
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

 

http://wrap.warwick.ac.uk/162180  

 

 

 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/162180
mailto:wrap@warwick.ac.uk


M

A

E

G

NS

I

T A T

MOLEM

U
N

IV
ERSITAS  WARWIC

E
N

S
IS

Study of the skyrmion state stability and

metastability with SANS in Ni and Zn substituted

Cu2OSeO3

by

Marta Crisanti

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Physics

April 2021



Contents

Acknowledgments iii

Declarations vi

Abstract viii

Chapter 1 Introduction 1

1.1 Skyrmions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Skyrmion topology . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Skyrmion stabilisation . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Tuning of the skyrmion state . . . . . . . . . . . . . . . . . . 11

1.1.4 Metastable Skyrmions . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Crystal lattice and reciprocal lattice . . . . . . . . . . . . . . 14

1.2.2 Scattering Kinematics . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Nuclear neutron scattering from a single nucleus . . . . . . . 15

1.2.4 Nuclear scattering from bound nuclei . . . . . . . . . . . . . . 16

1.2.5 Cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.6 Coherent and Incoherent scattering . . . . . . . . . . . . . . . 19

1.2.7 Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.8 Magnetic Neutron Scattering . . . . . . . . . . . . . . . . . . 24

1.2.9 Modulated magnetic structures . . . . . . . . . . . . . . . . . 27

1.3 Small angle neutron scattering . . . . . . . . . . . . . . . . . . . . . 29

1.3.1 Imaging skyrmions with SANS . . . . . . . . . . . . . . . . . 30

1.3.2 Extracting Correlation Lengths from SANS patterns . . . . . 32

Chapter 2 Samples and their characterisations methods 37

2.1 Cu2OSeO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Chemical Vapour Transport . . . . . . . . . . . . . . . . . . . . . . . 40

i



2.3 Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Laue Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 3 Skyrmions under pressure 44

3.1 Effects of quasi-hydrostatic and uniaxial pressure on Cu2OSeO3 . . . 45

3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Helical state population and hydrostaticity of the applied pres-

sure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Helical order and critical fields . . . . . . . . . . . . . . . . . 51

3.3.3 Skyrmion phase stability under pressure . . . . . . . . . . . . 52

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Chapter 4 Position dependent structure and metastability of the

skyrmion state in Ni substituted Cu2OSeO3 59

4.1 Experimental setup and methods . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Diffraction on SALSA . . . . . . . . . . . . . . . . . . . . . . 62

4.1.3 X-ray Tomography . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.4 Density Functional Theory calculations . . . . . . . . . . . . 63

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Equilibrium skyrmion region . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Skyrmion Metastability . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 5 Bloch points velocity measurements in Zn substituted

Cu2OSeO3 84

5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Chapter 6 Summary and Conclusions 95

ii



Acknowledgments

As these years of my PhD come to an end, I realise how much I have learned and

how much life has happened at the same time I was learning. During these four

years, I have struggled with several battles on top of the one that is ending as I

finish writing this manuscript, and I would have not been able to win any of these

without the support of the wonderful people I have met during these years.

As every good student, and as this is written on top of my Thesis, I firstly

want to thank from the bottom of my heart Dr. Robert Cubitt, my supervisor in ILL.

Bob taught me many things, was super patient, understood my other struggles, and

supported me as a human being, not only as his student. His curiosity and passion

for the job are contagious, and he managed to transform what to me looked like

overwhelming tasks into opportunities to satisfy this curiosity.

I am also profoundly thankful to Prof. Oleg Petrenko, who asked what I

thought about the future of my supervision and listened to my opinion. He was

always straight forward with me, and he was kind enough to teach me how to use

the Laue and read some of this manuscript.

Thanks to Prof. Geetha Balakrishnan. She is an outstanding scientist, and

I am thrilled I had such an example of a strong-willed woman so close to me. She

was also willing to let me play with her samples, which to me is crazy.

There is a bunch of people who were impactful on my journey, and I will try

to mention everyone, although I am sure the writing of this manuscript has made me

tired enough to miss someone. Thank you, Beth. You were the first one I managed

to open up to when I was in the UK, and I feel very lucky to have had you aside

when Don passed away. You will never understand how therapeutic were our calls

iii



and my stay with you. Thank you, Tallah, Ray, Daniel and Will: our Powerline

matches were fantastic.

I am deeply thankful to Palmerina. Discussions with you were some of the

most impactful I ever had. You taught me about feminism and board games, you

showed me Spain, and you have been my ally since I have met you. You are a

continuous inspiration to challenge myself.

Grazie Cinzia. Grazie per avermi ascoltato fino allo sfinimento quando an-

dava male. Grazie per i pranzi, le cene e i mojitos. Grazie per l’Islanda, mi hai

dato il coraggio di intraprendere una delle avventure più belle, quando il resto si
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Abstract

Magnetic skyrmions are vortex-like arrangements of magnetic moments and
constitute a new topological state of the magnetisation. Skyrmions are charac-
terised by low depinning currents and topological stability. These features make
them suitable candidates as information carriers in electronic devices that would be
characterised by lower power consumption and a higher data storage density. For
technological development, it is crucial to understand skyrmions’ characteristics and
behaviour in different conditions to ultimately engineer materials with specifications
tailored to their needs. Fundamental research on skyrmion materials is needed to
identify new avenues for skyrmionic technological developments.

In this thesis, we investigate the properties of the skyrmion lattice in the bulk
chiral magnet Cu2OSeO3 and its Ni and Zn chemically substituted compounds. We
present a thorough investigation of the effect of hydrostatic pressure on the skyrmion
state, with particular attention given to the choice of pressure transmitting medium.
Our measurements indicate how pressure can be exploited as a third thermodynamic
coordinate to the magnetic phase diagram of a bulk skyrmion host. The stability
and structure of the skyrmion state have also been studied related to the macro-
scopic shape of the sample. Although the skyrmion lattice is imagined to be uniform
across bulk materials, we show that demagnetisation effects induce several disconti-
nuities in the lattice affecting its shape and stability. Demagnetisation also affects
the decay of the metastable skyrmion state, inducing longer lifetimes in specific
regions of the sample. Our measurements highlight the importance of considering
demagnetisation effects when studying the skyrmion state. We also present a more
detailed work on the decay of the metastable skyrmion state. We extracted the
velocity of Bloch points, that mediate the decay, from measurements of the lifetime
and mean correlation length of skyrmion tubes.

This thesis’s work provides insights on the skyrmion state characteristics and
shows how small angle neutron scattering (SANS) technique can be used to provide
information on the three dimensional ordering of the skyrmion lattice structure.
Moreover, we show how SANS can also provide information on the dynamic of the
metastable skyrmion state.
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Chapter 1

Introduction

In this chapter an introduction to skyrmionics, magnetic neutron scattering, and

small angle neutron scattering is given. The content of this chapter is the result of

the study of the several sources cited within the text, in particular of [1, 2] for the

skyrmion topology; [3–6] for neutron scattering; and of [7] for small angle neutron

scattering.
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1.1 Skyrmions

The concept of a skyrmion was introduced by the English physicist Tony Skyrme in

1962. Skyrme was building up a theory that could take into account the stability

of hadrons: in fact, in quantum field theory, particles are represented as wave-like

excitations of the ground state, so they do not correspond to the lowest energy

configuration of the system, which brings questions on the nature of their stabil-

ity. In Skyrme’s theory, fundamental particles are described as topological solitons

characterised by a topological charge that cannot be modified by continuous defor-

mations of the field, explaining their stability [8]. Although Skyrme’s theory was

developed in the context of high energy physics, the concept of skyrmions found

applications also in condensed matter physics [9–11]. Several years after the work of

Skyrme, pioneering theoretical work showed the possibility of stabilising magnetic

vortices, analogous to superconducting vortices in superconductivity, in materials

with specific crystal structures [12]. Later on, the Dzyaloshinskii-Moriya (DM) inter-

action was identified as a possible major cause for the stabilisation of such magnetic

skyrmion states, both in bulk materials lacking inversion symmetry [13] and in thin

films and multilayers [14]. In 2006, in [15], it was shown that the skyrmion state

can be stabilised without the application of an external magnetic field, and that

it represents the real magnetic ground state. Eventually, magnetic skyrmions were

experimentally observed by means of small angle neutron scattering (SANS) in the

chiral magnet MnSi [16] in 2009 and by Lorentz transmission electron microscopy

in Fe1−xCoxSi [17] in 2010. At the same time, skyrmions were observed in other

materials belonging to the same non-centrosymmetric space group P213, such as

FeGe [18], and Cu2OSeO3 [2], where the presence of the Dzyaloshinskii-Moriya in-

teraction induces the necessary chirality to stabilise the skyrmion lattice through

thermal fluctuations. Since then, skyrmions have also been observed in centrosym-

metric materials [19, 20], where magnetic frustration plays a major role in their

stabilization, and in Co-Zn-Mn alloys [21], where, remarkably, the skyrmion state

is stable at room temperature. Skyrmions have also been observed in thin films

materials, better suited for technological applications, where the lack of inversion

symmetry at the interface allows the stabilisation of these chiral structures [22–24].

After their discovery, skyrmions were identified as possible information car-

riers in spintronic devices, mainly because of the very low current densities needed

for their motion, compared to typical domain walls [25, 26]. The interest towards

the technological application of skyrmions has not only driven research efforts to-

wards devices [27], but also towards the physics behind their stabilisation, and the

2



(a) (b) (c)

Figure 1.1: (a) a Bloch type skyrmion and its stereographic projection onto a
sphere (b) a Néel type skyrmion and its stereographic projection onto a sphere. (c)
a skyrmion lattice. (a) and (b) were adapted from ref. [29], (c) was adapted from
ref. [30].

understanding of their manipulation [28].

1.1.1 Skyrmion topology

A magnetic skyrmion is a nanosized spin whirl where the spins, or magnetic mo-

ments, are pointing in all directions, and it can be described as the projection on a

plane of a sphere wrapped by spins, as shown in Figure 1.1. A skyrmion is a topo-

logical object, and its spin configuration can be represented as a knot, or a defect, in

the continuum identified with a uniformly magnetised state. What characterise this

defect is an integer, nontrivial ( 6= 0) topological charge, providing it its topological

stability. The topological charge of a skyrmion, N = 1, corresponds to the number

of wrappings that the spins constituting the skyrmion do on a unit sphere. The

topological charge is also referred to as the winding number, defined as:

N =
1

4π

∫
d2r

(
∂n̂

∂x
× ∂n̂

∂y

)
, (1.1)

where n̂ = M/|M| is the unit vector describing the direction of the mag-

netisation of the skyrmion spin texture. For spins wrapping a unit sphere such as

shown in Figure 1.1. Several spin textures can have the same winding, or skyrmion

number, while differing from each other for their vorticity and helicity, quantities

describing the way in which the spins are wrapping the unit sphere, resulting in

additional tilting angles in the projection of the spin texture onto a plane [1, 27],

as shown in Figure 1.2. To define mathematically the vorticity and helicity, one can

start writing the magnetisation of the skyrmion of radius R in polar coordinates

r = (rcosϕ, rsinϕ), which can be defined as:

3



n(r) = (cosΘ(ϕ)sinΦ(r), sinΘ(ϕ)sinΦ(r), cosΦ(r)). (1.2)

Inserting this into Equation 1.1, one obtains

N =
1

4π

∫ R

0
dr

∫ 2π

0
dϕ
∂Θ(r)

∂r
× ∂Φ(ϕ)

∂ϕ
(1.3)

= [cosΘ(r)]r=Rr=0 [Φ(ϕ)]ϕ=2π
ϕ=0 (1.4)

Where Θ identifies the out-of-plane components of the magnetisation, while

Φ identifies the in-plane components. In general, the core of the skyrmion will have

the magnetic moment pointing antiparallel to the external field H, hence Θ(0) = π,

while its outskirt will orient parallel to the field, Θ(R) = 0, giving [cosΘ(r)]r=Rr=0 = 2.

The second part of Equation 1.4 is the definition of the vorticity m = [Φ(ϕ)]ϕ=2π
ϕ=0

describing the in-plane configuration of the spin texture. The helicity γ is the phase

difference that can appear in the rotation of the magnetisation, and models the

chirality of the magnetisation as:

Φ(ϕ) = mϕ+ γ. (1.5)

Bloch-type skyrmions and Néel-type skyrmions present the same topological

charge N = 1, and same vorticity, while differ in their helicity, as shown in Fig-

ure 1.2, where multiple spin texture associated with the same topological charge

are represented. For a Néel-type skyrmion with spins pointing down at its edge,

the rotation of the spins from the core to the edge can happen with the spins ei-

ther pointing away from its core for γ = 0, Figure 1.2(a), or towards it for γ = π,

Figure 1.2(c). A Bloch-type skyrmion with spins pointing down at its edge will

have the spins rotating counterclockwise, Figure 1.2(b), or clockwise, Figure 1.2(d),

depending on its helicity γ = ±π/2.

A topologically trivial configuration of the magnetisation is characterised by

N = 0, which is the case for a uniform magnetisation, such as the field-polarised

state. The transformation of one structure with a defined topological charge into

another structure with the same topological charge can happen continuously. How-

ever, it is not possible to pass between two states with different topological charges

in a continuous way [1, 15, 31]. The competing magnetic states to the skyrmion

state, such as the helical, conical, and uniform magnetisation states, are all charac-

terised by N = 0. Hence a discontinuous deformation is needed to pass from the

skyrmion state, with N = 1, to any of these competing states, making the skyrmion

4



(a)

(e)

(i)

(o)

(b)

(f)

(l)

(p)

(c)

(g)

(m)

(d)

(h)

(n)

(q) (r)

Figure 1.2: Different magnetic skyrmion spin textures characterised by dif-
ferent topological charge, vorticity and helicity, expressed by the numbers
(N,m, γ).Reproduced from ref. [27].

a topologically stable state of the magnetisation.

These topological transformations can be thought of as making a vase out

of clay. When one starts with a ball of clay, this can be continuously deformed

into a vase, hence the ball and the vase are topologically equivalent. If one wants a

handle on the vase, either a piece of clay needs to be added on an already shaped

vase, or a hole need to be pierced in the ball when starting to shape the vase. The

discontinuity in this transformation is due to the fact that a vase with a handle is

not topologically equivalent to one without.

1.1.2 Skyrmion stabilisation

As mentioned previously in this chapter, several mechanisms can stabilise the skyrmion

state and often contribute simultaneously. In thin films with a perpendicular easy

5



axis anisotropy, that favours an out-of-plane magnetisation, the competition with

long range dipolar interactions, favouring an in-plane magnetisation, results in the

stabilization of magnetic stripe domains where the moments rotate in the plane per-

pendicular to the thin film. In these materials, the application of small magnetic

fields leads to the stabilisation of magnetic bubbles, which show the same topology

as skyrmions, and have been extensively studied in the 1970s for their potential

device application [32, 33]. In non-centrosymmetric materials, the competition be-

tween the DM interaction and the magnetic exchange induces the stabilisation of

a helical zero field magnetic ground state, and of the skyrmion state in a small

region of the H -T phase diagram below the ordering temperature T C [2, 16, 18,

21, 34]. The DM interaction is also present at the interface of thin films, where the

spatial inversion symmetry is naturally broken, allowing the formation of atomic

scale skyrmions [23, 24]. The presence of skyrmions was also theorised and observed

in non-centrosymmetric materials with magnetic frustration as the source of the

skyrmion state [19, 20, 35].

Among these major mechanisms that allow the formation of the skyrmion

state, one of the most studied, and the most relevant for this work, is the com-

petition between the exchange and DM interactions. The Dzyaloshinskii-Moriya

interaction originates from the relativistic spin orbit coupling in the absence of in-

version symmetry [36]. This interaction favours a 90◦ canting between neighbouring

spins, competing with the exchange interaction which tends to align neighbouring

spins. This canting can induce the presence of modulated spin structures with pe-

riodicity that are on large scales (100 ∼ 1000Å) compared to the underlying atomic

structures (Å). In this condition, a continuum model can be used to describe the

magnetism of these materials [36], where the Hamiltonian for MnSi, a prototypical

non-centrosymmetric skyrmion host, can be written as a sum of different terms [37]:

H =

∫
(HZ +HEX +HDM +HA) d3r. (1.6)

The first term corresponds to the Zeeman effect:

HZ = − 1

a3
M ·B, (1.7)

where M is the magnetisation, B the external field, and a the lattice constant.

The Zeeman interaction arises from the interaction of the magnetic moments with

the external applied magnetic field and favours the alignment of the magnetisation

vector along the direction of the external field. The second term in Equation 1.6 is

related to the Heisenberg exchange interaction:

6



HEX =
J

2a
(∇M)2, (1.8)

where J is the exchange parameter. J > 0 for MnSi, as it is a ferromagnet,

for antiferromagnets J < 0. The interaction between neighbouring spin gives this

contribution to the energy of the system, hence the exchange interaction is short

ranged. The next term in Equation 1.6 corresponds to the Dzyaloshinskii-Moriya

interaction:

HDM =
D

a2
M · (∇×M) . (1.9)

The DM represents the main contribution deriving from the spin-orbit cou-

pling in crystal structures lacking in inversion symmetry, like the case of MnSi. D is

a vector that depends on the symmetry of the magnetic exchange path between the

two involved spins. The DM contribution can be seen as a small perturbation on

the underlying ferromagnetic or antiferromagnetic structure (J), leading to mod-

ulated spin structures with propagation vectors D/J , that are long compared to

the typical characteristic dimensions of the unit cell. As the orientation and sign

of the vector D depend only on the symmetry of the crystallographic structure of

the system, the modulated magnetic structures arising from this interaction present

a single handedness [38]. The breaking of inversion symmetry inducing DMI can

be induced locally by different causes than the crystallographic structures, such as

interfaces [23, 24] and defects [39].

The last and weakest term HA represents the magnetocrystalline anisotropy,

which is responsible for determining the magnetic easy axes of the material. Simi-

larly to the DM interaction, the origin of the anisotropy is in the spin-orbit coupling

and represents the amount of energy required to overcome the coupling between the

spin and the orbital motion of the electron while rotating a spin away from the easy

axis of the magnetisation. The magnitude of crystal anisotropy diminishes with

increasing temperature and vanishes at the ordering temperature.

For a cubic system, the magnetocrystalline anisotropic energy density can be

expressed as

E

V
= K0 +K1(α2β2 + β2γ2 + γ2α2) +K2α

2β2γ2 +O4, (1.10)

where K0, K1 and K2 are the parameters of the anisotropy, and α, β and γ

are the cosines of the angles between the local magnetisation and the crystal axes.

All the higher order terms are included in O4. When K2 = 0, the easy direction is

determined by K1 and it is 〈100〉 for K1 > 0, while it is 〈111〉 for K1 < 0. When

7
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Figure 1.3: Generic H -T phase diagram for non-centrosymmetric skyrmion hosts,
where the stabilisation mechanism of the skyrmion state is determined by the in-
terplay between the exchange interaction and the DMI. The characteristics of the
helical and conical magnetic structures are also shown.

K2 6= 0 also the 〈110〉 direction is allowed as a easy axis [40]. In B20 materials,

the balance of these components of the anisotropy determines the direction of the

helical propagation vectors which is [111] for MnSi, and the main crystallographic

axes [100], [010] and [001] for Cu2OSeO3.

The role of cubic anisotropy in the stabilization of the skyrmion state is

recently at the centre of new interest, as its effect does not seem to be so marginal

as that was first thought. Specifically, both in MnSi [41] and Co8Zn8Mn4 [42], an

increase of the effective anisotropy at low temperatures is identified as responsible

for a hexagonal to square transition of the skyrmion lattice. In Cu2OSeO3, the

strong spin-orbit coupling leads to unusually large values of the cubic anisotropy

which, at low temperature, is observed tilting the conical state from the direction

of the applied field and stabilising a low temperature skyrmion phase [43–45].

The interplay among the aforementioned internal interactions in MnSi leads

to a H -T phase diagram whose main characteristics are generic for bulk non-

centrosymmetric skyrmion hosts, as they share the same mechanism of the skyrmon

stabilisation. A generic phase diagram for this class of materials is shown in Fig-

ure 1.3. The ground state of the Hamiltonian in Equation 1.6 is a single-q, multi

domains helical state, where the wave vector’s magnitude |q| = D/J and it is re-

lated to the wavelength of the helix by q = 2π/λ. In the helical state, the moments

turn on a plane perpendicular to the propagation vector. With the application of an

external magnetic field, the system turns into a single domain conical state, where,

compared to the helical state, the moments exhibit an additional tilt towards the

direction of the external field, as shown in Figure 1.3.

The skyrmion state, surrounded by the conical state, is stable over a narrow
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temperature and field region of the H -T phase diagram near the ordering temper-

ature, where thermal fluctuations stabilise it. This area of the phase diagram was

previously referred to as the A phase (for anomalous), but it is now commonly re-

ferred to as the skyrmion pocket. The structure of the magnetisation in the skyrmion

state can be written as:

M(r) ≈Muniform +

3∑
i=1

Mqi
(r + ∆ri), (1.11)

Mqi
(r) = A[ni1cos(qi · r) + ni2sin(qi · r)]. (1.12)

where Equation 1.12 is the magnetisation of a single helix with amplitude A

and wave vector qi. Each helix have a phase qi ·∆r . In Equation 1.11, Muniform is

the uniform state of the magnetisation that the Zeeman effect would induce. This

formulation, with the three q perpendicular to the direction of the applied field,

with a relative angle between each other of 120◦, and satisfying the relation

3∑
i=1

qi = 0, (1.13)

represents the skyrmion crystal. In small angle neutron scattering, this ar-

rangement of the magnetisation produces a hexagonal scattering pattern, typical

signature of the ordering of the skyrmion state [16]. Skyrmions extend in the direc-

tion of the applied magnetic field in a tube-like fashion, in which ideally, each layer

of moments would correspond exactly to the same skyrmion lattice [46], as shown

in Figures 1.4(a) and (b). However, it has been shown that skyrmions can present

a variation in their configuration along their length, passing from Néel-type in the

bulk, to Bloch-type skyrmions on the surface [47]. Moreover, skyrmion tubes can

present topological defects along their length, known as Bloch points, identified by

the red dots in Figure 1.4(b) [31, 48].

Bloch points constitute a divergent configuration of the magnetisation, where

the magnetisation rotates by 180
◦

in the space of a single spin, and they have been

referred to as emergent magnetic monopoles [31, 50]. The spin configuration of a

Bloch point is reported in Figure 1.4(c). The creation and motion of these defects

have been identified as responsible for both the creation and annihilation of skyrmion

tubes [51–53]. Stable structures involving Bloch points consists of short skyrmion

tubes ending in a Bloch point near the surface, referred to as a chiral Bobber [48],

and observed in FeGe lamellae [54].
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Figure 1.4: (a): skyrmion tubes elongating along the direction of the applied field,
arranged in an hexagonal lattice. The propagation vector is perpendicular to the
direction of the magnetic field. (b): illustration of the topological texture of a
single skyrmion tube. (c): representation of a Bloch point. (d): illustration of two
mechanisms of unwinding of the skyrmion tubes through the movement of the Bloch
points marked in red. Reproduced and adapted from [27, 49].
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1.1.3 Tuning of the skyrmion state

For practical device applications, the skyrmion state has to be ideally stabilised

at room temperature and zero magnetic field. However, as shown in Figure 1.3,

the skyrmion state is stable only over a narrow region of the H -T phase diagram

of chiral bulk materials. For this reason, several methods have been studied and

developed to control the position and dimensions of the skyrmion pocket.

The reduction of the sample dimensions into thin films was proven effective

for a massive enhancement of the skyrmion pocket [17, 22, 55]. This enhancement

is linked to the fact that, when the field is applied perpendicular to the thin film,

the conical state is destabilised compared to the skyrmion state, as the moments

have increasingly less space to turn as the sample thickness diminishes [17].

The application of electric fields in the only insulating and multi-ferroic

skyrmion host Cu2OSeO3 was also proven as a valid mechanism for manipulat-

ing the size of the skyrmion pocket [53, 56–58]. The electric field enhances the size

of the skyrmion pocket and acts as a switch between the conical and skyrmion states

for temperatures near to the low temperature boundary of the skyrmion pocket at

E = 0.

The application of uniaxial pressure was observed to induce a selective en-

largement of the skyrmion pocket when the pressure is applied perpendicular to the

magnetic field [59–61]. These results were interpreted as an effect related to a stress

induced magnetic anisotropy in MnSi [60], while as an effect of increased DM in-

teraction in Cu2OSeO3 [61]. Increasing hydrostatic pressure in MnSi is reported to

decrease the ordering temperature and suppress the helimagnetic ordering [45, 62].

In Cu2OSeO3, the ordering temperature increases and a shift towards higher tem-

peratures of the whole H -T phase diagram is observed [62–65]. The extraordinary

sensitivity of chiral bulk skyrmion hosts to the application of both uniaxial and hy-

drostatic pressure highlights the fine interplay of the different magnetic interactions

needed for the stabilisation of the skyrmion state.

Another way to manipulate the fine energy balance that characterises this set

of skyrmion hosts is controlled chemical substitution. The elemental composition

is modified with varying results affecting the various energy terms of Equation 1.6.

Chemical substitution has been studied in several systems, such as Fe1−xCoxSi [66],

Co10−xZn10−yMnx+y [21, 67], GaV4(S8−xSex) [68, 69], and several others. In this

work we focus on [Cu1−x(Zn/Ni)x]2OSeO3 [49, 53, 63, 70–72]. The effects induced by

the chemical substitution include a variation of T C, accompanied by a variation in

J ; a variation in the DMI vector D identified by a change in chirality and periodicity

of the skyrmion and helimagnetic states; a modification of the magnetic anisotropy,
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hence a modification of the low T, zero field, state orientation.

1.1.4 Metastable Skyrmions

Metastable skyrmions constitute another way to overcome the narrow size of the

skyrmion pocket and were observed for the first time after rapid field cooling (FC)

through the skyrmion pocket down to low temperatures [73]. This procedure quenches

the skyrmion state out of its equilibrium region in the H -T phase diagram; some

skyrmions survives in a metastable state that is present over a wide parameter

range. Up to now, the metastable skyrmion state has been observed and studied

in several skyrmion materials such as MnSi [41, 74, 75], Cu2OSeO3 [43, 49, 56, 58],

Co-Zn-Mn [42, 67, 76] alloys and Fe0.5Co0.5Si [31, 73]. As this state is metastable,

it only represents a local minimum of the system, separated from the energy ground

state by an energy barrier ∆E. This energy barrier can be overcome via thermal

fluctuations, inducing a decay into the magnetic ground state of the system with

a characteristic lifetime. Three major factors determine the characteristics of the

metastable skyrmion state and its decay: the cooling rate, which determines its pop-

ulation [49]; as well as the target temperature [41–43, 56, 67, 73–77] and the disorder

of the underlying crystal structure [49], both of which determine its lifetime. The

inherent instability of the metastable skyrmion state appears to be problematic for

device applications. However, it has been shown that, for a temperature sufficiently

lower than the ordering temperature, the metastable skyrmion state has a lifetime

long enough to be suitable for applications [75, 78, 79]. Specifically, for Co9Zn9Mn2

a metastable skyrmion state with an exceptionally long lifetime was observed at

zero applied field and room temperature [67].

The decay mechanism of the skyrmion tubes in bulk samples is mediated

by Bloch points [31, 51, 74]. When the metastable skyrmion state decays into the

conical state, two Bloch points let two adjacent skyrmion tubes merge together and

then move away from each other, acting like a zip [31], as depicted in Figure 1.4,

scenario 2. When the transition is towards the conical state, the Bloch points

unwind the configuration of one single skyrmion tube by moving along it [51, 74].

The Bloch points act like sources and sinks of topological charge, mediating the

transition between two topologically different states of the magnetisation [31, 74].

The motion of Bloch points can be influenced via applied electric currents,

providing a direct tool for the manipulation of this unwinding mechanism. Moreover,

this motion is also influenced by the underlying crystal structure, as observed in

Co9Zn9Mn2 and Fe0.5Co0.5Si, that have a more disordered structure than MnSi [41],

and present longer lifetimes for the metastable skyrmion state. A similar effect
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has also been observed in Zn and Ni substituted Cu2OSeO3, compared to pristine

Cu2OSeO3. The chemical substitution induces a certain level of disorder in the

underlying crystal structures, given by the random positioning of the dopant ions

in the two different Cu2+ sites (see Section2.1). This chemically substituted sites

act as pinning sites for the Bloch points, inducing longer lifetime in the substituted

samples, compared to the pristine parent compound [49, 53, 80].

1.2 Neutron Scattering

Neutron scattering is a powerful tool for the study of bulk samples. Specifically,

since the neutron has no net charge, it can penetrate matter better than other

particles typically used in scattering measurements, such as electrons and X-rays.

This characteristic derives from the fact that neutrons interact through nuclear

forces, in the short range of fm (10−15 m), travelling far distances in matter without

being scattered or absorbed by nuclei. The high penetration power of the neutron

allows the study of bulk samples also when they have to be placed in a container

(powder samples, liquid, or samples that have to be maintained under pressure or

at low/high temperatures).

Neutron scattering is also a very powerful and versatile technique for studying

magnetic materials. Neutrons possess an intrinsic magnetic moment that allows

them to couple to the magnetic state of the sample, from the orbital motion and

spin of single unpaired electrons, to variations in the magnetisation of the sample.

The cross section of magnetic neutron scattering is similar to the cross section of

nuclear scattering.

The generally weak interaction of neutrons with matter would require very

intense neutron sources, which are inherently weak, especially compared with X-ray

sources. Neutrons are also very difficult to control given their missing electric charge,

which increases the complexity of the building of neutron guides and detectors. The

Institut Laue-Langevin (Grenoble, (FR)) with a fission reactor of 57 MW is the

most intense stable neutron source available with (1015 ns−1cm−3), and contributed

significantly to the success of a multitude of neutron scattering experiments.

Even with all the drawbacks associated with it, neutron scattering provides

crucial information on the structural and magnetic properties of bulk samples, com-

plementary to other techniques such as X-ray scattering, nuclear magnetic reso-

nance, magnetometry, etc.; for this reason it is still a very active and important

field in condensed matter.
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1.2.1 Crystal lattice and reciprocal lattice

Before introducing the formalism of neutron scattering, it is important to be familiar

with the basic concepts of crystal lattice and reciprocal lattice.

A crystal consists of a periodic structure of several identical units that fills

space. A crystal has a periodicity defined by a lattice, constructed as

R = n1a1 + n2a2 + n3a3, (1.14)

where a1, n2a2 and a3 are three vectors, not in the same plane, describing

the periodicity of the lattice in the three-dimensional space, and are referred to as

primitive vectors. The arrangement of atoms in the structure is called motif.

The unit cell is the building block of the crystal, and adding many together

fills up the space generated by the whole crystal. Several unit cells can be defined

for any given crystal structure: the smallest one contains only one lattice point and

it is called primitive unit cell.

For all lattices described here, a reciprocal lattice exists in wavevector space

and consists of the Fourier transform of the real-space lattice. The reciprocal lattice

is defined by a set of reciprocal vectors that satisfy the condition:

eK·R = 1. (1.15)

This set can be generated as

K = m1b1 +m2b2 +m3b3, (1.16)

where the relationship between the primitive vectors of the two representation

is given by [81]:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
; b2 = 2π

a3 × a1

a1 · (a2 × a3)
; b3 = 2π

a1 × a2

a1 · (a2 × a3)
. (1.17)

From the definition of reciprocal lattice follows that for a given family of crys-

tallographic planes separated by a distance d, the reciprocal lattice vector associated

to them is perpendicular to the set of planes and will have magnitude

q =
2π

d
. (1.18)
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Figure 1.5: Scattering triangle for elastic neutron scattering. The incoming neutron
has momentum ki, it is deflected by an angle 2θ in the diffraction process, and has
an outgoing momentum kf .

1.2.2 Scattering Kinematics

Neutron scattering, as other scattering processes, obeys the laws of momentum and

energy conservation expressed by:

Q = kf − ki, (1.19)

h̄ω = Ei − Ef , (1.20)

where i and f indicate the neutron’s initial and final states during a scat-

tering process that exchange a h̄ω quantity of energy. Q is the scattering vector,

identifying the momentum transfer of the scattering process, Figure 1.5. From these

considerations, one can distinguish between two basic scattering processes: elastic

scattering in which Ei = Ef , and inelastic scattering in which the neutron exchanges

energy with the nucleus, hence Ei 6= Ef . In this work we focus on elastic scattering.

For elastic scattering |ki| = |kf | = k, and the momentum transfer can be

written as:

Q = 2 k sinθ =
4π

λ
sinθ. (1.21)

1.2.3 Nuclear neutron scattering from a single nucleus

Formally, scattering is a quantum mechanical process, and it can be described in

terms of wavefunctions, as depicted in Figure 1.6. The incident neutron can be

represented by a plane wave Ψin = Aeikr̄, with a definite wave vector k = 2π/λ.

|Ψin|2 = |A|2 at positions r̄, indicating that the neutron has the same probability to

be found at any point at distance r. The neutron interacts with the nucleus through

nuclear forces that act on a distance range several orders of magnitude smaller than
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Figure 1.6: Scattering of a plane wave from a single nucleus. Adapted from [4]

the wavelength of a thermal neutron (10−10m). In these conditions, the neutron

is scattered isotropically by the nucleus, which acts as a point scatterer. In these

conditions, the scattering is isotropic and can be written in terms of a spherical

wave function Ψout = −b/r eikr̄, with |Ψout|2 = b2/r2.

The scattered neutron intensity, |Ψout|2, decreases as 1/r2 with distance, as

the scattered wavefront grows in size. The constant b, modulating the amplitude

of the scattered wave function, refers to the strength of the interaction between the

nucleus and the neutron. Apart from particular cases, including elements that are

strong neutron absorbers, b can be considered a real number independent from the

energy of the neutron. b is commonly referred to as the scattering length of a specific

nucleus and has to be experimentally determined, or looked up in published tables.

The scattering length depends on the details of the interaction between the nucleus

and the neutron, as such, its value depends also on the spin state of the nucleus-

neutron system. Importantly, b does not show a systematic dependence on the

atomic number of the nuclei, instead it shows significant variations among different

isotopes of the same element, making neutron scattering very effective for the study

of hydrogen rich samples, or compounds made of elements with very similar atomic

number.

1.2.4 Nuclear scattering from bound nuclei

Ultimately, real experiments involve neutron scattering from an arbitrary set of

bound nuclei. Let us consider a set of nuclei arranged as depicted in Figure 1.7,

with d indicating the spacing between each plane of nuclei. In real experiments, the

distance between the scattering nuclei and the detector, as much as the distance

between the source of the incoming neutrons and the scattering nuclei are far bigger
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Figure 1.7: A lattice nuclei with characteristic spacing d hit by a neutron beam.
The neutron beam is scattered and collected at the detector position.

than d, hence it is possible to assume that the neutron waves with wavelength λ

hitting the different nuclei in Figure 1.7 are parallel. The neutron wave hitting the

nuclei in position O in Figure 1.7, travels a longer distance compared to the other

ray hitting in position J . The additional path is represented by the segment AOB,

which by construction is equal to 2d sinθ. When this path difference is equal to an

integer number of wavelengths of the incoming beam, the scattered waves will be

in phase and will produce constructive interference at the detector according to the

relation

n λ = 2 d sinθ. (1.22)

This is Bragg’s law of diffraction, which gives the condition to be satisfied

to have Bragg peaks in the diffracted neutron intensity. Using the Bragg’s law it is

possible to relate the position of the scattered intensity peaks on the detector plane

to the microscopic structure of the material studied d.

As it was just introduced with the Bragg’s law, When considering neutron

diffraction from a set of bound nuclei, the scattered wave function Ψout will have

to take into account the interference between scattered waves by different nuclei.

From Figure 1.7 we consider the j-th nucleus as the nucleus in position J , identified

by the vector rj , with respect to the point O. The phase difference between the

neutron wave hitting the nucleus in J and the one hitting the nucleus in O can be

expressed as

δj = kf · rj − ki · rj = Q · rj , (1.23)

where Q is the momentum transfer vector introduced in Equation 1.19. Con-

sidering the phase difference in the scattered function at the detector position R,
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Figure 1.8: Scattering geometry, adapted from [3]

and the scattering from the whole set of nuclei, Ψout can be written as follow:

Ψout(R) = eikR
∑
j

− bj
|R− rj |

eiQrj . (1.24)

Since the distance from the sample to the detector is going to be several

orders of magnitude bigger than the characteristic spacing of the structure in study,

a fair assumption is to consider R >> rj . In this case, at the detector position, the

scattered intensity |Ψout|2 will be proportional to:

|Ψout|2 ∝ I(Q) =
∣∣∣∑

j

−bjeiQrj
∣∣∣2. (1.25)

This equation indicates how the scattered intensity depends on the momen-

tum transfer more than the initial and final state of the neutron, allowing to calculate

the scattering from any system provided the previous knowledge of the location and

type of the scattering nuclei.

1.2.5 Cross-section

Equation 1.25 does not allow to determine the intensity of the scattering, and to

do so, the simplest way is to express the scattering in terms of a cross-section σ. σ

represents the effective area of the nucleus seen by the incoming scattering neutron,

and it is measured in barns (10−28m2). The total scattering cross-section measures

the probability that any scattering event will occur, independently of any change in

momentum or energy, and it is defined as

σT =
total neutrons scattered per second

Φin
, (1.26)

where Φin is the incoming neutron flux, given in neutrons per unit area per

second, in the scattering geometry shown in Figure 1.8. The incoming neutron
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flux can be expressed as Φin = |Ψin|2v = |A|2v, considering v as the velocity of the

incoming neutrons, A the amplitude of the function. The scattered flux at a distance

r from the scattering nucleus can be written as Φout = |Ψout|2v = |A|2vb2/r2. σT

takes into account the scattering processes in all directions, hence the flux needs to

be integrated over a surface surrounding the whole scattering nucleus, and since the

scattering is isotropic the flux can be integrated over a sphere of radius r. Given

these considerations, σT becomes

σT =
4π r2 × |A|2vb2/r2

|A|2v
= 4πb2, (1.27)

which represents the total scattering cross-section in all directions for a single

bound nucleus.

In real experiments, one is usually able to collect scattered neutrons only in

specific directions, for this reason the concept of differential scattering cross-section

is essential, as it is defined as

dσ

dΩ
=

neutrons scattered per second into the solid angle dΩ

Φin × dΩ
, (1.28)

where the solid angle can be defined by the dimensions and position of the

detector used in the experiment. More correct is to consider dΩ in the limit of ap-

proaching zero, as this corresponds to an infinitesimal area in which the scattered in-

tensity is uniform. Considering the definition of differential scattering cross-section,

and the incident and scattered neutron wave functions, for a set of bound nuclei

dσ/dΩ is just the function I(Q) that was previously introduced:

dσ

dΩ
=
∣∣∣∑

j

−bjeiQrj
∣∣∣2. (1.29)

1.2.6 Coherent and Incoherent scattering

As discussed previously, the scattering length b varies widely with the atomic number

and the spin state of the neutron-nucleus system. This variation would make the

calculation of the scattering cross-section almost impossible, as this implies the

knowledge of the isotope and spin state of each nucleus in the sample. However,

as the distribution of isotopes and nuclear spins is random, assuming the number

of nuclei is large, then the scattering of two samples of the same material will be

indistinguishable. This reasoning allows to write the differential cross-section as

follows
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dσ

dΩ
=
∑
jk

bjbke
iQ·(rk−rj). (1.30)

The square modulus has been explicitly written out as the product of one

factor and its complex conjugate, with the scattering length considered to be a real

number. The bar over the scattering lengths indicates the average over the natural

isotopic distribution of the nuclei in the sample. Considering p as the probability of

occurrence of a specific isotope, then the average scattering length b can be written

out as:

b =
∑
i

pibi and b2 =
∑
i

pib
2
i . (1.31)

The average scattering length in Equation 1.30 can be written for the case

with j = k as b2j , and for the case of j 6= k as bjbk. The differential cross-section can

be written to explicitly considering this two cases as:

dσ

dΩ
=
∑
jk

bjbke
iQ·(rk−rj) +

∑
j

(b2j − bj
2
). (1.32)

In this expression the differential scattering cross-section is divided in two

terms that identify coherent and incoherent scattering processes.

dσ

dΩ coh
=
∣∣∣∑

j

bje
iQ·rj

∣∣∣2, (1.33)

dσ

dΩ inc
=
∑
j

(b2j − bj
2
). (1.34)

In coherent scattering processes the scattered neutrons from different nuclei

will interfere with each other. These kind of scattering depends on the interatomic

distances, and on the scattering vector Q. Elastic coherent scattering describes the

structure of the material, inelastic coherent scattering describes collective excitations

of atoms such as phonon.

In incoherent scattering processes there is no interference between the scat-

tered wavefunctions. The intensities coming from the scattering of different nuclei

add up independently. Elastic incoherent scattering is isotropic and represent a flat

background of measurements. Inelastic incoherent scattering provides information

on atomic diffusion.

20



1.2.7 Master Equation

What has been discussed up to now does not consider the quantum mechanical

nature of the neutron and only exploits the properties of classical waves usually

used in optics. However, for the introduction of magnetic neutron scattering, it

is important to derive a more general formula for the differential scattering cross-

section.

Let us consider a generic neutron in a state defined by a wavevector k0,

and a spin state σ0, interacting with a sample in a generic state λ0. The neutron

is scattered by the sample into a final state with a wavevector k1 and a spin σ1,

while the sample transitions to the state λ1. The final state of the neutron includes

wavevectors falling in a small solid angle dΩ centred in the direction of k1, and

within a small energy interval dEf centred at Ef = h̄2k2/(2mn), where mn is the

mass of the neutron. With this formulation, the emphasis is on what information

about the intrinsic properties of the sample is possible to extract from the measured

cross-sections.

The partial differential scattering cross-section can be written as

(
dσ2

dΩ dEf

)
k0,σ0,λ0→k1,σ1,λ1

=
1

Φin dΩ dEf

∑
λ0

pλ0
∑
λ1

Wk0,σ0,λ0→k1,σ1,λ1 , (1.35)

where Φin is the incident neutron flux at the sample position. It is possible

that several different transitions can induce neutrons to pass from their initial to

their final state (k0σ0) → (k1σ1), while conserving the energy of the process. This

means that after several scattering events, the neutrons will be probing the average

over a statistical distribution of initial states of the sample. For this reason we

sum over all the possible transitions, which have a contribution defined by the

probabilities pλ0 .

As there might be several transitions that can let the system pass from the

initial to the selected final state, one can define pλ0 as the probability for the initial

state. Wk0,σ0,λ0→k1,σ1,λ1 indicates the transition rate in the solid angle dΩ, and

energy interval dEf , from the initial state of the neutron and the sample k0, σ0, λ0

to the final state k1, σ1, λ1. For simplicity, the initial and final states of the system

neutron-nucleus will be identified as |0〉 and |1〉, respectively.

The transition rate will depend on the interaction potential of the scattering

process, that is assumed to be very weak, hence not imposing significant changes to

the state of the neutron-nucleus system before and after the interaction (first Born
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approximation). With this approximation, W0→1 can be written in terms of Fermi’s

golden rule

W0→1 =
2π

h̄
|〈1|V (r)|0〉|2 ρk1σ1(Ef )

dΩ

4π
, (1.36)

where V is the interaction potential, and ρk1σ1(Ef ) represents the density of

final states per unit energy. dΩ
4π indicates the fraction of directions in the interval

dΩ. Equation 1.36 is only valid for weak interactions, that can be expressed with a

first order perturbation theory. This is valid for both nuclear and magnetic neutron

scattering since, while in the first case the nuclear potential acts on a very short

range, in the second the interaction, although acting on a longer range, it is very

weak. Ultimately both scattering processes have similar strength [5].

To evaluate ρk1σ1(Ef ), one can consider the scattering process to be confined

in a box of volume V0, giving neutron wave functions

Ψ(r, σ) =
1√
V0
eik·r|σ〉. (1.37)

The box approximation induces a periodic boundary condition also on the

wave vectors which are restricted to discrete values k = n(2π/L), where L is the

size of the box in one specific direction. These wave vectors will form a lattice in

reciprocal space with volume (2π)3/V0 per point, hence a density in reciprocal space

of g(k) = V0/(2π)3. The density of final states can then be written as:

ρk1σ1(Ef )dE = 4πk2g(k)dk ⇒ ρk1σ1(Ef ) =
V0

2π2

mn

h̄2 k. (1.38)

The conservation of energy in the scattering process can be introduced in the

differential scattering cross section as a delta function δ(Eλ1−Eλ0− h̄ω), indicating

with h̄ω the energy exchanged by the neutron in the interaction. The incoming

neutron flux can be expressed as a function of the incoming neutron wave vector

as Φin = v
V0

= h̄k0
V0m

. Substituting the various terms in Equation 1.35, the partial

differential scattering cross-section can be written as

d2σ

dΩdEf
= V 2

0

k1

k0

(
mn

2πh̄2

)2∑
λ0

pλ0
∑
λ1

|〈1|V (r)|0〉|2 δ(Eλ1 − Eλ0 − h̄ω). (1.39)

The evaluation of |〈1|V (r)|0〉|2 is done considering that the spin and angular

momentum parts of the neutron wave function are separated from the spatial part

(Equation 1.37. In this case, one can explicitly write |〈k1σ1λ1|V (r)|k0σ0λ0〉|2, and
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consider the potential affecting only the spatial part of the wavefunction:

〈k1|V (r)|k0〉 =
1

V0

∫
e−ik1·rV (r)eik0·rd3r

=
1

V0

∫
V (r)eiQ·rd3r

=
1

V0
V (Q),

(1.40)

where V (Q) indicate the Fourier transform of the interaction potential. Sub-

stituting this result in Equation 1.39 we obtain the master equation for the partial

differential cross-section

d2σ

dΩdEf
=
k1

k0

(
mn

2πh̄2

)2∑
λ0

pλ0
∑
λ1

|〈σ1λ1|V (Q)|σ0λ0〉|2 δ(Eλ1 − Eλ0 − h̄ω). (1.41)

One can simplify this equation for the case of elastic scattering of a set of

bound nuclei that was previously discussed. In the case in which the nuclei are

rigidly bound, scattering processes will not affect their state, hence the interaction

potential will not act on λ1 and λ0, which are going to be equal λ1 = λ0. This

identity implies that the sum over the initial states in Equation 1.41 will disappear,

and the sum over the final states will contain only the term where λ1 = λ0. Moreover,

considering only elastic scattering, where there is no change in the neutron energy,

the master equation can be written as:

dσ

dΩ
=

(
mn

2πh̄2

)2

|〈σ1|V (Q)|σ0〉|2 . (1.42)

Fermi pseudopotential

Up to now, no specifics on the interaction potential V (r) have been given, and for

nuclear interactions, no complete description exists for it. What is known is that

the potential has to describe a short range interaction producing isotropic scattering

from bound nuclei. The scattering can also be described with the single parameter

b, the scattering length, modulating the amplitude of the scattered neutron waves

(Section 1.2.3). According to these characteristics, the simplest one-parameter po-

tential for a short range interaction is

VN (r) = aδ(r). (1.43)
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The general parameter a can be linked to the scattering length b by simply

solving the integral in Equation 1.40 and substituting the result in Equation 1.42,

yielding a = b2πh̄2/mn, and the potential:

VN (r) =
2πh̄2

mn
bδ(r). (1.44)

This is the Fermi pseudopotential, and it represents an approximation to the

correct potential for nuclear interactions. In fact, the derivation of the parameter

a of the pseudopotential is valid only at large distances from the nucleus, where a

first order perturbation theory is applicable. At the same time, it is not valid near

the nucleus where VN (R) is large.

1.2.8 Magnetic Neutron Scattering

Neutrons interact with nuclei in matter also magnetically, thanks to their dipole mo-

ment which couples to the microscopic electromagnetic filed generated by unpaired

electrons and magnetic nuclei in the samples. In contrast with nuclear forces, elec-

tromagnetic interactions have a longer range but are also much weaker, still allowing

us to interpret the scattering interaction as a small perturbation of the incoming

neutron wave function.

Given the long range of the interaction, to study magnetic neutron scattering

is necessary to consider an accurate form of the magnetic interaction potential

VM (r) = −µn ·B(r), (1.45)

where µn is the neutron dipole moment in the flux density B(r). The flux

density in a medium is the result of the sum of two major components: one coming

from the intrinsic spin of the electrons BS(r), and one coming from the motion of

the electrons generating electronic currents BL(r).

Considering the standard form of the flux density for a magnetic dipole mo-

ment [82], the spin contribution of a single electron is

BS(r) = −2µB
µ0

4π
∇×

(
σ × r

r3

)
, (1.46)

where s is the spin of the electron, µB is the Bohr magneton. The orbital

contribution to the flux density, hence the contribution given by the electrons non-

relativistic movement, can be written as:

BL(r) = −2µB
µ0

4π

1

h̄

p× r

r3
. (1.47)

24



Considering that the magnetic moment of the neutron can be expressed as

a function of its spin as µn = −2γµNσn, where µN is the nuclear magneton and

γ = 1.913. The magnetic interaction potential can be written as:

VM (r) = 2γµNσn · (BS(r) + BL(r)) . (1.48)

Let us now consider a system with many electrons and evaluate the contribu-

tion of the j -th electron and the form of the potential VM in its Fourier transform.

Considering the j -th electron to be in a position rj , with spin sj , the spin dependent

flux density becomes:

BS(r)j = −2µB
µ0

4π

∫
∇×

(
σj ×R

R3

)
eiQ·rd3r

= −2µBµ0(Q̂× (σj × Q̂))eiQ·rj ,

(1.49)

where R = r − rj , and Q̂ is the unit vector identifying the direction of the

momentum transfer vector Q. The orbital contribution can be written as

BL(r) = −2µB
µ0

4π

1

h̄

∫
pj ×R

R3
eiQ·rd3r

= −2µB
µ0

4π

1

h̄Q
(pj × Q̂)eiQ·rj .

(1.50)

The two terms combined give the expression for the Fourier transform of the

magnetic interaction potential of a set of electrons:

VM (Q) = −4µ0µBµNσn
∑
j

(
Q̂× (σj × Q̂) +

1

h̄Q
(pj × Q̂)

)
eiQ·rj . (1.51)

The interaction potential in real space can be written in terms of the mag-

netisation of the material M(r) = MS(r) + ML(r). From a physical point of view,

the magnetisation related to the electrons spin MS(r) identifies the spin density

in the material. The magnetisation relative to the electron current ML(r) has a

less intuitive meaning. It can be interpreted as the density of angular momentum

of the electrons travelling in bound orbits around the nuclei. In reciprocal space,

the interaction potential is a function of the Fourier transform of the magnetisation

M(Q) and can be written as:
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Figure 1.9: Relative orientation of the vectors Q̂, M, and M⊥, adapted from [5].

VM (Q) = 2γµ0µNσnM⊥(Q), (1.52)

where

M⊥ = Q̂× (M(Q)× Q̂) = M− (M · Q̂)Q̂. (1.53)

This formulation indicates that magnetic scattering is sensitive only to the

component of the magnetisation that lies perpendicular to the direction of the mo-

mentum transfer Q, as shown in Figure 1.9, leaving the longitudinal component

inaccessible in scattering experiments. This property is a direct consequence of

Maxwell’s equation ∇ ·B(r) = 0. This can be seen considering the Fourier compo-

nent of the flux density

B(r) = B(Q)eiQ·r (1.54)

∇B(r) = −iQ ·B(Q)eiQ·r = 0 (1.55)

imposing Q · B(Q) = 0, hence the component of the flux density along

the direction of the momentum transfer vector is zero. Neutron scattering is only

sensitive to the variations of flux density perpendicular to Q.

Ultimately, one can write the elastic magnetic cross section as

dσ

dΩ
=

(
γr0

2µB

)2

|〈M⊥(Q)〉|2 , (1.56)

where r0 = µ0e/(4πme) can be obtained from the multiplication of the vari-

ous terms in front of the summation of Equation 1.51 and γ = 1.913. With Equa-

tion 1.56 it is possible to relate the scattered intensity to the Fourier transform of
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the magnetisation of the material.

Most magnetic neutron scattering experiments operate under the assumption

to be in the dipole approximation [5], under which the orbital contribution to the

magnetic scattering is ignored. Since only the contribution of the unpaired electrons

is considered, under this condition, it is possible to link the measured magnetic cross

sections to the microscopic magnetism of the material. To do so it is necessary to

consider the magnetic moment of single site in the unit cell, that can be written as

µld =
∑
k

mq,de
ik·l, (1.57)

expressing the magnetic moment of the dth site in the lth unit cell, where

mk,d are the Fourier transforms of the moment’s components on site d. In this

notation, k identifies the propagation vector of the magnetic structure in reciprocal

space. Summing the contribution of the different magnetic moments in the unit cell,

it is possible to write the magnetic structure factor

FM (Q) =
γr0

2µB

∑
d

µdfd(Q)e−Wdeik·d, (1.58)

which corresponds to the Fourier transform of the magnetisation of the unit

cell. fd indicates the form factor of each magnetic moment in the unit cell, and

e−Wd is the Debye-Waller factor, indicating the damping of the scattered intensity

given by thermal atomic vibrations. Through Equation 1.58, it is possible to rewrite

the cross section for elastic magnetic scattering as

dσ

dΩ
= Nm

(2π)3

vm

∑
Gm

|F⊥(Q)|2 δ(Q−Gm), (1.59)

where Nm is the number of magnetic unit cells in the material and vm is their

volume. The same arguments for the perpendicular components of the magnetisa-

tion being the ones contributing to the scattering used for Equation 1.53 apply also

in the case of the single unit cell, then F⊥ = Q̂ × (F(Q) × Q̂). Gm is the recipro-

cal lattice vector of the magnetic lattice, and the summation is carried over all the

atoms in the magnetic unit cell.

1.2.9 Modulated magnetic structures

A magnetic structure exhibiting a large periodicity compared to the crystal peri-

odicity is identified as a modulated magnetic structure. These structures can be

identified by the wave vector k, defining their spatial periodicity,
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Figure 1.10: SANS general experimental setup adapted from [6]. The boxes indi-
cated with P, F, and A correspond to polarizer, flipper and analyzer, respectively.
SD indicates the distance between the sample and the detector. r identifies the
position on the detector plane, while q is the momentum transfer vector. The scat-
tering angle is indicated with 2θ, while the angle defining the position of the Bragg
spots on the detector is indicated by φ.

k = k0 + δ, (1.60)

where δ is a small variation on the initial wave vector k0 identifying the

underlying ferromagnetic (FM, k0 = 0) or antiferromagnetic (AF) structure. The

long modulation of these structures produces Bragg scattering at Q = τ ± k, hence

the scattering from a modulated magnetic structure appears as two satellites at

position ±k from each nuclear Bragg spots in position τ .

The modulation can affect the amplitude of the magnetic moments, their

orientation, or both. Of particular interest for this work is the helimagnetic structure

that can be described by the magnetic moment distribution µl

µl = µ(cos(k · l + φ) · ûk + sin(k · l + φ) · v̂k]. (1.61)

In this case, the magnetic moment amplitude is not varying, while its orien-

tation is rotating in the plane identified by the unit vectors (ûk, v̂k) from one unit

cell to the other with a phase φ.

The helical is a non-collinear spin structure, such as the conical and cycloidal,

and several different mechanisms can be at its origin [3]. For the purpose of this

work we focus on the non-collinear modulated magnetic structures induced by the

Dzyaloshinskii-Moriya interaction in non-centrosymmetric materials.
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1.3 Small angle neutron scattering

Among the different neutron scattering techniques, small angle neutron scattering

(SANS) has the peculiarity of being able to resolve scattering happening at such

small angles that other techniques can not distinguish from the transmitted neutron

beam. This is possible thanks to the very long distances at which the detector is

usually placed in SANS experiments. From Bragg’s law, Equation 1.22, it is evident

that for a given wavelength, the smaller the angle of the diffracted beam, the bigger

the structure probed. SANS is optimised to study magnetic and non-magnetic

structures from a few to hundreds of nm, hence very small momentum transfer

vectors [6]. SANS is also a powerful tool for the study of disordered structures

such as liquid and glasses. These structures would produce diffuse scattering on

the detector plane [5], in contrast with well defined diffraction spots characterising

ordered structures such as the skyrmion lattice. In this work we focus our attention

on the Bragg scattering originating from the skyrmion lattice, as the contribution of

the diffuse scattering was very small and its characterisation was outside the scope

of this thesis.

The typical setup of a SANS instrument is illustrated in Figure 1.10. The

neutrons are collected at the reactor (or spallation) source and are directed towards

the experimental area via neutron guides. SANS instruments are usually placed on

neutron guides delivering cold neutrons moderated to have an energy in the range

of ∼ 0.1 − 10 meV. The neutron wavelength can be modified at the instrument

by means of velocity selectors or choppers, selecting a wavelength in the range

of ∼ 3 − 30Åwith a resolution that varies between 1% to 30%, according to the

method used. Before the sample position, the neutron beam is collimated with a

set of apertures and passes through polarisers and spin flippers, used optionally to

modify the characteristics of the beam. Neutrons are delivered to the sample area

where several sample environments can be mounted, such as high pressures, low

temperatures and high magnetic field devices. Typically, the size of the irradiated

area is in the order of ∼ 1 − 10 mm. After the sample position, one or more

two-dimensional position sensitive detectors are placed on rails in an evacuated

tank where they can be moved closer and further away from the sample position,

in a range of ∼ 1 − 40 m. Moreover, an optional analyser can be used to select

neutrons with one specific spin polarization, allowing polarization analysis. On the

detectors, Bragg spots appear at position |q| = (4π/λ)sinθ, where the scattering

angle θ < 5◦ − 10◦. With such small scattering angles, the momentum transfer

modulus q, can be written as a function of its position on the detector r, and the
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sample-detector distance SD:

q =
2πr

λ
SD. (1.62)

Using this expression, it is possible to adjust the wavelength and the sample-

detector distance to optimise the scattering conditions on the detector, considering

that r has to vary withing the angular and spatial range of physically covered by

the detectors, usually ∼ 0.04− 0.7m.

1.3.1 Imaging skyrmions with SANS

As mentioned before, the SANS technique is optimised for the study of nano-sized

structures, hence it is a powerful tool for the study of the aforementioned modulated

magnetic structure, which can have a periodicity up to several thousand Å. In B20

materials, the magnetic ground state at zero applied magnetic field consists of a

multi-domain of single-q helices with propagation vectors, in the case of Cu2OSeO3,

pinned along the main crystallographic directions [100], [010], and [001]. Upon the

application of a sufficiently large magnetic field, the system passes into a single

domain conical state, with a propagation vector parallel to the applied field. In

the skyrmion pocket area of the H -T phase diagram, the skyrmion lattice can be

described as a superposition of three helices tilting away from each other by 120◦,

with the same magnitude and phase of the propagation vectors, which lie on a plane

perpendicular to the applied field. In Section 1.2.9, it was shown how modulated

structures, with propagation vectors k, produce magnetic satellites that decorate

the nuclear Bragg peaks, giving scattering at Q = τ ± k. In SANS, one looks at

the scattering at low angles happening around τ = (0,0,0), hence the momentum

transfer vector coincides with the propagation vector of the modulated structure,

and we identify it as q.

As shown before in Section 1.2.8, the only components of the magnetisation

visible in a SANS experiments are the ones that are perpendicular to the momentum

transfer vector, in this case, to the propagation vector of the modulated structures.

In Figure 1.11 are presented the scattering patterns relative to the magnetic states

of Cu2OSeO3, except the paramagnetic and field polarised states that produce no

scattering. Passing from the geometry in which the magnetic field is parallel to the

neutron beam to the field perpendicular to it, let different helix domains diffract

on the detector plane. The conical phase produces two horizontal diffraction spots

only when the field is perpendicular to the neutron beam. When the field is parallel

to the neutron beam, also the propagation vector of the conical phase is parallel
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Figure 1.11: Illustration of the helical, conical and SkX phases in a generic skyrmion
material and their corresponding SANS patterns for the two geometries H ‖ n, and
H ⊥ n. The external magnetic field in both cases is always applied along the [100]
crystallographic direction. This figure was adapted from [42].
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Figure 1.12: (a): the neutron beam with an angular spread a is monochromatised
by the velocity selector with a fractional spread of the wavelength of 10%, hence
a spread in the wavevector k. (b): Ewald’s sphere representation of the scattering
considering the angular spread and the wavelength fractional spread of the incoming
neutron beam. The reciprocal lattice points in this representation are of a perfect
structure, hence point-like.

to the to the neutrons, hence no variations of the magnetisation lie on the plane

perpendicular to the propagation vector, letting the conical state appear uniform in

this geometry. The periodicity of the conical state is revealed in the H⊥ geometry,

as shown in Figure 1.11. The SkX hexagonal arrangement corresponds, in reciprocal

space, to the typical 6-fold scattering pattern. The skyrmions elongate like tubes in

the material, and in the H⊥ geometry it is possible to study the distance between

skyrmion tubes planes.

1.3.2 Extracting Correlation Lengths from SANS patterns

A perfectly collimated neutron beam, with no spread in wavelength, hitting a lattice

with a perfect spacing and no defects would produce scattering only under the

very specific condition dictated by Bragg’s law in Equation 1.22. However, in real

experiments, the incoming neutron beam will be characterised by a finite angular

spread a and a specific wavelength spread δλ/λ. At the same time, the structure

analysed might not be perfectly ordered, showing a variation in its characteristic
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Figure 1.13: The intrinsic disorder of the structure studied is encoded in the size of
the Bragg spots. In panel (a) is shown a SANS scattering pattern of the skyrmion
lattice taken in Zn substituted Cu2OSeO3. The radial width of the spots indicated
as Wrad is related to the d -spacing spread of the lattice δd/d. The azimuthal width
Wazi of the spots is related to the rotational disorder of the skyrmion lattice t. In
panel (b) is depicted the imperfect Ewald’s sphere of Figure 1.12 interacting with
an imperfect structure. The reciprocal space points of the structure are elongated
along the direction of the incoming neutron beam and their width in the direction
of the neutron beam is δqpar. b is the angular size of δqpar.

spacing δd/d, a mosaic spread s, and a rotational disorder t. The imperfections in

both the incoming neutron beam and the structure studied allow a more relaxed

Bragg condition, where the scattering is satisfied for a certain spread of angles. In

these conditions, the Bragg spots in reciprocal space will have a width in each of the

three dimensions of the reciprocal space that relate to δd/d, b, and t, which are the

parameters describing the intrinsic disorder of the structure studied, as previously

reported in [7, 83, 84].

The azimuthal width of the Bragg spots Wazi, shown in Figure 1.13(a), is

affected by the angular spread of the neutron beam and contains information on the

rotational disorder of the studied structure

Wazi =
√
t2 + a2. (1.63)

Wazi is measured considering the angle of the Bragg spot on the detector

panel φ. The value of a can be obtained by measuring the azimuthal width of the

transmitted beam by centring the analysis on the selected Bragg spot, to take into

account any anisotropy of a related to φ.

The radial width of the Bragg spots Wrad, shown in Figure 1.13(a) has a
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more complicated description since it is caused by several effects at the same time

Wrad =

√
a2c2 + a2b2 + 4b2c2

a2 + b2 + c2
, (1.64)

where b indicates the angular spread of the Bragg spots in the direction of

the neutron beam, and c is

c = θ

√(
δλ

λ

)2

+

(
δd

d

)2

. (1.65)

In the measurements presented in this work it is possible to assume that

b >> a, b >> c. In this case,

Wrad =
√
a2 + 4c2 =

√√√√a2 + 4θ2

((
δλ

λ

)2

+

(
δd

d

)2
)
. (1.66)

The size of the Bragg spots in the direction parallel to the incoming neutron

beam δqpar is related to the mosaicity of the structure. This dimension of the Bragg

spots is not projected onto the detector plane and can be written as

Wpar =
√
a2 + b2 + c2. (1.67)

In the same conditions considered for Wrad where b >> a, c, then

Wpar = b, (1.68)

which can be directly measured performing rocking scans. A rocking scan

consists in rotating the sample around its vertical axis while being in the Bragg con-

dition. In the case of the skyrmion lattice a rocking scan is performed rotating about

the vertical axis both the sample and the applied magnetic field, as the skyrmion

tubes elongate along the direction of H , as shown in Figure 1.14(a). The diffracted

intensity of skyrmion lattice is collected as a function of the rotating, r̀ocking’, angle

ω, and then plotted for selected Bragg spots as shown in Figure 1.14(a). The finite

width of the rocking curve derives from the convolution of the instrument resolution,

and the mosaicity of the skyrmion lattice. For a given instrumental resolution, a

high mosaicity of the skyrmion lattice corresponds to a wide profile of its rocking

curve, as shown in Figure 1.14(c). The correspondence between the rocking curve

profile and the characteristcs of the skyrmion lattice is treated in detail in Chapter 4.

Performing a rocking scan, corresponds to rotating the reciprocal lattice in

and out of the Ewald’s sphere, in reciprocal space. Recording the scattered intensity
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as a function of the rotating angle produces rocking curves, which width is equal to

b.

Equations 1.63, 1.66 and 1.68 can be solved for t, δd
d and b to collect infor-

mation about the intrinsic disorder of the lattice. Particular attention is needed in

the process of converting these quantities in real space correlation lengths since the

conversion implies doing a Fourier transform which result depends on the shape of

the peaks (Gaussian, Lorentzian).

Here we explicitly show how to convert b into the longitudinal correlation

length of the structure Lpar since it is the simplest case, and the most relevant

to the work presented in this manuscript. To measure b, one has to measure the

rocking curve of the selected Bragg spot, Equation 1.68. The rocking curve will

have a Gaussian or Lorentzian profile. In the Gaussian case, b = σq, where b is

the angular size of the Bragg spot’s width in the direction of the incoming neutron

beam, Figure 1.13(b). b relates to δqpar as

b =
δqpar
q

⇒ δqpar = bq, (1.69)

where q is the magnitude of the momentum transfer vector, and δqpar has

to be multiplied by π/180 to have the dimensions of Å−1. To transform δqpar in

a correlation length in real space, one has to consider the Fourier transform of the

rocking curve, which in this case is still a Gaussian with a σr = 1/σq, describing the

correlation length x0 of the lattice in the direction parallel to the neutron beam. If

the rocking curve has a Lorentzian profile L(q), then the angular size of the Bragg

spot b will be equal to the FWHMq of the Lorentzian. Equation 1.69 is still valid,

however, one has to consider the Fourier transform (FT) of the Lorentzian function

describing the profile of the rocking curve:

L(q) =
1

2π

δq

(q − q0)2 − ( δq2 )2
⇒ FT [L(q)](x) = e−δqπ|x|, (1.70)

considering the FWHM of FT [L(q)](x), the correlation length in real space

in this case is given by x0 = 2ln(2)/(δqπ).
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Figure 1.14: (a): illustration of a rocking scan of the skyrmion lattice. The sample
and the cryomagnet are rotated together along the vertical axis. On the detector
the typical six-fold scattering pattern is recorded as a function of the rocking angle
ω, and the intensity of a pair of selected Bragg spots is plotted as a function of ω.
(b): illustration of a group of skyrmion domains well aligned between each other and
along the direction of the magnetic field. The corresponding rocking curve profile
is sharp. (c): a group of skyrmion domains presenting a higher mosaicity, with
skyrmion tubes bending, a domains tilting away from the direction of the applied
field. The corresponding rocking curve profile is wider than in case (b).
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Chapter 2

Samples and their

characterisations methods

This chapter contains an overview of sample preparation methods and characteri-

sation via magnetometry measurements and Laue diffraction. Marta Crisanti per-

formed the Laue diffraction measurements. The samples used for this thesis work

were prepared by Dr A. Štefančič, Sam Holt, and Prof. Geetha Balakrishnan at the

University of Warwick [71]. Dr Max Birch performed the AC susceptibility mea-

surements at the Diamond Light Source in Didcot (UK) [49].
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The stabilisation of magnetic skyrmions was first predicted for non-centro-

symmetric materials [12], and they were later observed for the first time in the

B20 material MnSi [16]. MnSi belongs to the P213 spacegroup, where the lack of

inversion symmetry allows the presence of the Dzyaloshinskii-Moriya interaction,

which favours the presence of long wavelength helimagnetic structures, as discussed

in Section 1.1.2. Shortly after, skyrmions were observed in other B20 materials

such as Fe1−xCoxSi [17], FeGe [22], and MnGe [85]. In these materials, Bloch-type

skyrmions are stabilised by thermal fluctuations in a narrow region of the H -T

phase diagram below the ordering temperature, and their magnetic ground state

consists of helimagnetic structures.

2.1 Cu2OSeO3

Among the non-centrosymmetric bulk skyrmion hosts, the only insulating material

is Cu2OSeO3. This material crystallises in the same spacegroup as MnSi, and it

shows a similar magnetic phase diagram, indicating that it shares with MnSi the

same hierarchy of interactions defining its magnetic structures [2, 86–88]. Although

crystallising in the cubic chiral P213 spacegroup like MnSi, the atomic coordination

of Cu2OSeO3 is very different. The structure hosts two different Cu2+, one situated

either at the centre of a trigonal bipyramid of oxygen ligands or at the centre of a

square pyramid base [2, 89, 90], as shown in Figure 2.1(a). These two sites have spins

antiparallel to each other. The building block of the magnetic structure consists of

a tetrahedron formed by four Cu2+ ions ferrimagnetically [89, 90] arranged, as the

two different Cu sites are in ratio 3:1 in the magnetic tetrahedron, as shown in

Figure 2.1(b).

Cu2OSeO3 is also multiferroic [2], hence its magnetisation can be manipu-

lated via the application of an electric field, and magnetic fields can influence its

electric polarisation. These characteristics make this system perfect for studying

the manipulation of the skyrmion state via electric fields. In particular, it has been

shown that the skyrmion state can be rotated via the application of electric fields [91,

92]. Moreover, the application of electric fields can enhance or suppress the size of

the skyrmion pocket, allowing a topological phase switching between the conical

and skyrmion magnetic states [53, 56–58], as previously mentioned in Section 1.1.3.

The possibility of manipulating the skyrmion state, and moving the skyrmions with

the application of electric fields, provides a way to avoid energy loss through Joule

heating effects associated with electric currents [93].

38



(a) (b)

Figure 2.1: (a) crystal structure of Cu2OSeO3, the different coloured area identifies
different Cu2+ sites. (b) magnetic structure. Adapted from [2, 90].

Zn and Ni substituted Cu2OSeO3

As previously introduced in Section 1.1.3, controlled chemical substitution is a pos-

sible avenue for the manipulation of the skyrmion pocket size and position, and

allow the study of the interplay between the underlying crystal structure and the

magnetic states of a material. In Cu2OSeO3, two different chemical substitutions

have been reported, one where Cu ions were substituted with Zn [71, 72, 94], and

another with Ni [70, 72]. In the case of the Zn substitution, a split of the skyrmion

pocket along the temperature axis of the H -T phase diagram was firstly observed

in polycrystalline samples [94]. Moreover, the separation between the two indepen-

dent skyrmion pockets was observed to increase with increasing Zn concentration.

However, the same effect was not observed in single crystal samples [71], where the

increasing Zn content is associated with a shift towards lower temperatures of the

whole magnetic phase diagram, also observed in polycrystalline samples in [72]. On

the other hand, the substitution with Ni ions was studied in polycrystalline samples

and evidence of an enhancement of the temperature range of the skyrmion pocket

was found [70, 72]. In both cases, the changes in the magnetic properties were

linked to a distortion of the bipyramidal and square pyramidal structures inducing

an increase of the DMI strength.

In this thesis, Zn and Ni substituted Cu2OSeO3 single crystals, and pristine
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Figure 2.2: Schematic of the chemical vapour transport method.

Cu2OSeO3 single crystals were studied with small angle neutron scattering and

neutron diffraction.

2.2 Chemical Vapour Transport

Chemical vapour transport (CVT) is a technique for the growth of single crystals

and it consists of the volatilising of a solid in the presence of a reactant, a gaseous

transport agent, that deposits the solid elsewhere where crystals are formed. A

schematic of the experimental apparatus is depicted in Figure 2.2. The transport

agent moves the solid within a sealed ampule in a two-zone furnace. The transport is

governed by convection and diffusion processes. Favouring convection over diffusion

can lead to the growth of larger single crystals however, these crystals would be

more prone to host defects and inhomogeneities. Several parameters need to be

optimised for each crystal growth, such as temperature, transport direction, mass

transport rate, transport agent.

Initial precursors of Zn substituted, Ni substituted (with different nominal

content of dopant) and pristine Cu2OSeO3 were placed into silica tubes and sealed

under vacuum. The precursors were heated to 920 K at a 3.5 K/hr rate and held for

96 hours. The heating procedure was followed by water quench cooling, resulting

in polycrystalline samples with different chemical substitution levels. From these

polycrystalline powder samples, single crystals were prepared using the CVT. 2.5g

of powder samples were mixed with 1.5 to 2.0 mg/cm3 of transport agent, TeCl4,

and then sealed in silica tubes under vacuum that were then put in a two zone

furnace with a source temperature of 913 K and a sink temperature of 823 K. The

mixture was left in the furnace for four weeks.
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Figure 2.3: (a) schematic of a SQUID-VSM. (b) Schematic of a field generated by
a flowing current I in point z, where a sample with magnetic moment m is.

2.3 Magnetometry

Magnetometry measurements were performed using a commercial SQUID vibrating

sample magnetometer (VSM), a Quantum Design MPMS3. In a VSM, the DC mag-

netisation of the sample is determined via the flux change induced by the oscillation

of the sample within two pick-up coils. When a magnetic moment m placed at a

height z along the axis of a coil of radius R through which is passed a current I

induces a flux Φ(z) on the coil, that can be expressed following the Biot-Savart law

[82] as:

Φ(z) =
B(z)

I
·m =

m µ0

2

R2

(z2 +R2)3/2
= G(z)m. (2.1)

In a VSM, the sample’s position changes with time as the sample is vibrating

inside the constant field provided. This induces a voltage and in the pick up coils

V =
dΦ(z)

dt
=
dG(z)

dz
m
dz

dt
. (2.2)

In a SQUID-VSM, the signal of the VSM is measured with a superconducting

quantum interference device (SQUID), which measures the magnetic flux passing

through its cross sectional area, proportional to a voltage VSQUID. Ultimately one

measures this voltage as the sample is moved through the pick-up coils. A simplistic

schematic of the experimental apparatus is depicted in Figure 2.3. The software of

the machine extracts from the voltage the magnetisation of the sample that can be

measured as a function of temperature and applied magnetic field [95].

It is also possible to measure the susceptibility, which is the rate of change of

magnetisation with applied field (dM/dH). This can be done without moving the
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sample, but oscillating the applied field. In this mode, the time dependent sample

moment induces currents in a coil, that are picked up as a voltage, proportional

to dM
dt locked into the drive frequency. These measurements are highly sensitive to

small changes in the magnetisation. The time dependent magnetisation in AC mode

for a driving field of amplitude HAC , and an oscillating frequency ω can be written

as

dM

dt
(H) =

dM

dH
HACsin(ωt), (2.3)

where dM/dH = χ, the magnetic susceptibility. The lock in amplifier can

provide an in and out-of-phase measurement of the susceptibility, relative to drive

frequency. In this context, the susceptibility can be written as a complex number

χ =
√
χ′2 + χ′′2, where χ′ corresponds to the in-phase component, and the real part

of the susceptibiliy. The imaginary part of the susceptibility χ′′ corresponds to the

out-of-phase component and it is related to dissipative processes in the samples such

as magnetic relaxations, domain wall motions and phase transitions.

2.4 Laue Diffraction

Neutron Laue diffraction measurements performed on OrientExpress in ILL, which

setup is shown in Figure 2.4, were used to align the single crystal samples for other

diffraction experiments. This technique employs a white neutron beam, passing

through a hole between two CCD sensor panels and two neutron scintillator panels,

for then reaching the sample. The back-scattered neutrons hit the scintillators,

where they interact producing photons that are collected by the CCD sensors. Since

the beam is polychromatic, the Bragg condition is satisfied for every set of lattice

planes, producing scattering at different angles. In this way, a reciprocal space

picture of the crystal is obtained. For samples of high crystalline quality, individual

reflections can be identified and indexed, allowing the determination of the sample

orientation in the laboratory reference frame.
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OrientExpress side view

Figure 2.4: Schematic of the single crystal neutron Laue instrument OrientExpress.
Figure reproduced from [96].
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Chapter 3

Skyrmions under pressure

The contents of this chapter are published in [65]. The experiment was performed

by N. Reynolds, and Dr J. White. The data analysis was done by M. Crisanti, who

also worked on the article’s publishing process with Dr J. White. The figures were

adapted or reproduced from [65].
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Several methods exist for the manipulation of the parameter space over which

the skyrmion state is stable in chiral magnets. The size of the skyrmion pocket

can be substantially enhanced both by reducing the samples’ dimensions into thin

films [22] and via supercooling through the skyrmion pocket, creating a metastable

state [42, 49, 53, 56, 75]. However, in the first case, the generality of the H -T

phase diagram typical of bulk chiral magnets is lost, and its characteristics become

highly sensitive to the method and quality of the sample preparation process. In the

second case, such metastable skyrmion states display a lifetime that decreases for

increasing temperature and a population that depends on the cooling rate [49, 75].

Controlled chemical substitution also constitutes a viable approach for the tuning

of the position and size of the skyrmion phase [70–72], however, the theoretical

treatment of such disordered systems represent an ongoing challenge.

Applied pressure, both uniaxial and quasi-hydrostatic, has also proven to be

an effective tuning parameter for the magnetic ordering of chiral magnets [45, 59,

60, 97, 98]. In the itinerant chiral magnet MnSi, T C is suppressed by the application

of hydrostatic pressure and tends to 0 at a specific critical point near 14.6 kbar [99,

100]. In the form of uniaxial compressive strain, uniaxial pressure was also shown to

affect characteristics of MnSi phase diagram. Specifically, according to the relative

direction of the strain σ and the applied magnetic field H, the skyrmion phase

stability was either enhanced (σ ⊥ H) or suppressed (σ ‖ H)

3.1 Effects of quasi-hydrostatic and uniaxial pressure

on Cu2OSeO3

The application of quasi-hydrostatic pressure on the archetypal skyrmion host Cu2OSeO3

has been shown to monotonically increase the ordering temperature T C [62–64]. In

particular, a significant increase in the skyrmion pocket’s size was observed with AC

susceptibility in [64]. The temperature extent of the skyrmion region of stability was

substantially enhanced by the application of pressure, passing from a ∆TSkx ≈ 3 K

at ambient pressure to an extension of ∆TSkx ≈ 26 K at 2.3 GPa. The enlarge-

ment of the skyrmion pocket with increasing hydrostatic pressure was tailored to

an increase in the effective anisotropy K, measured by the increase of H c1. The

application of uniaxial pressure on Cu2OSeO3 resulted in a similar behaviour to

what was shown for MnSi, where the relative direction of the applied strain σ and

the magnetic field H determining an enhancement or suppression of the skyrmion

region of stability [61]. Contrary to the hydrostatic pressure case, in Cu2OSeO3, no

increase in T C was observed up to a strain of 1.01 kbar.
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The uniaxial pressure results in both MnSi and Cu2OSeO3 suggest that just

moderate compressive strains, in the order of kbars, can be responsible for a consider-

able increase of the skyrmion pocket size. For this reason, it is not clear whether the

remarkable enhancement of the skyrmion pocket reported in Ref. [64] in Cu2OSeO3

was an effect induced by the hydrostatic pressure, or it rose from inhomogeneity in

the applied pressure, leading to an expansion of the skyrmion pocket caused by an

unwanted uniaxial pressure component.

With this in mind, we turn our attention to the study of the magnetic or-

dering of Cu2OSeO3 under hydrostatic pressure applied using He as a pressure

transmitting medium (PTM), which has been shown to provide better hydrostatic

conditions than other commonly used PTMs.

3.2 Experimental setup

Typical hydrostatic pressure experiments on chiral magnets use liquid pressure

transmitting medium (PTM) in which the sample is immersed. However, these

liquid PTMs, such as Daphne-7373 oil, Fluorinert, or methanol-ethanol mixture, do

not perform as well as gaseous PTMs such as He, Ne, and N2 in neutron scattering

experiments at cryogenic temperatures [101]. Gaseous PTMs display lower shear

strengths when they solidify at low T, compared to the liquid PTMs, providing

higher hydrostaticity but lower maximum pressures.

For this experiment, a 91 mg single crystal of Cu2OSeO3 was mounted on

an Al pillar in a Ti-Zr gas pressure cell. The pressure cell was inserted in an orange

cryostat, where the magnetic field was provided by an electromagnet. The sample

was aligned with orthogonal [01̄1]-[100] axes lying in the horizontal plane and with

the [110] axis vertical. The magnetic field was applied along the [01̄1] direction for

the whole experiment. The measurements were performed with the applied field

either parallel or perpendicular to the neutron wave vector. In this way it was

possible to study all the magnetic phases of interest in the sample. The Bragg

condition at the detector position is satisfied only by structures whose wave vector

lies perpendicular to the one of the neutron beam. For this reason, when H ‖ ki, it

was possible to study the typical six-fold scattering pattern of the skyrmion state,

while no contribution to the scattering was given by the conical state. When H ⊥ ki

instead, it was possible to measure the scattering from the conical phase. The

helical state produced scattering in both geometries: the [010] and [001] domains

were visible in the perpendicular geometry, while the [100] was visible in the parallel

geometry [86, 90–92], as shown in Figure 3.1(a) and Figure 3.1(c), respectively.
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Figure 3.1: Schematic of the two experimental geometries employed during the
SANS measurements. In panel (a) is reported the diffraction pattern at zero applied
magnetic field in the H⊥ geometry at T = 30 K, as illustrated in panel (b), where
the applied magnetic field direction is perpendicular to the neutron’s wave vector
ki. In this geometry, the measurements are sensitive to two helical domains, which
propagation vector is perpendicular to the incoming neutron beam and identified
as q1 and q2. In panel (c) is shown the scattering pattern corresponding to the H ‖
geometry, illustrated in panel (d). In this case, the field direction is parallel to the
incoming neutron beam, and only one helical domain is in the Bragg condition at
the detector position, identified as q3.

The SANS experiment was performed on the D33 beamline at ILL. The neu-

tron beam was collimated for 12.8 m before the sample, and the neutrons were

collected 12.8 m after the sample. A wavelength of λn = 5 Å with a FWHM frac-

tional spread of ∆λ/λ = 10% was selected for the experiment. Rocking curve mea-

surements were collected in both geometries, rotating the cryomagnet-field-sample

ensemble, recording the scattered neutron intensity at each angle with an average

exposition of 30 s per angle.
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Figure 3.2: (a), (b), (c): Omega rocking scans of the three helical domains recorded
at 5 K and 50 K in ambient pressure and 5 kbar of hydrostatic pressure applied.
(d): population fraction of each helical domain at both temperature and pressure
conditions. The population fraction was determined from the integrated intensity
of the rocking scans.

3.3 Results

3.3.1 Helical state population and hydrostaticity of the applied

pressure

The characterisation began with a measurement of the magnetic state in zero applied

magnetic field. Rocking scans in omega were performed by rotating the sample

around its vertical axis in order to collect the full scattered intensity of the helical

domains. The rocking curves are presented in Figure 3.2.

It can be noticed by inspection of panels (a), (b) and (c) of Figure 3.2 that, in

both pressure conditions, the intensities of the rocking curves are not equal among

the three helical domains, hence the population of the helical phase is not distributed

equally among the domains. A more quantitative evaluation of this uneven distri-

bution of the helical population is plotted in Figure 3.2(d), where we report the

population fraction of the helical domains at 5 K and 50 K at both pressure condi-
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Ambient P 5 kbar

50 K 5 K 50 K 5 K

|q1| (Å) 0.010480(7) 0.010240(7) 0.010410(6) 0.010190(6)
|q2| (Å) 0.010500(7) 0.010260(7) 0.010440(6) 0.010160(6)
|q3| (Å) 0.01047(2) 0.01022(1) 0.01040(1) 0.010160(9)

Table 3.1: Fitted values of |qi| at ambient pressure and in 5 kbar, at both T =
5 K and T = 50 K. At each P -T condition, the fitted values of |qi| of all the
helical domains are the same within experimental uncertainty. The values have been
obtained fitting the scattered intensity as a function of the momentum transfer q.

tions. While the population fraction of the q1 domain remains almost unchanged

with the application of pressure, the q2 domain appears to be overpopulated, occu-

pying half of the sample volume at ambient pressure, mainly at the expense of the

q3 domain. Under 5 kbar of hydrostatic pressure, the helical population is redis-

tributed among the domains, lowering their disparity. Moreover, for the q3 domain,

the application of pressure induced a shift in the centre of the peak of about ≈ 5◦,

while no significant shift is observed for the other two helical domains. These obser-

vations indicate the presence of a uniaxial component in the applied pressure during

the experiment.

Helical domains with different populations in Cu2OSeO3 at ambient pressure

have been previously observed in Ref [61]. This effect might be attributed to residual

directional stresses originating at the sample production stage or by the specific

conditions of the experiment. As previously reported in [61], in Cu2OSeO3, uniaxial

stress in the order of ≈ 0.1 kbar ⊥ qi induced an increase of the qi population of

500%, without changing the |qi| to a level of 0.1%. In our measurements, at ambient

pressure, we observe a lower disparity among the populations of the three helical

domains than was reported in [61]. Moreover, the modulation vector |qi| in each

experimental condition was the same for all the domains within the experimental

accuracy of 0.1%, as reported in Table 3.1. Considering these minor effects on the

magnitude of the helical modulation vectors and on the population fraction disparity,

we take 0.1 kbar as an upper-limit estimate for possible undesired uniaxial stress

components in the experiment. In all directions, the propagation vectors had values

close to 0.01 Å−1, consistent with the value reported in the literature [2, 86, 91, 92].

We concluded that besides the slight modification of the distribution of in-

ternal residual stresses, the applied pressure was predominantly hydrostatic.

49



(b)

1.01

1.02

1.03

1.04

1.05

|q
| (

10
-2

Å
-1

)

0 10 20 30 40 50 60
T (K)

(a)

In
te

gr
at

ed
 In

te
ns

ity
 (

a.
u.

)

0

5

10

15

20

25

5 kbar
Ambient P

57.9K 59.5K

54 56 58 60
0

2

4

6

8

T (K)

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

1.0

N
or

m
al

iz
ed

 In
t. 

In
t.

T/TC
0

0.8

0.6

0 10 20 30 40 50 60
T (K)

5 kbar
Ambient P

(c) (d)

Figure 3.3: (a): temperature dependence of the SANS integrated intensity from the
two helical domains q1 and q2 visible in the H ⊥ geometry. The integrated intensity
results from the average of Iq1 and Iq2 and is reported for both ambient pressure
and 5 kbar. In panel (b) is shown in detail the high-T range where the data is
fitted to the Curie-Weiss law to determine T C. (c): temperature dependence of
the helical propagation vector value |q| at H = 0 at both pressure conditions. (d):
SANS integrated intensity normalised by the estimated zero-T value versus T/TC .
The data presented here do not show any obvious consequences of the solidification
of the He PTM, which happens at 39.6 K under 5 kbar.
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3.3.2 Helical order and critical fields

We determined the value of the ordering temperature by analysing the integrated

intensity of q1 and q2 averaged together, and shown in Figure 3.3(a). The reduced

averaged intensity of the 5 kbar data in the low temperature region of Figure 3.3

is due to the population redistribution, which favours q3 at the expense of q2, as

already discussed and shown in Figure 3.2(d).

Figure 3.3(b) is shown the detail of the plot near T C. The data points in this

range have been fitted to the Curie-Weiss law, with a critical exponent, to determine

the value of the ordering temperature at both pressure conditions. T C increases un-

der pressure passing from T C= 57.9(1) K at ambient pressure to T C= 59.5(1) K un-

der 5 kbar. The pressure dependent increase of T C is ∂TC/∂P = +0.32(1) K/kbar,

in agreement with previously published measurements on bulk samples [62, 64, 102],

which show a linear dependence between the ordering temperature and the applied

pressure. In Figure 3.3(d), the integrated intensity was normalised to its expected

value at zero-T and it is plotted as a function of T/ T C. Figure 3.3(d) shows that

the application of pressure has a weak effect on the form of the T dependence of

the integrated intensity .

The pressure and temperature dependence of the helical propagation vector’s

magnitude are shown in Figure 3.3(c), where |q| was determined averaging |q1| and

|q2|. In both pressure conditions, |q| firstly increase near T C, it then drops between

50 K and 30 K, to then plateau below 30 K, away from the effect of thermal fluc-

tuations [16, 57]. Pressure induces a suppression of ∼ 0.5% on the helical |q| in the

low T range.

These results can be interpreted from a mean field point of view, where

|q| ∝ D/J and T C ∝ J [36]. In this context, the increase of the ordering temperature

indicates an increase of J, while the concomitant reduction of |q| shows the weaker

dependence on pressure of D compared to J.

In Figure 3.4 is shown the field dependence of the scattered intensity of

the helical and conical domains measured at 5 K. These measurements have been

performed in the H ⊥ geometry, where the Bragg reflections produced by the conical

phase lie on the detector plane. At zero applied magnetic field, the total scattered

intensity originates from the helical phase. By increasing the magnetic field, the

helices turn into a single-q conical domain. The transition fields were determined

by fitting the peaks found in the first magnetic field derivative of the SANS intensity

and are presented in the graph. HC1 identifies the magnetic field at which the sample

passes from the helical to the conical domains, and it is marked by a dash-dotted

line. HC2 identifies the field at which the system passes from the conical state to a
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Figure 3.4: Field scans performed at T = 5 K of the SANS intensity of the helical
state and conical state. The measurements were performed in the H ⊥ geometry in
both pressure conditions. The helical state data correspond to the average of the
intensities of q1 and q2 domains. The peaks in the first magnetic field derivative
of the data were fitted to determine the values of the critical fields. HC1, at the
transition between helical and conical phases, is indicated by the dash-dotted lines.
HC2, at the transition between the conical and field-polarised states, is indicated by
dashed lines.

uniformly magnetised state, and it is marked by a dashed line.

The application of pressure has a weak effect on both critical fields: HC2 at

both pressure conditions stayed unchanged within uncertainty: µ0HC2(ambientP) =

99.5(5) mT and µ0HC2(5 kbar) = 99.1(5) mT. µ0HC1 increases by 2.5%(1.0) un-

der pressure, passing from µ0HC1(ambient P)= 44.6(3) mT to µ0HC1(5 kbar)=

45.7(3) mT.

3.3.3 Skyrmion phase stability under pressure

In Figure 3.5 is shown the pressure dependence of the skyrmion state’s parameter

space. Figures 3.5(a) and 3.5(c) show the SANS intensity field scans at different

temperatures. From these data, we determined the upper and lower boundaries of

the skyrmion pocket at both pressure conditions, identified by white circles in Fig-

ures 3.5(b) and 3.5(d). The skyrmion pocket appeared only slightly enlarged under

5 kbar of applied pressure, passing from a maximum extent at ambient pressure

of T C(ambient P) - 2.5(5) K, to T C(5 kbar) - 3.0(5) K, and no other significant

deformation of the skyrmion’s parameter space was observed.

In Figure 3.6, we report the in situ measurements demonstrating in detail the
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Figure 3.5: Panel (a) show the ambient pressure field scans of the SANS intensity
used to draw the colour map of the skyrmion pocket in panel (b). The triangles
on the field axis of panel (a) indicate the transition fields marking the edges of the
skyrmion pocket (open = low field edge; filled = upper field edge) and are reported in
panel (b) as white dots in the colour map. Panel (c) shows the field scans collected
at 5 kbar and used in panel (d) to draw the phase diagram. The triangles and
circles in panels (c) and (d) have the same meaning as the ones in panel (a) and
(b). The colours of the triangles identify the temperature of the field scan to which
they belong. The black star in the colour maps indicated the field and temperature
conditions under which the data in Figure 3.7 were collected. The increased intensity
observed in each panel at low temperatures and low field corresponds to the SANS
intensity of the helical domain q3.
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Figure 3.6: Panels (a) to (f) demonstrate the pressure-decreasing dependence of the
SANS scattering patterns obtained at fixed T = 58.25(10) K and µ0H = 21 mT.
The shaded area in (a) indicates the area of the detector over which the scattered
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scale. The orange arrows across all panels indicate the direction of pressure variation
in the measurement.
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pressure-driven transition between the skyrmion phase, present at 5 kbar of applied

hydrostatic pressure at T = 58.25(10) K and µ0H = 21 mT, and the paramagnetic

state at ambient pressure. The measurements were performed while slowly releasing

the He gas pressure, avoiding possible temperature variations. For the set of mea-

surements shown, we recorded no temperature variation larger than 10 mK. The

scattered intensity from the skyrmion lattice decreases as temperature decreases

and abruptly falls to 0 at PC = 2.5 kbar, indicating a first order transition. Our

results show how the skyrmion phase can be tuned by the exclusive application of

hydrostatic pressure, effect that is explicitly shown in Figure 3.7. Figures 3.7(a)

and 3.7(b) show the SANS scattering patterns collected at ambient pressure and at

5 kbar, respectively, each at T = 56 K and µ0H = 25 mT. At these specific condi-

tions, the skyrmion lattice loses stability under pressure, and its scattered intensity

is significantly suppressed, as shown in Figure 3.7(b). The skyrmion state stability

can also be enhanced by the application of pressure, as shown at T = 58.5 K and

µ0H = 21 mT. In this case, at ambient pressure, the sample lies in the uniformly

magnetised state, while it is in the skyrmion state for P = 5 kbar.

Under applied pressure, the skyrmion lattice is characterised by a single

domain, while we observe a multidomain lattice at ambient pressure. This change in

the ordering of the skyrmion state could be linked to the modification of the internal

strain equilibrium induced by the application of pressure, however, similar effects

have already been observed in connection to the thermal and magnetic history of

the sample [2, 91, 103, 104]. As the actual internal strain distribution is not known

at both pressure conditions, we cannot draw conclusions on the possible coupling

between the skyrmion lattice structure and the applied pressure.

3.4 Conclusions

The effects of quasi-hydrostatic pressure on the magnetic structure and phase di-

agram of Cu2OSeO3 with H ‖ [01̄1] have been established. Under pressure, T C

increases by +2.8(2)%, the magnitude of the helical propagation vector |q| decreases

by -0.5(2)%. The critical field between the helical and conical phase increases by

2.5(1.0)%, while the critical field between the conical and paramagnetic phase re-

mained unchanged within uncertainty.

According to mean field theory [36, 64], it is possible to link the change in

these observable quantities to the strength of microscopic interactions as follows:
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Figure 3.7: Illustration of the manipulation of the skyrmion stability with hydro-
static pressure in the H ‖ ki geometry. In panels (a) and (b) are shown the SANS
scattering patterns of the SkL at recorded at T = 56 K, µ0H = 25 mT at ambient
pressure and 5 kbar, respectively. In panels (c) and (d) are shown the SANS scatter-
ing patterns obtained at T = 58.5 K, µ0H = 21 mT at ambient pressure and 5 kbar,
respectively. The intensity scale has been fixed across all the panels to underline
the differences in the scattered intensity in the different pressure conditions.
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|qh| ∝
D

J
(3.1)

HC1 ∝ K (3.2)

HC2 ∝
D2

J
(3.3)

TC ∝ J (3.4)

where J is the magnetic exchange interaction, D identifies the Dzyaloshinskii-

Moriya interaction’s strength, and K is the magnetic anisotropy. The application

of quasi-hydrostatic pressure induced only minor changes in the structure of the

phase diagram. The increase in T C with the concomitant small suppression of

|qh| indicates an increase in D of +2.2(1)%, faster than the increase in J. The small

enhancement of the size of the skyrmion pocket would be consistent with an increase

of K, which has already been shown to be a parameter affecting the extent of the

skyrmion phase stability [57, 64].

The variation in the critical fields and in T C that we observe at 5 kbar can

be contextualised with what reported in other quasi-hydrostatic pressure studies

performed on Cu2OSeO3. AC susceptibility measurements in [64] show an increase

of the ordering temperature of +2.5% at 6 kbar, comparable with what observed in

our measurement. However, the concomitant increase in H C1 of 15%, the decrease in

H C2 of 9%, and the massive enlargement of the skyrmion pocket (∆TSkL(6 kbar)=

10 K) compared to the ambient pressure data (∆TSkL(ambient P)= 2 K) that

are also reported in the same study, were not observed during our measurements.

Other AC susceptibility measurements report a significant increase of the size of

the skyrmion pocket in a single crystal of Cu2OSeO3, passing from a temperature

extent of ≈ 3 K at ambient P to ≈ 5 K at 5.22 kbar [63], not consistent with our

findings in our measurements.

Such strong effects on the critical fields and ordering temperatures are instead

attributes of chiral magnets under directional stress. In MnSi, T C is suppressed

slightly under the application of uniaxial compressive stress, and it reaches 0 at a

critical pressure of PC ≈ 14.6 kbar [99]. Under uniaxial stress, it has also been

shown that H C1 increases or decreases according to the mutual orientation of the

applied stress σ and the applied field H. Moreover, the skyrmion phase stability is

enhanced when σ ⊥ H and suppressed when σ ‖ H [59, 60].

In Cu2OSeO3 the effects of uniaxial pressure have been studied in [61] where

the compressive strain σ ‖ [110] and the applied field was µ0H ‖ [11̄0]. This study
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showed an important increase of the temperature extent of the skyrmion pocket

from 1 K at ambient pressure to ≈ 3 K at just 1 kbar. It was also reported a rise of

HC1, which tripled under the same applied pressure.

Considering the similarities in the variation of both the skyrmion pocket’s

size and HC1 observed in uniaxial stress measurements [59–61] and quasi-hydrostatic

measurements [63, 64], these latter data are expected to be affected by unwanted

uniaxial pressure components. The choice of the pressure transmitting medium is

the most likely responsible for these effects.

The PTM of choice in both hydrostatic pressure studies was Daphne Oil

7373. In both cases, the pressure changes were performed at room T, however, the

PTM freezes at temperatures linearly varying from ≈ 182 K at ambient pressure

to ≈ 290 K at 1.9 GPa [105]. Contractions of the frozen PTM happening in the

cooling from the PTM freezing temperature to the temperature of the measurements

could induce unintentional directional components in the applied pressure. Although

gaseous PTMs, as the one used in our work, provide better hydrostaticity than

liquid PTMs, even when frozen [101], it is very difficult to completely get rid of

these directional components of the pressure, as underlined in our measurements

by the uneven populations of the helical domains. We still considered the effects of

these strains to be small enough not to affect our measurements.

In conclusion, the application of quasi-hydrostatic pressure on Cu2OSeO3

induced only minor modifications of its magnetic phase diagram. For a fixed point

in the H -T phase diagram, pressure act as a third thermodynamic variable that

could be exploited to stabilise skyrmions at higher temperature in this archetypal

insulating skyrmion material. The small effects observed are in contrast with the

strong variation of the skyrmion pocket size and critical fields reported previously

for Cu2OSeO3 under hydrostatic pressure [63, 64].
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Chapter 4

Position dependent structure

and metastability of the

skyrmion state in Ni

substituted Cu2OSeO3

The contents of this chapter are published in [80]. The SANS experiments were

performed by M. Crisanti, Dr R. Cubitt, Dr M. N. Wilson, Dr M. T. Birch and

S. Moody. Dr M. T. Birch performed the magnetometry measurements. Dr B. M.

Huddart performed the DFT calculation. M. Crisanti and Dr R. Cubitt performed

the neutron diffraction measurements. A. Tengattini performed the X-ray tomogra-

phy measurements. The data analysis was done by M. Crisanti, who also worked on

the article’s publishing process. The figures in this chapter are adapted or reproduced

from [80]
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For the future development of skyrmionic devices, it is essential to understand

the link between the features of the hosting materials and the skyrmion lattice’s

characteristics. This crucial link enables the engineering of skyrmion materials with

features specific to the environment in which they have to be employed (e.g. room

temperature T C, zero field skyrmion state) and with specific characteristics of the

skyrmion lattice. In this context, the study of how the shape of bulk skyrmion

hosts influences the characteristics of the skyrmion lattice is of crucial importance

to understand how such macroscopic features can modify the microscopic magnetism

of the material.

Among the different techniques available to characterise bulk skyrmion hosts,

magnetometry is widely employed to determine the magnetic phase transitions of

the samples, however it does not provide information on the actual ordering of these

magnetic phases. However, as the skyrmion lattice exhibits a very long periodicity,

it is possible that its structure changes across the material and averaging techniques

such as magnetometry cannot provide spatially resolved information. On the other

hand, microscopy provides spatially resolved information on the magnetic ordering,

but it is only sensitive to the surface of the sample. Techniques like SANS, in

combination with high-brilliance sources such as the ILL, allow spatially resolved

characterization of the sample while providing direct information on the magnetic

ordering. The perfect candidate for the study of spatial variations of the skyrmion

lattice and its metastable state was a very large single crystal of Ni substituted

Cu2OSeO3 with a nominal concentration of Ni of 14% ((6 × 3 × 3) mm3, 225 mg).

At the same time, a single crystal of pristine Cu2OSeO3 was also measured to provide

a comparison with the parent compound.

4.1 Experimental setup and methods

The SANS measurements were performed on the D33 beamline at ILL. Both samples

were mounted on a 200 µm thick Al plate and placed inside a cryomagnet. The

samples were aligned to have a [110] crystal axis parallel to the incoming neutron

beam, and a [11̄0] direction perpendicular to it, and vertical. The neutron beam

was monochromatised to a wavelength λ = 6 Å, with a FWHM fractional spread of

∆λ/λ = 10%. The beam had a collimation length of 7.8 m before the sample, and

the scattered neutrons were collected 7.8 m after the sample on a two-dimensional

multi-detector. The Ni substituted Cu2OSeO3 sample was illuminated by neutron

using two different apertures of the beam. A 6 mm diameter aperture was employed

to illuminate the whole sample. A 1 mm diameter aperture was used to illuminate
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Figure 4.1: (a) and (b): Schematic of the two SANS experimental geometries. (c)
Magnetisation measured as a function of decreasing temperature with an applied
magnetic field of 20 mT for the pristine (purple squares) and Ni substituted (orange
circles) sample. (d) The calculated gradient of the magnetisation with temperature.
The minima of this data were used to define TC, indicated by the coloured vertical
lines in both panels.

specific areas of the sample and spatially resolve the skyrmion lattice structure

horizontally, translating the sample and the magnet relative to the neutron beam.

Given the smaller dimensions of the pristine sample, it was impossible to perform

the same type of measurements, hence a 3 mm aperture was employed, illuminating

the whole sample. The magnetic field was applied parallel to the incoming neutron

beam to study the skyrmion state, and perpendicular to it to study the conical state.

The geometries of the experiments are shown in Figure 4.1.

The skyrmion lattice structure was studied collecting rocking curves, rotat-

ing the sample and magnetic field together around the vertical axis, recording the

scattered intensity as a function of rocking angle. For these measurements, the

rocking angle ω = 0◦ was calibrated to correspond to the direction of the applied

magnetic field, using the scattering from the flux line lattice of superconducting

Nb [106]. The phase diagrams collected during the neutron experiment were mea-

sured either by zero field cooling (ZFC) to a set of target temperatures and then

performing field scans (6 mm aperture), or by high field cooling (HFC), in 50 mT,

and then performing temperature scans at different target fields. In both cases, the

magnetic history of the sample guarantees that only the equilibrium skyrmion state
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was measured, with no effect induced by metastability.

The metastable skyrmion state was also measured in different areas of the

Ni substituted sample. The sample was rapid field cooled (RFC) from 70 K to the

chosen target temperatures at a 7 K/min cooling rate. The lifetime measurements

were performed collecting diffraction patterns at a specific rocking angle. Although

this method did not provide the time dependency of the full scattered intensity of

the metastable skyrmion state, but only of part of it, measuring only one rocking

angle made the measurement faster, optimising this type of measurement.

4.1.1 Magnetometry

The pristine and Ni substituted samples were first characterised with magnetometry

measurements. Although the spatial characterisation of the different magnetic states

was not possible, these measurements provided important information on the posi-

tion and size of the skyrmion pocket, and about the population of the metastable

skyrmion state. DC and AC magnetometry measurements were performed using

commercial SQUID-VSM, a Quantum Design MPMS3. The samples were glued to

a quartz rod and aligned with the [110] crystal axis parallel to the applied mag-

netic field, similarly to the neutron scattering measurements. The AC susceptibility

measurements were performed with a field amplitude of 0.1 mT, oscillating at a fre-

quency of 10 Hz. For the investigation of the metastable skyrmion state, the cooling

rate was set to 40 K/min. In this case, two sets of measurements were performed,

where the samples were FC in 22 mT to different target temperatures, then field

scans were collected either increasing or decreasing the applied field. The magneti-

sation versus temperature curves are shown for both samples in Figure 4.1(c) and

4.1(d), and they were used to determine the ordering temperatures T C, which re-

sulted to be 59.1(1) K for the pristine sample, and 58.9(1) K for the Ni substituted

sample.

4.1.2 Diffraction on SALSA

Neutron diffraction measurements were collected on the Ni substituted sample to

investigate the presence of possible residual strain in the crystal structure. To look

for a possible deformation of the crystal structure, the sample was aligned with the

[110] crystallographic direction in the scattering plane and the [11̄0] perpendicular

to it. In this orientation, the sample was rotated around its vertical axis to select a

2θ = 63.5◦ to centre the position-sensitive detector on the Bragg reflection coming

from the (440) plane. The intensity and position on the detector (2θ) of this Bragg
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reflection was mapped across the sample with a neutron beam collimated to a voxel

size of 0.5 × 0.5 × 2 mm3. The measurements were repeated at room temperature

and zero applied magnetic field, and at 56 K and 22 mT. The data was reduced and

analyzed with Large Array Manipulation Program [107].

4.1.3 X-ray Tomography

The sample volume and shape were studied with X-ray tomography measurements

performed on NeXT instrument at the ILL [108] at room temperature and zero

magnetic field. A polychromatic X-ray beam at 120 kV, 60 µA was collimated to

a voxel size of 20 µm. A tin filter of 500 µm was added to cut low wavelengths,

producing an X-ray beam peaking at 50 keV. The sample was mounted on a rotation

stage. Transmission images were recorded as a function of sample rotation till

the sample was fully illuminated. The tomography resulted in 1312 images, each

recorded as an average of 7 single frames, each one with an exposition of 0.3 s.

4.1.4 Density Functional Theory calculations

To determine the Young’s modulus of Cu2OSeO3, we used the plane-wave basis-

set electronic structure code CASTEP [109] and worked within the generalized-

gradient approximation (GGA) using the PBE functional [110]. We used a plane-

wave cutoff energy of 1000 eV and a 5×5×5 Monkhorst-Pack grid [111] for Brillouin

zone sampling, resulting in stresses that converged to 0.1 GPa. Elastic constants

were obtained by applying a series of strains to the unit cell and calculating the

corresponding stresses.

4.2 Results

Figure 4.2(a) and 4.2(b) shown the magnetic phase diagrams of both the pristine

and Ni substituted samples, respectively, derived by AC susceptibility χ′. The mea-

surements were performed FC in 22 mT in a range of target temperatures between

49 K and 61 K, and then performing increasing scans. The systems were then reset

and FC again in 22 mT to the same target temperatures, then performing decreas-

ing field scans. The features in these scans identify the different magnetic states

present in the samples at the range of temperature and magnetic field explored. In

Figure 4.3 are presented the χ′ measurements at 57.5 K and 50 K for both samples.

The low intensity value measured at zero applied field corresponds to the helical

state. When the field is increased, the intensity increases as the system passes into
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Figure 4.2: (a), (b): Magnetic phase diagrams of the pristine and Ni substituted
samples, respectively. The colourmap plots the real component of the AC suscep-
tibility, χ′, as a function of temperature and applied magnetic field. The different
magnetic states are labelled: helical (H), conical (C), skyrmion (S), metastable
skyrmion (MS-S), uniform magnetisation (UM). The phase diagrams have been col-
lected field cooling (FC).

the conical state. The lower intensity region for fields around 20 mT at temperatures

around 58 K corresponds to the skyrmion state [112]. By further increasing the field,

the intensity increased again when the sample entered conical state a second time

and abruptly decreases for high applied magnetic fields, when the sample passes in

the paramagnetic state.

Little difference is observed between the pristine and Ni substituted samples

at 57.5 K, as depicted in Figure 4.3(a) and 4.3(b). In these panels are also shown

the imaginary components of the susceptibility, χ′′. The peaks in χ′′ identify the

transition regions between the conical and skyrmion states, and between the helical

and conical sates. These peaks arise from magnetic excitations at the boundaries

between different magnetic states of the sample [112]. To facilitate the comparison

between the signals of the two different samples, the peaks of the imaginary com-

ponents of the susceptibility were normalised to the highest measured value of χ′′

in the pristine sample, at 57.5 K.

In Figure 4.3(c) and 4.3(d) are shown the real and imaginary part of the

susceptibility collected for both samples at 50 K zero field cooling (ZFC) and field

cooling (FC). From the comparison of the curves between the two samples, it is

possible to notice that in the FC data of the Ni substituted sample, the value of

χ′ is reduced more significantly than for the pristine sample around 20 mT. This

reduction is observed at all temperatures and indicates the creation of a metastable

skyrmion state due to the FC across the skyrmion pocket [42, 56, 75]. The in-
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Figure 4.3: AC susceptibility measurements performed at 57.5 K (a, b) and 50.0 K,
(c, d) following the ZFC (purple circles) and FC in 22 mT (orange triangles) plot-
ted as a function of the applied field for the pristine (a, c) and substituted (b, d)
samples. The real and imaginary components are denoted by the filled and out-
lined markers, respectively. Vertical lines indicate phase boundaries determined by
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pristine sample at 57.5 K. All the helical (H), conical (C), skyrmion (S), metastable
skyrmion (MS-S), uniform magnetisation (UM) and paramagnetic (PM) states are
labelled.
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(Figure 4.3).

creased reduction of the χ′ data in the Ni substituted sample indicates an increased

metastable skyrmion population, suggesting that the substitution of Cu ions with

magnetic Ni ions affected the metastable skyrmion state in a similar manner than

what reported for Zn substituted Cu2OSeO3 [49].

The χ′′ component at 50 K shows broader peaks in the Ni substituted sample

Figure 4.3(d) rather than in the pristine Figure 4.3(c). This characteristic has

been previously observed in Zn substituted Cu2OSeO3, and it was attributed to

pinning effects on the different magnetic states introduced by the dopant [113].

Moreover, in both samples, two peaks are present in the ZFC χ′′ data, indicating

the reorientation of different helical domains when the field is applied along the

[110] direction, already observed in pristine Cu2OSeO3. It was shown that this

reorientation was suppressed in Zn substituted Cu2OSeO3 [113], suggesting that

the Ni substitution affect the magnetic phase transitions in a completely different

manner than the Zn substitution.

The Ni substituted sample phase diagram was also derived from SANS mea-

surements, and it is shown in Figure 4.4(a). The equilibrium skyrmion pocket

is enlarged compared to the pristine sample, in agreement with the magnetome-

try measurements in Figures 4.2(a) and 4.2(b). This enlargement of the skyrmion

pocket was also previously reported for polycrystalline samples of Ni substituted

Cu2OSeO3 [70, 72].

During the SANS measurements, it was possible to characterise the ordering
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of each magnetic state of the samples. The skyrmion lattice state was studied

with the magnetic field applied parallel to the incoming neutron beam and it was

identified by the typical hexagonal scattering pattern, shown for the Ni substituted

sample in Figure 4.4(b). The helical state was also studied in the parallel geometry,

where the helical domain visible was the one pinned along the [001] crystal axis and

characterised on the detector by two horizontal spots. The conical state was studied

in the perpendicular geometry, where the magnetic field was applied perpendicular

to the incoming neutron beam, and it was also characterized by two horizontal

diffraction spots. The scattering patterns of each magnetic states formed at specific

values of momentum transfer, or q. The one measured for the skyrmion state

was qSkX = 0.0103(1) Å−1, the same value, within experimental uncertainty, as

that measured for the helical state qh = 0.0104(1) Å−1. The corresponding lattice

spacing of the skyrmion state was dSkX = 2π
qSkX

' 607(8) Å, in agreement with

previously published work on the pristine and Zn substituted samples [2, 49].

To study the full scattered intensity of the horizontal diffraction spots of the

skyrmion state, rocking curves were collected in the centre of the skyrmion pocket

for both samples and are presented in Figure 4.5(a) for the Ni substituted sample

and in Figure 4.5(b) for the pristine one. In both cases, the rocking curves display

multiple peaks, one near to ω = 0◦ and a second one, less intense, at higher rocking

angles. The data fit well to the sum of two Lorentzian functions, one for each peak,

indicating the presence of two skyrmion domains tilting away differently from the

direction of the applied magnetic field, and with a different spread of angles. These

domains are in addition to the one azimuthally rotated by 30◦ that can be observed
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Figure 4.6: (a) Rocking curves recorded in the equilibrium skyrmion state with a
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the eye that identify the edges between adjacent surfaces. The symbols are a guide
to the eye to identify the positions at which each of the rocking curves in panel (a)
were measured.

on the detector plane in Figure 4.4(b), as they lie on the plane perpendicular to the

detector. In order to ascertain how the multiple skyrmion domains were distributed

within the sample, a 1 mm aperture of the neutron beam was utilised to selectively

study specific areas of the sample, and spatially resolve its magnetic features.

Rocking curves, presented in Figure 4.6(a), were collected with a 1 mm aper-

ture in the equilibrium skyrmion pocket, translating the Ni substituted sample across

its horizontal axis in 0.5 mm steps, as displayed in Figure 4.6(b). The rocking curves’

features change dramatically at each step across the sample surface: towards the

edge of the sample, the rocking curves are wider and peak away from the direction

of the applied magnetic field. Moving towards the centre of the sample, the rocking

curves peaks shift towards ω = 0◦ and become sharper, indicating skyrmion domains

better aligned with the direction of the applied field.

The spatial dependence of the conical and skyrmion structures was thor-

oughly investigated with a detailed set of rocking curves collected across the sam-

ple’s horizontal axis, on the line indicated by the symbols in Figure 4.6(b). As the

rocking curves provide information on the ordering of the magnetic stated in the

same direction as the neutron bean, hence perpendicularly to the detector plane,

to help with the visualisation of their characteristics, Figure 4.7 was created. Here

a three dimensional representation of each rocking curve is given at each different

position on the sample. Each cone correspond to one fitted Lorentzian function to

68



the rocking curve data of the horizontal diffraction spots. The length of the cones is

proportional to the fitted maximum intensity, the width of the cones is proportional

to the FWHM of the peak, and the orientation of the cones is proportional to the

tilting angle of the rocking curve, hence the fitted position of the peak.

To spatially resolve the characteristics of the conical state structure, the mag-

netic field was applied perpendicular to the incoming neutron beam, along the [001]

crystal axis. This magnetic state produced two horizontal diffraction spots at the

detector position, identifying the spatial variation of the conical state. The conical

state was measured at 50 K at both 8 mT and 30 mT, as shown in Figures 4.7(a) and

4.7(b), respectively. For the lower field, are reported multiple cones in several sam-

ple positions. This indicated multiple conical domains tilting away differently from

the direction of the applied magnetic field. As the field was increased to 30 mT, the

multi domains present in the plane perpendicular to the detector were suppressed

in favour of single peaking rocking curves varying smoothly across the sample. The

tilting of the conical domains was overall comparable between the low and high field

measurements, however an increased tilting was observed locally at the edges of the

sample.

The detailed spatially resolved scan of the skyrmion lattice across the sample,

performed at 56 K and 30 mT, is presented in Figure 4.7(c). Overall, the rocking

curves collected do not show a smooth modification of their characteristics across

the scan, in contrast to the conical state scan performed at the same applied mag-

netic field. The sample’s right side displayed both multiple sets of six-fold scattering

patterns, indicating multiple skyrmion domains on the detector plane, and multiple

peaks in the rocking curve profile, indicating multiple skyrmion domains also in the

plane perpendicular to the detector. The left side of the sample was instead char-

acterised by a more uniform lattice, presenting only one six-fold scattering pattern,

although still showing multiple peaks in the rocking curves of the horizontal scat-

tering spots. Focusing on the left side of the sample, a decrease of the tilting angle

of the skyrmion tubes was observed as moving from the edge to the centre. The

skyrmion domains were tilting strongly up to an angle of ±4◦ away from the applied

magnetic field direction, compared with the thinner and more aligned rocking curves

measured in the centre.

The increased tilting of the conical and skyrmion domains at the edges of

the sample compared to its centre shows a difference in the alignment of the mag-

netic texture between the edges and centre of the sample. In combination with

the increased tilting observed at the edge of the sample in the conical state when

increasing field, these effects indicate a strong influence of demagnetisation on the
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magnetic textures structures linked to the complex shape of our singe crystal. A

similar effect was previously observed on the skyrmion state in MnSi and attributed

to demagnetisation fields [114], consistent with our observations.

4.3 Equilibrium skyrmion region

In the complex map of the skyrmion lattice, two regions of the sample were chosen

to focus on that hosted two different skyrmion states, identified in Figure 4.7(c) by a

purple square and a yellow triangle, and shown in detail in Figures 4.8, 4.9 and 4.10.

The first area was chosen towards the centre of the sample and was characterised

by a rocking curve showing one main peak, mostly aligned to the direction of the

applied magnetic field as it was peaking at ω = 0.65(5)◦, as shown in Figure 4.8(a).

The second region of interest was chosen towards the edge of the sample, where the

rocking curve of the skyrmion state showed a double peaking rocking curve with

main angles ω1 = −3.5(1)◦ and ω2 = −1.2(1)◦, significantly tilting away from the

direction of the applied field, as shown in Figure 4.8(b). The characteristics of the

rocking curves in these two regions taken together represent the main features of

the rocking curve collected illuminating the whole sample, where the main peak was

found at ω ≈ -1◦, and a second one was observed at ω ≈ 3.5◦, as shown in the double

fit in Figure 4.5(a). The similarity in the positions of the peaks of the rocking curve

of the fully illuminated sample, with the position of the peaks of the rocking curve

in the centre and at the edge of it, suggested that focusing on these two specific

areas could be representative of the general behaviour of also other regions of the

sample that were not detailed during these measurements. We refer to these two

selected regions of the sample as “centre” and “edge”.

In addition to the differences that were observed in the structure of the

skyrmion lattice, remarkably these two regions of interest displayed significantly

different skyrmion pockets, extending over different regions in magnetic field and

temperature, as shown in Figure 4.9(a) and 4.9(b). The skyrmion domain present

in the centre of the sample existed over a region of the phase diagram similar to

the one that was identified for the fully illuminated sample both with neutron and

AC susceptibility, as shown by the comparison of Figures 4.9(a), 4.4(a) and 4.2(b).

Instead, the edge skyrmion domain displayed a skyrmion pocket twice as much

extended in temperature rather than in the central area but maintained a similar

field range.

To identify the presence of these specific skyrmion domains across the sample,

Figures 4.10(a) and 4.10(a) were produced. The skyrmion scattered intensity was
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Figure 4.7: (a), (b): scattering patterns of the conical state at 30 mT and 8 mT,
50 K, collected across the sample surface in steps of 0.5 mm. (c) : scattering patterns
of the skyrmion state at 30 mT, 56 K, collected across the sample surface in steps
of 0.5 mm. In each case, the rocking curves of the horizontal spots in the scattering
patterns were analysed, and their characteristics are reported by the cones above
the scattering patterns. The rocking curves were fitted to a suitable combination
of Lorentzian functions: each cone corresponds to one of these functions. Where
multiple cones are present, the rocking curves were characterised by multiple peaks,
hence fitted to the sum of multiple Lorentzian functions. The intensity of the fitted
curves is proportional to cones’ height, and in the skyrmion case this height was
multiplied by 10 compared to that of the conical state. The FWHM of the fitted
curves is proportional to the cones’ width, in the range from 0.3◦ to 5◦. The centre
of the fitted curves is proportional to the cones’ tilting angle, in a range going from
−4◦ to +4◦. The direction of the applied field and the neutron beam are shown in
the top left of each panel. Where multiple domains were visible in the scattering
patterns of the skyrmion state, the pairs of spots analysed were boxed and colour
coded in the same way as the corresponding cones.
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Figure 4.8: (a), (b): mid-pocket rocking curves collected towards the centre of
the sample and at its edge, respectively, showing the differently oriented skyrmion
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Figure 4.9: In (a) is shown the phase diagram measured at the centre of the sample,
while in (b) the one measured at the edge. The skyrmion pocket appears enlarged
in temperature at the edge of the sample compared to the centre. The white dots
in the diagrams correspond to the H - T parameters at which the lifetime of the
metastable skyrmion state was measured in each area. The stars indicate the point at
which the rocking curves in Figure 4.8 were measured. The white triangles indicate
the H - T conditions under which the graphs in Figure 4.10 were measured.
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Figure 4.10: In this figure, the presence of the aligned (centered) skyrmion domain
(a) and misaligned (edge) skyrmion domain (b) is measured across the sample. The
colour map was constructed interpolating three horizontal scans performed with
1 mm aperture at three different y positions, in steps of 1 mm.

recorded at ω = −0.65◦ in the centre position, and at ω = 3.1◦ at the edge position,

in three horizontal scans across the sample, performed at y = -1, 0 and 1 mm. The

edge skyrmion domain was principally located on the left side of the sample, where

we found the broadest rocking curves and the highest average tilts away from the

applied magnetic field direction.

The structural differences of the skyrmion lattice across the sample identified

in the edge and central position and the localised presence of the edge domains are

effects consistent with strong demagnetisation effects [114] linked to the complex

shape of the sample, which is shown in Figure 4.11(b). Specifically, thanks to the

complementary X-ray tomography measurements, it was possible to identify a cavity

inside the sample which position corresponds to the right side of the rocking curve

scan presented in Figure 4.7(c). The skyrmion lattice structure between x = 0 and

2 mm is significantly affected by the presence of this cavity, which is consistent

with demagnetisation effects coming from the inner structure of this small void in

the sample. As the demagnetizing field changes the value of the internal field in the

sample according to its shape, small shifts in the magnetic field extent and position of

the skyrmion pocket could be expected in different areas. However, demagnetisation

effects cannot explain the substantial enhancement of the temperature range of the

skyrmion pocket observed at the sample’s edge.

Non-uniform residual strain across the sample could be responsible for this

disparity in the skyrmion pocket size, as previously shown for bulk skyrmion hosts

under uniaxial stress [59–61]. This possibility was investigated with neutron diffrac-

tion on the SALSA beamline in ILL.
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Figure 4.11: (a): map of the intensity of the (044) Bragg peak. (b) mid height slice
of sample in the x -z plane derived from X-ray tomography. Both the neutron beam
and the magnetic field direction are indicated and refer to the SANS experiment’s
geometry. A cavity is visible on the right side of the sample. The shaded areas
marked with the yellow triangle and the blue square refer to the edge and central
skyrmion domains’ positions, respectively. (c): fractional variation of the crystal
lattice d -spacing across the sample. (d): neutron Laue image of the sample.
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The neutron diffraction measurements were carried out at room temperature,

zero applied magnetic field, and at 56 K in a field of 22 mT, to verify whether

the temperature change or the application of an external field would influence the

internal strain of the sample. The (044) Bragg reflection was positioned at the

centre of the position-sensitive detector, then the sample was translated in the beam,

mapping out the position and intensity of the reflection across the sample. Firstly,

a rocking curve of this diffraction spot was taken illuminating the centre of the

sample to identify the angle of the (044) peak (FWHM ≈ 1◦), and then scanned

across the sample at this fixed angle to map the peak intensity. This data is shown

in Figure 4.11(a).

The variation of intensity of the peak recorded during the measurements was

due to two main factors. Firstly, as the rocking curve of the Bragg reflection had

a narrow width, a decrease in intensity could correspond to a change in its mean

direction, in its width, or both. However, the sample’s structure was inspected with

a neutron Laue instrument, illuminating the whole sample, and showed no defects

in its single crystal structure, Figure 4.11(d). Hence, the variations expected in the

mosaic spread were on the scale of a fraction of a degree. Secondly, the intensity

variation of the (044) Bragg peak across the sample could be due to a variation

in the sample volume illuminated. The complex shape of the sample, combined

with the small cavity located with X-ray tomography, (Figure 4.11(b)) meant that

different volumes of the sample were illuminated at different positions of the sample

scan, which was expected to be the main contribution to this intensity variation.

The main objective of these measurements was to identify any variation of

the fitted 2θ position of the Bragg reflection on the detector, hence any variation of

the d -spacing of the (044) planes, indicating a variation in the residual strain in the

sample. In Figure 4.11(c) is presented the mapping of the fractional variation of the

d -spacing as a function of position in the sample at 56 K, 22 mT, up to a precision

of 10−4. No variation of the internal residual strain in any area of the sample

was observed, as no variation of the d -spacing was observed across the sample.

A 0.09% difference was observed between the room temperature, zero magnetic

field measurement and the 56 K, 22 mT measurement, consistent with the thermal

contraction expected for this material [89], which suggests the absence of strain

induced by the magnetism below T C.

The skyrmion pocket extension we observe in our measurements at the edge

of the sample is comparable to what previously reported in [61], where uniaxial

stress was applied to a single crystal of Cu2OSeO3. Our results would have required

an applied stress of the order of 100 MPa to have produced an equivalent change
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of the size of the pocket. To quantify the associated change in the d -spacing with

the stated applied uniaxial pressure that was reported in [61], the Young’s modulus

of Cu2OSeO3 was calculated using density functional theory, and determined to be

67(9) GPa. Assuming that a stress of 100 MPa is necessary to obtain the extended

skyrmion pocket measured at the edge of our sample, with the calculated Young’s

modulus, a difference of 1.5× 10−3 is expected between the d -spacing at the centre

and at the edge of the sample, well above the sensitivity of the neutron diffraction

measurements of 10−4. As no variation of the lattice parameter was observed on

this scale, strain is not the cause of the skyrmion pocket expansion.

4.4 Skyrmion Metastability

As previously discussed in Section 1.1.4, a metastable skyrmion state can be created

via rapid field cooling (RFC) through the skyrmion pocket to low temperatures.

Such skyrmion state decays over time in the actual magnetic ground state of the

system studied. To study the decay of the metastable skyrmion state, it is important

to select the target temperatures of the RFC procedure to produce a metastable

state with a lifetime suitable for the time resolution provided by the technique

used. According to previously reported measurements on pristine and Zn substituted

Cu2OSeO3, lifetimes of minutes to hours were expected when RFC in 22 mT to

54.5 K, 54.75 K and 55 K, suitable for the neutron scattering experiment. However,

for these target temperatures, the sample would have still been in the equilibrium

skyrmion state at the edge, as shown in 4.9(b). To maintain the same range of

lifetimes while maintaining the same target temperatures for the RFC, the magnetic

field was adjusted to 16 mT for the metastable measurements at the edge of the

sample. In both areas, the lifetimes were measured by collecting single scattering

patterns sequentially at single rocking angles, corresponding to the peak of the

rocking curves measured in the equilibrium pocket.

The lifetimes of the central metastable skyrmion state were determined fitting

the decaying intensity to a single exponential with the addition of a flat background,

I = y0 + I0exp(−t/τ). The characteristic times obtained for each measurements

were: τ(54.5 K) = 2978(56) s, τ(54.75 K) = 768(11) s, τ(55 K) = 356(5) s. As

expected from previous measurement on pristine and Zn substituted Cu2OSeO3

samples, the lifetimes decrease when increasing temperature. An increase of the

characteristic lifetimes was observed compared to the ones reported for the pristine

case [49], as supported by the magnetometry measurements shown in Figures 4.3(c)

and 4.3(d). The lifetimes can be modelled using a modified Arrhenius’s law, as
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Figure 4.12: (a): lifetimes measured in the centre of the sample, FC in 22 mT
to 55 K, 54.75 K and 54.5 K. (b) lifetimes measured at the edge of the sample,
FC in 16 mT to 55 K and 54.5 K. The solid lines correspond to the fit of the
data to a single decaying exponential with an added background. (c), (d): sum of
scattering patterns over full rocking scans performed ∼ 4000 s after the beginning
of the lifetime measurements of the edge metastable skyrmion state at 55 K and
54.5 K respectively. The shaded areas highlight the parts of the detector where it
was possible to observe scattering from the skyrmion lattice.
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previously reported other work on metastable skyrmion states [34, 49, 67, 75]. The

modified Arrhenius law used to fit the data was

τ(T ) = τ0e
a(T−TC )

kBT , (4.1)

expressing the temperature dependence of the metastable skyrmion state’s

lifetime in terms of the activation energy of the decaying process. From the fit of the

data, we extracted the activation energy parameter, |a| = 209(36), and the attempt

time, τ0 = 9(3) s. These results are comparable with what was reported for the

CoZnMn alloys in [34]. Moreover, an increase in the activation energy parameter a,

compared to pristine and Zn substituted Cu2OSeO3 [49], is also observed.

Remarkably, the edge metastable skyrmion state did not show a clear time

dependence at any of the selected target temperatures, as shown in Figure 4.12(b),

compared to the lifetimes measured at the centre of the sample, shown in Fig-

ure 4.12(a). Overall, it was possible to notice a small decay of the scattered intensity

over time, however the scattered intensity never approached zero, and the scattering

pattern of the skyrmion lattice was visible at the end of the measurements, as shown

in Figures 4.12(c) and 4.12(d). The scattered intensity was fitted to a decaying ex-

ponential with the addition of a flat background, similarly to the central state, but

with poorer results compared to the central metastable state, mainly caused by the

almost flat time dependency observed.

The results of both the fits of the central and edge metastable lifetimes are

reported in Table 4.1. For the edge state, it is worth noticing that while for the 55 K

data, the fit catches the early time small decay of the intensity. The fit of the 54.5

K data instead was more difficult, as the intensity variation over time is very small

and on very long times, as showed by the fitting results indicating a characteristic

time of 6500 s with an error of 9600 s, as reported in Table 4.1. Moreover, while

for the central skyrmion state the fitted amplitude A is orders of magnitude bigger

than the added flat background y0, for the edge state the value of y0 is indeed bigger

than A, as reported in Table 4.1. In particular, the fact that the fitted amplitude

result was just a fraction of the fitted flat background indicates the presence of a

stable skyrmion structure, although presenting a long time dependence.

The fit results were used to produce the Arrhenius plot for both the central

and edge states, as shown in Figure 4.13. Similarly to [34, 49, 67, 75], the data of

both skyrmion states were fitted to a modified Arrhenius law, τ(T ) = τ0e
a(T−TC )

kBT ,

expressing the temperature dependence of the metastable skyrmion state’s lifetime

in terms of the activation energy of the decaying process. From the fit, the activation
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Figure 4.13: Arrhenius plot for the lifetime fits Figure 4.12. The data were fitted to
a modified Arrhenius-like law. From the linear fit of the data, the activation energy
parameter a and the attempt time τ0 were extracted.

T y0 A τ

K Value Std.Err. Value Std.Err. Value Std.Err.

E
54.5 1.26735E-4 4.2698E-5 4.39564E-5 3.97145E-5 6560 9684
55 2.17033E-4 3.07601E-6 4.12181E-5 5.706E-6 1576 527

C
54.5 1.24635E-4 3.93613E-5 0.00563 3.00824E-5 2978 56
54.75 2.61165E-4 9.94339E-6 0.0074 1.19347E-4 768 11
55 3.17443E-4 4.74491E-6 0.00445 8.39528E-5 356 5

Table 4.1: Fitted values of y0, A, and τ for both the edge (E row) and central (C
row) metastable skyrmion states.
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Figure 4.14: Field warming scans performed in the centre and on the sample’s edge,
respectively. In each panel, the history of the measurement is indicated in the
inset. The lifetimes’ target temperatures shown in Figure 4.12 are marked on the
temperature axis by coloured filled circles. Their colour matches the colour with
which the lifetime measured at different temperatures are indicated in Figure 4.12.

energy parameter a and the attempt time τ0 were extracted. For the central domain

|aC | = 209(36) and τ0C = 9(3) s. These results are comparable with what was

reported for the CoZnMn alloys in [34]. Moreover, an increase in the activation

energy parameter a, compared to pristine and Zn substituted Cu2OSeO3 [49], is

also observed.

The Arrhenius plot of the edge data was of more difficult interpretation,

given the poor quality of the lifetime fit and the stable component identified for the

edge state. For this reason, although indicative of a possible change in the energy

barrier and in the attempt time, the Arrhenius fit of the edge metastable lifetimes

was not considered successful. Further measurements are needed to ascertain the

actual time dependency of the metastable edge skyrmion state.

In Figures 4.14(a) and 4.14(b), we show the extent of the skyrmion pocket

in the centre and at the edge of the sample, measured field warming after ZFC

to 52 K. This demonstrates that the target temperatures chosen for the lifetime

measurements, indicated by the coloured dots in both panels, were outside the

equilibrium region of the skyrmion state both at 22 mT in the central area of the

sample and at 16 mT at the edge.

4.5 Conclusions

Our measurements showed several differences between the skyrmion state at the edge

and at the centre of the sample. These differences affected the skyrmion pocket

80



size, hence the stability of the skyrmion state (Figure 4.9(a) and 4.9(b)). They

also affected the metastable skyrmion state (Figure 4.12(a) and 4.12(b)) and the

skyrmion lattice structure (Figure 4.8(a) and 4.8(b)).

Demagnetisation effects explain the structural differences observed in the

skyrmion lattice. In fact, from Figure 4.11(b), it is possible to notice that the shape

of the sample is different between the two areas studied: the edge area is charac-

terised by two surfaces, perpendicular to the incoming neutron beam, which are at

approximately 45◦ to the applied field direction. The edge area is instead charac-

terised by two surfaces almost parallel to each other and almost perpendicular to the

applied field. The demagnetising field is responsible for variations in the direction

and strength of the internal field [115], and these variations can explain the rocking

curve profile of the skyrmion and conical state observed along the horizontal axis of

the sample. The rocking curves at the edge presented higher tilting angles and wider

profiles compared to the centre area. As both the skyrmion state and conical state

align along the applied magnetic field’s direction, these tiltings correspond to the

tilt of the internal field lines, compared to the applied field, induced by demagneti-

sation effects due to the complex shape of the sample in this area. The observation

of an increase of the tilting in the conical rocking curves when the external field

strength is increased, shown in Figure 4.7(b), supports the demagnetisation as the

main responsible for these structural differences, as this would accentuate the effects

of the demagnetising field.

These results are supported by a previous work on MnSi, where on a disc-

shaped sample, it was observed a broadening and a tilting of the skyrmion domains

at the edges [114]. This is largely consistent with our observations. However, in

the same study, the demagnetisation field affected the strength of the internal field

significantly, inducing the nucleation of the skyrmion state at lower fields at the edge

of the disc-shaped sample, compared to the centre [114]. We did not observe any

measurable shift in field of the skyrmion pocket in our sample, instead we observed

a surprising enhancement of the temperature range of the skyrmion pocket at the

edge, compared to the centre. Demagnetisation effects alone do not account for the

increased size of the skyrmion pocket.

A possible explanation for the observed enlargement of the skyrmion pocket is

an uneven distribution of Ni content across the sample, as it has already been shown

that an increase of Ni content is related to an expansion of the temperature range of

the skyrmion pocket in Ni substituted Cu2OSeO3 [72]. However, the increased size of

the skyrmion pocket is also accompanied by an increase in the ordering temperature

T C, hence a change in the boundary between the paramagnetic and conical state.
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This boundary was measured in both areas of the sample, and resulted to be the

same within uncertainty, ruling out a possible non-uniformity of the Ni content in

the sample as an explanation for the enlarged skyrmion pocket in the edge area of

the sample.

A steady value of T C with a simultaneous extension of the temperature

range of the skyrmion pocket towards lower temperatures is characteristics of the

application of uniaxial pressure [59–61]. However, this effect was ruled out by our

neutron diffraction measurements reported in Section 4.1.2.

Recently, the stability of individual skyrmions was related to the local order

surrounding them [79]. In their work, Peng and collaborators studied the decay

of metastable skyrmions in FeGe lamellae with Lorentz transmission electron mi-

croscopy, showing that isolated skyrmions have longer lifetimes, hence higher energy

barriers for the decay into the helical state, compared than skyrmions situated in

the interior of the lattice.

In [79] is observed how the local ordering surrounding a single skyrmion, its

position relative to the skyrmion lattice, influence its stability. In this context, the

skyrmion lattice’s stability can be assumed to be dependent on its local structure and

local perfection.As observed and discussed before, the rocking curves at the edge of

the sample characterised by high tilting angles, broader profiles and multiple peaks

are descriptive of a skyrmion lattice made of multiple skyrmion domains, tilting away

from the direction of the applied magnetic field differently. At the same time, the

centre of the sample is characterised by single peaking rocking curves almost aligned

with the direction of the external field and with smaller FWHM, descriptive of a more

ordered skyrmion lattice, compared to the edge area. Furthermore, the presence of

demagnetisation effects induces a co-existence of the skyrmion and conical phase, as

it was shown in a large part of the magnetic phase diagram of MnSi [114]. Given the

shape of the sample and our previous considerations on the higher demagnetisation

effects present in the sample’s edge area, a more pronounced co-existence of the

skyrmion and the conical state is expected in this area compared to the centre. At

the edge of the sample, the skyrmion lattice regularity is likely interrupted by the

conical state, and the skyrmions at the border with the conical state have a higher

stability than the skyrmions at the interior of the lattice [79]. A similar enhancement

of the skyrmion stability could be caused by different types of interruption of the

regularity of the skyrmion lattice, like the rotating neighbouring skyrmion domains.

These two contributions, based on the local ordering of the skyrmion state, may

explain the increased temperature range of the skyrmion pocket observed at the

edge of the sample.
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The unclear decaying behaviour observed at the edge is also worth discussing.

The measurements in this area of the sample were performed at a lower applied mag-

netic field than the measurements in the centre of the sample. This difference in

magnetic field is expected to change the metastable state’s lifetime between the two

areas. However, lower fields are generally associated with reduced lifetimes, rather

than increased ones [51], as shown in our measurements. Moreover, the metastable

state’s lifetime is expected to be determined by the temperature difference between

the target temperature of the cooling and the ordering temperature T C [34, 67, 75].

Since no change in T C was observed, one would expect the same Arrhenius temper-

ature dependence of the lifetime both at the edge and in the centre of the sample.

In this context, the unclear decaying behaviour observed at the edge of the sample

is also possibly related to the skyrmion lattice’s local ordering. In the presence of

several skyrmion domains with different metastable behaviours and different regions

of stability, it is possible to explain both the impossibility of fitting the decaying

data with a single decaying exponential and the persistent scattered intensity of the

skyrmion lattice presented in Figure 4.12(c) and 4.12(d).
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Chapter 5

Bloch points velocity

measurements in Zn substituted

Cu2OSeO3

The SANS measurements in this chapter were performed by M. Crisanti, Dr R.

Cubitt, Dr M. N. Wilson, Dr M. T. Birch. The data analysis was done by M.

Crisanti. The contents of this chapter will soon be submitted for publication.
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As mentioned in Section 1.1.4 and Chapter 4, the decay of the metastable

skyrmion state is a process mediated by Bloch points that have been largely studied

in several different samples and under different conditions [31, 42, 49, 51, 79]. The

decay happens in a two-stage process: firstly, a pair of Bloch points is nucleated,

and their subsequent motion across the length of the skyrmion tubes unwind the

topologically non trivial state into the competing helical or conical states. When the

skyrmion tubes decay into the helical state, the two Bloch points let two adjacent

skyrmion tubes merge together, and their motion along the length of the tubes acts

like a zipper [31]. When the decay is into the conical state, the pair of Bloch points

is created along one single skyrmion tube, and their subsequent motion away from

each other shortens the length of the tube [46, 74].

Most of the studies on the metastable skyrmion state focus on the mea-

surement of its lifetime and the consequent determination of the energy barrier of

the decay. Here we show how it is possible to determine the velocity of the Bloch

point movement with small angle neutron scattering. We measure the decay of the

metastable skyrmion state into the conical state in a single crystal of Zn substituted

Cu2OSeO3. It was observed that the chemical substitution induces a shift of the

skyrmion pocket, along with the whole H -T phase diagram toward lower temper-

atures [71, 72]. The Zn ions also affect the metastable skyrmion state, acting as

pinning sites that slow down the dynamic of the decay [49].

We analysed the decay through the length distribution of skyrmion tubes

pieces, which is exponential, leading to a constant velocity for the movement of the

Bloch points, which increases with the increasing of temperature.

5.1 Methods

A 2% Zn substituted single crystal of dimensions (3 × 2 × 2) mm3 was mounted

in a cryomagnet and aligned with the [110] crystal axis along the direction of the

neutron beam, and a [11̄0] axis vertical, perpendicular to the neutron beam. In the

process of vertical alignment to the neutron beam, a pair of Cadmium strips were

placed on top and at the bottom of the sample. The single crystal was grown by

chemical vapour transport, as reported in [71], and illustrated in Chapter 2.

The direction of the magnetic field at the sample position was determined

by aligning the scattering from the flux line lattice in superconducting Nb, as the

magnetic vortexes align with the direction of the applied magnetic field [106]. All

the measurements were performed with the magnetic field parallel to the neutron

beam, applied along the [110] crystal axis. The neutron beam had a collimation
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length of 7.8 m, and a wavelength of λ = 6 Å, with a FWHM fractional spread of

∆λ/λ = 10%. The scattered neutrons were detected 7.8 m after the sample with a

two-dimensional multi-detector.

The structure of the skyrmion lattice along the direction of the applied neu-

tron beam, hence the length of the skyrmion tubes, was studied collecting rocking

curves performed by rotating the cryomagnet and the sample together about their

vertical axis. The scattered intensity was measured as a function of this rocking

angle ω. ω = 0 was aligned to correspond to the direction of the applied magnetic

field parallel to the incoming neutron beam.

The skyrmion metastable state was created by field cooling (FC) at 7 K/min

from 60 K to several target temperatures in an applied field of 22 mT. The decay into

the conical state was sampled by collecting rocking curves repeatedly once the target

temperature was reached and stabilised. In all the measurements presented in this

work, a paramagnetic background, measured at 60 K and 22 mT, was subtracted

using GRASP software [116].

5.2 Results

Figure 5.1(a) shows the typical six-fold SANS pattern of the skyrmion state col-

lected at 54 K, 22 mT, in the equilibrium skyrmion pocket. From the scattering,

the momentum transfer was measured q = 0.01003(2) Å−1, corresponding to a char-

acteristic spacing of d = 2π/q = 62.7(9) nm, in agreement with what observed

before in the same compound [49], in pristine Cu2OSeO3 [2, 86], and in the Ni

substituted compound [80]. Figure 5.1(b) shows the rocking curve of the horizontal

diffraction spots in Figure 5.1(a). As discussed in Chapter 4, the characteristics of

the rocking curve give information on the structure of the skyrmion tubes along the

direction of the incoming neutron beam. Specifically, the presence of multiple peaks

identifies multiple skyrmion domains tilting away from the direction of the applied

magnetic field (ω = 0) by different angles. Moreover, the full width half maximum

(FWHM) of the rocking curves is inversely proportional to the correlation length of

the skyrmion tubes. The integrated intensity of the rocking curve is proportional

to the population of that skyrmion domain. The rocking curve of the equilibrium

skyrmion lattice shown in Figure 5.1(b) fitted to a sum of two Lorentzian functions,

hence the presence of two skyrmion domains was identified. The presence of mul-

tiple peaks indicate strong demagnetisation effects bending the internal field lines,

already shown in both MnSi [114] and (NixCu1−x)2OSeO3, discussed in the previous

chapter and published in [80].
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Figure 5.1: (a): small angle neutron scattering pattern measured in the middle
of the skyrmion pocket, at 54 K and 22 mT. (b): rocking curve of the horizontal
scattering spots of panel (a). The solid line corresponds to a fit of the data to a
sum of two Lorentzian functions centered at ω1 = −5.55(3)◦, ω2 = −5.75(6)◦.

The time dependent behaviour of the metastable skyrmion state was mea-

sured by the collection of rocking curves repeatedly over time, at each target tem-

perature. In this way, it was possible to follow both the intensity decay and the

time dependent behaviour of the structure of the skyrmion lattice. In Figure 5.2 are

shown the rocking curves collected at the beginning of these lifetime measurements.

The rocking curve collected at 49.5 K shown in Figure 5.2(a) fitted well to the sum

of two Lorentzian functions, indicated by the orange and purple lines, similarly to

what observed in the skyrmion pocket in Figure 5.1(b). The other data shown in

Figure 5.2(b-d), instead, fitted to a single Lorentzian function. However, as this set

of data was taken over a smaller ω range, it is possible that other peaks of these

rocking curves would show for ω outside the range. Another possibility is that ad-

ditional skyrmion domains, peaking within the rocking angle range, were not visible

due to their very broad FWHM profile.

To monitor the time dependent behaviour of the structure of the skyrmion

tubes and their lifetime, both the FWHMs and the amplitudes of the Lorentzian

functions fitted on the rocking curves are plotted versus time in Figure 5.3. For

the 49.5 K dataset, the only amplitude and FWHM show are the ones of the most

intense Lorentzian fitted (see Figure 5.2(a)), since it was identified as the main

component of the rocking curve. The time dependency of the amplitudes shown

in Figures 5.3(a, c, e, g) was fitted to a single exponential plus a flat background

y = y0 +exp(−t/τ). As it was discussed in Chapter 4, and shown in [80], demagneti-

sation effects can induce the presence of metastable skyrmion domains with different

lifetimes, according to the local ordering of the skyrmion lattice. For this reason,
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Figure 5.2: (a)-(d): first rocking curves recorded during the measurement of the
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the measurements were performed after rapid FC in 22 mT from 60 K to each
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lines in purple and orange. In panels (b) to (d), the solid line corresponds to a fit
of a single Lorentzian function.
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the added flat background takes into account those skyrmion domains which are

decaying with a lifetime far longer than the timescale of the measurements, which

were not visible in the rocking curve profile. In Figures 5.3(b, d, f, h) are shown the

time dependencies of the FWHM of the rocking curves. Each data set was fitted to

a linear function. The fitted slope value m is reported for each data set in the corre-

sponding panel of Figure 5.3. The FWHM variation between the beginning and the

end of the measurement was on the same order of magnitude as the mean error for

all temperatures, with the exception of 51.5 K, as shown in Figure 5.3(h). For this

data set, it is possible to notice that the amplitude time dependency deviated from

an exponential profile. In the inset of Figure 5.3(g), where the amplitude decay

is plotted in logarithmic scale, one can see the data do not follow a straight line

(corresponding to the fit to the decaying exponential). This behaviour is indicative

of the presence of metastable skyrmion domains with different decay times.

While the characteristic decay times decrease with increasing temperature,

the FWHMs of the rocking curves stay almost constant over time and their value

changes between ∼ 1.8◦ and ∼ 3◦ between different temperatures.

5.3 Discussion

It has previously been shown in MnSi [74] and in Fe0.5Co0.5Si [31, 51] that the

transformation of skyrmion tubes into another topologically trivial state of the mag-

netisation happens through the movement of Bloch points, singularities in the mag-

netisation state that exist at the point where two skyrmion tubes merge or where

one skyrmion tube breaks. The motion of these Bloch points lets the topologi-

cally non trivial skyrmion state unwind into the conical, helical or ferromagnetic

states. Recently, the various mechanism of decay of metastable skyrmion tubes in

Zn substituted Cu2OSeO3 were thoroughly investigated in [117].

As mentioned before, the decay of the metastable skyrmion state is a two-

stage process that starts with the nucleation of Bloch points. In the calculations

shown here, the main assumption is that once nucleated, the number of Bloch points

does not increase with time. Once nucleated, the Bloch points move across the

skyrmion tubes, whose length shorten over the time of the decay. One might as-

sume that the shortening of the lengths would correspond to a reduction in the

mean correlation length, hence an increase of the rocking curve’s FWHM over time.

Indeed, no significant change of FWHM with time was observed. However, as shown

below, this is what is expected for an exponential distribution of lengths where all

lengths are reduced over time with a constant velocity.
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Figure 5.3: (a),(c),(e),(g): Lifetime of the metastable skyrmion state at the selected
target temperatures, expressed by the time dependency of the fitted amplitude of
the Lorentzian functions to the rocking curves measured. (b),(d),(f),(h): time de-
pendency of the FWHM of the fitted Lorentzian functions to the rocking curves
measured. The data were fitted to a linear function y = mx+ y0. The fitted slope
value m is reported in each panel for each temperature. In panel (a) and (b), only
the amplitude and FWHM, respectively, of the main component of the rock are pre-
sented. The colour used for the data in panel (a) and (b) corresponds to the colour
of the fitted Lorentzian function in Figure 5.2(a), identifying the main component
studied.
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Let us consider one skyrmion tube broken at random by Bloch points. This

problem is analogous to the one of a stick of a finite length broken at random,

presented in [118]. Here the distribution of lengths is exactly calculated and proven

to be an exponential distribution, assuming that the breaking of the stick is a Poisson

process. Analogously, assuming the creation of Bloch points is as well a Poisson

process, the distribution of lengths obtained by randomly breaking a skyrmion tube

with them will be exponential:

P (x) = e
− x

x0 dx, (5.1)

where x0 is the mean length of the pieces of skyrmion tubes, and P (x) = 0

for x > Lmax, where Lmax is the sample size in the direction of the applied field.

Given this distribution of lengths, the sum of all of them should be proportional to

the scattered intensity, which can be written as:

T =

∫ Lmax

0
e
− x

x0 dx = x0

(
1− e−

Lmax
x0

)
. (5.2)

Equation 5.2 is valid as long as the number of Bloch points do not increase

with time. The weighted sum of the lengths is:

I =

∫ Lmax

0
x e
− x

x0 dx = x2
0

(
1− e−

Lmax
x0

)
− x0Lmaxe

−Lmax
x0 . (5.3)

From Equations 5.2 and 5.3 it is possible to write the expected value as:

x̄ =
I

T
= x0 −

Lmaxe
−Lmax

x0

1− e−
Lmax

x0

, (5.4)

which gives x̄ = x0 when Lmax is very big, as expected since Lmax is in

the order of mm and x0 in the order of nm. Let us now consider Bloch points

breaking the skyrmion tubes, and moving along them at a velocity v. In this case,

the probability distribution of lengths in Equation 5.1 shifts towards lower values of

lengths, as they are shortening by 2vt. For the same reason, the maximum length

is also shortening Lmax → Lmax− 2vt. In this case, Equation 5.1 can be written as:

P (x, t) = e
− (x+2vt)

x0 dx. (5.5)

While the total of all lengths, proportional to the scattered intensity, be-

comes:
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T (t) =

∫ Lmax−2vt

0
e
− (x+2vt)

x0 dx = x0e
− 2vt

x0

(
1− e−

(Lmax−2vt)
x0

)
, (5.6)

giving an intensity decaying exponentially with a characteristic time of τ =

x0/(2v), consistent with our observations. The time dependent weighted sum be-

comes:

I(t) =

∫ Lmax−2vt

0
x e
− (x+2vt)

x0 dx

= e
− 2vt

x0

(
x2

0

(
1− e−

Lmax−2vt
x0

)
− x0(Lmax − 2vt)e

−Lmax−2vt
x0

)
, (5.7)

giving a time dependent mean length of:

x̄(t) =
I(t)

T (t)
= x0 −

(Lmax − 2vt) e
− (Lmax−2vt)

x0

1− e−
(Lmax−2vt)

x0

, (5.8)

which is constant over time for 2vt << Lmax. As the correlation lengths

of the skyrmion tubes are in the order of 104 Å, four orders of magnitude smaller

than Lmax, Equation 5.8 supports the observation of a constant mean length of

the skyrmion tubes over time. The only target temperature at which the FWHM

shows a time dependence, presented in Figure 5.3(h), corresponded to a decaying

amplitude not showing a simple exponential decaying behaviour, as shown in the

inset of Figure 5.3(g).

In Figure 5.4 is presented the temperature dependence of the velocity of the

unwinding of the skyrmion tubes into the conical state. The calculated values of

the velocity support our assumption 2vt << Lmax, as the time needed to unwind

a skyrmion tube as long as Lmax is in the order of years for all the calculated

velocities. The velocity increases with increasing temperature but shows a valley

at 51 K. The increase with increasing temperature is in contrast with simulations

performed Bloch points dynamics in the decay of a single skyrmion string into the

helical state [46].

5.4 Conclusions

We observed the dynamic of Bloch points during the decay of the metastable

skyrmion lattice in a single crystal of Zn substituted Cu2OSeO3 with SANS. Specif-
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Figure 5.4: Temperature dependence of the unwrapping velocity of the skyrmion
tubes. The values were obtained following the calculations given in the text.

ically, it was possible to extract the velocity of the Bloch points moving along the

skyrmion tubes, and allowing the decay into the conical state. The velocity was cal-

culated from the decay’s characteristic lifetime, extracted from the time dependence

of the scattered intensity, and from the average correlation length of the skyrmion

tubes, extracted from the FWHM of the rocking curves of the skyrmion lattice. The

average correlation length of the skyrmion tubes remains constant over the time of

the decay. This effect is a direct consequence of the exponential distribution of

skyrmion tube’s lengths created by the nucleation of Bloch points at the beginning

of the decay process. The calculated velocity of the Bloch points increases linearly

with increasing temperature, as the thermal energy of the system is higher. Our

calculations relies on the assumption that the number of nucleated Bloch points at

the beginning of the decay does not increase over time. Moreover, we assumed that

the FWHM of the rocking curves is representative of the average distance between

two Bloch points along the skyrmion tube. However, the rocking curve width is also

related to the average correlation length of a skyrmion tube, in this case measured

along the direction of the applied magnetic field and incoming neutron beam. The

average correlation length is affected both by the actual length of the skyrmion

tubes, and by distortions present along their length. Both these characteristics are

responsible for the finite FWHM observed in the rocking curves, as thoroughly dis-

cussed in Chapter 4. There, the demagnetising field was shown to be responsible

for bending the internal magnetic field direction, followed by the skyrmon tubes.

This affected the FWHM of the rocking curves of the skyrmion lattice, and the cor-
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responding average correlation length measured. The demagnetising field was also

shown to be responsible for the coexistence of conical and skyrmion states. This

coexistence directly affected the length of the skyrmion tubes, resulting in wider

rocking curves, and affecting the average correlation length measured.

In a previous work [46], the decay of a single skyrmion tube was modelled with

different numerical methods, and the velocity of the Bloch points was predicted to

be weakly dependent on temperature, while decreasing with increasing temperature.

Although our observations differ from what predicted in [46], it is worth mentioning

that in this simulation work the skyrmion tubes were modelled to decay into the

helical state through the shortening of their length, instead of the zipper dynamic

which has more recently been identified as the decay behaviour when passing from

the skyrmion to the helical state [31, 51, 74, 117]. Further measurements, possibly

with different techniques, are needed to characterise the dynamic of Bloch points

fully.

With these measurements, we also highlight the versatility of small angle

neutron scattering. We show how it is possible to study both the structure of the

skyrmion lattice and the dynamic of Bloch points in its decay.
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Chapter 6

Summary and Conclusions

In this work, the properties of the skyrmion state have been studied with small

angle neutron scattering measurements in pristine and chemically substituted single

crystals of Cu2OSeO3. Particular attention has been given to the identification of

mechanisms that would affect the stability of the skyrmion lattice, as in hydrostatic

pressure and demagnetisation effects. Moreover, it is also shown how the metastable

skyrmion tubes’ unwinding mechanism can be studied through SANS measurements.

We observed minor distortions of the phase diagram of pristine Cu2OSeO3

under the application of quasi-hydrostatic pressure. A shift of the phase diagram is

observed towards higher temperatures, with a small enhancement of the skyrmion

pocket’s size, while the critical fields are only weakly affected. We concluded that

the main effects of the application of quasi-hydrostatic pressure are the increase

of the Dzyaloshinskii-Moriya interaction term and a concomitant increase of the

magnetic anisotropy, responsible for the increased size of the skyrmion pocket. We

identified quasi-hydrostatic pressure as a third thermodynamic variable that could

be exploited to stabilise skyrmions at higher temperatures. We also underlined the

importance of the choice of pressure transmitting medium, as the skyrmion stability

is the result of a fine interplay between magnetic interactions.

We also show the effect the macroscopic shape of the sample has on the sta-

bility and metastability of the skyrmion state on a big Ni substituted Cu2OSeO3

single crystal. Demagnetisation effects are usually disregarded as it is very difficult

to compute the correct demagnetising field of complex sample shapes. Nonetheless,

our measurements show how the demagnetising field can induce an enlargement of

the skyrmion pocket in specific areas of the sample, allowing the coexistence of the

conical and skyrmion states. This increased stability is yet to be completely under-

stood, as it relies on the local ordering of a topologically non trivial state. Moreover,
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the local ordering also affected the metastable skyrmion state decay, inducing a re-

markably long lifetime in certain areas of the sample. A more complete study of the

effects of the local ordering of the skyrmion lattice on its stability and metastability

would be of great interest to understand the link between a topologically non trivial

state’s stability and its ordering.

We also studied in detail the unwinding mechanism of metastable skyrmion

tubes in Zn substituted Cu2OSeO3. We provided a simple mathematical method

for the extraction of the velocity of the Bloch points motion in the decay from

the lifetime and the average correlation length of the skyrmion tubes. Considering a

number of Bloch points that do not increase with time, we observed a velocity of the

unwinding mechanism that increases with increasing temperature, as the thermal

energy of the system increases. Our measurements show how SANS can be used to

gather information on the dynamics of Bloch points, in addition to its more common

use for gathering information on the magnetic structure of materials.
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