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Abstract

In this thesis we study a class of marked Gibbsian point processes with ge-

ometry dependent interactions known as Delaunay Potts models. We use a

random cluster representation to show that a phase transition occurs in one

such model for which the interactions depend on the geometry of the triangles

which make up the Delaunay triangulation. The random cluster representa-

tion relates the finite volume Gibbs distribution to a hyperedge percolation

model called the Delaunay random cluster model. We subsequently show that

an infinite volume Delaunay random cluster model, as defined by the standard

DLR formalism, exists when the potential satisfies two hard-core conditions

and the edge weights are uniformly bounded away from 0 and 1.
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Chapter 1

Introduction

The goal of equilibrium statistical mechanics is to explain the macroscopic

behaviour of physical systems in thermodynamic equilibrium in terms of the

interactions between their microscopic elements. A central topic is the phe-

nomenon of phase transitions : the abrupt changing of a macroscopic property

of a physical system as the result of a relevant parameter, such as temperature

or porosity, passing a critical value. Examples of phase transitions include

the transition of a real gas from liquid to vapour and the magnetisation of a

ferromagnetic metal such as iron. In the case of a ferromagnet, magnetisa-

tion is lost once it is heated beyond a critical temperature, called the Curie

temperature.

There are two types of mathematical models which we consider in this

thesis - spin models and percolation models. Although we are mainly inter-

ested in continuum models, we first discuss lattice models in which particle

positions are fixed as this is where some key ideas and concepts originate.

The first model of a system of locally interacting particles in which a phase

transition was shown to occur is a spin model known the Ising model. The

Ising model is arguably the most famous model in statistical mechanics, it is

a relatively simple model but its theory is simultaneously incredibly rich. It

was introduced in 1920 by Wilhelm Lenz [Len20] with the hope of obtaining

an understanding of ferromagnetic behaviour and was studied by his student

Ising in his PhD thesis. In the Ising model each vertex of the lattice Zd is

envisaged as a particle and randomly assigned a spin value of −1 or 1 repre-

senting its magnetic moment, with interactions between particles which favour
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the agreement of neighbouring spins. In dimensions d ≥ 2 there is a critical

temperature below which the interactions are strong enough that the mag-

netic moments can align and one of the two spin types dominates the other.

This behaviour is called spontaneous magnetisation, and the phase transition

is often called an order-disorder transition.

The q-state Potts model for q ∈ N is a generalisation of the Ising model

where the spin value assigned to a particle (now called its ‘type’) can take

any value in the set {2, ..., q}, with q = 2 corresponding to the Ising model.

This model exhibits a similar break of symmetry as the Ising model; there is

a critical temperature below which particles of one type dominate the others.

The proof of this relies on the relationship between the Potts model and a

lattice percolation model known as the random-cluster model, which we shall

discuss shortly.

The first model for percolation in a disordered medium was introduced

in 1957 by Broadbent and Hammersley [BH57]. The question they posed was

the following: “If a lump of porous material is put in a bucket of water, will

the interior of the lump get wet and, if so, to what extent?” The material

was visualised as a network of interconnecting pores, only some of which are

large enough to allow the passage of water. The situation was idealised by

assuming that the structure of the pores is that of a cubic lattice: the pores

(now called bonds) connect together points in Z3 (now called sites) which are

unit distance apart from one another. Each bond, independently of all other

bonds, is said to be open with some prescribed probability p, representing the

situation in which it is large enough to allow the passage of water from one

of its connection points to the other. With probability 1− p each bond is too

small and unable to transmit water; such bonds are termed closed. Of interest

to us is the structure of the random subgraph generated by the removal of

the closed bonds. The connected components of this subgraph are known as

open clusters, and the large-scale penetration of the porous material by water

is related to the existence of infinitely large open clusters.

This model can of course be generalised to the case where the sites

belong to Zd for any d ∈ N+. The resulting process is often referred to as

Bernoulli bond percolation on Zd. A principal quantity of interest is the perco-

lation probability, θ(p), which is the probability that the origin belongs to an
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infinite open cluster. The case where d = 1 is of no interest as θ(p) = 1 if p = 1

and θ(p) = 0 if p < 1. When d ≥ 2, an interesting phase transition occurs:

there is a non trivial critical probability pc(d) ∈ (0, 1) such that θ(p) = 0 if

p < pc and θ(p) > 0 if p > pc. This was shown by Broadbent and Hammersley

[BH57] and Hammersley [Ham57, Ham59]. A corollary of this, shown using

an appropriate zero-one law, is that above the critical probability there exists

an infinite open cluster almost surely, and below the critical probability no

such cluster exists. The famous calculation that pc(2) = 1/2 is due to Kesten

[Kes80], who also showed that there is no infinite open cluster in two dimen-

sions case when p = 1/2. The exact values of pc(d) for d ≥ 3 are currently

unknown, with the fact that pc(1) = 1 being a trivial calculation.

The random cluster model is a family of more complex bond percolation

models on Zd in which the states of the bonds are no longer independent of one

another. It was introduced by Fortuin and Kasteleyn in [FK72] partially in

an attempt to unify percolation with the Ising and Potts models. The model

has two parameters, p ∈ [0, 1] and q > 0. The former to some extent controls

the density of open bonds and the latter impacts the number of open clusters.

When q < 1 configurations with fewer clusters are favoured, and when q > 1

large numbers of clusters are favoured. When q = 1 the model coincides with

Bernoulli bond percolation with parameter p. Fortuin and Kasteleyn discov-

ered that there is a intimate relationship between the random cluster model

with q ∈ {2, 3, ...} and the Potts model with q states. For these values of q

the correlation functions of the Potts model may be expressed as connectivity

functions of the random cluster model. This relationship makes the random

cluster model a useful tool for studying the Ising and Potts models using ge-

ometrical techniques originating in the study of percolation. The connection

between these models is so strong that the random cluster model is some-

times referred to as the ‘FK representation’ of the Ising and Potts models. In

[ACCN88], Aizenmann et al used the random cluster model to show that the

Potts model exhibits a phase transition for all values of q. A modern approach

to studying the relationship between these models is by constructing them on

a common probability space using the Edwards-Sokal coupling, discovered in

[ES88].

The nature of the phase transitions in these models is a subject of in-
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tense study, and many recent advances have been made. Of particular interest

is whether the phase transitions are sharp, and whether they are continuous.

For the Ising and Potts models, the phase transition is sharp if there is an

exponential decay of correlations whenever the temperature is above critical

temperature, and continuous if there is no spontaneous magnetisation when

the temperature is precisely equal to the critical temperature. For the random

cluster and Bernoulli bond percolation models, the phase transition is sharp

if there is exponential decay in the radius of open clusters and continuous if

there is no infinite open cluster when p = pc. The sharpness of the phase

transition for Bernoulli bond percolation for all d was proven by Aizenmann

and Barkley [AB87] and Menshikov [Men86]. In [DCRT19] the authors used a

novel approach utilising randomised algorithms to show that the phase tran-

sition in the random cluster and Potts models is sharp for q ≥ 1. The critical

probability for the random cluster model with q ≥ 1 on Z2 was computed

in [BDC12], and as a corollary the authors were able to compute the critical

temperature for the Potts model on Z2. Even for Bernoulli bond percolation,

little is known about what occurs at the critical probability. We have men-

tioned previously that there is no infinite open cluster in two dimensions when

p = pc (so the phase transition is continuous.) The absence of an infinite

cluster at criticality has been shown for d ≥ 19 [HS90] and was recently im-

proved to d ≥ 11 [FvdH17]. It is conjectured that for all d ≥ 2 there is no

infinite open cluster at criticality. The phase transition for the Ising model is

known to be continuous for all d ≥ 2. The proof for d ≥ 3 was accomplished

using a random-current representation [ADCS15]. As for the random cluster

model, it is known that in two dimensions the phase transition is continuous

for q ∈ {2, 3, 4} [DCST17] and discontinuous for q ≥ 5 [DCGH+16], and as a

corollary the same is true for the q-state Potts model. It is conjectured that

the phase transition in the Potts model is discontinuous whenever d ≥ 3 and

q ≥ 3. Partial progress has been made here: it has been shown that for a fixed

dimension, the phase transition is discontinuous for large enough q [KS82],

and for fixed q, the phase transition is discontinuous for sufficiently large d

[BC03].

Although we have thus far only discussed results for models on the cubic

lattice Zd, it is possible to study statistical mechanics models on many graphs.
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Common examples include complete graphs (resulting in mean-field models),

trees, and non-amenable graphs, of which Cayley graphs are a particular ex-

ample. There is also a plethora of other spin models such as O(n) models, the

discrete Gaussian free field and φ4 models which we shall not discuss here.

Although the study of phase transitions is one of the main subjects of

statistical mechanics, most models which are known to exhibit a phase tran-

sition are discrete like those discussed above. From here on we are interested

in the existence of phase transitions in continuum particle systems, where the

position of each particle is random. Notable examples of phase transitions

in the continuous setting include a gas-liquid phase transition [LMP99] and

the spontaneous breaking of rotational symmetry in a simple model of a two

dimensional crystal without defects for small temperatures [MR09].

One approach to continuum particle systems is through the study of

germ-grain models. A prominent model of this kind is the Widom-Rowlinson

model, introduced by Widom and Rowlinson [WR70] as a model for the study

of a liquid-vapour phase transition. In this model each particle has an associ-

ated radius and is modelled as a closed ball. There are two species of particles

with deterministic radii and a hardcore exclusion interaction forcing parti-

cles of differing types to not overlap. This was the first continuum model for

which a phase transition was rigorously proved. The proof was accomplished

by Ruelle [Rue71] using a variant of Peierls’ argument. More recently, this

phase transition was proven using percolation arguments by finding a repre-

sentation of the Widom-Rowlinson model analogous to the Fortuin-Kasteleyn

representation of the Ising and Potts models [CCK95, GH96].

Recently, a generalised version of the Widom-Rowlinson model has been

studied where there are q ≥ 2 types of particle, with each particle of type

i having a random radius following a distribution Qi on R+. This can be

thought of as a collection of q Poisson Boolean models which are conditioned

to not overlap each other. The case where the distributions Qi are the same

is called the symmetric case. The existence of this model in the symmet-

ric case with unbounded radii was shown in [DH15] by constructing an FK

representation known as the continuum random cluster model which is anal-

ogous to the FK representation from [GH96] but for infinite volume. The

continuum random cluster model was constructed as a Gibbsian modification
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of the Poisson Boolean model. Subsequently it was shown [DH19] that in

the symmetric integrable case (
∫
rdQi(dr) <∞) the Widom-Rowlinson model

exhibits a standard phase transition in which there is a unique phase when

the activity parameter is small, and q ordered phases when the activity is

large. In the same paper it was shown that in the nonintegrable case there

exists at least q + 1 phases for small activities. The random cluster repre-

sentation between the Widom-Rowlinson model and the continuum random

cluster model plays a crucial role in the proof of the uniqueness result in the

symmetric integrable case. In this case it allows insights to be gained from

(disagreement-)percolation results which apply to the continuum random clus-

ter model [Hou17, HTH19]. Another variant of the Widom-Rowlinson model

in which the particles are permitted to overlap has been shown to exhibit a

sharp phase transition [DH21] by utilising a randomised algorithm approach

similar to that used for the lattice models in [DCRT19].

The results from [GH96] do not only apply to the Widom-Rowlinson

model. In fact, the authors established phase transitions and FK represen-

tations for a class of models, termed continuum Potts models, in dimensions

d ≥ 2 with q ≥ 2 different species of particle and finite range repulsive pair

interactions between particles of different types. Their approach involves a

random cluster representation analogous to the Edwards-Sokal coupling of the

discrete Potts model and its Fortuin-Kasteleyn representation. The percola-

tion transition in the FK representation was sufficient to prove that occurance

of phase transitions. In [DDG12], the class of models considered was expanded

and a framework for studying Gibbsian point processes whose interactions de-

pend on the geometry of an underlying hypergraph was set up. This new class

includes interactions which depend on Delaunay edges or triangles, cliques of

Voronoi cells or clusters of k-nearest neighbours. Sufficient conditions for the

existence of infinite volume measures were laid out. In [AE16] the authors used

this framework to study a model in which the interaction is based on the geom-

etry of the Delaunay graph with a hard-core background potential depending

on the lengths of the Delaunay edges. Both edge and triangle-dependent in-

teractions were considered, and percolation in an FK representation analogous

to that used in [GH96] was used to show that a phase transition occurs. The

percolation proof was accomplished using a coarse-graining method. In a con-
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tinuation [AE19] the authors also obtained a phase transition result with no

background potential and finite range interaction depending on the lengths

of the Delaunay edges using the same method. Other models incorporating

Delaunay triangulations can be found in [BBD99b, BBD99a, Der08, DG09].

In this thesis we continue the study of Gibbsian point processes with

interactions based on the geometry of the Delaunay triangulation, which we

refer to as Delaunay Potts models. In chapter 3 we use the same approach

as in [AE16] and [AE19] to prove that a phase transition occurs in a model

in which both the background interaction and the interaction between unlike

particles depends on the geometry of the Delaunay triangles. The random

cluster representation we use couples the finite volume Gibbs distribution in

∆ ⊂ R2 (which we call the Delaunay continuum Potts distribution in ∆) with

the Delaunay random cluster distribution in ∆. The coupling is restricted to

the case when the former has a boundary condition made up of particles of

the same type, which corresponds to a Delaunay random cluster distribution

with a ‘wired’ boundary condition in which all hyperedges sufficiently far away

from ∆ are open.

We have seen for the Widom-Rowlinson model that the extension of

the random cluster representation to infinite volume facilitates the proof that

the symmetric, integrable Widom-Rowlinson measures are unique for small

activities. We take this as inspiration in chapter 4 and propose the study of

a set of measures we call infinite volume Delaunay random cluster measures,

which are infinite volume extensions of the Delaunay random cluster distribu-

tions, defined using the standard DLR formalism. We hope that ultimately it

will be possible to uncover a random cluster representation connecting these

Delaunay random cluster measures and the Gibbs measures arising from the

Delaunay continuum Potts distributions, analogous to the representation we

use in chapter 3, and that analysis of these random cluster measures will enable

us to show that the Delaunay Potts measures are unique for small activities.

We start by extending the definition of the finite volume Delaunay random

cluster distributions to allow for arbitrary boundary conditions, which is non-

trivial since it is possible that the number of infinite connected components

is infinite. The rest of the chapter is dedicated to proving the existence of

Delaunay random cluster measures.
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This thesis will proceed as follows. In chapter 2 we introduce the neces-

sary definitions and notation that will be used throughout, and in particular we

introduce Delaunay continuum Potts measures and the finite volume Delaunay

random cluster distributions. We recap the existence result from [DDG12] and

the construction of the random cluster representation, which mostly follows

[Eye14]. We then explore how the random cluster representation provides a

connection between phase transitions and connectivity, before proving a short

technical result regarding mixed site-bond percolation on Z2 and summarising

the literature on Delaunay continuum Potts models. In chapter 3 we apply

these results to a model in which the interactions depend on the geometry of

the Delaunay triangles. We prove that Gibbs measures exist for large values of

the activity parameter and that a phase transition occurs if both the activity

and the parameter β, which controls the strength of the interaction, are suffi-

ciently large. We then move on in chapter 4 and show that an infinite volume

Delaunay random cluster measure exists if the background potential satisfies

two hard-core conditions and the edge weights are uniformly bounded away

from 0 and 1. Finally, in chapter 5 we discuss possibilities for future research.
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Chapter 2

Preliminaries

2.1 Gibbsian point processes with geometry-

dependent interactions

We begin with a presentation of the framework, introduced in [DDG12], for

studying Gibbsian point processes with hypergraph interactions. The frame-

work allows for the study of a wide class of interactions which depend on the

local geometry of configurations. The interactions we are interested in fall into

this class as they depend on the local geometry of the Delaunay triangulation

associated to each configuration. Furthermore, we present the main result

from [DDG12], which gives sufficient conditions under which a Gibbs measure

exists.

2.1.1 Point configurations

We consider systems of particles in Rd, both in the case where the particles

are described by their spatial location only, and where the particles possess a

mark describing their type or internal degrees of freedom. In the latter case the

marks belong to a mark space, Q, and each marked point lies in the set Rd×Q.

We shall focus on marked point processes with mark space Q = [q] := {1, ..., q}
for some q ∈ N, which are broadly known as Potts models. It is worth noting

however that the existence results of [DDG12] do in fact hold for any mark

space which is standard Borel. The set of point configurations Ω is defined to
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be the set of locally finite subsets of Rd, that is

Ω :=
{
ω ⊂ Rd : |ω ∩∆| <∞ for all ∆ b Rd

}
, (2.1.1)

where ∆ b Rd denotes the fact that ∆ is a bounded Borel subset of Rd. A

marked point configuration is a subset ω ⊂ Rd × [q] whose projection ω onto

the spatial coordinate is locally finite. The set of marked point configurations

is therefore

Ω :=
{
ω ⊂ R2 × [q] : ω ∈ Ω

}
. (2.1.2)

Each ω ∈ Ω has an associated mark function σω ∈ [q]ω which retrieves the

mark of a point given its position, i.e σω(x) = i if (x, i) ∈ ω. A marked

configuration ω ∈ Ω can therefore be represented as a pair (ω, σω).

For each Borel set B ⊂ Rd× [q], the counting variable NB : ω 7→ |ω∩B|
on Ω gives the number of marked points in B. Similarly, for each Borel set

∆ ⊂ Rd, we define the counting variable N∆ : ω 7→ |ω ∩ ∆| on Ω. The

spaces Ω and Ω are equipped with the σ-algebras F := σ(N∆ : ∆ b Rd)

and F := σ(NB : B b Rd × [q]) respectively. F is the Borel σ-algebra for

the Polish topology which is generated by the variables ω 7→
∫
gdω, where

ω is interpreted as a counting measure on Rd × [q] and g : Rd × [q] → R is

bounded and continuous with spatially bounded support (see [MKM78]). The

analogous statement is true for F , and so (Ω,F) and (Ω,F) are standard

Borel spaces. The reference measures on the spaces (Ω,F) and (Ω,F) are the

Poisson point processes Πz and Πz on Rd and Rd× [q] with intensity measures

z Leb and z Leb⊗U respectively, where z > 0 is a parameter known as the

activity, Leb denotes the Lebesgue measure on Rd and U denotes the uniform

measure on [q]. In particular, for B b Rd × [q] and n ∈ N we have

Πz(NB = n) =
(z Leb⊗U(B))n

n!
e−z Leb⊗U(B).

Note that Πz is also the law of the random variable ω obtained by sampling

an unmarked configuration ω according to Πz and attaching marks to each

point independently according to the distribution U (see for instance [Kin92]).

For each ∆ b Rd we shall consider the set of marked point configurations
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which are located in ∆, namely Ω∆ := {ω ∈ Ω : ω ⊂ ∆ × [q]}. The sigma

algebra of events that happen in ∆ only is F∆ := pr−1
∆ F |Ω∆

, where F |Ω∆
:=

{A∩Ω∆ : A ∈ F} is the trace sigma algebra and pr∆ : ω → ω∆ := ω∩(∆×[q])

denotes the projection onto Ω∆. We take the reference measure on (Ω∆,F |Ω∆
)

to be the pushforward measure Πz
∆ := Πz ◦ pr−1

∆ . These objects are defined

in a similar way for unmarked configurations: Ω∆ := {ω ∈ Ω : ω ⊂ ∆},
pr∆ : ω → ω∆ := ω ∩∆, and F∆ := pr−1

∆ F|Ω∆
. The reference measure on Ω∆

is Πz
∆ := Πz ◦ pr−1

∆ . If ∆ belongs to the set of open cubes,

C :=

{
d∏
i=1

(xi, xi + p) : x = (x1, ..., xd) ∈ Rd, p > 0

}
, (2.1.3)

then Ω∆ and Ω∆ are Gδ-sets and are therefore Polish spaces when equipped

with their subspace topologies. In this case, F|Ω∆
and F |Ω∆

are their associ-

ated Borel σ-algebras. The set of marked and unmarked configurations with

finitely many points are denoted Ωf and Ωf , with sigma algebras F|Ωf and

F |Ωf
respectively.

From now on we shall focus mostly on marked configurations, but the

concepts we introduce have natural analogues when the particles do not carry

marks.

2.1.2 Hypergraphs and hyperedge interactions

The interaction between points considered here will depend on the geometry

of their location, which is described in terms of a hypergraph. The interac-

tion potential, which describes the strength of the interaction between points,

will be defined on the hyperedges of the hypergraph. We now restrict our

exposition to the case where we have marked point configurations, but all of

the concepts described here can be defined analogously for unmarked point

configurations.

Definition 2.1.1. A hypergraph structure is a measurable subset H of Ωf×Ω

(i.e H ∈ F |Ωf
⊗ F) such that τ ⊂ ω for all (τ ,ω) ∈ H. A hypergraph

structure H gives us a way of assigning a hypergraph to each configuration ω.

The pair (ω,H(ω)) is called a hypergraph where ω is the set of vertices and

H(ω) := {τ ∈ Ωf : (τ ,ω) ∈H} is the set of hyperedges.
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A hyperedge potential is a measurable function ϕ from a hypergraph

structure H to R ∪ {∞}.

We only consider hyperedge potentials which are shift-invariant and

exhibit the finite-horizon property, defined below. Shift-invariance requires

that H and ϕ are not affected by translations and the finite-horizon property

requires that the value ϕ(τ ,ω) can be determined by looking at ω in a bounded

neighbourhood of the hyperedge τ (although the size of this neighbourhood

depends on τ and ω.)

Definition 2.1.2. Let ϕ : H → R ∪ {∞} be a hyperedge potential and

θx : Ω→ Ω denote the function which translates the location of points by the

vector −x. Then the pair (H, ϕ) is called shift-invariant if

(θxτ ,θxω) ∈H and ϕ(θxτ ,θxω) = ϕ(τ ,ω)

for all (τ ,ω) ∈H and x ∈ Rd.

Furthermore, the pair (H, ϕ) is said to satisfy the finite-horizon property

if for each hyperedge (τ ,ω) ∈ H there exists a set ∆ b R2 called a horizon

such that:

(τ ,ω′) ∈H and ϕ(τ ,ω′) = ϕ(τ ,ω) when ω′ = ω on ∆. (2.1.4)

2.1.3 Gibbs measures

Before defining the concept of a Gibbs measure in the context of a hyperedge

potential on a hypergraph structure, we need to introduce the Hamiltonian for

a fixed region ∆ b R2 with boundary condition ω. The Hamiltonian is defined

as a sum over the hyperedges for which either τ itself or ϕ(τ ,ω) depends on

ω∆. We extend the domain of ϕ to Ωf ×Ω by adopting the convention that

ϕ ≡ 0 on (Ωf ×Ω) \H and define

H∆(ω) := {τ ∈H(ω) : ϕ(τ ,ω′ ∪ ω∆c) 6= ϕ(τ ,ω) for some ω′ ∈ Ω∆}.
(2.1.5)
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The Hamiltonian in ∆ with boundary condition ω is given by the formula

H∆,ω(ω′) :=
∑

τ∈H∆(ω′∪ω∆c )

ϕ(τ ,ω′ ∪ ω∆c) (2.1.6)

for ω′ ∈ Ω∆, provided it is well-defined, and

Zz
∆(ω) :=

∫
e−H∆,ω(ω′)Πz

∆(dω′)

is the partition function. In order to define the finite volume Gibbs distribution

in ∆ b Rd we require that the Hamiltonian is well defined and the partition

function is finite and non-zero. A configuration is admissible for ∆ b Rd, z > 0

and ϕ if Zz
∆(ω) ∈ (0,∞) and

H∆,ω(ω′) :=
∑

τ∈H∆(ω′∪ω∆c )

ϕ−(τ ,ω′ ∪ ω∆c) <∞ (2.1.7)

for Πz
∆-almost all ω′, where ϕ− := (−ϕ)∨ 0 is the negative part of ϕ. The set

of such configurations is denoted Ωϕ
∆,z. If z′ ≥ z then Ωϕ

∆,z′ ⊂ Ωϕ
∆,z since Πz′

∆

and Πz
∆ are mutually absolutely continuous with

dΠz′
∆(dω′)

dΠz
∆(dω′)

∝ (z′z−1)|ω
′| ∈ [1,∞).

The finite-volume Gibbs distribution (alternatively the finite-volume ge-

ometric continuum Potts distribution) in ∆ b Rd for ϕ, z and admissible

boundary condition ω ∈ Ωϕ
∆,z is the probability measure on (Ω,F) defined by

γz∆,ω(A) :=
1

Zz
∆(ω)

∫
Ω∆

1A(ω′ ∪ ω∆c)e−H∆,ω(ω′) Πz
∆(dω′) (2.1.8)

for A ∈ F . Gibbs measures are defined by prescribing the conditional distri-

butions when the configuration outside a region ∆ b Rd is known:

Definition 2.1.3. A probability measure P on (Ω,F) is called a Gibbs mea-

sure (alternatively a geometric continuum Potts measure) for H, ϕ and z if for

every ∆ b Rd,

· P (Ωϕ
∆,z) = 1, and

13



· For every measurable function f : Ω→ [0,∞),

P (f) =

∫
1

Zz
∆(ω)

∫
Ω∆

f(ω′ ∪ ω∆c)e−H∆,ω(ω′) Πz
∆(dω′)P (dω). (2.1.9)

The equations (2.1.9) are known as the DLR equations, after Dobrushin, Lan-

ford and Ruelle. They express that γz∆,ω(·) is a version of the conditional prob-

ability P (·|F∆c)(ω). We are particularly interested in Gibbs measures which

are invariant under the translation group Θ := (θx)x∈Rd , the set of which

is denoted GΘ(ϕ, z). The main problem we investigate here is the existence

of phase transitions - the existence of multiple distinct translation-invariant

Gibbs measures. We first must address the problem of proving that GΘ(ϕ, z)

is non-empty.

Remark 2.1.4. The quantities we have introduced thus far are not in fact

measurable with respect to the σ-algebras we have defined, but are measurable

with respect to their universal completions. We therefore identify all sigma

algebras considered here with their universal completions and all probability

measures with their complete extensions. For more details regarding this see

[DDG12, Remark 2.1 and Appendix]. The proofs can be easily adapted to the

case of marked particles.

2.1.4 Pseudo-periodic configurations

Here we introduce the pseudo-periodic configurations. They will play a crucial

role in our forthcoming arguments.

Definition 2.1.5. Let M ∈ Rd×d be an invertible d× d matrix and define for

k ∈ Zd the cells

C(k) :=
{
Mx ∈ Rd : x− k ∈ [−1/2, 1/2)2

}
, (2.1.10)

which form a partition of Rd into parallelotopes. We write C = C(0) and let

Γ be a measurable subset of ΩC \ {∅}. The configurations that belong to the

set

Γ := {ω ∈ Ω : θMk(ωC(k)) ∈ Γ for all k ∈ Zd}. (2.1.11)
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Figure 2.1: An example of a pseudo periodic configuration ω ∈ Γ where
d = 2,Γ = ΓB := {ω ∈ ΩC : ω = {x} for some x ∈ B} and B is a ball

centred at (0, 0).

are called pseudo-periodic.

2.1.5 Existence

Here we present a sufficient criteria under which a translation-invariant Gibbs

measure can be shown to exist. We begin by defining a set of configurations

for which the Hamiltonian is localised in the sense that dependence of H∆,ω

on ω is restricted to the points of ω which lie in a bounded region.

Definition 2.1.6. Let ∆ b Rd. A configuration ω ∈ Ω is said to confine the

range of ϕ from ∆ if there exists a set ∂∆(ω) b Rd such that ϕ(τ , ζ∪ω∆c) =

ϕ(τ , ζ ∪ ω′∆c) whenever ω = ω′ on ∂∆(ω), ζ ∈ Ω∆ and τ ∈ H∆(ζ ∪ ω∆c).

If this is true we write ω ∈ Ωcr
∆. We use the abbreviation ∂∆ω = ω∂∆(ω).

For ω ∈ Ωcr
∆, from now on we will choose to take ∂∆(ω) = ∆ ⊕ r \∆, where

∆⊕ r := {x + y ∈ Rd : x ∈ ∆, y ∈ Rd and |y| ≤ r} and r = r∆,ω is chosen to

be as small as possible.

Clearly if ω ∈ Ωcr
∆ then

H∆,ω(ω′) =
∑

τ∈H∆(ω′∪∂∆ω)

ϕ(τ ,ω′ ∪ ∂∆ω), (2.1.12)
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which is a finite sum.

Our first condition is the range condition. It ensures that the Hamilto-

nian is localised in the above sense almost surely. More concretely, if the range

condition is satisfied and P is a translation-invariant probability measure on

(Ω,F) with finite intensity such that P (∅) = 0, then P (Ωcr
∆) = 1 (see [DDG12,

Proposition 3.1] for the unmarked case. The same proof is applicable here.)

Therefore if ω ∈ Ωcr
∆ then the second half of the definition of admissibility

(2.1.7) is satisfied.

(R) The range condition. There exist constants lR, nR ∈ N and δR < ∞
such that for all (τ ,ω) ∈H one can find a horizon (as in (2.1.4)) ∆ for

ϕ satisfying the following: For every x, y ∈ ∆ there exist l open balls

B1, ..., Bl (with l ≤ lR) such that

– ∪li=1B̄i is connected and contains x and y, and

– for each i, either diam Bi ≤ δR or NBi(ω) ≤ nR.

The second condition is stability, which ensures that the partition function is

finite.

(S) Stability. There exists a constant cS ≥ 0 such that

H∆,ω(ω′) ≥ −cS|ω′ ∪ ∂∆ω|

for all ∆ b Rd,ω′ ∈ Ω∆ and ω ∈ Ωcr
∆.

The third condition is upper regularity, which is split into three parts:

uniform confinement, uniform summability and strong non-rigidity. Uniform

confinement states that the configurations in Γ confine the range of ϕ in a

uniform way, uniform summability ensures that the local Hamiltonians H∆,(·)

when restricted to Γ, admit an upper bound which scales appropriately with

|∆|, and strong non-rigidity ensures that the pseudo-periodic configurations

appear with enough weight to counterbalance the interactions.

(U) Upper Regularity. M and Γ can be chosen so that the following condi-

tions hold.
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(U1) Uniform confinement: Γ ⊂ Ωcr
∆ for all ∆ b Rd, and

rΓ := sup
∆bRd

sup
ω∈Γ

r∆,ω <∞.

(U2) Uniform summability:

c+
Γ := sup

ω∈Γ

∑
τ∈H(ω):
τ∩C 6=∅

ϕ+(τ ,ω)

|τ̃ |
<∞,

where τ̃ := {k ∈ Zd : τ ∩ C(k) 6= ∅} and ϕ+ := max(ϕ, 0).

(U3) Strong non-rigidity:

ez|C|Πz
C(Γ) > ecΓ ,

where cΓ is defined as in (U2) except with ϕ replacing ϕ+.

Now we come to the existence theorem, which is an extension of [DDG12,

Theorem 3.2] to allow for marked particles. For the extended proof see [Nol13,

Theorem 2.1], but it is essentially the same as the original.

Theorem 2.1.7. (Existence). Let ϕ : H→ R∪{∞} be a hyperedge potential

and z > 0. If the hypotheses (R), (S) and (U) are satisfied then there exists

a translation-invariant Gibbs measure P ∈ GΘ(ϕ, z).

Remark 2.1.8. During the course of the proof it is shown that if (R), (S) are

satisfied and (U) holds for M and Γ then{
ω ∈ Γ : sup

k∈Rd
|ωC(k)| <∞

}
⊂ Ωϕ

Λn,z

for all n ∈ N and z > 0, where Λn :=
⋃
k∈{−n,..,n}d C(k).

2.2 Delaunay continuum Potts measures

We are interested in two-dimensional (d = 2) Gibbsian point processes whose

interactions depend on the local geometry of the Delaunay triangulation. More

explicitly, we want to investigate the structure of the set of geometric contin-

uum Potts measures when the hypergraph under consideration is based on the

Delaunay triangulation.

17



If τ = {x, y, z} ⊂ R2 is non-collinear, then B(τ) denotes the circumball

of τ , which is the unique open ball whose boundary has τ as a subset. Its

boundary ∂B(τ) is called the circumcircle of τ and its radius, called the cir-

cumradius of τ , is denoted δ(τ). The following hypergraph structures (where

i ∈ {1, 2} and ∆ ⊂ R2) are of interest to us:

Del3 :=

{
(τ ,ω) ∈ Ωf ×Ω

∣∣∣∣ τ ⊂ ω, |τ | = 3, τ non-collinear,

∂B(τ) ∩ ω = τ, and B(τ) ∩ ω = ∅.

}
,

Del3,∆ :=
{

(τ ,ω) ∈ Del3 | B(τ) ∩∆ 6= ∅
}
,

Deli := {(η,ω) ∈ Ωf ×Ω | |η| = i and ∃τ ∈ Del3(ω) such that η ⊂ τ},

Deli,∆ :=

{
(η,ω) ∈ Deli

∣∣∣∣ ∃τ ∈ Del3(ω) such that

η ⊂ τ and B(τ) ∩∆ 6= ∅.

}
.

We denote the unmarked analogues Del3,Del3,∆,Deli and Deli,∆ . We

will often refer to the elements of Del2(ω) and Del2(ω) as edges and those of

Del3(ω) and Del3(ω) as triangles or tiles. Edges and triangles will typically

be denoted by η and τ respectively.

From now on we assume that the point locations ω are in general

quadratic position, which is to say that

(a) no 3 points lie on a single line,

(b) no 4 points lie on the boundary of a circle.

If in addition to (a) and (b) every half plane contains at least one point, then

the elements of ω,Del2(ω) and Del3(ω) form a triangulation of the whole plane,

called the Delaunay triangulation. By this we mean that the set containing the

elements of ω and the convex hulls of the elements of Del2(ω) and Del3(ω) is

a simplicial complex covering the whole plane. These conditions are satisfied

almost surely with respect to the reference measure Πz [Ml94, Proposition

4.1.2]. Furthermore, the sets Deli,∆(ω) for i = 1, 2, 3 are almost surely finite

(Proposition A.0.1).

The set Del3,∆(ω) contains the triangles in the Delaunay triangulation

whose circumcircle intersects ∆. These are the triangles which can be removed
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Figure 2.2: A Delaunay triangulation. The grey circles
represent the open balls B(τ, ω).

from the triangulation by changing the configuration inside ∆, that is to say

τ ∈ Del3,∆(ω) ⇐⇒ τ ∈ Del3(ω) and ∃ω′ ∈ Ω∆ s.t τ /∈ Del3(ω∆c ∪ ω′).
(2.2.1)

To see this, notice that if τ ∈ Del3,∆(ω) and x ∈ (∆ ∩ B(τ)) × [q] then

τ /∈ Del3(ω ∪x). On the other hand, if τ belongs to the right hand side then

τ ∈ Del3(ω) and either τ ∩ ω∆ 6= ∅ or ∃ω′ ∈ Ω∆ such that B(τ) ∩ ω′ 6= ∅. In

both cases B(τ) ∩∆ 6= ∅, and so τ ∈ Del3,∆(ω).

Definition 2.2.1. If H ∈ {Del2,Del3,Del2 ∪Del3} then the finite-volume

geometric continuum Potts distribution in ∆ (2.1.8) is known as the Delaunay

continuum Potts distribution in ∆ and geometric continuum Potts measures

(Definition 2.1.3) are known as Delaunay continuum Potts measures.

If H = Del3 and ϕ is a hypergraph potential on Del3 of the form

ϕ(τ ,ω) = ϕ′(τ ) (2.2.2)

for some measurable function ϕ′ : {τ ∈ Ωf : |τ | = 3} → R ∪ {∞} then by
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(2.2.1),

H∆(ω) \ {τ : ϕ′(τ ) = 0} = Del3,∆(ω) \ {τ : ϕ′(τ ) = 0}, (2.2.3)

and therefore

H∆,ω(ω′) =
∑

τ∈Del3,∆(ω′∪ω∆c )

ϕ′(τ ), (2.2.4)

where H∆,ω is the Hamiltonian in ∆ with boundary condition ω defined in

(2.1.6). H∆,ω(ω′) is therefore a finite sum, so the first criterion of admissibility,

(2.1.7), is always satisfied.

2.3 The random cluster representation

The purpose of this section is to obtain a joint construction of the finite-volume

Gibbs distribution and a related continuum hyperedge percolation model called

the geometric continuum random cluster model. The construction is analogous

to the joint construction of the discrete Potts model and its Fortuin-Kastelyn

representation. This representation will allow us to analyse the phase transi-

tion behaviour of geometric continuum Potts models, much in the same way

as the Fortuin-Kastelyn random cluster model has proven to be of great value

in analysing the phase transition behaviour of the Ising and Potts models.

Random cluster representations for continuum particle systems were first dis-

covered independently by Georgii and Häggström [GH96] and Chayes et al

[CCK95]. Chayes et al considered a hard-core repulsion between particles of

different type, whereas Georgii and Häggström considered finite range repul-

sive pair interactions more generally. These representations were generalised

in [Eye14] to Gibbsian point processes with hypergraph interactions, although

the author’s definition of H∆ differs to the one used here and in [DDG12].

Phase transitions for Potts models on Delaunay graphs with a variety of inter-

actions have been shown in [AE16] and [AE19] using this representation. We

present a similar representation here although we only consider the hypergraph

Del3.
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2.3.1 Hyperedge percolation models

Hyperedge percolation models are created by taking random unmarked point

configurations and declaring hyperedges of the associated hypergraph to be

either ‘open’ or ‘closed’ according to some hyperedge process. A notion of

connectedness is obtained by declaring that two points are connected if one

can travel between them via open hyperedges. We shall limit ourselves to

unmarked hypergraphs for which each hyperedge contains the same number

of points, that is ∃k ∈ N such that |τ | = k for all (τ, ω) ∈ H. The geometric

continuum random cluster model is an example of such a model.

One could view a configuration in this kind of model as a pair (ω, σH(ω))

where ω ∈ Ω and σH(ω) ∈ {0, 1}H(ω), with σH(ω)(τ) = 1 signifying that τ is

open and σH(ω)(τ) = 0 signifying that τ is closed. However, we prefer to

represent a configuration as a pair G = (ω,E) where ω ∈ Ω and E is a locally

finite set of hyperedges. More precisely, E ∈ E , where

E :=

{
E ⊂ ERd,k :

⋃
e∈E

e is locally finite

}
,

and

ERd,k := {e ⊂ Rd : |e| = k}. (2.3.1)

The sample space is therefore G = Ω × E . In this formulation E represents

the set of hyperedges which are considered to be open. Note that G also

contains elements which do not belong toH since not every (ω,E) ∈ G satisfies

e ∈ E =⇒ e ⊂ ω. We equip E with the sigma algebra Σ generated by the

counting variables N∆ : E 7→ |E∆| for ∆ b Rdk, similar to how we defined

the sigma algebra F on Ω. As before, Σ is the Borel σ-algebra for the Polish

topology on E . Therefore the σ-algebra A := F ⊗ Σ turns G into a standard

Borel space.

Let G = (ω,E) ∈ G. Two points x, y ∈ ω are adjacent if there exists

τ ∈ E such that x, y ∈ τ . A path connecting x and y is a sequence of points

(xi)
n
i=1 ⊂ ω with n ∈ N, x1 = x and xn = y such that for all i ∈ {1, ..., n− 1}

there exists τi ∈ E such that xi, xi+1 ∈ τi. We say that x ∈ ω and y ∈ ω
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belong to the same connected component of G if there is a path connecting

them.

2.3.2 Background and type interactions

We consider the scenario where there are two interactions, one of which only

applies to hyperedges containing particles of different type. The strength of

both interactions is irrespective of the particles’ type.

Suppose there exist measurable functions ψ, φ : ER2,3 → R ∪ {∞}, such

that the hyperedge potential ϕ on Del3 can be written as follows:

ϕ(τ ,ω) = ψ(τ) + φ(τ)(1− δσω(τ)), (2.3.2)

where

δσω(τ) :=

1 if σω(x) = σω(y) for all {x, y} ⊂ τ.

0 otherwise.

Notice that each τ ∈ Del3(ω) can be considered as a configuration τ = (τ, στ )

in its own right, satisfying δστ (τ) = δσω(τ). We assume that φ is repulsive,

which is to say that φ ≥ 0. ψ and φ are known as the background and type

interactions repectively. Recall that since (2.2.2) is satisfied, we write the

Hamiltonian as in (2.2.4):

H∆,ω(ω′) =
∑

τ∈Del3,∆(ω′∪ω∆c )

ψ(τ) + φ(τ)(1− δστ (τ)).

For notational convenience we make the definitions

Hψ
∆,ω(ω′) :=

∑
τ∈Del3,∆(ω′∪ω∆c )

ψ(τ), (2.3.3)

Hφ
∆,ω(ω′) :=

∑
τ∈Del3,∆(ω′∪ω∆c )

φ(τ)(1− δστ (τ)).

The Hamiltonian can then be split into two terms:

H∆,ω(ω′) = Hψ
∆,ω(ω′) +Hφ

∆,ω(ω′).
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Notice that (2.3.3) is the Hamiltonian in ∆ with boundary condition ω in the

unmarked regime for the potential ψ′ : Del3 → R∪{∞} defined by ψ′(τ, ω) :=

ψ(τ). This is to say that if H = Del3 then∑
τ∈H∆(ω′∪ω∆c )

ψ(τ) =
∑

τ∈Del3,∆(ω′∪ω∆c )

ψ(τ).

In a slight abuse of terminology we will at times refer to ψ itself as a hyperedge

potential and write Ωψ
∆,z in place of Ωψ′

∆,z.

2.3.3 The Delaunay continuum random cluster distri-

bution

The Delaunay continuum random cluster distribution is an example of a hy-

peredge percolation model as described in section 2.3.1. The Delaunay con-

tinuum random cluster distribution in ∆ b Rd with boundary condition ω is

constructed by sampling a collection of points according to the finite volume

Gibbs distribution with interaction ψ and opening each hyperedge indepen-

dently with some probability which depends on φ. Each configuration is then

weighted according to the number of connected components that are present.

Let ω ∈ Ω be a configuration which is admissible with respect to ∆ b

Rd, hyperedge potential ψ and activity z > 0. The distribution of particle

positions is given by the (unmarked) finite volume Gibbs distribution in ∆

with potential ψ, that is the measure defined by

P z
∆,ω(A) :=

1

Zz
∆(ω)

∫
Ω∆

1A(ω′ ∪ ω∆c)e−H
ψ
∆,ω(ω′) Πz

∆(dω′) (2.3.4)

for A ∈ F , where Zz
∆(ω) is the normalising constant.

For ω ∈ Ω, let µω,∆ denote the distribution of the random hyperedge

configuration {τ ∈ Del3(ω) : ξτ = 1} ∈ E , where (ξτ )τ∈Del3(ω) are independent

Bernoulli random variables such that ξτ = 1 with probability

p∆(τ) :=

1− e−φ(τ) if τ ∈ Del3,∆(ω),

1 if τ ∈ Del3(ω) \Del3,∆(ω).
(2.3.5)
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Notice that 0 ≤ 1−e−φ(τ) ≤ 1 because it was assumed that φ is repulsive. The

measure µω,∆ is called the hyperedge drawing mechanism. The fact that the

map Ω×Σ 3 (ω,A) 7→ µω,∆(A) is a stochastic kernel is established in [Eye14,

Lemma 2.1.3].

Let Ncc(ω,E) denote the number of connected components in the hy-

pergraph (ω,E). If

Zz∆(ω) :=

∫∫
qNcc(ω∆c∪ω′,E)µω∆c∪ω′,∆(dE)e−H

ψ
∆,ω(ω′) Πz

∆(dω′) ∈ (0,∞) (2.3.6)

then Zz
∆(ω) ∈ (0,∞) also, since qNcc(ω∆c∪ω′,E) ∈ (1,∞). We can therefore make

the following definition.

Definition 2.3.1. If Zz∆(ω) ∈ (0,∞) the Delaunay continuum random cluster

distribution in ∆ b Rd for ψ, φ, z, and boundary condition ω is the probability

measure on (G,A) defined by

Cz
∆,ω(A) :=

Zz
∆(ω)

Zz∆(ω)

∫∫
1A(ω′, E)qNcc(ω

′,E)µω′,∆(dE)P z
∆,ω(dω′),

where Ncc(ω
′, E) is the number of connected components in the hypergraph

(ω′, E). Since µω′,∆ leaves the hyperedges outside of Del3,∆(ω′) open we say

that Cz
∆,ω has a wired boundary condition.

We claim that if ω′∆c = ω∆c then

1 ≤ Ncc(ω
′, E) ≤ |Del1,∆(ω∆c)|+ |ω′∆|+ 1. (2.3.7)

for µω′,∆-almost all E. We start by assuming that E is empty, which results

in the upper bound

Ncc(ω
′, E) ≤ K(ω′) + |ω′∆|+ 1,

where

K(ω′) :=

∣∣∣∣∣
{
x ∈ ω′∆c

∣∣∣∣ τ ∈ Del3,∆(ω′) for every

τ ∈ Del3(ω′) with x ∈ τ

}∣∣∣∣∣
≤ |(Del1,∆(ω′))∆c|.
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To prove (2.3.7) we now show that |(Del1,∆(ω′))∆c | = |Del1,∆(ω∆c)|.
Suppose x ∈ (Del1,∆(ω′))∆c . Let τ denote one of the triangles in Del3,∆(ω′)

to which x belongs. If τ ∈ Del3,∆(ω∆c) then clearly x ∈ Del1,∆(ω∆c). Otherwise

τ ∈ Del3(ω′) \Del3(ω∆c), which implies that there is a triangle τ ′ ∈ Del3(ω∆c)

containing x for which B(τ ′) ∩ ω′∆ 6= ∅. In this case x ∈ τ ′ ∈ Del3,∆(ω∆c), and

so x ∈ Del1,∆(ω∆c).

Conversely, if x ∈ Del1,∆(ω∆c), then ∃τ ∈ Del3,∆(ω∆c) containing x. If

τ ∈ Del3,∆(ω′) then clearly x ∈ (Del1,∆(ω′))∆c . Otherwise, B(τ)∩ω∆ 6= ∅, and

so ∃τ ′ ∈ Del3,∆(ω′) containing x. Thus x ∈ (Del1,∆(ω′))∆c , which concludes

the proof.

From (2.3.7) we obtain the following bounds on Zz∆ :

Zz
∆(ω) ≤ Zz∆(ω) ≤ e(q−1)z|∆|q1+|Del1,∆(ω∆c )|Zzq

∆ (ω).

Therefore Zz∆(ω) ∈ (0,∞) when ω is admissible with respect to ψ, zq and ∆.

2.3.4 The random cluster representation measure

To obtain the representation measure, particles are positioned according to

the measure P z
∆,ω (defined in (2.3.4)), given marks independently with a uni-

form distribution and hyperedges connecting them are opened according to

the hyperedge drawing mechanism. The resulting measure is then conditioned

on the event that two points in the same connected component must have the

same mark.

For a fixed set of particle positions ω, let λω,∆ denote the distribution of

the mark vector σω ∈ [q]ω where (σω(x))x∈ω∆
are independent and uniformly

distributed on [q] and σω(x) = 1 for all x ∈ ω∆c . λω,∆ is called the type picking

mechanism. We say that λω,∆ has a monochromatic boundary condition since

all points outside of ∆ have the same mark.

Let B ∈ F × Σ denote the event that any two points can only belong

to the same connected component if they have the same mark, that is

B =

{
(ω, E) ∈ Ω× E :

∑
τ∈E

(1− δσω(τ)) = 0

}
.
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If ω ∈ Ωψ
∆,z we can define mz

∆,ω on (Ω× E ,F × Σ) as the measure satisfying

mz
∆,ω(A) :=

∫
1A((ω′, σω′), E)µω′,∆(dE)λω′,∆(dσω′)P

z
∆,ω(dω′).

There exists k ∈ Z such that P z
∆,ω(ω′ : ω′∆c = k) > 0, so

mz
∆,ω(B) ≥ P z

∆,ω(ω′ : ω′∆c = k) q−k > 0.

Definition 2.3.2. The Delaunay random cluster representation measure in

∆ b R2 for ψ, z, and boundary condition ω ∈ Ωψ
∆,z is the probability measure

on (Ω× E ,F × Σ) defined by

Pz∆,ω(·) := mz
∆,ω(·|B).

The random cluster representation measure is a joint construction of the

Delaunay continuum Potts distribution and the Delaunay continuum random

cluster distribution. The former can be obtained if one only looks at the

particle positions and their types and disregards the hyperedges. Alternatively,

the latter can be obtained by are ignoring the type of each particle. These

statements are formalised in the next proposition. They are very similar to

Propositions 2.14 and 2.15 from [Eye14] (which are in turn are very similar to

Propositions 2.1 and 2.2 from [GH96]) but the author uses a different definition

of the set H∆. The proofs in our context do not differ in any notable way so

they are omitted.

Let ρ1 and ρ2 denote the projections from Ω × E to Ω and Ω × E
respectively.

Proposition 2.3.3. (The random cluster representation). Let ∆ b

R2, z > 0, ω ∈ Ωψ
∆,zq and ω = (ω, σω) where σω ≡ 1. Then ω ∈ Ωϕ

∆,zq and

1. Pzq∆,ω ◦ ρ
−1
1 = γzq∆,ω, 2. Pzq∆,ω ◦ ρ

−1
2 = Cz

∆,ω.
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2.3.5 Phase transitions, symmetry breaking and con-

nectivity

The significance of the random cluster representation is that it allows us to

relate the influence the boundary condition of the Delaunay continuum Potts

distribution has on the mark of each particle to the percolative properties of

the Delaunay random cluster distribution. Consider the Delaunay continuum

Potts distribution in some region ∆ b R2. Since φ is repulsive, it is clear

that there is an incentive for particles of the same hyperedge to have the

same mark, and so particles whose mark is the same as the monochromatic

boundary condition will be more prevalent in ∆ than the others. This effect

will be diminished as the size of the region ∆ increases, but thanks to the

random cluster representation we shall deduce later that this effect does not

disappear entirely in the limit ∆↗ R2, so long as the probability with respect

to the Delaunay random cluster distribution that a fixed region Λ b R2 is

connected to ∆c is bounded away from 0. There will remain one mark which

is preferred over the others, a phenomenon which we call breaking the symmetry

of the mark distribution. This leads us to the discovery of q distinct phases

(Delaunay continuum Potts measures), which each have a preferred mark.

For Λ ⊂ ∆ b R2, let NΛ,i(ω) denote the number of particles located

in Λ with mark i ∈ [q] and NΛ↔∆c(ω,E) denote the number of particles in Λ

which are connected to ∆c:

NΛ,i(ω) := |{x ∈ ωΛ : σω(x) = i}|,

NΛ↔∆c(ω,E) := |{x ∈ ωΛ : ∃ a path in (ω,E) from x to some y ∈ ω∆c}|.

The following result can be shown using the random cluster representation

(Proposition 2.3.3). For details see [Eye14, Proposition 2.17] as it is proven in

the same way.

Proposition 2.3.4. If Λ ⊂ ∆ b R2, ω ∈ Ωψ
∆,zq and ω = (ω, σω) where σω ≡ 1.

Then ∫
(qNΛ,1 −NΛ)dγzq∆,ω = (q − 1)

∫
NΛ↔∆cdCz

∆,ω.
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Using this result one can prove that if there is a lower bound
∫
NΛ↔∆cdCz

∆,ω ≥
c > 0 which is uniform over all ∆ then there is a phase transition:

Theorem 2.3.5. (Phase Transition). Let Λn :=
⋃
k∈{−n,...,n}2 C(k). Suppose

(R), (S) & (U) are satisfied by ϕ,M,Γ & z. If there exists ω ∈ ∩∞n=1Ωψ
Λn,zq

such that ω = (ω, σω) ∈ Γ for all σω : ω → [q] and there exists c > 0 such that∫
NC(k)↔ΛcndCz

Λn,ω ≥ c (2.3.8)

for all n and all k ∈ {−n, ..., n}2, then there exists at least q translation-

invariant Delaunay continuum Potts measures with interaction ϕ and activity

zq.

The full proof of this statement mimics the proof of [Eye14, Section

2.7]. We just give a brief overview here. The proof begins by showing that

constructing a sequence of probability measures (P 1
n)n∈N on (Ω,F) such that

1. P 1
n are invariant under the skewed lattice translations (θx)x∈MZ2 ,

2. For i ∈ [q] and ∆ ⊂ Λn,∫
(qN∆,i −N∆)dP 1

n =

∫
(qN∆,i −N∆)dγzqΛn,ω

,

where σω ≡ 1,

3. P 1
n has a subsequence which converges locally1 to some measure P 1, and

after spatially averaging the measure P 1(·|{∅}c), one obtains a translation-

invariant Gibbs measure P̃ 1.

The local convergence in conjunction with the uniform lower bound and Propo-

sition 2.3.4 then implies that for all ∆ b R2,∫
(qN∆,1 −N∆)dP̃ 1 ≥ (q − 1)c > 0,

1In this instance the local convergence topology is the weak* topology generated by the
set of local and tame real-valued functions on Ω. These are the functions which which are
F∆-measurable and satisfy |f(ω)| ≤ a|ω∆| + b for some ∆ b R2 and a, b ∈ R. You could
alternatively use the coarser weak* topology generated by the set of local bounded functions
here, but the finer topology is preferred in most settings (see for instance [GZ93]) as it has
additional useful properties including the fact that it makes the intensity functionals and
the Palm mappings continuous.
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and since γzqΛn,ω
is invariant under permutations of {2, ..., q}, we have∫
N∆,1 dP̃ 1 >

∫
N∆,2 dP̃ 1 = ... =

∫
N∆,q dP̃ 1,

and the symmetry of the mark distribution is broken. Finally, in the same

way, for each i ∈ [q] \ {1} it is possible to obtain a measure P̃ i in which the

mark i is preferred. This concludes the proof.

2.3.6 Hyperedge percolation to site percolation

We now focus on how to show that condition (2.3.8) is satisfied. We will

construct a continuum site percolation model Ĉz,site
∆,ω in which the event that

Λ is connected to ∆c is smaller that it is with respect to Cz
∆,ω. We can then

use a coarse graining argument to bound this event from below. The new

percolation model will share the same particle distribution as Cz
∆,ω.

First we must introduce the notion of stochastic dominance between

probability measures. A function f : E → R is said to be increasing if f(A) ≤
f(B) whenever A ⊂ B. For two probability measures µ1, µ2 on (E ,Σ), we say

that µ1 stochastically dominates µ2 and write µ1 < µ2 if µ1(f) ≥ µ2(f) for all

increasing functions f : E → R.

The measure Ĉz,site
∆,ω will be defined as a measure on (Ω,F) where q = 2,

although instead of the mark space {1, 2} we will use the mark space {0, 1}.
Points with mark 1 are considered to be ‘open’ and points with mark 0 are

‘closed.’ A path in ω ∈ Ω connecting x and y is a sequence of points (xi)
n
i=1 ⊂

ω with n ∈ N,x1 = x and xn = y such that σω(xi) = 1 for all i ∈ [n] and

there exists τj ∈ Del3(ω) such that xj,xj+1 ∈ τj for all j ∈ [n−1]. The event

that Λ is connected to ∆c is the following:

{Λ↔ ∆c} :=

{
ω ∈ Ω

∣∣∣∣ There exists a path (xi)
n
i=1

in ω with x1 ∈ Λ and xn ∈ ∆c.

}

Let M z
∆,ω denote the marginal distribution Cz

∆,ω(·, E). We can then

write

Cz
∆,ω(dω′, dE) = µqω′,∆(dE)M z

∆,ω(dω′),
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where

µqω′,∆(dE) :=
qNcc(ω

′,E)µω′,∆(dE)∫
qNcc(ω′,E)µω′,∆(dE)

. (2.3.9)

Let Ĥ ⊂ Del3 denote a fixed but arbitrary unmarked hypergraph struc-

ture, and p̂ ∈ [0, 1]. For ω ∈ Ω, let µ̂ω denote the distribution of the ran-

dom hyperedge configuration {τ ∈ Del3(ω) : ξτ = 1} ∈ E , where (ξτ )τ∈H(ω) are

independent Bernoulli random variables such that ξτ = 1 with probability

p̂1Ĥ(ω)(τ). In other words, each hyperedge τ ∈ Del3(ω) is declared open inde-

pendently with probability p̂1Ĥ(ω)(τ), and closed otherwise.

In addition, define ω̂ := {x ∈ ω : ∃τ ∈ Ĥ(ω) with x ∈ τ} and let λ̂ω

denote the distribution of the mark vector σω ∈ {0, 1}ω where (σω(x))x∈ω are

independent and identically distributed such that σω(x) = 1 with probability

p̂1ω̂(x).

We can now define our site percolation measure on (Ω,F) to be

Ĉz,site
∆,ω (dω′, dσω) = λ̂ω(dσω′)M

z
∆,ω(dω′).

The result regarding connectivity is the following. For the full proof see [Eye14,

Proposition 2.18].

Proposition 2.3.6. If µqω,∆ < µ̂ω then for all Λ ⊂ ∆ b R2,∫
NΛ↔∆cdCz

∆,ω ≥ Ĉz,site
∆,ω (Λ↔ ∆c).

Let µ̂ω,∆ denote the measure for which each hyperedge τ ∈ Del3(ω) is

opened independently with probability

p̂1Ĥ(ω)∩Del3,∆(ω)(τ) + 1Del3(ω)\Del3,∆(ω)(τ),

With respect to both µqω,∆ and µ̂ω,∆, the status of all but finitely many hy-

peredges are fixed. In this case, one can show that µqω,∆ < µ̂ω,∆ if for all

τ ∈ Del3(ω), the comparison inequalities

p∆(τ)

q2(1− p∆(τ))
≥ p̂

1− p̂
(2.3.10)
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are satisfied (with the convention that p
1−p =∞ when p = 1) by applying the

same method as in the case where the hypergraph is finite. For the proof in

the case of a finite hypergraph, see [Eye14, Proposition 2.3] (which generalises

a result originally proven in [For72]). Employing a coupling argument similar

to that used in Lemma 2.4.1 we see that µ̂ω,∆ < µ̂ω. Therefore, to show that

µqω,∆ < µ̂ω we need only verify (2.3.10).

2.4 Mixed site-bond percolation on Zd

Here we take a small detour to prove a technical result about mixed site-bond

percolation on Zd for d ≥ 1 which will prove useful when carrying out the

aforementioned coarse-graining procedure. This result is not strictly necessary,

and in fact [Rus82, Lemma 1] would suffice for our purposes since we only need

to consider site percolation in chapter 3. We choose to include this result here

because there are situations (for instance the model considered in [AE19])

when one needs to use mixed site-bond percolation to accomplish the coarse-

graining argument. The result states that if all conditional probabilities are

uniformly bounded from below then the percolation probability is greater than

the percolation probability of Bernoulli site-bond percolation. For more results

regarding comparisons of site percolation measures with product measures see

[LSS97].

Let B = {{x, y} ⊂ Zd : |x− y| = 1} denote the set of edges (or bonds)

between neighbouring vertices in Zd, and Ω := {0, 1}Zd∪B. For ω ∈ Ω we say

that a site or bond x ∈ Zd∪B is open if ω(x) = 1 and closed otherwise. We will

use the shorthand ωx and ω{x,y} in place of ω(x) and ω({x, y}) respectively.

Let

C(ω) :=

{
x ∈ Zd

There exists a path 0 = x1, ..., xn = x s.t ωxi = 1

for i ∈ [n] and ω{xi,xi+1} = 1 for i ∈ [n− 1].

}

This is the open cluster around the origin. Similarly, if ω ∈ Ω or ω ∈ Ω̃ :=
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{0, 1}Zd we define the open site cluster as follows:

Cs(ω) :=

{
x ∈ Zd

There exists a path 0 = x0, , .., xn = x

such that ωxi = 1 for i ∈ [n]

}
.

The event that 0 is connected to the set A is

{0↔ A} = {ω ∈ Ω | There exists x ∈ A ∩ C(ω)},

and the event that percolation occurs is

{0↔∞} := {ω ∈ Ω | |C(ω)| =∞} =
⋂
n∈N

{0↔ Λc
n},

where Λn = [−n, n]d ∩ Zd.
Let µp,p′ denote the measure for which each site is opened independently

with probability p and each bond is opened independently with probability p′.

Lemma 2.4.1. If P is a measure on Ω satisfying the conditions:

1. For all x ∈ Zd and ω′ ∈ Ω,

P
(
ωx = 1 | ωz = ω′z for all z ∈ (Zd \ x) ∪ B

)
≥ p, (2.4.1)

2. For all {x, y} ∈ B and ω′ ∈ Ω satisfying ω′x = ω′y = 1,

P
(
ω{x,y} = 1 | ωz = ω′z for all z ∈ Zd ∪ (B \ {x, y})

)
≥ p′. (2.4.2)

Then P(0↔∞) ≥ µp,p′(0↔∞).

Proof. Let P̃ and µ̃p,p′ denote the marginal measures of P and µp,p′ on Ω̃.

Inequality (2.4.1) will allow us to couple these measures together. We start

by identifying Zd with the natural numbers via an arbitrary ordering. Let

E+
k (E−k ) be the event that the site k is open (closed) and let ω(k) = {ω′ ∈

Ω̃ | ω′i = ωi for all i < k}. We define the measure m on Ω̃× Ω̃ inductively by
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setting (as was done in [Rus82])

m(E+
1 × E+

1 ) = p, m(E+
1 × E−1 ) = P(E+

1 )− p,

m(E−1 × E+
1 ) = 0, m(E−1 × E−1 ) = 1− P(E+

1 ),

and then for k ≥ 2 and ζ, ω ∈ Ω̃,

m(E+
k × E

+
k | ζ

(k) × ω(k)) = p,

m(E−k × E
+
k | ζ

(k) × ω(k)) = 0,

m(E+
k × E

−
k | ζ

(k) × ω(k)) = P(E+
k | ω

(k))− p,

m(E−k × E
−
k | ζ

(k) × ω(k)) = 1− P(E+
k | ω

(k)).

This measure satisfies the following:

P(0↔ Λc
n) =

∫
P(0↔ Λc

n | Cs = Cs(ω)) P̃(dω)

=

∫
P(0↔ Λc

n | Cs = Cs(ω)) m(dω, dω′),

and similarly

µp,p′(0↔ Λc
n) =

∫
µp,p′(0↔ Λc

n | Cs = Cs(ω
′)) m(dω, dω′).

Therefore if∫
P(0↔ Λc

n | Cs = Cs(ω))− µp,p′(0↔ Λc
n | Cs = Cs(ω

′)) m(dω, dω′) ≥ 0

then we have

P(0↔ Λc
n) ≥ µp,p′(0↔ Λc

n),

and so to complete the proof we need only to show the former inequality. First

we note that if ω ≥ ω′, then we have

µp,p′(0↔ Λc
n | Cs = Cs(ω)) ≥ µp,p′(0↔ Λc

n | Cs = Cs(ω
′)), (2.4.3)

since the event 0 ↔ Λc
n only depends on the bonds between sites in Cs. Sec-

ondly, since all sites in Cs are open, we can conclude using property (2.4.2)
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that for all ω ∈ Ω̃

P(0↔ Λc
n | Cs = Cs(ω)) ≥ µp,p′(0↔ Λc

n | Cs = Cs(ω)). (2.4.4)

This can be shown by another coupling on {0, 1}B(ω), where B(ω) is the set of

bonds between sites in Cs(ω). Since ω ≥ ω′ almost surely with respect to m

we can now conclude using (2.4.3) and (2.4.4) that:∫
P(0↔ Λc

n | Cs = Cs(ω)) − µp,p′(0↔ Λc
n | Cs = Cs(ω

′)) m(dω, dω′)

≥
∫

P(0↔ Λc
n | Cs = Cs(ω)) − µp,p′(0↔ Λc

n | Cs = Cs(ω)) m(dω, dω′)

≥ 0.

Corollary 2.4.2. Let pc denote the critical probability for site percolation on

Zd. If P is a measure on Ω such that

1. For all x ∈ Zd and ω′ ∈ Ω,

P(ωx = 1 | ωy = ω′y for y 6= x) >
√
pc,

2. For all {x, y} ∈ B and all ω′ ∈ Ω satisfying ω′x = ω′y = 1,

P(ω{x,y} = 1 | ω{w,z} = ω′{w,z} for {w, z} 6= {x, y}) > √pc.

Then P(0↔∞) > 0.

Proof. By Lemma 2.4.1 there exists ε > 0 such that

P(0↔∞) ≥ µ√pc+ε,√pc+ε(0↔∞).

By applying inequality (4) of [Ham80] we can see that the right hand side is

greater than µ(
√
pc+ε)2,1(0 ↔ ∞), which is greater than 0 since (

√
pc + ε)2 >

pc.
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2.5 Previous results for Delaunay interactions

To close this chapter we will review previous results for Delaunay continuum

Potts measures. In [AE16] Adams and Eyers considered three models in which

the Hamiltonian takes the form

H∆,ω(ω′) =
∑

η∈Del2,∆(ω∆c∪ω′)

ψ(η) +
∑

τ∈Delm,∆(ω∆c∪ω′)

φ(τ)(1− δστ (τ))

for m ∈ {2, 3}. In all three ψ was chosen to be the hard-core potential

ψ({x, y}) :=

∞ if |x− y| < δ0

0 otherwise.

Since the Delaunay graph is a nearest neighbour graph, ψ ensures that no

two particles are within δ0 of each other. The three choices of m and φ were

as follows, where β > 0 is a parameter which adjusts the strength of the

interaction.

1. m = 2 and

φ1({x, y}) := log

(
1 + β

(
δ0

|x− y|

)3
)
, (2.5.1)

2. m = 3 and

φ2(τ) := log
(
1 + βα(τ)3

)
,

where α(τ) is the smallest interior angle of τ ,

3. m = 3 and

φ3(τ) :=

β if α(τ) ≥ α0

0 otherwise,

where α0 ∈ (0, π/3).

Interaction 1 discourages short edges and interactions 2 and 3 encourage the

presence of triangles with small angles. All three models were shown to ex-
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δ0

∞

log(1 + β)

(ψ + φ1)({x, y})

|x− y|

Figure 2.3: A graph of ψ + φ1.

hibit a phase transition when the parameters are chosen appropriately. More

precisely, for models 1 and 3 it was shown that for all δ0 there are functions

β0 = β0(δ0) and z0(β, δ0) such that for all β > β0 and z > z0 there are at least

q distinct Gibbs measures. For model 2, it was shown that for all δ0 > 0 and

α0 sufficiently small there exists β0 = β0(δ0, α0) and z0 = z0(δ0, α0) such that

for all z > z0 and β > β0 there exists at least q distinct Gibbs measures.

Adams and Eyers also studied a system with no background interaction

and a finite range type interaction in [AE19]. They considered the Hamiltonian

H∆,ω(ω′) =
∑

η={x,y}∈Del2,∆(ω∆c∪ω′)

log(1 + β|x− y|−3−ε)1{|x−y|≤R}(1− δση(η))

where β,R > 0. It was shown that for any R, ε > 0, there are functions z0(R, q)

and β0(q, R, z) such that for all for all z > z0 and β > β0 there exists at least

q distinct Gibbs measures [AE19][Theorem 1.4 and Remark 1.5(c)]).
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Chapter 3

Delaunay Potts models with

triangle interactions

Here we consider a Delaunay Potts model with interactions between the triples

of points which are the triangles (2-simplices) of the Delaunay triangulation.

This is in contrast to the models in section 2.5 which have interactions based

at least in part on the relationship between pairs of points (the 1-simplices).

We consider a hardcore background interaction which places upper and lower

bounds on the circumradius of each triangle and a lower bound on the interior

angles of each triangle. The edge lengths can therefore be bounded from

above and below, so the restrictions here are stronger than those imposed in

the models from [AE16]. We will show that a translation invariant Delaunay

continuum Potts measure exists when the activity z is large enough and that

there is a phase transition for certain values of the model parameters.

3.1 Definitions

For a triangle τ ∈ ER2,3 whose points are non-collinear, let A(τ) denote its

area, δ(τ) its circumradius and α(τ) the size of its smallest interior angle. The

background and type potentials we consider in this chapter are

ψ(τ) :=

0 if δ(τ) ∈ (r, R) and α(τ) > α0

∞ otherwise.
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and

φ(τ) := log
(
1 + βA(τ)−1

)
respectively, where β > 0, α0 ∈ (0, π/3) and 0 < r < R < ∞. Recall from

(2.3.2) that the hypergraph potential ϕ : Del3 → R ∪ {∞} is given by

ϕ(τ ,ω) := ψ(τ) + φ(τ)(1− δσω(τ)).

3.2 Results

Theorem 3.2.1. (Existence.) If β > 0 and

z > zex
0 (β,R, r, α0)

:=
(1 + 6ρ0)6

3πR2ρ2
0(1− 6ρ0)4

(
1 +

β(1 + 6ρ0)6

33/2R2(1− 6ρ0)11/2(1− 2ρ0)1/2

)2

, (3.2.1)

where

ρ0(R, r, α0) :=
R1/3 − r1/3

6 (R1/3 + r1/3)
∧

(1− (1
2

+ cos(α0))
1
2 )2

2 cos(α0)− 1
, (3.2.2)

then there exists a translation-invariant Delaunay continuum Potts measure

for Del3, z and ϕ.

Theorem 3.2.2. (Phase Transition.) Let α0 < sin−1(3/64), and 64r <

3R. There exists β0(q, R, r, α0), z0(β, q, R, r, α0) > 0 such that for all β >

β0(q, R, r, α0) and z > z0(β, q, R, r, α0) there exist at least q translation-invariant

Delaunay continuum Potts measures for Del3, z and ϕ.

Remark 3.2.3. The dependence of z0 on β here comes from the existence proof,

there is no additional dependence on β required to show that a phase transition

occurs. In fact, it is possible to remove the dependence of z on β entirely by

using the alternative criteria for existence given in [DDG12, Theorem 3.3]

which replaces uniform confinement (U1) and strong non-rigidity (U3) with

a lower density bound and weak non-rigidity. The lower density bound can

be obtained since our hardcore potential ensures that the distance between

adjacent points in the Delaunay triangulation is no more than 2R.
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The hardcore potential ψ imposes very strict restrictions on the particle

configurations, and so we believe that these results could be replicated for a

large variety of background potentials. A mild generalisation is to the type

potentials

φ(τ) := log
(
1 + βA(τ)−k

)
for k > 0, although one can go much further than this. The main requirement

on φ is that one can find p̂ ∈ (0, 1) such that whenever a configuration ω sat-

isfies the hardcore condition, p̂
1−p̂ ≤

eφ(τ)−1
q2 for all τ ∈ Del3(ω). This ensures

that the comparison inequalities (2.3.10) are satisfied and our coarse graining

method results in a measure which stochastically dominates a Bernoulli prod-

uct measure. The coarse graining argument begins in section 3.4.2 and the

value of p̂ we use is shown in (3.4.2).

In addition to this, we believe that it should be possible using our

method to extend these results to higher dimensional Delaunay tessellations,

assuming that an analogous background potential is used. In contrast, the

model (without a hardcore background potential) considered in [AE19] re-

quired an intricate argument estimating the expected number of connected

components in a Delaunay graph, and it is hard to see how this could be

replicated in higher dimensions.

3.3 Existence proof

To prove that a translation-invariant Delaunay continuum Potts measure exists

we will verify that the hypotheses of Theorem 2.1.7 are met. For (τ ,ω) ∈
Del3 the ball B(τ) is a horizon for ϕ satisfying the requirements of (R) since

ω ∩ B(τ) = τ. (S) is trivially satisfied since ϕ ≥ 0. We will show that (U) is

satisfied when

M =

(
` `/2

0
√

3`/2

)
(3.3.1)
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Figure 3.1: A pseudo-periodic configuration with ρ < 1
2
√

3
.

and

Γ = ΓB := {ω ∈ ΩC : ω = {x} for some x ∈ B}, (3.3.2)

where B = B(0, ρ`) is the ball of radius ρ` around the origin and the param-

eters ρ, ` > 0 are chosen appropriately. We assume that ρ < 1
2
√

3
, in which

case for every pseudo-periodic configuration ω ∈ ΓB, each point x ∈ ω has

6 neighbours and the Delaunay triangulation becomes a perturbed triangular

lattice ([Nol13, Remark 2.5]) as shown in figure 3.1. In this case the length of

each edge lies in the interval (`(1− 2ρ), `(1 + 2ρ)). Thus by the law of cosines

cos(α(τ)) ≤ 2`2(1 + 2ρ)2 − `2(1− 2ρ)2

2`2(1− 2ρ)2

=

(
1 + 2ρ

1− 2ρ

)2

− 1

2

for all τ ∈ Del3(ω). The roots of the quadratic (1+2ρ)2−(1
2

+cos(α0))(1−2ρ)2

are
(1±( 1

2
+cos(α0))

1
2 )2

2 cos(α0)−1
, and so since cos(α0) > 1

2
we have the following result.

Lemma 3.3.1. If ρ <
(1−( 1

2
+cos(α0))

1
2 )2

2 cos(α0)−1
∧ 1

2
√

3
then for any pseudo-periodic
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configuration ω ∈ ΓB,

α(τ) > α0 for all τ ∈ Del3(ω).

By Lemma A.0.2,

`(1− 2ρ)√
3

≤ δ(τ)

for all τ ∈ Del(ω). If we further assume that ρ < 1
6
, then

0 < L(ρ) :=
1− 6ρ√

3
≤ δ(τ)

`
. (3.3.3)

On the other hand, the circumradius δ of a triangle with area A and edge

lengths a, b and c is abc
4A

, so we have

δ(τ) ≤ `3(1 + 2ρ)3

4A(τ)
.

The lower bound

A(τ) ≥
√

3`(1− 2ρ)(2`(1− 2ρ)− `(1 + 2ρ))3

= `2
√

3(1− 2ρ)(1− 6ρ)3 (3.3.4)

can be obtained using Heron’s formula, which implies

U(ρ) :=
(1 + 6ρ)3

√
3(1− 6ρ)2

≥ (1 + 2ρ)3√
3(1− 2ρ)(1− 6ρ)3

≥ δ(τ)

`
. (3.3.5)

These inequalities are used to prove the following result.

Proposition 3.3.2. If ρ < ρ0(r, R, α0) := R1/3−r1/3

6(R1/3+r1/3)
∧ (1−( 1

2
+cos(α0))

1
2 )2

2 cos(α0)−1
then

r
L(ρ)

< R
U(ρ)

. Furthermore, if ` ∈
(

r
L(ρ)

, R
U(ρ)

)
then all pseudo-periodic configu-

rations ω ∈ ΓB satisfy

δ(τ) ∈ (r, R) and α(τ) > α0 for all τ ∈ Del3(ω). (3.3.6)
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Proof. The first part is just a simple rearrangement:

ρ <
R1/3 − r1/3

6 (R1/3 + r1/3)
,

=⇒ (1 + 6ρ)r1/3 < (1− 6ρ)R1/3,

=⇒ r

R
<

(
1− 6ρ

1 + 6ρ

)3

=
L(ρ)

U(ρ)
,

=⇒ r

L(ρ)
<

R

U(ρ)
.

Since ρ < R1/3−r1/3

6(R1/3+r1/3)
< 1

6
< 1

2
√

3
we can apply Lemma 3.3.1 and inequalities

(3.3.3) & (3.3.5) to obtain

r < `L(ρ) ≤ δ(τ) ≤ `U(ρ) < R

and α(τ) > α0 for all τ ∈ Del3(ω) when ` ∈
(

r
L(ρ)

, R
U(ρ)

)
.

Suppose ω ∈ Γ, ζ ∈ Ω∆ and τ ∈ Del3,∆(ζ ∪ ω∆c). There exists k ∈ R
(independent of ω,∆ and ζ) such that B(τ) ⊂ ∆⊕ k, since if B(τ) protrudes

too far outside of ∆ then B(τ) ∩ ω∆c 6= ∅. Therefore if ω′∆⊕k = ω∆⊕k then

τ ∈ Del3(ζ ∪ ω′∆c), which implies ϕ(τ , ζ ∪ ω∆c) = ϕ(τ , ζ ∪ ω′∆c). (U1) is

then satisfied with rΓ ≤ k <∞.
To prove (U2), we need an upper bound on cΓ. If (3.3.6) holds then

ψ(τ) = 0, and so utilising the lower bound (3.3.4) we have

cΓ ≤
6

3
log

(
1 +

β

`2
√

3(1− 2ρ)(1− 6ρ)3

)
<∞. (3.3.7)

Finally, ez|C|Πz
C(Γ) = z|B|, so if

z >
1

πρ2`2

(
1 +

β

`2
√

3(1− 2ρ)(1− 6ρ)3

)2

then (U3) is satisfied. Thus far we have proved the following:
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Proposition 3.3.3. If β > 0,

ρ < ρ0(R, r, α0) :=
R1/3 − r1/3

6 (R1/3 + r1/3)
∧

(1− (1
2

+ cos(α0))
1
2 )2

2 cos(α0)− 1
,

` ∈
(

r

L(ρ)
,
R

U(ρ)

)
,

and

z > z′0(β, ρ, `) :=
1

πρ2`2

(
1 +

β

`2
√

3(1− 2ρ)(1− 6ρ)3

)2

, (3.3.8)

then there exists a translation-invariant Delaunay continuum Potts measure

for Del3, z and ϕ.

Since the lower bound on z is continuous at (ρ, `) = (ρ0,
R

U(ρ)
), we can

replace ρ with ρ0 and ` with R
U(ρ)

. The condition on z then becomes

z > zex
0 (β,R, r, α0) :=

(1 + 6ρ0)6

3πR2ρ2
0(1− 6ρ0)4

(
1 +

β(1 + 6ρ0)6

33/2R2(1− 6ρ0)11/2(1− 2ρ0)1/2

)2

,

and therefore Theorem 3.2.1 can be seen as a consequence of Proposition 3.3.3.

Remark 3.3.4. zex
0 (β,R, r, α0)→∞ as α0 → π/3 or R1/3−r1/3

6(R1/3+r1/3)
→ 0.

3.4 Phase transition proof

To prove Theorem 3.2.2 we use a coarse graining procedure to obtain a lower

bound on Ĉz,site
Λn,ω

(C(k) ↔ Λc
n), and then apply Proposition 2.3.6 and Theo-

rem 2.3.5. Before specifying the unmarked hypergraph structure Ĥ and the

parameter p̂, we will first prove some statements about the measure M z
∆,ω. In

particular we consider the effect of augmenting a configuration by an additional

particle
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3.4.1 Augmenting a configuration by a particle

The situation here differs from the case of a classical many-body interaction

since adding a point x does not merely result in additional interaction terms

representing the interaction between x and the other particles. Instead, when

the particle x is added, some hyperedges are created and others are destroyed.

The result of this is that for ω′ ∈ Ω∆ and x ∈ ∆, both Hψ
∆,ω(ω′) and

Hψ
∆,ω(ω′ ∪ {x}) may contain terms which are not present in the other. It is

thus possible (depending on ψ) that Hψ
∆,ω(ω′) =∞ and Hψ

∆,ω(ω′ ∪ {x}) <∞.

In this case the function e−H
ψ
∆,ω(·) is called non-hereditary [DVJ08, Definition

10.4.IV]. We start with the point insertion lemma which expresses that the

circumradius of each ‘new’ triangle (when x is added) is less than the circum-

radius of particular ‘old’ triangles. The point insertion lemma formalises an

argument found in section 12.2.6 (page 462) of [Lis99], with some details filled

in.

The following sets contain the tiles that remain intact, the ones that

are created, and those that are destroyed when adding the point x0 to an

unmarked configuration ω. From now on we will write ω ∪ x0 rather than

ω ∪ {x0}.

T ext
x0,ω

:= Del3(ω) ∩Del3(ω ∪ x0) = {τ ∈ Del3(ω) : x0 /∈ B(τ)},

T+
x0,ω

:= Del3(ω ∪ x0) \Del3(ω) = {τ ∈ Del3(ω ∪ x0) : x0 ∈ τ},

T−x0,ω
:= Del3(ω) \Del3(ω ∪ x0) = {τ ∈ Del3(ω) : x0 ∈ B(τ)}.

An example is shown in figure 3.2. The area covered by the triangles in T−x0,ω

(or T+
x0,ω

) is shown in grey and referred to as the Delaunay cavity created by

x0.

Lemma 3.4.1. (Point insertion lemma.) Suppose τ = {x0, y, z} ∈ Del3(ω∪
x0) and let τ1, τ2 denote the two triangles in Del3(ω) which have {y, z} as a

subset. Then

δ(τ) ≤ max(δ(τ1), δ(τ2)).

Proof. Without loss of generality, let τ1 = {v, y, z} ∈ T−x0,ω
and τ2 = {u, y, z} ∈

T ext
x0,ω

(see figure 3.3). Let Cτ denote the circumcentre of τ . Consider the two
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(a) T−x0,ω = Del3(ω) \Del3(ω ∪ x0) (b) T+
x0,ω = Del3(ω ∪ x0) \Del3(ω)

Figure 3.2: Augmenting the configuration ω by a point x0.

(a) (b)

Figure 3.3

half planes separated by the line ←→xy passing through x and y. We will show

that if Cτ is in the same half-plane as v then δ(τ) ≤ δ(τ1) and if Cτ is in the

same half plane as u then δ(τ) ≤ δ(τ2).

In the former case, the angle θ1 subtended by the chord xy at v is less

than the angle θ2 subtended by xy at x0. This can be seen by extending the

line yx0 until it intersects the circumcircle of τ1 (figure 3.4a), which is possible

since x0 lies inside the circumcircle of τ1. Since Cτ lies on the same side of xy

as v, there is a right angle subtended by xy at some point along xx0 or yx0

(figure 3.4b), so θ2 ≤ π
2
. From the relationship θ1 ≤ θ2 ≤ π

2
we can conclude
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(a) The angle θ1 subtended by the
chord xy at v is less than the angle
θ2 subtended by xy at x0.

(b) There is a right angle sub-
tended by xy at some point along
xx0 or yx0.

Figure 3.4

that

δ(τ) =
d(x, y)

2 sin(θ2)
≤ d(x, y)

2 sin(θ1)
= δ(τ1).

Now suppose that Cτ is in the same half plane as u. If Cτ2 is farther

away from xy than Cτ , then it is clear that δ(τ) = d(x,Cτ ) ≤ d(x,Cτ2) = δ(τ2),

as required.

Conversely, if Cτ2 is between xy and Cτ then δ(τ2) ≤ δ(τ). In fact

δ(τ2) ≤ δ(τ) < d(u,Cτ ) (3.4.1)

since the point u is outside of B(τ). But we also have (see figure 3.5)

δ(τ)2 = d(x,Cτ )
2

= d(x,Cτ2)2 + d(Cτ , Cτ2)2 + 2d(Cτ , Cτ2)d

(
Cτ2 ,

x+ y

2

)
= d(u,Cτ2)2 + d(Cτ , Cτ2)2 + 2d(Cτ , Cτ2)d

(
Cτ2 ,

x+ y

2

)
≥ d(u,Cτ )

2.

46



(a) d(u,Cτ )2 = d(u,Cτ2)2 + d(Cτ , Cτ2)2 + 2d(Cτ , Cτ2)d(Cτ2 , p)

(b) d(u,Cτ )2 ≤ d(u,Cτ2) +
d(Cτ , Cτ2)2. (c) d(u,Cτ ) ≤ d(u,Cτ2).

Figure 3.5

which contradicts (3.4.1).

Let ω ∈ Ωψ
∆,zq. Recall that M z

∆,ω denotes the marginal distribution Cz
∆,ω(·, E).

The Radon-Nikodym density of M z
∆,ω with respect to P z

∆,ω is

hz∆,ω(ω′) := 1{ω∆c=ω′∆c}
Zz

∆(ω)

Zz∆(ω)

∫
qNcc(ω

′,T )µω′,∆(dT ).

The next lemma gives a lower bound on the ratio

hz∆,ω(ω′ ∪ x0)

hz∆,ω(ω′)
,

which is known as the Papangelou conditional intensity. Recall that according

to the hyperedge drawing mechanism µω,∆ each edge in Del3(ω) is opened

independently according to the probabilities given in (2.3.5). Let µext
x0,ω

, µ+
xo,ω

and µ−x0,ω
denote the measures which open the edges in T ext

x0,ω
, T+

x0,ω
and T−x0,ω
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respectively with the same probabilities. Then

µext
x0,ω
⊗ µ+

x0,ω
= µω∪x0,∆ and µext

x0,ω
⊗ µ−x0,ω

= µω,∆.

Lemma 3.4.2. Suppose that ω ∈ Ωψ
∆,zq, ω

′ ∈ Ω with ω∆c = ω′∆c , and x0 ∈
∆ \ ω′. If Hψ

∆,ω(ω′∆), Hψ
∆,ω(ω′∆ ∪ x0) <∞. Then

hz∆,ω(ω′ ∪ x0)

hz∆,ω(ω′)
≥ q

1− 2π
α0 .

Proof. The structure of this proof is the same as [AE19, Lemma 2.3] but the

details are slightly different since we are dealing with triangle interactions

rather than edge interactions.

hz∆,ω(ω′ ∪ x0)

hz∆,ω(ω′)
=

∫
qNcc(ω

′∪x0,T )µω′∪x0,∆(dT )∫
qNcc(ω′,T )µω′,∆(dT )

=

∫
qNcc(ω

′∪x0,T1∪T2)−Ncc(ω′,T1)qNcc(ω
′,T1)µext

x0,ω′
(dT1)µ+

x0,ω′
(dT2)∫

qNcc(ω′,T3∪T4)−Ncc(ω′,T3)qNcc(ω′,T3)µext
x0,ω′

(dT3)µ−x0,ω′
(dT4)

.

Opening more triangles can only reduce the number of connected components,

so

Ncc(ω
′, T3 ∪ T4) ≤ Ncc(ω

′, T3).

Furthermore, since Hψ
∆,ω(ω′∆ ∪ x0) < ∞ the point x0 is connected to at most

2π
α0

other points in the graph (ω′ ∪ x0,Del2(ω′ ∪ x0)), so

Ncc(ω
′ ∪ x0, T1 ∪ T2)−Ncc(ω

′, T1) ≥ 1− 2π

α0

.

Therefore

hz∆,ω(ω′ ∪ x0)

hz∆,ω(ω′)
≥
∫
q

1− 2π
α0 qNcc(ω

′,T1)µext
x0,ω′

(dT1)µ+
x0,ω′

(dT2)∫
qNcc(ω′,T3)µext

x0,ω′
(dT3)µ−x0,ω′

(dT4)

= q
1− 2π

α0 .
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3.4.2 Coarse graining

In order to prove the existence of a uniform lower bound on Ĉz,site
Λn,ω

(C(k,m)↔
Λc
n), we will devise a criterion by which, according to the underlying config-

uration ω, each cell C(k,m) (defined in 2.1.10) is declared open or closed.

This criterion will be devised in such a way that there exists an infinite con-

nected component containing a point in C(k,m) if C(k,m) belongs to an

infinite connected component of open cells. We call this procedure of moving

from points to cells coarse graining. Formally, for each n we will construct a

map Xn : Ω → {0, 1}Z2
where ω ∈ {C(k,m) ↔ Λc

n} if (k,m) belongs to an

infinite open cluster in Xn(ω). The cell C(k,m) is considered to be open if

Xn(ω)(k,m) = 1. The desired lower bound will then be obtained by making a

stochastic comparison between the law of Xn and a Bernoulli product measure

using Corollary 2.4.2.

Let M and Γ be as in (3.3.1) and (3.3.2) respectively, and let the pa-

rameters ρ, ` and z satisfy the requirements of Proposition 3.3.3 with zq in

place of z. Then (U) is satisfied (in addition to (R) and (S)). The same

argument as in the previous section can be used to show that these conditions

are also satisfied in the unmarked regime with respect to ψ instead of ϕ, and

Γ = ΓB := {ω ∈ ΩC : ω = {x} for some x ∈ B} instead of Γ. The situation is

simpler since in this case cΓ = 0. By Remark 2.1.8, Γ ⊂ Ωϕ
Λn,zq

and Γ ⊂ Ωψ
Λn,zq

for all n ∈ N, where Λn =
⋃
k,m∈{−n...,n}C(k,m).

The cells (C(k,m))k,m∈Z form a partition of the plane into rhombi of

length `. Let us split each cell into 64 smaller sub-cells of length `/8 denoted

(Ci,j
k,m)0≤i,j≤7, where

Ci,j
k,m :=

{
Mx ∈ R2 : x− (k,m) ∈

[
i− 4

8
,
i− 3

8

)
×
[
j − 4

8
,
j − 3

8

)}
.

Let Fk,m denote the event that there is least one particle in each sub-cell of

C(k,m) and Ok,m denote the event that additionally all points in C(k,m) are
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open:

Fk,m :=
⋂

0≤i,j≤7

{
ω ∈ Ω : |ω ∩ Ci,j

k,m| ≥ 1
}
.

Ok,m := {ω ∈ Ω : σω(x) = 1 for all x ∈ ωCk,m}.

The map Xn : Ω → {0, 1}Z2
is constructed by opening the sites (k,m) in-

side {−n, ..., n}2 for which Fk,m ∩ Ok,m occurs, and opening the sites outside

{−n, ..., n}2 for which Ok,m occurs, i.e

Xn(ω)(k,m) :=

1Fk,m∩Ok,m(ω) if |k|, |m| ≤ n

1Ok,m(ω) otherwise.

Xn is therefore a stochastically decreasing sequence. To complete the definition

of Ĉz,site
Λn,ω

, let Ĥ = Del3 and

p̂ =
1

3
√

3
4β
q2R2 + 1

. (3.4.2)

For a given circumradius, the triangle τ with maximal area is the equilateral

triangle, for which A(τ) = 3
√

3
4
δ(τ)2. Therefore, if Hψ

Λn,ω
(ω′) <∞ then

p̂ ≤ 1

q2β−1A(τ) + 1

=⇒ p̂

1− p̂
≤ β

q2A(τ)

for all τ ∈ Del3,∆(ωΛcn ∪ ω′). The comparison inequalities (2.3.10) are satisfied

since

p∆(τ)

q2(1− p∆(τ))
=

1− e−φ(τ)

q2e−φ(τ)
=
eφ(τ) − 1

q2
=

β

q2A(τ)
,

for all τ ∈ Del3,∆(ωΛcn ∪ ω′), and therefore µqω′,Λn < µ̂ω′ almost surely with

respect to M z
∆,ω. Hence the premises of Theorem 2.3.5 and Proposition 2.3.6

are satisfied, so it remains to show that there exists c > 0 such that

Ĉz,site
Λn,ω

(C(k,m)↔ Λc
n) ≥ c for all n and ω ∈ Γ.
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The following lemma shows that a uniform lower bound on the percolation

probability of the law of Xn is sufficient.

Lemma 3.4.3. If ω ∈ Γ, σω(x) ≡ 1, Hψ
Λn,ω

(ω′) < ∞ and Xn(ωΛnc ∪ ω′) ∈
{(k,m)↔∞}, then ωΛnc ∪ ω′ ∈ {C(k,m)↔ Λc

n}. Therefore

Ĉz,site
Λn,ω

(C(k,m)↔ Λc
n) ≥ LXn((k,m)↔∞)

where LXn is the law of Xn.

Proof. For k ∈ {−n, ..., n− 1}, |m| ≤ n let xk,m, xk+1,m ∈ ωΛc ∪ ω′ denote the

points whose Voronoi cells contain the centers of C(k,m) and C(k + 1,m).

The Voronoi cell associated to x is given by

VorωΛc∪ω′(x) := {z ∈ R2 : |x− z| ≤ |w − z| for all w ∈ ωΛc ∪ ω′}.

If Xn(ωΛcn ∪ ω′)(k,m) = Xn(ωΛcn ∪ ω′)(k + 1,m) = 1 then xk,m is connected

to xk+1,m via a path whose points are located in{ ⋃
2≤i≤7,2≤j≤5

Ci,j
k,m

}
∪

{ ⋃
0≤i≤5,2≤j≤5

Ci,j
k+1,m

}
.

This can be seen via the same argument as [AE19, Lemma 2.7, step (iv)].

In fact, the points can be joined via a path whose points all have Voronoi

cells intersecting the line segment between the centers of the cells C(k,m) and

C(k + 1,m).

Furthermore, the same applies if |m| ≤ n and Xn(ωΛcn ∪ ω′)(n,m) =

Xn(ωΛcn ∪ ω′)(n + 1,m) = 1; there is a path between xn,m and the point in

ωC(n+1,m) (recall that ρ < 1
6
) via a path whose points all have Voronoi cells

intersecting the line segment between the centers of the cells C(n,m) and

C(n+ 1,m). Figure 3.6 shows an example of a path passing through two open

cells and across the boundary of Λn.

Note that we have only discussed horizontal crossings between cells

C(k,m) and C(k + 1,m). The proof for vertical crossings can be performed

similarly. It is now clear that if there is a path (kr,mr)
s
r=1 in Xn(ωΛnc ∪ ω′)

with (k1,m1) = (k,m) and |ks|, |ms| > n then there is a path in ωΛnc ∪ ω′

connecting xk,m ∈ ω′C(k,m) to the point in ωC(ks,ms).
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Figure 3.6: An illustration of two open cells meeting the boundary of Λn,
which is represented by the bold line. The open cells in Λn have at least one
point in each of their 64 sub-cells.

3.4.3 Percolation of LXn
.

It remains to show that the assumptions of Corollary 2.4.2 are satisfied for

the measures (LXn)∞n=1. The measures LXn can be considered as measures on

{0, 1}Z2∪B where all bonds are opened with probability 1. For any (k,m) ∈
{−n, ..., n}2 and X ∈ {0, 1}Z2

satisfying X(i, j) = 1 for all (i, j) /∈ {−n, ..., n}2,

Ĉz,site
Λn,ω

(
Xn(k,m) = 1

∣∣∣∣Xn(i, j) = X(i, j) for (i, j) 6= (k,m)

)
(3.4.3)

= Ĉz,site
Λn,ω

(
Ĉz,site

Λn,ω
(Fk,m ∩Ok,m|FC(k,m)c)

∣∣∣∣Xn(i, j) = X(i, j) for (i, j) 6= (k,m)

)
≥ ess inf

ω′∈ΩC(k,m)c

Ĉz,site
Λn,ω

(
Fk,m ∩Ok,m

∣∣∣∣prC(k,m)c = ω′
)
, (3.4.4)

where the essential infimum is taken with respect to Ĉz,site
Λn,ω
◦prC(k,m)c

−1. Since

we are dealing with standard Borel spaces, the regular conditional probability

in (3.4.4) is guaranteed to exist. For (k,m) /∈ {−n, ..., n}2, there is only one

point in each cell, so the expression (3.4.3) is equal to p̂, which is in turn

greater than (3.4.4) since the latter is at most p̂64. Therefore it is sufficient to

show that (3.4.4) is greater than the critical probability for site percolation on

Z2, denoted psite
c (Z2).

First we will bound the probability of the event Fk,m from below. For
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∆ ⊂ Λn the regular conditional probability

Ω∆c ×F 3 (ω′, B) 7→M z
Λn,ω(B| pr∆c = ω′)

is given M z
Λn,ω
◦ pr−1

∆c-almost everywhere by the function

(ω′, B) 7→
∫
1B(ω′ ∪ ω′′)hzΛn,ω(ω′ ∪ ω′′)e−H

ψ
Λn,ω

(ω′′∪ω′Λn )Πz
∆(dω′′)∫

hzΛn,ω(ω(Λn)c ∪ ω′)e−H
ψ
Λn,ω

(ω′)Πz
Λn

(dω′)
.

The proof of this follows that of the analogous case in [Eye14, page 40-41].

For the rest of this section let ε = 1
2
(1− psite

c (Z2)).

Lemma 3.4.4. Suppose α0 < sin−1
(

3
64

)
, 64r < 3R,

` ∈
(

64√
3
(r ∨ R sin(α0)),

√
3R
)

and

z > z′′0 (`, q, r, R, α0) :=
64q

2π
α0
−1

ε
(
`
8
− 8√

3
(r ∨R sin(α0))

)2 . (3.4.5)

Then for any pseudo-periodic boundary condition ω ∈ Γ and any sub-cell Ci,j
k,m

with |k|, |m| ≤ n,

M z
Λn,ω(NCi,jk,m

≥ 1| pr(Ci,jk,m)c = ω′) > 1− ε

64
.

for M z
Λn,ω
◦ pr−1

(Ci,jk,m)c
-almost all ω′.

Proof. Assume M z
Λn,ω

(NCi,jk,m
= 0| pr(Ci,jk,m)c = ω′) > 0, else the result is trivial.

This implies that

ψ(τ) = 0 for all τ ∈ Del3,Λn(ω′). (3.4.6)

Define ∇i,j
k,m to be the rhombus of side length d = `

8
− 8√

3
(r ∨R sin(α0)) which

is a contraction of Ci,j
k,m about its center point (see figure 3.7). We first claim

that for M z
Λn,ω
◦ pr−1

(Ci,jk,m)c
-almost all ω′ and x ∈ ∇i,j

k,m,

ψ(τ) = 0 for all τ ∈ Del3,Λn(ω′ ∪ x). (3.4.7)

53



It suffices to only consider the triangles τ ∈ T+
x,ω′ . Any edge {x, y} ∈ Del2(ω′∪

x) must satisfy |x − y| >
√

3
4

(1
8
` − d) = 2(r ∨ R sin(α0)) > 2r. Thus δ(τ) > r

for all τ ∈ T+
x,ω′ . By Lemma 3.4.1 and (3.4.6) we also have δ(τ) < R.

By the same argument used to compare the angles θ1 and θ2 in Lemma 3.4.1,

if θ is an angle belonging to a triangle τ ∈ T+
x,ω′ which is subtended at x

then θ ≥ α0. All edges {x, y} ∈ Del2(ω′ ∪ x) must have length at least
√

3
4

(1
8
` − d) ≥ 2R sin(α0), so by the law of sines if τ ∈ T+

x,ω′ and θ is an angle

of τ not subtended at x0 then

sin(θ) ≥ 2R sin(α0)

2δ(τ)
≥ sin(α0),

and so θ ≥ α0 since we know that α0 ≤ π/3. This completes the proof of

(3.4.7). Together with (3.4.6) this implies that

e−H
ψ
Λn,ω(ω′Λn∪x) = e−H

ψ
Λn,ω(ω′Λn) = 1 for x ∈ ∇i,j

k,m. (3.4.8)

We now move on to the computation of the lower bound. We start by applying

the following formula for the Poisson point process:∫
f(ω′′)Πz

Ci,jk,m
(dω′′) = e−z|C

i,j
k,m|

∞∑
n=0

zn

n!

∫
(Ci,jk,m)n

f({x1, ..., xn})dx1, .., dxn

(which is valid for bounded measurable functions f : ΩCi,jk,m
→ [0,∞).) This

gives us

M z
Λn,ω

(NCi,jk,m
= 1| pr(Ci,jk,m)c = ω′)

M z
Λn,ω

(NCi,jk,m
= 0| pr(Ci,jk,m)c = ω′)

=

∫
1{N

C
i,j
k,m

=1}(ω
′′)hzΛn,ω(ω′ ∪ ω′′)e−H

ψ
Λn,ω

(ω′Λn∪ω
′′)Πz

Ci,jk,m
(dω′′)∫

1{N
C
i,j
k,m

=0}(ω′′)hzΛn,ω(ω′)e−H
ψ
Λn,ω

(ω′Λn )Πz
Ci,jk,m

(dω′′)

=
ze−z|C

i,j
k,m|
∫
Ci,jk,m

hzΛn,ω(ω′ ∪ x)e−H
ψ
Λn,ω

(ω′Λn∪x)dx

e−z|C
i,j
k,m|hzΛn,ω(ω′)e−H

ψ
Λn,ω

(ω′Λn )
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Figure 3.7

Now restricting the domain of integration to ∇i,j
k,m and applying (3.4.8) yields

M z
Λn,ω

(NCi,jk,m
= 1| pr(Ci,jk,m)c = ω′)

M z
Λn,ω

(NCi,jk,m
= 0| pr(Ci,jk,m)c = ω′)

≥ z

∫
∇i,jk,m

hzΛn,ω(ω′ ∪ x)

hzΛn,ω(ω′)
dx.

By applying Lemma 3.4.2 we can see that the right hand side is greater than

zq
1− 2π

α0 |∇i,j
k,m| = zq

1− 2π
α0

(
`

8
− 8√

3
(r ∨R sin(α0))

)2

,

and therefore

M z
Λn,ω(NCi,jk,m

≥ 1| pr(Ci,jk,m)c = ω′) ≥ 1−
M z

Λn,ω
(NCi,jk,m

= 0| pr(Ci,jk,m)c = ω′)

M z
Λn,ω

(NCi,jk,m
= 1| pr(Ci,jk,m)c = ω′)

≥ 1− q
2π
α0
−1

z
(
`
8
− 8√

3
(r ∨R sin(α0))

)2

> 1− ε

64
,

where the last inequality is due to assumption (3.4.5).
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Corollary 3.4.5. If the assumptions of Lemma 3.4.4 are satisfied, then

M z
Λn,ω(Fk,m| prC(k,m)c = ω′) > 1− ε.

for M z
Λn,ω
◦ pr−1

C(k,m)c-almost all ω′.

Proof.

M z
Λn,ω(Fk,m| prC(k,m)c = ω′)

≥ 1−
∑

0≤i,j≤7

M z
Λn,ω(NCi,jk,m

= 0| prC(k,m)c = ω′)

≥ 1−
∑

0≤i,j≤7

∫
M z

Λn,ω(NCi,jk,m
= 0| pr(Ci,jk,m)c = ω′′

(Ci,jk,m)c
)

M z
Λn,ω(dω′′| prC(k,m)c(ω

′′) = ω′)

> 1− ε.

The final component we need to finish the proof is an upper bound on

the number of particles in a cell C(k, l). If HΛn,ω(ω′) < ∞ then {x, y} ∈
Del2,Λn(ωΛcn ∪ ω′) =⇒ |x − y| ≥ 2r sin(α0) by the law of sines. Since the

Delaunay graph is a nearest neighbour graph, this means that no two particles

are within a distance of 2r sin(α0) of one another. Therefore

m(`, r, α0) :=

(
`+ 2r sin(α0)

r sin(α0)

)2

=

(
`

r sin(α0)
+ 2

)2

, (3.4.9)

which is an upper bound on the number of non-overlapping circles with radius

r sinα0 that can fit inside a rhombus with side length `+2r sinα0, is an upper

bound for |ω′|.
We can now prove the existence of the required lower bound on (3.4.4).

Proposition 3.4.6. Suppose α0 < sin−1( 3
64

), 64r < 3R and ` ∈ ( 64√
3
(r ∨

R sin(α0)),
√

3R). If

β > β′0(`, q, R, r, α0) :=
3
√

3
4
q2R2

(1− ε)−1/m(`,r,α0) − 1

and z > z′′0 (`, q, R, r, α0) then there exists c > 0 such that for any n ∈ N, any
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|k|, |m| ≤ n and any pseudo-periodic boundary condition ω ∈ Γ,

Ĉz,site
Λn,ω

(
Fk,m ∩Ok,m

∣∣∣∣prC(k,m)c = ω′
)
≥ c > 0

for Ĉz,site
Λn,ω
◦ pr−1

C(k,m)c-almost all ω′.

Proof. Using the lower bound from Corollary 3.4.5 and the lower bound β0 we

have

Ĉz,site
Λn,ω

(Fk,m ∩Ok,m|prC(k,m)c = ω′) ≥ p̂mM z
Λn,ω(Fk,m| prC(k,m)c = ω′)

≥

(
1

3
√

3
4β
q2R2 + 1

)m

(1− ε)

≥

(
1

(1− ε)− 1
m

)m

(1− ε)

= (1− ε)2

> 1− 2ε = psitec (Z2) > 0.

Recall that at the beginning of section 3.4.2 we assumed that the pa-

rameters ρ, ` and zq satisfied the requirements of Proposition 3.3.3. We need to

check that these requirements can be satisfied simultaneously with those of the

previous proposition. The only possible conflict relates to the parameter `. We

require that ` ∈
(

64√
3
(r ∨ R sin(α0)),

√
3R
)
∩
(

r
L(ρ)

, R
U(ρ)

)
:= I0(R, r, α0, ρ).

This set is non-empty for small enough ρ since

64√
3

(r ∨ R sin(α0)) <
√

3R = lim
ρ→0

R

U(ρ)

and

√
3R >

√
3r = lim

ρ→0

r

L(ρ)
.

We therefore have the following, from which Theorem 3.2.2 is derived by se-

lecting particular values of ρ and `.

Corollary 3.4.7. There exists ρ′0(R, r, α0) > 0 such that I0 6= ∅ if ρ < ρ′0.
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Moreover, if

α0 < sin−1(3/64),

64r < 3R,

ρ < ρ′0(R, r, α0),

` ∈ I0(R, r, α0, ρ),

β > β0(`, q, R, r, α0),

and z > z′′0 (`, q, R, r, α0) ∨ (1/q)z′0(β, ρ, `)

then there exists at least q translation-invariant Delaunay continuum Potts

measures for Del3, z and ϕ.
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Chapter 4

Infinite Volume Delaunay

Random Cluster Measures

The method that we employed in the previous chapter to prove that a phase

transition occurs centers around the random cluster representation (Theorem

2.3.3), which provides a connection between the Delaunay continuum Potts

distribution and the Delaunay continuum random cluster distribution in a

bounded region ∆ b R2. This connection was enough to prove the phase

transition in the previous chapter. In this chapter we are interested in an infi-

nite volume analogue of the Delaunay continuum random cluster distribution.

This choice of direction is inspired by work on a similar model introduced by

Dereudre and Houdebert [DH15] called the infinite volume continuum random

cluster model, which is a Gibbs modification of the stationary Poisson Boolean

model, defined using the DLR equations. The authors proved the existence of

such a model and discovered a Fortuin-Kastelyn representation relating it to

the Widom-Rowlinson model. This FK representation was previously known

for finite volume measures but the authors extended it to infinite volume mea-

sures, which facilitated the extension of the phase transition results of [CCK95]

and [GH96] for the Widom-Rowlinson model to the case of nondeterministic

radii [Hou17]. In [HTH19], the authors used a continuum extension of the

classical disagreement percolation technique introduced in [vdBM94] to show

that there exists a unique Gibbs measure for a variety of germ-grain models

including the infinite volume continuum random cluster model. The FK repre-

sentation could then be used to conclude that the Widom-Rowlinson model is
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unique for small activities. We hope that an investigation of Delaunay contin-

uum random cluster measures in infinite volume might lead to similar insights

for Delaunay continuum Potts measures, as we expect these measures to be

related via a random cluster representation.

In contrast to previous chapters we use the hypergraph structure Del2

instead of Del3 here. There is still a random cluster representation in this case

(see [AE16]) so the motivations of the last paragraph are still relevant. Our

configurations therefore consist of a locally finite set of points and a locally

finite set of edges (k = 2 in equation (2.3.1)). Thus far we have only defined

the finite volume Delaunay continuum random cluster model for the wired

boundary condition (Definition 2.3.1). In this case the number of connected

components Ncc is always finite, and so the definition is straightforward. In

this chapter we want to expand this definition to include arbitrary boundary

conditions G = (ω,E) ∈ G and so we need to define a notion of the ‘local’

number of connected components.

The main result of this chapter is the existence of an infinite volume

Delaunay continuum random cluster measure (Theorem 4.3.1). We require

that the background potential satisfies two hardcore constraints and the edge

probabilities (those assigned by µω,∆) are bounded away from 0 and 1. The

proof follows an analogous approach to [DH15]. We begin by constructing

a sequence of probability measures from the finite volume distributions and

showing that it has an accumulation point. This is done using a compactness

result relating to the specific entropy. Then we prove that the limit, after

conditioning out the empty configuration, satisfies the DLR equations. In the

course of the proof we show that the infinite volume measure has at most

one infinite connected component. The question of whether there is a unique

infinite volume measure is still open.

4.1 Preliminaries

4.1.1 Sample spaces and sigma algebras

We use the definitions given in section 2.3.1, with d = 2 and H = Del2 (and

so k = 2), but some additional definitions are needed. For ∆ b R2, Λ b R4,
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let

Ω∆ := {ω ∈ Ω : ω ⊂ ∆},

EΛ := {E ∈ E : E ⊂ Λ},

G∆,Λ := Ω∆ × EΛ.

The σ-algebras we equip these spaces with are F|Ω∆
:= {A ∩ Ω∆ : A ∈ F},

Σ|EΛ := {A ∩ EΛ : A ∈ Σ} and A|G∆,Λ
= F|Ω∆

⊗ Σ|EΛ respectively. The

projections onto Ω∆ and EΛ are denoted pr1
∆ : Ω → Ω∆, ω 7→ ω∆, and pr2

Λ :

E → EΛ, E 7→ EΛ.

If ∆ and Λ are 2 and 4-dimensional open cubes respectively (the set of

d-dimensional cubes is defined in (2.1.3),) then Ω∆, EΛ and G∆,Λ are Gδ sets

and are therefore Polish spaces when equipped with their subspace topologies.

Furthermore, in this case F|Ω∆
, Σ|EΛ and A|G∆,Λ

are the associated Borel σ-

algebras for these spaces. If ∆n ↗ R2 and Λn ↗ R4 are sequences of cubes

then

F = σ

(⋃
n≥1

F∆n

)
, Σ = σ

(⋃
n≥1

ΣΛn

)
, and

A = σ

(⋃
n≥1

F∆n ×
⋃
n≥1

ΣΛn

)
= σ

(⋃
n≥1

A∆n,Λn

)
,

where F∆ := (pr1
∆)−1F|Ω∆

, ΣΛ := (pr2
Λ)−1Σ|EΛ and A∆,Λ := F∆ ⊗ ΣΛ.

Hereafter we only consider subregions of R4 of the form ∆2 for some

∆ b R2, and so we will write E∆, E∆ and Σ∆ in place of E∆2 , E∆2 and Σ∆2

respectively. We also define G∆ := G∆,∆2 , A∆ := A∆,∆2 , and the projection

pr∆ : G → G∆, G 7→ G∆ := (ω∆, E∆).

4.1.2 Properties of Delaunay triangulations

The following lemmas describe the effect on the Delaunay triangulation when

a configuration is changed in a bounded region. They will be used throughout

this chapter. In particular, Lemma 4.1.5 is used to prove the additivity prop-

erty (4.2.4), which is crucial for verifying the consistency of the finite volume

distributions (Proposition 4.2.6). As discussed in section 2.2, we assume that
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all configurations ω ∈ Ω are in general quadratic position.

Proposition 4.1.1. For Λ ⊂ ∆ ⊂ R2 and ω ∈ Ω,

Del3,∆(ω) \Del3,Λ(ω) = Del3,∆(ωΛc) \Del3,Λ(ωΛc).

Proof. τ ∈ Del3,∆(ω) \Del3,Λ(ω) if and only if τ satisfies

1. |τ | = 3,

2. τ ⊂ ω,

3. B(τ) ∩ ω = ∅,

4. B(τ) ∩∆ 6= ∅,

5. B(τ) ∩ Λ = ∅,

and τ ∈ Del3,∆(ωΛc) \Del3,Λ(ωΛc) if and only if τ satisfies 1, 4, 5 and

2’. τ ⊂ ωΛc 3’. B(τ) ∩ ωΛc = ∅.

But 2 ∧ 5 ⇐⇒ 2′ ∧ 5 and 3 ∧ 5 ⇐⇒ 3′ ∧ 5.

Corollary 4.1.2. For Λ ⊂ ∆ ⊂ R2 and ω ∈ Ω,

Del2,∆(ω) \Del2,Λ(ω) = Del2,∆(ωΛc) \Del2,Λ(ωΛc).

Proof. η ∈ Del2,∆(ω) \ Del2,Λ(ω) if and only if ∃τ1, τ2 ⊃ η where either

both τ1 and τ2 belong to Del3,∆(ω) \ Del3,Λ(ω), or one belongs to Del3,∆(ω) \
Del3,Λ(ω) and the other belongs to Del3(ω) \ Del3,Λ(ω). But by Proposi-

tion 4.1.1, Del3,∆(ω) \ Del3,Λ(ω) = Del3,∆(ωΛc) \ Del3,Λ(ωΛc) and Del3(ω) \
Del3,Λ(ω) = Del3(ωΛc) \Del3,Λ(ωΛc), which gives the result.

For G = (ω,E) ∈ G, and Λ ⊂ ∆ ⊂ R2 we make the following definitions:

· G∆ := (ω∆, E∆), where ω∆ := Del1,∆(ω) and E∆ := E ∩Del2,∆(ω),

· G∆,Λ := (ω∆,Λ, E∆,Λ), where ω∆,Λ := (ω∆)Λc = (Del1,∆(ω))Λc and

E∆,Λ := E∆ \Del2,Λ(ω) = E ∩Del2,∆(ω) \Del2,Λ(ω).

As we shall see later, our model is defined in such a way that if G is chosen

as a boundary condition for the finite volume distribution in ∆ then GR2,∆

remains fixed. We now present a few more lemmas which will be used implicitly

throughout this chapter.
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(a) (ω,Del2(ω))∆ =
(Del1,∆(ω),Del2,∆(ω))

(b) (ωΛc ,Del2(ωΛc))
∆

(c) The graph induced by the edge set
Del2,∆(ω) \Del2,Λ(ω)

= Del2,∆(ωΛc) \Del2,Λ(ωΛc).
(d) (ω,Del2(ω))∆,Λ.

Figure 4.1: The graph (c) is obtained by taking either (a) or (b) and removing
the edges belonging to triangles whose circumcircles intersect Λ (see Corollary
4.1.2). Notice that there may be points in ω∆,Λ for which all incident edges
are in Del2,∆(ω) \Del2,Λ(ω). These points will belong to the graph (d) but not
in (c).
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Lemma 4.1.3. For Λ ⊂ ∆ ⊂ R2 and G = (ω,E) ∈ G,

(GR2,Λ)∆,Λ = G∆,Λ.

Proof. Let (ω′, E ′) = (GR2,Λ)∆,Λ. By definition ω′ = ((ωΛc)
∆)Λc = (ωΛc)

∆.

If x ∈ ω∆,Λ then x belongs to a triangle τ ∈ Del3,∆(ω). If τ /∈ Del3,∆(ωΛc) then

∃τ ′ ∈ Del3(ωΛc) with x ∈ τ ′ whose circumcircle intersects Λ. But Λ ⊂ ∆, so

τ ′ ∈ Del3,∆(ωΛc), and therefore x ∈ (ωΛc)
∆ = ω′.

Conversely, suppose x ∈ ω′. Then x belongs to a triangle τ ∈ Del3,∆(ωΛc). If

τ /∈ Del3,∆(ω) then B(τ)∩ ωΛ 6= ∅, and so ∃τ ′ ∈ Del3,∆(ω) containing x. Thus

x ∈ ω∆,Λ.

To prove that the edge sets are the same we use Corollary 4.1.2:

E ′ = (E ∩Del2(ω) \Del2,Λ(ω)) ∩ (Del2,∆(ωΛc) \Del2,Λ(ωΛc))

= E ∩ (Del2(ω) \Del2,Λ(ω)) ∩ (Del2,∆(ω) \Del2,Λ(ω))

= E ∩Del2,∆(ω) \Del2,Λ(ω)

= E∆,Λ.

Lemma 4.1.4. For Λ ⊂ ∆ ⊂ R2 and G = (ω,E) ∈ G,

(G∆,Λ)Λc = G∆,Λ = (GΛc)
∆,Λ.

Proof. The first equality is clear. For the second equality the proof of Lemma

4.1.3 gives us ω∆,Λ = (ωΛc)
∆, which is clearly equal to ((ωΛc)

∆)Λc as required.

Showing that the edge sets are the same is another application of Corollary

4.1.2:

E∆,Λ = E ∩Del2,∆(ω) \Del2,Λ(ω)

= EΛc ∩Del2,∆(ω) \Del2,Λ(ω)

= EΛc ∩Del2,∆(ωΛc) \Del2,Λ(ωΛc)

Lemma 4.1.5. For Λ ⊂ ∆ ⊂ R2 and G = (ω,E) ∈ G,

(GR2,Λ)R
2,∆ = GR2,∆.
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Proof. The vertex sets are clearly the same since (ωΛc)∆c = ω∆c .

To show the equivalence of the edge sets, we apply Corollary 4.1.2:

(E ∩Del2(ω) \Del2,Λ(ω)) ∩ (Del2(ωΛc) \Del2,∆(ωΛc))

=(E ∩Del2(ω) \Del2,Λ(ω)) ∩ (Del2(ω) \Del2,∆(ω))

=E ∩Del2(ω) \Del2,∆(ω)

=ER2,∆.

4.2 Definitions

4.2.1 The reference measure

To define the reference measures we begin with a function p which assigns to

each possible edge e ∈ ER2,2 an edge weight p(e) ∈ [0, 1]. These will represent

the probabilities that each edge of Del2 is open with respect to the reference

measure. For ω ∈ Ω, let {ξe | e ∈ Del2(ω)} be a set of independent Bernoulli

random variables where ξe = 1 with probability p(e). Let µω denote the law

of the random set {e ∈ Del2(ω)| ξe = 1}. This measure is called the edge

drawing mechanism. For any subset A ⊂ Del2(ω), the law of the random set

{e ∈ A| ξe = 1} is called the edge drawing mechanism on A.

For Λ ⊂ ∆ b R2, ω ∈ Ω and ω′ ∈ Ω∆ let µ∆,ω′,ω denote the edge

drawing mechanism on Del2,∆(ω′∪ω∆c), and let µΛ
∆,ω′,ω denote the edge drawing

mechanism on Del2,∆(ω′∪ω∆c)\Del2,Λ(ω′∪ω∆c). Note that µ∆,ω′,ω, = µ∆,ω′,ω∆c

and µΛ
∆,ω′,ω = µΛ

∆,ω′
∆\Λ,ω∆c

by Corollary 4.1.2, and furthermore if ω′′ ∈ Ω∆ with

(ω′′)∆\Λ = (ω′)∆\Λ then

µ∆,ω′,ω = µΛ,ω′Λ,ω
′′∪ω∆c

⊗ µΛ
∆,ω′′,ω. (4.2.1)

Intersections and unions are defined as follows for G1 = (ω1, E1),

G2 = (ω2, E2) ∈ G:

G1 ∪G2 :=(ω1 ∪ ω2, E1 ∪ E2),

G1 ∩G2 :=(ω1 ∩ ω2, E1 ∩ E2).
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Definition 4.2.1. For G = (ω,E) ∈ G and ∆ b R2, let ν∆,G be the measure

on (G,A) given by

ν∆,G(A) :=

∫
1A(GR2,∆ ∪ (ω′, E ′))µ∆,ω′,ω(dE ′)Πz

∆(dω′)

for any A ∈ A.

Notice that the graphGR2,∆∪(ω′, E ′) is a subgraph of (ω∆c∪ω′,Del2((ω∆c∪ω′)).
The kernels (ν∆ : G × A → [0, 1])∆bR2 where ν∆(G,A) := ν∆,G(A) satisfy the

Gibbs consistency condition ν∆,G(A) =
∫
νΛ,G′(A)ν∆,G(dG′) for Λ ⊂ ∆ b R2.

Indeed by (4.2.1) and Corollary 4.1.2,

ν∆,G(A) =

∫
1A(ω1 ∪ ω2 ∪ ω∆c , E1 ∪ E2 ∪ ER2,∆)

µΛ,ω1,ω2∪ω∆c
(dE1)Πz

Λ(dω1)µΛ
∆,ω2,ω

(dE2)Πz
∆\Λ(dω2)

=

∫
1A(ω1 ∪ (ω2)∆\Λ ∪ ω∆c , E1 ∪ (E2)∆,Λ ∪ ER2,∆)

µΛ,ω1,ω2∪ω∆c
(dE1)Πz

Λ(dω1)µ∆,ω2,ω(dE2)Πz
∆(dω2)

=

∫
1A(G1)νΛ,G2(dG1)ν∆,G(dG2). (4.2.2)

It this case it is also said that the kernels (ν∆)∆bR2 form a specification. The

measure

ν(A) :=

∫
1A(ω,E)µω(dE)Πz(dω) (4.2.3)

for A ∈ A also satisfies equation (4.2.2) in place of ν∆,G:

ν(A) =

∫
1A(G1)νΛ,G2(G1)ν(dG2).

4.2.2 The local number of connected components

Proposition 4.2.2. If G = (ω,E) ∈ G with |ω∆| < ∞ for all ∆ b R2, then

for Λ b R2 the limit

NΛ
cc(G) := lim

∆↗R2

(
Ncc(G

∆)−Ncc(G
∆,Λ)

)
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exists, and is called the local number of connected components in Λ. In addi-

tion, NΛ
cc(G) ≤ |ωΛ|.

Proof. Let ∆n be an increasing sequence of sets whose limit is R2. We will

show that the sequence

an := Ncc(G
∆n)−Ncc(G

∆n,Λ)

converges. Clearly an is maximised when EΛ = ∅, in which case an = |ωΛ|.
We will now show that an is increasing and therefore convergent.

Let ω∆n \ ω∆n−1 = {x1, ..., xnm}. If n is large enough that Λ ⊂ ∆n−1, then for

any k ∈ {1, .., nm}, xk /∈ ωΛ and so

En,k : =
{
{xk, y} ∈ E∆n : y ∈ ω∆n−1 ∪ {x1, , ..., xk−1}

}
=
{
{xk, y} ∈ E∆n,Λ : y ∈ ω∆n−1 ∪ {x1, , ..., xk−1}

}
.

Removing the points ωΛ and the edges EΛ from the graph can only increase

the number of connected components which are adjacent to xk, so

Ncc((ω
∆n−1 ∪ {x1, ..., xk}, E∆n−1 ∪ki=1 En,i))

−Ncc((ω
∆n−1 ∪ {x1, ..., xk−1}, E∆n−1 ∪k−1

i=1 En,i))

≥Ncc((ω
∆n−1,Λ ∪ {x1, ..., xk}, E∆n−1,Λ ∪ki=1 En,i))

−Ncc((ω
∆n−1,Λ ∪ {x1, ..., xk−1}, E∆n−1,Λ ∪k−1

i=1 En,i)).

By writing an − an−1 as a telescoping sum over k we conclude that

an − an−1 ≥ 0.

Proposition 4.2.3. If G = (ω,E) ∈ G and |ω∆| < ∞ for all ∆ b R2, then

for Λ b R2

NΛ
cc(G) ≥ 1− |(ωΛc)

Λ|.

Proof. NΛ
cc is minimised when EΛ = Del2,Λ(ω), in which case each point in

ωΛ belongs to the same connected component. Thus adding the points and

edges of GΛ to the graph G∆,Λ can connect at most |(ωΛ)Λc | components. By

Lemma 4.1.3, |(ωΛ)Λc | = |(ωΛc)
Λ|.
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For Λ ⊂ ∆ b R2, the function X∆,Λ(G) := N∆
cc (G)−NΛ

cc(G) depends only on

GR2,Λ, i.e

X∆,Λ(G) = X∆,Λ(GR2,Λ). (4.2.4)

To see this we apply Lemmas 4.1.5 and 4.1.3:

X∆,Λ(G) = lim
∇↗R2

(
Ncc

(
G∇,Λ

)
−Ncc

(
G∇,∆

))
= lim
∇↗R2

(
Ncc((G

R2,Λ)∇,Λ)−Ncc((G
R2,∆)∇,∆)

)
= lim
∇↗R2

(
Ncc((G

R2,Λ)∇,Λ)−Ncc(((G
R2,Λ)R

2,∆)∇,∆)
)

= lim
∇↗R2

(
Ncc((G

R2,Λ)∇,Λ)−Ncc((G
R2,Λ)∇,∆)

)
= X∆,Λ(GR2,Λ).

This property will be useful when showing that the finite volume distributions

form a specification (Proposition 4.2.6).

4.2.3 Delaunay random cluster measures

Let ψ′ be a hyperedge potential on Del3 which can be written ψ′(τ, ω) = ψ(τ)

for some measurable function ψ : ER2,3 → R ∪ {∞}. Recall from (2.2.4) that

the Hamiltonian in ∆ b R2 with boundary condition ω ∈ Ω satisfies

H∆,ω(ω′) =
∑

τ∈Del3,∆(ω∆c∪ω′)

ψ(τ).

For q ≥ 1 and G,G′ ∈ G such that (G′)R
2,∆ = GR2,∆, define

Q∆,G(G′) := qN
∆
cc(G

′)e−H∆,ω(ω′∆).

This function (up to multiplication by a constant) is the density of the finite

volume distribution in ∆ with boundary condition G with respect to ν∆,G.

We say that G = (ω,E) ∈ G is admissible for ∆ b R2 and ψ if the
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partition function

Z∆(G) :=

∫
Q∆,G(G′) ν∆,G(dG′)

=

∫
qN

∆
cc(G

R2,∆∪(ω′,E′))e−H∆,ω(ω′)µ∆,ω′,ω(dE ′)Πz
∆(dω′)

is finite and non-zero. By Lemma 4.1.5, Z∆(G) = Z∆(GR2,∆). The set of

admissible boundary conditions is denoted G∆
∗ .

Definition 4.2.4. Let G ∈ G∆
∗ . The (finite volume) Delaunay continuum

random cluster distribution in ∆ b Rd for ψ, z > 0, q ≥ 1, boundary condition

ω and edge weights p(e)ER2,2
is the probability measure on (G,A) defined by

C∆,G(A) := Z∆(G)−1

∫
1A(G′)Q∆,G(G′)ν∆,G(dG′).

Remark 4.2.5. Let G = (ω,E) ∈ G∆
∗ where Del2(ω) \ Del2,∆(ω) ⊂ E. This is

called a wired boundary condition. If Λ b R2 is large enough and (G′)R
2,∆ =

GR2,∆, then

NΛ
cc(G

′) = Ncc((G
′)Λ)−Ncc((G

′)Λ,∆)

= Ncc(G
′)−Ncc(G

R2,∆).

Therefore

C∆,G(A) =
q−Ncc(G

R2,∆)

Z∆(G)

∫
qNcc(G

R2,∆∪(ω′,E′))e−H∆,ω(ω′)µ∆,ω′,ω(dE ′)Πz
∆(dω′),

which is the analogue to the Delaunay random cluster distribution from Def-

inition 2.3.1 in the case where q is a natural number and edges rather than

triangles are declared open or closed.

Similar to Delaunay continuum Potts measures, Delaunay random clus-

ter measures are defined by prescribing conditional probabilities according

to the DLR equations. To do this we first need to check that the kernels

(C∆ : G∆
∗ ×A → [0, 1])∆bR2 defined by C∆(G,A) := C∆,G(A) form a specifica-

tion.
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Proposition 4.2.6. For Λ ⊂ ∆ b R2 and G ∈ G∆
∗ ,

C∆(G,GΛ
∗ ) = 1 and C∆(G, f) =

∫
CΛ(G′, f) C∆(G, dG′). (4.2.5)

for all measurable functions f : G → [0,∞).

Proof. If G,G1, G2 ∈ G with GR2,Λ
1 = GR2,Λ

2 and GR2,∆ = GR2,∆
1 = GR2,∆

2 then

using (4.2.4) we can deduce that

N∆
cc (G1) +NΛ

cc(G2) = NΛ
cc(G1) +X∆,Λ(GR2,Λ

1 ) +NΛ
cc(G2)

= NΛ
cc(G1) +N∆

cc (G2), (4.2.6)

and courtesy of Corollary 4.1.2,

H∆,ω((ω1)∆) +HΛ,ω1((ω2)Λ) = H∆,ω((ω2)∆) +HΛ,ω1((ω1)Λ). (4.2.7)

Combining (4.2.6) and (4.2.7) we obtain

Q∆,G(G1)QΛ,G1(G2) = Q∆,G(G2)QΛ,G1(G1)

(so the family of functions (G 7→ Q∆,G(G))∆bR2 is a pre-modification). After

integrating with respect to G2 we have

Q∆,G(G1)

∫
QΛ,G1(G′)νΛ,G1(dG′) = QΛ,G1(G1)

∫
Q∆,G(G′)νΛ,G1(dG′)

=⇒ Q∆,G(G1)ZΛ(G1) = QΛ,G1(G1)

∫
Q∆,G(G′)νΛ,G1(dG′).

(4.2.8)

By the bounds in Propositions 4.2.2 and 4.2.3, qN
∆
cc and qN

Λ
cc are both finite

and non-zero almost surely with respect to ν∆,G. Therefore Q∆,G, QΛ,G1 <∞,

Q∆,G(G1) = 0 ⇐⇒ H∆,ω((ω1)∆) =∞, and

QΛ,G1(G1) = 0 ⇐⇒ HΛ,ω1((ω1)Λ) =∞

for ν∆,G-almost all G1. Furthermore, taking this into account along with the
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inclusion Del3,Λ(ω1) ⊂ Del3,∆(ω1) we have

C∆,G (G′ ∈ G : QΛ,G′(G
′), Q∆,G(G′) ∈ (0,∞)) = 1. (4.2.9)

Now combining (4.2.9) with the relationship (4.2.8) and the consistency con-

dition (4.2.2), we see that

C∆,G (ZΛ(·) = 0) = C∆,G

(
νΛ,(·)(Q∆,G) = 0

)
=

∫
[νΛ,(·)(Q∆,G)=0]

Q∆,G(G′)ν∆,G(dG′)

=

∫∫
[νΛ,(·)(Q∆,G)=0]

Q∆,G(G′)νΛ,G′′(dG
′)ν∆,G(dG′′)

= 0,

and

C∆,G (ZΛ(·) =∞) = C∆,G

(∫
Q∆,G(G′)νΛ,(·)(dG

′) =∞
)

= 0,

since ∫∫
Q∆,G(G′)νΛ,G′′(dG

′)ν∆,G(dG′′) = Z∆(G) <∞

=⇒ ν∆,G

(∫
Q∆,G(G′)νΛ,(·)(dG

′) =∞
)

= 0

=⇒ C∆,G

(∫
Q∆,G(G′)νΛ,(·)(dG

′) =∞
)

= 0.

This finishes the proof of the statement C∆(G,GΛ
∗ ) = 1.

For the second statement, we start by multiplying both sides of (4.2.8) by
f(G1)

Z∆(G)ZΛ(G1)
, which results in the equation

f(G1)
Q∆,G(G1)

Z∆(G)
= f(G1)

QΛ,G1(G1)

ZΛ(G1)

∫
Q∆,G(G′)

Z∆(G)
νΛ,G1(dG′).

Furthermore, by integrating with respect to G1, and using the consistency
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equation (4.2.2) we obtain:∫
f(G′)

Q∆,G(G′)

Z∆(G)
ν∆,G(dG′)

=

∫∫∫
f(G′′′)

QΛ,G′(G
′′′)

ZΛ(G′)

Q∆,G(G′′)

Z∆(G)
νΛ,G′(dG

′′)νΛ,G′(dG
′′′)ν∆,G(dG′).

The former expression is equal to C∆,G(f) and the latter is equal to∫∫
CΛ,G′(f)

Q∆,G(G′′)

Z∆(G)
νΛ,G′(dG

′′)ν∆,G(dG′)

=

∫
CΛ,G′(f)

Q∆,G(G′)

Z∆(G)
ν∆,G(dG′)

=

∫
CΛ,G′(f)C∆,G(dG′),

as required.

The Gibbs measures specified by the above set of kernels are called Delaunay

random cluster measures:

Definition 4.2.7. A probability measure P on (G,A) is called a Delaunay

random cluster measure (DRCM) for parameters z > 0, q ≥ 1, the hyperedge

potential ψ and edge weights (p(e))e∈ER2,2
if P (G∆

∗ ) = 1 and

P (f) =

∫
G∆
∗

C∆,G(f)P (dG)

=

∫
G∆
∗

Z∆(G)−1

∫
f(G′)Q∆,G(G′)ν∆,G(dG′)P (dG)

for every ∆ b R2 and every bounded measurable function f : G → R ∪ {∞}.

The set of DRCMs which are invariant under the translation group

Θ = (θx)x∈R2 is denoted GΘ, and more generally the sets of probability mea-

sures and translation-invariant probability measures on (G,A) are denoted P

and PΘ respectively. Note that these notations had different meanings in the

previous chapters.
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4.3 Existence result

Theorem 4.3.1. Let z > 0, q ≥ 1, and suppose that the edge weights are

uniformly bounded away from 0 and 1, i.e there exists p−, p+ ∈ (0, 1) such that

p− ≤ p(e) ≤ p+ for all e ∈ ER2,2. (4.3.1)

Furthermore, suppose that the hyperedge potential ψ satisfies (R), (S) and (U)

in addition to the hardcore conditions

(HCC) ∃R0 > 0 such that

δ(τ) ≥ R0 =⇒ ψ(τ) =∞, and (4.3.2)

(HCL) ∃`0 > 0 such that

∃x, y ∈ τ, x 6= y with |x− y| ≤ `0 =⇒ ψ(τ) =∞. (4.3.3)

Then there exists a translation-invariant Delaunay random cluster measure

P ∈ GΘ.

Remark 4.3.2. Note that the potential ψ considered in Chapter 3 satisfies both

(HCC) and (HCL) with R0 = r and `0 = 2r sin(α0). If p(e) := 1 − e−φ(e) for

some function φ : ER2,2 → R then we recover a model similar to the finite

volume Delaunay random cluster distribution from definition 2.3.1 except for

that fact that edges rather than triangles are declared to be open or closed.

4.4 Proof

The rest of this chapter is devoted to the proof of this theorem. In section

4.4.1 we introduce two relevant topologies and notion of specific entropy along

with a useful convergence result. In section 4.4.2 we construct a sequence P̃n

of probability measures from the finite volume distributions and use this result

to find a subsequence which converges to some measure P̃ . We then set about

proving that P := P̃ (·|{∅}c) ∈ GΘ. To this end, in section 4.4.3 we define, for

each ∆ b R2, another sequence of measures C∆
n which converges to P̃ . These
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sequences are more useful than P̃n because the measures C∆
n satisfy the DLR

equation for ∆. In section 4.4.4 we use these new sequences to prove that

P̃ has a unique infinite connected component almost surely, a fact which is

utilised in section 4.4.5 to prove that P satisfies the DLR equations.

4.4.1 Local convergence and the specific entropy

In this section we introduce the topology of local convergence and develop a

useful tool for determining whether a sequence of probability measures (Pn)n∈N

in PΘ has an accumulation point with respect to this topology. When prov-

ing the existence of Gibbsian point processes with geometry dependent in-

teractions [DDG12] or infinite volume random cluster measures (defined as

Gibbsian modifications of the Poisson Boolean model) [DH15], the relevant

tool ([Geo94, Lemma 3.4]) is derived from the sequential compactness of the

level sets of the specific entropy [GZ93, Proposition 2.6]. If the specific en-

tropy is defined in the analogous way here (using the sub-σ-algebras of local

events), it becomes difficult to compute in the cases that we are interested in.

We therefore define the entropy slightly differently, using the sub-σ-algebra

of strictly local events. We take advantage of analogues of standard results

regarding convergence in the topology of local convergence (Lemmas 4.4.9 and

4.4.10) in the course of proving our main convergence tool, Proposition 4.4.5,

which is used in the next section.

Definitions

For ∆ b R2, let us define the following subset of G∆:

G ′∆ := {(ω,E) ∈ G∆ : ∀e ∈ E ∃τ ∈ Del3(ω) such that e ⊂ τ and B(τ) ⊂ ∆},

and the projection ρ∆ : G → G ′∆ given by ρ∆(ω,E) := (ω∆, E ∩ ρE∆(ω)) where

ρE∆(ω) := {e ∈ Del2(ω) : ∃τ ∈ Del3(ω) such that e ⊂ τ and B(τ) ⊂ ∆}.
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ρE∆(ω) represents the subset of Del2(ω) which is unaffected by changes to the

configuration ω which occur outside ∆. More precisely,

ρE∆(ω∆ ∪ ω′) = ρE∆(ω) for all ω′ ∈ Ω∆c . (4.4.1)

Definition 4.4.1. · Events in A′∆ := ρ−1
∆ A|G′∆ and A∆ are called strictly

local and local respectively.

· A function f : G → R is strictly local (resp. local) is if it is measurable

with respect to the sigma algebra A′∆ (resp. A∆) for some ∆ b R2. The

sets of strictly local and local functions are denoted L′ and L respectively.

Since A′∆ ⊂ A∆ we have L′ ⊂ L.

· The topology of local convergence, or L-topology, on PΘ is defined to be

the weak* topology induced by the set of bounded local functions. This

is the coarsest topology for which the mappings P 7→ P (f) for f ∈ L
are continuous.

If P and Q are probability measures on the same measurable space, the

relative entropy (also known as the Kullback-Leibler divergence) of P relative

to Q is defined to be

I(P |Q) :=


∫
f log fdQ if P � Q with density f,

∞ otherwise.

An alternative characterisation is

I(P |Q) = sup
g∈B

P (g)− logQ(exp(g)), (4.4.2)

where B is the set of bounded measurable functions ([Var88, Theorem 4.1]).

Let M be a fixed invertible 2 × 2 matrix with entries in R, and let

Λn =
⋃n
i,j=−nC(i, j), where C(i, j) is given by (2.1.10).

Definition 4.4.2. The specific entropy or mean entropy of a measure P ∈PΘ

(relative to ν defined in (4.2.3)) is defined to be

Iz(P ) := lim
n→∞

|Λn|−1I(PΛn|νzΛn), (4.4.3)
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where PΛn := P ◦ ρ−1
Λn

and νzΛn := ν ◦ ρ−1
Λn

(the intensity parameter z is made

explicit in the notation here for clarity). Using the characterisation of I in

(4.4.2) we have

Iz(P ) = lim
n→∞

|Λn|−1 sup
g∈B(G′∆,A

′
∆)

P∆(g)− log νz∆(exp(g)),

where B(G ′∆,A′∆) is the set of bounded A′∆-measurable functions g : G ′∆ → R.

The existence of Iz(P ) and the fact that it is independent of the matrix

M can be inferred from Proposition 4.4.3. For A ∈ A|G′∆ , (4.4.1) and the

independence properties of Πz and µω give rise to the formula

νz∆(A) =

∫
1A(ω,E)µ∆,ω(dE)Πz

∆(dω),

where µ∆,ω denotes the tile drawing mechanism on ρE∆(ω). Furthermore, when

∆,Λ b R2 are disjoint and A ∈ A|G′∆∪Λ
,

νz∆∪Λ(A) =

∫
1A(G ∪G′ ∪ (∅, E ′′))µ∆,Λ,ω∪ω′(dE

′′)νzΛ(dG′)νz∆(dG),

where µ∆,Λ,ω denotes the tile drawing mechanism on ρE∆∪Λ(ω)\
(
ρE∆(ω) ∪ ρEΛ(ω)

)
.

Existence of the specific entropy

The existence of the specific entropy is a consequence of the following propo-

sition.

Proposition 4.4.3. For all P ∈PΘ,

Iz(P ) = sup
∆∈C
|∆|−1I(P∆|νz∆),

where C denotes the set of open cubes in R2, defined in (2.1.3).

The first step in proving Proposition 4.4.3 is to prove that the specific

entropy is sub-additive in the following sense. The proof mimics that of [Geo11,

Proposition 15.10].
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Lemma 4.4.4. For each P ∈P and all disjoint ∆,Λ ∈ C ,

I(P∆∪Λ|νz∆∪Λ) ≥ I(P∆|νz∆) + I(PΛ|νzΛ).

Proof. We can assume that I(P∆∪Λ|νz∆∪Λ) < ∞, in which case the density

f∆∪Λ := dP∆∪Λ

dνz∆∪Λ
exists. Let us also define the functions

f∆(G) := νz∆∪Λ

(
f∆∪Λ

∣∣ ρ∆|G′∆∪Λ
= G

)
=

∫
f∆∪Λ(G ∪G′ ∪ (∅, E ′′))µ∆,Λ,ω∆∪ω′(dE

′′)νzΛ(dG′),

and

fΛ(G) := νz∆∪Λ

(
f∆∪Λ

∣∣ ρΛ|G′∆∪Λ
= G

)
=

∫
f∆∪Λ(G ∪G′ ∪ (∅, E ′′))µ∆,Λ,ωΛ∪ω′(dE

′′)νz∆(dG′),

where ρ∆|G′∆∪Λ
denotes the restriction of ρ∆ to G ′∆∪Λ. It is then true that

f∆ = dP∆

dνz∆
and fΛ = dPΛ

dνzΛ
. We consider the measure λ on A|G′∆∪Λ

defined by

λ(A) :=

∫
1A(ρΛ|G′∆∪Λ

(G) ∪G′ ∪ (∅, E ′′))µ∆,Λ,ωΛ∪ω′(dE
′′)νz∆(dG′)P∆∪Λ(dG).

Now λ(fΛ ◦ ρΛ|G′∆∪Λ
> 0) = P∆∪Λ(fΛ ◦ ρΛ|G′∆∪Λ

> 0) = 1, so the quotient

f∆∪Λ|Λ := f∆∪Λ

fΛ◦ρΛ|G′
∆∪Λ

is well-defined λ-almost surely. Moreover, dP∆∪Λ

dλ
= f∆∪Λ|Λ

since for A ∈ A|G′∆∪Λ
,

λ(f∆∪Λ|Λ1A)

=

∫
1Af∆∪Λ(ρΛ|G′∆∪Λ

(G) ∪G′ ∪ (∅, E ′′))µ∆,Λ,ωΛ∪ω′(dE
′′)νz∆(dG′)∫

f∆∪Λ(ρΛ|G′∆∪Λ
(G) ∪G′ ∪ (∅, E ′′))µ∆,Λ,ωΛ∪ω′(dE

′′)νz∆(dG′)
P∆∪Λ(dG)

=

∫
P∆∪Λ (A|A′Λ) (G)P∆∪Λ(dG)

= P∆∪Λ(A)
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by the tower property. Similarly, for A ∈ A|G′∆ ,

λ ◦ (ρ∆|G′∆∪Λ
)−1(1Af∆)

= λ((1Af∆) ◦ ρ∆|G′∆∪Λ
)

=

∫
1Af∆(G′)µ∆,Λ,ωΛ∪ω′(dE

′′)νz∆(dG′)P∆∪Λ(dG)

=

∫
1Af∆(G)νz∆(dG)

=

∫
1A(G)f∆∪Λ(G ∪G′ ∪ (∅, E ′′))µ∆,Λ,ω∆∪ω′(dE

′′)νzΛ(dG′)νz∆(dG)

=

∫
1A(ρ∆|G′∆∪Λ

(G))f∆∪Λ(G)νz∆∪Λ(dG)

= P∆∪Λ(1A ◦ ρ∆|G′∆∪Λ
)

= P∆∪Λ ◦ (ρ∆|G′∆∪Λ
)−1(A),

and so dP∆

dλ◦(ρ∆|G′
∆∪Λ

)−1 = f∆. Therefore we can write, using the fact that the

function ∆ 7→ I(P∆|νz∆) is increasing (see [Geo11, Proposition 15.5(c)]),

I(P∆|νz∆) = P∆(log f∆)

= I(P∆ | λ ◦ (ρ∆|G′∆∪Λ
)−1)

≤ I(P∆∪Λ|λ)

= P∆∪Λ(log f∆∪Λ|Λ)

= P∆∪Λ(log f∆∪Λ − log fΛ ◦ ρΛ|G′∆∪Λ
)

= I(P∆∪Λ|νz∆∪Λ)− I(PΛ|νzΛ).

Proof of Proposition 4.4.3. Let us use the shorthand I∆ in place of Iz(P∆|νz∆).

The following three properties are satisfied, and justifications are given below.

(i) I∆+x = I∆ for all ∆ ∈ C and x ∈ R2,

(ii) I∆ + IΛ ≤ IΛ∪∆ whenever ∆,Λ ∈ C and ∆ ∩ Λ = ∅, and

(iii) IΛ ≤ I∆ whenever Λ ⊂ ∆.

(i) follows from the translation invariance of P and ν, (ii) follows from the

previous lemma, and (iii) is [Geo11, Proposition 15.5(c)]. We can then follow
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the argument of [Geo11, Lemma 15.11]. Choose any real ε > 0 and a cube

∆ ∈ C satisfying

|∆|−1I∆ > sup
∆∈C
|∆|−1I∆ − ε.

If Nn denotes the largest number of disjoint translates of ∆ which can fit inside

Λn, then |Λn|
Nn|∆n| → 1, so our assumptions allow us to obtain the estimate

IΛn ≥ NnI∆, (4.4.4)

and therefore

lim sup
n→∞

|Λn|−1IΛn ≥ |∆|−1I∆ > sup
∆∈C
|∆|−1I∆ − ε.

Since ε is arbitrary, we obtain the desired result.

Convergence results

For any bounded measurable function g : G ′∆ → R, we have g ◦ ρ∆ ∈ L′ ⊂ L,

and so the map PΘ 3 P 7→ P∆(g) = P (g ◦ ρ∆) is continuous with respect to

the L-topology. Therefore the function

PΘ 3 P 7→ I(P∆|νz∆) = sup
g∈B(G′∆,A

′
∆)

P∆(g)− log νz∆(exp(g))

(where B(G ′∆,A′∆) is the set of bounded A′∆-measurable functions g : G ′∆ →
R) is a supremum of continuous functions, making it lower semi-continuous.

Furthermore, the characterisation of Iz in Proposition 4.4.3 shows that Iz is

also lower semi-continuous, and hence the level sets

Lz(c) := {P ∈PΘ : Iz(P ) ≤ c} (4.4.5)

for z > 0 and c ∈ R are closed in the L-topology.

This section is devoted to proving the following proposition, which

will be accomplished through a series of lemmas. For P ∈ PΘ, the point

intensity of P is i(P ) :=
∫
|ω[0,1]2 |P (d(ω,E)). For any ∆ b R2, i(P ) =

|∆|−1
∫
|ω∆|P (d(ω,E)).
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Proposition 4.4.5. Let z > 0 and c1, c2 ∈ R. If (Pn)n∈N is a sequence in PΘ

such that Iz(Pn) ≤ c1i(Pn) + c2, and there exists k > 0 such that

pr∆(G) = pr∆ ◦ρ∆⊕k(G) for Pn-almost all G (4.4.6)

for all n ∈ N, then Pn has a subsequence (Pni) which converges in the L-

topology and whose limit P ∈PΘ satisfies Iz(P ) ≤ c1i(P ) + c2.

The following notions of equicontinuity are useful for establishing con-

vergence.

Definition 4.4.6. A net (Pi)i∈I in P is locally equicontinuous if for each

∆ b R2 and each sequence (An)n≥1 ⊂ A∆ with An ↘ ∅,

lim
n→∞

lim sup
i∈I

Pi(An) = 0, (4.4.7)

and strictly locally equicontinuous if (4.4.7) holds for each ∆ b R2 and each

sequence (An)n≥1 ⊂ A′∆ with An ↘ ∅.

The two notions of equicontinuity are equivalent when (4.4.6) is satis-

fied. This property holds for the sequences we consider in the next chapter

with k = 2R0, due to (HCC).

Lemma 4.4.7. Let (Pi)i∈I be a net in P such that for all i ∈ I,∆ ⊂ R2,

pr∆(G) = pr∆ ◦ρ∆⊕k(G) for Pi-almost all G.

Then (Pi)i∈I is locally equicontinuous if and only if (Pi)i∈I is strictly locally

equicontinuous.

Proof. Since A′∆ ⊂ A∆ for all ∆ b R2, local continuity always implies strict

local equicontinuity. For the converse, let (An)n≥1 be a sequence in A∆ such

that An ↘ ∅. Then An = (pr∆)−1(Bn ∩ G∆) for some Bn ∈ A and ρ−1
∆⊕k ◦

(pr∆ |G′∆⊕k)
−1(Bn ∩ G∆)↘ ∅. Then by the assumptions we have

lim
n→∞

lim sup
i∈I

Pi(An) = lim
n→∞

lim sup
i∈I

Pi

(
ρ−1

∆⊕k ◦ (pr∆ |G′∆⊕k)
−1(Bn ∩ G∆)

)
= 0.
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To prove the following lemma we follow the same method as [Geo11][Proposition

15.14].

Lemma 4.4.8. Let z > 0 and c ∈ R. Every net in Lz(c) is strictly locally

equicontinuous.

Proof. We assume without loss of generality that c ≥ 0, since Iz(P ) ≥ 0

for all P ∈ PΘ. Let ∆ ∈ C and (ρ−1
∆ Am)m≥1 be a sequence in A′∆ with

ρ−1
∆ Am ↘ ∅. For every P ∈ Lz(c) we have I(P∆|νz∆) ≤ c|∆| by Proposition

4.4.3. In particular each P∆ is absolutely continuous with respect to νz∆ with

density fP∆ . For a given ε > 0, let δ > 0 satisfy ε log ε/δ ≥ 1 + c|∆|. If m is

large enough that νz∆(Am) = νz(ρ−1
∆ Am) ≤ δ then

P (ρ−1
∆ Am) = νz∆(1Am∪{fP∆≤ε/δ}f

P
∆) + νz∆(1Am∪{fP∆>ε/δ}f

P
∆)

≤ ε+ (log ε/δ)−1νz∆(1Am∪{fP∆>ε/δ}f
P
∆ log fP∆)

≤ ε+ (log ε/δ)−1
(
I(P∆|νz∆)− νz∆(1Acm∩{fP∆≤ε/δ}f

P
∆ log fP∆)

)
≤ ε+ (log ε/δ)−1 (I(P∆|νz∆) + 1)

≤ 2ε

for all P ∈ Lz(c). The second to last line follows from the inequality

x log x ≥ −1.

The analogue of the next lemma for random fields on Zd is [Geo11,

Proposition 4.9]. We use a similar argument here.

Lemma 4.4.9. Every locally equicontinuous net in P has at least one cluster

point in P with respect to the L-topology.

Proof. Let (Pi)i∈I be a net in P. Its restriction (P 0
i )i∈I to A0 := ∪∆∈CA∆ is a

net in the compact Hausdorff space [0, 1]A
0
, and so there is a subnet (Pij)j∈I′

with the property that (P 0
ij

)j∈I′ converges setwise to some P 0 ∈ [0, 1]A
0
. P 0 is

additive, and is in fact σ-additive on each A∆. To see this note that if (An)∞n=1

is a sequence of events in A∆ such that An ↘ ∅ then

lim
n→∞

P 0(An) = lim
n→∞

lim
j∈I′

Pij(An) ≤ lim
n→∞

lim sup
i∈I

Pi(An) = 0.
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Since each (G∆,A|G∆
) is a standard Borel space and A = σ(∪∆CA∆), by

Kolmogorov’s extension theorem there exists a unique measure P ∈P which

extends P 0.

The proof of the following lemma is omitted but it can be proven in the same

way as [Geo11][Theorem 4.15].

Lemma 4.4.10. If P ∈ P is a cluster point of a locally equicontinuous se-

quence (Pn)n≥1 in P then there is a subsequence (Pnk)k≥1 which converges to

P in the L-topology.

Proof of Proposition 4.4.5. Since
dΠzΛn
dΠ1

Λn

= z|ωΛn |e(1−z)|Λn| it can be easily shown

that for any P ∈PΘ,

Iz(P ) = I1(P )− i(P ) log(z) + z − 1,

and therefore if z′ = zec1 for c1 ∈ R,

Iz(P )− Iz′(P ) = i(P )(log(z′)− log(z)) + z − z′,

=⇒ Iz(P ) = Iz
′
(P ) + c1i(P ) + z − z′.

Consequently, for any c1, c2 ∈ R,

{P ∈PΘ : Iz(P ) ≤ c1i(P ) + c2} =
{
P ∈PΘ : Iz

′
(P ) ≤ c2 − z + z′

}
.

= Lz
′
(c2 − z + z′). (4.4.8)

Together with Lemmas 4.4.7 and 4.4.8, this implies that Pn is a locally equicon-

tinuous sequence in Lz
′
(c2− z+ z′). By Lemmas 4.4.9 and 4.4.10 Pn therefore

has a subsequence which converges with respect to the L-topology. Since the

level sets are closed, the limit P is in Lz
′
(c2 − z + z′) as required.

4.4.2 Existence of an accumulation point

In this section we construct a sequence (P̃n)n∈N of measures from the finite vol-

ume Delaunay random cluster distributions. We show that the assumptions of

Proposition 4.4.5 are satisfied, ensuring that P̃n has a convergent subsequence.
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In subsequent sections we will show that the limit, after conditioning out the

empty configuration, is a Delaunay random cluster measure.

From here on, we assume that the premises of Theorem 4.3.1 are satis-

fied. Suppose M and Γ are chosen so that (U1) - (U3) are satisfied. Let ω ∈ Γ

be a fixed pseudo-periodic configuration with

sup
i,j∈Z

NC(i,j)(ω) <∞ (4.4.9)

(for instance ω could be periodic), and G = (ω,E) ∈ G for some E ∈ E . We

first show that G is admissible with respect to Λn (i.e G ∈ GΛn
∗ ). By (U1),

ω ∈ ΩΛn
cr , and so by (S)

HΛn,ω(ω′) ≥ −cS|ω′ ∪ ∂Λnω| (4.4.10)

for all ω′ ∈ ΩΛn . This, in conjunction with Proposition 4.2.2, yields

ZΛn(G) ≤ ecS |∂
Γ
Λn
ω|
∫
q|ω
′|ecS |ω

′|Πz
Λn(dω′) <∞.

Conversely, it can be shown that under assumptions (U1), (U2) and shift-

invariance of ψ that if ω′ ∈ ΩΛn and ω ∪ ω′ ∈ Γ then

HΛn,ω(ω′) ≤ cΓ(2n+ 1) + o(|Λn|),

where the error term is uniform in ω′ (see [DDG12, equation (5.8)] and its

proof). Together with Proposition 4.2.3 this gives the estimate

ZΛn(G) ≥ q1−|(ω(Λn)c )Λn |e−cΓ(2n+1)−o(|Λn|)Πz
C(Γ)(2n+1) > 0, (4.4.11)

where we recall that Πz
C(Γ) > 0 by (U3). Therefore G ∈ GΛn

∗ , so we can define

the Gibbs distribution

Cn := CΛn,G ◦ ρ−1
Λn
.

in Λn with boundary condition G, projected to G ′Λn . In order to construct a

shift invariant Gibbs measure we spatially average this measure. Let Pn denote

the probability measure on (G,A) relative to which the configuration in each
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parallelogram Λn + (2n+ 1)Mk, k ∈ Z2 is independent with distribution Cn.

The spatially averaged measure is

P̃n := |Λn|−1

∫
Λn

Pn ◦ θ−1
x dx.

Let x ∈ Λn. There exist k1, k2, k3, k4 ∈ Z2 and Λi
n ⊂ Λn + (2n + 1)Mki such

that Λn − x = ∪4
i=1Λi

n. Then Λn = ∪4
i=1θ

−1
−(2n+1)Mki

(Λi
n). Since Pn ◦ θ−1

x is

invariant under the shifts θ(2n+1)Mk for k ∈ Z2, we have∫
|ωΛn|Pn ◦ θ−1

x (dG) =

∫
|ωΛn−x|Pn(dG)

=
4∑
i=1

∫
|ωΛin
|Pn(dG)

=

∫
|ωΛn|Pn(dG) =

∫
|ω|Cn(dG).

One can therefore show that i(P̃n) finite using stability (S) and Proposition

4.2.2,

i(P̃n) = |Λn|−1

∫
|ω|Cn(dG)

= |Λn|−1

∫
|ω′Λn|q

NΛn
cc (G′)e−HΛn,ω(ω′Λn )CΛn,G(dG′)

≤ |Λn|−1ecS |∂Λnω|
∫
|ω′|e(cS+log(q))|ω′|ΠΛn(dω′) <∞.

For convenience, if ∆ b R2 we let µ∆,ω′ and µ+
∆,ω′,ω denote the edge

drawing mechanisms on the sets ρE∆(ω′) and Del2,∆(ω′ ∪ ω∆c) \ ρE∆(ω′) respec-
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tively. Then for A ∈ A′Λn ,

Cn(A) = ZΛn(G)−1

∫
1A ◦ ρΛn(G′)QΛn,G(G′)νΛn,G(dG′)

= ZΛn(G)−1

∫
1A(ω′, E ′)QΛn,G(GR2,Λn ∪ (ω′, E ′ ∪ E ′′))

µ+
Λn,ω′,ω

(dE ′′)µΛn,ω′(dE
′)Πz

Λn(dω′)

= ZΛn(G)−1

∫
1A(G′)QΛn,G(GR2,Λn ∪G′ ∪ (∅, E ′′))

µ+
Λn,ω′,ω

(dE ′′)νzΛn(dG′),

so

dCn
dνzΛn

(G′) = ZΛn(G)−1

∫
QΛn,G(GR2,Λn ∪G′ ∪ (∅, E ′′))µ+

Λn,ω′,ω
(dE ′′).

Lemma 4.4.11. Iz(P̃n) ≤ |Λn|−1I(Cn|νzΛn).

Proof. Suppose that for a fixed x ∈ Λn, ∆ can be written as a finite union

∆ = ∪mi=1Λki
n where Λk

n := Λn + x+ (2n+ 1)Mk for k ∈ Z2. Let

A :=

{
(ω,E) ∈ G

e ∈ E =⇒ ∀τ ∈ Del3(ω) with e ⊂ τ

∃i ∈ {1, ...,m} such that B(τ) ⊂ Λki
n

}
.

Then

d(Pn ◦ θ−1
x )∆

dνz∆
(G) = 1A(G)

m∏
i=1

dCn ◦ θ−1
−x−(2n+1)Mki

dνz
Λ
ki
n

(ρ
Λ
ki
n

(G)),
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and therefore, since 0 log 0 = 0,

I((Pn ◦ θ−1
x )∆|νz∆)

≤
∫ m∏

i=1

dCn ◦ θ−1
−x−(2n+1)Mki

dν
Λ
ki
n

(Gi)

log

(
m∏
j=1

dCn ◦ θ−1
−x−(2n+1)Mkj

dν
Λ
kj
n

(Gj)

)
dν

Λ
k1
n

(dG1)...dνΛkmn
(dGm)

=
m∑
j=1

∫
log

(
dCn ◦ θ−1

−x−(2n+1)Mkj

dν
Λ
kj
n

(Gj)

)
m∏
i=1

dCn ◦ θ−1
−x−(2n+1)Mki

dν
Λ
ki
n

(Gi)dνΛ
k1
n

(dG1)...dνΛkmn
(dGm)

= mI(Cn|νzΛn).

Dividing by |∆| we obtain

|∆|−1Iz((Pn ◦ θ−1
x )∆|νz∆) ≤ |Λn|−1I(Cn|νzΛn). (4.4.12)

Now for an arbitrary cube ∆ ∈ C and a fixed n, let ∆+ denote the union of

all blocks Λk
n that meet ∆. Let ∆m be a sequence in C such that

Iz(Pn ◦ θ−1
x ) = lim

m→∞
|∆m|−1Iz((Pn ◦ θ−1

x )∆m |νz∆m
).

Then by (4.4.12) we have

Iz(Pn ◦ θ−1
x ) ≤ lim

m→∞
|∆m|−1Iz((Pn ◦ θ−1

x )∆+
m
|νz

∆+
m

)

≤ lim
m→∞

|∆+
m|

|∆m||Λn|
Iz(Cn|νzΛn)

= |Λn|−1Iz(Cn|νzΛn).

Since Iz is lower semi-continuous and affine, [DS89, Lemma 5.4.24] implies
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that

Iz(P̃n) = |Λn|−1

∫
Λn

Iz(Pn ◦ θ−1
x )dx

≤ |Λn|−1Iz(Cn|νzΛn),

which finishes the proof.

Proposition 4.4.12. The sequence P̃n has a convergent subsequence, and its

limit P̃ ∈PΘ is non-degenerate (P̃ 6= δ∅).

Proof. We seek to apply Proposition 4.4.5 to obtain the convergent subse-

quence. Since ψ satisfies (HCC), (4.4.6) is satisfied with k = 2R0 and P̃n in

place of Pn. To show the other assumption of Proposition 4.4.5 holds we will

prove that

Iz(P̃n)− (cS + log q)i(P̃n) ≤ |C|−1(cΓ − log ΠC(Γ)) + o(1). (4.4.13)

Applying Lemma 4.4.11 we have

Iz(Cn) ≤ |Λn|−1I(Cn|νzΛn)

= |Λn|−1

∫
log
(
Z∆(G)−1Q∆,G(GR2,∆ ∪G′ ∪ (∅, E ′′))µ+

∆,ω′,ω(dE ′′)
)

Cn(dG′),

and applying the upper bound from Proposition 4.2.2 yields

Iz(P̃n) ≤ −|Λn|−1 log ZΛn(G) + |Λn|−1

∫
log
(
q|ω
′|e−HΛn,ω(ω′)

)
Cn(dG′)

= −|Λn|−1 log ZΛn(G) + log(q)i(P̃n)− |Λn|−1

∫
HΛn,ω(ω′)Cn(dG′).

(4.4.14)

By assumption (4.4.9), |∂Λnω| = o(|Λn|), so we can deduce from (4.4.10) that

−|Λn|−1

∫
HΛn,ω(ω′)Cn(dG′) ≤ cSi(P̃n) + o(1).
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By (HCC) and Lemma 4.1.4,

HΛn,ω(ω′) <∞ =⇒ (ω(Λn)c)
Λn = ((ω(Λn)c ∪ ω′)Λn)(Λn)c ⊂ ωΛn⊕2R0\Λn ,

and by (4.4.9), |ωΛn⊕2R0\Λn| = o(|Λn|), so similar to (4.4.11) we have the

estimate

ZΛn(G) ≥ q−o(|Λn|)e−cΓ(2n+1)2−o(|Λn|)ΠC(Γ)(2n+1)2

=⇒ −|Λn|−1 log ZΛn(G) ≤ cΓ|C|−1 + o(1)− |C|−1 log ΠC(Γ).

Combining these inequalities with (4.4.14) gives (4.4.13), as required.

Finally, it is left to check that the limit P̃ is non-degenerate. Let

c1 := cS + log(q), c2 := |C|−1(cΓ − log(ΠC(Γ))). By (4.4.13) and (4.4.8) we

have Ize
c1 (P̃n) ≤ c2 − z + zec1 + o(1). Since Ize

c1 is lower semi-continuous, we

also have Ize
c1 (P̃ ) ≤ c2 − z + zec1 . By assumption (U3), c2 < z, and so

Ize
c1 (P̃ ) < zec1 = Ize

c1 (δ∅),

which implies P̃n 6= δ∅.

The remainder of this Chapter will be spent showing that the condi-

tioned measure P := P̃ (·|{∅}c) is a Delaunay random cluster measure. For ease

of notation, henceforth we identify P̃n with its subsequence that converges to

P̃ .

4.4.3 A second converging sequence

In this short section we construct, for each ∆ b R2, a sequence (C∆
n )n∈N of

sub-probability measures which also has a subsequence converging locally to

the limit P̃ . We do this by showing that limn→∞ |C∆
n (f)− P̃n(f)| = 0 for each

local function f . The measures C∆
n satisfy the DLR equation for ∆ b R2,

making them useful for proving that the same is true for P . If n is large

enough that ∆ ⊂ Λn then the ∆-interior of Λn,

Λ◦n := {x ∈ R2 : ∆ + x ⊂ Λn},
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is non-empty. We can then define the measure

C∆
n := |Λn|−1

∫
Λ◦n

CΛn,G ◦ θ−1
x dx = |Λn|−1

∫
Λ◦n

CΛn−x,θxG dx,

where the equality is due to the fact that Q is shift-invariant.

Proposition 4.4.13. If n is large enough that ∆ ⊂ Λn, then C∆
n satisfies the

DLR equation for ∆, i.e for any local bounded function f ,

C∆
n (f) =

∫
C∆,G(f)C∆

n (dG).

In addition,

lim
n→∞

|C∆
n (f)− P̃n(f)| = 0, (4.4.15)

and so C∆
n has a subsequence which converges locally to P̃ .

Proof. The DLR equations follow from the fact that the kernels (C∆)∆bR2

form a specification (Proposition 4.2.6). To prove (4.4.15), let f be an AΛ-

measurable function with |f(G)| ≤ U for all G ∈ G. Since Pn ◦ θ−1
x satisfies

(4.4.6) for k = 2R0, if (Λ⊕ 2R0 ∪∆) + x ⊂ Λn,

CΛn−x,θxG(f) = Pn ◦ θ−1
x (f). (4.4.16)

Hence, if n is large enough that Λ⊕ 2R0,∆ ⊂ Λn,

|C∆
n (f)− P̃n(f)|

= |Λn|−1

∣∣∣∣∫
Λ◦n

CΛn−x,θxG(f)dx−
∫

Λn

Pn ◦ θ−1
x (f)dx

∣∣∣∣
= |Λn|−1

∣∣∣∣ ∫
{x:∆+x⊂Λn,Λ⊕2R0+x 6⊂Λn}

CΛn−x,θxG(f)dx

−
∫
{x:(Λ⊕2R0∪∆)+x 6⊂Λn}

Pn ◦ θ−1
x (f)dx

∣∣∣∣
≤ 2U |Λn|−1|{x ∈ R2 : (Λ⊕ 2R0 ∪∆) + x 6⊂ Λn}|

n→∞−−−→ 0.
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4.4.4 Uniqueness of the infinite connected component

This section is devoted to showing that with respect to P̃ (and therefore P ),

there is at most one infinite connected component almost surely. This fact

is subsequently used to bound the range of N∆
cc , which will allow us in the

next section to use the local convergence of C∆
n to P̃ to show that P̃ satisfies

the DLR equation in ∆. This section largely follows the approach taken in

[DH15, section 4.2]. We start by proving some basic properties of P̃ and some

preliminary lemmas.

Suppose ∆ b R2, n ∈ R+ and G = (ω,E) ∈ G. Define ∆n := ∆ ⊕ n
and let f∆

n : G → G ′∆n
be the function defined by f∆

n (G) = (ωn, En), where

ωn := {x ∈ ω : ∃τ ∈ Del3,∆(ω) with x ∈ τ and B(τ) ⊂ ∆n},

and

En := {e ∈ E : ∃τ ∈ Del3,∆(ω) with e ⊂ τ and B(τ) ⊂ ∆n}.

See figure 4.2 for a diagram of f∆
n (ω, (Del2(ω))). The following properties are

satisfied by f∆
n .

1. f∆
n (G) = f∆

n (G∆n) (f∆
n is local), (4.4.17)

2. f∆
n (G)∆ = f∆

n (G), (4.4.18)

3. for n ≤ m, f∆
n (G) ⊂ f∆

m(G), with ∪n∈N f∆
n (G) = G∆. (4.4.19)

Lemma 4.4.14. For any ∆ b R2, P̃ (f∆
2R0

(G) = G∆) = 1.

Proof. Since f∆
n is local we can apply the local convergence of C∆

m to P̃ (Propo-

sition 4.4.13):

P̃ (f∆
2R0

(G) = G∆) = lim
n→∞

P̃ (f∆
2R0

(G) = f∆
n (G))

= lim
n→∞

lim
m→∞

C∆
m(f∆

2R0
(G) = f∆

n (G)).
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Figure 4.2: A comparison of f∆
n (ω, (Del2(ω))) (left) with (ω, (Del2(ω)))∆n

(right) for a fixed configuration ω.

The last expression is equal to 1 since (HCC) implies that

C∆
m(f∆

n (G) = G∆) =
|Λ◦m|
|Λm|

for all n ≥ 2R0.

Lemma 4.4.15. Let A+ and A− denote events that E∆ = Del2,∆(ω) and

E∆ = ∅ respectively, where ∆ b R2. If G ∈ G∆
∗ there exists K(∆, `0) ∈ R such

that

C∆,G (A+) ≥ qp−6
−

(
p3
−

q

)K(∆,`0)+|ω∆2R0
\∆|

and

C∆,G (A−) ≥ q(1− p+)−6

(
(1− p+)3

q

)K(∆,`0)+|ω∆2R0
\∆|

.

Proof. Using the bounds from Propositions 4.2.2 and 4.2.3 along with (HCC)
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we have

|ω′∆| ≥ N∆
cc (G

′) ≥ 1− |((ω′)∆)∆c| ≥ 1− |ω′∆2R0
\∆|, (4.4.20)

which implies

Q∆,G(G′)

Z∆(G)
≥ q

1−|ω′
∆2R0

\∆|e−H∆,ω(ω′∆)∫
q|ω′|e−H∆,ω(ω′)Πz

∆(dω′)
. (4.4.21)

Now since the Delaunay graph is a nearest neighbour graph and there is a

lower bound `0 on the edge lengths enforced by (HCL), the number of points

in ∆ is bounded above by some number K(∆, `0). It is a simple consequence

of Euler’s formula for planar graphs that the maximum number of edges in a

planar graph with V vertices is 3V − 6, so using (4.3.1) we have

C∆,G(A+) ≥
∫
p

3(K(∆,`0)+|ω∆2R0
\∆|)−6

− q
1−|ω∆2R0

\∆|e−H∆,ω(ω′)Πz
∆(dω′)∫

qK(∆,`0)e−H∆,ω(ω′)Πz
∆(dω′)

= p
3(K(∆,`0)+|ω∆2R0

\∆|)−6

− q
1−|ω∆2R0

\∆|−K(∆,`0)
.

The proof of the second inequality is carried out in the same way.

The proof that there is at most one infinite connected component is

based on the following property called the local modification property. It states

that all of the edges in G∆ are all open or all closed with positive probability.

Proposition 4.4.16. (Local modification property.) Let ∆ b R2. For

any event B satisfying P̃ (B) > 0 and 1B(G) = 1B(GR2,∆) for all G,

min(P̃ (A+ ∩B), P̃ (A− ∩B)) > 0. (4.4.22)

Proof. We will prove that P̃ (A+ ∩ B) > 0. The proof that P̃ (A− ∩ B) > 0 is

the same except that 1− p+ replaces p−.

By Lemma 4.4.14, we have 1A+(f∆
2R0

(G)) = 1A+(G∆) = 1A+(G) P̃−a.s, with

the leftmost expression being a local function due to (4.4.17). By Levy’s

upwards theorem, we can write 1B as a limit of local functions (which only
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depend on GR2,∆):

1B(G) = lim
Λ↗R2

P̃ (B|AΛ)(GΛ) = lim
Λ↗R2

P̃ (B|AΛ)(GR2,∆) P̃ -a.s.

Therefore the local convergence of C∆
m to P̃ gives us the following:

P̃ (A+ ∩B) = lim
Λ↗R2

∫
1A+(f∆

2R0
(G))P̃ (B|AΛ)(GΛ)P̃ (dG)

= lim
Λ↗R2

lim
m→∞

∫
1A+(f∆

2R0
(G))P̃ (B|AΛ)(GΛ)C∆

m(dG)

= lim
Λ↗R2

lim
m→∞

∫
1A+(G)P̃ (B|AΛ)(GΛ)C∆

m(dG)

= lim
Λ↗R2

lim
m→∞

∫
C∆,G(A+)P̃ (B|AΛ)(GΛ)C∆

m(dG). (4.4.23)

Now applying the result of Lemma 4.4.15 and the local convergence of C∆
m to

P̃ again we have

P̃ (A+ ∩B) = lim
Λ↗R2

lim
m→∞

∫
p

3(K(∆,`0)+|ω∆2R0
\∆|)−6

− q
1−|ω∆2R0

\∆|−K(∆,`0)

P̃ (B|AΛ)(GΛ)C∆
m(dG)

= qp−6
−

(
p3
−

q

)K(∆,`0) ∫
B

(
p3
−

q

)|ω∆2R0
\∆|

P̃ (dG) > 0.

Now since P̃ is translation invariant, it can be written as a mixture

P̃ =

∫
P̃HP̃ (dH), (4.4.24)

where P̃H are ergodic probability measures [MR96, Proposition 7.2]. Like

P̃ , the measures P̃H also satisfy the local modification property. The event

that the number of infinite connected components is exactly k is translation

invariant, so by ergodicity the number of infinite connected components is P̃H-

almost surely constant for all H. Notice that a consequence of Lemma 4.4.14

is that

P̃H(f∆
2R0

= G∆) = 1 (4.4.25)
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for P̃ -almost all H.

Proposition 4.4.17. If P is an ergodic measure satisfying the local modifica-

tion property then for all integers k > 1

P (N∞cc = k) = 0,

where N∞cc denoted the number of infinite connected components.

Proof. Since P is ergodic and the event N∞cc = k is translation invariant it

is enough to show that P (N∞cc = k) < 1. Suppose P (N∞cc = k) = 1 and let

∆ b R2 be large enough that with positive probability all k infinite connected

components intersect ω∆. Any path from a point in ω∆c to a point in ω∆ must

contain a point in (ω∆)∆c , so with positive probability all k infinite connected

components intersect (ω∆)∆c . This happens if and only if (ω∆)∆c intersects all

(possibly more than k but still finite) infinite connected components of GR2,∆,

which only depends on GR2,∆. By applying the local modification property

we conclude that with positive probability this occurs simultaneously with

E∆ = Del2,∆(ω). But in this case all of the infinite connected components

of GR2,∆ are connected via edges in E∆, so P̃ (N∞cc (G) = 1) > 0, which is a

contradiction.

Proposition 4.4.18. (Uniqueness of the infinite connected compo-

nent)

P̃ (N∞cc ≤ 1) = 1.

Proof. By Proposition 4.4.17 and the ergodicity of P̃H , it is enough to show

that P̃H(N∞cc = ∞) < 1 for P̃ -almost all H. Suppose that P̃H(N∞cc = ∞) = 1

and let In := [−n, n]2. A point x ∈ (3n+ 6R0)Z2 is called a trifurcation point

(pictured in figure 4.3b) if

· There are at least 3 infinite connected components of GR2,In+x intersect-

ing (ωIn+x)(In+x)c , and

· EIn+x = Del2,In+x(ω).

By the local modification property, one can choose n large enough that 0 is a

trifurcation point with positive probability. By the translation invariance of
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(a) GR2,In+x (b) G

Figure 4.3: A configuration G with a trifurcation point at x. The vertices of
(ωIn+x)(In+x)c and the edges of EIn+x are coloured in red.

P̃H , the probability that any point x ∈ (3n + 6R0)Z2 is a trifurcation point

is the same, so by the linearity of the expectation the expected number of

trifurcation points inside the box Im is in O(m2) \ o(m2).

Now we apply [BR06, Lemma 3, p. 121] in a similar fashion to how it

was applied in [BR06, Theorem 4, p.121]. Let O denote the union of all infinite

connected components of G which intersect Im+n+2R0 . Let Tm denote the set of

trifurcation points in Im. If for every x ∈ Tm the edges in EIn+x are removed,

O is split into several components. Let L1, ..., Lt denote the infinite ones and

F1, ..., Fu denote the finite ones. Now we consider the graph J obtained from

G by contracting ωIn+x to a single point vx for each x ∈ Tm and contracting

the components Li and Fi to single points li and fi. By the definition of a

trifurcation point, the removal of any point vx from J disconnects a connected

component into at least three components containing at least one vertex of

L = {l1, ..., lt}. Therefore, by Lemma 3 of [BR06, p. 121],

|L| ≥ 2 + |Tm|. (4.4.26)

Every member of {L1, ..., Lt}must contain an element of (ωIm+n+2R0 )(Im+n+2R0
)c ,
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so by (4.4.25)

|ω(Im+n+4R0
)\(Im+n+2R0

)| ≥ |(ωIm+n+2R0 )Im+n+2R0
c| ≥ 2 + |Tm|.

Since P̃H is translation invariant, the expected number of points in a region is

proportional to its Lebesgue measure, so the left hand side is proportional to

2R0(2m + 2n + 4R0). This is a contradiction because Tm ∈ O(m2) \ o(m2) as

we found earlier.

4.4.5 The DLR equations

We can now prove that P = P̃ (·|{∅}c) is a Delaunay random cluster measure.

We use the uniqueness of the infinite connected component to construct events

which localise N∆
cc and whose probability approaches 1. We also make use

of the events Ω̂cr
∆,n introduced in [DDG12], which localises the Hamiltonian.

Combining these events allows us to use the DLR equations for C∆
m and the

local convergence to show that P also satisfies the DLR equations.

The following statement summarises [DDG12, Proposition 5.4] and the

discussion that precedes it. The precise definition of Ω̂cr
∆,n and the values of

n∆ and m are given in Appendix A for reference.

Proposition 4.4.19. There exist constants n∆ and m, depending on the ma-

trix M and the constants given in (R), such that for n ≥ n∆ there are events

Ω̂cr
∆,n ∈ FΛ̂n\∆ satisfying

Ω̂cr
∆ :=

⋃
n≥n∆

Ω̂cr
∆,n ⊂ Ωcr

∆ with ∂∆(ω) ⊂ Λ̂n when ω ∈ Ω̂cr
∆,n, (4.4.27)

for Λ̂n := Λn+(2n+1)m. Moreover, P (Ω̂cr
∆) = 1 for all P ∈PΘ with P ({∅}) = 0.

It is implied by (4.4.27) that

H∆,ω(ω′) = H∆,ωΛ̂n\∆
(ω′) when ω ∈ Ω̂cr

∆,n. (4.4.28)
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Figure 4.4: hj(ω,Del2(ω)) (left) and (ωΛj ,Del2,∆(ωΛj)) (right).

For G ∈ G we define hj(G) := (ωΛj\∆, Ej) where

Ej :=

{
e ∈ E ∩Del2(ωΛj) \Del2,∆(ωΛj)

∃τ ∈ Del3(ωΛj\∆) with e ⊂ τ

and B(τ) ⊂ Λj \∆.

}

This definition ensures that hj(G) = hj(GΛj) = hj(G
R2,∆) and hj(G)↗ GR2,∆.

We can then define the events (when ∆2R0 ⊂ Λ̂p ⊂ Λj)

Wp,j :=

{
G = (ω,E) ∈ G

At most one connected component of

hj(G) intersects ∆2R0 and Λ̂c
p.

}

and

Ap :=
{
G = (ω,E) ∈ G | δ(τ) < R0 for all τ ∈ Del3,Λ̂p(ω) \Del3,∆(ω)

}
.

Notice that 1Wp,j
(G) = 1Wp,j

(GΛj) = 1Wp,j
(GR2,∆), and by Corollary 4.1.2

1Ap(G) = 1Ap(G
R2,∆).

Lemma 4.4.20. limp→∞ limj→∞ P̃ (Wp,j) = 1.
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Proof.

lim
p→∞

lim
j→∞

P̃ (Wp,j) = P̃

(⋃
p∈N

⋂
j>p

Wp,j

)
= P̃ (GR2,∆ has at most one infinite cc intersecting ∆2R0)

≥ P̃ (GR2,∆ has at most one infinite cc).

If the last expression is not equal to one, then with positive probability there

are at least two infinite connected components of GR2,∆. If so, then there exists

a region ∆′ such that with positive probability GR2,∆′ has at least two infinite

connected components which contain points in ω∆′ . By the local modification

property (Proposition 4.4.16), E∆′ = ∅ occurs simultaneously with positive

probability, which means that there would be at least two infinite connected

components in G, which contradicts Proposition 4.4.18.

Lemma 4.4.21. P̃ (Ap) = 1 for all p, and limn→∞C
∆
n (Ap) = 1.

Proof. P̃ (Ap) = 1 is a consequence of Lemma 4.4.14 with Λ̂p replacing ∆. For

the second statement note that

∆ ⊂ Λ̂p =⇒ {x ∈ R2 : Λ̂p + x ⊂ Λn} ⊂ {x ∈ R2 : ∆ + x ⊂ Λn},

and so

C∆
n (Ap) ≥ CΛ̂p

n (Ap)
n→∞−−−→ 1.

by (HCC).

The following proposition expresses how the events Ω̂cr
∆,p,Wp,j and Ap

localise the dependency of the finite volume distributions C∆,G on G.

Proposition 4.4.22. Suppose p and j are such that ∆ ⊂ Λ̂p and Λ̂p ⊕ 2R0 ⊂
Λj. Then there exists an AΛj -measurable function Z∆,p,j : G → [0,∞] such

that Z∆(G) = Z∆,p,j(G) for all G ∈ Wp,j ∩ (Ω̂∆,p
cr × E) ∩ Ap.

Furthermore, there exists a kernel C∆,p,j : G ×M(G) → [0,∞] such that for
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all G ∈ Wp,j ∩ (Ω̂∆,p
cr × E) ∩ Ap and all AΛ̂p

-measurable functions f ,

C∆,p,j(G, f) = C∆,p,j(GΛj , f) = C∆,G(f). (4.4.29)

Proof. By (4.4.28), H∆,ω(ω′) = H∆,ωΛ̂p\∆
(ω′) for Π∆-almost all ω′. Since ψ

satisfies (HCC), if H∆,ω(ω′) <∞, then Del2,∆(ω∆c ∪ ω′) is equal to{
e ∈ Del2,∆(ω∆2R0

\∆ ∪ ω′)
∃τ ∈ Del3,∆(ω∆2R0

\∆ ∪ ω′)
with e ⊂ τ and B(τ) ⊂ ∆2R0

}
, (4.4.30)

and therefore if µ̃ω∆2R0
,ω′ is the type drawing mechanism on the set (4.4.30)

then

Z∆(G) =

∫
qN

∆
cc(G

R2,∆∪(ω′,E′))µ̃ω∆2R0
,ω′(dE

′)e
−H∆,ω

Λ̂p
(ω′)

Πz
∆(dω′).

Now let

Êp =

{
e ∈ EΛ̂p

B(τ) ⊂ Λ̂p ⊕ 2R0 \∆ for all

τ ∈ Del3(ωΛ̂p⊕2R0
∪ ω′) satisfying e ⊂ τ

}
.

We claim that

Z∆(G) =

∫
q
N∆
cc((ωΛ̂p\∆,Êp)∪(ω′,E′))

µ̃ω∆2R0
,ω′(dE

′)e
−H∆,ω

Λ̂p
(ω′)

Πz
∆(dω′), (4.4.31)

in which case the right hand side is a suitable definition of Z∆,p,j(G). If

H∆,ω(ω′) <∞ and G ∈ Ap, then by (HCC)

δ(τ) < R0 for all τ ∈ Del3,Λ̂p(ω∆c ∪ ω′). (4.4.32)

From (4.4.32) and the fact that G ∈ Wp,j we can conclude that

N∆
cc (G

R2,∆ ∪ (ω′, E ′)) = Ncc((ωΛ̂p\∆, Êp) ∪ (ω′, E ′))−Ncc((ωΛ̂p\∆, Êp)),

since

1. ωΛ̂p\∆ contains all points which are adjacent to (ω∆c ∪ ω′)∆ in GR2,∆ ∪
(ω′, E ′), and
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2. Adding any combination of points and edges from GR2,∆ ∪ (ω′, E ′) to

(ωΛ̂p\∆, Êp) ∪ (ω′, E ′) cannot join two connected components which in-

tersect (ω∆c ∪ ω′)∆ = (ωΛ̂p\∆ ∪ ω
′)∆.

Note that this is a similar argument to that made in [DH15, Proposition 4.3.1].

Finally, when (4.4.32) is true and f is Λ̂p-measurable,

f(GR2,∆ ∪ (ω′, E ′)) = f((ωΛ̂p\∆, Êp) ∪ (ω′, E ′)),

and so the function

C∆,p,j(G, f) := Z∆,p,j(G)−1

∫
f((ωΛ̂p\∆,Êp) ∪ (ω′, E ′))q

N∆
cc((ωΛ̂p\∆,Êp)∪(ω′,E′))

µ̃ω∆2R0
,ω′(dE

′)e
−H∆,ω

Λ̂p
(ω′)

Πz
∆(dω′),

satisfies the requirements.

Corollary 4.4.23. Let G∆
∗,p,j := {G ∈ G | Z∆,p,j(G) ∈ (0,∞)} ∈ AΛj . Then

G∆
∗,p,j ∩Wp,j ∩ (Ω̂∆,p

cr × E) ∩ Ap = G∆
∗ ∩Wp,j ∩ (Ω̂∆,p

cr × E) ∩ Ap.

Proposition 4.4.24. P := P̃ (·|{∅}c) ∈ PΘ is a Delaunay random cluster

measure.

Proof. Let f : G → R be a bounded local function and ∆ b R2. Choose p ≥ n∆

and j large enough that f is AΛ̂p
-measurable, ∆ ⊂ Λ̂p, and Λ̂p ⊕ 2R0 ⊂ Λj.

Let Ω̂cr
∆,≤p =

⋃p
n=n∆

Ω̂cr
∆,n ∈ FΛ̂p\∆. It is sufficient to show that∫

(Ω̂cr
∆,≤p×E)∩Wp,j

fdP̃ =

∫
G∆
∗ ∩(Ω̂cr

∆,≤p×E)∩Wp,j

C∆,G′(f)P̃ (dG′). (4.4.33)

To see this, we note that ∅ /∈ Ω̂cr
∆, and so (4.4.33) is equivalent to∫

(Ω̂cr
∆,≤p×E)∩Wp,j

fdP =

∫
G∆
∗ ∩(Ω̂cr

∆,≤p×E)∩Wp,j

C∆,G′(f)P (dG′),

and by Proposition 4.4.19 and Lemma 4.4.20,

lim
p→∞

lim
j→∞

P
(

(Ω̂cr
∆,≤p × E) ∩Wp,j

)
= 1,
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which implies ∫
fdP =

∫
G∆
∗

C∆,G′(f)P (dG′).

Taking f ≡ 1 yields P (G∆
∗ ) = 1, which finishes the proof.

To prove (4.4.33), let n be large enough that Λ̂p ⊂ Λn. Then x ∈ Λ◦n =

{x ∈ R2 : Λ̂p + x ⊂ Λn} =⇒ ∆ ⊂ Λn − x and so by Proposition 4.2.6,∫
(Ω̂cr

∆,≤p×E)∩Wp,j

fdCΛn−x,θxG =

∫
G∆
∗ ∩(Ω̂cr

∆,≤p×E)∩Wp,j

C∆,G′(f)CΛn−x,θxG(dG′)

=⇒
∫

(Ω̂cr
∆,≤p×E)∩Wp,j

fdCΛ̂p
n =

∫
G∆
∗ ∩(Ω̂cr

∆,≤p×E)∩Wp,j

C∆,G′(f)CΛ̂p
n (dG′)

The integrand on the left hand side is AΛj -measurable, so applying the local

convergence in Proposition 4.4.13 yields∫
(Ω̂cr

∆,≤p×E)∩Wp,j

fdP̃ = lim
n→∞

∫
G∆
∗ ∩(Ω̂cr

∆,≤p×E)∩Wp,j

γ∆,G′(f)CΛ̂p
n (dG′).

Now we apply the local convergence to the right hand side as well, after ma-

nipulating the expression with the help of Lemma 4.4.21, Proposition 4.4.22

and Corollary 4.4.23.∫
(Ω̂cr

∆,≤p×E)∩Wp,j

fdP̃ = lim
n→∞

∫
G∆
∗ ∩(Ω̂cr

∆,≤p×E)∩Wp,j∩Ap
C∆,G′(f)CΛ̂p

n (dG′).

= lim
n→∞

∫
G∆
∗,p,j∩(Ω̂cr

∆,≤p×E)∩Wp,j∩Ap
C∆,p,j(G

′
Λj
, f)CΛ̂p

n (dG′).

= lim
n→∞

∫
G∆
∗,p,j∩(Ω̂cr

∆,≤p×E))∩Wp,j

C∆,p,j(G
′
Λj
, f)CΛ̂p

n (dG′).

=

∫
G∆
∗,p,j∩(Ω̂cr

∆,≤p×E)∩Wp,j

C∆,p,j(G
′
Λj
, f)P̃ (dG′).

=

∫
G∆
∗,p,j∩(Ω̂cr

∆,≤p×E)∩Wp,j∩Ap
C∆,p,j(G

′
Λj
, f)P̃ (dG′).

=

∫
G∆
∗ ∩(Ω̂cr

∆,≤p×E)∩Wp,j

C∆,G′(f)P̃ (dG′).
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Chapter 5

Outlook

To conclude, we proved in chapter 3 that a particular Delaunay Potts model

with interactions between the triples of points which make up the triangles of

the Delaunay triangulation exhibits a phase transition for large activities and

large values of β (which plays a similar role to the inverse temperature). In

chapter 4 we proved that an infinite volume Delaunay random cluster model

exists when the background potential satisfies two hard-core conditions and

the edge weights are bounded away from 0 and 1. We briefly outline here some

future research directions.

As mentioned in the introduction and at the beginning of chapter 4,

the main motivation for introducing the infinite volume Delaunay random

cluster model is to eventually obtain a uniqueness result for the corresponding

Delaunay continuum Potts model via a random cluster representation. The

analogous result for the Widom-Rowlinson model was obtained using a random

cluster representation and the method of disagreement percolation [HTH19].

The next step in our case is to prove that such a random cluster representation

exists, which would likely provide a connection between Delaunay continuum

Potts measures with background and type potentials ψ and φ and Delaunay

random cluster measures with the hyperedge potential ψ and edge weights

p(e) = e1−φ(e). To show uniqueness we would then have to investigate the per-

colative properties of Delaunay random cluster measures. Uniqueness would

likely correspond to a lack of percolation in these measures.

The Delaunay random cluster measures in chapter 4 were defined as

edge percolation models; each edge in the Delaunay graph is declared to be
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either open or closed. It should be straightforward to extend the existence

result to a hyperedge percolation model in which each triangle in Del3 is de-

clared to be either open or closed instead. Such a model would be the infinite

volume analogue of the finite volume distribution given in definition 2.3.1. The

set of wired boundary conditions in this case are the elements G = (ω,E) for

which Del3(ω) \Del3,∆(ω) ⊂ E. Wired boundary conditions are also discussed

in remark 4.3.2.

Another direction would be to investigate the existence of phase tran-

sitions for other geometric continuum Potts models. One could consider for

instance models in which Voronoi cells interact with one another. In these

models the hyperedge potential acts on pairs of points {x,y} ⊂ ω whose

Voronoi cells share a face. The interaction could depend on the marks of x

and y as well as the attributes of their Voronoi cells Vorω(x) and Vorω(y) such

as geometry of the face they share or their relative volumes. One could also

consider models in which the hyperedge potential acts on neighbouring pairs

of Voronoi cells or Delaunay triangles.

Finally, as discussed in section 3.2, it should be possible to relax the

choice of type potential used and potentially extend the phase transition result

to higher dimensions.

103



Appendix A

Proposition A.0.1. For ∆ b R2, |ω∆| < ∞ for Πz-almost all ω, where

ω∆ := Del1,∆(ω).

Proof. Since ω is locally finite Πz-almost surely, if |ω∆| =∞ then there exists

a sequence (xn)n≥1 ⊂ Del1,∆(ω) with |xn| → ∞. In this case

ω ∈ A : =

{
ω ∈ Ω :

∀n ∈ N ∃τ ∈ Del3,∆(ω) with δ(τ) ≥ n,
◦
B(τ) ∩ ω = ∅ and B(τ) ∩∆ 6= ∅

}

⊂
⋂
n∈N

⋃
m≥n

⋃
x∈Q2∩∆⊕(m+1)

{
◦
B(x,m) ∩ ω = ∅

}
.

By the first Borel-Cantelli Lemma, Πz(|ω∆| =∞) ≤ Πz(A) = 0 since

Πz

 ⋃
x∈Q2∩∆⊕(m+1)

{
◦
B(x,m) ∩ ω = ∅

} ≤ ∑
x∈Q2∩∆⊕(m+1)

e−zπm
2

<∞.

Lemma A.0.2. Let δ(τ) and p(τ) denote the circumradius and perimeter of

the triangle τ . Then

δ(τ) ≥ p(τ)

3
√

3
,

with equality when τ is equilateral.

Proof. Let a, b and c denote the side lengths of τ which are opposite to the
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angles A,B and C respectively. By the law of sines,

2δ(τ) =
a

sin(A)
=

b

sin(B)
=

c

sin(C)

=⇒ sin(A) + sin(B) + sin(C) =
a+ b+ c

2δ(τ)
=

p(τ)

2δ(τ)
(A.0.1)

Now by Jensen’s inequality,

1

3
(sin(A) + sin(B) + sin(C)) ≤ sin

(
A+B + C

3

)
= sin

(π
3

)
=

√
3

2
,

with equality only when A = B = C, in which case the triangle is equilateral.

Combining this with equation (A.0.1) yields the result.

Definitions used in Section 4.4.5

The following excerpt is from [DDG12, page 664-665]. In our case d = 2,

and we use the notation Ω̂cr
Λ,n instead of Ω̂Λ,n

cr . The authors define Lm :=

{−n, ..., n}d.

Let `R, nR, δR be the constants introduced in condition (R). Also,

let δ− and δ+ the diameters of the largest open ball in C and of

the smallest closed ball containing C, respectively. Fix an integer

m ≥ 6`Rδ+/δ−. For each n ≥ 1, we decompose the parallelotope

Λ̂n := Λn+(n+1)m into the (2m + 1)d translates Λk
n := Λn + (2n +

1)Mk of Λn , where k ∈ Lm . For any Λ b Rd, let nΛ ≥ 1 be the

smallest number with ΛnΛ
⊃ Λ and nΛ ≥ δR/6δ

+. For all n ≥ nΛ

we consider the events

Ω̂Λ,n
cr =

{
min

0 6=k∈Lm
NΛkn

> nR

}
∈ FΛ̂n\Λ

as well as Ω̂Λ
cr =

⋃
n≥nΛ

Ω̂Λ,n
cr ∈ FΛc .
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