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Cartan connections for stochastic developments on
sub-Riemannian manifolds

Ivan Beschastnyi1 Karen Habermann2 Alexandr Medvedev3

Abstract

Analogous to the characterisation of Brownian motion on a Riemannian manifold as
the development of Brownian motion on a Euclidean space, we construct sub-Riemannian
diffusions on equinilpotentisable sub-Riemannian manifolds by developing a canonical
stochastic process arising as the lift of Brownian motion to an associated model space.
The notion of stochastic development we introduce for equinilpotentisable sub-Riemannian
manifolds uses Cartan connections, which take the place of the Levi–Civita connection
in Riemannian geometry. We first derive a general expression for the generator of the
stochastic process which is the stochastic development with respect to a Cartan connection
of the lift of Brownian motion to the model space. We further provide a necessary and
sufficient condition for the existence of a Cartan connection which develops the canonical
stochastic process to the sub-Riemannian diffusion associated with the sub-Laplacian
defined with respect to the Popp volume. We illustrate the construction of a suitable
Cartan connection for free sub-Riemannian structures with two generators and we discuss
an example where the condition is not satisfied.

1 Introduction

Brownian motion, also called Wiener process, is a mathematical description of the animated
and irregular motion of particles which are suspended, say, in a fluid. This process plays an
important role in various areas of mathematics and is used, among other things, to describe
more complicated stochastic processes, to model unknown forces in control theory, to give
a rigorous path integral formulation of quantum mechanics, and it prominently features in
mathematical finance.

Brownian motion (bt)t≥0 on a smooth Riemannian manifold M with the Laplace–Beltrami
operator ∆M is the unique continuous-time stochastic process on M whose infinitesimal motion
is described by 1

2
∆M , that is, for the heat semigroup (Pt)t≥0 associated with (bt)t≥0 and for any

function f ∈ C∞c (M), we have

1

2
∆Mf(q) = lim

t↓0

Ptf(q)− f(q)

t
.

We call 1
2
∆M the infinitesimal generator of Brownian motion on M . One of the many interesting

features of Brownian motion is that it can be used to give a solution to the Dirichlet problem
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associated with ∆M on a domain in M . In fact, it is even possible to uniquely characterise
Brownian motion via the heat equation. Brownian motion also arises as the limit of a sequence
of random walks on the manifold M .

Yet another alternative construction of Brownian motion uses the notion of anti-development
of a curve in a Riemannian manifold. To a differentiable curve in the Riemannian manifold M
of dimension n, we can associate a curve in the model space Rn via the Levi–Civita connection.
By extending this correspondence to stochastic processes whose sample paths are almost surely
continuous but nowhere differentiable it can be shown that a stochastic process on the manifold
M of dimension n is a Brownian motion on M if and only if its anti-development is a standard
Brownian motion on Rn. In particular, if we take a standard Brownian motion on Rn we obtain
a process in the orthonormal frame bundle O(M) which projects nicely to M to give a Brownian
motion on the Riemannian manifold M .

For further details on and properties of Brownian motions on smooth Riemannian manifolds,
see, for instance, Émery [13], Grigor’yan [16], Hsu [21], and Jørgensen [22], as well as [18] for a
more exhaustive overview of the various characterisations of Brownian motion.

With Brownian motions on smooth Riemannian manifolds being well understood, we turn
our attention to the sub-Riemannian setting. A sub-Riemannian manifold is a triple (M,D, g)
consisting of a smooth manifoldM together with a bracket generating distributionD ⊂ TM and
a metric g on D. As the natural generalisation of the Laplace–Beltrami operator in Riemannian
geometry, the sub-Riemannian Laplacians, also called sub-Laplacians, on a sub-Riemannian
manifold are defined as the divergence of the horizontal gradient. The divergence divν depends
on a choice of a positive smooth measure ν on the manifold M , and the horizontal gradient
gradH f of a function f ∈ C∞(M) is a smooth section of D such that, for any section X ∈ Γ(D),

g(gradH f,X) = df(X) .

The sub-Laplacian ∆ν with respect to the measure ν acting on smooth functions f on M is
thus given by

∆νf = divν(gradH f) . (1.1)

Note that the horizontal gradient gradH f is the unique smooth section of D satisfying (1.1) and
that it only depends on the sub-Riemannian structure. However, unlike Riemannian geometry
the measure ν is not canonically defined and several natural choices are possible. This includes
the Popp measure that we define later.

For a local orthonormal frame (X1, . . . , Xk1) of D with respect to g, we can locally write

∆ν =

k1∑
i=1

X2
i +

k1∑
i=1

divν(Xi)Xi . (1.2)

Similar to Brownian motion on a Riemannian manifold, we can consider the continuous-time
stochastic process on M whose infinitesimal generator is 1

2
∆ν . These processes, which we call

sub-Riemannian diffusions, are significantly less well understood than Brownian motion, and
many of their properties remain to be understood.

Following Métivier [23] and Ben Arous [7,8], the small-time asymptotics of sub-Riemannian
diffusion processes have been studied, amongst others, by Bailleul, Mesnager, Norris [3], by
Barilari, Boscain, Neel [4], by de Verdière, Hillairet, Trélat [11] as well as in [19] and [20].
Already at the level of small-time asymptotics, it is seen that sub-Riemannian diffusions show
qualitatively different behaviours compared to Brownian motions. We further remark that since
sub-Laplacians are in divergence form, the first-order small-time heat kernel asymptotics of the
associated stochastic processes only depend on the underlying sub-Riemannian structure, and
not on the measure ν.
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For certain sub-Laplacians, the question of approximating the associated sub-Riemannian
diffusions by random walks has been addressed by Boscain, Neel, Rizzi [10] and by Gordina,
Laetsch [15].

In comparison to the various characterisations of Brownian motion on a Riemannian man-
ifold, the one characterisation which appears to be missing for sub-Riemannian diffusions is
as the development of a suitable model stochastic process. The first major obstacle to such
a construction is that the notion of Levi–Civita connection does not carry over to the sub-
Riemannian setting. Instead, we employ the notion of Cartan connections which is well-adapted
to the graded structures appearing in the study of sub-Riemannian manifolds. The Cartan ge-
ometry approach to sub-Riemannian geometry works particularly well for equinilpotentisable
sub-Riemannian manifolds. Moreover, for equiregular, and therefore also for equinilpotentis-
able, sub-Riemannian manifolds, there exists a smooth volume canonically associated with the
sub-Riemannian structure, which is the so-called Popp volume. The objective of this article
is to initiate the characterisation of sub-Riemannian diffusions via stochastic development by
providing such a construction on a wide range of equinilpotentisable sub-Riemannian manifolds
for the sub-Riemannian diffusion associated with the sub-Laplacian defined with respect to the
Popp volume.

We stress that the work presented lies more on the differential geometry side and is mainly
concerned with constructing suitable Cartan connections. The central ingredient needed from
stochastic analysis is the correspondence between Stratonovich stochastic differential equations
and infinitesimal generators, which is provided at the suitable point.

Cartan geometry makes the idea of a model tangent space rigorous. For example, the tangent
space of a Riemannian manifold M of dimension n is the Euclidean space Rn and we can view
a Cartan connection as a way of rolling this Euclidean space on the Riemannian manifold, see
Wise [32]. It gives rise to a natural notion of the development of a curve γ : [0, t] → Rn to M
by simply saying that the contact point while rolling traces out γ, and the notion of stochastic
development is defined in a similar way.

In the sub-Riemannian setting, the model tangent spaces are Lie algebras of nilpotent
Lie groups known as the Carnot groups. The distribution D of a sub-Riemannian manifold
(M,D, g) generates a filtration which is defined iteratively at q ∈ M , for i ∈ N, by D−1q = Dq
and

D−(i+1)
q = D−iq +

[
D,D−i

]
q
.

The minimal m ∈ N such that D−mq = TqM for every q ∈M is the step of the sub-Riemannian
manifold, and the tuple of numbers (k1, k2, . . . , km) = (dimD−1q , dimD−2q , . . . , dimD−mq ) is
called the growth vector at q ∈ M . Using the filtration, we further define the associated
grading of the tangent space TqM at q ∈M by

gr (TqM) = D−1q ⊕D−2q /D−1q ⊕ · · · ⊕ D−mq /D−(m−1)q . (1.3)

Each gr(TqM) has the natural structure of a nilpotent Lie algebra as well as a natural horizontal
metric defined on D−1q . If X ∈ Γ(D−i), Y ∈ Γ(D−j), for i, j ∈ {1, . . . ,m}, are sections of the
corresponding bundles, then the Lie algebra structure is defined by[

X + Γ
(
D−i+1

)
, Y + Γ

(
D−j+1

)]
= [X, Y ] + Γ

(
D−i−j+1

)
.

We notice that the metric g on D induces a metric on all of gr(TqM) for q ∈M as follows.
On the tensor product ⊗li=1D−1q for l ∈ {2, . . . ,m}, we define a map

πl :
l⊗

i=1

D−1q → D−lq /D−l+1
q
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given, for vector fields X1, . . . , Xl on M extending vectors v1, . . . , vl ∈ TqM , by

πl(v1 ⊗ · · · ⊗ vl) = [X1, [X2, . . . , [Xl−1, Xl] . . . ]](q) mod D−l+1
q .

Using the metric induced by g on ⊗li=1D−1, we identify D−lq /D−l+1
q with (ker πl)

⊥ for the
restricted metric. This further gives rise to a metric on the whole of gr(TqM), which plays an
important role in Section 4. The space Λn(TqM) is then naturally isomorphic to Λn gr(TqM),
and the constructed metric allows us to choose a canonical element in Λn gr(TqM). The image
of this element under the canonical isomorphism is the Popp volume at q ∈ M . For further
details, see Montgomery [24, Chapter 10].

A sub-Riemannian manifold is called equinilpotentisable if gr(TqM) does not depend on
the point q ∈ M as a metric Lie algebra, that is, all the associated gradings are metrically
isomorphic. In this case, we write n−k = D−kq /D−k+1

q for k ∈ {1, . . . ,m} as well as n = gr(TqM)
to emphasise this independence. Moreover, k1 = dimD−1q is then also independent of q ∈
M . The Carnot group which serves as model tangent space to an equinilpotentisable sub-
Riemannian manifold is the simply connected Lie group whose Lie algebra is n. In the Cartan
terminology, this Carnot group is called the nilpotent model. It represents the flat space and
the curvature invariants measure how much a given sub-Riemannian manifold differs from its
nilpotent model.

It is important to note that Carnot groups can possess several non-equivalent left-invariant
sub-Riemannian metrics. We say that left-invariant sub-Riemannian metrics g1 and g2 on a
Carnot group (G,D) are equivalent if there exists a graded Lie group automorphism that maps
g1 to g1. One of the simplest examples of a Carnot group with non-equivalent sub-Riemannian
metrics is the 5-dimensional Heisenberg group H5. Its Lie algebra h5 has a natural filtration
R4 ⊕ zR = D−1 ⊕D−2, where z is an element of the centre of h5 and where, for v1, v2 ∈ D, the
Lie brackets are given, in terms of a symplectic form ω on D, by

[v1, v2] = ω(v1, v2)z .

All automorphisms that preserve D = R4 have to preserve ω up to multiplication by a scalar.
Therefore, the group of D-preserving automorphisms is equivalent to the conformal-symplectic
group CSp(R4). As all symplectic forms on R4 are equivalent, classification of metrics on R4

with respect to CSp(R4) is equivalent to the classification of pairs (g, [ω]) where g is a metric
on R4 and [ω] is a conformal class of symplectic forms. By normalising g to an arbitrary
fixed metric, our classification problem reduces to the classification of [ω] with respect to the
orthogonal group O(R4). Furthermore, instead of ω we consider the skew-symmetric operator
ω ◦ g−1. Using the action of O(R4), we can normalise every skew-symmetric operator to the
form 

0 λ1 0 0
−λ1 0 0 0

0 0 0 λ2
0 0 −λ2 0

 ,

where λ1 ≥ λ2 > 0. We see that conformal classes [ω] are in one-to-one correspondence with the
ratio λ1 : λ2. This means that the family of non-equivalent metrics on H5 is one-dimensional.

A Cartan connection allows us to develop curves from the corresponding Carnot group to
an equinilpotentisable sub-Riemannian manifold, and in the same spirit to define a notion of
stochastic development, exactly like it was done in the Riemannian case.

There is a canonical sub-Riemannian diffusion on a Carnot group, arising as the lift of a
Brownian motion on Rk1 and taking the place of the standard Brownian motion on Rn, which
we develop to give a sub-Riemannian diffusion on the corresponding sub-Riemannian manifold.
The generator of the resulting stochastic process always has the same principal symbol which
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is uniquely defined by the metric g, while the first order term depends on the choice of the
Cartan connection. As said previously, we are particularly interested in constructing Cartan
connections which give rise to sub-Riemannian diffusions associated to sub-Laplacians defined
with respect to the Popp volume.

Barilari and Rizzi [5] give a local formula for the Popp volume P and for the sub-Laplacian
∆P with respect to the Popp volume in terms of an adapted frame, that is, a frame (X1, . . . , Xn)
such that X1, . . . , Xki span D−i for i ∈ {1, . . . ,m} and X1, . . . , Xk1 are orthonormal in D. On
an equinilpotentisable sub-Riemannian manifold, the local formula for ∆P only involves the
structure constants ckij ∈ C∞(M) of the adapted frame, which satisfy, for i, j ∈ {1, . . . , n},

[Xi, Xj] =
n∑
k=1

ckijXk ,

and it is given by

∆P =

k1∑
i=1

(
X2
i −

n∑
l=1

clilXi

)
. (1.4)

Restricting our attention to equinilpotentisable sub-Riemannian manifolds limits the classes
of structures that we can consider. For instance, even contact structures in higher dimensions
are not equinilpotentisable in general, and our setting excludes singular structures like the
Martinet manifold. Moreover, even for a equinilpotentisable sub-Riemannian manifold, there
does not always exist a Cartan connection which allows us to characterise the sub-Riemannian
diffusion associated with ∆P in terms of a stochastic development. However, in Theorem 1.2,
we provide a necessary and sufficient condition, which is proven in Section 4, for when we can
obtain such Cartan connections. All the Cartan connections we construct are characterised by
a torsion-free-like condition, which requires a certain part of the curvature two-form to vanish.

We remark that Baudoin, Feng, Gordina [6] consider the stochastic parallel transport with
respect to the Bott connection on foliated manifolds, and that Angst, Bailleul, Tardif [2] use
the Cartan geometry approach to define kinetic Brownian motion on Riemannian manifolds.

A Cartan connection in the sub-Riemannian setting is a g-valued one-form ω, where g is a
semi-direct product of the nilpotent Lie algebra n and the Lie algebra h of the Lie group H
of infinitesimal symmetries of n which is isomorphic to a subgroup of SO(k1). It should be
noted that H can be the trivial group consisting only of the identity element, as it happens
for distributions with the growth vector (2, 3, 4, . . . , dimM − 1, dimM), see Section 4. The
connection form can be separated into its n-valued part ωn and its h-valued part ωh. We choose
a basis {Aα : 1 ≤ α ≤ dimH} of h and consider the corresponding components ωα of ωh. If we
further choose a local coframe (θ1, . . . , θn) of T ∗M dual to the adapted frame (X1, . . . , Xn), we
can locally write

ωα =
n∑
i=1

Γαi θ
i ,

for some smooth functions Γαi which are the Christoffel symbols of the connection ωh. Often
we aggregate the first k1 components into a single vector-valued function

Γα =

Γα1
...

Γαk1

 ,

and similarly, we write

X =

X1
...

Xk1
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to shorten the notations and to simplify the formulae.
The main formula underlying our constructions of Cartan connections is provided in the

following theorem.

Theorem 1.1. For an equinilpotentisable sub-Riemannian manifold (M,D, g) with a symmetry
group H and an adapted Cartan connection ω, the generator 1

2
∆ of the stochastic process on

M obtained as the stochastic development of the canonical sub-Riemannian diffusion on the
nilpotent model N is given, in an adapted frame (X1, . . . , Xn) and in terms of the Christoffel
symbols Γα, by

∆ =

k1∑
i=1

X2
i +

dimH∑
α=1

(Γα)TAαX . (1.5)

In particular, if the symmetry group H is trivial then the generator is just the sum of squares
operator

∆ =

k1∑
i=1

X2
i .

Some remarks are needed at this point. Comparing (1.2) and (1.5), we call

dimH∑
α=1

(Γα)TAαX

the local divergence term of the operator ∆. While ∆ and the stochastic development of
the canonical sub-Riemannian diffusion on the nilpotent group N are coordinate invariant
objects, the formula (1.5) and the local divergence are not coordinate invariant. However,
these expressions and Theorem 1.1 are still very convenient tools for proving various results
and for studying ∆ as well as the stochastic development.

Moreover, it is important to emphasise that not every orthonormal frame in D can be
extended to an adapted frame, see the Engel example in Section 4. For this reason, the condition
that the frame (X1, . . . , Xn) is adapted is crucial. Similarly, the adapted frame bundle is not
the same as the orthonormal frame bundle. The former is a reduction of the latter to a smaller
group of symmetries H ⊂ SO(k1) which agrees with the graded structure. When we talk about
local trivialisations in the following we mean local trivialisations of the adapted frame bundle.

The key result of this article is stated in the next theorem.

Theorem 1.2. Suppose (M,D, g) is an equinilpotentisable sub-Riemannian manifold with a
symmetry group H. Then there exists a Cartan connection ω such that the stochastic process
arising as the stochastic development of the canonical sub-Riemannian diffusion on the nilpotent
model N has generator 1

2
∆P if and only if every one-dimensional sub-representation of H on

n−1 corresponds to a divergence-free vector field in D.

The proof of Theorem 1.2 is constructive and it gives an explicit description for a possible
choice of a Cartan connection. The result particularly implies that there exist suitable Cartan
connections for many interesting examples including all equinilpotentisable contact structures
and structures with the growth vector (2, 3, 5). The latter arise when rolling distributions of
surfaces, and it can be applied to modelling rolling of spherical robots on an unknown non-
flat ground such as soil. It should also be mentioned that 3D contact structures are always
equinilpotentisable.

The article has the following structure. In Section 2, we provide an overview of Cartan
geometry, with a focus on Cartan geometry on a sub-Riemannian manifold in Section 2.1, and
as an illustration we show how to understand the Levi–Civita connection on a Riemannian
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manifold as a Cartan connection. In Section 3, we discuss how the development with respect
to a Cartan connection of a curve in the model space can be characterised by a system of
ordinary differential equations, and we use this to introduce a notion of stochastic development
for equinilpotentisable sub-Riemannian manifolds. We further prove Theorem 1.1 and we show
that the Cartan geometry approach recovers the characterisation of Brownian motion on a
Riemannian manifold via stochastic development. In Section 4, we establish Theorem 1.2,
and we illustrate the construction of a suitable Cartan connection for manifolds modelled
by free nilpotent structures with two generators, which include 3D contact structures. We
further provide an example of a manifold where a stochastic development of the canonical
sub-Riemannian diffusion on the model space never gives rise to the stochastic process with
generator 1

2
∆P .

Acknowledgement. The first author was supported by the ANR project Quaco ANR-17-CE40-
0007-01. The second author was supported by the Fondation Sciences Mathématiques de Paris.

2 Overview of Cartan geometry

We provide a general overview of Cartan geometry with a focus towards Cartan geometry on
a sub-Riemannian manifold. In this section, we use the Einstein summation convention.

Before giving the general definitions, we start by interpreting Riemannian geometry as a
Cartan geometry. Let us consider a Riemannian manifold (M, g) of dimension n together with
a connection ∇ on the tangent bundle TM . In a local orthonormal frame (X1, . . . , Xn) of TM ,
the connection∇ is uniquely characterised by the Christoffel symbols Γkij, for i, j, k ∈ {1, . . . , n},
which are given by, for i, j ∈ {1, . . . , n},

∇Xi
Xj = ΓkijXk .

If (θ1, . . . , θn) is a local coframe dual to (X1, . . . , Xn), we can equivalently define a connection
via one-forms θji , for i, j ∈ {1, . . . , n}, which satisfy

∇XXi = θji (X)Xj .

Comparing this with the previous definition of a connection in terms of Christoffel symbols, we
find that, for all i, j ∈ {1, . . . , n},

θji = Γjkiθ
k .

The Levi–Civita connection is the unique torsion-free connection on TM which is metric.
For this connection, the metric compatibility condition implies that, for all i, j, k ∈ {1, . . . , n},
we have

Γkij + Γjik = 0 ,

which in turn gives the antisymmetry condition that, for all i, j ∈ {1, . . . , n},

θji + θij = 0 .

To describe the torsion-free property of the Levi–Civita connection in terms of the dual frame
(θ1, . . . , θn), we construct the Lie-algebra-valued one-form θh ∈ Ω(M, so(n)) and the one-form
θn ∈ Ω(M,Rn) defined by, for i, j ∈ {1, . . . , n},

(θh)
i
j = θij and (θn)

i = θi .

We call θh the Levi–Civita gauge and θn the soldering gauge. Given a vector space V , we define
an exterior product between End(V )-valued one-forms and V -valued one-forms by requiring
that, for i, j ∈ {1, . . . , n} and all Ai ∈ End(V ) as well as all vj ∈ V , we have(

Ai ⊗ θi
)
∧
(
vj ⊗ θj

)
= Ai(vj)θ

i ∧ θj .
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The Levi–Civita gauge θh and the soldering gauge θn characterise the torsion-freeness of a
metric connection as follows, see e.g. Sharpe [30].

Proposition 2.1. A metric connection ∇ is torsion-free if and only if for any orthonormal
coframe (θ1, . . . , θn) the structure equations

dθn + θh ∧ θn = 0 (2.1)

are satisfied, that is, for all i, j ∈ {1, . . . , n}, we have

dθi + θij ∧ θj = 0 .

Since the structure equations have to hold for any frame, let us consider what happens in a
different frame. Applying a rotation h ∈ C1(M,SO(n)) to the frame with respect to which θh
and θn are defined yields a frame in which θnewn and θnewh are given by

θnewn = h−1θn ,

θnewh = h−1 dh+ h−1θhh . (2.2)

These expressions show that θh is a pull-back of a principle SO(n)-connection via a trivialising
section of the orthonormal frame bundle O(M), that is, if s : M → O(M) is the local section
of O(M) defined by the local orthonormal frame (X1, . . . , Xn) then there exists a principle
SO(n)-connection with one-form ωh such that

θh = s∗ωh .

When changing the local section from s to sh, we obtain θnewh given by (2.2). Similarly, the
soldering gauge θn is a pull-back of the canonical soldering form ωn, that is,

θn = s∗ωn .

The canonical soldering form ωn can be defined on O(M) in a totally invariant manner. Let
π : O(M) → M be the projection mapping. Then, for all v ∈ TO(M) and all f ∈ O(M), we
set

(ωn)f (v) = f−1 dπ(v) , (2.3)

where f ∈ O(M) is considered as a map f : Rn → Tπ(f)M .
We combine ωh and ωn into a single matrix-valued one-form ω on the frame bundle O(M)

given by

ω =

(
ωh ωn

0 0

)
.

This one-form is an example of a Cartan connection. It takes values in the Lie algebra se(n)
corresponding to the special Euclidean Lie group SE(n). The curvature two-form Ω associated
with a Lie-algebra-valued one-form ω is given by

Ω = dω +
1

2
[ω, ω] , (2.4)

for [·, ·] the commutator of two Lie-algebra-valued one-forms, which is defined by

[ω1, ω2](X, Y ) = [ω1(X), ω2(Y )] + [ω2(X), ω1(Y )] .

In particular, we see that
[ω1, ω2] = [ω2, ω1] , (2.5)
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and in a local trivialisation (θ1, . . . , θn), we have[
Ai ⊗ θi, Bj ⊗ θj

]
= [Ai, Bj]⊗ θi ∧ θj . (2.6)

The condition (2.1) is then equivalent to the vanishing of the Rn-valued part of the curvature
two-form Ω, which is exactly given by the torsion of a metric connection.

Applying this whole language to the Euclidean space Rn, we find that the Cartan connection
constructed above is simply the Maurer–Cartan one-form ωSE(n) of the special Euclidean group,
that is, for g ∈ SE(n), we have (

ωSE(n)

)
g

= (Lg−1)∗ , (2.7)

which has zero curvature. Note that the Cartan geometry contains information both about the
model space Rn and about its symmetry group SE(n).

Keeping the Riemannian geometry example in mind, we give a general overview of Cartan
geometries which are generalisations of Klein geometries. Every homogeneous space can be
identified with a quotient G/H of a Lie group G by a subgroup H. The Maurer–Cartan form
ωG on G can be thought of as a connection on the symmetry group G of the homogeneous space
G/H with values in the Lie algebra g of G. It is defined exactly as in (2.7) with G instead of
SE(n). In Cartan geometry, we replace G/H by a H-principle bundle P over a manifold M
and the Maurer–Cartan form ωG by a g-valued one-form on P . We adopt the convention to
denote the Lie algebra associated with a Lie group by the corresponding Gothic letter.

Definition 2.2. Given a smooth manifold M , a Lie group G and a subgroup H ⊂ G, a Cartan
geometry (P, ω) on M modelled on (g, h) consists of the following data.

1. A right principle H-bundle π : P →M .

2. A g-valued one-form ω on P , called a Cartan connection, which satisfies

(a) ωp : TpP → g is an isomorphism for all p ∈ P ,

(b) R∗hω = Adh−1 ω for all h ∈ H, and

(c) ω(X∗) = X for all X∗ ∈ Γ(TP ) and X ∈ h which are related by, for all f ∈ C∞(P )
and all p ∈ P ,

(X∗f) (p) =
d

dt

∣∣∣∣
t=0

f (p exp(tX)) .

The homogeneous space G/H is called the model space for the corresponding Cartan geometry.

In the case of a Riemannian manifold M of dimension n, a Cartan geometry is modelled over
(se(n), so(n)), the model space is given by the corresponding quotient Rn ' SE(n)/SO(n), and
P is the orthonormal frame bundle O(M) viewed as a SO(n)-principle bundle. The connection
ω constructed above then indeed satisfies the properties of a Cartan connection, see Sharpe [30].
Note that the Levi–Civita connection is just a particular instance of a Cartan connection which
is characterised by the vanishing of the torsion part of the curvature two-form.

The usefulness of Cartan geometries for our work arises from the property that they possess
a good notion of development of curves. Let us fix q ∈ M . A curve γG/H : [0, 1] → G/H on
the model space G/H is developed via a Cartan connection ω to a curve γM : [0, 1]→M with
γM(0) = q on the manifold M as follows.

1. The curve γG/H is lifted to a curve γG : [0, 1]→ G.

2. Fixing some p ∈ P such that π(p) = q, we define the development γP : [0, 1] → P of the
lift γG by requiring

γ∗Pω = γ∗GωG (2.8)

subject to γP (0) = p.
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3. The development γM of γG/H is given by γM = π(γP ).

The relation (2.8) defines the development γP of the lift γG uniquely once an initial point for
γP is specified. Moreover, according to Sharpe [30, Proposition 5.4.13] we have the following
property.

Theorem 2.3. In a Cartan geometry (P, ω) on a manifold M modelled on (g, h), the develop-
ment γM of a curve γG/H depends neither on the choice of a lift γG nor on the choice of a lift
p = γP (0) of q = γM(0).

The same scheme works in the opposite way, where the relation (2.8) is used to define an
anti-development on the model space G/H of a curve γM : [0, 1]→M on the manifold.

2.1 Cartan geometry on a sub-Riemannian manifold

As discussed in the Introduction, a local model for an equinilpotentisable sub-Riemannian
manifold (M,D, g) is the nilpotent Carnot group N with the Lie algebra n = gr(TqM). It
inherits the natural grading

n = n−1 ⊕ · · · ⊕ n−m

and a scalar product g−1 on n−1. Thus, N is itself a sub-Riemannian manifold. Throughout,
we denote the dimension of the manifold M by n and the constant rank of the distribution D
by k1.

In order to define a Cartan geometry on the sub-Riemannian manifold (M,D, g), we need
to consider the Lie algebra

g = n⊕ h ,

where h is the Lie algebra associated with the Lie group H of all automorphisms of n which
preserve g−1, that is,

h = {ϕ : n→ n such that g−1(ϕ(·), ·) + g−1(·, ϕ(·)) = 0

and ϕ([X, Y ]) = [ϕ(X), Y ] + [X,ϕ(Y )] for all X, Y ∈ n} .
(2.9)

In particular, the Lie algebra h is isomorphic to a sub-algebra of so(n−1). Equivalently, we could
have asked H to preserve the metric on all of n. Indeed, since the metric on n is constructed
by identifying each n−l with a subspace of l tensor products of n−1, the metric on n−l is simply
given by the induced metric from the tensor product, and as H preserves the structure of the
brackets, n−l corresponds to an orthogonal sub-representation of H in ⊗li=1n−1.

We emphasise that the Lie algebra g is a graded space with elements of h having degree
zero and elements of n−i having degree −i. Similarly, we define the degree of elements of the
dual spaces n∗−i to be i. This endows any tensor product of those spaces with a grading. For
example, we use later that all elements from n−i ⊗ n∗−j ∧ n∗−k have degree j + k− i. In order to
make calculations consistent, we further treat the zero element as an element which can take
any degree. We denote by + in the subscript the subspace spanned by the elements of positive
degree.

The second ingredient needed to define a Cartan geometry is a right principle bundle P .
Similar with Riemannian geometry, P is a bundle of graded frames which is formed by all Lie
algebra morphisms

f : n→ gr(TM)

compatible with the metric. This means that for any orthonormal basis {e1, . . . , ek1} of n−1 the
elements Xi = f(ei), for i ∈ {1, . . . , k1}, should form an orthonormal basis of D. The bundle
P has H as its structure group, and it is a reduction of the orthonormal frame bundle O(D)
to the group H. In what follows, we use the notation OH(D) for this bundle P .
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The graded frame bundle possess the canonical soldering form ωn which is defined as follows.
For all v ∈ TOH(D) and all f ∈ OH(D), we set

(ωn)f (v) = f−1 gr(dπ(v)) ,

where gr : TM → gr(TM) is defined by (1.3).
Even though gr(Tπ(f)M) is isomorphic to Tπ(f)M , it is not a canonical isomorphism. Indeed,

any element of an adapted frame is defined only modulo terms of higher degree. This means
that, for any q ∈ M , we have to choose an additional isomorphism TqM → gr(TqM) which
would allow us to decompose a vector field X ∈ Γ(TM) according to the filtration

gr(X) = X−1 ⊕ · · · ⊕X−m .

Any choice of a soldering gauge provides us with a needed automorphism. The canonical
soldering form gives us only the degree one components of the needed isomorphism.

Remark 2.4. In the study of filtered manifolds, one usually has to apply a procedure known
as the Tanaka prolongation, which consists of adding higher derivations of g. However, the fact
that we study the metric geometry on equinilpotentisable sub-Riemannian manifolds forces the
Tanaka prolongation to be trivial, see [1, Section 2]. Hence, all information we need is already
contained in g. �

For a generic sub-Riemannian manifold, a torsion-free connection does not exist. However,
we describe below how to construct linear conditions on the curvature function which guarantees
the existence of a unique Cartan connection for a given pair (n, g−1).

Definition 2.5. The curvature function κ : P → Hom(∧2n, g) of a Cartan connection ω is
defined as

κ(p)(·, ·) = Ωp

(
ω−1p (·), ω−1p (·)

)
.

We recall that the Lie algebra differential ∂α of α ∈ Hom(∧kn, g) is defined, for any vectors
X0, . . . , Xk ∈ n, by

∂α(X0, X1, . . . , Xk) =
k∑
i=0

(−1)iXi · α
(
X0, . . . , X̂i, . . . , Xk

)
+

∑
0≤i<j≤k

(−1)i+jα
(

[Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk

)
,

where hat means the omission of the corresponding vector and where Xi · denotes the adjoint
action ad of Xi. For a basis {e1, . . . , edim g} of g and the corresponding dual basis {e1, . . . , edim g},
the Lie algebra differential ∂ satisfies

∂
(
ei ⊗ ej

)
= ∂ei ∧ ej + ei ⊗ ∂ej ,

where ∂ei = − ad ei for ei ∈ n.
The construction of Cartan connections on sub-Riemannian manifolds satisfying a type of

torsion-free-like condition relies on finding suitable normal modules of Hom(∧2n, g)+. This is
also the heart of Section 4.

Definition 2.6. A subspace N ⊂ Hom(∧2n, g)+ is called a normal module if

1. N is a H-module with respect to the adjoint action of H on Hom(∧2n, g), and

2. we have Hom(∧2n, g)+ = N ⊕ im ∂(Hom(n, g)+).
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To relate Cartan connections and normal modules, we further need the notion of an adapted
Cartan connection.

Definition 2.7. A Cartan connection ω on a sub-Riemannian manifold (M,D, g) is called
adapted if for any arbitrary section s : M → OH(D) the n-valued part of the Cartan gauge s∗ω
forms a coframe dual to an adapted frame.

We then have the following theorem, see Morimoto [25, Theorem 3.10.1].

Theorem 2.8. Given an equinilpotentisable sub-Riemannian manifold (M,D, g) and a normal
module N ⊂ Hom(∧2n, g)+ there exists a unique Cartan geometry (OH(D), ω) on M modelled
on (g, h) such that the Cartan connection ω is adapted and the corresponding curvature function
κ takes values in N .

The problem that we face is how to choose such a normal module N . One of the possibilities
is according to the following construction due to Morimoto [25], see Grong [17] for an alternative
description. In the Introduction, we discuss how the induced metric g−1 on n−1 defines a
metric on all of n. We extend it to g by assuming that h is endowed with a bi-invariant
metric orthogonal to n, which further gives rise to a metric on any tensor product of g and
its subspaces. Thus, we can also define the duals of linear operators acting on these products.
In particular, we can define the adjoint map ∂∗, and by the usual linear algebra arguments
ker ∂∗ is the orthogonal complement to im ∂. Hence, the subspace N = ker ∂∗ gives a natural
choice for a H-module. However, this module does not always give rise to the sub-Riemannian
diffusion associated with the sub-Laplacian defined with respect to the Popp volume.

In Section 4, we construct Cartan connections yielding the desired sub-Riemannian diffusion
by choosing the normal module N to be orthogonal to a different module S, which depends on
the structure of the Lie algebra n.

We end this section by discussing some natural associated bundles related to equiregular
sub-Riemannian manifolds. They are used in Section 4 to give invariant necessary and sufficient
conditions for the existence of Cartan connections which develop the canonical sub-Riemannian
diffusion process on the nilpotent group N to the stochastic process with generator 1

2
∆P on M .

Given a right principle H-bundle π : P → M and a representation ρ : H → V for some
vector space V , we can construct the associated bundle P ×H V . The following proposition,
see Sharpe [30, Section 1.3], is needed in the analysis in Section 4.

Proposition 2.9. There exists a bijection between sections of P ×H V and the space of all
equivariant functions, that is, the space{

f : P → V such that f ∈ C∞(P, V ) and f(ph) = ρ
(
h−1
)
f(p) for all p ∈ P, h ∈ H

}
.

For example, let us consider the curvature function κ. From the equivariant properties of
the Cartan connection ω, it follows that, see [30, Lemma 5.3.23],

κ(ph)(v1, v2) = Ad
(
h−1
)

(κ(p)(Ad(h)v1,Ad(h)v2)) for all v1, v2 ∈ n , (2.10)

which implies that the function κ : P → Hom(∧2n, g) is actually a section of the associated
bundle P ×H Hom(∧2n, g). Another example is given by the tangent bundle TM , which ac-
cording to [30, Theorem 5.3.15] is isomorphic to P ×H n. Similarly, as mentioned after the
definition of h, each n−l is an orthogonal representation of H, and therefore, for l ∈ {2, . . . ,m},
we can consider the associated bundle P ×H (n−1 ⊕ · · · ⊕ n−l), which is isomorphic to D−l.
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3 Stochastic development in sub-Riemannian geometry

The goal of this section is to introduce a notion of stochastic development on sub-Riemannian
manifolds, and to determine the generator of the stochastic process obtained as the stochastic
development of a canonical sub-Riemannian diffusion on the associated nilpotent model. To
motivate our definition, we start by discussing how horizontal differentiable curves on the model
space are developed.

We consider an arbitrary Cartan geometry (OH(D), ω) with an adapted Cartan connection ω
on an equinilpotentisable sub-Riemannian manifold (M,D, g). Let (X1, . . . , Xn) be an adapted
frame on M and let ei = gr(Xi), for i ∈ {1, . . . , n}, be the elements of the corresponding
adapted basis of the Lie algebra n. We denote by {e1, . . . , en} the dual basis of {e1, . . . , en}.
For h ∈ H, we write ρh for the corresponding action of H on, depending on the context, all of
TM or all of T ∗M , and h for the action on subspaces isomorphic to Rk, for example, on D−1
or n−1. The Maurer–Cartan form ωG on G is given by

ωG =
dimG∑
i=1

ei ⊗ ei .

Suppose we are given a model horizontal curve γN : [0, 1]→ N which we wish to develop to
our sub-Riemannian manifold. Then it must satisfy

γ̇N =

k1∑
i=1

uiei(γN)

for some smooth functions ui : [0, 1] → R. The assumption that γN is horizontal means that
γ∗Ne

i = 0 for all ei /∈ n∗−1. Since g = n ⊕ h, any lift γG of γN to the Lie group G is uniquely
defined by its projections γN and γH to N and H, respectively, and we write γG = (γH , γN).
Let us choose γH ≡ id. This choice, by Theorem 2.3, does not affect the development of γN ,
but it greatly simplifies the subsequent computations. We obtain that

γ∗GωG =

k1∑
i=1

ei ⊗
(
γ∗Ne

i
)

=



u1
...
uk1
0
...
0


dt . (3.1)

Note that the h-valued part of the Maurer–Cartan form ωG is zero. Following the scheme of
the development of curves discussed in Section 2, we now want to compute γ∗OH(D)ω of a Cartan

connection ω for any curve γOH(D) : [0, 1]→ OH(D) in the adapted orthonormal frame bundle.
Performing the computation in a local trivialisation of the adapted frame bundle, we can write
γOH(D) = (h, γM). For i ∈ {1, . . . , n} fixed, let j ∈ {1, . . . ,m} be such that ei ∈ n−j. Then the
bundle map f : n→ gr(Tπ(f)M) is given by

f(ei) = Xi +

k1+···+kj−1∑
l=1

bliXl ,

where the bli are smooth functions on M . Hence, we can identify the bundle map f with a
block lower-triangular matrix all of whose diagonal blocks are identity matrices. We denote the
transpose inverse of this matrix by F .
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As before, let (θ1, . . . , θn) be the dual frame to (X1, . . . , Xn), and consider the n-valued
vector form

θ =

θ
1

...
θn

 .

The soldering gauge θn is then written as

θn = Fθ . (3.2)

We start by analysing the n-part ωn of the Cartan connection ω. Due to (3.1) and the defining
relation (2.8) of the development, we have the following two equalities

γ∗OH(D)ωn =



u1
...
uk1
0
...
0


dt , (3.3)

γ∗OH(D)ωh = 0 (3.4)

for the pull-backs of the n-valued part ωn and of the h-valued part ωh, respectively, of the
considered Cartan connection ω.

Let us first derive an explicit description for γM from the relation (3.3). We define functions
ai ∈ C∞([0, 1]) as γ∗Mθ

i = ai dt for each i ∈ {1, . . . , n}. By explicitly writing down the left hand
side of (3.3), we see that

γ∗OH(D)ωn = ρ−1h γ∗Mθn = ρ−1h (γ∗MF ) γ∗Mθ = ρ−1h (γ∗MF )

a1...
an

 dt .

Comparing this with (3.3) yields

ρ−1h (γ∗MF )



a1
...
ak1
ak1+1

...
an


=



u1
...
uk1
0
...
0


. (3.5)

It follows that we can solve the system (3.5) for the functions ai for i ∈ {1, . . . , n}. Indeed,
each n−j is an orthogonal sub-representation of H. Thus, each matrix ρ−1h is block-diagonal.
The matrix F is block upper-triangular unipotent. Hence, we can solve the above system of
equations block by block starting from the lowest rows, which give us akm+1 = · · · = an = 0.
Continuing iteratively, we find that ai = 0 for all i ∈ {k1 + 1, . . . , n}. Since by construction the
first k1 × k1 minor of F is the identity matrix, we finally obtain

a =

 a1
...
ak1

 = h

 u1
...
uk1

 = hu , (3.6)
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and, due to γ∗Mθ
i = ai dt, the curve γM satisfies

γ̇M =

k1∑
i=1

aiXi(γM) .

It remains to determine h from the h-part ωh of the connection ω. Let θh be a Cartan gauge
of ωh. If we take a basis {Aα : 1 ≤ α ≤ dimH} of h then θh can be written as

θh =
dimH∑
α=1

Aα

(
(Γ̃α)T θn

)
, (3.7)

where Γ̃α : C∞(M)→ Rn are called Christoffel symbols. Since γH ≡ id is constant by assump-
tion, we deduce from (3.4) that

h−1ḣ+ h−1 (γ∗Mθh)h = 0 ,

which, using the change of variables h̃ = h−1, simplifies to

˙̃h = h̃ (γ∗Mθh) .

Let Γα denote the reduced vector

Γα =

Γα1
...

Γαk1

 ,

and similarly we define the differential operator X on M with values in D given by

X =

X1
...

Xk1

 .

Since ai = 0 for all i ∈ {k1 + 1, . . . , n}, that is,

γ∗Mθn =



a1
...
ak1
0
...
0


,

the expression (3.7) simplifies to

γ∗Mθh =
dimH∑
α=1

Aα

(
(Γ̃α)T (γM) (γ∗Mθn)

)
=

dimH∑
α=1

Aα
(
aTΓα(γM)

)
dt .

Let {Yα : 1 ≤ α ≤ dimH} be the family of left-invariant vector fields on H corresponding
to the basis {Aα : 1 ≤ α ≤ dimH}. In particular, we have Yα(h̃) = h̃Aα. Using (3.6) and the
fact that H ⊂ SO(k1), which gives aT = uT h̃, the proof of the proposition stated below follows.
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Proposition 3.1. Let (M,D, g) be an equinilpotentisable sub-Riemannian manifold with a
symmetry group H and a model space N = G/H. Let (OH(D), ω) be a Cartan geometry
on M modelled on (g, h). Choose an adapted frame (X1, . . . , Xn) of TM and let ei = gr(Xi)
be the corresponding basis of n−1. Then any development γM : [0, 1]→M of a horizontal curve
γN : [0, 1] → N is a projection of a curve γOH(D) : [0, 1] → OH(D) which in the chosen basis
satisfies the following system of differential equations, written in a local trivialisation of the
bundle OH(D),

γ̇M = uT h̃X(γM) ,

˙̃h =
dimH∑
α=1

(
uT h̃Γα(γM)

)
Yα(h̃) ,

(3.8)

where ui are defined by γ∗Ne
i = ui dt, for i ∈ {1, . . . , k1} and {e1, . . . , ek1} the dual basis of

{e1, . . . , ek1}.

Remark 3.2. We recall that Theorem 2.3 says that the development γM only depends on a
choice of initial point γM(0) ∈ M . In particular, once γM(0) has been chosen, the solution of
the smooth system (3.8) of ordinary differential equations always projects to the same curve
on M irrespective of the initial condition for h. �

This motivates the definition of stochastic development we provide below for which we need
one last ingredient taking the place of the horizontal curve γN we develop in the deterministic
setting. Any semimartingale (wt)t≥0 on Rk1 lifts uniquely to a semimartingale (w̃t)t≥0 on the
Carnot group N . In particular, the lift of Brownian motion (bt)t≥0 on Rk1 is the stochastic
process (b̃t)t≥0 on N whose generator 1

2
∆ is given by

∆ =

k1∑
i=1

V 2
i ,

where Vi is the left-invariant vector field on N corresponding to ei for i ∈ {1, . . . , k1}. As the
operator ∆ on the nilpotent Lie group N is the sub-Laplacian with respect to the Popp volume,
see Vigneron [31], and since in this setting the Popp volume further coincides with the right
Haar measure, the left Haar measure and the Lebesgue measure, the lift (b̃t)t≥0 on N can be
considered as a canonical sub-Riemannian diffusion on N .

By formally replacing time derivatives with Stratonovich differentials and the control u by
the differential of the driving stochastic process, we obtain the following definition.

Definition 3.3. Let (w̃t)t≥0 be a semimartingale on N which is the lift of (wt)t≥0 on Rk1.
Then the stochastic development of (w̃t)t≥0 is the stochastic process on the manifold M which
arises as the projection to M of the unique solution to the system of Stratonovich stochastic
differential equations, written in a local trivialisation,

∂γM = ∂wT h̃X(γM) ,

∂h̃ =
dimH∑
α=1

(
∂wT h̃Γα(γM)

)
Yα(h̃) ,

subject to a choice of initial condition.

Some remarks from the stochastic analysis side are needed at this point. The definition
above does not only use the notion of stochastic differential equations, see e.g. Øksendal [27]
and Rogers, Williams [28, 29], but also relies on the extension of Stratonovich differentials to
manifolds, see Norris [26]. To avoid delving too deeply into the theory of stochastic calculus, we
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simply provide a brief overview. A semimartingale is the right kind of stochastic process needed
when wanting to consider a stochastic differential of such a process. While the Stratonovich
differential is not the only stochastic differential available in stochastic calculus, it is the one
which, unlike the Itô differential, is invariant under coordinate transformations and is therefore
more suited to differential geometry. Moreover, as discussed in [18, 26], it is also important to
note that Stratonovich differentials are only symbolic and need to be understood as part of an
integral equation. As a result of this and due to the rotational invariance of Brownian motion,
even though Definition 3.3 is stated in a local trivialisation, the stochastic development of the
canonical sub-Riemannian diffusion (b̃t)t≥0 does not depend on this choice.

While we are mainly interested in the geometric and algebraic picture, we need the relation
from stochastic analysis that, for sufficiently nice vector fields Z1, . . . , Zk on RN and Brownian
motion (bt)t≥0 on Rk, the unique solution (zt)t≥0 in RN to the Stratonovich stochastic differential
equation

∂zt =
k∑
i=1

Zi(zt) ∂b
i
t

is the stochastic process whose generator is the sum of squares operator 1
2

∑k
i=1 Z

2
i .

For completeness, we remark that in deriving the formula (1.5) given in Theorem 1.1, we
extensively use the fact that the symmetry group H is a subgroup of the orthogonal group.
Without this feature the resulting stochastic process would not project well to the base manifold.
For example, in the Lorentzian setting the stochastic process is indeed studied as a stochastic
process on the pseudo-orthonormal frame bundle, see Franchi and Le Jan [14].

We are now ready to prove Theorem 1.1 stated in the Introduction.

Proof of Theorem 1.1. We rewrite the system of Stratonovich stochastic differential equations
from Definition 3.3 for the development of the canonical sub-Riemannian diffusion (b̃t)t≥0 as

∂γOH(D) = ∂bTZ
(
γOH(D)

)
,

where in a local trivialisation we write γOH(D) = (h, γM) and, with X1, . . . , Xk1 and the Yα for
1 ≤ α ≤ dimH understood as vector fields on OH(D),

Z = h̃X +
dimH∑
α=1

(
h̃Γα

)
Yα .

The generator of the stochastic process on OH(D) is then given by a sum of squares operator,
which in our notation can be compactly written as

1

2
∆OH(D) =

1

2
ZTZ .

Thus, the generator 1
2
∆ of the stochastic development of the canonical sub-Riemannian diffusion

is given, for a function f ∈ C∞(M), by

∆(f) = ∆OH(D) (π∗f) = ZTZ (π∗f) = XT h̃T h̃X(f) +
dimH∑
α=1

(Γα)T h̃TYα(h̃)X(f)

= XTX(f) +
dimH∑
α=1

(Γα)TAαX(f) ,

where we used Yα(h̃) = h̃Aα and the orthogonality of h̃.
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As a straightforward consequence of Theorem 1.1, we recover the Riemannian case. For a
Riemannian manifold of dimension n, we have N = Rn and H = SO(n). In particular, the
basis elements of so(n) are the skew-symmetric matrices Aij = Eij − Eji, for i, j ∈ {1, . . . , n},
where Eij is the matrix whose only non-vanishing element is the (i, j)th entry, which is equal
to one. We denote the corresponding vectors of Christoffel symbols by

Γij =

Γi1j
...

Γinj

 .

We compute

∆ =
n∑
i=1

X2
i +

∑
1≤j<k≤n

(
Γjk
)T

(Ejk − Ekj)X =

=
n∑
i=1

X2
i +

∑
1≤j<k≤n

(
ΓjjkXk − ΓjkkXj

)
=

n∑
i=1

X2
i −

∑
1≤j<k≤n

(
ΓkjjXk + ΓjkkXj

)
=

=
n∑
i=1

X2
i −

∑
1≤j<k≤n

ΓkjjXk −
∑

1≤k<j≤n

ΓkjjXk =
n∑
i=1

X2
i −

∑
j 6=k

ΓkjjXk =

=
n∑
i=1

X2
i −

n∑
j,k=1

ΓkjjXk ,

where we used Γijk = −Γkji in the second row, which is a consequence of the skew-symmetry of
the matrices Aij. On the other hand, we similarly have

div(Xi) =
n∑
j=1

g(∇Xj
Xi, Xj) =

n∑
j=1

Γjji = −
n∑
j=1

Γijj ,

which yields

∆ =
n∑
i=1

X2
i +

n∑
i=1

div(Xi)Xi =
n∑
i=1

(
X2
i −

n∑
j=1

ΓijjXi

)
,

agreeing with the expression obtained above with the Cartan geometry approach. This formula
holds for any metric connection. If we now use the Levi–Civita connection, whose Christoffel
symbols can be computed in terms of the structure constants of an orthonormal frame as

Γijk =
1

2

(
ckij − cijk + cjki

)
,

we exactly recover (1.4).

4 Cartan connections for sub-Riemannian diffusions

We prove Theorem 1.2 by explicitly constructing a Cartan connection for which the stochastic
development of the canonical sub-Riemannian diffusion on the nilpotent model has generator
1
2
∆P for ∆P the sub-Laplacian defined with respect to the Popp volume P . We further illustrate

the construction for manifolds modelled by free nilpotent structures with two generators.
For a given Cartan geometry (OH(D), ω) with an adapted Cartan connection ω on an

equinilpotentisable sub-Riemannian manifold (M,D, g), let ∆ be twice the generator of the
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stochastic development using the Cartan connection ω of the canonical sub-Riemannian diffu-
sion on the nilpotent model N . The first goal is to give an invariant description of ∆ − ∆P .
Since the second order partial differential operators ∆ and ∆P have the same principal symbol,
the difference ∆ − ∆P can be understood as a vector field, which, as we see below, is in fact
a horizontal vector field on (M,D, g). We start by providing an invariant description of this
object, followed by giving an expression in local coordinates.

Consider the curvature function κ : OH(D)→ Hom(∧2n, g) of the Cartan connection ω and
let κn be its Hom(∧2n, n)-valued part. As discussed in Subsection 2.1, the curvature function
κ is equivariant, and thus so is κn with the same law (2.10) of transformation. Note that due
to the semi-direct product structure of G, the adjoint action Ad of H on n coincides with the
usual action of H. This implies that the adjoint action of H on Hom(∧2n, n) coincides with
the standard action of H on the isomorphic space n ⊗ n∗ ∧ n∗. Hence, κn is a section of the
associated bundle OH(D)×H (n⊗ n∗ ∧ n∗).

Let R : n⊗ n∗ ∧ n∗ → n−1 be the map that is defined as follows as a composition of maps

R : n⊗ n∗ ∧ n∗
tr−→ n∗

[−→ n
π−1−−→ n−1 . (4.1)

Here, tr is the contraction map, [ is the operation of lowering of indices, and π−1 denotes
the orthogonal projection to n−1. By Proposition 2.9, we can associate with κn an equivariant
function Kn with values in n⊗n∗∧n∗. It follows that R◦Kn is a function with values in n−1 which
is also equivariant sinceH preserves the metric on n and n−1 is an orthogonal sub-representation.
In particular, it is possible to associate with R ◦Kn a section of OH(D)×H n−1 ' D, which we
denote by R ◦ κn.

The object R ◦ κn has a simple description in a local trivialisation. Let {e1, . . . , en} be an
adapted orthonormal basis of n, let {e1, . . . , en} be the dual basis of n∗ and let (X1, . . . , Xk1)
be the corresponding orthonormal frame of D. In this trivialisation, we can write

κn =
n∑

j,k,l=1

Ωl
jkel ⊗ ej ∧ ek .

Taking the trace, lowering the indices and using the isomorphism between D and n−1, we obtain

R ◦ κn =

k1∑
i=1

n∑
j=1

Ωj
jiXi . (4.2)

Proposition 4.1. Suppose (M,D, g) is an equinilpotentisable sub-Riemannian manifold with
a symmetry group H and a model space N = G/H that admits a Cartan geometry (OH(D), ω)
modelled on (g, h). Then, we have

∆−∆P = R ◦ κn .

Proof. Throughout, we use summation convention over repeated indices for i ∈ {1, . . . , k1} and
all other lowercase Latin indices ranging from 1 to n, and for α ∈ {n+ 1, . . . , n+ dimH}. The
computations are performed in an arbitrary trivialisation. As before, let (X1, . . . , Xn) be the
adapted orthonormal frame of TM corresponding to {e1, . . . , en}, let {en+1, . . . , en+dimH} be a
basis of h and let (θ1, . . . , θn) be the coframe dual to (X1, . . . , Xn).

From the formula for the curvature two-form Ω, we see that

Ωj
ji = (dθn)

j
ji +

1

2
[θ, θ]jji . (4.3)

Let us first consider the second term. We observe that [θh, θh] takes values in h and that [θn, θn]
consists of elements that have degree zero. Since the terms Ωj

ji(ej ⊗ θjn ∧ θin) have degree one, it
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follows that only the mixed commutators between θh and θn contribute to the expressions. By
using (2.5) and (2.6) as well as

θh = eα ⊗ θαh = eα ⊗ Γαj θ
j
n ,

we obtain, for Aα the matrix of the action of eα on n, that

1

2
[θ, θ]jji =

1

2
[θh, θn]

j
ji +

1

2
[θn, θh]

j
ji = [θh, θn]

j
ji =

=
[
eα ⊗ Γαkθ

k
n , el ⊗ θln

]j
ji

=
(
[eαΓαk , el]⊗ θkn ∧ θln

)j
ji

= Γαj [eα, ei]
j = Γαj (Aα)ji .

(4.4)

To deal with the first term, we recall that the soldering gauge θn is given by (3.2). The important
thing to remember about F is that it is an upper-block triangular matrix whose diagonal blocks
are identity matrices. Let f jk and f̃ jk be the components of the matrices F and F−1, respectively.
Then we can rewrite (3.2) as

θjn = f jkθ
k .

Thus, we have

dθjn = df jk ∧ θ
k + f jk dθk = Xl

(
f jk
)
θl ∧ θk − 1

2
f jkc

k
lsθ

l ∧ θs =

=

(
f̃ lpf̃

k
qXl

(
f jk
)
− 1

2
f jk f̃

l
pf̃

s
q c
k
ls

)
θpn ∧ θqn

and we deduce that

(dθn)
j
ji = f̃ lj f̃

k
i Xl

(
f jk
)
− f̃ li f̃kj Xl

(
f jk
)
− 1

2
f jk f̃

l
j f̃

s
i c
k
ls +

1

2
f jk f̃

l
i f̃

s
j c
k
ls .

The expression on the right hand side simplifies significantly due to F and F−1 being block
upper-triangular matrices with identity matrices as diagonal blocks. For the first term, we use
that the elements of the ith column of F and F−1 satisfy fki = f̃ki = δki to deduce that

f̃ lj f̃
k
i Xl

(
f jk
)

= f̃ ljδ
k
iXl

(
f jk
)

= f̃ ljXl

(
f ji
)

= f̃ ljXl

(
δji
)

= 0 ,

whereas for the second term, the property f jk = f̃ jk = 0 for k < j yields

f̃ li f̃
k
j Xl

(
f jk
)

= f̃ liXl

(
f jj
)

= f̃ liXl (n) = 0 .

For the last two terms, we exploit f jk f̃
l
j = δlk and the antisymmetry of the structure constants

to obtain that

(dθn)
j
ji = −1

2
f jk f̃

l
j f̃

s
i c
k
ls +

1

2
f jk f̃

l
i f̃

s
j c
k
ls = −1

2
f̃ si c

l
ls +

1

2
f̃ li c

s
ls = −f̃ si clls .

Using once more that f̃ki = δki as observed above, we find

(dθn)
j
ji = −clli . (4.5)

Inserting (4.4) and (4.5) into (4.3) gives

Ωj
ji = Γαj (Aα)ji − clli ,

and the claimed result follows from Theorem 1.1 as well as formulas (1.4) and (4.2).

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. Let us first prove the necessary part for the existence. The soldering
form ωn gives an isomorphism between D and n−1. If H ⊂ SO(k1) has a one-dimensional
representation, then there exists v ∈ n−1 such that Hv = ±v, and consequently Av = 0 for all
A ∈ h. Take X ∈ Γ(D) such that ωn(X) = v and complete it to an orthonormal adapted frame.
Then ω−1n (v) = X, AX = 0 and the vector field X does not appear in the local divergence term
of the formula (1.5).

It remains to prove that this condition is also sufficient. We fix an orthonormal adapted
frame {e1, . . . , en+dimH} in g where the first n elements form a basis of n and the last dimH
elements a basis of h. As before, we assume that {e1, . . . , ek1} forms an orthonormal basis of
the space n−1. Let

ker h = {v ∈ n−1 such that Av = 0 for all A ∈ h}.

We can suppose that ker h = span{ek0+1, . . . , ek1}, for some k0 ∈ {0, . . . , k1}, and that all vector
fields corresponding to ker h are divergence-free. In the following, we abuse notation and we use
g to refer to the extended metric on g with gij and gij, for i, j ∈ {1, . . . , n+ dimH}, denoting
the components of g and of the corresponding metric on the dual space g∗, respectively.

Since the spaces n−l are pairwise orthogonal and using the orthonormality of {e1, . . . , ek1},
we obtain, for i ∈ {1, . . . , k1} and k, l, s ∈ {1, . . . , n},

g

(
n∑
j=1

ej ⊗ ej ∧ ei, ek ⊗ el ∧ es
)

=
1

2

n∑
j=1

gjk
(
gjlgis − gjsgil

)
=

1

2

(
δlkδ

is − δskδil
)
. (4.6)

It follows that, for k 6= i,

g

(
n∑
j=1

ej ⊗ ej ∧ ei, ek ⊗ ek ∧ ei
)

= −g

(
n∑
j=1

ej ⊗ ej ∧ ei, ek ⊗ ei ∧ ek
)

=
1

2
.

and that the scalar product of
∑n

j=1 ej⊗ej∧ei with any other element of Hom(∧2n, g)+ is zero.
Therefore, we obtain

g

(
n∑
j=1

ej ⊗ ej ∧ ei, κ

)
=

1

2

n∑
j=1

Ωj
ji .

Proposition 4.1 shows that the coefficients in the difference between the local divergence terms
of ∆ and ∆P are given exactly by

∑n
j=1 Ωj

ji. Hence from ker h = span{ek0+1, . . . , ek1} and the

divergence-free assumption, we obtain
∑n

j=1 Ωj
ji = 0 for all i ∈ {k0 + 1, . . . , k1}. Thus, if we

consider the adapted Cartan connection associated with a normal module N which lies in the
orthogonal complement of the module

S = span

{
n∑
j=1

ej ⊗ ej ∧ ei for 1 ≤ i ≤ k0

}

then, due to the curvature function κ taking values in N , we have

n∑
j=1

Ωj
ji = 0 . (4.7)

The desired result would then follow from Proposition 4.1.
To complete the proof, we need to show that we can find such a normal module N . We

recall that a module is called normal if it is complement to ∂(Hom(n, g)+) in Hom(∧2n, g)+. We
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are looking for a normal module N ⊂ S⊥ such that N⊕ im ∂+ = Hom(∧2n, g)+ or, equivalently,
we need N to satisfy

S ⊂ N⊥ and N⊥ ⊕ (im ∂+)⊥ = Hom(∧2n, g)+ .

If S ∩ (im ∂+)⊥ = {0}, then we can take

N⊥ = S ⊕
(
S ⊕ (im ∂+)⊥

)⊥
.

Indeed, under this assumption, by construction, we have N⊥∩ (im ∂+)⊥ = {0} and a dimension
count shows that

dimN⊥ = dim Hom(∧2n, g)+ − dim(im ∂+)⊥.

Due to S and (im ∂+)⊥ being h-submodules, N is a h-submodule as well.
Let us now prove that S ∩ (im ∂+)⊥ = {0}. Since we can relabel the basis vectors ei for

i ∈ {1, . . . , k0}, without loss of generality, it suffices to prove that there exists some v ∈ im ∂+
such that

g

(
n∑
j=1

ej ⊗ ej ∧ e1, v

)
6= 0 .

As ker h = span{ek0+1, . . . , ek1}, there exists some h1 ∈ h where h1 · e1 =
∑n

j=1 α
jej has at least

one non-zero coefficient αi for i ∈ {2, . . . , k0}. Recall that due to the filtered algebra structure,
we have ∂e1 = 0, and by using formula (4.6), we obtain

g

(
n∑
j=1

ej ⊗ ej ∧ e1, ∂(h1 ⊗ ei)

)
= g

(
n∑
j=1

ej ⊗ ej ∧ e1,
n∑
l=1

αlel ⊗ e1 ∧ ei
)

= −αi 6= 0 ,

as required.

A natural question that comes to mind is whether the Cartan connection constructed by
Morimoto allows us to obtain the sub-Laplacian ∆P defined with respect to the Popp volume
via the discussed stochastic development procedure. As we have seen in the above proof, for
the stochastic development of the canonical sub-Riemannian diffusion on the model space to
have generator 1

2
∆P , the curvature function needs to satisfy

g

(
n∑
j=1

ej ⊗ ej ∧ ei, κ

)
= 0 . (4.8)

This means that if we impose Morimoto’s normalisation and the difference ∆ −∆P vanishes,
then

∑n
j=1 ej ⊗ ej ∧ ei ∈ im ∂. Since ∂ei = 0 for all i ∈ {1, . . . k1}, a necessary condition for the

latter is

∂

(
n∑
j=1

ej ⊗ ej
)
∧ ei = 0 for all i ∈ {1, . . . , k1} , (4.9)

which is easy to check in practice. In Section 4.2, we use condition (4.9) to establish that if
Morimoto’s normalisation condition is chosen for a free structure with two generators which
is not a 3D contact structure then we have ∆ − ∆P 6= 0. Nevertheless, Theorem 1.2 applies
in this situation and in the proof of Theorem 1.2 we construct an explicit Cartan connection
which gives rise to ∆ = ∆P .

Examples where a stochastic development of the canonical sub-Riemannian diffusion on the
model space never gives rise to the stochastic process with generator 1

2
∆P are easy to find.
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Let us consider a Goursat manifold, that is, a sub-Riemannian manifold (M,D, g) with growth
vector (2, 3, . . . , n− 1, n) for some n ∈ N with n ≥ 4. The associated Levy form L is a map

L : D−2 ×D−2 → D−3/D−2

defined pointwise as follows. For vectors v, w ∈ D−2q and vector fields Xv, Xw ∈ D−2 extending
v and w, respectively, we set

Lq(v, w) = [Xv, Xw](q) mod D−2q .

The forms Lq are skew-symmetric bilinear forms on odd-dimensional spaces and hence,
they must have non-trivial kernels Lq which form a line field L. The non-integrability condition
implies that L ⊂ D, see [9]. The presence of the characteristic line field L breaks the SO(2)
symmetry and leaves us with H = {id}. This implies that h = {0} and therefore, the h-part
ωh of the Cartan connection is trivial. Thus, no matter what Cartan connection we choose, the
generator of the developed stochastic process always ends up having vanishing first order term
and we are left with the sum of squares term.

There is a simple way to generate many explicit examples of this kind, because Goursat
distributions often arise as Cartan distributions in jet bundles. For instance, let us consider a
two-dimensional manifold M with a global frame (X1, X2) of vector fields. We define a contact
distribution D1 on the direct product M × S1 which is the span of the two vector fields

Y1 =
∂

∂θ1
, Y2 = cos θ1X1 + sin θ1X2 ,

where θ1 is a coordinate on S1. We then apply the same procedure a second time but this time
to the pair (Y1, Y2) of vector fields to obtain an Engel distribution D2 on M ×S1×S1 spanned
by the vector fields

Z1 =
∂

∂θ2
, Z2 = cos θ2Y1 + sin θ2Y2 ,

where θ2 is a coordinate on the newly added circle S1. We can carry on with this prolongation
procedure and at each iteration it takes a Goursat manifold of step n and gives us a Goursat
manifold of step n+ 1.

If we consider the upper half-plane R2
+ with coordinates (x, y) for y > 0 and the vector

fields

X1 = y
∂

∂x
, X2 = y

∂

∂y
,

then after applying the prolongation procedure twice, we find the two vector fields Z1, Z2 that
span D2 of R2

+ × T2. Assuming that Z1 and Z2 are orthonormal, we obtain a sub-Riemannian
structure on (R2

+ × T2,D2). Setting

Z3 = [Z1, Z2] and Z4 = [Z2, Z3] ,

we find

[Z2, Z4] = − (cos θ1 sin θ2 + cos θ2) (sin θ2Z2 + cos θ2Z3) + sin θ1 sin θ2Z4 .

In particular, we see that c121 = c222 = c323 = 0 whereas c424 6= 0 and hence, by formula (1.4), the
sub-Laplacian ∆P defined with respect to the Popp volume is not a sum of squares operator.

Remark 4.2. It should be underlined again that the local divergence terms appearing in (1.2)
and (1.5) are frame dependent. If in the previous example we take a rotated frame

U1 = cosϕZ1 − sinϕZ2 ,

U2 = sinϕZ1 + cosϕZ2 ,
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then the generator 1
2
∆ written in this frame would contain some non-trivial first order differen-

tial terms. However, notice that this new frame is not adapted. Indeed, if we write U3 = [U1, U2]
then

[U1, U3] = cosϕ U4 + smaller order terms ,

[U2, U3] = sinϕ U4 + smaller order terms ,

where smaller order terms are understood with respect to the underlying grading. It is impor-
tant to emphasise that the statement of Theorem 1.1 holds for adapted frames only and not
just any orthonormal frame. �

Despite this example, we want to stress that there are plenty of geometrically interesting
structures where all sub-representations ofH on n−1 have dimension strictly greater than one. In
particular, the existence of a Cartan connection which develops the canonical sub-Riemannian
diffusion on the model space to the stochastic process with generator 1

2
∆P is guaranteed by

Theorem 1.2, and we can follow the proof of Theorem 1.2 to construct such a Cartan connection.
This is demonstrated in Section 4.2 for free sub-Riemannian structures with two generators.

Before that, we illustrate the full Cartan machinery in Section 4.1 and show that in fact any
adapted Cartan connection on a 3D contact structure satisfies condition (4.8). As a result each
stochastic development of the canonical sub-Riemannian diffusion on the Heisenberg group has
generator 1

2
∆P .

It is worth noting that the Cartan connection constructed by Doubrov and Slovák in [12]
for step two free structures also satisfies condition (4.8).

4.1 The three-dimensional contact case

The discussions in this subsection establish the following result.

Proposition 4.3. For any Cartan connection on a 3D contact structure which is constructed
by using any normal module N , the stochastic development of the canonical sub-Riemannian
diffusion process on the 3D Heisenberg group has generator 1

2
∆P .

For 3D contact manifolds, n is the 3D Heisenberg Lie algebra, h is isomorphic to so(2) and g
is a semi-direct product of the two. The Lie algebra n admits a basis {e1, e2, e3} which satisfies

[e1, e2] = e3 ,

with the other commutators in n being zero. The first step is to determine the commutation
relations in the Lie algebra g. Let e4 be the only non-trivial element of h. Its action on n is
characterised by the Lie algebra derivation condition in (2.9), that is, we need to have

e4([X, Y ]) = [e4(X), Y ] + [X, e4(Y )]

for all X, Y ∈ n. To determine the infinitesimal action of e4, we start with its action on n−1
which is simply given by the infinitesimal rotation such that e4(e1) = −e2 and e4(e2) = e1. We
then apply the formula above to obtain the action of e4 on e3 which yields

e4(e3) = e4 ([e1, e2]) = [e4(e1), e2] + [e1, e4(e2)] = 0 .

In particular, we can view the action of e4 as the adjoint action on the Lie algebra n ⊂ g. This
gives rise to the following structure equations on g

[e1, e2] = e3 , [e4, e1] = −e2 , [e4, e2] = e1 , (4.10)

with the remaining commutators being zero.
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If we take X3 to be the Reeb field and if (X1, X2) is an orthonormal frame of the contact
distribution, then we have the structure equations

[X1, X2] = X3 + c112X1 + c212X2 ,

[X3, X1] = c131X1 + c231X2 ,

[X3, X2] = c132X1 + c232X2 ,

or, by duality, for the coframe (θ1, θ2, θ3) dual to (X1, X2, X3), we obtain

dθ1 = −c112θ1 ∧ θ2 − c113θ1 ∧ θ3 − c123θ2 ∧ θ3 ,
dθ2 = −c212θ1 ∧ θ2 − c213θ1 ∧ θ3 − c223θ2 ∧ θ3 ,
dθ3 = −θ1 ∧ θ2 .

We now first construct one particular Cartan connection which gives rise to ∆ = ∆P in
order to illustrate the whole machinery as well as the idea of the proof of Theorem 1.2. A
Cartan connection ω on OH(D) can be defined as

ω =
4∑
i=1

ei ⊗ ωi .

The first three one-forms ω1, ω2, ω3 are components of the the soldering form ωn, while ω4 is
ωh. We can express these forms in terms of the coframe (θ1, θ2, θ3), some coefficients f 1

3 , f
2
3 and

the Christoffel symbols defined in Section 3 as follows

θin = θi + f i3θ
3 , for i ∈ {1, 2} ,

θ3n = θ3 ,

θ4h = Γ4
1θ

1
n + Γ4

2θ
2
n + Γ4

3θ
3
n .

Note that the coefficients f 1
3 and f 2

3 are nothing but the non-trivial off-diagonal components of
the matrix-valued function F introduced in Section 3. They arise because the soldering form
is not canonically defined. The curvature two-form Ω corresponding to ω is given by

Ω =
4∑
i=1

ei ⊗ Ωi ,

where

Ω1 = dθ1n + θ4h ∧ θ2n ,
Ω2 = dθ2n − θ4h ∧ θ1n ,
Ω3 = dθ3n + θ1n ∧ θ2n ,
Ω4 = dθ4h ,

follows from (2.4). We determine the components Ωi
jk by putting the formulae for the exterior

differentials dθ1, dθ2 and dθ3 into the above expressions and by reading off the coefficients in
front of θjn ∧ θkn . In particular, we find

Ω2
12 = −c112 − f 1

3 + Γ1
4 , Ω2

32 = f 1
3 ,

Ω1
21 = c212 + f 2

3 − Γ2
4 , Ω1

31 = −f 2
3 .

The condition (4.7) implies that the Christoffel symbols of the Cartan connection constructed
in the proof of Theorem 1.2 satisfy Γ1

4 = c112 and Γ4
2 = c212. Therefore, the difference ∆ − ∆P

does indeed vanish.
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An interesting property of 3D contact structures is that we have ∆−∆P = 0 for any choice
of normal module N . We argue as follows. As a consequence of the relations (4.10), the basic
differentials are given by

∂e1 = −e3 ⊗ e2 ,
∂e2 = e3 ⊗ e1 ,
∂e3 = 0 ,

∂e4 = e2 ⊗ e1 − e1 ⊗ e2 ,
∂e3 = −e1 ∧ e2 ,
∂e1 = ∂e2 = 0 .

Recall that deg e1 = deg e2 = −1, deg e3 = −2, deg e4 = 0 and the opposite signs for the upper
index. Therefore, the differential preserves the grading of the spaces Hom(∧kn, g).

To verify condition (4.8), we only need to compute the components of degree one. We find
that

∂
(
e4 ⊗ e1

)
= −e1 ⊗ e2 ∧ e1 ,

∂
(
e4 ⊗ e2

)
= e2 ⊗ e1 ∧ e2 ,

∂
(
e1 ⊗ e3

)
= −e3 ⊗ e2 ∧ e3 ,

∂
(
e2 ⊗ e3

)
= e3 ⊗ e1 ∧ e3 ,

which shows that on degree one forms the Lie algebra differential ∂ is a bijection. Hence,
any normal module has no degree one components as it is transversal to im ∂. Since the
curvature function κ takes values in the normal module, it follows that also κ has no degree
one components, and condition (4.8) is satisfied automatically.

In particular, the Cartan connection built using Morimoto’s normalisation agrees with the
Cartan connection constructed in the proof of Theorem 1.2.

4.2 Free sub-Riemannian structures with two generators

The Cartan connection that we construct in the proof of Theorem 1.2 looks particularly simple
in the case of free structures with two generators. For these structures, the nilpotent Lie algebra
n is a free nilpotent Lie algebra with generators e1, e2, and the Lie algebra h is generated by a
single element e0.

We recall that in the proof of Theorem 1.2 we construct the normal moduleN by considering
∂(Hom(n, g)+) and by replacing certain k1 elements from ∂ Hom(n−1, h) with

∑n
j=1 ej ⊗ ej ∧ ei

for i ∈ {1, . . . , k1}. If we have only two generators, that is k1 = 2, then

S = span

{
n∑
j=1

ej ⊗ ej ∧ e1,
n∑
j=1

ej ⊗ ej ∧ e2
}

and
dim (∂ Hom(n−1, h)) = dimS = 2 .

Following the construction in the proof of Theorem 1.2, we take the normal module N to be
orthogonal to

span

{
n∑
j=1

ej ⊗ ej ∧ e1,
n∑
j=1

ej ⊗ ej ∧ e2, ∂ Hom (n−i−1, n−i) for 1 ≤ i ≤ m− 1

}
.
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This module is not the only possible choice for generating the operator ∆P , as the following
example shows. Let us consider structures with growth vector (2, 3, 5), that is, the space n is
spanned by e1, e2, e3, e4, e5 and we have the following structure equations on g = n⊕ h

[e1, e2] = e3 , [e1, e3] = e4 , [e2, e3] = e5 ,

[e0, e1] = −e2 , [e0, e4] = −e5 ,
[e0, e2] = e1 , [e0, e5] = e4 .

The differentials of degree one components are given, for ei ⊗ ej ∧ ek abbreviated to ejki , by

∂
(
e0 ⊗ e1

)
= −e211 + e415 − e514 ,

∂
(
e0 ⊗ e2

)
= e122 + e425 − e524 ,

∂
(
e1 ⊗ e3

)
= −e233 − e121 ,

∂
(
e2 ⊗ e3

)
= e133 − e122 ,

∂
(
e3 ⊗ e4

)
= e144 + e245 − e133 ,

∂
(
e3 ⊗ e5

)
= e154 + e255 − e233 .

Then we can take the normal module N to be orthogonal to

span
{
e121 , e

12
2 , e

13
3 , e

23
3 , e

i4
4 + ei55 for i = 1 and i = 2

}
because this span contains S as a submodule.

We close by noting that a simple calculation establishes

∂

(
5∑
j=1

ej ⊗ ej
)
∧ e1 = −e5 ⊗ e3 ∧ e2 ∧ e1 6= 0 . (4.11)

Thus, the condition (4.9) is not satisfied, which implies that under Morimoto’s normalisation
the operator ∆ does not coincide with ∆P . Moreover, we can use the observation (4.11) to show
that the normalisation of Morimoto gives ∆−∆P 6= 0 for any free structure with two generators
and step strictly greater than two. Indeed, for higher step structures, for i ∈ {1, . . . , 5}, the
expressions for the ∂ei agree with the ones in the (2, 3, 5) case, whereas the expressions for the
∂ei only differ from the ones in the (2, 3, 5) case by higher order terms. Hence, the differential

∂

(
n∑
j=1

ej ⊗ ej
)
∧ e1

agrees with (4.11) modulo some terms involving elements from higher steps. In particular, it
does not vanish.
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