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Abstract: Kinetic equations describe the limiting deterministic evolution of properly scaled systems
of interacting particles. A rather universal extension of the classical evolutions, that aims to take into
account the effects of memory, suggests the generalization of these evolutions obtained by changing
the standard time derivative with a fractional one. In the present paper, extending some previous
notes of the authors related to models with a finite state space, we develop systematically the idea of
CTRW (continuous time random walk) modelling of the Markovian evolution of interacting particle
systems, which leads to a more nontrivial class of fractional kinetic measure-valued evolutions, with
the mixed fractional order derivatives varying with the change of the state of the particle system, and
with variational derivatives with respect to the measure variable. We rigorously justify the limiting
procedure, prove the well-posedness of the new equations, and present a probabilistic formula for
their solutions. As the most basic examples we present the fractional versions of the Smoluchovski
coagulation and Boltzmann collision models.

Keywords: fractional kinetic equations; interacting particles; Caputo-Dzherbashyan fractional derivative;
continuous time random walks (CTRW)

MSC: 34A08; 35S15; 45G15

1. Introduction

Kinetic equations are measure-valued equations describing the dynamic law of large
number (LLN) limit of Markovian interacting particle systems when the number of particles
tends to infinity. The resulting nonlinear measure-valued evolutions can be interpreted
probabilistically as nonlinear Markov processes, see [1]. In case of discrete state spaces,
the set of probability measures coincides with the simplex Σn of sequences of nonnegative
numbers x = (x1, · · · , xn) such that ∑j xj = 1, where n can be any natural number, or
even n = ∞. The corresponding kinetic equations (in the case of stationary transitions) are
ordinary differential equations (ODEs) of the form

ẋ = xQ(x)⇐⇒ ẋi = ∑
k

xkQki(x) for all i, (1)

where Q is a stochastic or Kolmogorov Q-matrix (that is, it has non-negative non-diagonal
elements and the elements on each row sum up to one) depending Lipschitz continuously
on x. Let Xt(x) denote the solution of Equation (1) with the initial condition x.

It is seen that evolution (1) is a direct nonlinear extension of the evolution of the
probability distributions of a usual Markov chain, which is given by the equation ẋ = xQ
with a constant Q-matrix Q.
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Remark 1. One can show (see [1]) that any ordinary differential equation (with a Lipschitz r.h.s.)
preserving the simplex Σn has form (1) with some function Q(x).

Instead of looking at the evolution of the distributions, one can look alternatively at
the evolution of functions F(x, t) = F(Xt(x)) of these distributions, which clearly satisfy
the equation

Ḟ(x, t) = (x, Q(x)∇F(x, t)) = ∑
k,i

xkQki(x)
∂F(x, t)

∂xi
. (2)

On the language of the theory of differential equations, one says that ODEs (1) are the
characteristics of the linear first order partial differential Equation (2).

In case of a usual Markov chain (with a constant Q) it is seen that the set of linear
functions F is preserved by Equation (2). In fact if, F(x) = ( f , x) with some vector f ∈ Rn ,
then F(x, t) = F(Xt(x)) = ( ft, x) with ft satisfying the equation ḟ = Q f , which is dual to
the equation ẋ = xQ. For nonlinear case, this conservation of linearity does not hold.

More generally (see [1]), for a system of mean-field interacting particles given by
a family of operators Aµ, which are generators of Markov processes in some Euclidean
space Rd depending on probability measures µ on Rd as parameters and having a common
core, the natural scaling limit of such a system, as the number of particles tends to infinity
(dynamic LLN), is described by the kinetic equations, which are most conveniently written
in the weak form

( f , µ̇t) = (Aµt f , µt), (3)

where f is an arbitrary function from the common core of the operators Aµ.

Remark 2. In Equation (3) we stress explicitly in the notation that µt depend on time t (to
distinguish from time independent test function f ), while for the standard ODE (1) we have omitted
this dependency for brevity.

The corresponding generalization of Equation (2) is the following differential equation
in variational derivatives (see [1]):

∂F(µ, t)
∂t

=
∫

Rd

(
Aµ

δF(µ, t)
δµ(.)

)
(z)µ(dz). (4)

The most studied situation is the case with Aµ being the diffusion operators, in
which case the nonlinear evolution given by (3) is referred to as the nonlinear diffusion or
the McKean-Vlasov diffusion. Other important particular cases include nonlinear Lévy
processes (when Aµ generate Lévy processes), nonlinear stable processes (when Aµ generate
stable or stable-like processes) and various cases with jump-type process generated by Aµ

that include the famous Boltzmann and Smoluchovski equations.
All these equations are derived as the natural scaling limits of some random walks on

the space of the configurations of many-particle systems.
Standard diffusions are known to be obtained by the natural scaling limits of simple

random walks. For instance, in this way one can obtain the simplest diffusion processes
with variable drift governed by the diffusion equations

∂u
∂t

= ∆u + (b(x),∇u), u = u(t, x), (5)

where ∆ and ∇ are operators acting on the x variable.
When the standard random walks are extended to more general CTRWs (continuous

time random walks), characterised by the property that the random times between jumps
are not exponential, but with tail probabilities decreasing by a power law, their limits turn
to non Markovian processes described by the fractional evolutions. The fractional equations
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were introduced into physics precisely via such limits, see [2]. For instance, instead of
Equation (5), the simplest equation that one can obtain via a natural scaling is the equation

Dα
a+?u = ∆u + (b(x),∇u), u = u(t, x), (6)

where Dα
a+? is the Caputo-Dzherbashyan fractional derivative of some order α (see [3,4]).

Now the question arises: what will be the natural fractional version of the kinetic
evolutions (3) and (4)? One way of extension would be to write the Caputo-Dzherbashyan
fractional derivative of some fixed order α instead of the usual one in (3), as was done,
e.g., in [5]. However, if one follows systematically the idea of scaling from the CTRW
approximation, and take into account the natural possibility of different waiting times for
jumps from different states (as for usual Markovian approximation), one would obtain an
equation of a more complicated type, with the fractional derivatives of position-dependent
order. In [6] this derivation was performed for the case of a discrete state space, that is for a
nonlinear Markov chain described by Equation (1), leading to the fractional generalization
of Equation (2) of the form

D(α,x)
t−? F(x, s) = (x, Q(x)∇F(x, s)), (7)

where α = (α1, · · · , αn) is the vector describing the power laws of the waiting times in
various states {1, · · · , n} and D(x,α)

t−? is the right Caputo-Dzherbashyan fractional derivative
of order (x, α) depending on the position x and acting on the time variable t.

The aim of the present paper is to derive the corresponding limiting equation in the
general case, which, instead of (4) (and generalising (7)), writes down as the equation

D(α,µ)
t−? F(µ, s) =

∫
Rd

(
Aµ

δF(µ, s)
δµ(.)

)
(z)µ(dz), (8)

where α is a function on Rd and

(α, µ) =
∫

Rd
α(x)µ(dx).

We also supply the well-posedness of this equation and the probabilistic formula for
the solutions. We will perform the derivation only in the case of integral operators Aµ, that
is probabilistically for the underlying Markov processes of pure jump type.

The content of the paper is as follows. In the next section, we recall some basic
notations and facts from the theory of measure-valued limits of interacting particle systems.
In Section 3 we obtain the dynamic LLN for interacting multi-agent systems for the case of
non-exponential waiting times with the power tail distributions. In Section 4 we formulate
our main results for the new class of fractional kinetic measure-valued evolutions, with
the mixed fractional-order derivatives and with variational derivatives with respect to
the measure variable. In Sections 5–7, we present proofs of our main results, formulated
in the previous section. Namely, we justify rigorously the limiting procedure, prove the
well-posedness of the new equations and present a probabilistic formula for their solutions.

In Section 8 we extend the CTRW modeling of interacting particles to the case of binary
or even more general k-ary interactions.

In the next two Sections 9 and 10, we present examples of the kinetic equations for
binary interaction: the fractional versions of the Smoluchovski coagulation and Boltzmann
collision models

In Appendices A–C we present auxiliary results we need, namely, the standard functional
limit theorem for the random-walk-approximation; some results on time-nonhomogeneous
stable-like subordinators; and a standard piece of theory about Dynkin’s martingales in a
way tailored to our purposes.

The bold letters E and P will be used to denote expectation and probability.
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All general information on fractional calculus that we are using can be found in the
books [7–10].

2. Preliminaries: General Kinetic Equations for Birth-and-Death Processes
with Migration

Let us recall some basic notations and facts from the standard measure-valued-limits
of interacting processes.

Let X be a locally compact metric space. For simplicity and definiteness, one can take
X = Rd or X = R+ (the set of positive numbers), but this is not important. Denoting by
X0 a one-point space and by X j the powers X × · · · × X (j times), we denote by X their
disjoint union X = ∪∞

j=0X j. In applications, X specifies the state space of one particle

and X = ∪∞
j=0X j stands for the state space of a random number of similar particles. We

denote by Csym(X ) the Banach spaces of symmetric (invariant under all permutations
of arguments) bounded continuous functions on X and by Csym(Xk) the corresponding
spaces of functions on the finite power Xk. The space of symmetric (positive finite Borel)
measures is denoted byMsym(X ). The elements ofMsym(X ) and Csym(X ) are interpreted
as the (mixed) states and observables for a Markov process on X . We denote the elements of
X by bold letters, say x, y.

Reducing the set of observables to Csym(X ) means effectively that our state space is
not X (or Xk) but rather the quotient space SX (or SXk resp.) obtained by factorization
with respect to all permutations, which allows the identifications Csym(X ) = C(SX ) and
Csym(Xk) = C(SXk).

For a function f on X we shall denote by f⊕ the function on X defined as f⊕(x) =
f (x1) + · · ·+ f (xm) for any x = (x1, · · · , xm).

A key role in the theory of measure-valued limits of interacting particle systems is
played by the scaled inclusion SX toM(X) given by

x = (x1, ..., xl) 7→ h(δx1 + · · ·+ δxl ) = hδx, (9)

which defines a bijection between SX and the set hM+
δ (X) of finite sums of h-scaled

Dirac’s δ-measures, where h is a small positive parameter. If a process under consideration
preserves the number of particles N, then one usually chooses h = 1/N.

Remark 3. Let us stress that we are using here a non-conventional notation: δx = δx1 + · · ·+ δxl ,
which is convenient for our purposes.

Clearly each f ∈ Csym(X ) is defined by its components (restrictions) f k on Xk so that
for x = (x1, ..., xk) ∈ Xk ⊂ X , say, we can write f (x) = f (x1, ..., xk) = f k(x1, ..., xk). Similar
notations for the components of measures from M(X ) will be used. In particular, the
pairing between Csym(X ) andM(X ) can be written as

( f , ρ) =
∫

f (x)ρ(dx) = f 0ρ0 +
∞

∑
n=1

∫
f (x1, ..., xn)ρ(dx1 · · · dxn),

f ∈ Csym(X ), ρ ∈ M(X ).

A mean-field dependent jump-type process of particle transformations (with a possible
change in the number of particles) or a mean-field dependent birth-and-death process with
migration, can be specified by a continuous transition kernel

P(µ, x, dy) = {P(µ, x, dy1 · · · dym), m = 0, · · · , m̄} (10)

from X to SX depending on a measure µ ∈ M(X ) as a parameter.

Remark 4. For brevity we write (10) in a unified way including m = 0. More precisely, the
transitions with m = 0 describe the death of particles and are specified by some rates P∅(µ, x).
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We restrict attention to finite m̄ in order not to bother with some irrelevant technicalities
arising otherwise.

To exclude fictitious jumps one usually assumes that P(µ, x, {x}) = 0 for all x, which
we shall do as well.

By the intensity of the interaction at x we mean the total mass

P(µ, x) =
∫
X

P(µ, x, dy) =
m̄

∑
m=0

∫
Xm

Pm(µ, x, dy1 · · · dym).

Supposing that any particle, randomly chosen from a given set of n particles, can be
transformed according to P, leads to the following generator of the process on X

(G f )(x1, ..., xn) = ∑
i

∫
( f (x1, . . . , xi1 , y, xi+1, · · · , xn)− f (x1, ..., xn))P(hδx, xi, dy)

=
m̄

∑
m=0

∑
i

∫
( f (x1, · · · , xi1 , y1, · · · , ym, xi+1, · · · , xn)− f (x1, ..., xn))Pm(hδx, xi, dy1 · · · dym).

By the standard probabilistic interpretation of jump processes (see, e.g., [1,11]), the
probabilistic description of the evolution of a pure jump Markov process on X specified
by the generator G (if this process is well defined) is as follows. Starting from a state
x = (x1, · · · , xn), one attaches to each xi a random P(hδx, xi)-exponential waiting time σi
(exponential clock). That is, P(σi > t) = exp{−P(hδx, xi)t} for all t > 0. Then the minimum
σ of all these times is again an exponential random time, namely Ah(x)-exponential waiting
time with

Ah(x) = P⊕(hδx, x) = ∑
i

P(hδx, xi) =
1
h

∫
X

P(hδx, y)(hδx)(y). (11)

When σ rings, a particle at xi that makes a transition, is chosen according to the proba-
bility law P(hδx, xi)/Ah(x), and then it makes an instantaneous transition to y according
to the distribution P(hδx, xi, dy)/P(hδx, xi). Then this procedure repeats, starting from the
new state (x \ {xi}) ∪ y.

By the transformation (9), we transfer the process generated by G on SX to the process
on hM+

δ (X) with the generator

GhF(hδx) = ∑
i

∫
X
[F(hδx − hδxi + hδy)− F(hδx)]P(hδx, xi, dy)

=
∫
X

∫
X

1
h
[F(hδx − hδz + hδy)− F(hδx)]P(hδx, z, dy)hδx(dz). (12)

Then it is seen that, as h → 0 (and for smooth F), these generators converge to
the operator

GlimF(µ) =
∫

X

∫
X

((
δF(µ)
δµ(.)

)⊕
(y)− δF(µ)

δµ(x)

)
P(µ, x, dy)µ(dx). (13)

This makes it plausible to conclude (for detail see [1]) that, as h→ 0 (and under mild
technical assumptions), the process generated by (12) converges weakly to a deterministic
process on measures generated by (13), so that this process is given by the solution of a
kinetic equation of type (3), that is,

( f , µ̇t) =
∫

X

∫
X
( f⊕(y)− f (x))µt(dx)P(µt, x, dy). (14)
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Denoting by Mµ(t) the solution to Equation (14) with the initial condition µ we can
rewrite evolution (14) equivalently in terms of the functions F(µ, t) = F(Mµ(t)) as the
equation of type (4):

∂F(µ, t)
∂t

=
∫

X

∫
X

((
δF(µ, t)

δµ(.)

)⊕
(y)− δF(µ, t)

δµ(x)

)
P(µ, x, dy)µ(dx). (15)

Notice that (14) is obtained from (15) by choosing F to be a linear function F(µ) = ( f , µ).
Alternatively, and more relevant for the extension to CTRW, we can obtain the same limit

from a discrete Markov chain. Namely, let us define a Markov chain on X with the transition
operator Uτ such that, in a state x = (x1, · · · , xn), a jump from xi occurs with the probability
τP(hδx, xi)/Ah(x) and it is distributed according to the distribution P(hδx, xi, dy)/P(hδx, xi),
and with the probability 1− τAh(x) the process remains in x. In terms of the measures hδx
the jumps are described by the transitions from hδx to hδx − hδxi + hδy.

We set h = τ to link the scaling in time with the scaling in the number of particles. Let
us see what happens in the limit h = τ → 0. Namely, we are interested in the weak limit of
the chains with transitions [Uτ ][t/τ], where [t/τ] denotes the integer part of the number
t/τ, as τ → 0. It is well known (see, e.g., Theorem 19.28 of [11] or Theorem 8.1.1 of [12])
that if such a chain converges to a Feller process, then the generator of this limiting process
can be obtained as the limit

ΛF = lim
τ→0

1
τ
(Uτ F− F). (16)

One sees directly that this limit coincides with (13).
In the simplest case when the number of particles is preserved by all transforma-

tions, that is when only m = 1 is allowed in (10) (that is, only migration can occur), the
Equations (14) and (15) simplify to the equations

( f , µ̇t) =
∫

X2
( f (y)− f (x))µt(dx)P(µt, x, dy), (17)

and, respectively

∂F(µ, t)
∂t

=
∫

X2

(
δF(µ, t)
δµ(y)

− δF(µ, t)
δµ(x)

)
P(µ, x, dy)µ(dx). (18)

3. CTRW Modeling of Interacting Particle Systems

Our objective is to obtain the dynamic LLN for interacting multi-agent systems for the
case of non-exponential waiting times with the power tail distributions. As one can expect,
this LLN will not be deterministic anymore.

We shall assume that the waiting times between jumps are not exponential, but have
a power-law decay. Recall that a positive random variable σ with a probability law P on
[0, ∞) is said to have a power tail of index α if

P(σ > t) ∼ κ
tα

for large t, that is the ratio of the l.h.s. and the r.h.s tends to 1, as t → ∞. Here κ > 0 is a
positive constant.

As the exponential tails, the power tails are invariant under taking minima. Namely, if
σj, j = 1, · · · , d, are independent variables with a power tail of indices αi and normalising
constants κi, then σ = min(σ1, · · · , σd) is clearly a variable with a power tail of index
α = α1 + · · ·+ αd and normalising constant κ1 · · ·κd.

In full analogy with the case of exponential times of the discussion above, let us
assume that the waiting time of the agent at xi to decay has the power tail with the index
α(xi) = ατP(xi) with some fixed α ∈ (0, 1). For simplicity, assume that the normalising
constant κ equals 1. Consequently, the minimal waiting time of all n points in a collection



Fractal Fract. 2022, 6, 49 7 of 19

x = (x1, · · · , xn) will have the probability law Qx(dr) with a tail of the index ατAτ(x), with
Aτ given by (11):

Aτ(x) = P⊕(τδx, x) = ∑
i

P(τδx, xi) =
1
τ

∫
X

P(τδx, y)(τδx)(y).

Our process with power tail waiting times can thus be described probabilistically as
follows. Starting from any time and current state x, we wait a random waiting time σ,
which has a power tail with the index ατAτ(x). Then everything goes as in the above
case of exponential waiting times. Namely, when σ rings, a particle at xi that makes a
transition is chosen according to the probability law P(τδx, xi)/Aτ(x), and then it makes an
instantaneous transition to y according to the distribution P(τδx, xi, dy)/P(τδx, xi). Then
this procedure repeats, starting from the new state x \ {xi} ∪ y.

In order to derive the LLN in this case, let us lift this non-Markovian evolution
on the space of subsets x = (x1, · · · , xn) or the corresponding measures hδx to the dis-
crete time Markov chain on hM+

δ (X)× R+ by considering the total waiting time s as an
additional space variable and additionally making the usual scaling (by τ1/ατAτ(x)) of
the waiting time for the jumps of CTRW (see Proposition A1 from Appendix A). Thus
we consider the Markov chain (Mτ

µ,s, Sτ
µ,s)(kτ) on hM+

δ (X) × R+ with the jumps oc-
curring at discrete times kτ, k ∈ N, such that the process at a state (x, s) at time τk
jumps to (x \ {xi} ∪ y, s + τ1/ατAτ(x)r), or equivalently a state (hδx, s) jumps to the state
(h(δx − δxi + δy), s + τ1/ατAτ(x)r), where xi and y are chosen as above (that is, xi according
to the law P(τδx, xi)/Aτ(x) and y according to the law P(τδx, xi, dy)/P(τδx, xi)) and r is
distributed by Qx(dr).

As above, we link the scaling of measures with the scaling of time by choosing h = τ,
which we set from now on. Then the transition operator of the chain (Mτ

µ,s, Sτ
µ,s)(kτ) is

given by

Uτ F(µ, s) =
∫

R+

∫
X

Qx(dr)∑
i

P(τδx, xi, dy)
1

Aτ(x)
F
(

µ− τδxi + τδy, s + τ1/ατAτ(x)r
)

, (19)

for µ = τδx = τ ∑j δxj .
What we are interested in is the value of the first coordinate Mτ

µ,s evaluated at the
random time kτ such that the total waiting time Sτ

x,s(kτ) reaches t, that is, at the time

kτ = Tτ
µ,s(t) = inf{mτ : Sτ

µ,s(mτ) ≥ t},

so that Tτ
µ,s is the inverse process to Sτ

µ,s. Thus the scaled mean-field interacting system of
particles with a power tail waiting time between jumps is the (non-Markovian) process

M̃τ
µ,s(t) = Mτ

µ,s(T
τ
µ,s(t)). (20)

This process can also be called the scaled CTRW of mean-field interacting particles (with
birth-and-death and migration).

4. Main Results

Let us see first of all what happens with the process (Mτ
µ,s, Sτ

µ,s)(kτ) in the limit
h = τ → 0. Namely, we are interested in the weak limit of the chains with transitions
[Uτ ][t/τ], where [t/τ] denotes the integer part of the number t/τ, as τ → 0.

As above, if such a chain converges to a Feller process, then the generator of this
limiting process can be obtained as the limit

ΛF = lim
τ→0

1
τ
(Uτ F− F). (21)
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Lemma 1. Assume that F(µ, t) has a bounded derivative in t and a bounded variational derivative
in µ. If µ = τδx converges weakly to some measure, which we shall also denote by µ with some
abuse of notation, as τ → 0, then

ΛF(µ, s) = lim
τ→0

1
τ
(Uτ F− F)(µ, s) = α(P, µ)

∫ ∞

0

F(µ, s + r)− F(µ, s)
r1+α(P,µ)

dr

+
∫
X

∫
X

P(µ, z, dy)
(P, µ)

µ(dz)

[(
δF

δµ(.)

)⊕
(y)− δF

δµ(z)

]
, (22)

where (P, µ) denotes the usual paring of the function P with the measure µ (but taking into account
the additional dependence of P on µ):

(P, µ) =
∫

X
P(µ, x)µ(dx).

Proposition 1. Suppose P(µ, x, dy) is a weakly continuous transition kernel fromM(X)× X to
X , that is, the measures P(µ, x, dy) depend weakly continuous on µ, x. Moreover let the intensity
P(µ, x) be everywhere strictly positive and uniformly bounded. Finally, the transition kernel is
assumed to be subcritical meaning that

m̄

∑
m=0

(m− 1)
∫

Xm
P(µ, x, dy1 · · · dym) ≤ 0. (23)

Then the Markov process (Mµ,s(t), Sµ,s(t)) inM(X)× R+ such that the first coordinate
does not depend on s (it could be well denoted shortly Mµ(t)), is deterministic, and solves the kinetic
equation of type (14), namely the equation

( f , µ̇t) =
1

(P, µ)

∫
X

∫
X
( f⊕(y)− f (x))µt(dx)P(µt, x, dy), (24)

and the second coordinate is a time nonhomogeneous stable-like subordinator generated by the time
dependent family of generators

Λt
stg(s) = α(P, µ(t))

∫ ∞

0

g(s + r)− g(s)
r1+α(P,µ(t))

dr (25)

(see Appendix B for the proper definition of this process), is well defined and is generated by operator (22).
Moreover, the discrete time Markov chains (Mτ

µ,s, Sτ
µ,s)(kτ) given by (19) converge weakly to

the Markov process (Mµ,s(t), Sµ,s(t)), so that, in particular, for any continuous bounded function F,

lim
τ→0, kτ→t

EF
(
(Mτ

µ,s, Sτ
µ,s)(kτ)

)
= EF

(
(Mµ,s, Sµ,s)(t)

)
. (26)

Remark 5. The assumption of boundedness of the intensity P(x) is made for simplicity and can
be weakened essentially. Effectively one needs here the well-posedness of the kinetic Equation (24),
which is established under rather general assumptions, see [1].

Finally we can formulate our main result.

Theorem 1. Under the assumptions of Proposition 1, the marginal distributions of the scaled
CTRW of mean-field interacting particles (20) converge to the marginal distributions to the process

M̃µ,s(t) = Mµ,s(Tµ,s(t)), (27)

where Tµ,s(t) is the random time when the stable-like process generated by (25) and started at s
reaches the time t,
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Tµ,s(t) = inf{r : Sµ,s(r) ≥ t},

that is, for a bounded continuous function F(µ), it holds that

lim
τ→0

EF(M̃τ
µ,s(t)) = EF(M̃µ,s(t)). (28)

Moreover, for any smooth function F(µ) (with continuous bounded variational derivative), the
evolution of averages F(µ, s) = EF(M̃µ,s(t)) satisfies the mixed fractional differential equation

Dα(P,µ)
t−∗ F(µ, s) =

∫
X

∫
X

P(z, dy)
(P, µ)

µ(dz)

[(
δF

δµ(.)

)⊕
(y)− δF

δµ(z)

]
, s ∈ [0, t] (29)

with the terminal condition F(µ, t) = F(µ), where the right fractional derivative acting on the
variable s ≤ t of F(µ, s) is defined as

Dα(P,µ)
t−∗ g(s) = α(P, µ)

∫ t−s

0

g(s + y)− g(s)
y1+α(P,µ)

dy + α(P, µ)(g(t)− g(s))
∫ ∞

t−s

dy
y1+α(P,µ)

. (30)

It is not difficult to extend this statement to the functional level, namely by deriving
the convergence in distribution of the scaled CTRW (20) to the process (27), but we shall
not plunge into related technical details here.

5. Proof of Lemma 1

We have
1
τ
(Uτ F− F)(µ, s)

=
1
τ

∫
R+

∫
X

Qx(dr)∑
i

P(xi, dy)
1

A(x)

[
F
(

µ− τδxi + τδy, s + τ1/ατA(x)r
)
− F(µ, s)

]
=

1
τ

∫
X

Qx(dr)
[

F
(

µ, s + τ1/ατA(x)r
)
− F(µ, s)

]
+

1
τ

∫
X

∑
i

P(xi, dy)
1

A(x)
[
F
(
µ− τδxi + τδy, s

)
− F(µ, s)

]
+ R, (31)

where the error term is

R =
1
τ

∫
R+

∫
X

Qx(dr)∑
i

P(xi, dy)
1

A(x)

[
gi,y(µ, s + τ1/ατA(x)r)− gi,y(µ, s)

]
,

with
gi,y(µ, s) = F

(
µ− τδxi + τδy, s

)
− F(µ, s).

Assuming that τδx converges to some measure, which we also denote by µ, as τ → 0,
we can conclude by (A3) that the first term in (31) converges, as τ → 0, to

α(P, µ)
∫ ∞

0

F(µ, s + r)− F(µ, s)
r1+α(P,µ)

dr,

whenever F is continuously differentiable in s. By the definition of the variational derivative,
the second term in (31) converges, as τ → 0, to

∫
X

∫
X

P(z, dy)
(P, µ)

µ(dz)

[(
δF

δµ(.)

)⊕
(y)− δF

δµ(z)

]
.
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To estimate the term R we note that if F has a bounded derivative in t and a bounded
variational derivative in µ, then g(x) is uniformly bounded by τ and the derivative |∂g/∂s|
is uniformly bounded. Hence by (A3) it follows that R→ 0, as τ → 0 implying (22).

6. Proof of Proposition 1

By Theorem 6.1 of [1], under the assumptions of the Proposition, the kinetic Equation (24)
is well posed in M(X). Consequently, in view of the discussion of stable-like subordi-
nators from Appendix B, the process (Mµ,s(t), Sµ,s(t)) in M(X) × R+, as described in
Proposition 1, is well defined.

Let us show that, for smooth functions F(µ, s) such that F(µ, 0) = 0, the generator
of this process is indeed given by formula (22). To simplify formulas we shall sometimes
consider F(µ, s) to be defined for all s so that F(µ, s) = 0 for all s ≤ 0. By (A10), the
transition operators TtF(µ, s) = EF

(
(Mµ,s, Sµ,s)(t)

)
of this process are given by the formula

TtF(µ, s) =
∫ ∞

0
F(Mµ,s(t), S)Gt,0(s− S)dS, (32)

where, by (A11) and (25),

Gt,0(x) =
1

2π

∫
R

eipxdp

× exp{−
∫ r

t
α(P, µ(τ))Γ(−α(P, µ(τ)))|p|α(P,µ(τ)) exp{−iπα(P, µ(τ)) sgn(p)/2}dτ}, (33)

where for brevity we wrote µ(τ) for Mµ,s(τ).
We need to show that

d
dt

∣∣∣∣
t=0

TtF(µ, s) = ΛF(µ, s),

with Λ given by (22). Differentiating (32), we find that

d
dt

TtF(µ, s) =
∫ ∞

0
F(Mµ,s(t), S)

d
dt

Gt,0(s− S)dS

+
∫ ∞

0

(
δF(Mµ,s(t), S)

δµ
, µ̇

)
Gt,0(s− S)dS.

We see that the second term turns to the second term of (22) at t = 0. Noting that
Gt,0(x) = 0 for x ≤ 0 and using (A13), we get for the first term that∫ ∞

0
F(Mµ,s(t), S)

d
dt

Gt,0(s− S)dS =
∫ ∞

−∞
F(Mµ,s(t), S)Λt

stGt,0(s− S)dS

with Λt
st given by (25), which by changing variables rewrites as∫ ∞

−∞
Λt

stF(Mµ,s(t), S)Gt,0(s− S)dS,

and which in turn for t = 0 becomes equal to Λ0
stF(µ, s), that is, to the first term of (22).

Thus smooth functions F(µ, s) vanishing at s = 0 and s = ∞ do belong to the domain of
the generator of the process (Mµ,s(t), Sµ,s(t)).

Differentiating Formula (32) with respect to µ and s we can conclude that smooth
functions are invariant under the semigroup of this process. In fact, differentiability
with respect to s follows from the explicit Formula (33) for Gt,0 (and bounds (A12)), and
differentiability with respect to µ follows, on one hand side, from the explicit formula
for Gt,0, and, on the other hand, from the smooth dependence of the solutions to kinetic
equations Mµ,s(t) on initial data µ. This smooth dependence is a known fact from the
theory of kinetic equations (Theorem 8.2 of [1]), which has in fact a rather straightforward
proof under the assumption of bounded intensities. Consequently, smooth functions F(µ, s),
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vanishing at s = 0 and s = ∞, form an invariant core for the semigroup of the process
(Mµ,s(t), Sµ,s(t)).

Consequently, from Lemma 1 and the general result on the convergence of semigroups
(see e.g., Theorem 19.28 of [11]) we can conclude that the Markov chains (Mτ

µ,s, Sτ
µ,s)(kτ)

converge weakly to the Markov process (Mµ,s(t), Sµ,s(t)) thus completing the proof of the
Proposition.

7. Proof of Theorem 1

By the density arguments, to prove (28), it is sufficient to show that

EF(M̃τ
µ,s(t))− EF(M̃µ,s(t)) = EF(Mτ

µ,s(T
τ
µ,s(t)))− EF(Mµ,s(Tµ,s(t)))→ 0,

as τ → 0, for smooth functions F (that have bounded continuous variational derivatives).
We have

|EF(Mτ
µ,s(T

τ
µ,s(t)))− EF(Mµ,s(Tµ,s(t)))| ≤ I + I I,

with
I = |EF(Mτ

µ,s(T
τ
µ,s(t)))− EF(Mµ,s(Tτ

µ,s(t)))|

I I = |EF(Mµ,s(Tτ
µ,s(t)))− EF(Mµ,s(Tµ,s(t)))|.

To estimate I we write

I =
∫ ∞

0
[EF(Mτ

µ,s(r))− F(Mµ,s(r))]ξt(dr)

=
∫ K

0
[EF(Mτ

µ,s(r))− F(Mµ,s(r))]ξt(dr) +
∫ ∞

K
[EF(Mτ

µ,s(r))− F(Mµ,s(r))]ξt(dr),

where ξt (depending in τ, µ, s) is the distribution of Tτ
µ,s(t). Choosing K large enough we

can make the second integral arbitrary small uniformly in τ. And then, by Proposition 1,
we can make the first integral arbitrary small by choosing small enough τ (and uniformly
in t from compact sets).

It remains II. Integrating by parts we get the following:

I I =
∣∣∣∣∫ ∞

0
F(Mµ,s(r))dP(Tτ

µ,s(t) ≤ r)−
∫ ∞

0
F(Mµ,s(r))dP(Tµ,s(t) ≤ r)

∣∣∣∣
=

∣∣∣∣∫ ∞

0

∂

∂r
(F(Mµ,s(r)))P(Tτ

µ,s(t) ≤ r) dr−
∫ ∞

0

∂

∂r
(F(Mµ,s(r)))P(Tµ,s(t) ≤ r) dr

∣∣∣∣,
and therefore

I I =
∣∣∣∣∫ ∞

0

∂

∂r
(F(Mµ,s(r)))P(Sτ

µ,s(r) > t) dr−
∫ ∞

0

∂

∂r
(F(Mµ,s(r)))P(Sµ,s(r) > t) dr

∣∣∣∣.
By Proposition 1 (and because the distribution of the random variable Sµ,s is absolutely

continuous), P(Sτ
µ,s(r) > t)→ P(Sµ,s(r) > t) as τ → 0. Therefore I I → 0 by the dominated

convergence, as τ → 0.
It remains to show that F satisfies Equation (29). However, this follows from the

general arguments, see Formulas (A14) and (A15) from Appendix C, because Equation (29)
is a particular case of equation L̃ f = 0 with L̃ from (A14).

8. Extension to Binary and k-ary Interaction

Here we extend the CTRW modeling of interacting particles to the case of binary or
even more general k-ary interactions stressing main new points and omitting details. Firstly
we recall the basic scheme of general Markovian binary interaction from [1].
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A mean-field dependent jump-type process of binary interaction of particles (with a
possible decrease in the number of particles) can be specified by a continuous transition kernel

P(µ, x1, x2, dy) = {P(µ, x1, x2, dy1 · · · dym), m = 0, 1, 2} (34)

from SX2 to SX depending on a measure µ ∈ M(X ) as a parameter, with the intensity

P(µ, x1, x2) =
∫
X

P(µ, x1, x2, dy) =
2

∑
m=0

∫
Xm

Pm(µ, x1, x2, dy1 · · · dym).

We again assume that P(µ, x1, x2, {x1, x2}) = 0 always.

Remark 6. The possibility that more than two particles can result after the decay of two particles
creates some technical difficulties for the analysis of the kinetic equation that we choose to avoid here.

For a finite subset I = {i1, ..., ik} of a finite set J = {1, ..., n}, we denote by |I| the
number of elements in I, by Ī its complement J \ I and by xI the collection of variables
xi1 , ..., xik .

The corresponding scaled Markov process on X of binary interaction is defined via
its generator

(G2
h f )(x1, ..., xn) = h ∑

I⊂{1,...,.n},|I|=2

∫
( f (x Ī , y)− f (x1, ..., xn))P(hδx, xI , dy)

= h
2

∑
m=0

∑
I⊂{1,...,.n},|I|=2

∫
( f (x Ī , y1, ..., ym)− f (x1, ..., xn))Pm(hδx, xI ; dy1...dym)

(note the additional multiplier h, as compared with (12), needed for the proper scaling of
binary interactions). In terms of the measures from hM+

δ (X) the process can be equivalently
described by the generator

G2
hF(hδx) = h ∑

I⊂{1,...,n},|I|=2

∫
X
[F(hδx − hδxI + hδy)− F(hδx)]P(hδx, xI ; dy), (35)

which acts on the space of continuous functions F on hM+
δ (X).

Applying the obvious equation

∑
I⊂{1,...,n},|I|=2

f (xI) =
1
2

∫ ∫
f (z1, z2)δx(dz1)δx(dz2)−

1
2

∫
f (z, z)δx(dz), (36)

which holds for any f ∈ Csym(X2) and x = (x1, . . . , xn) ∈ Xn, one observes that the
operator G2

h can be written in the form

G2
hF(hδx) = −

1
2

∫
X

∫
X
[F(hδx − 2hδz + hδy)− F(hδx)]P(hδx, z, z, dy)(hδx)(dz)

+
1

2h

∫
X

∫
X2
[F(hδx − hδz1 − hδz2 + hδy)− F(hδx)]P(hδx, z1, z2, dy)(hδx)(dz1)(hδx)(dz2). (37)

On the linear functions

Fg(µ) =
∫

g(y)µ(dy) = (g, µ)

this operator acts as

Λh
2 Fg(hδx) =

1
2

∫
X

∫
X2
[g⊕(y)− g⊕(z1, z2)]P(hδx, z1, z2, dy)(hδx)(dz1)(hδx)(dz2)
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−1
2

h
∫
X

∫
X
[g⊕(y)− g⊕(z, z)]P(hδx, z, z, dy)(hδx)(dz).

It follows that if h→ 0 and hδx tends to some finite measure µ (in other words, that
the number of particles tends to infinity, but the "whole mass" remains finite due to the
scaling of each atom), the corresponding evolution equation Ḟ = G2

hF on linear functionals
F = Fg tends to the equation

d
dt
(g, µt) = Λ2Fg(µt)

=
1
2

∫
X

∫
X2
(g⊕(y)− g⊕(z))P(µt, z, dy)µt(dz1)µt(dz2), z = (z1, z2), (38)

which is the general kinetic equation for binary interactions of pure jump type in weak form.
For a nonlinear smooth function F(µ) the time evolving function F(µ, t) = F(µt(µ))

satisfies the equation in variational derivatives

∂F(µ, t)
∂t

=
∫

X2

∫
X

P(µ, x1, x2, dy)µ(dx1)µ(dx2)

×
((

δF(µ, t)
δµ(.)

)⊕
(y)−

(
δF(µ, t)

δµ(.)

)⊕
(x1, x2)

)
. (39)

As in the case of mean-field interaction, the evolution (39) can be obtained as the limit
of discrete Markov chains with waiting times depending on the current position of the
particle system.

Let us see what comes out of the CTRW modelling.
To this end we attach a random waiting time σij to each pair (xi, xj) of particles,

assuming that σij has the power tail with the index ατP(τδx, xi, xj) with some fixed α ∈
(0, 1). Consequently, the minimal waiting time σ of all pairs among a collection x =
(x1, · · · , xn) will have the probability law Qx(dr) with a tail of the index ατAτ(x), with

Aτ(x) = ∑
I:|I|=2

P(τδx, xI)

=
1

2τ2

∫
X2

P(τδx, z1, z2)(τδx)(z1)(τδx)(z1)−
1

2τ

∫
X

P(τδx, z, z)(τδx)(z), (40)

where (36) was used.
In full analogy with the case of a mean-field interaction, let us define the discrete-time

Markov chain on hM+
δ (X)× R+ by considering the total waiting time s as an additional

space variable and additionally making the usual scaling of the waiting times. Namely, we
consider the Markov chain (Mτ

µ,s, Sτ
µ,s)(kτ) on hM+

δ (X)× R+ with the jumps occurring
at discrete times kτ, k ∈ N, such that the process at a state (x, s) at time τk jumps to (x \
{xi, xj} ∪ y, s + τ1/ατAτ(x)r), or equivalently a state (hδx, s) jumps to the state (h(δx − δxi −
δxj + δy), s + τ1/ατAτ(x)r), where xi, xj are chosen according to the law P(τδx, xi, xj)/Aτ(x)
and y according to the law P(τδx, xi, xj, dy)/P(τδx, xi, xj)), and r is distributed by Qx(dr).

Again choosing h = τ, the transition operator of the chain (Mτ
µ,s, Sτ

µ,s)(kτ) is given by

Uτ F(µ, s) =
∫

R+

∫
X

Qx(dr)

× ∑
I:|I|=2

P(τδx, xI , dy)
1

Aτ(x)
F
(

µ− τδxI + τδy, s + τ1/αAτ(x)r
)

, (41)

for µ = τδx = τ ∑j δxj .
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We are again interested in the value of the first coordinate Mτ
µ,s evaluated at the

random time kτ such that the total waiting time Sτ
x,s(kτ) reaches t, that is, at the time

kτ = Tτ
µ,s(t) = inf{mτ : Sτ

µ,s(mτ) ≥ t},

so that Tτ
µ,s is the inverse process to Sτ

µ,s. Thus the scaled mean-field and binary interacting
system of particles with a power tail waiting time between jumps is the (non-Markovian) process

M̃τ
µ,s(t) = Mτ

µ,s(T
τ
µ,s(t)). (42)

This process can also be called the scaled CTRW of mean-field and binary interacting particles.
Analogously to Lemma 1 one shows that

ΛF(µ, s) = lim
τ→0

1
τ
(Uτ F− F)(µ, s) = α(P, µ)

∫ ∞

0

F(µ, s + r)− F(µ, s)
r1+α(P,µ)

dr

+
∫
X

∫
X

P(µ, z1, z2, dy)
(P, µ)

µ(dz1)µ(dz2)

[(
δF

δµ(.)

)⊕
(y)−

(
δF

δµ(.)

)⊕
(z1, z2)

]
, (43)

where
(P, µ) =

∫
X2

P(µ, x1, x2)µ(dx1)µ(dx2).

Then, analogously to Proposition 1 one establishes the following result.

Proposition 2. Let the kernel P fromM(X)× SX2 to X be strictly positive, uniformly bounded
and weakly continuous. Then operator (43) generates a Markov process (Mµ,s(t), Sµ,s(t)) in
M(X)× R+ such that the first coordinate does not depend on s, is deterministic, and solves the
kinetic Equation (38). The second coordinate is a stable-like subordinator generated by the time
dependent family of operators

Λstg(t) = α(P, µ(t))
∫ ∞

0

g(s + r)− g(s)
r1+α(P,µ(t))

dr. (44)

Moreover, the Markov chain (in discrete time) (Mτ
µ,s, Sτ

µ,s)(kτ) given by (19) converges weakly
to the Markov process (Mµ,s(t), Sµ,s(t)).

Finally one proves the analog of Theorem 1, that is, that process (42) converges weakly
to the process M̃µ,s(t) = Mµ,s(Tµ,s(t)), whose averages F(µ, s) = F(M̃µ,s(t)) satisfy the
fractional equation

Dα(P,µ)
t−∗ F(µ, s) =

∫
X

∫
X2

P(µ, z1, z2, dy)
(P, µ)

µ(dz1)µ(dz2)

[(
δF

δµ(.)

)⊕
(y)−

(
δF

δµ(.)

)⊕
(z1, z2)

]
, (45)

for s ∈ [0, t], where

Dα(P,µ)
t−∗ g(s) = α(P, µ)

∫ t−s

0

g(s + y)− g(s)
y1+α(P,µ)

dy + α(P, µ)(g(t)− g(s))
∫ ∞

t−s

dy
y1+α(P,µ)

. (46)

Similarly, the kth order (or k-ary) interactions of jump-type are given by the

P(µ, x1, · · · , xk, dy) = {P(µ, x1, · · · , xk, dy1 · · · dym), m = 0, · · · , k} (47)

from Xk to SX . The corresponding limit of the scaled CTRW is governed by the following
equation that extends (45) from k = 2 to an arbitrary k:

Dα(P,µ)
t−∗ F(µ, s) =

∫
X

∫
Xk

P(µ, z1, · · · , zk, dy)
(P, µ)

µ(dz1) · · · µ(dzk)
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×
[(

δF
δµ(.)

)⊕
(y)−

(
δF

δµ(.)

)⊕
(z1, · · · , zk)

]
. (48)

9. Example: Fractional Smoluchovski Coagulation Evolution

One of the famous examples of the kinetic equations for binary interaction (38) repre-
sents the Smoluchovski equation for the process of mass preserving binary coagulation. In
its slightly generalized standard weak form it writes down (see, e.g., [13]) as

d
dt

∫
X

g(z)µt(dz) =
1
2

∫
X3
[g(y)− g(z1)− g(z2)]K(z1, z2; dy)µt(dz1)µt(dz2). (49)

Here X is a locally compact set, E : X → R+ is a continuous function (generalized
mass) and the (coagulation) transition kernel P(z1, z2, dy) = K(z1, z2, dy) is such that the
measures K(z1, z2; .) are supported on the set {y : E(y) = E(z1) + E(z2)} (preservation
of mass).

The corresponding fractional evolution (45) takes the form

Dα(K,µ)
t−∗ F(µ, s) =

∫
X3

K(z1, z2, dy)
(K, µ)

µ(dz1)µ(dz2)

[
δF

δµ(y1)
+

δF
δµ(y2)

− δF
δµ(z1)

− δF
δµ(z2)

]
, (50)

with
(K, µ) =

∫
X3

K(z1, z2, dy)µ(dz1)µ(dz2).

10. Example: Fractional Boltzmann Collisions Evolution

The classical spatially trivial Boltzmann equation in Rd writes down as

d
dt
(g, µt) =

1
4

∫
Sd−1

∫
R2d

[g(w1) + g(w2)− g(v1)− g(v2)]B(|v1 − v2|, θ)dnµt(dv1)µt(dv2), (51)

where vj, wj ∈ Rd, Sd−1 is a unit sphere in Rd with dn the Lebesgue measure on it,

w1 = v1 − n(v1 − v2, n), w2 = v2 + n(v1 − v2, n)), n ∈ Sd−1, (52)

θ is the angle between v2 − v1 and n, and B is a collision kernel, which is a continuous
function on R+ × [0, π] satisfying the symmetry condition B(|v|, θ) = B(|v|, π − θ).

The corresponding fractional evolution (45) takes the form

Dα(B,µ)
t−∗ F(µ, s) =

1
4

∫
Sd−1

∫
R2d

B(|v1 − v2|, θ)dnµt(dv1)µt(dv2)

(B, µ)

×
[

δF
δµ(y1)

+
δF

δµ(y2)
− δF

δµ(z1)
− δF

δµ(z2)

]
, (53)

with

(B, µ) =
∫

R2d

∫
Sd−1

B(|v1 − v2|, θ) dnµ(dv1)µ(dv2).
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Appendix A. CTRW Approximation of Stable Processes

As an auxiliary result, we need the standard functional limit theorem for the random-
walk-approximation of stable laws, see, e.g., [12,14,15] and references therein for various proofs.

Let a positive random variables T with distribution QT(dr) belong to the domain of
attraction of a β-stable law, β ∈ (0, 1), in the sense that

P(T > m) ∼ 1
βmβ

(A1)

(the sign ∼ means here that the ratio tends to 1, as m → ∞). Let Ti be a sequence of i.i.d.
random variables distributed like T and

Φh
t =

[t/h]

∑
i=1

h1/αTi

be a scaled random walk based on Ti, h > 0, so that Φh
t can be presented as a scaled

Markov chain Φh
t = U[t/h]

h , where [t/h] is the integer part of t/h and U1
h = Uh is a Markov

transition operator:

Uh f (x) =
∫

R+

f (x + h1/αr)QT(dr).

Proposition A1. Let St be a β-stable Lévy subordinator, that is a Lévy process in R+ generated by
the stable generator

Lβ(x) =
∫ f (x + y)− f (x)

y1+β
dy (A2)

(which up to a multiplier represents the fractional derivative dβ/d(−x)β). Then

lim
h→0

Uh f (x)− f (x)
h

= Lβ f (x) (A3)

for all smooth functions and Φh
t = U[t/h]

h → St in distribution, as h→ 0.

Appendix B. Time-Nonhomogeneous Stable-like Processes

Stable Lévy subordinators are spatially and temporary homogeneous Markov pro-
cesses generated by operators (A2). In our story, the key role belongs to the time nonhomo-
geneous extension of these processes, which we shall refer to as time nonhomogeneous
stable-like subordinators. These are the spatially homogenous Markov processes Xt

s,x on
R+ generated by the family of operators of the type

Lt(x) = ωt

∫ f (x + y)− f (x)
y1+βt

dy (A4)

with some continuous functions ωt, βt on R+ such that

0 < min βt ≤ max βt < 1, 0 < min ωt ≤ max ωt < ∞ (A5)

Remark A1. More studied in the literature are the time homogeneous, but spatially nonhomoge-
neous processes, generated by operators, which are similar to (A4), but where the functions ωt and
βt of the time variable t are substituted by the functions ωx, βx of the spatial variable x. These
processes are usually referred to as stable-like processes.
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Since time-dependent generators lack many standard properties of standard gener-
ators of linear semigroups, let us stress for clarity that by saying that the process Xt

s,x is
generated by the family (A4) we mean that its Markov transition operators

Φs,t f (x) = E f (Xt
s,x) = E( f (Xt)|Xs = x)

are well defined as operators in the space C0(R+) (of continuous functions on R+ vanishing
at zero and at infinity) for s ≤ t, they form a backward propagator, that is, they satisfy the
chain rule Φr,s ◦Φs,t = Φr,t for r < s < t, the subspace C1

0(R+) of C0(R+) consisting of
continuously differentiable functions with bounded derivatives is invariant under all Φs,t

and finally, for any f ∈ C1
0(R+), the function fs = Φs,t f satisfies the pseudo-differential

equation in backward time
d
ds

fs = −Ls fs, s ≤ t. (A6)

For any continuous functions satisfying (A5) there exists a unique Markov process Xt
s,x

satisfying all required conditions which follow from a general result on time nonhomoge-
neous extension of Lévy processes, see Proposition 7.1 of [1]. For our purposes, it is handy
to have also a concrete representation of the propagator Φs,t in terms of transition proba-
bilities. Namely, Equation (A6) for Ls from (A4) can be written in the pseudo-differential
form as

d
ds

fs = −ψs(−i∇) fs, s ≤ t, (A7)

where the symbol ψ equals

ψt(p) = ωt

∫ ∞

0

eirp − 1
r1+βt

dr. (A8)

Standard calculations show (see, e.g., Proposition 9.3.2 of [16]) that this is in fact a
power function, that is

ψt(p) = ωtΓ(−βt)|p|βt exp{−iπβt sgn(p)/2}, (A9)

where sgn(p) denotes the sign of p and Γ is the Euler Gamma function. Solving Equation (A7)
via the Fourier transform method we find that its solution with the terminal function ft = f
is given by the formula

fs(x) =
∫ ∞

0
Gt,s(x− y) f (y)dy, (A10)

where the Green function G that represents the transition probability density for the process
Xr

t,x is given by the following integral:

Gr,t(x) =
1

2π

∫
R

eipx exp{
∫ r

t
ψτ(p)dτ}dp

=
1

2π

∫
R

eipx exp{
∫ r

t
ωτΓ(−βτ)|p|βτ exp{−iπβτ sgn(p)/2}dø}dp. (A11)

From this representation it follows (see, e.g., Proposition 9.3.6 from [16]) that Gr,t(x)
is infinitely differentiable in t and x for t > 0 and x ≥ 0 and that for large x, G has the
following asymptotic behavior:

Gr,t(x) ≤ c0(r− t)
x1+mins βs

,
∂k

∂xk Gr,t(x) ≤ ck(r− t)
x1+k+mins βs

,
∂

∂t
Gr,t(x) ∼ ct

x1+βt
, (A12)

with some constants c0, ct and ck, k ∈ N.
It is also seen from (A11) that Gr,t(x) tends to the Dirac function δ(x), as r− t → 0,

and that
∂Gr,t

∂t
= −ψt(−i∇)Gr,t,

∂Gr,t

∂r
= ψr(−i∇)Gr,t. (A13)



Fractal Fract. 2022, 6, 49 18 of 19

Appendix C. Stationary Problems and Dynkin’S Martingales

Let us recall here a very standard piece of theory about Dynkin’s martingales in a
way tailored to our purposes. Let (Xt

x,s, St
x,s) (where (x, s) denote the initial position) be a

(time homogeneous) Markov process in Ω× R+ with some metric space Ω generated by
an operator L, so that the operators of the semigroup Tt f (x, s) = E f (Xt

x,s, St
x,s) satisfy the

equation Ṫt f = LTt f for some space of continuous functions f . Then for any function f
from this class the process

Mt
f = f (Xt

x,s, St
x,s)− f (x, s)−

∫ t

0
L f (Xr

x,s, Sr
x,s)dr

is a martingale, called Dynkin’s martingale.
If σ = σx,s is a stopping time with a uniformly bounded expectation, one can apply

Doob’s optional sampling theorem to conclude that

E[ f (Xσ
x,s, Sσ

x,s)− f (x, s)−
∫ σ

0
L f (Xr

x,s, Sr
x,s)dr] = 0.

In particular, if L f = 0, it follows that

f (x, s) = E f (Xσ
x,s, Sσ

x,s).

Let L can be written in the form

L f (x, s) = L1 f (x, s) +
∫ ∞

0
( f (x, s + r)− f (x, s))ν(x, s, dr)

with L1 being a Lévy-Khinchin-type operator acting on the variable x (with coefficients that
may depend on x) and some Lévy kernel ν(s, x, dr) (that is sups,x

∫
min(r, 1)ν(x, s, dr) < ∞)

such that also mins,x
∫

min(r, 1)ν(x, s, dr) > 0. For any T let us define a modification of the
process (Xt

x,s, St
x,s) such that it stops once S(x, s) reaches T. Clearly so the modified process

has the generator

L̃ f (x, s) = L1 f (x, s) +
∫ T

0
( f (x, s + r)− f (x, s))ν(x, s, dr) + ( f (x, T)− f (x, s))

∫ ∞

T
ν(x, s, dr) (A14)

Due to the assumptions on ν, the stopping time σ, when S(x, s) reaches T has a
uniformly bounded expectation. Hence we can apply Dynkin’s martingale to conclude that
if L̃ f = 0 and f (x, T) = ψ(x) with a given function ψ, then

f (x, s) = Eψ(Xσ
x,s). (A15)

Thus Equation (A15) is the probabilistic representation for the solution to the boundary-
value problem: L̃ f = 0 and f (x, T) = ψ(x). As a consequence of this formula one also gets
the uniqueness of the solution to this boundary-value problem.
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