algorithmic Setting

There are a number of algorithmic parameters which must be specified. The

initial density, f1, must be specified but we did not find performance to be sensitive to

this choice (see Appendix 5.5.1). We advocate choosing f1 to be a diffuse distribution

with support intended to include that of f because the resampling step allows SMC

to more quickly forget overly diffuse initializations than overly concentrated ones.

For problems with bounded domains, choosing f1 to be uniform over X is a sensible

default choice and the one which we use in Section 5.5.

We propose to stop the iteration in Algorithm 2 when the difference between

successive approximations, measured through the L2 norm of the reconstruction of

h obtained by convolution of fNn with g

ĥNn (y) :=

∫
X
fNn (x)g(y | x)dx,

is smaller than the variability due to the Monte Carlo approximation of (4.2)∫
Y

∣∣∣ĥNn+1(y)− ĥNn (y)
∣∣∣2 dy < var

(
ζ(fNk ); k = n+ 1−m, . . . n+ 1

)
, (5.11)

where ζ is some function of the estimator fNn+1 and we consider its variance over the

last m iterations. The term on the left-hand side is an indicator of whether the EMS

recursion (4.2) has reached a fixed point, while the variance takes into account the

error introduced by approximating (4.2) through Monte Carlo. For given N there is

a point at which further increasing n does not improve the estimate because Monte

Carlo variability dominates. We employ this stopping rule in the PET example in

Section 5.5.4.

The amount of regularisation introduced by the smoothing step is controlled by

the smoothing kernel K. In principle, any density T can be used to specify K as

in Assumption 4.1-(c); we opted for isotropic Gaussian kernels since in this case the

integral in (5.10) can be computed analytically with an appropriate choice of S. In

the case of isotropic Gaussian kernels the amount of smoothing is controlled by the

variance ε2, if the expected smoothness of the fixed point of the EMS recursion (4.2)
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is known, ε should be chosen so that (5.10) matches this knowledge. If no infor-

mation is known on the expected smoothness, the level of smoothing introduced

could be picked by cross validation, comparing, e.g., the reconstruction accuracy or

smoothness. In addition, one could allow extra flexibility by letting K change at

each iteration. For instance, allowing for larger moves in early iterations proves to

be beneficial in standard SMC settings to improve stability and ergodicity. Another

option is to choose the smoothing parameter adaptively using information on the

smoothness of the current estimate.

We end this section by identifying a further degree of freedom which can be ex-

ploited to improve performance. A variance reduction can be achieved by averaging

over several Y i
n when computing the approximated potentials GNn . At time n, draw

M samples Y ij
n for j = 1, . . . ,M without replacement for each particle i = 1, . . . , N

and compute the approximated potentials by averaging over the M replicates Y ij
n

GN,Mn (Xi
n, Y

i
n) =

1

M

M∑
j=1

g(Y ij
n | Xi

n)

hNn (Y ij
n )

.

This incurs an O(MN) computational cost and can be justified by further extending

the state space to X × Ym. Unfortunately, the results on the optimal choice of M

obtained for pseudo-marginal methods (e.g. Pitt et al. (2012)) cannot be applied

here, as the estimates of Gn given by (5.8) are not unbiased. In the examples shown

in Section 5.5 we resample without replacement M samples from Y where M is the

smallest between N and the size of Y, but smaller values of M could be considered

(see Section 5.5.1). This strategy yields an O(|Y|N) = O(N) cost for a fixed sample

Y from h, in contrast to the naive strategy of drawing N times with replacement

which would yield an O(N2) cost.

5.3.2 Comparison of EMS and SMC-EMS

The discretised EMS (4.1) and Algorithm 2 both approximate the EMS recur-

sion (4.2). There are two main aspects under which the SMC implementation of

EMS is an improvement with respect to the one obtained by brute-force discreti-

sation: the information on h which is needed to run the algorithm and the scaling

with the dimensionality of the domain of f .

The discretised EMS (4.1) requires the value of h on each of the D bins of the

space discretisation of Y, when we only have a sample Y from h, as it is the case

in most applications (Delaigle, 2008; Goldstein et al., 2009; Gostic et al., 2020; Hall

et al., 2005; Marschner, 2020; Miao et al., 2018), h should then be approximated
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through a histogram or a kernel density estimator as in the Iterative Bayes algorithm

(Ma, 2011). On the contrary, Algorithm 2 does not require this additional approxi-

mation and naturally deals with samples from h. In Section 5.5.2 we show on a one

dimensional example that the brute-force discretisation (4.1) struggles at recovering

the shape of a bimodal distribution while the SMC implementation achieves much

better performances in terms of accuracy. In addition, increasing the number of bins

for EMS has a milder effect on the accuracy than increasing the number of particles

in the SMC implementation.

Similar considerations apply when X,Y are higher dimensional (i.e. dX ≥ 2).

The number of bins B in the EMS recursion (4.1) necessary to achieve reasonable

accuracy increases exponentially with dX, resulting in higher runtimes which quickly

exceed those needed to run Algorithm 2. On the contrary the convergence rate for

SMC remains N−1/2, and although the associated constants may grow with dX,

its performance is shown empirically to scale better with dimension than EMS in

Section 5.5.6.

5.4 Convergence Properties of the SMC Scheme

As the potentials (5.4) cannot be computed exactly but need to be estimated,

the convergence results for standard SMC (e.g., Chopin and Papaspiliopoulos (2020);

Del Moral (2004, 2013)) do not hold. For simplicity, we only consider multinomial re-

sampling (Gordon et al., 1993). Lower variance resampling schemes can be employed

but considerably complicate the theoretical analysis (Douc et al., 2005; Gerber et al.,

2019). We extend the Lp inequality by analysing the contribution of the additional

approximation introduced by using GNn instead of Gn and then combining the results

with existing arguments for standard SMC (Crisan and Doucet, 2000, 2002; Mı́guez

et al., 2013). As a consequence of the Lp inequality for ηNn , it is possible to show

that the approximated potentials GNn converge almost surely to the exact ones Gn

(Corollary 5.2).

The strong law of large numbers (SLLN) follows from the Lp inequality and leads

to the almost sure convergence of ηNn to ηn as N → ∞ in the weak topology for

all n ≥ 1 (Proposition 5.3). This result is particularly interesting, because it shows

that the empirical measures obtained with the SMC scheme described in Section 5.3

converge (almost surely in the weak topology) to those obtained by the measure

flow (5.6), whose marginal over x satisfies the EMS recursion (4.2).

Additionally, we extend the bias estimate for standard SMC algorithms showing

that the bias of ηNn (ϕ) decreases with N at rate 1/N (see, e.g., Del Moral (2013,

67



5. SMC-EMS

Proposition 9.5.6), Del Moral et al. (2007)). Finally, we provide theoretical guaran-

tees for the estimator (5.10).

5.4.1 Lp Inequality, Law of Large Numbers and Bias Estimates

The SLLN is stated in Corollary 5.1. This result follow from the Lp inequality in

Proposition 5.2, the proof of which is given in Appendix B and follows the inductive

argument of Crisan and Doucet (2000, 2002); Mı́guez et al. (2013). Both results are

proved for test functions ϕ in the Banach space of measurable bounded real-valued

functions on H, denoted by Bb(H), endowed with the supremum norm, ‖ϕ‖∞ =

supu∈H |ϕ(u)|.
As a consequence of Assumption 4.1-(b), the potentials Gn and GNn are bounded

and bounded away from 0 (see Lemma B.1), a strong mixing condition that is

common in the SMC literature and is satisfied in most of the applications which we

have considered.

Proposition 5.2 (Lp-inequality). Under Assumptions 4.1 and 5.1, for every time

n ≥ 1 and every p ≥ 1 there exist finite constants C̃p,n, Ĉp,n such that for every

measurable bounded function ϕ ∈ Bb(H)

E
[
|ηNn (ϕ)− ηn(ϕ)|p

]1/p ≤C̃p,n ‖ϕ‖∞√
N

(5.12)

and E
[
|ΨGNn

(ηNn )(ϕ)−ΨGn(ηn)(ϕ)|p
]1/p
≤Ĉp,n

‖ϕ‖∞√
N

(5.13)

where the expectations are taken with respect to the law of all random variables

generated within the SMC algorithm.

Proof. See Section 5.4.2 and Appendix B.

The first inequality controls the error between the exact evolution of the measure

flow (5.6) at iteration n and the evolution given by the particle population with the

approximated potential GNn , while the second inequality controls the error before

the resampling step at time n. The SLLN is a corollary to the Lp-inequality:

Corollary 5.1 (Strong law of large numbers). Under Assumptions 4.1 and 5.1, for

all n ≥ 1 and for every ϕ ∈ Bb(H), we have almost surely as N →∞:

ηNn (ϕ)→ ηn(ϕ) and ΨGNn
(ηNn )(ϕ)→ ΨGn(ηn)(ϕ).
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Proof. For any continuous bounded function ϕ and ∀ε > 0 consider the probability

P
(
|ηNn (ϕ)− ηn(ϕ)|p ≥ ε

)
. By Markov’s inequality and Proposition 5.2 with p > 2:

∞∑
N=0

P
(
|ηNn (ϕ)− ηn(ϕ)|p ≥ ε

)
≤
∞∑
N=0

E
[
|ηNn (ϕ)− ηn(ϕ)|p

]
ε

≤
∞∑
N=0

C̃pp,n‖ϕ‖p∞
Np/2ε

<∞.

Fix ε = 1/m for some m ∈ N and apply the Borel-Cantelli lemma

P
(

lim sup
N

{
|ηNn (ϕ)− ηn(ϕ)|p ≥ 1

m

})
= 0.

It follows that lim supN |η̂Nn (ϕ)− η̂n(ϕ)| < 1/m almost surely.

Define Bm = {lim supN |ηNn (ϕ) − ηn(ϕ)| < 1/m} and B =
⋂
m∈NBm. The

previous statement implies P(Bm) = 1 and hence P(B) = 1. This is equivalent to

P
(

lim sup
N

|ηNn (ϕ)− ηn(ϕ)| < 1/m ∀m ∈ N
)

= 1,

which gives almost sure convergence of ηNn (ϕ) to ηn(ϕ). An analogous argument

shows almost sure convergence of ΨGNn
(ηNn )(ϕ) to ΨGn(ηn)(ϕ).

The following properties of the approximated potentials GNn are a direct conse-

quence of Proposition 5.2 and Corollary 5.1:

Corollary 5.2 (Properties of the approximated potential). Under Assumptions 4.1

and 5.1, for fixed (x, y) and for all n ≥ 1, the potentials GNn (x, y) and Gn(x, y)

satisfy

1. For all N ≥ 1, n ≥ 1 and every p ≥ 1

E
[
|GNn (x, y)−Gn(x, y)|p

]1/p ≤ m4
gC̃p,n

1√
N
,

with C̃p,n finite.

2. GNn (x, y)→ Gn(x, y) almost surely as N →∞.

3. If H is compact, then ‖GNn −Gn‖∞ → 0 almost surely as N →∞.

Proof. The first and second statements follow straightforwardly from Proposition 5.2

and Corollary 5.1 respectively. The pointwise almost sure convergence can be
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strengthened to uniform almost sure convergence exploiting the continuity of g and

the compactness of H as shown in Appendix B.

Using standard techniques following Dudley (2002, Chapter 11, Theorem 11.4.1)

and Berti et al. (2006) and given in detail for the context of interest by Schmon

et al. (2021, Theorem 4), the result of Corollary 5.1 can be strengthened to the

convergence of the measures in the weak topology:

Proposition 5.3 (Almost sure weak convergence). Under Assumptions 4.1 and 5.1,

for all n ≥ 1, ηNn converges almost surely in the weak topology to ηn, ηNn ⇀ ηn as

N →∞.

Proof. Consider BL(H) ⊂ Bb(H), the Banach space of bounded Lipschitz functions.

As shown in Schmon et al. (2021, Supplementary Material, Proposition 2) and Dud-

ley (2002, Theorem 11.4.1) BL(H) admits a countable dense subclass C ⊂ BL(H).

For every ϕ ∈ C define Aϕ = {ω ∈ Ω : ηNn (ω)(ϕ) → ηn(ϕ) N → ∞}. Then

P (Aϕ) = 1 ∀ϕ ∈ C by Corollary 5.1 and

P
(
{ω ∈ Ω : ηNn (ω)(ϕ)→ ηn(ϕ) N →∞ ∀ϕ ∈ C}

)
= P

⋂
ϕ∈C

Aϕ

 = 1.

The result follows from the fact that C is dense in BL(H) and the Portmanteau

Theorem (e.g. Billingsley (1995, Theorem 29.1), see also Schmon et al. (2021, Sup-

plementary Material, Theorem 1)).

The following bias estimates shows that the use of approximated potentials rather

than exact ones does not increase the rate of convergence of the bias:

Proposition 5.4 (Bias estimate). Under Assumptions 4.1 and 5.1, for any N ≥ 1,

n ≥ 1 and any ϕ ∈ Bb(H) we have

∣∣E [ηNn (ϕ)
]
− ηn(ϕ)

∣∣ ≤ Cn‖ϕ‖∞
N

and ∣∣E [ηNn (GNn ϕ)
]
− ηn(Gnϕ)

∣∣ ≤ Dn‖ϕ‖∞
N

for some finite Cn and Dn.

Proof. See Section 5.4.2 and Appendix B.
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ηn ΨGn(ηn) η̂n ηn+1

ΨGn(ηNn ) η̂Nn ηNn+1

ΨGNn
(ηNn )ηNn η̂Nn ηNn+1

Gn Mn+1

Gn

resampling Mn+1

GNn resampling Mn+1

Figure 4: Schematic representation of the non-implementable standard particle ap-
proximation of the Feynman-Kac flow (5.6) (dashed) and of the SMC scheme in
Algorithm (2) (solid). Standard results in the SMC literature control the approxi-
mation errors for the dashed approximations (in blue), we provide a bound on the
error of the additional approximation of the weights (in red).

5.4.2 Method of Proof

The theoretical characterisation of the particle method approximating the EMS

recursion is carried out by decomposing Algorithm 2 into three steps: mutation,

reweighting and resampling. This decomposition is standard in the study of SMC

algorithms (Chopin, 2004; Crisan and Doucet, 2000, 2002; Mı́guez et al., 2013) and

allows us to examine the novelty of the particle approximation introduced in Sec-

tion 5.3 by directly considering the contribution to the overall approximation error

of the use of approximate weights GNn .

First, consider the following decomposition of the dynamics in (5.6) with po-

tentials (5.4) and Markov kernels (5.3). In the selection step, the current state is

weighted according to the potential function Gn

η̂n (d(x1:n, y1:n)) ≡ ΨGn(ηn) (d(x1:n, y1:n)) =
1

ηn(Gn)
Gn(xn, yn)ηn (d(x1:n, y1:n)) ;

then, in the mutation step, a new state is proposed according to Mn+1

ηn+1 (d(x1:n+1, y1:n+1)) ∝ η̂n (d(x1:n, y1:n))Mn+1(xn,dxn+1).

Each step of the evolution above is compared to its particle approximation coun-

terpart: the weighted distribution ΨGn(ηNn ) is compared with ΨGn(ηn) ≡ η̂n, the

resampled distribution η̂Nn is compared with η̂n and finally ηNn is compared with ηn

(see Figure 4).
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As the resampling step is not different from that of standard SMC implemen-

tation, we only consider the multinomial resampling scheme described by Gordon

et al. (1993). The convergence properties of alternative resampling schemes have

been considered in e.g., Gerber et al. (2019).

Lp Inequality

The proof of the Lp-inequality in Proposition 5.2 follows the inductive approach

of Crisan and Doucet (2000, 2002); Mı́guez et al. (2013) and consists of 4 Lemmata.

Lemmata B.4, B.2 and B.3 in Appendix B are due to Crisan and Doucet (2000,

2002); Mı́guez et al. (2013) and establish Lp-error estimates for the mutation step,

the reweighting step performed with the exact potential Gn (exact reweighting) and

the multinomial resampling step. Lemma 5.1 compares the exact reweighting with

the reweighting obtained by using the approximated potentials GNn and is the main

element of novelty in the proof:

Lemma 5.1 (Approximate reweighting). Assume that for any ϕ ∈ Bb (H) and some

finite constants C̃p,n

E
[
|ηNn (ϕ)− ηn(ϕ)|p

]1/p ≤ C̃p,n ‖ϕ‖∞
N1/2

,

for every p ≥ 1, then

E
[
|ΨGNn

(ηNn )(ϕ)−ΨGn(ηNn )(ϕ)|p
]1/p
≤ C̈p,n

‖ϕ‖∞
N1/2

for any ϕ ∈ Bb (H) and for some finite constant C̈p,n.

Proof. Apply the definition of ΨGn and ΨGNn
and consider the following decomposi-

tion

|ΨGNn
(ηNn )(ϕ)−ΨGn(ηNn )(ϕ)| =

∣∣∣∣ηNn (GNn ϕ)

ηNn (GNn )
− ηNn (Gnϕ)

ηNn (Gn)

∣∣∣∣
≤
∣∣∣∣ηNn (GNn ϕ)

ηNn (GNn )
− ηNn (GNn ϕ)

ηNn (Gn)

∣∣∣∣
+

∣∣∣∣ηNn (GNn ϕ)

ηNn (Gn)
− ηNn (Gnϕ)

ηNn (Gn)

∣∣∣∣ .
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Then, for the first term∣∣∣∣ηNn (GNn ϕ)

ηNn (GNn )
− ηNn (GNn ϕ)

ηNn (Gn)

∣∣∣∣ =

∣∣∣∣ηNn (GNn ϕ)

ηNn (GNn )

∣∣∣∣ ∣∣∣∣ηNn (Gn)− ηNn (GNn )

ηNn (Gn)

∣∣∣∣
≤ ‖ϕ‖∞
|ηNn (Gn)|

ηNn (|Gn −GNn |).

For the second term∣∣∣∣ηNn (GNn ϕ)

ηNn (Gn)
− ηNn (Gnϕ)

ηNn (Gn)

∣∣∣∣ =
1

|ηNn (Gn)|
|ηNn (GNn ϕ)− ηNn (Gnϕ)|

≤ ‖ϕ‖∞
|ηNn (Gn)|

ηNn (|GNn −Gn|).

Hence,

|ΨGNn
(ηNn )(ϕ)−ΨGn(ηNn )(ϕ)| ≤ 2

‖ϕ‖∞
|ηNn (Gn)|

ηNn (|GNn −Gn|)

≤ 2m2
g‖ϕ‖∞ηNn (|GNn −Gn|).

By applying Minkowski’s inequality and the decomposition of the potentials in

Lemma B.1

E
[∣∣ηNn (|GNn −Gn|)

∣∣p]1/p

= E

[∣∣∣∣∣ 1

N

N∑
i=1

∣∣GNn (Xi
n, Y

i
n)−Gn(Xi

n, Y
i
n)
∣∣∣∣∣∣∣
p]1/p

≤ 1

N

N∑
i=1

E
[∣∣GNn (Xi

n, Y
i
n)−Gn(Xi

n, Y
i
n)
∣∣p]1/p

≤ 1

N

N∑
i=1

E
[∣∣∣∣ GNn (Xi

n, Y
i
n)

ηn|X (g(Y i
n | ·))

∣∣∣∣p |ηn|X (g(Y i
n | ·)

)
− ηNn |X

(
g(Y i

n | ·)
)
|p
]1/p

≤ 1

N

N∑
i=1

m3
g E
[
|ηn|X

(
g(Y i

n | ·)
)
− ηNn |X

(
g(Y i

n | ·)
)
|p
]1/p

.

Then, consider SNn := σ
(
Y i
n : i ∈ {1, . . . , N}

)
, the σ-field generated by all the Y i

n at

time n. By construction, the evolution of Xi
n for i = 1, . . . , N is independent of SNn

(this is due to the definition of the mutation kernel (5.3)). Conditionally on SNn , the

Y i
n are fixed for i = 1, . . . , N and we can use the fact that, for fixed y, ηn and ηn|X
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coincide and so do ηNn and ηNn |X:

E
[
|ηn|X (g(y | ·))− ηNn |X (g(y | ·)) |p

]1/p
= E

[
|ηn (g(y | ·))− ηNn (g(y | ·)) |p

]1/p
≤ mgC̃p,n√

N

where the last inequality follows the hypothesis of the Lemma because g(y | ·) is a

bounded and measurable function for all fixed y ∈ Y.

Hence, since Y i
n is SNn -measurable and independent of ηNn |X, we have

E
[∣∣ηNn (|GNn −Gn|)

∣∣p]1/p
≤ m3

g

1

N

N∑
i=1

E
[
|ηn|X

(
g(Y i

n | ·)
)
− ηNn |X

(
g(Y i

n | ·)
)
|p
]1/p

≤ m3
g

1

N

N∑
i=1

E
[
E
[
|ηn|X

(
g(Y i

n | ·)
)
− ηNn |X

(
g(Y i

n | ·)
)
|p | SNn

]]1/p
≤
m4
gC̃p,n√
N

.

Therefore, setting C̈p,n = 2C̃p,nm
6
g we obtain

E
[
|ΨGNn

(ηNn )(ϕ)−ΨGn(ηNn )(ϕ)|p
]1/p
≤ C̈p,n

‖ϕ‖∞
N1/2

.

Bias Estimate

The proof of the bias estimate is given in Appendix B makes use of Lemma 5.2,

which controls the bias introduced by the approximated potentials.

Lemma 5.2. Assume that for any ϕ ∈ Bb (H) and some finite constant Cn

∣∣E [ηNn (ϕ)
]
− ηn(ϕ)

∣∣ ≤ Cn‖ϕ‖∞
N

, (5.14)

then for any ϕ ∈ Bb (H) and for some finite constant D̃n

∣∣E [ηNn (GNn ϕ)− ηNn (Gnϕ)
]∣∣ ≤ D̃n

N
.
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Proof. Take

∣∣E [ηNn (GNn ϕ)− ηNn (Gnϕ)
]∣∣ =

∣∣E [ηNn ((GNn −Gn)ϕ
)]∣∣ (5.15)

=

∣∣∣∣∣E
[

1

N

N∑
i=1

(
GNn (Xi

n, Y
i
n)−Gn(Xi

n, Y
i
n)
)
ϕ(Xi

n, Y
i
n)

]∣∣∣∣∣
=

∣∣∣∣∣ 1

N

N∑
i=1

E
[
ϕ(Xi

n, Y
i
n)GNn (Xi

n, Y
i
n)

ηn|X (g(Y i
n | ·))

(ηNn |X − ηn|X)
(
g(Y i

n | ·)
)]∣∣∣∣∣

≤ 1

N

N∑
i=1

∣∣∣∣E [ϕ(Xi
n, Y

i
n)GNn (Xi

n, Y
i
n)

ηn|X (g(Y i
n | ·))

(ηNn |X − ηn|X)
(
g(Y i

n | ·)
)]∣∣∣∣ ,

where we have used the decomposition of the potentials in Lemma B.1.

Let us denote by SNn := σ
(
Y i
n : i ∈ {1, . . . , N}

)
, the σ-field generated by Y i

n for

all i = 1, . . . , N , by σ
(
Xi
n

)
, the σ-field generated by the single particle Xi

n and by

HN,in := SNn ∨ σ
(
Xi
n

)
.

By conditioning we can write the expectation above as∣∣∣∣E [ϕ(Xi
n, Y

i
n)GNn (Xi

n, Y
i
n)

ηn|X (g(Y i
n | ·))

(ηNn |X − ηn|X)
(
g(Y i

n | ·)
)]∣∣∣∣ (5.16)

≤ E
[∣∣∣∣ϕ(Xi

n, Y
i
n)GNn (Xi

n, Y
i
n)

ηn|X (g(Y i
n | ·))

∣∣∣∣ ∣∣E [(ηNn |X − ηn|X)
(
g(Y i

n | ·)
)
| HN,in

]∣∣]
≤ m3

g‖ϕ‖∞ E
[∣∣E [(ηNn |X − ηn|X)

(
g(Y i

n | ·)
)
| HN,in

]∣∣] .
The conditional expectation can be decomposed as follows

∣∣E [(ηNn |X − ηn|X)
(
g(Y i

n | ·)
)
| HN,in

]∣∣ (5.17)

=

∣∣∣∣∣∣E
 1

N

N∑
j=1

g(Y i
n | Xj

n) | HN,in

− ηn|X (g(Y i
n | ·)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣E
 1

N

∑
j 6=i

g(Y i
n | Xj

n) | HN,in

+
1

N
g(Y i

n | Xi
n)− ηn|X

(
g(Y i

n | ·)
)∣∣∣∣∣∣

≤

∣∣∣∣∣∣E
 1

N

∑
j 6=i

g(Y i
n | Xj

n) | HN,in

− ηn|X (g(Y i
n | ·)

)∣∣∣∣∣∣+
1

N
g(Y i

n | Xi
n).
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The triangle inequality gives∣∣∣∣∣∣E
 1

N

∑
j 6=i

g(Y i
n | Xj

n) | HN,in

− ηn|X (Mn

(
g(Y i

n | ·)
))∣∣∣∣∣∣

≤

∣∣∣∣∣∣E
 1

N

∑
j 6=i

g(Y i
n | Xj

n)− ηNn |X
(
g(Y i

n | ·)
)
| HN,in

∣∣∣∣∣∣
+
∣∣E [ηNn |X (g(Y i

n | ·)
)
| HN,in

]
− ηn|X

(
g(Y i

n | ·)
)∣∣ .

The first term of this bound is equal to∣∣∣∣∣∣E
 1

N

∑
j 6=i

g(Y i
n | Xj

n)− ηNn |X
(
g(Y i

n | ·)
)
| HN,in

∣∣∣∣∣∣
=

∣∣∣∣∣∣E
 1

N

∑
j 6=i

g(Y i
n | Xj

n)− 1

N

N∑
j=1

g(Y i
n | Xj

n) | HN,in

∣∣∣∣∣∣
=

∣∣∣∣ 1

N
g(Y i

n | Xi
n)

∣∣∣∣ .
The second one is bounded using the hypothesis (5.14) and observing that for every

fixed y ∈ Y

∣∣E [ηNn |X (g(y | ·))
]
− ηn|X (g(y | ·))

∣∣ =
∣∣E [ηNn (g(y | ·))

]
− ηn (g(y | ·))

∣∣
≤ Cnmg

N

since g(y | ·) is a bounded measurable function for all y ∈ Y.

Therefore the conditional expectation (5.17) is bounded by

∣∣E [(ηNn |X − ηn|X)
(
g(Y i

n | ·)
)
| HN,in

]∣∣ ≤ Cnmg

N
+

2

N
g(Y i

n | Xi
n) (5.18)

≤ Cnmg

N
+

2mg

N
.
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Hence, using (5.15), (5.16) and (5.18) we have

∣∣E [ηNn (GNn ϕ)− ηNn (Gnϕ)
]∣∣

≤ 1

N

N∑
i=1

∣∣∣∣E [ϕ(Xi
n, Y

i
n)GNn (Xi

n, Y
i
n)

ηn|X (g(Y i
n | ·))

(ηNn |X − ηn|X)
(
g(Y i

n | ·)
)]∣∣∣∣

≤ 1

N

N∑
i=1

m3
g‖ϕ‖∞ E

[∣∣E [(ηNn |X − ηn|X)
(
g(Y i

n | ·)
)
| HN,in

]∣∣]
≤ 1

N

N∑
i=1

m3
g‖ϕ‖∞

(
Cnmg

N
+

2mg

N

)
≤ m4

g‖ϕ‖∞
(Cn + 2)

N

with D̃n = m4
g‖ϕ‖∞(Cn + 2).

5.4.3 Convergence of Density Estimator

Using a version of the Dominated Convergence Theorem for weakly converging

measures (Feinberg et al., 2020; Serfozo, 1982), standard result on kernel density

estimation (e.g. Cacoullos (1966); Parzen (1962)) and an argument based on com-

pactness as in Newey (1991) we can establish the following result

Proposition 5.5. Under Assumptions 4.1 and 5.1, if sN → 0 as N → ∞, the

estimator fNn+1(x) in (5.10) converges uniformly to fn+1(x) with probability 1 for all

n ≥ 1.

Proof. Let us define for N ∈ N

ϕN (t, x) :=

∫
X
K(x′, x)s−dXN |Σ|−1/2S

(
(s2
NΣ)−1/2(t− x′)

)
dx′,

and note that the estimator (5.10) is given by fNn+1(x) = ΨGNn
(ηNn )

(
ϕN (·, x)

)
for any

fixed x ∈ X. Standard results in the literature on kernel density estimation show

that ϕN (·, x) converges to K(·, x) pointwise for all x ∈ X (e.g. Cacoullos (1966, The-

orem 2.1)). Because X is compact, Assumption 4.1-(c) ensures that K is uniformly

continuous on X (e.g. Rudin (1964, Theorem 4.19)), then, as argued in Parzen

(1962, Theorem 3.A), the sequence ϕN (·, x) converges uniformly to K(·, x) in X (see

also Cacoullos (1966, Theorem 3.3)). As a consequence, the sequence {ϕN (·, x)}N∈N
is uniformly equicontinuous and uniformly bounded (e.g. Rudin (1964, Theorem

7.25)). It follows that {ϕN (·, x)}N∈N is (asymptotically) uniformly integrable in the

sense of Feinberg et al. (2020, Definition 2.6).
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Using an argument analogous to that in Proposition 5.3 we can establish that

ΨGNn
(ηNn ) converges to ΨGn(ηn) almost surely in the weak topology, then using the

fact that the sequence {ϕN (·, x)}N∈N is asymptotically uniformly integrable and

equicontinuous with continuous limit K(·, x), the Dominated Convergence theorem

for weakly converging measures (Feinberg et al. (2020, Corollary 5.2); see also Serfozo

(1982, Theorem 3.3)) implies that

fNn+1(x) = ΨGNn
(ηNn )

(
ϕN (·, x)

)
→ ΨGn(ηn) (K(·, x)) = fn+1(x) (5.19)

almost surely as N →∞ for any fixed x ∈ X.

To turn the result above into almost sure uniform convergence, i.e.

P
(

lim sup
N→∞

{
sup
x∈X
|fNn+1(x)− fn+1(x)| > ε

})
= 0

for every ε > 0, we exploit Assumption 4.1-(a) and the resulting continuity properties

of K.

Under Assumption 4.1, K is uniformly continuous and we have that for any ε > 0

there exists some δε > 0 such that

|fn+1(x)− fn+1(x′)| = |ΨGn(ηn)
(
K(·, x)−K(·, x′)

)
|

≤ sup
z∈X
|K(z, x)−K(z, x′)| ≤ ε

3

whenever ‖x−x′‖2 < δε. Using the definition of ϕN and exploiting again the uniform

continuity of K we also have that for every ε > 0

|ϕN (t, x)− ϕN (t, x′)| ≤
∫
X
|K(u, x)−K(u, x′)|s−dXN |Σ|−1/2S

(
(s2
NΣ)−1/2(t− u)

)
du

≤ ε

3

∫
X
s−dXN |Σ|−1/2S

(
(s2
NΣ)−1/2(t− u)

)
du ≤ ε

3

if ‖x− x′‖2 < δε. It follows that fNn+1 is uniformly continuous: for any ε > 0

|fNn+1(x)− fNn+1(x′)| = |ΨGNn
(ηNn )

(
ϕN (·, x)− ϕN (·, x′)

)
|

≤ sup
z∈X
|ϕN (z, x)− ϕN (z, x′)| ≤ ε

3

whenever ‖x− x′‖2 < δε.

Let B(x, δε) := {x′ ∈ X : ‖x − x′‖2 < δε} denote the ball in X centred around

x of radius δε. Under Assumption 4.1-(a), X is compact and therefore there exists
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a finite subcover {B(xj)}Jj=1 of {B(x, δε)}x∈X. Using the uniform continuity above

and the following decomposition, we obtain for all x ∈ B(xj), j = 1, . . . , J and for

all N ,

|fNn+1(x)− fn+1(x)| ≤ |fNn+1(x)− fNn+1(xj)|+ |fNn+1(xj)− fn+1(xj)|

+ |fn+1(xj)− fn+1(x)|

≤ ε

3
+ |fNn+1(xj)− fn+1(xj)|+ ε

3

≤ 2

3
ε+ max

j=1,...,J
|fNn+1(xj)− fn+1(xj)|,

from which follows

sup
x∈X
|fNn+1(x)− fn+1(x)| ≤ 2

3
ε+ max

j=1,...,J
|fNn+1(xj)− fn+1(xj)|.

Therefore, to obtain almost sure uniform convergence, it is sufficient to show

that

P
({

ω ∈ Ω : max
j=1,...,J

|fNn+1(ω)(xj)− fn+1(xj)| → 0 N →∞
})

= 1.

Let us define Aj := {ω ∈ Ω : fNn+1(ω)(xj) → fn+1(xj) N → ∞}. As a consequence

of (5.19) we have P(Aj) = 1 for all j = 1, . . . , J and

P
({

ω ∈ Ω : max
j=1,...,J

|fNn+1(ω)(xj)− fn+1(xj)| → 0 N →∞
})

= P

 ⋂
j=1,...,J

Aj

 = 1,

which gives the result.

Proposition 5.5 implies convergence in L1 and of the MISE for fNn+1(x):

Corollary 5.3. Under Assumption 4.1 and 5.1, if sN → 0 as N → ∞, fNn+1 con-

verges almost surely to fn+1 in L1 for every n ≥ 1:

lim
N→∞

∫
X
|fNn+1(x)− fn+1(x)|dx a.s.

= 0; (5.20)

and the MISE satisfies

lim
N→∞

MISE(fNn+1) ≡ lim
N→∞

E
[∫

X
|fNn+1(x)− fn+1(x)|2 dx

]
=0. (5.21)
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Proof. A direct consequence of Proposition 5.5 is the almost sure pointwise conver-

gence of fNn+1(x) to fn+1(x). As both fNn+1(x) and fn+1(x) are probability densities

on X, we can extend them to RdX by taking

ψNn+1(x) :=

fNn+1(x) x ∈ X

0 otherwise
and ψn+1(x) :=

fn+1(x) x ∈ X

0 otherwise

respectively. Both ψNn+1(x) and ψn+1(x) are probability densities on RdX and are

measurable functions. Moreover, ψNn+1(x) converges almost surely to ψn+1(x) for all

x ∈ RdX . Hence, we can apply Glick’s extension to Scheffé’s Lemma (e.g. Devroye

and Wagner (1979)) to obtain∫
Rd
|ψNn+1(x)− ψn+1(x)| dx

a.s.→ 0

from which we can conclude∫
X
|fNn+1(x)− fn+1(x)| dx =

∫
X
|ψNn+1(x)− ψn+1(x)| dx

=

∫
RdX
|ψNn+1(x)− ψn+1(x)| dx→ 0

almost surely as N →∞.

Convergence of the MISE is a consequence of Proposition 5.5, Assumption 4.1-(a)

and the Dominated Convergence Theorem

E
[∫

X
|fNn+1(x)− fn+1(x)|2dx

]
≤ |X|E

[
‖fNn+1 − fn+1‖2∞

]
dx→ 0

as N →∞, where |X| <∞ denotes the Lebesgue measure of X.

5.5 Examples

This section shows the results obtained using the SMC implementation of the re-

cursive formula (4.2) on some common examples. First, we consider a 1-dimensional

toy example in which the analytic form of both f and h is known and the EMS

recursion (4.2) can be solved analytically. We use this example to get some insights

on the convergence speed of the algorithm and the dependence on the smoothing

kernel K. Then, we consider a simple density estimation problem and two realistic

examples of image restoration problems, motion deblurring and positron emission
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tomography (Hohage and Werner, 2016). In the first example, the analytic form of

h is known and is used to implement the discretised EM and EMS. IB and SMC are

implemented using a fixed sample Y drawn from h. In the case of motion deblurring,

the RL algorithm (i.e. EM for Poisson counts) is implemented by considering the

data image as a discretisation of the unknown density h into bins. For the SMC im-

plementation we consider the observed distorted image as the empirical distribution

of a sample Y from h and resample from it at each iteration of line 2 in Algorithm 2.

In the positron emission tomography example we use synthetic data obtained from

the Shepp-Logan phantom (e.g. Shepp and Vardi (1982)), a simplified imitation of

the brain’s metabolic activity. We choose to work with synthetic data as a database

containing real data is not yet available (Whiteley et al., 2020).

A number of parameters have to be set in order to run EM, EMS, IB and SMC

implementation of EMS. For all algorithms we need to specify an initial density f1

and the number of iterations n. Unless otherwise stated, the number of iterations is

n = 100 (we observed that convergence to a fixed point occurs in a smaller number

of steps for all algorithms; see Section 5.5.1) and the initial distribution f1 is uniform

over X.

For the EMS recursion, we use isotropic Gaussian kernels with marginal variance

ε2. The bandwidth sN is the plug-in optimal bandwidth for Gaussian distributions

where the effective sample size (5.9) is used instead of the sample size N (Silverman,

1986, page 45).

The deterministic discretisation of EM and EMS ((3.5) and (4.1) respectively) is

obtained by considering B equally spaced bins for X and D for Y and approximating

each density with its values at the centre of the bins. The number of bins, as well as

the number of particles, N , for SMC varies depending on the example considered.

In the first example, the choice of D,B and N is motivated by a comparison of error

and runtime. For the image restoration problems, D,B are the number of pixels in

each image. The number of particles N is chosen to achieve a good trade-off between

reconstruction accuracy and runtime.

For the resampling step in Algorithm 2, we use the adaptive multinomial resam-

pling scheme described in Liu (2008, page 35). At each iteration the effective sample

size (5.9) is evaluated and multinomial resampling is performed if ESS < N/2. This

choice is motivated by the fact that up to adaptivity (which we anticipate could be

addressed by the approach of Del Moral et al. (2012)) this is the setting considered in

the theoretical analysis of Section 5.4 and we observed only modest improvements

when using lower variance resampling schemes (e.g. residual resampling, see Liu

(2008)) instead of multinomial resampling.
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The accuracy of the reconstructions is measured through the integrated square

error

ISE(f) =

∫
X

(
f(x)− fNn+1(x)

)2
dx. (5.22)

To characterize the roughness of fNn+1, we evaluate both fNn+1 and f at the bin

centers xc and for each bin center we approximate (with 1,000 replicates) the mean

squared error (MSE)

MSE(xc) = E
[(
f(xc)− fNn+1(xc)

)2]
. (5.23)

Although the density estimation example of Section 5.5.2 and the example con-

sidered in Section 5.5.1 do not satisfy the Assumption 4.1-(a) which has been as-

sumed for convenience throughout this chapter, or Assumption 4.1-(b) under which

our theoretical guarantees hold; we nonetheless observe good results in terms of

reconstruction accuracy and smoothness, demonstrating that Assumption 4.1-(b) is

not necessary and could be relaxed. We study the influence on the lower bound

on g in Section 5.5.5. The subsequent examples do satisfy all of our theoretical

assumptions.

MATLAB (2018) code to reproduce all examples is available online1.

5.5.1 Analytically Tractable Example

Here we consider a toy example involving Gaussian densities for which both the

EM recursion (3.3) and the EMS recursion (4.2) can be solved at least implicitly.

The Fredholm integral equation we consider is

N (y;µ, σ2
f + σ2

g) =

∫
X
N (x;µ, σ2

f )N (y;x, σ2
g)dx, y ∈ Y (5.24)

where X = Y = R. The initial distribution f1(x) is N (x;µ, σ2
EMS,1) for some

σ2
EMS,1 > 0.

The fixed point fEMS of the EMS recursion (4.2) with Gaussian smoothing kernel

Kn(x′, x) = N (x;x′, ε2) is a Gaussian with mean µ and variance σ2
EMS solving

σ6
EMS + σ4

EMS(σ2
g − σ2

h)− 2σ2
EMSε

2σ2
g − 2ε2σ2

g = 0. (5.25)

1Link: https://github.com/FrancescaCrucinio/smcems
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Figure 5: Functional dependence of the variance of the resulting approximation
σ2
EMS (left) and the Kullback Leibler divergence (5.26) (right) on the smoothing

parameter ε.

We can compute the Kullback–Leibler divergence achieved by fEMS :

KL

(
h,

∫
X
fEMS(x)g(y | ·)dx

)
=

1

2
log

σ2
EMS + σ2

g

σ2
h

+
σ2
h

2(σ2
EMS + σ2

g)
− 1

2
, (5.26)

as
∫
X fEMS(x)g(y | ·)dx is the Gaussian density N (y;µ, σ2

EMS+σ2
g). The fixed point

for the EM recursion (3.3) is obtained setting ε = 0. The corresponding value of

the Kullback–Leibler divergence is 0. Figure 5 shows the dependence of σ2
EMS and

of the KL divergence on ε.

The conjugacy properties of this model allow us to obtain an exact form for the

potential (5.4)

Gn(xn, yn) =
g(yn | xn)

hn(yn)
=

N (yn;xn, σ
2
g)

N (yn;µ, σ2
g + σ2

EMS,n)
(5.27)

where σ2
EMS,n is the variance of fn(x).

We use this example to show that the maximum likelihood estimator obtained

with the EM iteration (3.5) does not enjoy good properties, and to motivate the

addition of a smoothing step in the iterative process (Figure 6). The number of

iterations n = 100 is fixed for EM, EMS and SMC. The number of bins for both EM

and EMS is 100 while the number of particles for SMC is N = 104 and ε = 10−2.

The smoothing matrix for EMS is obtained by discretisation of the smoothing kernel

Kn(x′, x) = N (x;x′, ε2).

We do not include the approximation obtained with IB as this coincides with

that of EM. Figure 6 clearly shows that the EM estimate, despite identifying the

correct support of the solution, cannot recover the correct shape and is not smooth.
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Figure 6: Comparison of EM, EMS and SMC with exact potential Gn for the ana-
lytically tractable example.

On the contrary, both EMS and SMC give good reconstruction of f while preserving

smoothness.

Then we compare the deterministic discretisation (4.1) of the EMS recursion (4.2)

with the stochastic one given by SMC with the exact potential (5.27). To do so, we

consider the variance of the obtained reconstructions, their mean integrated square

error (5.22), the integrated square error for between h and

ĥNn+1(y) =

∫
X
fNn+1(x)g(y | x)dx

and the Kullback Leibler divergence KL(h, ĥNn+1) as the value of the smoothing

parameter ε increases (Figure 7). We consider one run of discretised EMS and

compare it with 1000 repetitions of SMC for each value of ε (this choice follows

from the fact that discretised EMS is a deterministic algorithm). The number of

particles for SMC is N = 103 and for each run we draw a sample Y of size 104

from h and resample from it M = 103 particles in line 2 of Algorithm 2. Both

algorithms correctly identify the mean for every value of ε while the estimated

variances increases from that obtained with the EM algorithm (ε = 0) to the variance

of a Uniform distribution over [0, 1] (Figure 7 top left). Unsurprisingly, the ISE for

both f and h increases with ε (Figure 7 top right and bottom left), showing that

an excessive amount of smoothing leads to poor reconstructions. In particular for
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Figure 7: Estimated variance (top left), ISE(f) (top right), ISE(h) (bottom left) and
Kullback Leibler divergence (bottom right) as functions of the smoothing parameter
ε for the analytically tractable example. The deterministic discretisation (4.1) (red)
and the stochastic discretisation via SMC with the exact potentials (5.27) (blue) are
compared.

values of ε ≥ 0.5 the reconstructions of f become flatter and tend to coincide with

a Uniform distribution in the case of EMS and with a normal distribution centred

at µ and with high variance (≥ 0.08) in the case of SMC. This difference is reflected

in the behaviour of the Kullback Leibler divergence, which stabilises around 133 for

EMS while it keeps increasing for SMC (Figure 7 bottom right).

We now consider the effect of the use of the approximated potentials GNn in

place of the exact ones Gn in the SMC scheme. We compare the ISE for f given by

the SMC scheme with exact and approximated potentials for values of the number

M of samples Y ij
n drawn from h at each time step between 1 and 1000 with 1000

repetitions for each M . Through this comparison we also address the computational

complexity O(MN) of the algorithm, with focus on the choice of the value of M .

Figure 8 shows the results for N = 103 and ε = 10−2. The behaviour for different

values of N and ε is similar. The plot of ISE(f) shows a significant improvement

when M > 1 but little further improvement for M > 10.

To further investigate the choice of M we compare the reconstructions obtained

using the exact and the approximated potentials for M = 10, M = 102 and
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Figure 8: Dependence of runtime and ISE(f) on the value of M , the number of
samples drawn from h at each iteration, for the SMC scheme run with the exact
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Figure 9: Reconstruction of f(x) = N (x; 0.5, 0.0432) from data distribution h(y) =
N (y; 0.5, 0.0432 + 0.0452). The number of particles N is 103 and the smoothing
parameter ε = 10−3. M = 10, M = 100 and M = N are compared through the
pointwise means of the reconstructions and the pointwise mean squared error (MSE).

M = N = 103. Figure 9 shows pointwise means and pointwise MSE (5.23) for

1,000 reconstructions. The means of the reconstructions with the exact potentials

(blue) coincide for the three values of M , the means of the reconstructions with

the approximated potentials (red) also coincide but have heavier tails than those

obtained with the exact potentials. The MSE is similar for reconstructions with ex-

act and approximated potentials with the same value of M . In particular, the little

improvement of the MSE from M = 102 to M = 103 suggests that M = 102 could

be used instead of M = N = 103 if the computational resources are limited. Using

M = 102 instead of M = 103 reduces the average runtime by ≈ 80% for both the

algorithm using the exact potentials and that using the approximated potentials.

Silverman et al. (1990, Section 5.4) conjectured that under suitable assumptions
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ber of iterations. Three starting distribution are considered: Uniform([0, 1]), δ0.5,
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f ). The behaviour of EM (dashed lines), EMS (dotted lines) and SMC
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the EMS map (4.2) has a unique fixed point. This conjecture is empirically con-

firmed by the results in Figure 10. We run EM, EMS and SMC with approximated

potentials for n = 100 iterations starting from three initial distributions f1(x): a

Uniform on [0, 1], a Dirac δ centred at 0.5 and the solution N (x;µ, σ2
f ). The number

of particles is set to N = 103 and the smoothing parameter ε = 10−1; this value is

chosen for visualisation purposes as for smaller values of ε the discretised EMS gives

values of KL divergence which are indistinguishable from those of the EM iteration.

Both EMS and SMC converge to the same value of the Kullback Leibler divergence

regardless of the starting distribution. The speed of convergence of the three algo-

rithms is similar, in each case little further change is observed once 4 iterations have

occurred.

5.5.2 Indirect Density Estimation

The first example is the Gaussian mixture model used in Ma (2011) to compare

the Iterative Bayes (IB) algorithm with EM. Take X = Y = R (although note that

|1−
∫ 1

0 f(x)dx| < 10−30 and restricting out attention to [0, 1] would not significantly
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alter the results) and

f(x) =
1

3
N (0.3, 0.0152) +

2

3
N (0.5, 0.0432),

g(y | x) = N (x, 0.0452),

h(y) =
1

3
N (0.3, 0.0452 + 0.0152) +

2

3
N (0.5, 0.0452 + 0.0432).

The initial distribution f1 is Uniform on [0, 1] and the bins for the discretised EMS

are B equally spaced intervals in [0, 1], noting that discretisation schemes essentially

require known compact support and this interval contains almost all of the prob-

ability mass. We run Algorithm 2 assuming that we have a sample Y of size 103

from h from which we re-sample M = min(N, 103) times without replacement at

each iteration of line 2.

First, we analyse the influence of the number of bins B and of the number of

particles N on the integrated square error of the reconstructions, and on the runtime

of the deterministic discretisation of EMS (4.1) and on the SMC implementation

of EMS (Figure 11). We compare the two implementations of EMS with a class

of estimators specialised for deconvolution problems, deconvolution kernel density

estimators with plug-in bandwidth (DKDE-pi; Delaigle and Gijbels (2004)) and cross

validated bandwidth (DKDE-cv; Stefanski and Carroll (1990))2. These estimators

take as input a sample Y of size N from h and output a kernel density estimator

for f .

The discretised EMS has the lowest runtimes for fixed N , however ISE(fNn+1) is

the highest and finer discretisations for EMS do not significantly improve accuracy.

The runtimes of DKDE are closer to those of the SMC implementation, however, the

SMC implementation gives better results in terms of ISE(fNn+1) for any particle size

and, indeed, for given computational cost. We set ε = 10−3, for both EMS and SMC,

somewhat arbitrarily, based on the support of the target in this example; where that

is not possible cross validation could be used — and might be expected to provide

better reconstructions — at the expense of some additional computational cost. We

did not find solutions overly sensitive to the precise value of ε (see Appendix 5.5.1).

A significant portion of the runtime of DKDE-cv is needed to obtain the bandwidth

through cross validation and in this sense the comparison may not be quite fair,

but the use of the much cheaper plug-in estimates of bandwidth within DKDE-pi

also led to poorer estimates at given cost than those provided by the SMC-EMS

2MATLAB code is available on the web page of one of the authors: https://researchers.ms.
unimelb.edu.au/~aurored/links.html#Code
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Figure 11: Average ISE(fNn+1) as function of the runtime for 1,000 repetitions of
discretised EMS, SMC and DKDE. The number of bins for EMS and the number of
particles/samples N for SMC and DKDE range between 100 and 10,000.

algorithm.

Next, we compare the reconstructions provided by the proposed SMC scheme

with those given by deterministic discretisation of the EM iteration (3.5), determin-

istic discretisation of the EMS iteration (4.1) and deterministic discretisation of the

EM iteration when only samples from h are available (IB).

Having observed a small decrease in ISE(fNn+1) for large B, we fix the number

of bins B = D = 100. For the SMC scheme, we compare N = 500, N = 1, 000 and

N = 5, 000. We discard N = 10, 000, as it shows little improvement in ISE(fNn+1)

with respect to N = 5, 000, and N = 100, because of the higher ISE(fNn+1). We

draw a sample Y from h of size 103 and we use this sample to get a kernel density

estimator for the IB algorithm, compute the DKDE and (re)sample points at line 2

of Algorithm 2.

We set ε = 10−3 and we compare the smoothing matrix obtained by discreti-

sation of the Gaussian kernel (EMS (K)) with the three-point smoothing proposed

in Silverman et al. (1990, Section 3.2.2), where the value f
(n+1)
b is obtained by a

weighted average over the values f
(n)
κ of the two nearest neighbors (the third point
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Mean Variance ISE(fNn+1) MSE(xc) KL log10

(95th) Runtime / s

EM 0.36667 0.010 3.26 16.32 2299 -6.01
EMS (K) 0.36646 0.012 2.41 8.20 2355 -5.90
EMS (3-point) 0.3668 0.011 1.58 13.04 2303 -5.88
IB 0.43304 0.011 1.71 10.17 2489 -5.29
SMC (500) 0.43303 0.011 0.90 3.42 2484 0.63
SMC (1000) 0.43302 0.011 0.78 3.33 2483 1.87
SMC (5000) 0.43302 0.011 0.55 2.17 2485 3.47
DKDE-pi 0.43288 0.012 0.96 3.38 2483 0.81
DKDE-cv 0.43287 0.014 1.50 4.76 2503 4.15

Table 1: Estimates of mean, variance, ISE, 95th-percentile of MSE, KL-divergence
and runtime for 1,000 repetitions of EM, EMS, IB, SMC and DKDE with N =
500, 1, 000, 5, 000 for the Gaussian mixture example. The mean of f is 0.43333, the
variance is 0.010196. Bold indicates best values.

is f
(n)
b ), with weights proportional to the distance |κ− b|

Kbκ = 2−2

(
3− 1

κ− b+ (3− 1)/2

)
.

The reconstruction process is repeated 1,000 times and the reconstructions are

compared by computing their means and variances, the integrated squared er-

ror (5.22) and the Kullback–Leibler divergence between h and the reconstruction

of h obtained by convolution of fNn+1 with g,
∫
X f

N
n+1(x)g(y | x) dx, (Table 1). To

characterize the roughness of fNn+1, we use the MSE (5.23). Table 1 shows the 95th

percentile w.r.t. the 100 bin centers xc.

The discretised EM (3.5) gives the best results in terms of Kullback–Leibler

divergence (restricting to the [0, 1] interval and computing by numerical integration).

This is not surprising, as IB is an approximation of EM when the analytic form

of h is not known, and the EMS algorithms (both those with the deterministic

discretisation (4.1) and those with the stochastic one given by the SMC scheme)

do not seek to minimize the KL divergence, but to provide a more regular solution.

However, the solutions recovered by EM have considerably higher ISE than that

given by the other algorithms and are considerably worse than the other algorithms

at recovering the smoothness of the solution. The reconstructions given by IB are

also not smooth, this is not surprising as no smoothing step is present in the IB

algorithm.

SMC is generally better at recovering the mean of the solution µ = 0.43333, the

global shape of the solution (ISE is at least two times smaller than EM and EMS
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(K) and about half than EMS (3-point) and IB) and the smoothness of the solution

(the 95th-percentile for MSE(xc) is at least two times smaller). For the discretised

EMS (4.1) and the SMC implementation the estimates of the variance are higher

than those of EM, this is a consequence of the addition of the smoothing step and

can be controlled by selecting smaller values of ε. DKDE behave similarly to SMC,

however their reconstruction accuracy and smoothness are slightly worse than those

of SMC (even when both algorithms use the same sample size N = 1, 000). In

particular, DKDE-cv has runtimes of the same order of that of SMC but achieves

considerably worse results.

IB, SMC and DKDE give similar values for the KL divergence. The slight in-

crease observed for the SMC scheme with N = 5, 000 is apparently due to the

sensitivity of this divergence to tail behaviors; taking a bandwidth independent of

N eliminated this effect.

5.5.3 Motion Deblurring

Consider a simple example of motion deblurring where the observed picture h

is obtained while the object of interest is moving with constant speed b in the

horizontal direction (Lee and Vardi, 1994; Vardi and Lee, 1993). The constant

motion in the horizontal direction is modelled by multiplying the density of a uniform

random variable on [−b/2, b/2] describing the motion in the horizontal direction and

a gaussian N (v; y, σ2) with small variance (e.g. σ2 = 0.022), describing the relative

lack of motion in the vertical direction

g(u, v | x, y) = N (v; y, σ2)Uniform[x−b/2,x+b/2](u).

We obtain the corrupted image in Figure 12b from the reference image in Fig-

ure 12a using the model above with constant speed b = 128 pixels and adding

multiplicative noise as in Lee and Vardi (1994, Section 6.2). Figure 12b is a noisy

discretisation of the unknown h(u, v) on a 300 × 600 grid. The addition of multi-

plicative noise makes the model (3.1) misspecified, but still suitable to describe the

deconvolution problem when the amount of noise is low. For higher levels of noise,

the noise itself should be taken into account when modelling the generation of the

data corresponding to h.

We compare the reconstruction obtained using the SMC scheme with that given

by the deconvlucy function in MATLAB© (The MathWorks Inc., 1993), an efficient

implementation of the Richardson-Lucy (RL) algorithm for image processing.

The smoothing parameter is ε = 10−3, and the number of particles is N = 5000.
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(a) Original sharp image (b) Blurred image with 0.5% multi-
plicative noise

(c) Reconstruction with RL (d) Reconstruction with SMC

Figure 12: Reference image, blurred noisy data distribution and reconstructions for
the motion deblurring example. Each scheme used 100 iterations; the SMC scheme
used N = 5000 particles.

These values are chosen to achieve a trade-off between smoothing and accuracy of

the reconstruction and to keep the runtime under 2 minutes on a standard laptop.

The distance between the reconstructions and the original image is evaluated

using both the ISE (5.22) and the match distance, i.e. the L1 norm of the cumulative

histogram of the image, a special case of the Earth Mover’s Distance for grey-scale

images (Rubner et al., 2000). SMC gives visibly smoother images and is better at

recovering the shape of the original image (ISE(f) is 1.4617 for SMC and 2.0863

for RL). In contrast, the RL algorithm performs better in terms of match distance

(0.0054 for RL and 0.0346 for SMC).

5.5.4 Positron Emission Tomography

Positron Emission Tomography (PET) is a medical diagnosis technique used to

analyse internal biological processes from radial projections outside in order to detect

medical conditions such as schizophrenia, cancer, Alzheimer’s disease and coronary

artery disease (Phelps, 2000). The data distribution of the radial projections h(φ, ξ)

is defined on Y = [0, 2π]× [−R,R] for R > 0 and is linked to the cross-section image

of the organ of interest f(x, y) defined on the 2D square X = [−r, r]2 for r > 0
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Iteration 1 Iteration 5 Iteration 10 Iteration 15

Iteration 20 Iteration 50 Iteration 100 Reference Image

Figure 13: Reconstruction of the Shepp-Logan phantom. The number of particles
N is 20,000, the smoothing parameter ε is 0.001. The stopping criterion (5.11) with
m = 15 is satisfied at iteration 15.

through the Radon transform (Radon, 1986)

h(φ, ξ) =

∫ +∞

−∞
f(ξ cosφ− t sinφ, ξ sinφ+ t cosφ)dt, (5.28)

where the right hand side is the line integral along the line with equation x cosφ+

y sinφ = ξ. We rewrite (5.28) as a Fredholm integral equation (3.1) modelling the

alignment between the projections onto (φ, ξ) and the corresponding location (x, y)

in the reference image using a Gaussian distribution with small variance

h(φ, ξ) =

∫
X
N
(
x cosφ+ y sinφ− ξ; 0, σ2

)
f(x, y)dxdy.

The kernel g(φ, ξ | x, y) = N
(
x cosφ+ y sinφ− ξ; 0, σ2

)
satisfies Assumption 4.1-

(b) but is not a Markov kernel (in the sense that it does not integrate to 1 for fixed

(x, y)), however, we can use the re-normalisation described in Section 3.2 to obtain

the Markov kernel

g̃(φ, ξ | x, y) =
g(φ, ξ | x, y)

C(x, y, σ2)
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where C(x, y, σ2) is the normalising constant for each fixed (x, y) ∈ X

C(x, y, σ2) =

∫
Y
g(φ, ξ | x, y)dφ dξ

=

∫ 2π

0

1

2

[
erf

(
R− x cosφ− y sinφ√

2σ

)
+ erf

(
R+ x cosφ+ y sinφ√

2σ

)]
dφ

with erf the error function.

The data used in this work are obtained from the reference image in the final

panel of Figure 13, a simplified imitation of the brain’s metabolic activity (e.g.

Vardi and Lee (1993)). The collected data are the values of h at 128 evenly spaced

projections over 360◦ and 185 values of ξ in [−92, 92] to which Poisson noise is added.

In this case, R = 92 and (x, y) ∈ [−64, 64]2 (i.e. we want to reconstruct a 128× 128

pixels image) and selecting σ = 0.02 gives∣∣∣∣12
[
erf

(
R− x cosφ− y sinφ√

2σ

)
+ erf

(
R+ x cosφ+ y sinφ√

2σ

)]
− 1

∣∣∣∣ < 10−17

for all φ ∈ [0, 2π] and (x, y) ∈ [−64, 64]. The above shows that, for σ2 sufficiently

small (e.g. σ2 = 0.022 as we use in our experiments), i.e. if the Gaussian distribution

appropriately describes the alignment onto x cosφ+ y sinφ = ξ,

∣∣C(x, y, σ2)− 2π
∣∣ < 10−17

for all (x, y) ∈ X. Therefore we obtain, up to a negligible approximation, an integral

equation satisfying Assumption 4.1 dividing h by 2π:

h(φ, ξ)

2π
=

∫
X

N
(
x cos(φ) + y sin(φ)− ξ; 0, σ2

)
2π

f(x, y)dxdy.

Figure 13 shows the reconstructions obtained with the SMC scheme with smooth-

ing parameter ε = 10−3 and number of particles N = 20, 000. Convergence to a fixed

point occurs empirically in less than 100 iterations, in fact the criterion (5.11) with

ζ(fNn ) =
∫
X |f

N
n (x)|2dx and m = 15 stops the iteration at n = 15. The ISE between

the original image and the reconstructions at Iteration 50 to 100 stabilises below

0.08. Figure 14 shows relative error and ISE for the reconstructions in Figure 13.

The stopping criterion (5.11) is a trade-off between Monte Carlo error and con-

vergence to a fixed point. In particular, when ζ is the variance of the reconstructions,

larger values of N will make the r.h.s. of (5.11) which corresponds to a smaller tol-

erance to assess the convergence to the fixed point. On the other hand, small values

94



5. SMC-EMS

Iteration 1

ISE = 0.4428

Iteration 5

ISE = 0.1194

Iteration 10

ISE = 0.0548

Iteration 15

ISE = 0.0755

Iteration 20

ISE = 0.0747

Iteration 50

ISE = 0.0797

Iteration 70

ISE = 0.0751

Iteration 100

ISE = 0.0801

Figure 14: Relative error for the reconstructions in Figure 13. The ISE at each
iteration is given in the captions and stabilises below 0.08.

of N will give poorer reconstructions and might require more iterations n to satisfy

the stopping criterion (5.11). For instance, for N = 1, 000 the stopping criterion is

not satisfied in 100 iterations despite the r.h.s. of (5.11) being of order 10−3 against

the 5 · 10−5 order of the r.h.s. of (5.11) when N = 20, 000.

The results above show that the SMC implementation of the EMS recursion

achieves convergence in a small number of steps (≈ 12 minutes on a standard

laptop) and that, contrary to EM (Silverman et al., 1990, Section 4.2), these re-

constructions are smooth and do not deteriorate with the number of iterations. In

addition, contrary to standard reconstruction methods, e.g. filtered back-projection,

ordered-subset EM, Tikhonov regularisation (see, e.g., Tong et al. (2010)) the SMC

implementation does not require that a discretisation grid is fixed in advance.

5.5.5 Influence of the Lower Bound on g

Assumption 4.1-(b) and in particular the lower bound on g might seem very

restrictive. However, considering lower bounded gs is common in the literature on

Fredholm integral equations and is often assumed to establish theoretical results on

the EM iteration (Clason et al., 2020; Resmerita et al., 2007) We explore here the

influence of this assumption for the Gaussian mixture example in Section 5.5.2 in

which g is not lower bounded on X = Y = R.
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Instead of defining the integrals on X = Y = R take X = Y = [0.4 − a, 0.4 + a]

with a→∞ so that we obtain the integral equation

h̃(y) =

∫
f̃(x)g̃(y | x)dx

with

h̃(y) =
h(y)

1
3C(a, 0.3, 0.0452 + 0.0152) + 2

3C(a, 0.5, 0.0452 + 0.0432)

g̃(y | x) =
g(y | x)

C(a, x, 0.0452)

f̃(x) =
f(x)C(a, x, 0.0452)

1
3C(a, 0.3, 0.0452 + 0.0152) + 2

3C(a, 0.5, 0.0452 + 0.0432)

where

C(a, µ, σ) :=

∫ 0.4+a

0.4−a
N (x;µ, σ2)dx

=
1

2

(
erf

(
(a+ 0.4− µ)√

2σ2

)
− erf

(
(0.4− a− µ)√

2σ2

))
.

In any of the intervals [0.4−a, 0.4+a] Assumption 4.1-(b) is satisfied, in particular

g̃ is bounded below. We study the behaviour of the reconstructions as a → ∞ to

check the influence of the lower bound on g on the accuracy of the reconstructions

measured through the average ISE in (5.22) over 100 repetitions.The algorithmic

set up is the same of Section 5.5.2. Figure 15 show that for a ∈ [0.2, 1] (which

corresponds to X = Y = [0.2, 0.6] to X = Y = [−0.6, 1.4]) the average reconstruction

error is not influenced by the lower bound on g, the behaviour for larger values of a

is equivalent since |1−
∫ 1.4
−0.6 f(x)dx| < 10−30.

5.5.6 Scaling with Dimension

To explore the scaling with the dimension dX of the domain of f of the discretised

EMS (4.1) and the SMC implementation of EMS we revisit the Gaussian mixture

model in Section 5.5.2 and extend it to higher dimension

f(x) =
1

3
N (x; 0.3 · 1dX , 0.072IdX) +

2

3
N (x; 0.7 · 1dX , 0.1

2IdX),

g (y | x) =N (y;x, 0.152IdX),

h(y) =
1

3
N (y; 0.3 · 1dX , (0.072 + 0.152)IdX) +

2

3
N (y; 0.7 · 1dX , (0.1

2 + 0.152)IdX),
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6
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Figure 15: Influence of the lower bound (LB) on g on average reconstruction accuracy
over 100 repetitions. The solid lines represent the average ISE(fNn+1) for a =∞ while
the dashed lines the average ISE(fNn+1) for finite a.

where X = Y = RdX and 1dX , IdX denote the unit function in RdX and the dX × dX
identity matrix, respectively. In particular, note that for dX up to 5 at least 97% of

the mass of f is contained in [0, 1]dX .

As a first comparison we take dX = 2 and investigate the minimum number

of bins/particles necessary to achieve reasonably good reconstructions. We consider

three particle sizes N = 102, 502, 1002 and set the total number of bins B ≈ N so that

we obtain ≈ N1/2 equally spaced bins for each dimension. We stop iterating after 30

steps since we observed that convergence occurs within 30 iterations, the value of ε =

10−3 is fixed and used for both the smoothing kernel and the smoothing matrix. The

initial distribution is a uniform over [0, 1]2 and we assume we have a sample Y of size

106 from h, so that M = N . This corresponds to the highest computational cost for

Algorithm 2 but as observed in Section 5.5.1 smaller values of M could be considered

and would reduce the computational cost of running the SMC implementation of

EMS. For small values of B the runtimes of EMS and SMC are similar, however

the reconstructions obtained with EMS are poor and low resolution due to the very

coarse discretisation (Figure 16-left panel); on the contrary, the presence the kernel

density estimator (5.10) guarantees smooth reconstructions even when the particle

size is small (Figure 16-middle panel). In addition, as the number of particles N

increases the accuracy of the reconstructions provided by SMC keeps increasing,

while the EMS reconstructions do not improve as quickly, a phenomenon we already

observed for the one-dimensional example in Section 5.5.2. For N = B ≥ 100 the

runtime of SMC is roughly 30% less than that of EMS with the accuracy of SMC

being always larger than that of EMS.

Since the accuracy of kernel density estimators decreases when the dimension
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102

EMS

runtime < 1s, ISE = 0.56

SMC

runtime < 1s, ISE = 0.73

Truth

502

runtime < 1m, ISE = 0.65 runtime ≈ 1m, ISE = 0.39

1002

runtime ≈ 7m, ISE = 0.65 runtime ≈ 5m, ISE = 0.27

Figure 16: Reconstructions of a 2-dimensional mixture of Gaussian obtained with
EMS and SMC. The number of bins/particles increases from 102 to 1002. Runtime
and accuracy are reported too.
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increases (Silverman, 1986) and is primarily used in this work for visualisation and

human interpretation (which becomes less informative in higher dimension, with the

exception of low dimensional projections), to compare the performances of EMS and

SMC in dimension dX ≥ 2 we focus on approximating expectations w.r.t. ηn+1 of

appropriate test functions ϕ, in this case, in fact, Proposition 5.2 gives the rate of

convergence in terms of the number of particles N . In particular, we consider mean,

variance, the probability of the region [0, 0.5]dX and the probability of a hyper-

sphere of radius 0.3 around the mode at (0.3, . . . , 0.3). We compare three particle

sizes N = 102, 103, 104 and obtain the number of bins for each dimension as dN1/dXe
so that the total number of bins, B = dN1/dXedX , where d·e denotes the ceiling

function, roughly matches N . This choice allows us to compare EMS and SMC

reconstructions which require roughly the same runtime (Table 2).

The SMC implementation in generally better at recovering the variance and the

probability of the region [0, 0.5]dX . For small values of N , B, both SMC and EMS

have larger errors with discretised EMS achieving better crude estimates. However,

as N , B increase SMC is consistently better at approximating the four quantities

considered, in particular, in the case of mean and variance the estimates are at least

one order of magnitude more accurate. This is achieved at a computational cost

which is always smaller than that of EMS and that could be in principle reduced by

considering smaller values of M .

mean variance P(�) P(©) log10(runtime / s)

dX = 2

EMS - B = 102 1.38e-04 4.96e-05 5.30e-02 7.04e-03 -1.71

SMC - N = 102 3.87e-04 1.26e-05 4.90e-02 1.02e-02 -2.02

EMS - B = 322 1.42e-04 5.31e-05 5.17e-02 5.86e-03 1.28

SMC - N = 103 4.29e-05 5.81e-06 4.69e-02 6.14e-03 0.94

EMS - B = 1002 1.42e-04 5.38e-05 5.15e-02 6.11e-03 5.31

SMC - N = 104 3.84e-06 4.51e-06 4.67e-02 5.68e-03 5.11

dX = 3

EMS - B = 53 2.53e-04 1.26e-04 1.46e-01 8.59e-03 -1.47

SMC - N = 102 3.76e-04 3.23e-05 7.19e-02 3.92e-03 -2.06

EMS - B = 103 2.00e-04 5.75e-05 9.00e-02 2.42e-03 1.40

SMC - N = 103 4.62e-05 8.50e-06 8.24e-02 1.36e-03 1.08

EMS - B = 223 2.04e-04 6.12e-05 8.83e-02 1.64e-03 5.66

SMC - N = 104 3.53e-06 6.68e-06 8.23e-02 9.24e-04 5.30

dX = 4

EMS - B = 44 1.98e-04 1.55e-05 1.22e-01 1.16e-03 -0.65
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continued from previous page

mean variance P(�) P(©) log10(runtime / s)

SMC - N = 102 4.77e-04 9.77e-05 7.35e-02 4.41e-03 -2.08

EMS - B = 64 2.43e-04 4.02e-05 1.09e-01 7.80e-04 1.70

SMC - N = 103 3.45e-05 1.80e-05 9.13e-02 5.47e-04 0.95

EMS - B = 104 2.60e-04 6.59e-05 1.03e-01 5.54e-04 5.32

SMC - N = 104 4.10e-06 8.58e-06 9.45e-02 2.38e-04 5.12

dX = 5

EMS - B = 35 5.66e-05 2.67e-04 2.12e-01 1.27e-02 -0.56

SMC - N = 102 6.59e-04 1.34e-04 5.10e-02 1.10e-02 -1.96

EMS - B = 45 2.42e-04 2.08e-05 1.29e-01 7.59e-04 1.51

SMC - N = 103 5.57e-05 4.54e-05 7.84e-02 4.49e-04 1.14

EMS - B = 75 2.82e-04 5.71e-05 1.36e-01 2.09e-04 6.63

SMC - N = 104 3.39e-06 1.27e-05 9.57e-02 7.43e-05 5.36

Table 2: Runtime and mean squared error over 100 repetitions for mean, variance,
probability of the lower quadrant and probability of a circle around the mode for
the dX-dimensional Gaussian mixture model. Best values are in bold.

5.6 Summary

We have identified a close connection between the continuous EMS recursion and

a Feynman-Kac flow in the space of probability measures. This connection allows

us to propose a novel SMC algorithm which approximates this flow and provides a

stochastic discretisation of the EMS recursion which can be naturally implemented

when only samples from the distorted signal h are available. This stochastic discreti-

sation of the EMS recursion does not require the assumption of piecewise constant

signals common to deterministic discretisation schemes.

We studied the asymptotic properties of the proposed SMC scheme, extending

the results on Lp convergence of expectations, the strong law of large numbers and

the bias estimate for standard SMC. As a consequence, we establish almost sure

weak convergence of the SMC approximations to the EMS recursion as the number

of particles N goes to infinity. We also provided theoretical guarantees on the

proposed estimator for the solution f of the Fredholm integral equation.

An extensive empirical study has demonstrated the good performance of the pro-

posed method on a suite of illustrative examples, showing that the proposed method

is competitive in terms of reconstruction accuracy with state-of-the-art algorithms

for image reconstruction.
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6

Wasserstein Gradient Flows for Fredholm

Equations of the First Kind

An extended version of this chapter is in preparation in collaboration with Dr

Valentin De Bortoli (Crucinio et al., 2021a).

6.1 Introduction

The EMS recursion discussed in the previous chapters is a natural way to con-

struct smooth approximations of the solution of Fredholm integral equations, how-

ever, in its continuous formulation, the connection with maximum penalised likeli-

hood methods is not clear. In particular, we have so far been unable to show that the

fixed point of the EMS iteration minimises a particular functional; as a consequence,

our convergence checks in Section 5.5 have been based on the Kullback–Leibler di-

vergence, since we expect that for sufficiently low levels of smoothness the EMS

recursion still moves the iterates towards approximate solutions which have small

Kullback–Leibler divergence.

In this chapter, we go back to the minimisation problem defined by the Kullback–

Leibler divergence (3.4)

KL

(
h,

∫
X
f(x)g(· | x)dx

)
=

∫
Y
h(y) log

(
h(y)∫

X f(x)g(y | x)dx

)
dy,

and consider explicit penalties which enforce smoothness of the approximate so-

lution. A standard way to measure the smoothness of a function f is through its

derivatives, however, this choice requires the approximate solution f to be expressed

in parametric form or as a combination of differentiable basis functions (Good, 1971)

and is not suitable for approaches based on interacting particle methods.
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In the image processing literature, a common alternative to penalties involving

derivatives of f is the entropic penalty (e.g., Molina et al. (1992)) given by Shannon’s

differential entropy (Jaynes, 1957a,b)

ent(f) := −
∫
X
f(x) log f(x)dx. (6.1)

The remainder of this chapter focusses on the following minimisation problem

Eα(f) = KL

(
h,

∫
X
f(x)g(· | x)dx

)
− α ent(f) (6.2)

obtained by adding the entropy penalty (6.1) to the Kullback–Leibler divergence.

The choice of an entropic penalty is particularly convenient: on one hand it addresses

the inconsistency of the maximum likelihood estimator by imposing a smoothness

constraint on f , on the other hand it leads to an easy-to-implement numerical scheme

as we will see in Chapter 7.

The use of entropy regularisation is not new in the literature on Fredholm inte-

gral equations; Amato and Hughes (1991) propose a variant to Tikhonov regularisa-

tion (3.2) in which the L2 norm penalisation is replaced by an entropic penalty, an

iterative method performing Tikhonov regularisation with entropic penalty is pre-

sented in Burger et al. (2019). The one-step late expectation maximisation (OSL-

EM) of Green (1990) gives an iterative scheme to minimise a generic penalised KL

divergence, but it is not suitable for an entropic penalty, since the resulting algo-

rithm might give negative estimates for f . Considering (6.2) as a Lagrangian form

of the minimisation problem

max ent(f) s.t. KL

(
h,

∫
X
f(x)g(· | x)dx

)
= 0, (6.3)

connects (6.2) with maximum entropy methods (Jaynes, 1957a,b). A number of

maximum entropy approximations of solutions of Fredholm integral equations have

been proposed in the literature, most of which maximise the entropy subject to

moment constraints obtained by integrating h and
∫
X f(x)g(· | x)dx with respect to

a set of basis functions (Islam and Smith, 2020; Jin and Ding, 2016; Kopeć, 1993;

Mead, 1986).

The constraint in (6.3) cannot be obtained as integral with respect to basis

functions and direct minimisation of (6.2) is usually not feasible; we propose to follow

a Wasserstein gradient flow approach. This approach stems from the connection

between minimisation of functionals in the space of probability measures and partial
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differential equations (PDEs) pointed out in Jordan et al. (1998); Otto (2001) and

allows us to transform the minimisation of (6.2) into a Fokker-Plank PDE whose

solution is a minimiser of Eα.

After recalling the fundamental ideas of Wasserstein gradient flows, we show

how this construction can be applied to Eα and identify conditions under which the

gradient flow PDE admits a unique solution.

6.2 Wasserstein Gradient Flows

Gradient flows, or gradient descent, is a classical method to find minima of a

function F : Rd → R by looking at curves x(t) which follow the direction of steepest

descent of F , given by −∇F . Given an initial point x0, the curve satisfies the

differential equation

x′(t) = −∇F (x(t)) (6.4)

which, provided F is smooth enough, admits a unique solution that is a minimum

of F .

Wasserstein gradient flows are the natural extension of gradient flows in Rd to

the space of probability measures on Rd. This extension has been introduced in

Jordan et al. (1998) and Otto (2001) and fully developed in Ambrosio et al. (2008).

We briefly recall the key ingredients for the definition of Wasserstein gradient flows

below. We denote the set of probability measures with finite second moment on Rd

by

P2(Rd) =

{
µ ∈ P(Rd) :

∫
‖x‖22µ(dx) <∞

}
and we define the 2-Wasserstein distance on this set

W2(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
‖x− y‖22π (d(x, y))

)1/2

(6.5)

where Π(µ, ν) is the set of all possible couplings between µ and ν. A minimiser

of (6.5) always exists but might not be unique, each minimiser is called an optimal

transport plan (Ambrosio et al., 2008, Theorem 6.2.4). We denote by Pac2 (Rd) ⊂
P2(Rd) the subset of these measures which is absolutely continuous with respect

to the appropriate Lebesgue measure. For every pair µ, ν ∈ Pac2 (Rd) there is a

unique π attaining the minimum of (6.5), π = (Id, tνµ)#µ, where T#µ denotes the

push-forward measure, T#µ(A) = µ(T−1(A)), and tνµ is the unique transport map
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between µ and ν (see, for example, Ambrosio et al. (2008, page 150)). It is easy to

check that for all ν ∈ Pac2 (Rd) we have ent(ν) < +∞.

To define gradient flows on
(
Pac2 (Rd),W2

)
we need a notion of curves; among the

several definitions proposed (Ambrosio et al., 2008, Chapter 7) we consider constant

speed geodesics with respect to W2, i.e. curves µs ∈ P2(Rd), s ∈ [0, 1], such that

W2(µs, µt) = (t− s)W2(µ0, µ1) ∀ 0 ≤ s ≤ t ≤ 1.

For µ, ν ∈ Pac2 (Rd), the constant speed geodesic originating from µ and with end-

point ν is

µs : s ∈ [0, 1] 7→ ((1− s)Id+ stνµ)#µ (6.6)

where tνµ is the unique optimal transport map between µ and ν. Constant speed

geodesics are usually preferred to other families of geodesics due to their easier

formulation as they only require the transport map tνµ (Ambrosio et al., 2008, page

11), in addition, the notion of convexity along constant-speed geodesics introduced

at the end of this section is intuitively closer to the notion of convexity in standard

Euclidean spaces than that of convexity along generalised geodesics.

We then consider functionals F : Pac2 (Rd) → R defined on
(
Pac2 (Rd),W2

)
and

build a gradient flow solving the minimisation problem

min
ρ∈Pac2 (Rd)

F (ρ). (6.7)

The construction of a gradient flow equation for F allows us to transform the min-

imisation problem (6.7) into a PDE whose solution is a density ρ solving (6.7). We

will restrict our attention to functionals which are proper (i.e. F (ρ) < +∞ for

some ρ ∈ Pac2 (Rd)), continuous with respect to the W2 metric (which metrises weak

convergence, Santambrogio (2017, Theorem 4.4)) and coercive. Following Ambrosio

et al. (2008, Definition 2.1b), a functional F defined on
(
Pac2 (Rd),W2

)
is coercive if

there exist τ > 0 and ν ∈ Pac2 (Rd) such that

inf
ρ∈Pac2 (Rd)

1

2τ
W 2

2 (ν, ρ) + F (ρ) > −∞. (6.8)

Intuitively, (6.8) means that the functional F decays more slowly than the squared

W2 distance grows as we move away from the centre of the space.

Since we are dealing with an optimisation problem, it is natural to assume that

the functional F is convex in an appropriate sense to guarantee existence (and

uniqueness) of the minimisers; in Pac2 (Rd) the standard notion of convexity in Rd
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corresponds to convexity along geodesics: for all ν, µ ∈ Pac2 (Rd) take a geodesic

connecting µ to ν, then the functional F is λ-geodesically convex if

F
(
((1− s)Id+ stνµ)#µ

)
≤ (1− s)F (µ) + sF (ν)− λ

2
s(1− s)W 2

2 (ν, µ)

for some λ ∈ R. It is easy to see that when λ = 0 the above corresponds to standard

convexity, in this case the functional is called displacement convex, if λ > 0 the

above is stronger than convexity, and for λ < 0 is weaker (Ambrosio et al., 2008,

page 202). In the case of λ-convex functionals, coercivity (6.8) is equivalent to the

existence of some r > 0 such that F admits a minimiser on the subset of P2(Rd) in

which
∫
Rd ‖x‖

2
2µ(dx) ≤ r (Ambrosio et al., 2008, page 295).

The last ingredient in the definition of a gradient flow for functional F on(
Pac2 (Rd),W2

)
is a notion of gradient for F . As standard definitions of deriva-

tives do not apply outside vector spaces, the gradient in (6.4) is replaced with the

sub-differential of F , ∂F (µ). For any proper, continuous functional F defined on

Pac2 (Rd), ξ belongs to the sub-differential ∂F (µ) if

lim inf
W2(ν,ρ)→0

F (ν)− F (ρ)−
〈
ξ, tνρ(x)− x

〉
W2(ν, ρ)

≥ 0 (6.9)

for all ν ∈ P2(Rd) (Ambrosio et al., 2008, Definition 10.1.1). Equipped with this

notion of gradient, we can now define the gradient flow equation for a functional F

on
(
Pac2 (Rd),W2

)
: ρt is a solution of the gradient flow equation for F if

∂tρt = −∇ · (ρtvt) (6.10)

with vt ∈ −∂F (ρt) (Ambrosio et al., 2008, Section 11.1.2). Existence of solutions

of (6.10) given an initial condition ρ0 ∈ Pac2 (Rd) is ensured for sufficiently regular

functionals (e.g (Ambrosio et al., 2008, Theorem 11.1.6 and Theorem 11.3.2). The

solution of (6.10) with initial condition ρ0 is unique for λ-convex functionals with

λ > 0 (Ambrosio et al., 2008, Theorem 11.1.4). In particular we have the estimate

W2(ρ1
t , ρ

2
t ) ≤ e−λtW2(ρ1

0, ρ
2
0) (6.11)

for all t > 0, for ρit solution of the gradient flow equation with initial condition ρi0,

i = 1, 2, which shows that the gradient flow is contractive w.r.t. W2 when λ > 0

and non-expansive when λ = 0.

In this section we reviewed the essential tools to develop our methodology, how-
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ever the literature on Wasserstein gradient flows is much vaster and allows for gen-

eralisations of most of the ideas introduced above (Ambrosio et al., 2008).

6.3 Wasserstein Gradient Flows for Fredholm Integral

Equations

In order to apply the gradient flow construction described above to (6.2) it is

necessary to consider the probability measures ρ corresponding to the density f and

µ corresponding to h, respectively. Thus, we write (3.1) as

µ(y) =

∫
X
ρ (dx) g(y | x), ∀y ∈ Y (6.12)

and (6.2) as

Eα(ρ) = KL(µ, ρg)− α ent(ρ) (6.13)

where ρg(y) :=
∫
X ρ (dx) g(y | x).

For the remainder of this chapter and the following one we assume the following:

Assumption 6.1. µ and ρ are probability measures absolutely continuous with

respect to the Lebesgue measure with finite second moment (i.e. µ ∈ Pac2 (RdY),

ρ ∈ Pac2 (RdX)). In addition, g is the density of a Markov kernel from RdX to RdY

such that

(a) is bounded above, g(y | x) ≤ mg for all x, y, and λ(y)-concave in x for all

y ∈ RdY

g(y | sx+ (1− s)x′) ≥ sg(y | x) + (1− s)g(y | x′) +
λ(y)

2
s(1− s)‖x− x′‖22

with s ∈ [0, 1] and λ(y) ∈ R;

(b) there exist Φ : RdX → [0,+∞), such that Φ(x) ≤ a‖x‖22 + b, and a µ-integrable

function Ψ : RdY → [0,+∞) such that

sup
(x,y)∈RdX×RdY

exp (−Φ(x)−Ψ(y))

g(y | x)
< +∞;

(c) is differentiable with respect to x with bounded gradient with respect to the

first argument ∇xg(y | x), ‖∇xg(y | x)‖2 ≤ B;

(d) can be evaluated pointwise and a sample Y from h is available.
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Under Assumption 6.1-(a) we can show existence (and uniqueness) of the solution

of the gradient flow PDE. The λ-concavity assumption is rather strong and rarely

satisfied in practice; however, every twice continuously differentiable function is λ-

concave on any bounded set for some λ < 0 (Santambrogio, 2017, page 91). In

the experiments that we will present in Chapter 7 this assumption is not satisfied,

and the kernels g that we consider are twice-differentiable and therefore only locally

λ-concave; however, we observe that the gradient flow construction provides good

results. As this is a very active area of research, there are directions to relax the

λ-concavity assumption to weaker moduli of convexity (e.g. Craig (2017)).

Assumption 6.1-(b) controls the behaviour of the tails of g, imposing a constraint

to how quickly they can decay to 0. Assumption 6.1-(c) implies that g is Lipschitz

continuous in x, uniformly in y, with Lipschitz constant B

‖g(y | x)− g(y | x′)‖2 ≤ B‖x− x′‖2 ∀(x, y), (x′, y) ∈ RdX × RdY , (6.14)

and is one of the key assumptions to ensure that the drift of the SDE corresponding

to the gradient flow PDE introduced in Chapter 7 does not explode.

6.3.1 Properties of the Functional Eα

Under the assumptions above, we can show that the functional Eα in (6.13) de-

fined on Pac2 (RdX) is proper, coercive, lower semi-continuous and geodesically convex;

as a consequence we can build a gradient flow targeting the minimum of (6.13).

Proposition 6.1. Under Assumption 6.1, the functional Eα is proper, lower semi-

continuous and coercive in
(
Pac2 (RdX),W2

)
.

Proof. First we show that and that Eα(ρ) = KL(µ, ρg)− α ent(ρ) is proper. Under

Assumption 6.1-(b) there exists C ≥ 0 such that g(y | x) ≥ C−1 exp (−Φ(x)−Ψ(y))

for all (x, y) ∈ RdX × RdY , then, using Jensen’s inequality,

log

(∫
ρ(dx)g(y | x)

)
≥ log

(
C−1

∫
ρ(dx) exp (−Φ(x)−Ψ(y))

)
≥ logC−1 −

∫
ρ(dx)Φ(x)−Ψ(y).

From the above we obtain, as Φ(x) ≤ a‖x‖22 + b and ρ ∈ Pac2 (RdX),

−
∫
µ(dy) log ρg(y) ≤ − logC−1 + ρ(Φ) + µ(Ψ) <∞.
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Because ρ ∈ Pac2 (RdX) and µ ∈ Pac2 (RdY) their entropies are finite and therefore

Eα(ρ) <∞.

To check continuity, recall that W2 metrises weak convergence and take a se-

quence {ρn}n≥1 ⊂ Pac2 (Rn) converging weakly to ρ. Lower semi-continuity of

− ent(ρ) follows from standard arguments (e.g. Santambrogio (2015, page 331)).

Under Assumption 6.1, x 7→ g(y | x) is a continuous function for all y ∈ RdY and

weak convergence implies ρng(y) → ρg(y), additionally the functions y 7→ ρng(y)

and y 7→ ρg(y) are continuous as a consequence of the continuity of y 7→ g(y | x) and

the Dominated Convergence Theorem. The continuity of the logarithm then gives

log ρng(y)→ log ρg(y) for each fixed y.

Under Assumption 6.1-(a) and (b) there exists C ≥ 0 such that g(y | x) ≥
C−1 exp (−Φ(x)−Ψ(y)) for all (x, y) ∈ RdX × RdY and we have that

| log ρng(y)| ≤ max
(
mg, | logC−1 − ρn(Φ)−Ψ(y)|

)
. (6.15)

Using the fact that Ψ is µ-integrable and that Φ(x) ≤ a‖x‖22 + b we obtain∫
µ(dy)| logC−1 − ρn(Φ)−Ψ(y)| ≤ | logC−1|+ a

∫
ρn(dx)‖x‖22 + b+ µ(Ψ) <∞,

for all n ∈ N since {ρn}n≥1 ⊂ Pac2 (RdX), which shows that the right-hand-side

of (6.15) is uniformly µ-integrable.

Then, Vitali’s Convergence Theorem (e.g., Dudley (2002, Theorem 10.3.5)) en-

sures that ∣∣∣∣∫ µ(dy) [log ρg(y)− log ρng(y)]

∣∣∣∣→ 0,

as n → ∞. This gives continuity of −
∫
µ(dy) log ρg(y), from which follows conti-

nuity of KL(µ, ρg) = − ent(µ)−
∫
µ(dy) log ρg(y) as the first term does not depend

on ρ. Combining this with the lower semi-continuity of the entropy we obtain the

result.

Coercivity follows straightforwardly from the definition of Eα: since the KL

divergence is non-negative and W2 is a metric we have that for all τ > 0,

1

2τ
W 2

2 (ν, ρ) + Eα(ρ) =
1

2τ
W 2

2 (ν, ρ) + KL(µ, ρg)− α ent(ρ)

≥ −α ent(ρ);
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recalling that ρ ∈ Pac2 (RdX), we obtain

inf
ρ∈Pac2 (RdX )

1

2τ
W 2

2 (ν, ρ) + Eα(ρ) ≥ −α inf
ρ∈Pac2 (RdX )

ent(ρ) > −∞.

Finally, we show that when g is λ(y)-concave with λ(y) ≥ 0, Eα is displacement

convex, ensuring that, given an initial condition ρ0 ∈ Pac2 (RdX), the gradient flow

equation has a unique solution:

Proposition 6.2. Under Assumption 6.1, if g is λ(y)-concave with λ(y) ≥ 0 for all

y ∈ RdY , the functional Eα is displacement convex in
(
Pac2 (RdX),W2

)
.

Proof. We have

Eα(ρ) = KL(µ, ρg)− α ent(ρ)

= −
∫
µ(dy) log ρg(y)− α ent(ρ)− ent(µ).

The entropy ent(µ) is constant with respect to ρ and ent(ρ) is displacement convex

in ρ (Santambrogio, 2017, page 130).

Let us define the functionals Gy : ρ 7→ ρg(y) =
∫
ρ(dx)g(y | x) and F (ρ) :=

−
∫
µ(dy) logGy(ρ). Under Assumption 6.1-(a), for fixed y ∈ RdY , g is λ(y)-concave

in x and Gy is λ(y)-geodesically concave; in particular, we have that for all s ∈ [0, 1]

Gy
(
((1− s)Id+ stνρ)#ρ

)
≥ (1− s)Gy(ρ) + sGy(ν) +

λ(y)

2
s(1− s)W 2

2 (ν, ρ)

≥ (1− s)Gy(ρ) + sGy(ν) +
infy∈RdY λ(y)

2
s(1− s)W 2

2 (ν, ρ)

where tνρ is the unique transport map between ν and ρ (Carrillo et al., 2006, Lemma

5). Because infy∈RdY λ(y) ≥ 0 we then have

Gy
(
((1− s)Id+ stνρ)#ρ

)
≥ (1− s)Gy(ρ) + sGy(ν)

and, since − log x is a convex decreasing function,

− log
(
Gy
(
((1− s)Id+ stνµ)#ρ

))
≤ − log ((1− s)Gy(ρ) + sGy(ν))

≤ −(1− s) log (Gy(ρ))− s log (Gy(ν)) ,

the same inequality holds after integration w.r.t. µ showing that F is displacement
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convex. This result and the convexity of the entropy give convexity of Eα.

When the kernel g is only weakly concave (i.e. λ(y) < 0 for some y ∈ RdY) the

functional F = −
∫
µ(dy) log ρg(y) is generally not geodesically convex; in this case

the construction of a gradient flow for Eα is still possible and follows the same steps as

those for the convex case, however, the solution of the gradient flow equation (6.10)

need not be unique.

6.3.2 Gradient Flow for Eα

The last step towards the definition of the gradient flow equation (6.10) for the

functional Eα consists of finding the quantity vt which belongs to its (negative) sub-

differential. A good candidate is the gradient of the first variation (or functional

derivative) of Eα, δEα
δρ (x), the unique (up to additive constant) function such that

lim
ε→0

ε−1 (Eα(ρ+ εχ)− Eα(ρ)) =

∫
χ (dx)

δEα
δρ

(x)

for every signed measure χ such that ρ+εχ ∈ P2(RdX) for some ε > 0 (Santambrogio,

2017).

Given the functional Eα

Eα(ρ) =

∫
µ(dy) log ρg(y)− α ent(ρ)− ent(µ),

the last term, ent(µ), does not depend on ρ and does not contribute to δEα
δρ . The

first variation of the entropy functional is

−δ ent

δρ
(x) = 1 + log ρ(x) (6.16)

and its gradient with respect to x is a sub-differential for ent(ρ) (Ambrosio et al.,
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2008, Chapter 10). Then, let us define F (ρ) := −
∫
µ(dy) log ρg(y), and

lim
ε→0

ε−1 (F (ρ+ εχ)− F (ρ))

= lim
ε→0

ε−1

(
−
∫
µ(dy) log ((ρ+ εχ) g(y)) +

∫
µ(dy) log ρg(y)

)
= lim

ε→0
ε−1

(
−
∫
µ(dy) log

(
1 + ε

χg(y)

ρg(y)

))
= lim

ε→0
ε−1

(
−
∫
µ(dy)

(
ε
χg(y)

ρg(y)
+ o

(
ε
χg(y)

ρg(y)

)))
= −

∫
µ(dy)

χg(y)

ρg(y)
,

where the third equality follows from the Taylor expansion of the logarithm as ε→ 0

and the last inequality from the Monotone Convergence Theorem. Applying Fubini’s

Theorem gives

lim
ε→0

ε−1 (F (ρ+ εχ)− F (ρ)) = −
∫
χ(dx)

∫
µ(dy)

g(y | x)

ρg(y)

showing that
δF

δρ
(x) = −

∫
µ (dy)

g(y | x)

ρg(y)

and

∇x
δF

δρ
(x) = −

∫
µ (dy)

∇xg(y | x)

ρg(y)
, (6.17)

where we can apply the Leibniz integral rule for differentiation under the integral

sign (e.g. Billingsley (1995, Theorem 16.8)) because g is bounded and differentiable

by Assumption 6.1-(a),(c).

To show that (6.17) is a sub-differential for F , take ρ, ν ∈ Pac2 (RdX), the unique

transport map between ρ and ν, tνρ, and use the definition of sub-differential in (6.9):

F (ν)− F (ρ)−
∫
ρ(dx)

〈
∇x

δF

δρ
(x) , tνρ(x)− x

〉
=

∫
µ(dy) [− log νg(y) + log ρg(y)] +

∫
ρ(dx)

〈∫
µ (dy)

∇xg(y | x)

ρg(y)
, tνρ(x)− x

〉
=

∫
µ(dy) [− log νg(y) + log ρg(y)] +

∫
µ (dy)

ρg(y)

∫
ρ(dx)

〈
∇xg(y | x), tνρ(x)− x

〉
=

∫
µ(dy)

[
− log

νg(y)

ρg(y)
+

1

ρg(y)

∫
ρ(dx)

〈
∇xg(y | x), tνρ(x)− x

〉]
.

Since g(y | ·) is λ-concave (with λ depending on y), −g(y | ·) is λ-convex and
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Ambrosio et al. (2008, Chapter 10) show that −∇xg(y | ·) is a sub-differential for

ρg(y) and

−νg(y) + ρg(y) +

∫
ρ(dx)〈∇xg(y | x), tνρ(x)− x〉 ≥ λ(y)

2
W 2

2 (ν, ρ) (6.18)

and

F (ν)− F (ρ)−
∫
ρ(dx)

〈
∇x

δF

δρ
(x) , tνρ(x)− x

〉
≥
∫
µ(dy)

[
− log

νg(y)

ρg(y)
+
−ρg(y) + νg(y)

ρg(y)

]
+W 2

2 (ν, ρ)

∫
µ(dy)

λ(y)

2

=

∫
µ(dy)

[
− log

νg(y)

ρg(y)
+
νg(y)

ρg(y)
− 1

]
+W 2

2 (ν, ρ)
µ(λ)

2
.

The first order Taylor expansion with Lagrange remainder − log x = − log 1− (x−
1) + (x− a)2/(2a2) with a between x and 1 gives[

− log
νg(y)

ρg(y)
+
νg(y)

ρg(y)
− 1

]
=

1

2a(y)2

(
νg(y)

ρg(y)
− a(y)

)2

≥ 0,

with a(y) a value between νg(y) and ρg(y). Therefore

F (ν)− F (ρ)−
∫
ρ(dx)

〈
∇x

δF

δρ
(x) , tνρ(x)− x

〉
≥W 2

2 (ν, ρ)
µ(λ)

2
,

from which follows

F (ν)− F (ρ)−
∫
ρ(dx)

〈
∇x δFδρ (x) , tνρ(x)− x

〉
W2(ν, ρ)

≥W2(ν, ρ)
µ(λ)

2
→ 0

as W 2
2 (ν, ρ)→ 0, showing that ∇x δFδρ (x) is a sub-differential for F .

Putting (6.16) and (6.17) together we obtain the sub-differential for Eα

∇x
δEα
δρ

(x) = ∇x
[
−
∫
µ (dy)

g(y | x)

ρg(y)
+ α(1 + log ρ (x))

]
(6.19)

= −
∫
µ (dy)

∇xg(y | x)

ρg(y)
+ α∇x log ρ (x) .

Proposition 6.3. Under Assumption 6.1, if there exists an absolutely continuous
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map t 7→ ρt ∈ Pac2 (RdX) such that

∂tρt =−∇x ·
(
ρt

∫
µ (dy)

∇xg(y | x)

ρtg(y)

)
+ α4xρt,

then {ρt}t≥0 is a Wasserstein gradient flow for Eα; in particular, if g is λ(y)-concave

with λ(y) ≥ 0 for all y ∈ RdY such gradient flow is unique.

Proof. Observing that

∇x · (ρt∇x log ρt) = ∇x · ∇xρt = 4xρt,

where 4f =
∑

i ∂
2
i fi is the Laplacian, the PDE in (6.10) becomes

∂tρt =−∇x ·
(
ρt

∫
µ (dy)

∇xg(y | x)

ρtg(y)

)
+ α4xρt.

Since Eα is proper, continuous and coercive (see Section 6.3.1) the result follows

from Ambrosio et al. (2008, Definition 11.1.1 and Theorem 11.1.4).

The PDE in Proposition 6.3 is a Fokker-Plank equation, thus we can write a

corresponding stochastic differential equation (SDE) for a process Xt whose marginal

law at time t is exactly ρt. This will be the focus of the next chapter.

Remark 6.1. Even if Assumption 6.1 does not rule out kernels g which are constant

with respect to x, it is clear that when that is the case the drift coefficient of the

PDE in Proposition 6.3 will be 0 and the PDE reduces to the heat equation

∂tρt = α4xρt

with corresponding SDE dXt =
√

2αdWt, where Wt is a d-dimensional Brownian

motion Thus neither the PDE nor the corresponding SDE will target a minimiser

of (6.13). Indeed, if g is constant with respect to x, ∇xg(y | x) ≡ 0 and (6.18)

becomes

0 ≥ λ(y)

2
W 2

2 (ν, ρ),

which is satisfied only when λ(y) = 0 for all y.
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6.4 Summary

Starting from the penalised Kullback–Leibler divergence Eα in (6.2) we have used

a Wasserstein gradient flow approach to obtain a PDE whose solution is a minimiser

of Eα in the space of absolutely continuous probability measures with finite second

moment. The properties of the functional Eα guarantee that the PDE has a solution,

which is unique whenever the kernel g is strongly concave. Linking the minimisation

of Eα to a Fokker-Plank PDE leads to the particle system described in the following

chapter.
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A Mean-Field SDE Approach to Fredholm

Integral Equations

An extended version of this chapter is in preparation in collaboration with Dr

Valentin De Bortoli (Crucinio et al., 2021a).

7.1 Introduction

The Wasserstein gradient flow construction discussed in the previous chapter

allowed us to express a minimiser of the regularised Kullback–Leibler divergence

Eα(ρ) = KL(µ, ρg)− α ent(ρ)

as a solution of a Fokker-Plank PDE

∂tρt =−∇x ·
(
ρt

∫
µ (dy)

∇xg(y | x)

ρtg(y)

)
+ α4xρt, (7.1)

in the space of absolutely continuous probability measures with finite second mo-

ment, Pac2 (RdX), endowed with the 2-Wasserstein distance.

While a number of schemes to solve (7.1) have been proposed in the literature

(see e.g., Risken (1996) for a book-length treatment and Xu et al. (2020) for recent

developments) we focus on the well-known connection between Fokker-Plank PDEs

and stochastic differential equations (SDEs) given by Itô’s Lemma (Itô, 1951): if Xt

is a process satisfying

dXt =

∫
µ (dy)

∇xg(y | Xt)

ρtg(y)
dt+

√
2αdWt, X0 ∼ ρ0, (7.2)

with Wt a standard dX-dimensional Brownian motion, then the law ρt of Xt satis-
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fies (7.1).

The SDE (7.2) is a mean-field SDE (also known as McKean-Vlasov; Lasry and

Lions (2007); McKean (1966)), since the drift coefficient involves the distribution

ρt of Xt. This chapter is devoted to the numerical implementation of (7.2), which,

as discussed in Section 2.4, requires introducing both a space discretisation and a

time discretisation. The space discretisation of (7.2) leads to an interacting particle

system whose distribution at the final time step provides an approximation to the

law of Xt in (7.2). Since the regularisation imposed by the entropic penalty depends

on α, we discuss possible choices of this parameter in Section 7.3. We conclude with

a number of applications to both toy models and realistic problems.

7.2 Numerical Implementation

In order to approximate numerically (7.2) we introduce both a space discretisa-

tion and a time discretisation. The space discretisation is necessary since McKean-

Vlasov SDEs present a dependence on the distribution ρt of Xt (Bossy and Talay,

1997; McKean, 1966) and is obtained by considering N copies (X1,N
t , ..., XN,N

t )

of (7.2) such that, at t = 0, we sample i.i.d. particles Xi,N
0 ∼ ρ0 and then evolve

them according to the non-linear SDE

dXi,N
t =

∫
µ (dy)

∇xg(y | Xi,N
t )

ρNt g(y)
dt+

√
2αdW i

t (7.3)

where W i
t for i = 1, . . . , N are N independent dX-dimensional standard Brownian

motions and ρNt is the empirical measure given by the N particles

ρNt =
1

N

N∑
i=1

δ
Xi,N
t
.

In most applications µ is not known, but the available data are samples drawn

from it (Delaigle, 2008; Goldstein et al., 2009; Gostic et al., 2020; Hall et al., 2005;

Ma, 2011; Marschner, 2020; Miao et al., 2018; Pensky et al., 2017; Yang et al.,

2020). Thus the integral with respect to µ in the drift coefficient of (7.3) cannot be

computed analytically, but can be approximated through the sample average

∫
µM (dy)

∇xg(y | Xi,N
t )

ρNt g(y)
, with µM =

1

M

M∑
j=1

δY j,M
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where Y j,M for j = 1, . . . ,M are i.i.d. samples from µ. The corresponding non-linear

SDE is for i = 1, . . . , N

dXi,N,M
t =

∫
µM (dy)

∇xg(y | Xi,N,M
t )

ρN,Mt g(y)
dt+

√
2αdW i

t (7.4)

where

ρN,Mt =
1

N

N∑
i=1

δ
Xi,N,M
t

. (7.5)

The space discretisation of (7.2) introduced above leads to an interacting particle

system in which each copy i of (7.4) interacts with the other copies through the

empirical average (7.5).

The drift coefficient of (7.4) is not globally Lipschitz, in particular the denomi-

nator in

b(Xt, ρt) :=

∫
µ (dy)

∇xg(y | Xt)

ρtg(y)
(7.6)

can be arbitrarily small if ρt assigns low probability to regions where g is appreciable.

In this setting, the standard Euler scheme (2.14) is unstable and lacks convergence

(Hutzenthaler et al., 2012), therefore, we consider the tamed Euler scheme described

in Bao et al. (2020) which guarantees non-explosion of the drift term,

Xi,N,M
k+1 = Xi,N

k +
b(Xi,N,M

k , ρN,Mk )

1 + ∆t‖b(Xi,N,M
k , ρN,Mk )‖2

∆t+
√

2α∆W i
k, (7.7)

ρN,Mk =
1

N

N∑
i=1

δ
Xi,N,M
k

,

where ∆W i
k are centred Gaussian random variables with variance ∆t. This scheme

coincides with the higher order Milstein scheme since the diffusion coefficient is

constant.

A smooth estimator of the density of ρ(x) is obtained by standard kernel density

estimation (Silverman, 1986)

ρN (x) :=
1

N

N∑
i=1

|Σ|−1/2φ
(

Σ−1/2(Xi,N,M
k − x)

)
(7.8)

where φ is the density of a dX-dimensional standard Gaussian distribution and Σ
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is the bandwidth matrix. This approach has been shown to have good convergence

properties in the one-dimensional case for McKean-Vlasov SDEs with Lipschitz drift

(Antonelli and Kohatsu-Higa, 2002; Bossy and Talay, 1997).

Remark 7.1 (Stability and Convergence Properties). As discussed above, the lack

of Lipschitz continuity of the drift of (7.2) prevents us from using the standard

results summarised in Chapter 2 to characterise the solutions of (7.2) and of its cor-

responding particle system (7.3). In particular, the drift coefficient is not Lipschitz

continuous with respect to the measure component and therefore the results estab-

lished in Dos Reis et al. (2019, 2021) do not apply. Under appropriate assumptions

on the tail behaviour of g we conjecture that it would be possible to obtain local

Lipschitz continuity for the drift and therefore exploit some of the results established

in the literature; alternatively, it would be possible to consider a slight modification

of the functional Eα which guarantees that the denominator in (7.6) is bounded

below and, as a consequence, Lipschitz continuity of the drift. We further discuss

these future work directions in the closing remarks.

7.3 Choice of α

As the parameter α > 0 controls the amount of regularisation introduced by the

entropic penalty, its value should be chosen to give a good trade-off between the

distance from the data distribution µ, KL(µ, ρg) and the smoothness of the solution

ρ measured by ent(ρ). In principle, one could use a generalised cross validation

approach (Wahba, 1977) as detailed in Amato and Hughes (1991) for Tikhonov

regularisation with entropic penalty; however this approach relies on a deterministic

discretisation of µ, g, ρ which is not feasible when only samples from µ are available.

Since the case in which µ is not known but a sample drawn from it is available is

the most likely in applications, we propose the following approach to cross-validation:

to estimate the value of α we divide the original sample into L subsets (which of

course could contain one sample only, in a bootstrap-like framework) and find the

value of α which minimises

CV (α) =

L∑
l=1

Eα(ρN,l) (7.9)

where ρN,l is obtained as in (7.8) using the samples from µ which are not in group

l. The value of Eα is approximated by numerical integration over the support of µ

using the kernel density estimators for µ.
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As an alternative to cross validation, one could use an empirical Bayes approach

as advocated in Vidal et al. (2020) in the context of image reconstruction; however

this usually requires assuming a parametric form for the solution ρ, e.g. through

a variational family (Blei et al., 2017) or normalising flows (Papamakarios et al.,

2021).

If some prior information on the smoothness of the solution ρ is known (e.g. its

variance), one could chose α so that the entropy of the approximate solution matches

the expected smoothness of ρ. If no prior information on the solution is available,

the value of Eα for the approximate solution gives some intuition on appropriate

values of α:

Example 7.1. Consider the toy Fredholm integral equation

N (y;m,σ2
µ := σ2

g + σ2
ρ) =

∫
N (x;m,σ2

ρ)N (y;x, σ2
g)dx

where N (x;m,σ2) is a Gaussian distribution with mean m and variance σ2.

Under the assumption that the minimiser ρ is a Gaussian distribution, ρβ(x) :=

N (x;m,β), the functional Eα(ρβ) can be computed exactly

Eα(ρβ) =
1

2
log

β + σ2
g

σ2
µ

+
σ2
µ

2(β + σ2
g)
− 1

2
− α ent(ρβ)

ent(ρβ) =
1

2
+

1

2
log(2πβ).

For this simple toy example we can obtain the β minimising Eα as a function of α,

β(α) =
−(σ2

g − σ2
µ − 2ασ2

g) +
√
σ4
g + σ4

µ − 2σ2
gσ

2
µ(1− 2α)

2(1− α)
; (7.10)

clearly when α = 0 (no entropy constraint), β = σ2
ρ, while α > 1 give negative

variance.

Example 7.1 shows that the value of Eα depends continuously on α ∈ [0, 1]

through the variance β(α). Continuous dependence of on α is a desirable property

for the functional Eα since it guarantees that the cross-validation function (7.9) is

continuous too, meaning that we can approximate CV (α) numerically and hope to

find a minimiser.

In general, finding an analytic expression depending only on α for Eα is not pos-

sible. However, we can check the sensitivity to the choice of α by approximating the

value of Eα through numerical integration; when only samples from µ are available
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Figure 17: Approximation of Eα (averaged over 100 replications) as a function of α
for Example 7.2. The functional depends continuously on α and achieves a minimum
at α ≈ 0.08.

and even an approximate computation of Eα at each iteration is not feasible or too

expensive, the entropy can be used as a proxy for Eα, since once a minimiser of Eα

has been reached, the entropy will not change.

Example 7.2. Consider the Gaussian mixture model

µ(dy) =

∫
ρ(dx)g(y | x)

with

ρ(x) =
1

3
N (x; 0.3, 0.0152) +

2

3
N (x; 0.5, 0.0432),

g(y | x) = N (y;x, 0.0452).

µ(y) =
1

3
N (y; 0.3, 0.0452 + 0.0152) +

2

3
N (y; 0.5, 0.0452 + 0.0432)

(where with a slight abuse of notation we denote both a measure and its density

with the same symbol) (Ma, 2011). In this case a minimiser of (6.13) cannot be

computed analytically, but it is possible to approximate the value of Eα numerically

(Figure 17). This shows that Eα is a continuous function of α with a minimum at

≈ 0.08; therefore we expect the value of α chosen by cross validation to be close to

this value.
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7.4 Examples

We test the performances of the proposed method on a number of examples of

Fredholm integral equations (6.12). First, we use the toy Fredholm integral equa-

tion in Example 7.1 to explore the influence of the initial distribution ρ0 on the

reconstructions and speed of convergence. This empirical study shows that light tail

initial distributions give better performances, as already observed by Antonelli and

Kohatsu-Higa (2002); Bossy and Talay (1997) for discretisation of generic McKean-

Vlasov SDEs. We also exploit the analytic tractability of this example to compare

the reconstructions obtained by implementing (7.7) with the exact minimiser.

We then use the toy model we introduced in Section 5.5.2 and Example 7.2 to

compare the method proposed in this chapter with the SMC-EMS algorithm in-

troduced in Chapter 5 and with deconvolution kernel density estimators (DKDE;

Delaigle (2008)). We also study two realistic examples of deconvolution: recon-

struction of the concentration of the enzyme sucrase in intestinal tissues from noisy

measurements and reconstruction of the incidence profile of a disease from the ob-

served number of cases. Finally, we consider applications to medical imaging.

In order to implement (7.7) a number of parameters have to be selected. The

initial distribution ρ0 is chosen in such a way to encapsulate any available information

on the solution ρ of (6.12), for example, for deconvolution problems the initial

distribution is µ, since we expect the density µ to be a noise-corrupted version of

ρ. In most of the examples considered the value of α is selected using the cross

validation approach in Section 7.3, occasionally we will use different values to allow

comparison with other methods (e.g. Section 7.4.2) or to study the sensitivity of

the reconstructions to this parameter (e.g. Section 7.4.1).

As observed in Section 7.2, often µ is only known through a sample and it is

necessary to approximate the integral with respect to µ as in (7.4). Under the

assumption that a sample from µ is available and following the same considerations

in Chapter 5, we propose the following strategy: at each time step approximate the

integral with respect to µ using M samples where M is the smallest between the

number of particles N chosen for the particle system (7.3) and the total number of

samples available from µ; if N is larger than the total number of samples from µ

then the whole sample is used at each iteration, if N is smaller we resample without

replacement M times from the empirical measure of the sample. This amounts to

a maximum cost of O(MN) per time step. The choice of N largely depends on the

dimensionality of the problem, for one-dimensional examples we observe that values

between N = 200 and N = 1000 achieve high enough accuracy to compete with
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specialised algorithms (see Section 7.4.2). For image reconstruction problems, the

number of particles N should be increased to account for the resolution of the image

(see Section 7.4.3).

Similar considerations apply to the choice of the time discretisation step ∆t.

In particular, this should be chosen taking into account the order of magnitude of

the gradient, to give a good trade-off between the Monte Carlo error and the time

discretisation error. In practice, we observed good results with ∆t between 10−1 and

10−3. The number of time steps necessary to give convergence of (7.2) is determined

through Eα, once the value of Eα stops decreasing, a minimiser has been reached.

When computing Eα is prohibitively expensive we propose to use the entropy of the

solution as a proxy.

The kernel density estimator in (7.8) is obtained using isotropic Gaussian kernels

and plug-in bandwidths (Wand and Jones, 1994). As in the case of SMC-EMS the

particles are not independent and therefore the plug-in bandwidth for standard

kernel density estimation might provide undersmoothed reconstructions; however,

while the SMC-EMS algorithm outputs a weighted particle population from which

an indication of the effective sample size is easy to obtain, see Section 5.3, this is

not the case for the mean-field SDEs studied in this chapter, the choice of standard

bandwidths is not optimal, but common in the literature on approximation of mean-

field SDEs (e.g. Bossy and Talay (1997)).

Although the λ-concavity Assumption 6.1-(a) is not satisfied by any of the exam-

ples below, we nonetheless observe good results in terms of reconstruction accuracy.

We conjecture that local λ-concavity (which is satisfied by all the kernels g consid-

ered) is enough to guarantee good performances. Julia code (Bezanson et al., 2017)

to reproduce all examples is available online 1.

7.4.1 Analytically Tractable

To analyse the influence of the initial distribution ρ0 on the reconstructions, we

consider the toy Fredholm integral equation

N (y;m,σ2
µ := σ2

g + σ2
ρ) =

∫
N (x;m,σ2

ρ)N (y;x, σ2
g)dx

where N (x;m,σ2) is a Gaussian distribution with mean m and variance σ2. We set

m = 0.5, σ2
ρ = 0.0432, σ2

g = 0.0452, with this choice |1 −
∫ 1

0 ρ(x)dx| < 10−30 and

take 6 initial distributions (where with a slight abuse of notation we denote both a

1Link: https://github.com/FrancescaCrucinio/entropy_regularisation
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Figure 18: Effect of initial distribution on Eα for the Gaussian toy example with
N = 1000,∆t = 10−3, α = 0.05.

measure and its density w.r.t. Lebesgue with ρ0) and for each of them we compute

the W2 distance from the solution ρα(x) = N (x;m,σ2
α):

W2(ρα,N (m,σ2
α + ε)) ≈ ε W2(ρα, U(0, 1)) = 0.021

W2(ρα, δx0) = 0.252 for all x0 ∈ R

Despite having the highest distance from the solution, Figure 18 shows that

better results are obtained when ρ0 is a point mass centred at 0.5 than in the

x

ρ̂
(x

)

Iteration

E
α
(ρ̂

)

Figure 19: Reconstruction of the solution and corresponding value of Eα for the
Gaussian toy example with α = 0.01, 0.1, 0.5, 1, 1.1. and 1.5.
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Figure 20: Comparison of the exact minimiser ρα for α = 0.1 with the corresponding
WGF reconstruction with N = 1000,∆t = 10−3 and 100 iterations.

case ρ0 ∼ U([0, 1]) and that initial distributions concentrated in the centre of the

support of ρ achieve smaller values of Eα. This is more likely an effect of the

numerical implementation of McKean-Vlasov SDEs, in fact Antonelli and Kohatsu-

Higa (2002); Bossy and Talay (1997) observe that the Euler scheme for McKean-

Vlasov SDEs benefits from light tail initial distributions as particles are more easily

diffused from the centre of the space rather than moved towards it.

Knowing that for α > 1 the functional Eα does not admit a minimiser, we study

the behaviour of the numerical reconstruction and of the corresponding value of Eα

(Figure 19). While for α < 1 the value of Eα decreases with the number of iterations

and eventually stabilises, for α ≥ 1 the value of Eα keeps increasing; this observation

can guide the selection of α when exact computation of a minimiser of Eα is not

feasible: if for given α the value of Eα increases with the number of iterations, then

Eα might not admit a minimiser and smaller values of α should be considered.

For this simple toy model the unique minimiser of Eα can be computed exactly

for any given α ∈ [0, 1]; by taking ρα(x) = N (x;m,β(α)) with β(α) in (7.10) the

functional Eα achieves its minimum. For α > 1 the functional does not admit

a minimum. We use this toy model to empirically check that once convergence

of (7.7) is reached the distribution of the particles approximates the minimiser of

Eα (Figure 20).

7.4.2 Indirect Density Estimation

The focus of this section is on deconvolution problems, in this case, g(y | x) ≡
g(y − x) and the corresponding integral equation models the task of reconstructing

the density of a random variable X from noisy measurements Y . This particu-
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lar type of Fredholm integral equations has been widely studied (Delaigle, 2008;

Delaigle and Gijbels, 2004; Stefanski and Carroll, 1990) and a specialised class of es-

timators, deconvolution kernel density estimators (DKDE), achieving optimal rates

of convergence exists (Carroll and Hall, 1988).

We compare the proposed method with DKDE on a simulated dataset and on

a dataset containing noisy observations of the sucrase concentration in intestinal

tissue of 24 patients (see Delaigle (2008) and references therein for model details).

Then we consider a particular instance of the deconvolution problem, in which the

kernel g(y − x) describes the delay distribution between time of infection and time

of death or hospitalisation. Deconvolution techniques have been used to infer ρ in

the case of HIV (Becker et al., 1991) and influenza (Goldstein et al., 2009) and have

been recently applied to estimate the incidence curve of COVID-19 (Chau et al.,

2020; Marschner, 2020; Miller et al., 2020; Wang et al., 2020).

Gaussian Mixture

Consider again Gaussian mixture model described in Example 7.2 and used to

compare SMC-EMS with EMS in Chapter 5:

ρ(x) =
1

3
N (x; 0.3, 0.0152) +

2

3
N (x; 0.5, 0.0432),

g(y | x) = N (y;x, 0.0452).

µ(y) =
1

3
N (y; 0.3, 0.0452 + 0.0152) +

2

3
N (y; 0.5, 0.0452 + 0.0432).

We use this example to compare the performances of the mean-field SDE approach

studied in this chapter with those of SMC-EMS and of deconvolution kernel den-

sity estimators (DKDE). As we did in Chapter 5, we measure the accuracy of the

reconstructions through the integrated square error

ISE(ρ̂) =

∫
(ρ(x)− ρ̂(x))2 dx,

where ρ̂ is any estimator of ρ (and we commit the usual abuse of notation of denoting

both a measure and its density with the same symbol). Even if µ is known, we

assume that we only have available a sample of size 103 and we use this sample

for both the SMC-EMS estimator and (7.8). The initial distribution is µ for both

algorithms and we fix the number of iterations to 100 as we observed convergence in

less than 100 iterations for both SMC-EMS and WGF with ∆t = 10−3. The SMC-

EMS estimator is obtained using the algorithmic setting described in Chapter 5: the
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Figure 21: Comparison of WGF with SMC-EMS and DKDE. The number of parti-
cles N ranges between 100 and 10,000 and the smoothing/regularisation parameters
are chosen so that WGF and SMC-EMS give reconstructions with the same entropy.

smoothing kernels are zero-mean Gaussian distributions with variance ε2 and the

kernel density estimator is obtained using Gaussian kernels with plug-in bandwidth

(Silverman, 1986) in which we use the effective sample size instead of the actual

number of particles N . For (7.8) we use Gaussian kernels with plug-in bandwidth

(Wand and Jones, 1994). To choose the smoothing parameter ε for SMC-EMS and

the regularisation parameter α for WGF we fix ε = 10−3 for all N (as this provided

good results in the experiments in Chapter 5) and find the corresponding αs giving

reconstructions with roughly the same entropy.

We consider different particle sizes (from 100 to 10,000) and compare the re-

construction accuracy with the total runtime of SMC-EMS, WGF and DKDE (Fig-

ure 21). In particular, we compare the cost per iteration since we run both algorithms

for a fixed number of steps. The computational cost could of course be reduced by

considering stopping criteria like that in Section 5.3.1. For small N the SMC-EMS

approach performs better than the other algorithms both in terms of runtime and in

terms of accuracy. For larger N , accuracy and runtime of SMC-EMS and WGF are

similar, with the latter only slightly outperforming the former in terms of accuracy.

As already observed in Delaigle and Gijbels (2004) and in Chapter 5, DKDE-cv

provides very unstable reconstructions and has the highest runtime for any particle

size. The DKDE-pi estimator has runtime comparable to that of SMC-EMS and

WGF, but performs worse in terms of accuracy.
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Figure 22: Distribution of MSE as a function of runtime (in log seconds) for WGF,
SMC-EMS and DKDE. The number of particles N ranges between 100 and 10,000.

As both SMC-EMS and WGF are regularised versions of the inconsistent max-

imum likelihood estimator for ρ, it is natural to compare the smoothness of the

reconstructions. To characterise the smoothness, we take 100 points xc in the sup-

port of ρ and approximate (with 100 replicates) the mean squared error (MSE)

MSE(xc) = E
[
(ρ(xc)− ρ̂(xc))

2
]
.

The distribution of the MSE over the 100 points (Figure 22) shows that DKDE-

pi, SMC-EMS and WGF achieve average MSE of the same order (10−2) but the

maximum MSE is at least one order of magnitude smaller for SMC and WGF.

Generally, SMC-EMS and WGF achieve smaller MSE, showing that the smoothness

of the reconstructions provided by these two methods is closer to that of the true

density ρ. As the number of particles N increases, the distributions given by SMC-

EMS and WGF become left-skewed showing that increasing the number of particles

leads to a better exploration of the space. In particular, in the case of SMC-EMS the

increase in N forces the particles to explore not only the centre of the distribution

but also the tails, which are under-explored for lower particle sizes.
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Figure 23: Reconstruction of sucrase concentration for 24 noisy observations. Com-
parison of kernel density estimator for the noisy observations Y (gray), the decon-
volution kernel density estimators for X (red and orange) and WGF reconstruction
(blue).

Sucrase Concentration

Next, we consider the one-dimensional density deconvolution problem of Delaigle

(2008, Section 4.2) in which the concentration of the enzyme sucrase in intestinal

tissues of 24 patients has to be inferred from noisy observations. We reconstruct the

density of X from the 24 observations of Y = X + U under the assumption that U

follows a Gaussian distribution with variance such that the signal-to-noise ratio is

1/3 (see Delaigle (2008) and references therein for model details).

We compare the reconstructions obtained by our method with the DKDE and

the standard kernel density estimator obtained from the observations of Y . For the

WGF implementation we use N = 200 particles, ∆t = 10−1, α = 0.3 chosen using

the cross validation approach in Section 7.3 with L = 24 (i.e. leaving one sample

out for each repetition) and iterate until convergence (≈ 20,000 iterations). Given

the low number of observations from Y (only 24) we set the initial distribution ρ0

to be a Gaussian density with mean and variance given by the empirical mean and

variance of the sample from Y

Figure 23 shows the reconstructed densities for X as well as the kernel density

estimator for Y . The three estimators have similar runtimes (between 1 and 10 sec-

onds), and their reconstructions are similar, with DKDEs giving slightly smoother

reconstructions; as observed in Delaigle (2008, Section 4.2) the reconstructed den-
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sities for X are bimodal and suggest the presence of two groups of patients for

which the concentration of sucrase significantly differ. This difference is much less

evident in the kernel density estimator for µ, since the convolution with the error

distribution g smooths out the two modes.

Epidemiology

To test the mean-field SDE based approach in this context, we use data from

the spread of the pandemic influenza in the city of Philadelphia between September

and December 1918 (Goldstein et al., 2009). The count of daily deaths and the

distribution of delay between infection and death are available through the R package

incidental (Miller et al., 2020).

To obtain a parametric form for g we fit a mixture of Gaussians to the delay

data using the expectation maximisation algorithm (normalmixEM function in R)

g(y | x) = 0.595N (y − x; 8.63, 2.562) + 0.405N (y − x; 15.24, 5.392).

Although this choice assigns ≈ 10−3 mass to the negative reals, we found that a

mixture of Gaussians fits the observed delay distribution better than other com-

monly used distributions (e.g. Gamma, log-normal, see Obadia et al. (2012)) and

has the additional advantage of having bounded derivative and therefore satisfies

Assumption 6.1-(c).

We compare the reconstructions obtained through WGF with the robust inci-

dence deconvolution estimator (RIDE) of Miller et al. (2020) and the Richardson-

Lucy (RL) deconvolution described in Goldstein et al. (2009), which corresponds to

the expectation maximisation algorithm for Poisson data in (3.5). Figure 24 shows

the incidence curves and the reconstructed death counts obtained with the three

methods. Following Goldstein et al. (2009), for both the RL algorithm and the

WGF approach we set the initial distribution to be the death curve shifted back

by nine days. The number of iterations for RL is 200. To implement the recon-

struction process via WGF we set N = M = 500, ∆t = 10−1 and iterate until

convergence (approximately 3,000 steps), the value of α = 0.009 is selected using

the cross validation approach (7.9) with L = 5 groups.

The three methods provide similar shapes for the incidence curve, with the peak

of the incidence around day 30 (i.e. early October). The RL algorithm gives the

best fit the the observed death counts and has the lowest runtime (< 1 seconds),

however the reconstruction of the incidence curve is not smooth and sensitive to

noise (Miller et al., 2020). This is a well known weakness of the RL algorithm and
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Figure 24: Incidence curve and reconstructed deaths count for the 1918 influenza
pandemic in Philadelphia. Comparison of RL (gray), RIDE (red) and WGF (blue).

is related to the inconsistency of the maximum likelihood estimator in the infinite

dimensional setting discussed in Chapter 3. Both RIDE and WGF address the

lack of smoothness by introducing regularisation, this increases the runtime (≈ 90

seconds for RIDE and 132 seconds for WGF) but provides smoother reconstructions

while preserving the shape of the incidence curve. The fit of the reconstructed death

counts to the reported one is less accurate, with WGF providing a slightly better fit.

This is not unexpected, as the reconstructions provided by WGF are a regularised

version of the measure ρ minimising the KL divergence (3.4).

7.4.3 Positron Emission Tomography

As pointed out in Chapter 5, medical imaging is one of the main applications

of Fredholm integral equations; in this context the integral equation models the

reconstruction of cross-section images of the organ of interest from the noisy mea-

surements provided by PET scanners (Webb, 2017).

PET scanners provide noisy measurements by mapping each point of the organ’s

cross-section ρ(x, x) onto its radial projection µ(φ, ξ) where φ denotes an angle

between 0◦ and 360◦ and ξ denotes the depth at which the projection is taken

(Vardi et al., 1985). We model the alignment between (x, y) and the projections

(φ, ξ) through a Gaussian kernel with small variance σ2 ' 0.02

g(φ, ξ | x, y) =
N (x cosφ+ y sinφ− ξ; 0, σ2)

2π
.

We consider again the 128-pixels Shepp-Logan phantom reference image (Shepp

and Vardi, 1982) and obtain the corresponding data as projections over 128 equally
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Figure 25: Reconstruction of PET reference image via mean-field SDE with N =
20, 000 and ∆t = 10−2. Convergence is reached in less than 100 steps.

spaced angles φ in [0, 2π] and at depths ξ ∈ [−92, 92].

We implement (7.7) with initial distribution ρ0 an isotropic Gaussian distribution

concentrated at the centre of the image, N = 20, 000, ∆t = 10−2 and iterate until

convergence (measured by approximating Eα and reached after ≈ 100 steps). In

Figure 25 we compare the reconstructions obtained by setting α = 10−2 to match the

entropy of the reconstruction given by SMC-EMS shown in Figure 13 (≈ 0.18) and

α = 10−4 chosen by cross validation over L = 5 repetitions (which gives entropy≈
0.17). The entropy of the reconstructed images is higher than that of the original

image (≈ 0.12); larger values of α result in higher values of the entropy while smaller

values of α do not lead to entropy smaller than 0.17. Even if the two reconstructions

have similar entropies, the accuracy of the reconstruction obtained with α = 10−4

chosen by cross-validation is higher than that obtained with α = 10−2. In particular,

the former more accurately identifies the profile of the skull (see the relative errors

in Figure 13).
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7.5 Summary

Starting from the gradient flow PDE obtained in Chapter 6 whose solution is a

minimiser of the penalised Kullback–Leibler divergence (6.13), we exploited standard

results in stochastic differential calculus to obtain the SDE associated with it. This

is SDE is of the mean-field type and its numerical approximation is obtained by

considering a population of particles interacting in a mean-field sense.

We tested the performances of the proposed method on a number of toy and

real-data examples showing that this method has comparable performances to stan-

dard and novel estimators for density deconvolution and density reconstruction from

epidemiological data, while enjoying wider applicability. In particular, we showed

that the algorithm proposed in this chapter outperforms the SMC-EMS algorithm

introduced in Chapter 5; however SMC-EMS requires less stringent assumptions on

the function g, and, as mentioned in Remark 6.1 can be implemented also when g

admits a Uniform distribution as marginal, a case which is common in deblurring

problems.
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Proofs of the Results for Continuous EMS

A.1 Auxiliary Results for Analyticity

This Appendix is concerned with the derivation of the Fréchet derivatives of order

k of the EMS map. First we derive the first order Fréchet derivative in Lemma 4.1

then we obtain the formula for the derivatives of order k in Lemma 4.2 inductively.

In the following arguments, we make extensive use of Fubini’s Theorem, whose

applicability is granted by the boundedness of all quantities involved. Additionally,

we exploit the fact that β-norm defined in Section 4.2.1 metrises weak convergence

and that for any bounded measurable function ϕ ∈ Bb(X)

|[ηn − η] (ϕ)| ≤ ‖ϕ‖∞
∣∣∣∣∫ [ηn − η](dx)

∣∣∣∣ ≤ ‖ϕ‖∞β(ηn, η), (A.1)

where the last inequality follows from the fact that the unit function ψ : x 7→ 1 is

bounded and Lipschitz on X with Lipschitz norm ‖ψ‖BL = 1.

Proof of Lemma 4.1. Recall the expression in Lemma 4.1

D(1)
η FEMS ν(dx′) :=

∫
X
ν(dx)K(x, x′)

∫
Y

g(y | x)h(dy)

η (g(y | ·))
dx′

−
∫
X
η(dx)K(x, x′)

∫
Y

g(y | x)h(dy)

η (g(y | ·))2 ν (g(y | ·)) dx′,

and consider the definition of Fréchet derivative: D
(1)
η FEMS is a linear operator such

that for a sequence {ηn}n≥1 ⊂M+(X) with β(ηn, η)→ 0 as n→∞

lim
β(ηn,η)→0

β
(

FEMS ηn,FEMS η +D
(1)
η FEMS(ηn − η)

)
β(ηn, η)

= 0.
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Using the definition of β, take ϕ ∈ BL(X) with ‖ϕ‖BL ≤ 1 and consider∣∣∣FEMS ηn(ϕ)− FEMS η(ϕ)−D(1)
η FEMS(ηn − η)(ϕ)

∣∣∣
=

∣∣∣∣∫
X
ϕ(x′)

∫
X
ηn(dx)K(x, x′)

∫
Y

g(y | x)h(dy)

ηn (g(y | ·))
dx′

−
∫
X
ϕ(x′)

∫
X
η(dx)K(x, x′)

∫
Y

g(y | x)h(dy)

η (g(y | ·))
dx′

−
∫
X
ϕ(x′)

∫
X

[ηn − η](dx)K(x, x′)

∫
Y

g(y | x)h(dy)

η (g(y | ·))
dx′

+

∫
X
ϕ(x′)

∫
X
K(x, x′)η(dx)

∫
Y

g(y | x)h(dy)

η (g(y | ·))2 [ηn − η] (g(y | ·)) dx′
∣∣∣∣ .

Exploiting the boundedness of all functions involved and Fubini’s Theorem we obtain∣∣∣FEMS ηn(ϕ)− FEMS η(ϕ)−D(1)
η FEMS(ηn − η)(ϕ)

∣∣∣ (A.2)

=

∣∣∣∣∫
X

∫
Y
Kϕ(x)g(y | x)h(dy)×[

ηn(dx)

ηn (g(y | ·))
− ηn(dx)

η (g(y | ·))
+ η(dx)

[ηn − η] (g(y | ·))
η (g(y | ·))2

]∣∣∣∣ .
For the expression between square brackets the following identity holds

ηn(dx)

ηn (g(y | ·))
− ηn(dx)

η (g(y | ·))
+ η(dx)

[ηn − η] (g(y | ·))
η (g(y | ·))2 (A.3)

= [ηn − η](dx)

[
1

ηn (g(y | ·))
− 1

η (g(y | ·))

]
+ η(dx)

[
1

ηn (g(y | ·))
− 1

η (g(y | ·))
+

[ηn − η] (g(y | ·))
η (g(y | ·))2

]
.

Then, consider the Taylor expansion of u 7→ 1/u as u→ u0 6= 0

1

u
=

1

u0
− 1

u2
0

(u− u0) +
1

u3
0

(u− u0)2 + o
(
(u− u0)2

)
;

if |[ηn − η] (g(y | ·)) | → 0 we have the following approximation of the expression

between square brackets

1

ηn (g(y | ·))
− 1

η (g(y | ·))

= − [ηn − η] (g(y | ·))
η (g(y | ·))2 +

[ηn − η] (g(y | ·))2

η (g(y | ·))3 + o
(

([ηn − η] (g(y | ·)))2
)
.
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Because g(y | ·) ∈ Cb(X) for all fixed y ∈ Y, (A.1) gives |[ηn − η] (g(y | ·))| ≤
mgβ(ηn, η), and, if β(ηn, η)→ 0, we have

1

ηn (g(y | ·))
=

1

η (g(y | ·))
− [ηn − η] (g(y | ·))

η (g(y | ·))2 +
[ηn − η] (g(y | ·))2

η (g(y | ·))3 + o
(
β(ηn, η)2

)
.

Plugging the above into (A.3) we obtain

ηn(dx)

ηn (g(y | ·))
− ηn(dx)

η (g(y | ·))
+ η(dx)

[ηn − η] (g(y | ·))
η (g(y | ·))2

= −[ηn − η](dx)
[ηn − η] (g(y | ·))
η (g(y | ·))2 + o

(
β(ηn, η)2

)
+ ηn(dx)

[
[ηn − η] (g(y | ·))2

η (g(y | ·))3 + o
(
β(ηn, η)2

)]
.

Going back to (A.2), using the triangle inequality we find that∣∣∣FEMS ηn(ϕ)− FEMS η(ϕ)−D(1)
η FEMS(ηn − η)(ϕ)

∣∣∣
=

∣∣∣∣∫
X

∫
Y
Kϕ(x)g(y | x)h(dy)

[
−[ηn − η](dx)

[ηn − η] (g(y | ·))
η (g(y | ·))2

+ηn(dx)

(
[ηn − η] (g(y | ·))2

η (g(y | ·))3 + o
(
β(ηn, η)2

))]∣∣∣∣∣
≤
∣∣∣∣∫

X

∫
Y
Kϕ(x)g(y | x)h(dy)[ηn − η](dx)

[ηn − η] (g(y | ·))
η (g(y | ·))2

∣∣∣∣
+

∣∣∣∣∣
∫
X

∫
Y
Kϕ(x)g(y | x)h(dy)ηn(dx)

(
[ηn − η] (g(y | ·))2

η (g(y | ·))3 + o
(
β(ηn, η)2

))∣∣∣∣∣ .
We will consider the two terms separately. For the first one,∣∣∣∣∫

X

∫
Y
Kϕ(x)g(y | x)h(dy)[ηn − η](dx)

[ηn − η] (g(y | ·))
η (g(y | ·))2

∣∣∣∣
=

∣∣∣∣∫
Y

[ηn − η] (g(y | ·))
η (g(y | ·))2 h(dy)

∫
X
Kϕ(x)g(y | x)[ηn − η](dx)

∣∣∣∣
≤
∫
Y

|[ηn − η] (g(y | ·))|
η (g(y | ·))2 h(dy)

∣∣∣∣∫
X
Kϕ(x)g(y | x)[ηn − η](dx)

∣∣∣∣
≤

m2
g

η(X)2

∫
Y
|[ηn − η] (g(y | ·))|h(dy)

∣∣∣∣∫
X
Kϕ(x)g(y | x)[ηn − η](dx)

∣∣∣∣
where the first equality is a consequence of the boundedness of ϕ, g and Fubini’s

Theorem and η(X) > 0 since η has nonzero mass. Using the boundedness of Kϕ
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and (A.1), we obtain∣∣∣∣∫
X
Kϕ(x)g(y | x)[ηn − η](dx)

∣∣∣∣ ≤ ‖ϕ‖∞mgβ(ηn, η)

for every fixed y. Then we have that the first term in bounded by∣∣∣∣∫
X

∫
Y
Kϕ(x)g(y | x)h(dy)[ηn − η](dx)

[ηn − η] (g(y | ·))
η (g(y | ·))2

∣∣∣∣
≤
m4
g‖ϕ‖∞
η(X)2

β(ηn, η)2.

Similarly, for the second term, using the boundedness of g and ‖Kϕ‖∞ ≤ ‖ϕ‖∞ ≤ 1

and recalling that η, ηn are finite measures with nonzero mass we obtain∣∣∣∣∣
∫
X

∫
Y
Kϕ(x)g(y | x)h(dy)ηn(dx)

(
[ηn − η] (g(y | ·))2

η (g(y | ·))3 + o
(
β(ηn, η)2

))∣∣∣∣∣
≤ ‖Kϕ‖∞

∫
X

∫
Y
g(y | x)h(dy)ηn(dx)

∣∣∣∣∣ [ηn − η] (g(y | ·))2

η (g(y | ·))3 + o
(
β(ηn, η)2

)∣∣∣∣∣
≤ ‖ϕ‖∞

∫
Y
h(dy)ηn (g(y | ·))

∣∣∣∣∣ [ηn − η] (g(y | ·))2

η (g(y | ·))3 + o
(
β(ηn, η)2

)∣∣∣∣∣
≤ ‖ϕ‖∞m4

g

ηn(X)

η(X)3

∫
Y
h(dy)

∣∣∣[ηn − η] (g(y | ·))2 + o
(
β(ηn, η)2

)∣∣∣
≤ ‖ϕ‖∞m4

g

ηn(X)

η(X)3

[
β(ηn, η)2 + o

(
β(ηn, η)2

)]
.

Putting the two terms together we obtain

β
(

FEMS ηn,FEMS η −D(1)
η FEMS(ηn − η)

)
β(ηn, η)

≤
∣∣∣∣∫

X

∫
Y
Kϕ(x)g(y | x)h(dy)[ηn − η](dx)

[ηn − η] (g(y | ·))
η (g(y | ·))2

∣∣∣∣
+

∣∣∣∣∣
∫
X

∫
Y
Kϕ(x)g(y | x)h(dy)ηn(dx)

(
[ηn − η] (g(y | ·))2

η (g(y | ·))3 + o
(
β(ηn, η)2

))∣∣∣∣∣
≤
m4
g‖ϕ‖∞
η(X)2

β(ηn, η) + ‖ϕ‖∞m4
g

ηn(X)

η(X)3
[β(ηn, η) + o (β(ηn, η))]

which tends to 0 as β(ηn, η) → 0, showing that D
(1)
η FEMS(ηn − η) is the Fréchet

derivative of order one of FEMS at η.
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To show that, for fixed η ∈M+(X), D
(1)
η FEMS is bounded, take a bounded and

Lipschitz test function ϕ ∈ BL(X) with ‖ϕ‖BL ≤ 1 and consider

|D(1)
η FEMS ν(ϕ)|

=

∣∣∣∣∫
X
ϕ(x′)

∫
X
K(x, x′)ν(dx)

∫
Y

g(y | x)h(dy)

η (g(y | ·))
dx′

−
∫
X
ϕ(x′)

∫
X
K(x, x′)η(dx)

∫
Y

g(y | x)h(dy)

η (g(y | ·))2 ν (g(y | ·)) dx′
∣∣∣∣

≤
∣∣∣∣∫

X

∫
Y
Kϕ(x)ν(dx)

g(y | x)h(dy)

η (g(y | ·))

∣∣∣∣
+

∣∣∣∣∫
X

∫
Y
Kϕ(x)η(dx)

g(y | x)h(dy)

η (g(y | ·))2 ν (g(y | ·))
∣∣∣∣

where we have used Fubini’s Theorem and the boundedness of g, ϕ. Using the fact

that g is bounded by mg and ‖Kϕ‖∞ ≤ ‖ϕ‖∞ ≤ 1 we have

|D(1)
η FEMS ν(ϕ)| ≤

m2
g

η(X)

∣∣∣∣∫
X
Kϕ(x)ν(dx)

∣∣∣∣
+ ‖Kϕ‖∞

∫
Y

∣∣∣∣
∫
X η(dx)g(y | x)

η (g(y | ·))2 h(dy)ν (g(y | ·))
∣∣∣∣

≤ 2
m2
g

η(X)
‖Kϕ‖∞

∣∣∣∣∫
X
ν(dx)

∣∣∣∣
≤ 2

m2
g

η(X)
β(ν),

where the last inequality follows from (A.1).

The derivation of the Fréchet derivatives of higher order is carried out by induc-

tion and follows the same structure of the proof of Lemma 4.1. In particular, we

combine the Taylor expansion of u 7→ 1/um as u→ u0 6= 0

1

um
=

1

um0
−m 1

um+1
0

(u− u0) + o ((u− u0))

for all m ∈ N and the fact that for fixed y, |[ηn− η] (g(y | ·)) ≤ mgβ(ηn, η) as shown

in (A.1), to obtain

1

ηn (g(y | ·))m
− 1

η (g(y | ·))m
+m

[ηn − η] (g(y | ·))
η (g(y | ·))m+1 = o (β(ηn, η)) (A.4)

for every sequence {ηn} such that β(ηn, η) → 0 as n → ∞, and use this Taylor
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expansion as approximation as we did in Lemma 4.1.

The proof proceeds by induction on the order k of the derivative. In particular,

we show that the Fréchet derivative of FEMS at η ∈M+(X) of order k ≥ 2 satisfies

D(k)
η FEMS(ν, . . . , ν, µ) = (−1)k+1(k − 1)!(k − 1)

∫
X
ν(dx)K(x, ·) (A.5)

×
∫
Y

g(y | x)h(dy)

η (g(y|·))k
µ (g(y | ·)) ν (g(y|·))k−2

+ (−1)k+1(k − 1)!

∫
X
µ(dx)K(x, ·)

∫
Y

g(y|x)h(dy)

η (g(y|·))k
ν (g(y|·))k−1

+ (−1)kk!

∫
X

[η + µ+ (k − 2)ν] (dx)K(x, ·)∫
Y

g(y | x)h(dy)

η (g(y|·))k+1
ν (g(y|·))k−1 µ (g(y|·)) ,

and then obtain the expression in Lemma 4.2 setting µ = ν in the above expression.

Proof of Lemma 4.2. Let k = 2. For D
(2)
η FEMS, we have to show that for {ηn} with

β(ηn, η)→ 0 as n→∞

lim
β(ηn,η)→0

‖D(1)
ηn FEMS−D(1)

η FEMS−D(2)
η FEMS(·, ηn − η)‖op

β(ηn, η)
= 0. (A.6)

Because D
(2)
η FEMS is a bilinear operator, we have that the operator norm in (A.6)

is equal to the supremum over {v ∈M(X), β(ν) = 1} of

β
(
D(1)
ηn FEMS ν,D

(1)
η FEMS ν −D(2)

η FEMS(ν, ηn − η)
)

;

therefore we will focus on bounding the β norm in the numerator of the fraction

above. As for (A.2), take ϕ ∈ BL(X) with ‖ϕ‖BL ≤ 1 and consider∣∣∣∣∫
X
ϕ(x′)

[
D(1)
ηn FEMS ν −D(1)

η FEMS ν −D(2)
η FEMS(ν, ηn − η)

]
(dx′)

∣∣∣∣
=

∣∣∣∣∫
X

∫
Y
Kϕ(x)g(y | x)h(dy)

[
ν(dx)

ηn (g(y | ·))
− ηn(dx)ν (g(y | x))

ηn (g(y | ·))2

− ν(dx)

η (g(y | ·))
+
η(dx)ν (g(y | ·))
η (g(y | ·))2 +

ν(dx)[ηn − η] (g(y | ·))
η (g(y | ·))2

+
[ηn − η](dx)ν (g(y | ·))

η (g(y | ·))2 − 2
ηn(dx)[ηn − η] (g(y | ·)) ν (g(y | ·))

η (g(y | ·))3

]∣∣∣∣ .
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Applying the triangle inequality gives∣∣∣∣∫
X
ϕ(x′)

[
D(1)
ηn FEMS ν −D(1)

η FEMS ν −D(2)
η FEMS(ν, ηn − η)

]
(dx′)

∣∣∣∣
≤
∣∣∣∣∫

X
Kϕ(x)

∫
Y
g(y | x)h(dy)ν(dx)

×
[

1

ηn (g(y | ·))
− 1

η (g(y | ·))
+

[ηn − η] (g(y | ·))
η (g(y | ·))2

]∣∣∣∣
+

∣∣∣∣∫
X
Kϕ(x)

∫
Y
g(y | x)h(dy)ν (g(y | ·))

[
− ηn(dx)

ηn (g(y | ·))2 +
η(dx)

η (g(y | ·))2

+
[ηn − η](dx)

η (g(y | ·))2 − 2
ηn(dx)[ηn − η] (g(y | ·))

η (g(y | ·))3

]∣∣∣∣ .
Using (A.4) with m = 1 and the boundedness of g and ‖Kϕ‖∞ ≤ ‖ϕ‖∞ ≤ 1 we find

that for the first term∣∣∣∣∫
X
Kϕ(x)

∫
Y
g(y | x)h(dy)ν(dx)

[
1

ηn (g(y | ·))
− 1

η (g(y | ·))
+

[ηn − η] (g(y | ·))
η (g(y | ·))2

]∣∣∣∣
= o (β(η, ηn)) .

Similarly, using (A.4) with m = 2 for the second term gives∣∣∣∣∫
X
Kϕ(x)

∫
Y
g(y | x)h(dy)ν (g(y | ·))

[
− ηn(dx)

ηn (g(y | ·))2 +
η(dx)

η (g(y | ·))2

+
[ηn − η](dx)

η (g(y | ·))2 − 2
ηn(dx)[ηn − η] (g(y | ·))

η (g(y | ·))3

]∣∣∣∣
=

∣∣∣∣∫
X
Kϕ(x)

∫
Y
g(y | x)h(dy)ν (g(y | ·)) ηn(dx)

×
[

1

ηn (g(y | ·))2 −
1

η (g(y | ·))2 + 2
[ηn − η] (g(y | ·))
η (g(y | ·))3

]∣∣∣∣
= o (β(η, ηn)) .

Plugging the above into (A.6) we obtain

‖D(1)
ηn FEMS−D(1)

η FEMS−D(2)
η FEMS(ηn − η)‖op

β(η, ηn)
= o(1)→ 0

as n → ∞, showing that for k = 2 the expression in (A.5) is the Fréchet derivative

of FEMS. To show that D
(2)
η FEMS ν

2 satisfies (4.12), take µ = ν in D
(2)
η FEMS(ν, µ).

Then, assume (4.12) is true for k. To show that D
(k+1)
η FEMS is as in (A.5) take
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{ηn}n≥1 with β(η, ηn)→ 0 as n→∞ and consider

lim
β(η,ηn)→0

‖D(k)
ηn FEMS−D(k)

η FEMS−D(k+1)
η FEMS(· · · , ηn − η)‖op

β(η, ηn)
.

Using again the definition of operator norm for linear maps we only need to bound

β
(
D(k)
ηn FEMS ν

k, D(k)
η FEMS ν

k −D(k+1)
η FEMS(νk−1, ηn − η)

)
for {ν ∈M(X), β(ν) = 1}. Take ϕ ∈ BL(X) with ‖ϕ‖BL ≤ 1 and consider∣∣∣∣∫

X
ϕ(x′)

[
D(k)
ηn FEMS ν

k −D(k)
η FEMS ν

k −D(k+1)
η FEMS(ν, · · · , ν, ηn − η)

]
(dx′)

∣∣∣∣
=

∣∣∣∣∫
X
Kϕ(x)

∫
Y
g(y | x)h(dy)[

(−1)k+1k!
ν(dx)ν (g(y | ·))k−1

ηn (g(y | ·))k
+ (−1)kk!

[ηn + (k − 1)ν](dx)ν (g(y | ·))k

ηn (g(y | ·))k+1

−(−1)k+1k!
ν(dx)ν (g(y | ·))k−1

η (g(y | ·))k
− (−1)kk!

[η + (k − 1)ν](dx)ν (g(y | ·))k

η (g(y | ·))k+1

−(−1)k+2k!ν (g(y | ·))k−1

(
kν(dx)[ηn − η] (g(y | ·))

η (g(y | ·))k+1
− [ηn − η](dx)ν (g(y | ·))

η (g(y | ·))k+1

)

−(−1)k+1(k + 1)!
[ηn + (k − 1)ν](dx)ν (g(y | ·))k [ηn − η] (g(y | ·))

η (g(y | ·))k+2

]∣∣∣∣∣ .
Applying the triangle inequality gives∣∣∣∣∫

X
ϕ(x′)

[
D(k)
ηn FEMS ν

k −D(k)
η FEMS ν

k −D(k+1)
η FEMS(ν, · · · , ν, ηn − η)

]
(dx′)

∣∣∣∣
≤
∣∣∣∣∫

X
Kϕ(x)

∫
Y
g(y | x)h(dy)(−1)k+1k!ν(dx)ν (g(y | ·))k−1[

1

ηn (g(y | ·))k
− 1

η (g(y | ·))k
+ k

[ηn − η] (g(y | ·))
η (g(y | ·))k+1

]∣∣∣∣∣
+

∣∣∣∣∫
X
Kϕ(x)

∫
Y
g(y | x)h(dy)(−1)kk!ν (g(y | ·))k[

[ηn + (k − 1)ν](dx)

ηn (g(y | ·))k+1
− [η + (k − 1)ν](dx)

η (g(y | ·))k+1
− [ηn − η](dx)

η (g(y | ·))k+1

+(k + 1)
[ηn + (k − 1)ν](dx)[ηn − η] (g(y | ·))

η (g(y | ·))k+2

]∣∣∣∣∣ .
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We treat the two terms separately as we did for k = 2. Using (A.4) with m = k and

the boundedness of g and ‖Kϕ‖∞ ≤ ‖ϕ‖∞ ≤ 1 we find that the first term∣∣∣∣∫
X
Kϕ(x)

∫
Y
g(y | x)h(dy)(−1)k+1k!ν(dx)ν (g(y | ·))k−1[

1

ηn (g(y | ·))k
− 1

η (g(y | ·))k
+ k

[ηn − η] (g(y | ·))
η (g(y | ·))k+1

]∣∣∣∣∣
=

∣∣∣∣∫
X
Kϕ(x)

∫
Y
g(y | x)h(dy)k!ν(dx)ν (g(y | ·))k−1[

1

ηn (g(y | ·))k
− 1

η (g(y | ·))k
+ k

[ηn − η] (g(y | ·))
η (g(y | ·))k+1

]∣∣∣∣∣
= o (β(η, ηn)) .

Using (A.4) with m = k + 1 we obtain the same result for the second term∣∣∣∣∫
X
Kϕ(x)

∫
Y
g(y | x)h(dy)(−1)kk!ν (g(y | ·))k[

[ηn + (k − 1)ν](dx)

ηn (g(y | ·))k+1
− [η + (k − 1)ν](dx)

η (g(y | ·))k+1
− [ηn − η](dx)

η (g(y | ·))k+1

+(k + 1)
[ηn + (k − 1)ν](dx)[ηn − η] (g(y | ·))

η (g(y | ·))k+2

]∣∣∣∣∣∣∣∣∣∫
X
Kϕ(x)

∫
Y
g(y | x)h(dy)k!ν (g(y | ·))k [ηn + (k − 1)ν](dx)[

1

ηn (g(y | ·))k+1
− 1

η (g(y | ·))k+1
+ (k + 1)

[ηn − η] (g(y | ·))
η (g(y | ·))k+2

]∣∣∣∣∣
= o (β(η, ηn)) .

It follows that

‖D(k)
ηn FEMS−D(k)

η FEMS−D(k+1)
η FEMS(·, ·, ηn − η)‖op

β(η, ηn)
= o(1)→ 0

as n→∞, proving (A.5). To show (4.12) take µ = ν in (A.5)

D(k)
η FEMS ν

k = (−1)k+1k!

∫
X
ν(dx)K(x, ·)

∫
Y

g(y | x)h(dy)

η (g(y | ·))k
ν (g(y | ·))k−1

+ (−1)kk!

∫
X

[η + (k − 1)ν] (dx)K(x, ·)
∫
Y

g(y | x)h(dy)

η (g(y | ·))k+1
ν (g(y | ·))k .
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To show that D
(k)
η FEMS ν

k is bounded, take ϕ ∈ BL(X) and apply the triangle

inequality∣∣∣∣∫
X
ϕ(x′)D(k)

η FEMS ν
k(dx′)

∣∣∣∣
=

∣∣∣∣∣k!

∫
X
Kϕ(x)

∫
Y

g(y | x)h(dy)

η (g(y | ·))k
ν (g(y | ·))k

[
− ν(dx)

ν (g(y | ·))
+

[η + (k − 1)ν](dx)

η (g(y | ·))

]∣∣∣∣∣
=

∣∣∣∣∣k!

∫
X
Kϕ(x)

∫
Y

g(y | x)h(dy)

η (g(y | ·))k
ν (g(y | ·))k[

− ν(dx)

ν (g(y | ·))
− ν(dx)

η (g(y | ·))
+

ν(dx)

η (g(y | ·))
+

[η + (k − 1)ν](dx)

η (g(y | ·))

]∣∣∣∣
=

∣∣∣∣∣k!

∫
X
Kϕ(x)

∫
Y

g(y | x)h(dy)

η (g(y | ·))k
ν (g(y | ·))k[

ν(dx)

ν (g(y | ·)) η (g(y | ·))
[η + ν] (g(y | ·)) +

1

η (g(y | ·))
[η + kν](dx)

]∣∣∣∣
=

∣∣∣∣∣k!

∫
X
Kϕ(x)

∫
Y

g(y | x)h(dy)

η (g(y | ·))k+1
ν (g(y | ·))k[

ν(dx)

ν (g(y | ·))
[η + ν] (g(y | ·)) + [η + kν](dx)

]∣∣∣∣
≤

∣∣∣∣∣k!

∫
X
ν(dx)Kϕ(x)

∫
Y

g(y | x)h(dy)

η (g(y | ·))k+1
ν (g(y | ·))k−1 [η + ν] (g(y | ·))

∣∣∣∣∣
+

∣∣∣∣∣k!

∫
X

[η + kν](dx)Kϕ(x)

∫
Y

g(y | x)h(dy)

η (g(y | ·))k+1
ν (g(y | ·))k

∣∣∣∣∣ .
We can bound the first term using Assumption 4.1-(b) and ‖Kϕ‖∞ ≤ ‖ϕ‖∞ ≤ 1∣∣∣∣∣k!

∫
X
ν(dx)Kϕ(x)

∫
Y

g(y | x)h(dy)

η (g(y | ·))k+1
ν (g(y | ·))k−1 [η + ν] (g(y | ·))

∣∣∣∣∣ (A.7)

≤ k!
mk+2
g

η(X)

∣∣∣∣∫
X
ν(dx)Kϕ(x)

∣∣∣∣ ∣∣∣∣∫
Y
h(dy)ν (g(y | ·))k−1 [η + ν] (g(y | ·))

∣∣∣∣
≤ k!m2k+2

g

|ν(X)|k−1

η(X)k+1
|[η + ν](X)|

∣∣∣∣∫
X
ν(dx)Kϕ(x)

∣∣∣∣
≤ k!m2k+2

g

|ν(X)|k

η(X)k+1
|[η + ν](X)| .
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Similarly for the second term∣∣∣∣∣k!

∫
X

[η + kν](dx)Kϕ(x)

∫
Y

g(y | x)h(dy)

η (g(y | ·))k+1
ν (g(y | ·))k

∣∣∣∣∣ (A.8)

≤ k!m2k+2
g

|ν(X)|k

η(X)k+1

∣∣∣∣∫
X

[η + kν](dx)Kϕ(x)

∣∣∣∣
≤ k!m2k+2

g

|ν(X)|k

η(X)k+1
|[η + kν](X)|

Putting (A.7)–(A.8) together gives∣∣∣∣∫
X
ϕ(x′)D(k)

η FEMS ν
k(dx′)

∣∣∣∣
≤ k!m2k+2

g

|ν(X)|k

η(X)k+1
|[η + ν]| (X) + k!m2k+2

g

|ν(X)|k

η(X)k+1
|[η + kν](X)|

≤ k!m2k+2
g

|ν(X)|k

η(X)k+1
(2η(X) + (k + 1)|ν(X)|)

≤ k!(k + 1)m2k+2
g

|ν(X)|k

η(X)k+1
(η(X) + |ν(X)|) ,

recalling that IX ∈ BL(X) we obtain

β
(
D(k)
η FEMS ν

k
)
≤ (k + 1)!m2k+2

g

β(ν)k

η(X)k+1
(η(X) + |ν(X)|)

for all η ∈M+(X).
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Proofs of the Results for SMC-EMS

B.1 Proof of the Lp Inequality

Before proceeding to the proof of Proposition 5.2 we introduce the following

auxiliary Lemma giving some properties of the approximated potentials GNn :

Lemma B.1. Under Assumption 4.1-(b), the approximated and exact potentials

are positive functions, bounded and bounded away from 0

‖Gn‖∞ ≤ m2
g <∞ and inf

(x,y)
|Gn(x, y)| ≥ 1

m2
g

> 0

‖GNn ‖∞ ≤ m2
g <∞ and inf

(x,y)
|GNn (x, y)| ≥ 1

m2
g

> 0.

We have the following decomposition

GNn (x, y)−Gn(x, y) = Gn(x, y)
ηn|X(g(y | ·))− ηNn |X(g(y | ·))

ηNn |X(g(y | ·))

= GNn (x, y)
ηn|X(g(y | ·))− ηNn |X(g(y | ·))

ηn|X(g(y | ·))

for fixed (x, y) ∈ H.

Proof. The boundedness of Gn and GNn follows from definitions (5.4) and (5.8) and

the boundedness of g. The second assertion is proved by considering the relative

errors between the exact and the approximated potential, using the definition of Gn

and GNn and the fact that the denominator of Gn and GNn can be seen as the integral
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of g with respect to a particular measure:

GNn (x, y)−Gn(x, y)

Gn(x, y)
=

hn(y)

g(y | x)

[
g(y | x)

hNn (y)
− g(y | x)

hn(y)

]
= hn(y)

[
1

hNn (y)
− 1

hn(y)

]
=
hn(y)− hNn (y)

hNn (y)

=
ηn|X(g(y | ·))− ηNn |X(g(y | ·))

ηNn |X(g(y | ·))

and

GNn (x, y)−Gn(x, y)

GNn (x, y)
=
ηn|X(g(y | ·))− ηNn |X(g(y | ·))

ηn|X(g(y | ·))

respectively.

We collect here three auxiliary Lemmata due to Crisan and Doucet (2000, 2002);

Mı́guez et al. (2013) which establish Lp-inequalities for the mutation step, the

reweighting step performed with the exact potential Gn (exact reweighting) and

the multinomial resampling step.

Lemma B.2 (Exact reweighting). Assume that for any ϕ ∈ Bb (H), for some p ≥ 1

and some finite constants and C̃p,n

E
[
|ηNn (ϕ)− ηn(ϕ)|p

]1/p ≤ C̃p,n ‖ϕ‖∞
N1/2

,

then

E
[
|ΨGn(ηNn )(ϕ)−ΨGn(ηn)(ϕ)|p

]1/p ≤ C̄p,n ‖ϕ‖∞
N1/2

for any ϕ ∈ Bb (H) and for some finite constant C̄p,n.

Proof. The proof follows that of Crisan and Doucet (2000, Lemma 2) and Crisan

and Doucet (2002, Lemma 4) by exploiting the boundedness of Gn (Lemma B.1).

Apply the definition of ΨGn to get the following decomposition

ΨGn(ηNn )(ϕ)−ΨGn(ηn)(ϕ) =
ηNn (Gnϕ)

ηNn (Gn)
− ηn(Gnϕ)

ηn(Gn)

=
ηNn (Gnϕ)

ηNn (Gn)
− ηNn (Gnϕ)

ηn(Gn)
+
ηNn (Gnϕ)

ηn(Gn)
− ηn(Gnϕ)

ηn(Gn)
.
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For the first term∣∣∣∣ηNn (Gnϕ)

ηNn (Gn)
− ηNn (Gnϕ)

ηn(Gn)

∣∣∣∣ =

∣∣∣∣ηNn (Gnϕ)

ηNn (Gn)

∣∣∣∣ ∣∣∣∣ηn(Gn)− ηNn (Gn)

ηn(Gn)

∣∣∣∣
≤ ‖ϕ‖∞
|ηn(Gn)|

|ηn(Gn)− ηNn (Gn)|.

For the second term∣∣∣∣ηNn (Gnϕ)

ηn(Gn)
− ηn(Gnϕ)

ηn(Gn)

∣∣∣∣ =
1

|ηn(Gn)|
|ηNn (Gnϕ)− ηn(Gnϕ)|.

Applying Minkowski’s inequality and the hypothesis,

E
[
|ΨGn(ηNn )(ϕ)−ΨGn(ηn)(ϕ)|p

]1/p ≤ ‖ϕ‖∞
|ηn(Gn)|

E
[
|ηn(Gn)− ηNn (Gn)|p

]1/p
+

1

|ηn(Gn)|
E
[
|ηNn (Gnϕ)− ηn(Gnϕ)|p

]1/p
≤

2C̃p,nm
2
g

|ηn(Gn)|
‖ϕ‖∞
N1/2

.

Hence, C̄p,n = 2C̃p,nm
2
g/|ηn(Gn)| ≤ 2C̃p,nm

4
g.

Lemma B.3 (Multinomial resampling). Assume that for any ϕ ∈ Bb (H), for some

p ≥ 1 and some finite constant Ĉp,n

E
[
|ΨGNn

(ηNn )(ϕ)− η̂n(ϕ)|p
]1/p
≤ Ĉp,n

‖ϕ‖∞
N1/2

,

then after the resampling step performed through multinomial resampling

E
[
|η̂Nn (ϕ)− η̂n(ϕ)|p

]1/p ≤ Cp,n ‖ϕ‖∞
N1/2

for any ϕ ∈ Bb (H) and for some finite constant Cp,n.

Proof. The proof follows that of Crisan and Doucet (2000, Lemma 4) and Crisan

and Doucet (2002, Lemma 5) using the Marcinkiewicz-Zygmund type inequality in

Del Moral (2004, Lemma 7.3.3) and the hypothesis.

Divide into two terms and apply Minkowski’s inequality

E
[
|η̂Nn (ϕ)− η̂n(ϕ)|p

]1/p ≤ E
[
|η̂Nn (ϕ)−ΨGNn

(ηNn )(ϕ)|p
]1/p

+ E
[
|ΨGNn

(ηNn )(ϕ)− η̂n(ϕ)|p
]1/p

.
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Denote by FNn the σ-field generated by the weighted samples up to (and includ-

ing) time n, FNn := ∨np=1σ
(
Xi
p, Y

i
p : i ∈ {1, . . . , N}

)
and consider the sequence of

functions ∆i
n : X× Y 7→ R for i = 1, . . . , N

∆i
n(x, y) := ϕ(x, y)− E

[
ϕ(X̃i

n, Ỹ
i
n) | FNn

]
.

Conditionally on FNn , ∆i
n(X̃i

n, Ỹ
i
n) i = 1, . . . , N are independent and have expecta-

tion equal to 0, moreover

η̂Nn (ϕ)−ΨGNn
(ηNn )(ϕ) =

1

N

N∑
i=1

(
ϕ(X̃i

n, Ỹ
i
n)− E

[
ϕ(X̃i

n, Ỹ
i
n) | FNn

])
=

1

N

N∑
i=1

∆i
n(X̃i

n, Ỹ
i
n).

By the Marcinkiewicz-Zygmund type inequality in Del Moral (2004, Lemma 7.3.3),

√
N E

[
|η̂Nn (ϕ)−ΨGNn

(ηNn )(ϕ)|p | FNn
]1/p

≤ b(p)1/p 1√
N

(
N∑
i=1

(
sup(∆i

n)− inf(∆i
n)
)2)1/2

≤ b(p)1/p 1√
N

(
N∑
i=1

4
(
sup |∆i

n|
)2)1/2

≤ b(p)1/p 1√
N

(
N∑
i=1

16‖ϕ‖2∞

)1/2

≤ 4b(p)1/p‖ϕ‖∞

where

b(2n) := (2n)n2−n (B.1)

b(2n+ 1) :=
(2n+ 1)(n+1)√

n+ 1/2
2−n+1/2 with (m+ n)n := (m+ n)!/n!.

Since η̂n(ϕ) ≡ ΨGn(ηn)(ϕ), this result combined with the hypothesis yields

E
[
|η̂Nn (ϕ)− η̂n(ϕ)|p

]1/p ≤ 2b(p)1/p ‖ϕ‖∞
N1/2

+ Ĉp,n
‖ϕ‖∞
N1/2

≤ (2b(p)1/p + Ĉp,n)
‖ϕ‖∞
N1/2

.
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Thus, Cp,n = 2b(p)1/p + Ĉp,n.

Lemma B.4 (Mutation). Assume that for any ϕ ∈ Bb(H), for some p ≥ 1 and some

finite constant Cp,n

E
[
|η̂Nn (ϕ)− η̂n(ϕ)|p

]1/p ≤ Cp,n ‖ϕ‖∞
N1/2

then, after the mutation step

E
[
|ηNn+1(ϕ)− ηn+1(ϕ)|p

]1/p ≤ C̃p,n+1
‖ϕ‖∞
N1/2

for any ϕ ∈ Bb(H) and for some finite constant C̃p,n+1.

Proof. The proof follows that of Crisan and Doucet (2000, Lemma 1) and Crisan

and Doucet (2002, Lemma 3).

Similarly to Lemma B.3, divide into two terms and apply Minkowski’s inequality

E
[
|ηNn+1(ϕ)− ηn+1(ϕ)|p

]1/p
= E

[
|ηNn+1(ϕ)− η̂nMn+1(ϕ)|p

]1/p
≤ E

[
|ηNn+1(ϕ)− η̂Nn Mn+1(ϕ)|p

]1/p
+ E

[
|η̂Nn Mn+1(ϕ)− η̂nMn+1(ϕ)|p

]1/p
.

Let GNn denote the σ-field generated by the particle system up to (and including)

time n before the mutation step at time n+1, GNn = ∨np=1σ
(
X̃i
p, Ỹ

i
p : i ∈ {1, . . . , N}

)
and consider the sequence of functions ∆i

n+1 : X× Y 7→ R for i = 1, . . . , N

∆i
n+1(x, y) := ϕ(x, y)− E

[
ϕ(Xi

n+1, Y
i
n+1) | GNn

]
.

Conditionally on GNn , ∆i
n+1(Xi

n+1, Y
i
n+1), i = 1, . . . , N are independent and have

expectation equal to 0, moreover

ηNn+1(ϕ)− η̂Nn Mn+1(ϕ) =
1

N

N∑
i=1

[
ϕ(Xi

n+1, Y
i
n+1)−Mn+1ϕ(X̃i

n, Ỹ
i
n)
]

=
1

N

N∑
i=1

∆i
n+1(Xi

n+1, Y
i
n+1).

Conditioning on GNn and applying the Marcinkiewicz-Zygmund type inequality in
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Del Moral (2004, Lemma 7.3.3)

√
N E

[
|ηNn+1(ϕ)− η̂Nn Mn+1(ϕ)|p | GNn−1

]1/p
≤ b(p)1/p 1√

N

(
N∑
i=1

(
sup(∆i

n+1)− inf(∆i
n+1)

)2)1/2

≤ b(p)1/p 1√
N

(
N∑
i=1

4
(
sup |∆i

n+1|
)2)1/2

≤ b(p)1/p 1√
N

(
N∑
i=1

16‖ϕ‖2∞

)1/2

≤ 4b(p)1/p‖ϕ‖∞

where b(p) are as in (B.1). Combining this result with the hypothesis yields

E
[
|ηNn+1(ϕ)− ηn+1(ϕ)|p

]1/p ≤ (2b(p)1/p + Cp,n)
‖ϕ‖∞
N1/2

,

and the result holds with C̃p,n+1 = 2b(p)1/p + Cp,n.

The proof of the Lp-inequality in Proposition 5.2 is based on an inductive argu-

ment which uses Lemmata B.2-B.4 and Lemma 5.1:

Proof of Proposition 5.2. At time n = 1, the particles (Xi
1, Y

i
1 )Ni=1 are sampled i.i.d.

from η1 ≡ η̂1 thus E
[
ϕ(Xi

1, Y
i

1 )
]

= η1(ϕ) for i = 1, . . . , N . We can define the

sequence of functions ∆i
1 : X× Y 7→ R for i = 1, . . . , N

∆i
1(x, y) := ϕ(x, y)− E

[
ϕ(Xi

1, Y
i

1 )
]

so that,

ηN1 (ϕ)− η1(ϕ) =
1

N

N∑
i=1

∆i
1(Xi

1, Y
i

1 ),

and apply Lemma 7.3.3 in Del Moral (2004) to get

E
[
|ηN1 (ϕ)− η1(ϕ)|p

]1/p ≤ 2b(p)1/p ‖ϕ‖∞
N1/2

,

with b(p) < ∞, for every p ≥ 1 Then, assume that the result holds at time n: for
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every ϕ ∈ Bb(H) and some finite constant C̃p,n

E
[
|ηNn (ϕ)− ηn(ϕ)|p

]1/p ≤ C̃p,n ‖ϕ‖∞
N1/2

.

The Lp-inequality in (5.13) is obtained by combining the results of Lemma B.2

and Lemma 5.1 using Minkowski’s inequality

E
[
|ΨGNn

(ηNn )(ϕ)−ΨGn(ηn)(ϕ)|p
]1/p
≤ (C̄p,n + C̈p,n)

‖ϕ‖∞
N1/2

for every ϕ ∈ Bb(H) and some finite constants C̄p,n, C̈p,n. Thus, Ĉp,n = C̄p,n + C̈p,n.

Lemma B.3 gives

E
[
|η̂Nn (ϕ)− η̂n(ϕ)|p

]1/p ≤ Cp,n ‖ϕ‖∞
N1/2

for every ϕ ∈ Bb(H) and some finite constants Cp,n, and Lemma B.4 gives

E
[
|ηNn+1(ϕ)− ηn+1(ϕ)|p

]1/p ≤ C̃p,n+1
‖ϕ‖∞
N1/2

for every ϕ ∈ Bb(H) and some finite constant C̃p,n+1. The result follows for all n ∈ N
by induction.

B.2 Proof of Corollary 5.2

The results in Corollary 5.2 can be straightforwardly obtained from Proposi-

tion 5.2, Proposition 5.1 and an argument exploiting the compactness of H as in the

proof of Proposition 5.5:

Proof of Corollary 5.2. 1. Using the definition of the potentials in (5.4)-(5.8) and

Proposition 5.2,

E
[
|GNn (x, y)−Gn(x, y)|p

]1/p
= E

[
|g(y | x)|p

∣∣∣∣ηn|X (g(y | ·))− ηNn |X (g(y | ·))
ηn|X (g(y | ·)) ηNn |X (g(y | ·))

∣∣∣∣p]1/p

≤ m3
g E
[
|ηn|X (g(y | ·))− ηNn |X (g(y | ·)) |p

]1/p
≤ m3

gC̃p,n
‖g(y | ·)‖∞√

N

≤ m4
gC̃p,n

1√
N
.
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2. For fixed (x, y), g(y | x) is constant, thus

GNn (x, y) =
g(y | x)

ηNn |X (g(y | ·))
→ g(y | x)

ηn|X (g(y | ·))
= Gn(x, y)

almost surely as a consequence of Proposition 5.1, the continuous mapping

theorem and the boundedness of g.

3. The previous result can be strengthened to uniform almost sure convergence

using the continuity of g and the compactness of H following the same construc-

tion of Newey (1991). Given the following bound on the difference between

the potentials

‖GNn −Gn‖∞ = sup
(x,y)

∣∣GNn (x, y)−Gn(x, y)
∣∣

= sup
(x,y)
|g(y | x)|

∣∣∣∣ηn|X (g(y | ·))− ηNn |X (g(y | ·))
ηn|X (g(y | ·)) ηNn |X (g(y | ·))

∣∣∣∣
≤ m3

g sup
y
|(ηn|X − ηNn |X) (g(y | ·)) |

it is sufficient to prove that supy |(ηn|X − ηNn |X) (g(y | ·)) | → 0 almost surely.

First, notice that since H is compact, the Heine-Cantor Theorem (Rudin, 1964,

Theorem 4.19) implies that g is uniformly continuous: for any given ε > 0,

there exists a δε > 0 such that

|g(y | x)− g(ỹ | x̃)| < ε

4

if ‖y − ỹ‖2 + ‖x − x̃‖2 < δε for all (x, y), (x̃, ỹ) ∈ H. As a consequence, the

sequence (ηn|X − ηNn |X) (g(y | ·)) is equicontinuous:

|(ηn|X − ηNn |X) (g(y | ·))− (ηn|X − ηNn |X) (g(ỹ | ·)) |

≤ |ηn|X (g(y | ·)− g(ỹ | ·)) |+ |ηNn |X (g(y | ·)− g(ỹ | ·)) |

≤ ηn|X (|g(y | ·)− g(ỹ | ·)|) + ηNn |X (|g(y | ·)− g(ỹ | ·)|)

≤ 2 sup
x∈X
|g(y | x)− g(ỹ | x)| ≤ ε

2
.

if ‖y − ỹ‖2 ≤ δε for all N .

Let B(y) := {ỹ ∈ Y : ‖y − ỹ‖2 < δε} denote the ball in Y centred around y of

radius δε and use compactness of H (and hence of Y) to extract a finite open

subcover {B(yj)}Jj=1 of {B(y)}y∈Y. As a consequence of the equicontinuity of
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the sequence we have that, for all y ∈ B(yj), j = 1, . . . , J and for all N ,

|(ηn|X − ηNn |X) (g(y | ·)) |

≤ |(ηn|X − ηNn |X)
(
g(y | ·)− g(yj | ·)

)
|+ |(ηn|X − ηNn |X)

(
g(yj | ·)

)
|

≤ ε

2
+ max
j=1,...,J

|(ηn|X − ηNn |X)
(
g(yj | ·)

)
|,

from which follows

sup
y

∣∣(ηn|X − ηNn |X) (g(y | ·))
∣∣ ≤ ε

2
+ max
j=1,...,J

|(ηn|X − ηNn |X)
(
g(yj | ·)

)
|,

we find that supy
∣∣(ηn|X − ηNn |X) (g(y | ·))

∣∣→ 0 almost surely if for all ε > 0

P
(

lim sup
N→∞

{
ε

2
+ max
j=1,...,J

|(ηn|X − ηNn |X)
(
g(yj | ·)

)
| > ε

})
= P

(
lim sup
N→∞

{
max

j=1,...,J
|(ηn|X − ηNn |X)

(
g(yj | ·)

)
| > ε

2

})
= 0.

The results follows using the almost sure pointwise convergence in point 2 since

ε is arbitrary.

B.3 Proof of the Bias Estimates

Before proceeding to the derivation of the bias estimates, we state and prove the

following auxiliary result, which is a direct consequence of the Lp-inequality (5.12).

Lemma B.5. Under Assumption 4.1 and 5.1, for every n ≥ 1 and every p ≥ 1

there exists a finite constant Ap,n such that, for every measurable bounded function

ϕ ∈ Bb(H)

E
[∣∣ηNn (GNn ϕ)− E

[
ηNn (GNn ϕ)

]∣∣p]1/p
≤ Ap,n

‖ϕ‖∞√
N

.

Additionally, for all ϕ,ψ ∈ Bb(H) and for integers 0 ≤ l,m <∞∣∣∣E [∣∣ηNn (GNn ϕ)− E
[
ηNn (GNn ϕ)

]∣∣l ∣∣ηNn (GNn ψ)− E
[
ηNn (GNn ψ)

]∣∣m]∣∣∣
≤ ‖ϕ‖l∞‖ψ‖m∞

Al+mp,n

N (l+m)/2
.
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Proof. To prove the first assertion, apply Minkowski’s inequality

E
[∣∣ηNn (GNn ϕ)− E

[
ηNn (GNn ϕ)

]∣∣p]1/p
≤ E

[∣∣ηNn (GNn ϕ)− ηn(Gnϕ)
∣∣p]1/p

+ E
[∣∣E [ηn(Gnϕ)− ηNn (GNn ϕ)

]∣∣p]1/p

≤ 2E
[∣∣ηNn (GNn ϕ)− ηn(Gnϕ)

∣∣p]1/p

≤ 2E
[∣∣ηNn (GNn ϕ)− ηNn (Gnϕ)

∣∣p]1/p

+ 2E
[∣∣ηNn (Gnϕ)− ηn(Gnϕ)

∣∣p]1/p

where the second inequality follows from Jensen’s inequality applied to the second

expectation in line 1. Since

∣∣ηNn (GNn ϕ)− ηNn (Gnϕ)
∣∣ ≤ ‖ϕ‖∞ηNn (|GNn −Gn|)

= ‖ϕ‖∞
1

N

N∑
i=1

∣∣GNn (Xi
n, Y

i
n)−Gn(Xi

n, Y
i
n)
∣∣ ,

Minkowski’s inequality gives

E
[∣∣ηNn (GNn ϕ)− ηNn (Gnϕ)

∣∣p]1/p
≤ ‖ϕ‖∞

1

N

N∑
i=1

E
[∣∣GNn (Xi

n, Y
i
n)−Gn(Xi

n, Y
i
n)
∣∣p]1/p

and using the decomposition of the potentials in Lemma B.1

E
[∣∣GNn (Xi

n, Y
i
n)−Gn(Xi

n, Y
i
n)
∣∣p]1/p

(B.2)

= E

[∣∣∣∣∣ GNn (Xi
n, Y

i
n)

ηn|X (g(Y i
n | ·))

∣∣∣∣∣
p

|ηn|X
(
g(Y i

n | ·)
)
− ηNn |X

(
g(Y i

n | ·)
)
|p
]1/p

≤ m3
g E
[
|ηn|X

(
g(Y i

n | ·)
)
− ηNn |X

(
g(Y i

n | ·)
)
|p
]1/p

.

Then, consider SNn := σ
(
Y i
n : i ∈ {1, . . . , N}

)
. Conditionally on SNn the Y i

n are fixed

for i = 1, . . . , N and ηNn |X is independent on SNn (this is due to the definition of the

153



B. Proofs of the Results for SMC-EMS

mutation kernel (5.3)) thus

E
[∣∣ηNn (GNn ϕ)− ηNn (Gnϕ)

∣∣p]1/p

≤ ‖ϕ‖∞
1

N

N∑
i=1

m3
g E
[
|ηn|X

(
g(Y i

n | ·)
)
− ηNn |X

(
g(Y i

n | ·)
)
|p
]1/p

≤ m3
g‖ϕ‖∞

1

N

N∑
i=1

E
[
E
[
|ηn|X

(
g(Y i

n | ·)
)
− ηNn |X

(
g(Y i

n | ·)
)
|p | SNn

]]1/p
≤ ‖ϕ‖∞

m4
gC̃p,n√
N

where the last inequality follows from (5.12) for all n ≥ 1 since g(y | ·) is a continuous

bounded function for all fixed y ∈ Y and

E
[
|ηn|X (g(y | ·))− ηNn |X (g(y | ·)) |p

]1/p
= E

[
|ηn (g(y | ·))− ηNn (g(y | ·)) |p

]1/p
≤ mgC̃p,n√

N
.

Combining this result with (5.12) for the bounded measurable function Gnϕ yields

E
[∣∣ηNn (GNn ϕ)− E

[
ηNn (GNn ϕ)

]∣∣p]1/p
≤ 2‖ϕ‖∞

m4
gC̃p,n +m2

gC̃p,n√
N

giving Ap,n = 2(m4
g3C̃p,n + m2

gC̃p,n) for all n ≥ 1. This result and the Cauchy-

Schwarz inequality give∣∣∣E [∣∣ηNn (GNn ϕ)− E
[
ηNn (GNn ϕ)

]∣∣l ∣∣ηNn (GNn ψ)− E
[
ηNn (GNn ψ)

]∣∣m]∣∣∣
≤ E

[∣∣ηNn (GNn ϕ)− E
[
ηNn (GNn ϕ)

]∣∣2l]1/2
E
[∣∣ηNn (GNn ψ)− E

[
ηNn (GNn ψ)

]∣∣2m]1/2

≤ ‖ϕ‖l∞‖ψ‖m∞
Al2l,nA

m
2m,n

N (l+m)/2
.

We can now move onto the proof of the bias estimates in Proposition 5.4. Sim-

ilarly to the proof of the Lp-inequality, the bias estimates are obtained using an

inductive argument considering both statements at the same time and starting from

n = 1.

Proof of Proposition 5.4. At time n = 1, the particles (Xi
1, Y

i
1 )Ni=1 are i.i.d. samples

154



B. Proofs of the Results for SMC-EMS

from η1 ≡ η̂1, thus

E
[
ηN1 (ϕ)

]
= E

[
1

N

N∑
i=1

ϕ(Xi
1, Y

i
1 )

]

=
1

N

N∑
i=1

E
[
ϕ(Xi

1, Y
i

1 )
]

=
1

N

N∑
i=1

∫
H
η1 (d(x, y))ϕ(x, y) = η1(ϕ)

and

∣∣E [ηN1 (ϕ)
]
− η1(ϕ)

∣∣ = 0 ≤ ‖ϕ‖∞
N

(B.3)

for every ϕ ∈ Bb(H) with C1 = 0.

To argue the second statement we observe that at time n = 1 the particles

(Xi
1, Y

i
1 )Ni=1 are i.i.d. samples from η1 ≡ η̂1, and therefore the potential function at

time n = 1 is GN1 (x, y) ≡ G1(x, y) ≡ 1 for all (x, y) ∈ H:

E
[
ηN1 (GN1 ϕ)

]
− η1(G1ϕ) = E

[
ηN1 (ϕ)

]
− η1(ϕ) =

‖ϕ‖∞
N

for every ϕ ∈ Bb(H) with D1 = 0.

For n > 1, assume that both statements hold at time n. Then consider the two

statements at time n+ 1 separately.

Statement 1 First, by conditioning on the σ-field generated by the particle

system up to (and including) time n, GNn := ∨np=1σ
(
X̃i
p, Ỹ

i
p : i ∈ {1, . . . , N}

)
, we

have

∣∣E [ηNn+1(ϕ)
]
− ηn+1(ϕ)

∣∣ =
∣∣E [E [ηNn+1(ϕ) | GNn

]]
− ηn+1(ϕ)

∣∣
=
∣∣E [η̂Nn (Mn+1(ϕ))

]
− η̂n (Mn+1(ϕ))

∣∣ .
Then, the proof of statement 1 follows that of Olsson and Rydén (2004). By condi-

tioning on FNn , the σ-field generated by the particle system up to (and including)
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time n− 1 and by (Y i
n, X

i
n) for i = 1, . . . , N , and defining ψ := Mn+1(ϕ) we have

∣∣E [η̂Nn (ψ)
]
− η̂n(ψ)

∣∣ =
∣∣E [E [η̂Nn (ψ) | FNn

]]
− η̂n(ψ)

∣∣ (B.4)

=

∣∣∣∣E [ηNn (GNn ψ)

ηNn (GNn )

]
− η̂n(ψ)

∣∣∣∣
≤

∣∣∣∣∣E
[
ηNn (GNn ψ)

ηNn (GNn )

]
−

E
[
ηNn (GNn ψ)

]
E [ηNn (GNn )]

∣∣∣∣∣ (B.5)

+

∣∣∣∣∣E
[
ηNn (GNn ψ)

]
E [ηNn (GNn )]

− ηn(Gnψ)

ηn(Gn)

∣∣∣∣∣ .
The second term is bounded as in Lemma 2.3 of Olsson and Rydén (2004):∣∣∣∣∣E

[
ηNn (GNn ψ)

]
E [ηNn (GNn )]

− ηn(Gnψ)

ηn(Gn)

∣∣∣∣∣ ≤
∣∣∣∣∣E
[
ηNn (GNn ψ)

]
E [ηNn (GNn )]

− ηn(Gnψ)

E [ηNn (GNn )]

∣∣∣∣∣
+

∣∣∣∣ ηn(Gnψ)

E [ηNn (GNn )]
− ηn(Gnψ)

ηn(Gn)

∣∣∣∣
=

∣∣∣∣∣E
[
ηNn (GNn ψ)

]
− ηn(Gnψ)

E [ηNn (GNn )]

∣∣∣∣∣
+

∣∣∣∣∣ηn(Gnψ)
ηn(Gn)− E

[
ηNn (GNn )

]
E [ηNn (GNn )] ηn(Gn)

∣∣∣∣∣
≤ m2

g

∣∣E [ηNn (GNn ψ)
]
− ηn(Gnψ)

∣∣
+m2

g‖ψ‖∞
∣∣ηn(Gn)− E

[
ηNn (GNn )

]∣∣ .
The induction hypothesis gives

∣∣E [ηNn (GNn ψ)
]
− ηn(Gnψ)

∣∣ ≤ Dn‖ψ‖∞
N

and

∣∣ηn(Gn)− E
[
ηNn (GNn )

]∣∣ ≤ Dn

N
.

Therefore, ∣∣∣∣∣E
[
ηNn (GNn ψ)

]
E [ηNn (GNn )]

− ηn(Gnψ)

ηn(Gn)

∣∣∣∣∣ ≤ m2
g

Dn‖ψ‖∞
N

+m2
g‖ψ‖∞

Dn

N

= 2m2
g

Dn‖ψ‖∞
N

.
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For the first term in (B.4), consider a two-dimensional Taylor expansion of the

function (u, v) 7→ u/v around (u0, v0) with a second order remainder of Lagrange

form

u

v
=
u0

v0
+

1

v0
(u− u0)− u0

v2
0

(v − v0) +
θu
θ3
v

(v − v0)2 − 1

θ2
v

(v − v0)(u− u0)

where (θu, θv) is a point on the line segment between (u, v) and (u0, v0).

Applying the Taylor expansion above to ηNn (GNn ψ)/ηNn (GNn ) around the point(
E
[
ηNn (GNn ψ)

]
,E
[
ηNn (GNn )

])
, as in Lemma 2.4 of Olsson and Rydén (2004), gives

ηNn (GNn ψ)

ηNn (GNn )
=

E
[
ηNn (GNn ψ)

]
E [ηNn (GNn )]

+
1

E [ηNn (GNn )]

(
ηNn (GNn ψ)− E

[
ηNn (GNn ψ)

])
(B.6)

−
E
[
ηNn (GNn ψ)

]
E [ηNn (GNn )]2

(
ηNn (GNn )− E

[
ηNn (GNn )

])
+RNn (θu, θv)

where the remainder is a function of (θu, θv), a point on the line segment between

(ηNn (GNn ψ), ηNn (GNn )) and
(
E
[
ηNn (GNn ψ)

]
,E
[
ηNn (GNn )

])
RNn (θu, θv) :=

θu
θ3
v

(
ηNn (GNn )− E

[
ηNn (GNn )

])2
− 1

θ2
v

(
ηNn (GNn ψ)− E

[
ηNn (GNn ψ)

]) (
ηNn (GNn )− E

[
ηNn (GNn )

])
.

Taking the expectation of both sides of (B.6) yields

E
[
ηNn (GNn ψ)

ηNn (GNn )

]
=

E
[
ηNn (GNn ψ)

]
E [ηNn (GNn )]

+ E
[
RNn (θu, θv)

]
.

Since one of the extremal points of the segment is random, (θu, θv) is random too;

because we have m−2
g ≤ GNn ≤ m2

g (see Lemma B.1) it follows that

ηNn (GNn ψ) ≤ m2
g‖ψ‖∞, ηNn (GNn ) ≥ m−2

g

from which follows |θu| ≤ m2
g‖ψ‖∞, |θ−1

v | ≥ m−2
g almost surely.

By Lemma B.5 with l = m = 1 and ψ ≡ 1

|E
[
RNn (θx, θy)

]
| ≤ m8

g‖ψ‖∞ E
[∣∣ηNn (GNn )− E

[
ηNn (GNn )

]∣∣2]
+m4

g

∣∣E [∣∣ηNn (GNn ψ)− E
[
ηNn (GNn ψ)

]∣∣ ∣∣ηNn (GNn )− E
[
ηNn (GNn )

]∣∣]∣∣
≤ m8

gA
2
2,n

‖ψ‖∞
N

+m4
gA

2
2,n

‖ψ‖∞
N

.
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Hence,

∣∣E [ηNn+1(ϕ)
]
− ηn+1(ϕ)

∣∣ =
∣∣E [η̂Nn (ψ)

]
− η̂n(ψ)

∣∣
≤

∣∣∣∣∣E
[
ηNn (GNn ψ)

ηNn (GNn )

]
−

E
[
ηNn (GNn ψ)

]
E [ηNn (GNn )]

∣∣∣∣∣
+

∣∣∣∣∣E
[
ηNn (GNn ψ)

]
E [ηNn (GNn )]

− ηn(Gnψ)

ηn(Gn)

∣∣∣∣∣
≤ m2

g(2Dn +m2
gA

2
2,n(m4

g + 1))
‖ψ‖∞
N

≤ m2
g(2Dn +m2

gA
2
2,n(m4

g + 1))
‖ϕ‖∞
N

giving Cn = m2
g(2Dn +m2

gA
2
2,n(m4

g + 1)).

Statement 2 The following decomposition

∣∣E [ηNn+1(GNn+1ϕ)
]
− ηn+1(Gn+1ϕ)

∣∣ ≤ ∣∣E [ηNn+1(GNn+1ϕ)− ηNn+1(Gn+1ϕ)
]∣∣

+
∣∣E [ηNn+1(Gn+1ϕ)

]
− ηn+1(Gn+1ϕ)

∣∣
≤ D̃n + Cn

N
,

where the first term is bounded using Lemma 5.2 and the second term is bounded

using Statement 1, shows that the result holds with Dn = D̃n + Cn.
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8

Some Properties of Divide and Conquer

Sequential Monte Carlo

The work presented in this chapter and particularly Sections 8.2, 8.4.1 and 8.4.2

is the result of a collaboration with Dr Juan Kuntz Nussio. An extended version of

this chapter is in preparation (Kuntz et al., 2021a).

8.1 Introduction

In recent years there has been a growing interest in particle methods which allow

for parallel and distributed implementation (see, e.g., Chopin and Papaspiliopoulos

(2020, Chapter 19) and references therein); most of the effort has been concentrated

on parallelising the resampling step, as this is the only step in which the particles

interact in the SIR Algorithm 1. Divide and Conquer SMC is an extension of

SMC algorithms proposed in Lindsten et al. (2017), which generalises the classical

SMC framework from sequences (or chains) to trees. On one hand, the extension

of the SMC methodology to trees results in algorithms which and naturally lends

themselves to distributed computing allowing to perform inference on bigger models

than those usually dealt with standard SMC, on the other hand, many statistical

models can be naturally represented by trees rather than sequences (e.g. Bayesian

hierarchical models).

Following the divide-and-conquer computational paradigm, divide and conquer

SMC (DaC-SMC) decomposes large inferential problems iteratively into smaller,

more manageable ones. Each smaller problem is approximately solved using SMC

steps, then the sub-problems are merged following the classical fork-and-join ap-

proach. These additional merging steps introduce non-standard interactions between

families of particles in the DaC-SMC algorithm.
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Figure 26: (a) Bayesian hierarchical model of Example 8.1. (b) Corresponding tree
decomposition of the posterior πH .

This chapter is concerned with the theoretical characterisation of DaC-SMC,

which is obtained by combining the convergence results for standard SMC sum-

marised in Chapter 2 with results on products of empirical measures which exploit

the independence between two families of empirical measures to control the error of

their products.

As in the case of SMC, DaC-SMC can be employed to sample from models with

an embedded tree structure (Jewell, 2015; Paige and Wood, 2016), alternatively,

one could build an artificial tree decomposition to sample from a given target π for

computational convenience (Ding and Gandy, 2018) in the spirit of Chopin (2002);

Del Moral et al. (2006b) for standard SMC.

Example 8.1 (Bayesian Hierarchical Model). Consider the simple Bayesian hierar-

chical model in Figure 26 with three observations y1:4 and seven latent variables x1:7.

The target distribution is the posterior p(x1:7 | y1:4), or, in the notation that we will

adopt to describe DaC-SMC, π(xH) = πH(xH) = p(x1:7 | y1:4), where xH = x1:7.

We can obtain a tree-like decomposition for this target using the tree structure

embedded in this model.

Starting from the first level of the hierarchical model we define πA(xA) = p(x1 |
y1), πB(xB) = p(x2 | y2), πC(xC) = p(x3 | y3) and πD(xD) = p(x4 | y4), where xA =

x1,xB = x2,xC = x3 and xD = 4. Following the topology of the tree in Figure 26(a)

the distributions at the leaves are merged pairwise to obtain πE(xE) = p(x1:2 | y1:2)

and πF (xF ) = p(x3:4 | y3:4), where xE = x1:2 and xF = x3:4, respectively. Repeating

this procedure we obtain πG(xG) = p(x1:6 | y1:4), where xG = x1:6, and, finally,
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πH(xH) = p(x1:7 | y1:4), where xH = x1:7.

The collection of target distributions {πu(xu) : u ∈ T}, where T is the tree in

Figure 26(b), is a tree decomposition of the posterior p(x1:7 | y1:4).

The tree decomposition {πu : u ∈ T} is often non-unique, for instance, an alter-

native tree decomposition for this model can be obtained by removing the root of the

tree in Figure 26(a) and defining the distributions πu over each sub-tree recursively

as described in (Lindsten et al., 2017, Section 3.1). In this case each distribution of

the decomposition is indexed by the tree obtained by removing the leaf nodes (i.e.

those corresponding to the observations y1:4) from the tree in Figure 26(a).

Example 8.1 shows how to construct tree decomposition of the posterior of in-

terest for a model with an obvious hierarchical structure, however, the tree decom-

position might also be completely artificial:

Example 8.2 (Undirected Graphical Models). Consider a simple Ising model de-

fined on a 4 × 4 lattice. A spin variable xk ∈ {1,−1} is associated with each node

and the target distribution is the probability of a given configuration log π(x) =

−β
∑

(k,l)∈E xkxl, where β ≥ 0 is the inverse temperature and E denotes the set of

edges of the lattice. To construct the tree decomposition of π we iteratively split

the 4× 4 lattice into two sub-lattices until each node is isolated.

We briefly recall the generic DaC-SMC algorithm introduced in Lindsten et al.

(2017), in particular, the algorithm introduced in Section 8.2 is referred to as ‘mix-

ture resampling DaC-SMC’ in Lindsten et al. (2017); we choose to work with this

formulation since the linear-cost version of the algorithm which was the focus of

Lindsten et al. (2017) is a special case of the mixture resampling one. We then

move onto the theoretical characterisation of DaC-SMC. We introduce two auxiliary

results for independent sequences of random measures in Section 8.3 and then use

these results to obtain Lp error estimates and bias bounds. From the Lp error esti-

mates we extract a strong law of large numbers and show almost sure convergence

in the weak topology. Finally, we show that, equivalently to standard SMC, the esti-

mates of the normalising constants provided by DaC-SMC are unbiased and discuss

how they can be employed in particle MCMC methods (Andrieu et al., 2010).

8.2 Divide and Conquer Sequential Monte Carlo

To introduce the algorithm, we consider the case in which we are given a proba-

bility measure π defined on a measurable space (E,E) and our goal is to approximate
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integrals with respect to π. We assume that π := γ/Z arises from normalisation of

a (finite) target measure γ which can be computed pointwise, whereas evaluating

the normalising constant Z := γ(E) is computationally challenging. In the case

in which the problem of interest is endowed with a tree topology that allows for

model decompositions based on the tree structure (e.g. phylogenetic models; Jewell

(2015)) the sequence of distributions building up to π is not an artificial construct

introduced for computational convenience, but arises from the particular model at

hand.

To approximate π, instead of building a sequence of measures {π̂n}n≥1 evolving

on a line, as we would do for standard SMC (Chopin, 2002; Del Moral et al., 2006b),

we consider sequences of measures {πu}u∈T 6r defined on measurable spaces (Eu,Eu)

of increasing dimension indexed by a set T6r obtained by removing the root node r

from a finite tree T:

E =
∏
u∈T6r

Eu, E =
∏
u∈T 6r
Eu. (8.1)

The sequence of distributions {πu}u∈T6r is used to decompose the task of sampling

from π into simpler problems, then, similarly to standard SMC, a particle population

is evolved from the leaves of the tree to its root using a sequence of mutation,

reweighting and resampling steps to which, whenever the branches of the tree merge,

a coalescence step is added.

Ideally, one would like to use the marginals

πu(A) := π(A×E 6u) ∀A ∈ Eu, with E 6u :=
∏

v∈T6r\T6uu

Ev, ∀u ∈ T, (8.2)

where Tu denotes the sub-tree of T rooted at u (obtained by removing all nodes

from T except for u and its descendants) and T6uu := {v ∈ Tu : v 6= u}, to construct

the sequence {πu}u∈T 6r . However, these are seldom available in practice and, instead,

we settle for approximations (πu)u∈T6r ≈ (πu)u∈T6r , with the only constraint that the

approximation indexed by the root node coincides with the target (i.e. γr = γ and

πr = π). In addition, we assume that each πu is obtained by normalising a (finite)

measure γu defined on (Eu,Eu):

Eu :=
∏
v∈T 6uu

Ev, Eu :=
∏
v∈T6uu

Ev, (8.3)
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where

πu :=
γu
Zu

with Zu := γu(Eu), ∀u ∈ T. (8.4)

8.2.1 Notation

To facilitate the description of the tree T, we employ the notation summarised

here.

Trees We define T to be a rooted directed tree, a directed acyclic graph in which

each node has a parent, except the root r. We label the root of our tree T by

r and we use Tu to denote the sub-tree of T rooted at u, i.e. that obtained by

removing all nodes from T expect u and its descendants. We denote the number

of children of a node u as cu, refer to them as u1, u2, . . . , ucu, and denote the set

{u1, . . . , ucu} by Cu. We use T∂ := {v ∈ T : cv = 0} to denote the set of T’s leaves

and T6∂ := {v ∈ T : cv > 0} that of all other nodes and similarly for any sub-tree

Tu. We use [cu] to denote {1, 2, . . . , cu}, |A| to denote the cardinality of any subset

A of T and Ac to denote its complement, Ac := T \A.

Auxiliary Spaces In addition to the sets E and Eu and their corresponding

σ-fields E,Eu defined in (8.1) and (8.3), respectively, we define

Ēu := Eu ∪ Eu =
∏
v∈Tu

Ev, Ēu := Eu ∪ Eu =
∏
v∈Tu

Ev,

the extensions of Eu and Eu to include u itself. We denote elements in Eu, Ēu, and

Eu by xu, x̄u, and xu, respectively. Out of notational convenience, we set the empty

product of spaces to be the empty set (e.g. E∅ = E∅ = E∅ = E∅ = ∅).

8.2.2 The Algorithm

Similarly to standard SMC, DaC-SMC approximates the sequence {πu}u∈T6r
through a population of weighted particles which evolve from the leaves of the tree

to the root. In doing so the algorithm provides an approximation of {πu}u∈T6r and

their normalising constants {Zu}u∈T6r .
Algorithm 3 describes the basic instance of DaC-SMC, to make the connection

with the divide-and-conquer paradigm evident we describe DaC-SMC as a recursive

algorithm, which, when called at the root r of the tree, recursively calls itself until

it reaches the leaves. As in the case of the SIR algorithm (Algorithm 1) introduced

in Chapter 2, Algorithm 3 is a prototypical algorithm which can be modified and
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extended to more complicated instances, e.g. including tempering in the spirit of

SMC samplers (Del Moral et al., 2006a) or swapping the order of the steps when this

is more convenient, e.g., with the alternative decomposition described in Example 8.1

the mutation step naturally occurs between steps 12 and 13 of Algorithm 3.

Algorithm 3: DaC-SMC(u) for u in T6∂ .

1: for v in Cu do
2: if v is a leaf (i.e. v ∈ T∂) then
3: Propose: for all n ≤ N , draw Xn,N

v independently from Kv and set
X̄n,N
v := Xn,N

v and ZNv := 1.
4: else
5: Recurse: set (γNv , π

N
v ) := DaC-SMC(v).

6: for n = 1, . . . , N do
7: Resample: draw Xn,N

v independently from πNv .
8: Mutate: draw Xn,N

v independently from Kv(X
n,N
v , ·) and set X̄n,N

v

via (8.6).
9: end for

10: end if
11: end for
12: Merge: combine X̄n,N

v for v ∈ Cu into the unnormalised product-form
estimator (8.10).

13: Correct: compute the weights (8.11) and return (γNu , π
N
u ) where γNu is as

in (8.13) with ZNCu defined by (8.9), and πNu := γNu /γ
N
u (Eu).

As discussed earlier, DaC-SMC operates in a recursive manner, when called at

a node u ∈ T the algorithm obtains the particle populations at the children of u,

v ∈ Cu, evolves them through the classical SMC steps – resampling and mutation

– and then combines them and weights them to obtain the particle population at

node u.

At each leaf v ∈ T∂u a population of N independent samples X1,N
v , . . . , XN,N

v is

obtained from a proposal distribution Kv and the corresponding empirical distribu-

tion is computed

πNv =
1

N

N∑
n=1

δ
Xn,N
v

.

If v ∈ Cu is not a leaf, the weighted particle population at v, γNv , is obtained

recursively by calling DaC-SMC(v). Normalising γNv we obtain an approximation

πNv of πv:

πNv :=
γNv
ZNv
≈ γv
Zv

= πv where ZNv := γNv (Ev), (8.5)
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for each non-leaf child v.

Following the SMC paradigm, at each v ∈ Cu the particles are resampled, this

reduces degeneracy in the weights but also contributes to keeping the computational

cost of DaC-SMC under control: at each v ∈ Cu the particle population is of size N c
v ,

where cv is the number of children of v; without the resampling step the population

size would therefore increase exponentially with the number of nodes in the tree,

making the computational cost unmanageable. The empirical distribution of the

particles X1,N
v , . . . ,XN,N

v resampled from πNv approximates πv and is denoted by

ρNv :=
1

N

N∑
n=1

δ
Xn,N
v
≈ πv

We then extend the path of each resampled particle from Ev to Ēv using a Markov

kernel Kv : Ev × Ev → [0, 1]:

X̄n,N
v := (Xn,N

v ,Xn,N
v ) where Xn,N

v ∼ Kv(X
n,N
v , ·) (8.6)

and obtain the empirical distribution of the mutated particles

λ̄Nu :=
1

N

N∑
n=1

δ
X̄n,N
u

and its unnormalised version ῡNu := ZNu λ̄Nu . Permuting and concatenating these

particles across u’s children, we obtain an approximation

λNu :=
∏
v∈Cu

λ̄Nv =
1

N cu

N∑
n1=1

· · ·
N∑

ncu=1

δ
(X̄

n1,N
u1 ,...,X̄

ncu ,N
ucu )

, (8.7)

of the normalised flow λu := λ̄Cu =
∏
v∈Cu λ̄v, where λ̄v := Kv if v is a leaf and,

otherwise,

λ̄v(dx̄v) := (πv ⊗Kv)(dx̄v) = πv(dxv)Kv(xv, dxv). (8.8)

Multiplying λNu by the product ZNCu of the normalising constant estimates,

ZNCu :=
∏
v∈Cu

ZNv =
∏
v∈Cu

γNv (Ev) (8.9)
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(where ZNv := 1 if v is a leaf), we obtain an approximation to the unnormalised flow

υNu := ZNCuλ
N
u ≈ ZCuλu =

∏
v∈Cu

Zvλ̄v = ῡCu =: υu, (8.10)

where ῡv := Kv if v is a leaf and ῡv := γv ⊗Kv otherwise.

As in standard SMC, this mutation step is followed by a reweighting step which

corrects the errors introduced by approximating γu with υu: if

wu :=
dγu
dυu

(8.11)

denotes the Radon-Nikodým derivative of γu with respect to υu, then γu(dxu) =

wu(xu)υu(dxu) and we obtain the particle approximation of γu as

γNu (dxu) := wu(xu)υNu (dxu) ≈ wu(xu)υu(dxu) = γu(dxu). (8.12)

Because γNu may be expressed as

γNu =
ZNCu
N cu

N∑
n1=1

· · ·
N∑

ncu=1

wu(X̄n1,N
u1 , . . . , X̄ncu ,N

ucu )δ
(X̄

n1,N
u1 ,...,X̄

ncu ,N
ucu )

, (8.13)

we say that γNu is a product-form estimator for γu (Kuntz et al., 2021b). Similarly

in the cases of λNu , υNu , and πNu := γNu /ZNu , where ZNu := γNu (Eu).

Of course, for this approach to work, we must choose the unnormalised approx-

imating distributions (γu)u∈T6∂ and proposal kernels (Ku)u∈T6r such that the Radon-

Nikodým derivatives in (8.11) exist. To simplify the treatment, we further assume

that the derivatives are positive everywhere:

Assumption 8.1. For all u in T, γu is absolutely continuous w.r.t. υu and the

weight function wu in (8.11) is positive everywhere: wu(xu) > 0 for all xu in Eu.

This assumption is equivalent to those usually found in the SMC literature (e.g.

Assumption 2.1) and ensures that the weights never simultaneously take the value

zero.

We briefly describe how Algorithm 3 would operate on the simple Bayesian

hierarchical model in Example 8.1. To simplify the presentation we describe the

DaC-SMC procedure starting at the leaves and progressing towards the root:

Example 8.3 (Bayesian Hierarchical Model). Consider the simple Bayesian hierar-

chical model in Example 8.1 and assume that we want to approximate the posterior
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π(xH) = p(x1:7 | y1:4). For simplicity we assume that we can sample from the

marginals p(x5 | x1:2, y1:2), p(x6 | x3:4, y3:4) and p(x7 | x1:6, y1:4).

At the level of the leaves we obtain particle approximations πNA , π
N
B , π

N
C , π

N
D .

Following Algorithm 3 the particle approximations πNA , π
N
B are merged to obtain

υNE = πNA × πNB and reweighted with weights given by wE(xE) = p(x1:2 | y1:2)/p(x1 |
y1)p(x2 | y2) to obtain the particle approximation πE(xE), and similarly for πF (xF ).

At the successive level of the tree, resampling is performed separately at node

E and F . The states xE ,xF are extended to (x5,xE), (x6,xF ) by drawing x5, x6

from p(x5 | x1:2, y1:2) and p(x6 | x3:4, y3:4), respectively. Then, the particle pop-

ulations at nodes E,F are merged and reweighted to obtain an approximation of

πG(xG) = p(x1:6 | y1:4). At the root level, after resampling from πNG , the new particle

population is extended by drawing x7 ∼ p(· | x1:6, y1:2) and reweighting according

to wH (no merging occurs since H has only one child G).

8.3 Products of Independent Random Measures

As a first step towards providing a theoretical characterisation of DaC-SMC,

we consider two sequences of independent random measures (ηN1 )∞N=1 defined over

(S1,S1) and (ηN2 )∞N=1 defined over (S2,S2) approximating the probability measures

η1 and η2, respectively. We will show that, if both (ηN1 )∞N=1 and (ηN2 )∞N=1 satisfy an

Lp inequality and a bias estimate, then so does the product measure ηN1 × ηN2 .

We endow the product S = S1×S2 of two measurable spaces (S1,S1) and (S2,S2)

with the product sigma algebra S1 × S2. Given any finite measure η1 on (S1,S1)

and measurable test function ϕ : S → R such that ϕ(·, x2) is η1-integrable for each

x2 in S2, we use η1(ϕ) to denote the measurable function on S2 defined by

η1(ϕ)(x2) :=

∫
ϕ(x1, x2)η1(dx1) ∀x2 ∈ S2.

In the case of the empirical measures ηN1 , η
N
2 , we occasionally make the dependence

on a particular realisation ω explicit

ηN1 (ω, ϕ)(x2) :=

∫
ϕ(x1, x2)ηN1 (ω,dx1) ∀x2 ∈ S2.

The results for the product measures are obtained exploiting the decomposition

(ηN1 × ηN2 − η1 × η2)(ϕ) =(ηN1 − η1)× η2(ϕ) + η1 × (ηN2 − η2)(ϕ) (8.14)

+ (ηN1 − η1)× (ηN2 − η2)(ϕ),
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whose first two terms can be controlled via the individual results for (ηN1 )∞N=1 and

(ηN2 )∞N=1 and the third one using their independence.

Lemma 8.1. Suppose that (ηN1 )∞N=1 and (ηN2 )∞N=1 are independent sequences of

random probability measures on some measurable spaces (S1,S1) and (S2,S2) that,

for every N ∈ N, ϕ ∈ Bb(Sk), for k ∈ {1, 2}, satisfy

E
[∣∣ηNk (ϕ)− ηk(ϕ)

∣∣p]1/p
≤
Cp,k‖ϕ‖∞
N1/2

(8.15)

for some p ≥ 1 and Cp,k finite constants. Then, for every N ∈ N, ϕ ∈ Bb(S1 × S2).

E
[∣∣(ηN1 × ηN2 )(ϕ)− (η1 × η2)(ϕ)

∣∣p]1/p
≤ Cp‖ϕ‖∞

N1/2
(8.16)

Proof. Fix any N ∈ N and ϕ in Bb(S1×S2). Minkowski’s inequality and the decom-

position in (8.14) tell us that

E
[∣∣(ηN1 × ηN2 − η1 × η2)(ϕ)

∣∣p]1/p
≤ E

[∣∣(ηN1 − η1)× (ηN2 − η2)(ϕ)
∣∣p]1/p

(8.17)

+ E
[∣∣ηN1 (η2(ϕ))− η1(η2(ϕ))

∣∣p]1/p

+ E
[∣∣ηN2 (η1(ϕ))− η2(η1(ϕ))

∣∣p]1/p
.

Because ϕ is bounded and η1 and η2 are probability measures, η1(ϕ) and η2(ϕ)

are measurable functions bounded above by ‖ϕ‖∞. Hence, we can apply the Lp
inequalities in (8.15) to control the rightmost two terms in (8.17)

E
[∣∣ηN1 (η2(ϕ))− η1(η2(ϕ))

∣∣p]1/p
≤ Cp,1‖η2(ϕ)‖∞

N1/2
≤ Cp,1‖ϕ‖∞

N1/2
, (8.18)

E
[∣∣ηN2 (η1(ϕ))− η2(η1(ϕ))

∣∣p]1/p
≤ Cp,2‖η1(ϕ)‖∞

N1/2
≤ Cp,2‖ϕ‖∞

N1/2
(8.19)

where ‖η1(ϕ)‖∞ ≤ ‖ϕ‖∞ and ‖η2(ϕ)‖∞ ≤ ‖ϕ‖∞ because η1 and η2 have mass of

one. To control the leftmost term in (8.17), let F2 := σ({ηN2 }∞N=1) denote the σ-

algebra generated by the ηN2 s. Because, for each ω, x1 7→ ηN2 (ω, ϕ)(x1)− η2(ϕ)(x1)

is a bounded function on S1, (8.15) and the independence of (ηN1 )∞N=1 and (ηN2 )∞N=1
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imply that

E
[∣∣(ηN1 − η1)× (ηN2 − η2)(ϕ)

∣∣p]1/p
(8.20)

= E
[∣∣ηN1 (ηN2 (ϕ)− η2(ϕ))− η1(ηN2 (ϕ)− η2(ϕ))

∣∣p]1/p

= E
[
E
[∣∣ηN1 (ηN2 (ϕ)− η2(ϕ))− η1(ηN2 (ϕ)− η2(ϕ))

∣∣p | F2

]]1/p

≤
Cp,1 E

[
‖ηN2 (ϕ)− η2(ϕ)‖p∞

]1/p
N1/2

≤ 2Cp,1‖ϕ‖∞
N1/2

.

Putting (8.17)–(8.20) together, we obtain the Lp inequality (8.16) for the product.

Similarly, by using the independence of (ηN1 )∞N=1 and (ηN2 )∞N=1 we can show that

the bias of the product measure decays at rate 1/N :

Lemma 8.2. Suppose that (ηN1 )∞N=1 and (ηN2 )∞N=1 are independent sequences of

random probability measures on some measurable spaces (S1,S1) and (S2,S2), re-

spectively, satisfying bias estimates:

∣∣E [ηNk (ϕk)
]
− ηk(ϕk)

∣∣ ≤ Ck‖ϕk‖∞
N

(8.21)

for every N ∈ N, ϕk ∈ Bb(Sk) and k ∈ {1, 2}, with Ck finite positive constants

independent of ϕ and N . The sequence of products (ηN1 × ηN2 )∞N=1 satisfies a bias

estimate: ∣∣E [(ηN1 × ηN2 )(ϕ)
]
− (η1 × η2)(ϕ)

∣∣ ≤ C‖ϕ‖∞
N

(8.22)

for every N ∈ N, ϕ ∈ Bb(S1 × S2), with C a finite positive constant independent of

ϕ and N .

Proof. Recall the decomposition in (8.14). Because ϕ is bounded, η1(ϕ)(x2) :=∫
ϕ(x1, x2)η1(dx1) and η2(ϕ)(x1) :=

∫
ϕ(x1, x2)η2(dx2) define bounded measurable

functions on S1 and S2, respectively. Hence, we can apply the bias estimates in (8.21)

to control the rightmost two terms in (8.14):

∣∣E [ηN1 (η2(ϕ))
]
− η1(η2(ϕ))

∣∣ ≤ C1‖η2(ϕ)‖∞
N

≤ C1‖ϕ‖∞
N

, (8.23)∣∣E [ηN2 (η1(ϕ))
]
− η2(η1(ϕ))

∣∣ ≤ C2‖η1(ϕ)‖∞
N

≤ C2‖ϕ‖∞
N

. (8.24)
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To control the leftmost term in (8.14), let F2 := σ({ηN2 }∞N=1), the σ-algebra gener-

ated by the ηN2 s. Because, for each ω, x1 7→ ηN2 (ω, ϕ)(x1)− η2(ϕ)(x1) is a bounded

function on S1, (8.21) and the independence of (ηN1 )∞N=1 and (ηN2 )∞N=1 imply that

∣∣E [(ηN1 − η1)× (ηN2 − η2)(ϕ)
]∣∣

=
∣∣E [ηN1 (ηN2 (ϕ)− η2(ϕ))− η1(ηN2 (ϕ)− η2(ϕ))

]∣∣
=
∣∣E [E [ηN1 (ηN2 (ϕ)− η2(ϕ))− η1(ηN2 (ϕ)− η2(ϕ)) | F2

]]∣∣
≤ E

[∣∣E [ηN1 (ηN2 (ϕ)− η2(ϕ))− η1(ηN2 (ϕ)− η2(ϕ)) | F2

]∣∣]
≤
C1 E

[
‖ηN2 (ϕ)− η2(ϕ)‖∞

]
N

≤ 2C1‖ϕ‖∞
N

.

Putting the above and (8.23)–(8.24) together, we obtain the bias estimate (8.22) for

the product.

8.4 Theoretical Characterisation of DaC-SMC

The theoretical characterisation of DaC-SMC is obtained under the following

assumption, which is analogous to those under which the results for standard SMC

hold (Assumption 2.1):

Assumption 8.2. For all u in T, wu in (8.11) is bounded and measurable.

The main difference between DaC-SMC (Algorithm 3) and standard SMC (Algo-

rithm 1) is the merging step: in the former case, the particles on different branches

are merged through the product-form estimator (8.7) while, in the latter, the particle

population evolves on a line and no merging occurs. Because the particles evolving

on different branches at the same depth of the tree T are independent, the empirical

measure (8.7) is a product of cu independent empirical measures. Thus, we use the

results in Section 8.3 to obtain Lp inequalities and bias estimates for (8.7) and incor-

porate these results into the well-known methods used to establish Lp inequalities

and bias estimates for standard SMC (Crisan and Doucet, 2000, 2002; Mı́guez et al.,

2013; Olsson and Rydén, 2004).

8.4.1 Lp Inequality and Strong Law of Large Numbers

To obtain the Lp inequalities we follow the iterative approach taken in Crisan

and Doucet (2000, 2002); Mı́guez et al. (2013): we first obtain Lp inequalities for
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the empirical distributions of the particles indexed by the tree’s leaves, then we

inductively show that the steps of Algorithm 3 preserve the inequalities. The re-

sampling and mutation steps follow from arguments analogous to those in Crisan

and Doucet (2000, 2002); Mı́guez et al. (2013). For the merging step, we use the Lp
inequality for product measures in Lemma 8.1 to show that the error introduced by

multiplying the approximations over different branches as in (8.7) is also of order

O(N−1/2). To complete the argument for the correction step, we then resume with

the approach of Crisan and Doucet (2000, 2002); Mı́guez et al. (2013) and show

that the re-weighting in (8.13) preserves the inequalities. Since the proof of the Lp
inequalities stated below requires additional results controlling each one of the steps

described above, we postpone the proof to Section 8.4.2.

Proposition 8.1 (Lp inequalities). If Assumptions 8.1–8.2 hold, then, for each

p ≥ 1, there exist constants Cu,p, C̃u,p, Ĉu,p, C̈u,p <∞ such that

E
[∣∣υNu (ϕ)− υu(ϕ)

∣∣p] 1
p ≤ Ĉu,p‖ϕ‖∞

N1/2
, E

[∣∣λNu (ϕ)− λu(ϕ)
∣∣p] 1

p ≤ C̈u,p‖ϕ‖∞
N1/2

,

E
[∣∣γNu (ϕ)− γu(ϕ)

∣∣p] 1
p ≤ C̃u,p‖ϕ‖∞

N1/2
, E

[∣∣πNu (ϕ)− πu(ϕ)
∣∣p] 1

p ≤ Cu,p‖ϕ‖∞
N1/2

,

for all N > 0, all ϕ in Bb(Eu) and every u ∈ T. In particular, E
[∣∣ZNu −Zu∣∣p]1/p ≤

C̃u,p/N
1/2 for all N > 0.

A direct consequence of Proposition 8.1 is the following strong law of large num-

bers, which shows that Algorithm 3 produces strongly consistent estimates of the

unnormalised and normalised targets γ and π: γN (ϕ) and πN (ϕ) are consistent

estimators for π(ϕ) and γ(ϕ), respectively. This also holds all approximating distri-

butions and their estimators:

Corollary 8.1 (Strong laws of large numbers). If Assumptions 8.1–8.2 are satisfied,

u belongs to T, and ϕ belongs to Bb(Eu), then

lim
N→∞

υNu (ϕ) = υu(ϕ), lim
N→∞

λNu (ϕ) = λu(ϕ),

lim
N→∞

γNu (ϕ) = γu(ϕ), lim
N→∞

πNu (ϕ) = πu(ϕ),

almost surely. In particular, ZNu → Zu as N →∞ with probability one.

Proof. The result follows from the Lp inequalities in Proposition 8.1 using a Borel-

Cantelli argument as shown in the proof of Proposition 5.1.
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If the underlying spaces possess nice enough topological properties, the above

almost sure pointwise convergence can be strengthened to almost sure convergence

in the weak topology:

Corollary 8.2 (Almost sure weak convergence). If, in addition to Assumptions 8.1–

8.2, the spaces (Eu)u∈T 6r are Polish and (Eu)u∈T are the corresponding Borel sigma

algebras, then

lim
N→∞

υNu (ϕ) = υu(ϕ), lim
N→∞

λNu (ϕ) = λu(ϕ),

lim
N→∞

γNu (ϕ) = γu(ϕ), lim
N→∞

πNu (ϕ) = πu(ϕ),

for all bounded continuous functions ϕ on Eu and u in T, almost surely.

Proof. Because the space of continuous bounded functions on Eu has a countable

dense (w.r.t. ‖ · ‖∞) subset if Eu is Polish (c.f. Berti et al. (2006, Theorem 2.2)) and

the product of finitely many Polish spaces is Polish, this follows from Corollary 8.1

and the Portmanteau Theorem (Billingsley, 1995, Theorem 29.1), as shown in the

proof of Proposition 5.3.

8.4.2 Proof of Proposition 8.1

To argue Proposition 8.1, we follow an approach similar to that taken in Crisan

and Doucet (2000, 2002); Mı́guez et al. (2013) for standard SMC. In particular, we

derive an Lp inequality for the empirical distributions of the particles indexed by

the tree’s leaves and show that each step of the algorithm preserves this inequality.

Recall that at the leaves of the tree, u ∈ T∂ the particle are sampled i.i.d. from

Ku, then, Del Moral (2004, Lemma 7.3.3) shows that, for any p ≥ 1, there exist

C̄u,p <∞ such that

E
[∣∣λ̄Nu (ϕ)− λ̄u(ϕ)

∣∣p] 1
p ≤ C̄u,p‖ϕ‖∞

N1/2
∀N > 0, ϕ ∈ Bb(Ēu). (8.25)

Taking the product of λ̄Nv over all children v of a node u to obtain λNu in (8.7)

preserves (8.25):

Lemma 8.3 (Product step). If, in addition to Assumptions 8.1–8.2, (8.25) is satis-

fied for each child v (i.e. it holds with v replacing u therein) of a node u in T6∂ and

some p ≥ 1, then there exist C̈u,p <∞ such that

E
[∣∣λNu (ϕ)− λu(ϕ)

∣∣p] 1
p ≤ C̈u,p‖ϕ‖∞

N1/2
∀N > 0, ϕ ∈ Bb(Eu). (8.26)
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Proof. Because (λ̄Nu1)∞N=1, . . . , (λ̄
N
ucu)∞N=1 are independent sequences of probability

measures by construction, so are (λ̄Nu[k])
∞
N=1 and (λ̄Nu(k+1))

∞
N=1 for all k < cu, where

u[k] := {u1, . . . , uk} denotes the set containing the first k children of u and λ̄Nu[k] :=∏
v∈u[k] λ̄

N
v the corresponding product of λ̄Nv s. The Lemma’s premise requires that

each child satisfies its own Lp inequality and, consequently, (8.26) follows from re-

peated applications of Lemma 8.1.

Emulating the approach of Crisan and Doucet (2000, Lemma 2) and Mı́guez

et al. (2013, Lemma 1), we find that the correction step also respects the inequality:

Lemma 8.4 (Correction step). If, in addition to Assumptions 8.1–8.2, (8.26) is

satisfied for some u in T6∂ and p ≥ 1, then there exist Cu,p <∞ such that

E
[∣∣πNu (ϕ)− πu(ϕ)

∣∣p] 1
p ≤ Cu,p‖ϕ‖∞

N1/2
∀N > 0, ϕ ∈ Bb(Eu). (8.27)

Proof. Fix any N > 0 and ϕ in Bb(Eu). Recall the definitions in Section 8.2:

υNu (dxu) = ZNCuλ
N
u (dxu), γNu (dxu) = wu(xu)υNu (dxu), πNu (dxu) =

γNu (dxu)

γNu (Eu)
.

Hence,

πNu (ϕ) =
γNu (ϕ)

γNu (Eu)
=
υNu (wuϕ)

υNu (wu)
=
λNu (wuϕ)

λNu (wu)
.

Similarly, because wu = dγu/dυu and υu = γCu ⊗KCu = ZCuλu,

πu(ϕ) =
γu(ϕ)

γu(Eu)
=
υu(wuϕ)

υu(wu)
=
λu(wuϕ)

λu(wu)
.

Hence,

∣∣πNu (ϕ)− πu(ϕ)
∣∣ ≤ ∣∣∣∣πNu (ϕ)− λNu (wuϕ)

λu(wu)

∣∣∣∣+

∣∣∣∣λNu (wuϕ)

λu(wu)
− λu(wuϕ)

λu(wu)

∣∣∣∣ . (8.28)

To control the first term on the right-hand side, we use∣∣∣∣πNu (ϕ)− λNu (wuϕ)

λu(wu)

∣∣∣∣ ≤
∣∣πNu (ϕ)

∣∣ ∣∣λu(wu)− λNu (wu)
∣∣

λu(wu)
≤
‖ϕ‖∞

∣∣λu(wu)− λNu (wu)
∣∣

λu(wu)
.

(8.29)

Because, λu(wu) = Z−1
Cu υu(wu) = Z−1

Cu γu(Eu) = Z−1
Cu Zu > 0, the desired Lp inequal-
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ity (8.27) follows from (8.26),(8.28),(8.29) and Minkowski’s inequality:

E
[∣∣πNu (ϕ)− πu(ϕ)

∣∣p] 1
p

≤
‖ϕ‖∞E

[∣∣λu(wu)− λNu (wu)
∣∣p] 1p + E

[∣∣λu(wuϕ)− λNu (wuϕ)
∣∣p] 1p

λu(wu)

≤ C̈u‖ϕ‖∞‖wu‖∞ + C̈u‖wuϕ‖∞
N1/2λu(wu)

≤

(
2C̈uZCu‖wu‖∞

Zu

)
‖ϕ‖∞
N1/2

with Cu,p = 2C̈u,pZCu‖wu‖∞/Zu.

To show that the resampling step also preserves Lp inequalities, we use the

argument of Crisan and Doucet (2000, Lemma 3) as for the proof of Lemma B.3:

Lemma 8.5 (Resampling step). If, in addition to Assumptions 8.1–8.2, the inequal-

ity (8.27) holds for some u in T6∂ and p ≥ 1, then there exist Ċu,p <∞

E
[∣∣ρNu (ϕ)− πu(ϕ)

∣∣p] 1
p ≤ Ċu,p‖ϕ‖∞

N1/2
∀N > 0, ϕ ∈ Bb(Eu). (8.30)

Proof. Fix any N > 0 and ϕ in Bb(Eu). If F := σ((X̄n,N
u1 , . . . , X̄n,N

ucu )Nn=1) denotes

the σ-field generated by the particles prior to resampling, then

E
[
ϕ(Xn,N

u )|F
]

= πNu (ϕ) almost surely, for all n ≤ N.

Let us define, for n = 1, . . . , N , the functions ∆n,N
u : Eu 7→ R

∆n,N
u (x) := ϕ(x)− E

[
ϕ(Xn,N

u )|F
]
.

Conditionally on F , ∆n,N
u (Xn,N

u ), n = 1, . . . , N are independent, have expectation

equal to 0, and

ρNu (ϕ)− πNu (ϕ) =
1

N

N∑
n=1

∆n,N
u (Xn,N

u ).

Conditioning on F and applying the Marcinkiewicz-Zygmund type inequality in

Del Moral (2004, Lemma 7.3.3) shows that

E
[∣∣ρNu (ϕ)− πNu (ϕ)

∣∣p]1/p
≤ 4b(p)1/p‖ϕ‖∞

N1/2

with b(p) as in (B.1). Inequality (8.30) then follows from the above, Minkowski’s
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inequality, and (8.27).

For the mutation step, we follow Crisan and Doucet (2000, Lemma 1) as in

Lemma B.4:

Lemma 8.6 (Mutation step). If, in addition to Assumptions 8.1–8.2, (8.30) is sat-

isfied for some u in T6∂ and p ≥ 1, then there exist C̄u,p <∞

E
[∣∣λ̄Nu (ϕ)− λ̄u(ϕ)

∣∣p] 1
p ≤ C̄u,p‖ϕ‖∞

N1/2
∀N > 0, ϕ ∈ Bb(Ēu).

Proof. Fix any N > 0 and ϕ in Bb(Eu). Minkowski’s inequality implies that

E
[∣∣λ̄Nu (ϕ)− λ̄u(ϕ)

∣∣p] 1
p ≤E

[∣∣λ̄Nu (ϕ)− νNu (ϕ)
∣∣p] 1

p
+ E

[∣∣νNu (ϕ)− λ̄u(ϕ)
∣∣p] 1

p
,

(8.31)

where νNu := ρNu ⊗ Ku. Because λ̄u = πu ⊗ Ku and ‖Kuϕ‖∞ ≤ ‖ϕ‖∞ as Ku is a

Markov kernel, (8.30) implies that

E
[∣∣νNu (ϕ)− λ̄u(ϕ)

∣∣p] 1
p ≤ Ċu,p‖Kuϕ‖∞

N1/2
≤ Ċu,p‖ϕ‖∞

N1/2
. (8.32)

To control the other term in (8.31), let F := σ((Xn,N
u )Nn=1) denote the sigma algebra

generated by the resampled particles and note that

E
[
ϕ(X̄n,N

u )|F
]

= (Kuϕ)(Xn,N
u ) ∀n ≤ N.

Let us define, for n = 1, . . . , N , the functions ∆n,N
u : Ēu 7→ R

∆n,N
u (x) := ϕ(x)− E

[
ϕ(X̄n,N

u ) | F
]
.

Conditionally on F , ∆n,N
u (X̄n,N

u ), i = 1, . . . , N are independent, have expectation

equal to 0, and

λ̄Nu (ϕ)− νNu (ϕ) =
1

N

N∑
n=1

∆n,N
u (X̄n,N

u ).

Conditioning on F and applying the Marcinkiewicz-Zygmund type inequality in

Del Moral (2004, Lemma 7.3.3) shows that

E
[∣∣λ̄Nu (ϕ)− νNu (ϕ)

∣∣p]1/p
≤ 4b(p)1/p‖ϕ‖∞

N1/2
, (8.33)
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with b(p) as in (B.1). Combining (8.31)–(8.33) completes the proof.

The proof of Proposition 8.1 then follows applying Lemmata 8.3, 8.4, 8.5, and 8.6

within an inductive argument:

Proof of Proposition 8.1. Repeatedly applying Lemmata 8.3, 8.4, 8.5, and 8.6 start-

ing from (8.25), we obtain the inequalities for λNu and πNu . Suppose that we are able

to argue that for some C̃u,p <∞

E
[∣∣ZNCu −ZCu∣∣p] 1

p ≤
max∅6=A⊆Cu,p ZAcC̃A,p

N1/2
∀N > 0, u ∈ T, p ≥ 1, (8.34)

E
[∣∣ZNu −Zu∣∣p] 1

p ≤ C̃u,p

N1/2
∀N > 0, u ∈ T, p ≥ 1, (8.35)

where C̃A,p :=
∏
v∈A C̃v,p and ZAc :=

∏
v∈Cu\AZv for all A in Cu. Then, the inequal-

ities for υNu and γNu would follow from those for λNu and πNu because

∣∣υNu (ϕ)− υu(ϕ)
∣∣ =

∣∣ZNCuλNu (ϕ)−ZCuλu(ϕ)
∣∣

≤
∣∣λNu (ϕ)

∣∣ ∣∣ZNCu −ZCu∣∣+ ZCu
∣∣λNu (ϕ)− λu(ϕ)

∣∣
≤ ‖ϕ‖∞

∣∣ZNCu −ZCu∣∣+ ZCu
∣∣λNu (ϕ)− λu(ϕ)

∣∣
for all N > 0, u in T6∂ , and p ≥ 1, and similarly for γNu ,ZNu , and πNu . In the case of

a leaf u, (8.35) is trivially satisfied because ZNu = Zu = 1 by definition. Suppose,

instead, that u is not a leaf and that (8.35) holds for each of its children:

E
[∣∣ZNv −Zv∣∣p] 1

p ≤ C̃v,p

N1/2
∀N > 0, v ∈ Cu, p ≥ 1. (8.36)

Using a multinomial expansion of the product of normalising constants we obtain

ZNCu =
∏
v∈Cu

ZNv =
∏
v∈Cu

[(ZNv −Zv) + Zv] =
∑
A⊆Cu

(∏
v∈A

(ZNv −Zv)

)
ZAc ∀N > 0,

where ZAc :=
∏
v∈Cu\AZv. The independence of (Xn,N

u1 )Nn=1, . . . , (X
n,N
ucu )Nn=1 and
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Minkowski’s inequality imply (8.34):

E
[∣∣ZNCu −ZCu∣∣p] 1

p ≤
∑

∅6=A⊆Cu

E

[∣∣∣∣∣∏
v∈A

(ZNv −Zv)

∣∣∣∣∣
p] 1

p

ZAc

=
∑

∅6=A⊆Cu

ZAc
∏
v∈A

E
[∣∣ZNv −Zv∣∣p] 1

p ≤
∑

∅6=A⊆Cu

ZAc
∏
v∈A

C̃v,p

N1/2

≤
max∅6=A⊆Cu ZAcC̃A,p

N1/2
∀N > 0,

where C̃A,p :=
∏
v∈A C̃v,p for all A in Cu. Given the above and

∣∣ZNu −Zu∣∣ =
∣∣ZNCuλNu (wu)−ZCuλu(wu)

∣∣
≤
∣∣λNu (wu)

∣∣ ∣∣ZNCu −ZCu∣∣+ ZCu
∣∣λNu (wu)− λu(wu)

∣∣
≤ ‖wu‖∞

∣∣ZNCu −ZCu∣∣+ ZCu
∣∣λNu (wu)− λu(wu)

∣∣ ,
(8.35) follows from the inequality for λNu and Minkowski’s inequality.

8.4.3 Bias Estimates

The key result to obtain the bias estimate is Lemma 8.2 which controls the bias

introduced by the product step, armed with Lemma 8.2 the remainder of the proof

follows the approach of Olsson and Rydén (2004): we show that the bias bound

holds for the leaves of T and inductively move towards the root of the tree showing

that the bias bound is preserved. In particular, we will make us of the following

auxiliary result:

Lemma 8.7. Under Assumptions 8.1-8.2 we have that for every l, k ∈ N such that

l + k ≥ 1, there exist finite Au,k, Au,l > 0

E
[∣∣λNu (ϕ)− E

[
λNu (ϕ)

]∣∣l ∣∣λNu (ψ)− E
[
λNu (ψ)

]∣∣k]
≤

2k+lAu,kAu,l‖ϕ‖l∞‖ψ‖k∞
N (l+k)/2

for all N > 0, all ϕ ∈ Bb(Eu) and every u ∈ T.

Proof. As argued in the beginning of Proposition 8.1, the λNu satisfy the Lp inequality

in (8.26). Armed with (8.26), the proof consists of applying Jensen’s inequality and

the Cauchy-Schwarz inequality as in the proof of (Olsson and Rydén, 2004, Lemma

2.2) and Lemma B.5.
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Combining the above Lemma with the bound on the bias of product of measures

in Lemma 8.2 we obtain the following bias estimate:

Proposition 8.2 (Bias estimates for (λNu )u∈T and (πNu )u∈T). If Assumptions 8.1–

8.2 hold, the weight functions are bounded below for every u ∈ T, wu ≥ β > 0, then

there exist finite constants Cu, C̃u <∞ such that

∣∣E [λNu (ϕ)
]
− λu(ϕ)

∣∣ ≤ C̃u‖ϕ‖∞
N

,
∣∣E [πNu (ϕ)

]
− πu(ϕ)

∣∣ ≤ Cu‖ϕ‖∞
N

for all N > 0, all ϕ ∈ Bb(Eu) and every u ∈ T.

Proof. First, let us consider the leaves of T: take any u ∈ T∂ , then, since the particles

are sampled independently from Ku we have that

∣∣E [λ̄Nu (ϕ)
]
− λ̄u(ϕ)

∣∣ = 0 ≤ ‖ϕ‖∞
N

∀N > 0, ϕ ∈ Bb(Ēu). (8.37)

Then, take πNu , u ∈ T. As shown at the start of Lemma 8.4’s proof,

πu(ϕ) =
λu(wuϕ)

λu(wu)
, πNu (ϕ) =

λNu (wuϕ)

λNu (wu)
∀N > 0,

and using the triangle inequality

∣∣E [πNu (ϕ)
]
− πu(ϕ)

∣∣ ≤ ∣∣∣∣∣E
[
λNu (wuϕ)

λNu (wu)

]
−

E
[
λNu (wuϕ)

]
E [λNu (wu)]

∣∣∣∣∣ (8.38)

+

∣∣∣∣∣E
[
λNu (wuϕ)

]
E [λNu (wu)]

− λu(wuϕ)

λu(wu)

∣∣∣∣∣ .
As we did for the proof of the bias estimates in Proposition 5.4, to control the first

term, we consider a two-dimensional Taylor expansion of the function (u, v) 7→ u/v

around (u0, v0) with a second order remainder of Lagrange form

u

v
=
u0

v0
+

1

v0
(u− u0)− u0

v2
0

(v − v0) +
θu
θ3
v

(v − v0)2 − 1

θ2
v

(v − v0)(u− u0),

where (θu, θv) is a point on the line segment between (u, v) and (u0, v0).

Applying the Taylor expansion above to λNu (wuϕ)/λNu (wu) around the point
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(E
[
λNu (wuϕ)

]
,E
[
λNu (wu)

]
) we obtain

λNu (wuϕ)

λNu (wu)
=

E
[
λNu (wuϕ)

]
E [λNu (wu)]

+
λNu (wuϕ)− E

[
λNu (wuϕ)

]
E [λNu (wu)]

(8.39)

−
E
[
λNu (wuϕ)

]
E [λNu (wu)]2

(
λNu (wu)− E

[
λNu (wu)

])
+RNu (θ1, θ2)

where the remainder is a function of (θ1, θ2), a point on the line segment between

between (λNu (wuϕ), λNu (wu)) and
(
E
[
λNu (wuϕ)

]
,E
[
λNu (wu)

])
RNu (θ1, θ2) :=

θ1

θ3
2

(
λNu (wu)− E

[
λNu (wu)

])2
− 1

θ2
2

(
λNu (wu)− E

[
λNu (wu)

]) (
λNu (wuϕ)− E

[
λNu (wuϕ)

])
.

Taking expectations of (8.39), we find that∣∣∣∣∣E
[
λNu (wuϕ)

λNu (wu)

]
−

E
[
λNu (wuϕ)

]
E [λNu (wu)]

∣∣∣∣∣ =
∣∣E [RNu (θ1, θ2)

]∣∣
≤ E

[∣∣∣∣θ1

θ3
2

(
λNu (wu)− E

[
λNu (wu)

])2∣∣∣∣]
+ E

[∣∣∣∣ 1

θ2
2

(
λNu (wu)− E

[
λNu (wu)

]) (
λNu (wuϕ)− E

[
λNu (wuϕ)

])∣∣∣∣] .
Under Assumption 8.2 we have that θ1 ≤ ‖ϕ‖∞‖wu‖∞ for all u ∈ T. Since we

assumed that wu is bounded below, i.e. wu ≥ β > 0 for all u ∈ T, we also have that

λNu (wu) ≥ βλNu (1) ≥ β > 0

E
[
λNu (wu)

]
≥ βE

[
λNu (1)

]
≥ β > 0

from which θ2 ≥ β > 0 follows straightforwardly. Lemma 8.7 then gives

∣∣E [RNu (θ1, θ2)
]∣∣ ≤ ‖ϕ‖∞‖wu‖3∞

β3

4Au,2
N

+
1

β2

4A2
u,1‖ϕ‖∞‖wu‖2∞

N
. (8.40)
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For the second term in (8.38) apply the triangle inequality:∣∣∣∣∣E
[
λNu (wuϕ)

]
E [λNu (wu)]

− λu(wuϕ)

λu(wu)

∣∣∣∣∣ (8.41)

≤
∣∣E [λNu (wuϕ)

]
− λu(wuϕ)

∣∣
E [λNu (wu)]

+
λu(wuϕ)

λu(wu)E [λNu (wu)]

∣∣λu(wu)− E
[
λNu (wu)

]∣∣
≤
∣∣E [λNu (wuϕ)

]
− λu(wuϕ)

∣∣
E [λNu (wu)]

+
‖ϕ‖∞

E [λNu (wu)]

∣∣λu(wu)− E
[
λNu (wu)

]∣∣ .
If u is such that Cu ⊆ T∂ , i.e. all the children of u are leaves, then

∣∣E [λNu (ϕ)
]
− λu(ϕ)

∣∣ ≤ C̃u‖ϕ‖∞
N

∀N > 0, ϕ ∈ Bb(Eu) (8.42)

follows from (8.37) and repeated applications of Lemma 8.2, because the sequences

(λ̄Nu1)∞N=1, . . . , (λ̄
N
ucu)∞N=1 are independent by construction, so are (λ̄Nu[k])

∞
N=1 and

(λ̄Nu(k+1))
∞
N=1 for all k < cu, where u[k] := {u1, . . . , uk} denotes the set contain-

ing the first k children of u and λ̄Nu[k] :=
∏
v∈u[k] λ̄

N
v the corresponding product of

λ̄vs.

Otherwise, λNu (ϕ) =
∏
v∈Cu λ̄

N
v (ϕ) and λu(ϕ) =

∏
v∈Cu λ̄v(ϕ) with λ̄v(ϕ) =

πv(Kvϕ). Repeated applications of conditioning give

E
[
λ̄Nv (ϕ)

]
= E

[
E
[
λ̄Nv (ϕ) | σ((Xn,N

v )Nn=1)
]]

=
1

N

N∑
n=1

E
[
(Kvϕ)(Xn,N

v )
]

=
1

N

N∑
n=1

E
[
E
[
(Kvϕ)(Xn,N

v ) | σ({(X̄n,N
v1 , . . . , X̄n,N

vcv )}Nn=1)
]]

= E
[
πNv (Kvϕ)

]
and thus

∣∣E [λ̄Nv (ϕ)
]
− λ̄v(ϕ)

∣∣ =
∣∣E [πNv (Kvϕ)

]
− πv(Kvϕ)

∣∣
≤ Cv‖ϕ‖∞

N

for all v ∈ Cu by the induction hypothesis on the children of u. Repeated applications

of Lemma 8.2 give (8.42) for all u ∈ T6∂ . Putting (8.41) and the above together and
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recalling that E
[
λNu (wu)

]
≥ β > 0, gives∣∣∣∣∣E

[
λNu (wuϕ)

]
E [λNu (wu)]

− λu(wuϕ)

λu(wu)

∣∣∣∣∣ ≤ 2β‖wu‖∞
C̃u‖ϕ‖∞

N

which combined with (8.38) and (8.40) gives

∣∣E [πNu (ϕ)
]
− πu(ϕ)

∣∣ ≤ Cu‖ϕ‖∞
N

with Cu = 2β‖wu‖∞C̃u + 4Au,2‖wu‖3∞/β3 + 4A2
u,1‖wu‖2∞/β2 for all u ∈ T.

8.4.4 Unbiasedness of Unnormalised Flow

To prove the unbiasedness of υN (ϕ) and γN (ϕ) (Theorem 8.4), we generalise

the argument given in Lindsten et al. (2017, Appendix A.1) for binary balanced

trees, which itself builds on the approach taken in Andrieu et al. (2010) to prove

the analogous results for standard SMC. In particular, we write the expectations in

Theorem 8.4 as integrals with respect to all the variables generated when running

Algorithm 3 and then use a change of measure to show that this integral corresponds

to an integral with respect to γu.

First, emulating the approach of Andrieu et al. (2010) for standard SMC, we

introduce additional random variables describing the child/parent relationship be-

tween particles at nodes in the same sub-tree, which we call ancestors. Appendix

A.1 in Lindsten et al. (2017) provides the construction for binary balanced trees.

Through the definition of ancestors we can write the law of all the random variables

generated during the running of Algorithm 3 from which the unbiasedness of υN (ϕ)

and γN (ϕ) follows using routine arguments (e.g. Andrieu et al. (2010), Ala-Luhtala

et al. (2016, Theorem 2) and Naesseth et al. (2019, Appendix 4.A)).

Let us denote the set of all the particles simulated during the running of the

algorithm up to node u ∈ T by
(
x̄n,N
Cv

)
v∈Tu

, where for each n = (nv)v∈Cu in [N ]cu ,

x̄n,N
Cu := (x̄nv ,Nv )v∈Cu denotes the corresponding particle and x̄n,N

Cv = x̄nv ,Nv if v is a

leaf. To keep track of the relationship between particles induced by the resampling

step, we introduce a set of ancestor variables for all the interior nodes,
(
an,NCv

)
v∈T6∂

.

We denote by an,NCv := (an,Nv1 , . . . , an,Nvcv ) the indices of the ancestors of xn,Nv , i.e. xn,Nv

is a copy of (x̄
an,Nv1
v1 , . . . , x̄

an,Nvcv
vcv ); by extension these are also the ancestors of x̄n,Nv . In

particular, whereas in standard SMC each particle has only one ancestor particle,

in DaC-SMC each particle has one ancestor particle for each of its child nodes in
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the tree topology. As in Andrieu et al. (2010), for each node v ∈ Tu, we describe

the resampling step through a family of probability distributions on {1, . . . , N}N ,

{r(· |W ),W ∈ [0, 1]N} where W is a collection of weights, so that we can describe

most standard resampling schemes through r.

With this notation we can write the joint distribution of all the variables simu-

lated during the running of the algorithm on the sub-tree Tu:

Proposition 8.3. The joint law of all the random variables generated during the

running of the Algorithm 3 on the sub-tree Tu is

K̃u

(
d
(
x̄n,N
Cv

)
v∈Tu

, d
(
an,NCv

)
v∈T6∂

)
(8.43)

=

∏
v∈T∂u

N∏
n=1

Kv(dx̄
n,N
v )

∏
v∈T6∂u

r(da1:N
Cv |W

Ncv

v )

∏
v∈T6∂u

N∏
n=1

Kv(x̄
an,NCv
Cv , dxn,Nv )

 .

Proof. Starting from line 2 of Algorithm 3: if v is a leaf, i.e. v ∈ T∂u, then a particle

x̄n,Nv = xn,Nv is proposed independently from Kv for each n ≤ N and each of the

leaves in Tu

∏
v∈T∂u

N∏
n=1

Kv(dx̄
n,N
v ). (8.44)

If v is not a leaf, i.e. v ∈ T6∂u, then the resampling step in line 7 defines the ancestors

of each particle, a1:N
Cv := (a1,N

Cv , . . . ,aN,NCv ) through the density r∏
v∈T6∂u

r(da1:N
Cv |W

Ncv

v ). (8.45)

The ancestors are obtained given the normalised importance weights WNcv

v ={
Wn,N

v ,n ∈ {1, . . . , N}Ncv
}

, where

Wn,N
v :=

wv(x̄
n,N
Cv )∑

m∈{1,...,N}Ncv
wv(x̄

m,N
Cv )

. (8.46)

Finally, in the mutation step (line 8) the new particles xn,Nv are obtained from Kv

N∏
n=1

Kv(x̄
an,NCv
Cv , dxn,Nv ) (8.47)

183



8. Divide and Conquer SMC

and then concatenated with their ancestors as in (8.6)

x̄n,Nv = (xn,Nv , x̄
an,NCv
Cv ) where x̄

an,NCv
Cv := (x̄a

n,N
r
r )r∈Cv .

Putting (8.44), (8.45) and (8.47) together gives (8.43).

Using the construction of ancestral lineages and the joint law in (8.43) we can

establish unbiasedness of integrals w.r.t. the unnormalised measures γNu by showing

that the ratio ZNu /Zu is the Radon-Nikodým derivative of an appropriate extended

target measure (extended to include the ancestral lineages) with respect to the law

underlying all sampled variables during the running of the algorithm.

Proposition 8.4 (Unbiasedness of (υNu )u∈T and (γNu )u∈T). If Assumptions 8.1–8.2

hold, then

E
[
υNu (ϕ)

]
= υu(ϕ), E

[
γNu (ϕ)

]
= γu(ϕ),

for all N > 0, all ϕ ∈ Bb(Eu) and every u ∈ T. In particular, E
[
ZNu
]

= Zu for all

N > 0 and u in T.

Proof. We start by considering the integrals w.r.t. γNu in (8.13). Since γNu is a

function of (X̄n1,N
u1 , . . . , X̄

ncu ,N
ucu ) and given that K̃u is the distribution of all the

variables simulated while running Algorithm 3 on the sub-tree rooted at u, we have

E
[
γNu (ϕ)

]
= E

K̃u

[
γNu (ϕ)

]
(8.48)

=
1

N cu

N∑
n1=1

. . .
N∑

ncu=1

∫
K̃u

(
d
(
x̄n,N
Cv

)
v∈Tu

, d
(
an,NCv

)
v∈T6∂

)
ZNu wu(x̄n,N

Cu )ϕ(x̄n,N
Cu ),

where ZNu denotes the map from a particular realisation
(
x̄n,N
Cv

)
v∈Tu

,
(
an,NCv

)
v∈T6∂

to the corresponding normalising constant

ZNu =
∏
v∈Tu

1

N cv

∑
n∈{1,...,N}Ncu

wv(x̄
n,N
Cv )

where the weights wu are the Radon-Nikodým derivative of γu = Zuπu with respect

to υu

wu(x̄n,N
Cu ) = Zu

dπu
dυu

(x̄n,N
Cu ).
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In particular, it is sufficient to compute the integral in the right-hand-side for a given

particle A to compute the expectation.

In order to compute the integral in (8.48), we introduce ancestral lineages for

the particles, describing all the ancestors of particle n at the root u of tree Tu. The

ancestral lineage is described through a set of variables {bnv : v ∈ Tu} giving the

indices of the ancestors of particle x̄n,N
Cu at each node in Tu:

bnu = n = (n1, . . . , ncu) and bnv = a
bnpv (v)

Cv (8.49)

where pu denotes the parent of u, pu := {v ∈ T : u ∈ Cv} and bnpv(v) is the component

of bnpv corresponding to child v. Each particle n at node u has an ancestral lineage,

described by the construction above, associated with it.

Then, we introduce a categorical random variable A taking values on 1, . . . , N cu

such that A = n = (n1, . . . , ncu) with probability wu(x̄n,NCu ), i.e. A describes the

selection of one of the weighted particles at node u out of the N cu possibilities. The

joint distribution of x̄N
cu

Tu ,a1:N
T6∂u

and A is

K̄u

(
d
(
x̄n,N
Cv

)
v∈Tu

,d
(
an,NCv

)
v∈T 6∂

,dA

)
(8.50)

= K̃u

(
d
(
x̄n,N
Cv

)
v∈Tu

, d
(
an,NCv

)
v∈T6∂

)
WA,N

u dA,

where with a slight abuse of notation we allow dA to denote the counting measure on

{1, . . . , N}cu . It is straightforward to check that for a given particle A the right-most

integral in (8.48) satisfies

E
K̃u

[
ZNu wu(x̄A,NCu )ϕ(x̄A,NCu )

]
= EK̄u

[
ZNu ϕ(x̄A,NCu )

]
. (8.51)

Our aim is now to show that for all ϕ ∈ Bb(Eu)

EK̄u
[
ZNu ϕ(x̄A,NCu )

]
= γu(ϕ)

or equivalently,

EK̄u

[
ZNu
Zu

ϕ(x̄A,NCu )

]
= πu(ϕ)

To obtain this result, we show that given a particle A with corresponding ancestral

lineage described by {bAv : v ∈ Tu} in (8.49), the ratio ZNu /Zu corresponds to the

Radon-Nikodým derivative of an appropriate distribution π̃u w.r.t. K̄u and that π̃u
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admits πu as marginal:

ZNu
Zu

=

∏
v∈Tu

1

N cv

∑
n∈{1,...,N}Ncu

wv(x̄
n,N
Cv )

(∏
v∈Tu

wv(x̄
bAv
Cv )

)−1
dπu
dυu

(x̄A,NCu )

=
1

N |Tu|

(∏
v∈Tu

W bAv
v

)−1
dπu
dυu

(x̄A,NCu )

=
1

N |Tu|

WA,N
u

∏
v∈T 6uu

r(bAv |WNcv

v )

−1

dπu
dυu

(x̄A,NCu )

where the second equality follows from (8.46).

We can then define an extended target measure π̃u over all the sampled variables

which takes into account the ancestral lineage corresponding to A

π̃u

(
d
(
x̄n,N
Cv

)
v∈Tu

,d
(
an,NCv

)
v∈T6∂

,dA

)
=
πu(dx̄A,NCu )dA

N |Tu|
(8.52)

×
K̃u

(
d
(
x̄n,N
Cv

)
v∈Tu

, d
(
an,NCv

)
v∈T6∂

)
(∏

v∈T∂u Kv(dx̄
bAv
v )
)(∏

v∈T6∂u
r(dbAv |WNcv

v )
)(∏

v∈T6∂u
Kv(x̄

bACv
Cv , dx

bAv
v )

) ,
which can be straightforwardly shown to be a normalised probability measure. Re-

calling (8.50), it is easy to see that

dπ̃u
dK̄u

((
x̄n,N
Cv

)
v∈Tu

,
(
an,NCv

)
v∈T 6∂

, A

)

=
πu(x̄A,NCu )

N |Tu|
×

(
WA,N

u
∏
v∈T6∂u

r(bAv |WNcv

v )
)−1

(∏
v∈T∂u Kv(x̄

bAv
v )
)(∏

v∈T 6∂u
Kv(x̄

bACv
Cv , x

bAv
v )

)

=
1

N |Tu|

WA,N
u

∏
v∈T6∂u

r(bAv |WNcv

v )

−1

dπu
dυu

(x̄A,NCu ) =
ZNu
Zu
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from which follows

EK̄u

[
ZNu
Zu

ϕ(x̄A,NCu )

]
(8.53)

=

∫
K̄u

(
d
(
x̄n,N
Cv

)
v∈Tu

, d
(
an,NCv

)
v∈T6∂

, dA

)
ZNu
Zu

ϕ(x̄A,NCu )

=

∫
K̄u

(
d
(
x̄n,N
Cv

)
v∈Tu

, d
(
an,NCv

)
v∈T6∂

, dA

)
× dπ̃u
dK̄u

((
x̄n,N
Cv

)
v∈Tu

,
(
an,NCv

)
v∈T 6∂

, A

)
ϕ(x̄A,NCu )

=

∫
π̃u

(
d
(
x̄n,N
Cv

)
v∈Tu

,d
(
an,NCv

)
v∈T6∂

,dA

)
ϕ(x̄A,NCu ).

Marginalising over the variables not involved in the ancestral lineage of particle x̄A,NCu∫
π̃u

(
d
(
x̄n,N
Cv

)
v∈Tu

, d
(
an,NCv

)
v∈T6∂

, dA

)
ϕ(x̄A,NCu ) =

∫
πu(dx̄Cu)ϕ(x̄Cu) = πu(ϕ).

Putting (8.48), (8.51) and (8.53) together shows that

E
[
γNu (ϕ)

]
= EK̄u

[
ZNu ϕ(x̄A,NCu )

]
= πu(ϕ)Zu = γu(ϕ).

Taking ϕ ≡ 1 gives E
[
ZNu
]

= Zu, while the same argument above with wu(x̄n,N
Cu ) ≡ 1

in (8.48) gives E
[
υNu (ϕ)

]
= υu(ϕ).

Connections with Other Work

The results in this section show that, as its standard counterpart, DaC-SMC

can be used to build approximations of proposals for MCMC algorithms (Andrieu

et al., 2010). In particular, Theorem 8.4 guarantees that any Metropolis-Hastings

algorithm using {πu}u∈T6r as proposals is a valid algorithm since the acceptance

probability is obtained by taking the ratio of unbiased estimators of Zu in a pseudo-

marginal fashion (Andrieu and Roberts, 2009). These particle Metropolis-Hastings

algorithms can be seen as standard Metropolis-Hastings algorithms targeting the

extended distribution (8.52) with proposal (8.50) (Andrieu et al., 2010, Theorem 2,

Theorem 4).

The construction of ancestral lineages in (8.49) is key to the definition of con-

ditional SMC, a particular class of SMC algorithms in which the resampling step

is performed in such a way that a prespecified path from the leaves to the root of
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the tree {Xn,N
Cu }u∈T6∂ with given ancestral lineage {bnu }u∈T is ensured to survive all

the resampling steps (Andrieu et al., 2010). The conditional SMC update was origi-

nally proposed by Andrieu et al. (2010) to perform the updating step within particle

Gibbs sampling, where at each iteration one particle and its corresponding ancestral

lineage are kept fixed and the remaining particles are updated conditionally. More

recently, the conditional SMC update has been employed to approximate smooth-

ing distributions for state space models (Jacob et al., 2020; Karppinen and Vihola,

2021) since the conditional SMC update defined a Markov kernel which leaves the

smoothing distribution invariant (Andrieu et al., 2010).

In the standard SMC setting the construction of ancestral lineages has been

exploited to build consistent variance estimators which only require one run of the

SIR algorithm (Lee and Whiteley, 2018); similar arguments could be explored to

build variance estimators for DaC-SMC using the construction of ancestral lineages

described above.

8.5 Summary

In this chapter we studied the theoretical properties of the DaC-SMC algorithm

introduced in Lindsten et al. (2017) combining the well-known results on standard

SMC summarised in Chapter 2 with results on product of empirical measures.

In particular, we showed that the additional interactions due to the merging of

different branches of the tree over which DaC-SMC is defined do not influence the

rates of convergence of the algorithm, allowing us to extract Lp inequalities and a

strong law of large numbers. These results show that DaC-SMC is a valid algorithm

and has some of the standard convergence properties one might expect from a Monte

Carlo algorithm, e.g. the mean squared error decays at rate N−1/2 as established

in Proposition 8.1. In Proposition 8.4 we established that the estimates of the

normalising constants given by DaC-SMC are unbiased, showing that DaC-SMC

can be used within particle MCMC algorithms as its standard counterpart.
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This thesis is concerned with the study of families of interacting particles which

present non-standard interactions, in particular their numerical implementation and

theoretical properties. In Part I the non-standard interactions arise from the partic-

ular class of problems we are interested in, Fredholm integral equations of the first

kind. In Part II the non-standard interactions arise from algorithmic design.

In Chapters 4-5 we introduced a continuous version of the Expectation Max-

imisation Algorithm (EMS) for solving Fredholm integral equations and proposed

a sequential Monte Carlo (SMC) algorithm which provides an adaptive stochastic

discretisation of EMS. This algorithm outputs smooth approximations of the solu-

tion of the integral equation and achieves good performances in applications from

statistics and image reconstruction. Because of the additional approximation of the

weights, the sequential Monte Carlo implementation of EMS (SMC-EMS) does not

fall within the standard class of SMC algorithms, therefore we also provide a novel

theoretical analysis and prove error estimates (which decay at the standard Monte

Carlo rate N−1/2), a strong law of large numbers and convergence of the estimator

given by SMC-EMS.

In Chapters 6 we studied approximations of the solution of integral equations

obtained by minimising a penalised Kullback–Leibler divergence. After introducing

a gradient flow construction for minimising functionals over the set of probability

measures, we established conditions under which the gradient flow equation admits

a solution. In Chapter-7 we used the connection between the gradient flow equation

and mean-field stochastic differential equations to introduce an interacting particle

system arising to approximate the solution of the minimisation problem and showed

the performances of this method on a number of examples.

In Chapter 8 we focused on the Divide and Conquer SMC algorithm and showed

that some of the standard theoretical properties of SMC algorithms are preserved

despite the additional interactions present in DaC-SMC. In particular, the rate at

which the error decays is N−1/2 in the number of particles and the estimates of the
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normalising constants are unbiased.

We devote the final part of this thesis to suggesting directions for future theo-

retical investigation and areas in which the proposed algorithms could be employed.

Future Directions

The theoretical results in Chapter 5 show that the SMC-EMS algorithm is well-

founded, however they do not provide an easy way to quantify the increase in vari-

ance caused by the additional approximation step needed to compute the weights.

Obtaining estimates of non-asymptotic variances of SMC is usually quite challenging

and the estimators available in the literature (Cérou et al., 2011; Du and Guyader,

2019; Lee and Whiteley, 2018) do not apply to SMC-EMS because of the additional

approximation in the weight computation. It would therefore be interesting to es-

tablish a central limit theorem for SMC-EMS and compare the asymptotic variance

with that of the standard SMC algorithm that we would implement if the weights

were known. These results would shed light on the increase in variance caused by

the use of the approximated weights instead of the unknown exact weights.

Similar results exist for random weight particle filters, in which the unknown

weights are replaced by an unbiased estimator (Fearnhead et al., 2008). However, the

case in which the approximate weights are biased but consistent has not been studied

yet. There is a number of algorithms using biased estimators of the true unknown

weights (Everitt et al., 2017; Klaas et al., 2012; Salomone et al., 2018), establishing

a central limit theorem for the general class of random weight particle filters with

biased weights (to which SMC-EMS belongs) would therefore be of broader interest.

Since typical applications of Fredholm integral equations are low-dimensional,

mostly one to three dimensional with some notable exceptions (Signoroni et al.,

2019), an improvement over the proposed SMC-EMS algorithms could be given by

employing sequential quasi-Monte Carlo (SQMC) ideas (Gerber and Chopin, 2015).

Indeed, SQMC tends to significantly outperform SMC in low-dimensional settings

(Chopin and Papaspiliopoulos, 2020).

The mean-field particle system introduced in Chapter 7 aims at approximating

the law of the mean-field SDE linked to the gradient flow equation of the regularised

Kullback–Leibler divergence studied in Chapter 6. Having obtained the gradient

flow equation for the regularised Kullback–Leibler divergence considered, it would

be of great interest to check if the corresponding SDE admits a unique solution

and to study the convergence properties of the corresponding particle system. Un-

fortunately, these results cannot be straightforwardly obtained from the available
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theory on mean-field SDEs since the drift coefficient of the particle system we con-

sidered is not Lipschitz. Recently, we have been looking at approximate solutions

minimising a closely related regularised Kullback–Leibler divergence, in which a rel-

ative entropy term is used as regulariser instead of Shannon’s differential entropy.

This minimisation problem can be considered as the probabilistic counterpart of

Tikhonov regularisation and preliminary results suggest that the corresponding par-

ticle system satisfies most of the theoretical results presented in Chapter 2 (Crucinio

et al., 2021a).

In this thesis we focused on providing reconstructions of the solution f of Fred-

holm integral equations

h(y) =

∫
f(x)g(y | x)dx,

however there are scenarios in which we are interested in recovering the function

g giving rise to h, the distorted version of f . In particular, in the image process-

ing literature we are often interested in estimating the point spread function (PSF)

associated with a specific microscope (Buddha and Boruah, 2020; Li et al., 2018),

telescope (Long et al., 2019) or spectrometer (Semenov et al., 2011) from the dis-

torted version h of a reference image f . We believe that the algorithms studied in

this thesis could be well-suited to tackle these problems since in the applications

listed above g(y | x) ≡ g(y − x) and one can easily swap the role of f , g.

Finally, in Chapter 8 we showed that Divide and Conquer SMC possesses some

of the theoretical properties of SMC, however there are other results that one might

wish to obtain for DaC-SMC, in particular, central limit theorems like those in

Chopin (2004); Del Moral (2004, Chapter 9) and summarised in Chapter 2. These

results can be obtained by extending the characterisation of products of two families

of independent random measures in Chapter 8 to show that the approximation error

of the product of k independent families of particles, each one having approximation

error of order O(N−1/2), is of order O(N−k/2) (Kuntz et al., 2021a).
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List of Symbols

B(H) Borel σ-algebra on H
Bb(H) set of measurable and bounded real valued functions on H
Cb(H) set of continuous and bounded real valued functions on H
δx Dirac measure/point mass centred at x

I(A) indicator function of set A

ent entropy function

ESS effective sample size

E expectation under P
ISE integrated squared error

KL Kullback–Leibler divergence

M(H) set of finite measures on H
MISE mean integrated squared error

MSE mean squared error

N Normal distribution

P(H) set of probability measures on H
Pac2 (H) set of probability measures on H with finite second moment and

absolutely continuous w.r.t. the Lebesgue measure

R set of real numbers

‖ · ‖1, ‖ · ‖2 l1, l2 norm

β(·) Bounded–Lipschitz norm for measures

‖ · ‖∞ supremum norm

‖ · ‖BL Bounded–Lipschitz norm for functions

:=,=: ’is defined as’

∼,∝ ‘is distributed according to’, ‘is proportional to’
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List of Abbreviations

DaC-SMC Divide and Conquer sequential Monte Carlo

DKDE Deconvolution kernel density estimator

EM Expectation Maximisation

EMS Expectation Maximisation Smoothing

i.i.d. independent and identically distributed

IB Iterative Bayes

KDE Kernel density estimation

MCMC Markov Chain Monte Carlo

MPLE Maximum penalised likelihood estimation

OSL-EM One-step-late expectation mamimisation

PDE partial differential equation

PET Positron Emission Tomography

RL Richardson-Lucy

SDE stochastic differential equation

SIR sequential importance resampling

SIS sequential importance sampling

SLLN Strong law of large numbers

SMC sequential Monte Carlo
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List of Abbreviations

SMC-EMS sequential Monte Carlo expectation maximisation smoothing

WGF Wasserstein gradient flow
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T. Obadia, R. Haneef, and P.-Y. Boëlle. The R0 package: a toolbox to estimate

reproduction numbers for epidemic outbreaks. BMC medical informatics and

decision making, 12(1):1–9, 2012.

K. Oelschlager. A martingale approach to the law of large numbers for weakly

interacting stochastic processes. The Annals of Probability, pages 458–479, 1984.

J. Olsson and T. Rydén. The bootstrap particle filtering bias. Lund University,

Technical Report 929081, 2004.

F. Otto. The geometry of dissipative evolution equations: the porous medium equa-

tion. Communications in Partial Differential Equations, 2001.

B. Paige and F. Wood. Inference networks for sequential Monte Carlo in graphical

models. In International Conference on Machine Learning, pages 3040–3049, 2016.

G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshmi-

narayanan. Normalizing flows for probabilistic modeling and inference. Journal

of Machine Learning Research, 22(57):1–64, 2021.

E. Parzen. On estimation of a probability density function and mode. The Annals

of Mathematical Statistics, 33(3):1065–1076, 1962.

M. Pensky et al. Minimax theory of estimation of linear functionals of the deconvo-

lution density with or without sparsity. The Annals of Statistics, 45(4):1516–1541,

2017.

208



BIBLIOGRAPHY

M. E. Phelps. Positron emission tomography provides molecular imaging of biological

processes. Proceedings of the National Academy of Sciences, 97(16):9226–9233,

2000.

D. L. Phillips. A technique for the numerical solution of certain integral equations of

the first kind. Journal of the Association for Computing Machinery, 9(1):84–97,

1962.

E. Picard. Sur un théorème générale relatif aux équations intégrales de première
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