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Abstract
The increasing value of data held in enterprisesmakes it an attractive target to attackers.
The increasing likelihood and impact of a cyber attack have highlighted the importance
of effective cyber risk estimation. We propose two methods for modelling Value-at-
Risk (VaR) which can be used for any time-series data. The first approach is based
on Quantile Autoregression (QAR), which can estimate VaR for different quantiles,
i. e. confidence levels. The second method, we term Competitive Quantile Autore-
gression (CQAR), dynamically re-estimates cyber risk as soon as new data becomes
available. Thismethod provides a theoretical guarantee that it asymptotically performs
as well as any QAR at any time point in the future. We show that these methods can
predict the size and inter-arrival time of cyber hacking breaches by running cover-
age tests. The proposed approaches allow to model a separate stochastic process for
each significance level and therefore provide more flexibility compared to previously
proposed techniques. We provide a fully reproducible code used for conducting the
experiments.
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1 Introduction

The prevalence and impact of cyber attacks on organisations are increasing at an
alarming rate. Risk estimation is an important task for any company or institution,
allowing them to predict and assess adverse events which can lead to financial and
reputation losses, enabling them to plan for and mitigate against these threats through
effective risk management.

Kaplan and Garrick (1981) define risk to be a set of triplets, which consist of a risk
scenario description, the probability of that scenario, and the consequence or evalua-
tion measure of that scenario, i.e., a measure of damage. Another definition of risk is
provided by Holton (2004), in which the risk comprises two components: uncertainty
and exposure. Indeed all definitions of risk require some form of assessment of the
likelihood of adverse events and their severity. A recent report by Jones and Tivnan
(2018) from the Department of Homeland Security provides a survey of risk metric
frameworks and risk models. One of the quantitative risk metrics described in the
report is Cyber Value-at-Risk (VaR), an adaptation of the financial VaR, for the quan-
tification of cyber security risk. VaR is one of the most important risk measurements
in finance and involves measuring the maximum loss over a preset horizon with a
pre-defined confidence level (Hull 2006). VaR has now found various applications in
cyber security areas. For example, Factor Analysis of Information Risk (FAIR), con-
sidered “an international standard information risk management model”, is based on
VaR. FAIR is defined as “a standard Value-at-Risk model for information and opera-
tional risk that helps information risk, cyber security and business executives measure,
manage, and communicate on information risk in a language that the business under-
stands, dollars and cents” (Jones and Tivnan 2018). Peng et al. (2016) used VaR to
estimate the probability of extreme cyber attacks over a pre-defined period of time.
Raugas et al. (2013) proposed a model to quantify the monetary VaR due to cyber
threats based on the Bayesian networks. The detailed model described the example
attack graph of unauthorized access to intellectual property. In this paper, we propose
a new methodology of estimation of VaR for cyber events.

In this paper, we aim to provide a framework that can model risks dynamically and
re-estimate cyber risk when new data becomes available. Many current risk methods
are based on manual risk analysis during the system’s design process. Some of the
examples of traditional qualitative methods include scenario analysis and question-
naires, which are heavily dependent on experts’ subjective opinions. On the other hand,
quantitative risk methods are usually based on unreliable data, and therefore their pre-
cision is prone to errors (Taubenberger et al. 2011). As a result, there is a lack of current
research on dynamic cyber risk estimation. Of the work that has been proposed for
dynamic risk modelling, a number of approaches are based on Hidden Markov Mod-
els (HMM). Arnes et al. (2005) proposed a real-time risk estimation method, which
aggregates data from several intrusion detection systems allowing dynamic estima-
tion of systemic risk using HMM. Li et al. (2018) developed a method to dynamically
model the risks of users’ activity patterns in social networks. The approach is based
on HMM and Bayesian Risk Graph model. Unlike the previous approaches, we do not
model the dynamics of the system states with HMM. Instead, we focus on time-series
data and propose a new method for dynamic estimation of VaR. System monitoring
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is essential to effective risk governance. The monitored data is usually a different
kind of time-series, such as various sensor data, login data, and intrusion and hacking
attempts. From a risk perspective, it is critical to estimate the probability of extreme
events. For example, we do not want to predict the mean or the median of hacking
attempts over a pre-defined period. Instead, we aim to assess the maximum number of
hacking attempts with the desired confidence. For this purpose, we suggest to model
VaR as a quantile of time-series, where each quantile corresponds to the desired confi-
dence level. These values of VaR can also be translated into the monetary equivalent.
For example, if we assume that each cyber hacking attempt costs one pound for a
company, we can estimate the budget allocation which should be devoted to secu-
rity defence. The proposed method builds upon the Weak Aggregating Algorithm for
Quantile Regression (WAAQR) (Dzhamtyrova and Kalnishkan 2020) and is adapted
to the case of time-series forecasting.

2 Related work

In this paper, we propose a new framework for dynamic estimation of VaR. Though
the proposed methods can be used to predict any types of time-series, we perform our
experiments on the Privacy Rights Clearinghouse (PRC), which contains the chronol-
ogy of the reported data breaches since January 2005. 1 The reasons are that this
dataset contains one of the largest cyber events data available online, it is regularly
updated, and it was studied before in the literature. Our analysis closely resembles the
analysis of Xu et al. (2018), however, we propose different modelling approaches of
hacking breaches. First, our methods can be applied to any kind of time-series data.
Second, the analysis of Xu et al. (2018) models the mean of inter-arrival times and
sizes, and then VaR is found by simulating 10,000 samples based on the estimated
copula. Instead, we suggest that each quantile of inter-arrival times and sizes of cyber
incidents can bemodelled with separate stochastic processes. Thoughwe do not inves-
tigate the relationship between inter-arrival times and sizes of breaches, we argue that
the proposed methods are more flexible in comparison to previous research as they
make fewer assumptions on the nature of the data, since each quantile of breach size
or inter-arrival time can be modelled with a separate stochastic process. In our experi-
ments, we first show that we can apply Quantile Autoregression (QAR) (Koenker and
Xiao 2006) to estimate VaR of hacking breaches. The Basel Committee recommends
assessing the quality of theVaRmodels by running some formof backtesting. Standard
backtesting methods include the Kupiec unconditional coverage test (Kupiec 1995)
and the Christoffersen conditional coverage test (Christoffersen 1998). We apply both
tests to assess the performance of QAR. The results show that for breach size QAR
fits well, and for an inter-arrival time, it rejects the null hypothesis of the conditional
coverage test of violation occurrence for one considered quantile. We then propose a
new framework, Competitive Quantile Autoregression (CQAR), which improves the
prediction of hacking breach inter-arrival times.

1 https://privacyrights.org/data-breaches.
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516 R. Dzhamtyrova, C. Maple

The proposed method CQAR is based on the competitive prediction approach,
where one algorithm ‘competes’ with other predictive algorithms. The goal is to pro-
vide a strategy that can guarantee a performance close to the best predictive models.
To solve the problem of competitive prediction, the Aggregating Algorithm (AA) was
proposed by Vovk (1990). The AA mixes the predictions of a number of models in a
similar manner to the Bayesian method, where the prediction is calculated based on
the model’s prior distribution and the data likelihood. Furthermore, the AA guaran-
tees that the loss of the resulting mixing strategy is as small as the best model’s plus
a constant for any time point in the future. The Weak Aggregating Algorithm (WAA)
was proposed by Kalnishkan and Vyugin (2008) as an alternative for the AA, which
provides better theoretical guarantees for some loss functions, such as the pinball loss,
which we consider in this paper. In the general case, both the AA and the WAA mix
and compete with a finite number of algorithms.

It is possible to construct strategies that combine infinite classes of functions and
provide theoretical guarantees compared to these classes. The Aggregating Algorithm
for Regression chooses the competitor strategies to be all linear functions (Vovk 2001).
The resulting strategy asymptotically performs aswell as any linear regression in terms
of the cumulative square loss. A similar approach is undertaken by Dzhamtyrova
and Kalnishkan (2020) to propose the Weak Aggregating Algorithm for Quantile
Regression. The strategy is a Bayesian mixture, which combines an infinite pool of
quantile regressions, and asymptotically predicts as well as any of them in terms of
the cumulative pinball loss. The algorithm was previously applied to probabilistic
forecasting of renewable energy where the prediction of renewable energy was made
based on the weather data; the approach showed a good performance. The proposed
algorithm CQAR is built on the WAAQR algorithm and is adapted to time-series
forecasting. Instead of mixing a class of quantile regressions, we suggest combining a
class ofQAR. It also has the property that it asymptotically predicts aswell as anyQAR.
We provide the pseudo-code of CQAR, which uses Metropolis-Hastlings sampling
(Andrieu et al. 2003) to calculate its predictions, however, it can be substitutedwith any
other sampling algorithm. We show that CQAR produces better results in comparison
to QAR for estimating VaR of hacking breach inter-arrival times. Another advantage
of CQAR is that it re-estimates cyber risks dynamically after new observations become
available.We also plot the average regret between CQAR and the best QAR depending
on time and show that it goes to zero as time increases. This empirically confirms the
theoretical guarantees of the method and shows that CQAR is asymptotically as good
as the best QAR which was trained on the training dataset.

3 Contributions

Our first contribution is a new analysis and adaptation of QAR for calculating cyber
VaR.To the best of our knowledge, itwas not done before. Themethod can be applied to
any time-series data. It is common to predict the mean or median values of time-series.
Some research also focuses on the prediction of extreme values. This analysis provides
a new way to model extreme values that also comes with the desired confidence level.
QAR allows tomodel VaR for each confidence level with a separate stochastic process,
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and hence allows more flexibility compared to previously proposed approaches in the
literature.

The second contribution is a new dynamic risk estimation method, Competitive
Quantile Autoregression (CQAR). There is a lack of research on dynamic cyber risk
estimation. CQAR allows to re-estimate cyber risk at each time step when new data
becomes available and works for any time-series data. An important property of this
approach is its theoretical guarantee that it asymptotically predicts as well as the best
QAR. The theoretical performance guarantees provide confidence in the prediction
as they will hold for any new unseen data, while at the same time the method allows
adapting to a changing environment. As with QAR, CQAR is also more flexible as it
models each quantile with a separate stochastic process.

The third contribution is the modelling of cyber data breaches with the proposed
methods. We show that both QAR and CQAR can be used to estimate VaR of
cyber breaches’ sizes and inter-arrival times. The coverage tests show a good fit of
both approaches. We show that CQAR provides better results for modelling hacking
breaches’ inter-arrival times compared to QAR.We also illustrate the behaviour of the
average regret between CQAR and QAR during the time and show that it conforms
to the theoretical bounds of CQAR. The comparison of CQAR and ARMA(1, 1)-
GARCH(1, 1) shows that the methods are on par with each other even though CQAR
uses much smaller data for training. The fully reproducible open-source code of our
implementation is available at GitHub. 2

4 Risk estimation with Quantile Autoregression

VaR is a widely used risk measurement in finance. VaRα is defined as the loss corre-
sponding to the α-quantile of the distribution of the gain in the value of the portfolio
over the next N days (Chapter 21.1 in Hull (2006)). In finance, VaR provides an esti-
mate of the maximum loss for a certain confidence level and is important for budget
allocation and financial reserves. Analogously, in cyber security, we want to estimate
possible losses of extreme cyber events, such as cyber attacks and subsequent data
losses. Accurate forecasting of these adverse events can allow an adaptation of risk
mitigation strategies and better financial planning.

Let the outcomes have a cumulative distribution FY (z), then we define

VaRα = inf{z : FY (z) ≥ α} (1)

as the α-quantile of Y . Then we can estimate VaRα as α-quantile of outcomes.
QAR, proposed by Koenker and Xiao (2006), allows to model each quantile of

outcomes with a separate autoregressive process. Let time-series yt to be the p-order
autoregressive process:

yt = θ0(Ut ) + θ1(Ut )yt−1 + · · · + θp(Ut )yt−p, (2)

where {Ut } is a sequence of i.i.d. standard uniform random variables. We want to
estimate the coefficients θ j , which are unknown functions [0, 1] → R. The αth con-

2 https://github.com/alan-turing-institute/dynamic_cyber_risk.
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ditional quantile of yt is:

Qyt (α|yt−1, yt−2, . . . , yt−p) = θ0(α) + θ1(α)yt−1 + · · · + θp(α)yt−p. (3)

Equation (3) can be rewritten in analogous to the definition of quantile regression
(Koenker and Bassett 1978):

Qyt (α|Ft−1) = x ′
tθ(α), (4)

where xt = (1, yt−1, . . . , yt−p)
′, θ = (θ0, θ1, . . . , θt−p)

′, and Ft−1 is the σ -field
generated by {ys, s ≤ t}.

The coefficients θ(α) in (4) are found by minimising the following expression:

min
θ∈Rp+1

∑

t

λ(yt , x
′
tθ), (5)

where λ(y, γ ) is the pinball loss function:

λ(y, γ ) =
{

α(y − γ ), if y ≥ γ

(1 − α)(γ − y), if y < γ
. (6)

5 Framework of competitive prediction

In this section,wedescribe the frameworkof competitive prediction. In this framework,
a learner plays a gameG against other prediction strategies and a nature, which reveals
the true outcomes. A game G = 〈Ω,Γ , λ〉 is a tuple with the space of outcomes Ω ,
decision space Γ , and a loss function λ. In this paper, we consider Ω = Γ = R, and
λ to be the pinball loss, defined in (6) for α ∈ (0, 1).

The learner works according to the following protocol:

Protocol 1

for t = 1, 2, . . .
nature announces signal xt ⊆ R

p+1

learner outputs prediction γt ∈ Γ

nature announces outcome yt ∈ Ω

learner suffers loss λ(yt , γt )
end for

Before seeing the true outcome yt ∈ Ω , the learner needs to make a prediction γt ∈ Γ ,
based on a signal xt , which is announced by nature. After seeing the true outcome yt ,
the learner’s loss λ(yt , γt ) can be calculated.

In this paper, we assume that the outcomes follow the p-order autoregressive
process defined in (2). The learner makes a prediction γt based on the signal
xt = (1, yt−1, . . . , yt−p) ∈ R

p+1. For ease of notation, we replace θ(α) with θ .
Let us denote ξt (θ) to be the prediction (4) of QAR(p):

ξt (θ) = x ′
tθ. (7)
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We denote the cumulative loss of the learner at step T as:

LT :=
T∑

t=1

λ(yt , γt ) =
∑

t=1,...,T :
yt>γt

α|yt − γt | +
∑

t=1,...,T :
yt<γt

(1 − α)|yt − γt |.

The cumulative loss of the prediction strategy Eθ , parametrised by θ , which at step
T outputs ξt (θ):

Lθ
T :=

T∑

t=1

λ(yt , ξt (θ)) =
∑

t=1,...,T :
yt>ξt (θ)

α|yt − ξt (θ)|

+
∑

t=1,...,T :
yt<ξt (θ)

(1 − α)|yt − ξt (θ)|. (8)

Our goal is to find a strategy which at time t can compete with any prediction
strategy ξt (θ) in terms of cumulative losses.

We denote the regret at time T to be the difference between the cumulative losses
of the learner and the prediction strategy Eθ :

RT = LT − Lθ
T , (9)

and the average regret at time T to be:

R̂T = (
LT − Lθ

T

)
/T . (10)

6 Competitive Quantile Autoregression

In this section, we describe CQAR, which is an adaptation of WAAQR (Dzhamty-
rova and Kalnishkan 2020) to time-series forecasting. The algorithm works according
to Protocol 1, which is different from the traditional machine learning approach,
where one needs a dataset for the algorithm’s training. CQAR makes its predic-
tion based on the signal, which is announces by the nature. We assume that the
outcomes follow p-order autoregressive process (2). At the time step T we observe
signal xT = (1, yT−1, . . . , yT−p), which contains p previous outcomes. Based on
this signal, we need to output the prediction γT before seeing the true outcome yT . In
contrast to QAR, CQAR does not try to find the optimal parameters θ by minimising
the pinball loss function (5). Instead, CQAR combines the predictions of a large pool
of QAR in a way, which is similar to a Bayesian mixture.

We show how CQAR is derived from Weak Aggregating Algorithm (WAA)
(Kalnishkan and Vyugin 2008) which updates the weights of strategy Eθ at step t
according to its loss:

Pt (dθ) = exp

(−cLθ
t−1√
t

)
P0(dθ), (11)
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where P0(dθ) is the initial weight of prediction strategy Eθ and c is a positive constant.
The prediction of WAA at step t is a weighted average of strategies predictions ξt (θ):

γt =
∫

Θ

ξt (θ)P∗
t−1(dθ), (12)

where Θ is a parameter space, i.e. θ ∈ Θ and P∗
t−1(dθ) are normalised weights of

strategy Eθ at step t − 1:

P∗
t−1(dθ) = Pt−1(dθ)

Pt−1(Θ)
. (13)

We choose an initial distribution of parameters

P0(dθ) =
(a
2

)p+1
e−a‖θ‖1dθ, (14)

for some a > 0, and θ ∈ Θ = R
p+1. Then by putting (14) and (11) in (13) the

normalised weights of strategy Eθ at step t :

P∗
t (dθ) = Z exp

(
− Lθ

t−1√
t

− a

c
‖θ‖1

)
= Z exp

(
− Lθ

t−1√
t

− â‖θ‖1
)

, (15)

where Z is the normalising constant ensuring that
∫
Rp+1 P∗

t (dθ) = 1. By putting this
expression in (12) and putting the cumulative loss of the strategy Eθ from (8) we get
the prediction of CQAR at step T :

γT =
∫

Θ

ξT (θ)q∗
T−1(θ)dθ, (16)

where

q∗
T (θ) = ZqT (θ) = Z exp

(
− 1√

T

( ∑

t=1,...,T :
yt<ξt (θ)

(1 − α)|yt − ξt (θ)|

+
∑

t=1,...,T :
yt>ξt (θ)

α|yt − ξt (θ)|
)

− a‖θ‖1
)
, (17)

where a is a regularisation parameter and Z is the normalising constant ensuring that∫
Θ
q∗
T (θ)dθ = 1, and ‖θ‖1 denotes L1-norm of parameter θ . Function q∗

T (θ) has
a meaning of the likelihood of the parameters θ at time step T . The pseudo-code of
CQAR uses theMetropolis-Hastings algorithm, which is aMarkov chainMonte Carlo
(MCMC) method (Andrieu et al. 2003), though any other sampling algorithm could
be used instead to approximate the integral (16). We start with some initial parameter
θ0 and at each step m we update:

θm = θm−1 + N (0, σ 2), m = 1, . . . , M,
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where N (0, σ 2) is the Gaussian proposal distribution with standard deviation σ , and
M is the total number of MCMC iterations. The Metropolis-Hastings randomly walks
through the parameter space Θ , and either accepts or rejects new parameters θ . If the
likelihood of the new parameters (17) is higher than the old parameters’ likelihood,
the new parameters are always accepted. Otherwise, the new parameters can be either
accepted or rejected. By moving this way, the algorithm mostly samples parameters θ

from the high-density regions of (17), only sometimes visiting the area of low-density
of the parameters’ likelihood. This procedure allows giving an accurate approximation
of the integral (16).

We provide the pseudo-code of CQAR below. The algorithm has four input param-
eters: the number of MCMC iterations M , the ‘burn-in period’ M0, the regularisation
parameter a, and the standard deviation σ . The burn-in period M0 means that we sam-
ple M0 values of the parameters, but they are not used in the integral approximation.
It is useful as we probably did not yet reach the area of high density of the parameters’
likelihood.

CQAR

Parameters: number M > 0 of MCMC iterations,
burn-in period M0 > 0,
standard deviation σ > 0,
regularisation parameter a > 0

initialize θM
0 := 0 ∈ R

p+1

define q0(θ) := exp(−a‖θ‖1)
for t = 1, 2, . . . do

γt := 0
define qt−1(θ) by (17) if t > 1
read xt ∈ R

p+1

initialize θ0t = θM
t−1

for m = 1, 2, . . . , M do
θ∗ := θm−1

t + N (0, σ 2 I )
flip coin with success probability

min
(
1, qt−1(θ

∗)/qt−1(θ
m−1
t )

)

if success then
θmt := θ∗

else
θmt := θmt−1

end if
if m > M0 then

γt := γt + ξt (θ
m
t )

end for
output predictions γt = γt/(M − M0)

end for
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An important property of CQAR is that it asymptotically predicts as well as the
best QAR. The following theorem provides the upper bound for the average regret
between CQAR and the best QAR.

Lemma 1 (Theorem 1 in Dzhamtyrova and Kalnishkan (2020)) Let a > 0, A ≤ yt ≤
B for any t = 1, 2, . . . , T − 1, where T is a positive integer. For every sequence of
outcomes of length T , and every θ ∈ R

p+1 the average regret R̂T between CQAR and
QAR satisfies

R̂T ≤ 1√
T
a‖θ‖1 + 1√

T

(
(p + 1) ln

(
1 +

√
T

a
max(1, B)

)
+ (B − A)2

)
.

The derivation of Lemma 1 can be found in the Appendix. The theorem states that
CQAR asymptotically predicts as well as the best QAR as the average regret R̂T → 0,
for T → +∞. Although the bound contains the information about the minimum
and maximum values of the outcomes at the previous steps, it does not affect the
asymptotic behaviour of the bound. The choice of the regularisation parameter a
affects the behaviour of the theoretical bound. As a result, it is important to pick the
parameter which minimizes the regret’s bound. However, in most cases, the optimal
choice of the regularisation parameter cannot be found in advance as the number of
steps T is usually not known from the start. We discuss the choice of the parameters
of CQAR in detail in the experimental part of the article.

7 Experiments

We apply the proposed approach to the prediction of cyber hacking breaches. The data
is taken from the PRC report 1, which contains the chronology of the reported data
breaches since January 2005. This benchmark dataset has been used by a number of
other researchers in establishing the efficacy of their work (Edwards et al. 2016; Xu
et al. 2018). The analysis of data breaches is attracting research activity lately, given
the importance of the topic. Some of this work suggests that data breaches can be
modelled using a variety of distributions. Hubbard and Seiersen (2016) suggest using
the beta distribution for estimating the probability of data breaches based on industry
data. After estimating the probability of data breaches, the VAR is modelled with
the Monte-Carlo simulation, which gives a forecast of the possible losses. Edwards
et al. (2016) investigate the PRC dataset from the period between January 2005 and
September 2015. The study examined over 20 different distributions, such as log-
normal, power-law, generalised Pareto to determine which provided the best fit for the
size of the data breach. To model the breach frequencies, the authors investigated a
number of discrete distributions, such as Poisson, binomial, and negative binomial. The
results suggest that neither the size nor the frequency of data breaches has increased
over the periodunder consideration. Furthermore, the studyproposes tomodel the daily
frequency of breaches using the negative binomial distribution, whereas breach sizes
are best described by the log-normal family of distributions. It is, of course, possible
that the nature of data breaches has changed significantly in the era of increasing data
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connectivity. Xu et al. (2018) analyse the PRC dataset with a focus on hacking breach
incidents. Their analysis shows that both the inter-arrival time and the size of hacking
breaches reveal significant auto-correlation and partial auto-correlation, suggesting
that the breaches can be modelled with stochastic processes. The paper estimates the
inter-arrival timeswith the autoregressive conditionalmeanmodel, whereas the breach
sizes are estimated with ARMA(1, 1)-GARCH(1, 1). The authors also show that there
is a positive correlation between inter-arrival times and sizes of cyber incidents, and
describe this dependence by a particular copula.

We use the same benchmark to evaluate the performance of the proposed
approaches. The open-source code of our implementation is fully reproducible and
available at GitHub 2. The data contains the chronology of various types of data
breaches such as card fraud, insider incidents, paper, and computer physical losses,
and unintended information disclosure. The companies which suffer the incidents
are classified into seven types of businesses: BSF (Financial and Insurance Services
Businesses), BSR (Retail/Merchant including Online Retail Businesses), BSO (Other
Businesses), EDU (Educational Institutions), GOV (Government and Military), MED
(Medical and Healthcare), and NGO (Nonprofits). The report contains 9015 data
breaches between January 2005 and September 2019. The top three types of reported
breaches are: data hacked or infected by malware (HACK −28.1%), unintended dis-
closure of sensitive information posted publicly, mishandled or sent to the wrong party
(DISC −20.6%), information lost or stolen from paper documents (PHYS −19.2%).

7.1 Hacking breaches

In this section, analogous to Xu et al. (2018), we focus on the largest type of reported
data breaches: hacking breaches. The total number of observations after removing all
incomplete, unknown, and missing breaches is 1602. We hold the first 60% of the data
for training and the last 40% for testing: the size of the training set is 956, whereas
that of the test set is 636.

7.1.1 Data exploration

We start with data pre-processing. Most days have only one incident per day, 232 days
have two incidents, 52 days have three, and 35 days are with more than three incidents.
Similarly to Xu et al. (2018), if several events occur in one day, they are analysed as
separate incidents. For these events, we generate a random number from zero to one,
which corresponds to some time during the day. After that, these events are sorted by
these randomly generated numbers.

Figure 1 visualises inter-arrival times and the logarithm of breach size, where size
is the total number of accounts affected by the breach. We visualise breach sizes on
a logarithmic scale because some of the incidents exhibit particularly extreme values.
Table 1 describes the summary statistics of breach sizes, where sd denotes the standard
deviation. The analysis in Xu et al. (2018) describes the period between January 2005
and April 2017 and contains 600 hacking breaches. We observe that more than 1000
incidents have been added to the report in the last two years. It indicates that either
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Fig. 1 Visualisation of breach sizes and inter-arrival times

Table 1 Summary statistics of breach sizes

Type of
organisation

Min Median (×103) Mean (×106) Sd (×106) Max (×106) Number of
observations

BSF 6 1.7 4.8 21.3 145.5 111

BSO 2 10.4 26.4 214.8 3000.0 208

BSR 1 2.1 6.7 33.3 327.0 138

EDU 12 8.5 222.5 2.7 40.0 223

GOV 8 6.0 457.7 2.4 21.5 93

MED 1 4.0 200.1 2.9 78.8 805

NGO 13 4.0 142.1 0.6 3.0 24

Total 1 4.6 4.5 78.6 3000 1602

hacking incidents become more frequent or the companies become more transparent
about reporting their data breaches. The largest number of incidents are reported in the
medical and healthcare sector. The largest incident was reported by Yahoo on the 14th
of December 2016, which compromised users’ data from three billion accounts. Table
2 shows the same statistics for inter-arrival times. We observe that the mean values of
inter-arrival times are less than the standard deviations for each category. It provides
evidence that inter-arrival times cannot be modelled with the Poisson distribution. A
similar conclusion can be drawn for the breach sizes.

Analogously to Xu et al. (2018), we check auto-correlation (ACF) and partial
auto-correlation functions (PACF) of the logarithm of breach size and logarithm of
inter-arrival time. ACF measures the linear dependence between the lags of time-
series, whereas PACF is the correlation between lags adjusted for the contributions of
observations in between (Hyndman and Athanasopoulos 2018; Shumway and Stoffer
2016). These measures are used to find if observations exhibit a correlation between
each other and can be modelled with a stochastic process. Figure 2 shows that both
breach sizes and inter-arrival times exhibit significant auto-correlations above the
threshold values depicted with dotted lines. It indicates that they can be modelled with
stochastic processes.
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Table 2 Summary statistics of breach inter-arrival times

Type of organisation Min Median Mean Sd Max Number of observations

BSF 0.0111 2.00 4.16 5.78 36 111

BSO 0.0480 1.00 3.08 4.18 38 208

BSR 0.0233 2.00 3.52 5.09 33 138

EDU 0.0134 3.00 5.86 8.12 59 223

GOV 0.0842 2.00 3.66 5.06 28 93

MED 0.0019 1.00 2.85 4.10 37 805

NGO 0.0131 1.00 2.70 3.56 13 24

Total 0.0019 2.00 3.49 5.20 59 1602

Fig. 2 ACF and PACF

7.1.2 Quantile autoregression

In this section, we model VaRα of the logarithm of breach sizes and the logarithm of
inter-arrival timeswithQAR. First, we need to pick the optimal lag ofQAR.Analogous
to the problem of choosing the optimal degree of polynomial regression, the optimal
order of the autoregressive process (2) can be chosen by some information criterion.
We use the Bayesian Information Criterion (BIC) (Schwarz 1978) to pick the optimal
lag of QAR. BIC is defined as follows:

BIC = −2 ln L + p ln N ,
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Fig. 3 BIC for different lags

Fig. 4 Predictions of QAR

where L is the maximum of the model’s likelihood, p is the number of parameters,
and N is the sample size. BIC penalises complex models with large lag number p,
and smaller values of the criterion are favourable. Figure 3a shows BIC values for a
different number of lags of QAR, which is built on the training data for quantiles equal
to 0.5, i.e. median values. The smallest values of BIC correspond to the optimal choice
of the lag and are depicted with the red dots. We observe that the optimal values of lag
are equal to six in the case of the breach size, and the optimal lag for the inter-arrival
time is five.

We then build QAR for the optimal lags on the training dataset. These models are
used formaking predictions of VaRα on the test dataset.We pick the significance levels
to be α = 0.9, 0.92, 0.95. From the risk perspective, it is important to estimate how
large the potential losses might be in order to prevent or hedge these losses. Therefore,
α values should be large. Figure 4a, b illustrate the predictions of QAR for breach
sizes and inter-arrival times respectively, on the test data.

If the observed value exceeds the predicted VaRα , we call it violation. The Kupiec
unconditional coverage test (Kupiec 1995) measures whether the number of violations
is consistent with the confidence level. For example, if α = 0.9, then the percent of
observation, which exceeds the predicted VaR0.9, should be close to 0.1. The null
hypothesis H0 is that the observed violation rate is equal to 1−α. The Kupiec uncon-
ditional coverage test focuses only on the number of violations. However, we would
like to test whether these exceptions are evenly spread over time. The null hypothesis
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Table 3 Coverage tests for QAR for breach sizes at test data

Method Quantile Exp Act uc.LRp cc.LRp uc.D cc.D

QAR(6) 0.90 63 55 0.2509 0.4784 FR FR

QAR(6) 0.92 50 44 0.3095 0.5103 FR FR

QAR(6) 0.95 31 29 0.6116 0.7456 FR FR

Table 4 Coverage tests for QAR for inter-arrival times at test data

Method Quantile Exp Act uc.LRp cc.LRp uc.D cc.D

QAR(5) 0.90 63 56 0.3062 0.3539 FR FR

QAR(5) 0.92 50 41 0.1360 0.0146 FR R

QAR(5) 0.95 31 26 0.2765 0.1463 FR FR

H0 for the Christoffersen conditional coverage test (Christoffersen 1998) is that the
probability of observing a violation at some time point does not depend on whether a
violation occurred. Table 3 illustrates the results of backtesting of both coverage tests
for breach size and inter-arrival time respectively, on the test data. The table shows
the expected number of violations of the considered confidence level and the actual
number of violations of the considered method. We use the following notations: exp
(expected number of violations), act (actual number of violations), the unconditional
coverage test p-value (uc.LRp), the conditional coverage test p-value (cc.LRp), the
unconditional coverage test decision (uc.D), and the conditional coverage test deci-
sion (cc.D), fail to reject the null hypothesis H0 (FR), reject the null hypothesis H0 (R).
We can see that QAR(6) fails to reject the null hypothesis H0 for both unconditional
and conditional coverage tests, which means that the models fit well and describe the
quantiles of breach size correctly. Table 4 shows the case of inter-arrival time, QAR(5)
fits well for 0.9 and 0.95 quantiles, however, for 0.92 the conditional coverage test
rejects the null hypothesis. In the next section, we show how we can improve the
prediction of the breach inter-arrival times by applying CQAR.

7.1.3 Competitive quantile autoregression

In this section, we estimate the hacking breaches’ inter-arrival times with CQAR. In
contrast to QAR, CQAR does not need a training dataset. The algorithm starts its
training when it gets the first observation of the test dataset. However, as we have
the training dataset available, we pick the regularisation parameter a and the standard
deviation σ from the training data. Table 5 illustrates the acceptance ratio and the
total pinball loss of CQAR on the training dataset for different parameters a and σ .
The lowest pinball loss on the training data is achieved with a = 1 and σ = 0.7,
which is depicted in bold. The corresponding acceptance ratio for these parameters is
0.27. It is important to ‘track’ the acceptance ratio of CQAR. A very high acceptance
ratio might indicate that the algorithm moves too slowly to the optimal parameter θ .
Therefore, the total number of iterations and the burn-in period should be increased.
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Table 5 Parameters of CQAR
on training

(a) Acceptance ratio (b) Pinball losses

a \ σ 0.5 0.7 1 a \ σ 0.5 0.7 1

0.1 0.69 0.47 0.22 0.1 281.69 281.74 268.00

0.5 0.61 0.36 0.12 0.5 177.52 171.76 172.50

1 0.53 0.27 0.06 1 137.20 135.42 138.21

Table 6 Coverage tests for CQAR for inter-arrival times at test data

Method Quantile Exp Act uc.LRp cc.LRp uc.D cc.D

CQAR(5) 0.90 63 69 0.4808 0.0785 FR FR

CQAR(5) 0.92 50 54 0.6514 0.1025 FR FR

CQAR(5) 0.95 31 27 0.3705 0.4844 FR FR

Another option is to increase the standard deviation σ . Table 5 shows that increasing
σ leads to decreasing of the acceptance ratio.

Table 6 shows the results of the backtesting for CQAR(5) on the test dataset. Note
that even though we pick the parameters of the CQAR using the prior knowledge,
the algorithm starts with zero parameters θ and trains using only the test dataset.
We can see from the table that both unconditional and conditional coverage tests
for CQAR(5) fail to reject the null hypothesis. Therefore, CQAR(5) produces better
results for predicting breach inter-arrival times than QAR(5). The p-values of CQAR
are also higher than p-values of QAR, apart from the cc.LRp for 0.90 quantile. The
results are also on par with Table 8 of VaR tests of predicted inter-arrival times in Xu
et al. (2018), though since then a significant amount of hacking breaches has been
reported.

The important property of CQAR is that it asymptotically predicts as well as any
QAR. Figure 5a illustrates the predictions of CQAR for α = 0.9, 0.92, 0.95 on the
test data. Figure 5b shows the average regret between CQAR(5) and QAR(5). As we
discussed, CQAR starts with zero parameters θ at the beginning of its training, and as
a result, the average regret is high at the start. However, it becomes close to zero for all
considered quantiles as time increases. The resulting graph confirms the theoretical
behaviour of the average regret described in Lemma 1.

7.2 Other types of data breaches

In this section, we focus on two other types of data breaches, each of which contributes
to around a fifth of reported breaches: PHYS (information lost or stolen from paper
documents) andDISC (unintended disclosure of sensitive information posted publicly,
mishandled or sent to the wrong party). The threemain objectives of these experiments
are:

1. testing of CQAR performance on additional datasets;
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Fig. 5 CQAR

2. comparing CQAR with other popular methods for time-series modelling, such as
ARMA-GARCH, which was also used in Xu et al. (2018);

3. providing a more realistic scenario for a dynamic method, i.e. CQAR initially uses
non-optimal parameters a and σ , and then these parameters are dynamically tuned
on the past test data (training dataset is not used for the CQAR’s parameter tuning
in this setting).

7.2.1 Physical loss of paper documents

In this subsection, we model the logarithm of data breaches sizes caused by a phys-
ical loss of paper documents. The total number of observations after removing all
incomplete, unknown, and missing breaches is 1473. Interestingly, the majority of the
reported cases are in the medical sector (89 %). Similar to previous experiments, we
hold the first 60% of observations for the training of ARMA-GARCH. The rest of
the data is used for training of CQAR and comparison of results. Similar to Xu et al.
(2018), the mean of breach sizes is modelled with ARMA, whereas the volatility is
estimated with GARCH.

Analogous to the previous experiment, we first examine ACF and PACF that exhibit
a significant correlation between observations. Therefore, we can model the breach
sizes with a stochastic process. In these experiments, we try to model the breach
sizes with ARMA-GARCH that models both the mean and the volatility with dif-
ferent stochastic processes. First, we try to identify the optimal order of ARMA(p,
q)-GARCH(m, n). Considering even three different values of four parameters is tire-
some: it leads to 81 different combinations. Therefore, we consider that GARCH(1,
1) is enough to describe the volatility of breach sizes. GARCH(1, 1) is one of the most
commonly used models for volatility modelling and it produces results that are often
on par with the models of higher-order (Hansen and Lunde 2005). Table 7 shows BIC
of different orders of ARMA(p, q), where the minimum is achieved at p = q = 1
(shown in bold).

As we found the optimal order of the model, we can fit ARMA(1, 1)-GARCH(1, 1)
that produces a 1-step ahead prediction and re-trains every 50 steps. Figure 6 shows
the predictions and Table 8 illustrates the coverage tests of the method. We can see
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Table 7 BIC of different orders
of ARMA(p, q)

p \ q 0 1 2

0 3608.2 3604.9 3605.1

1 3603.1 3581.2 3586.7

2 3602.1 3586.7 3593.0

Fig. 6 Predictions of ARMA(1, 1)-GARCH(1, 1)

Table 8 Coverage tests for ARMA(1, 1)-GARCH(1, 1) for breach sizes at test data

Method Quantile Exp Act uc.LRp cc.LRp uc.D cc.D

ARMA-GARCH 0.90 58 51 0.2737 0.2510 FR FR

ARMA-GARCH 0.92 47 40 0.2730 0.5399 FR FR

ARMA-GARCH 0.95 29 25 0.3933 0.4830 FR FR

that ARMA(1, 1)-GARCH(1, 1) provides a good fit for predicting the breach sizes.
We now want to see how CQAR performs on the same test data.

Using BIC on the training dataset, we found that the optimal lag of QAR is equal to
two. Now we use test data for CQAR training. Here we also consider a more realistic
scenario for a dynamic method when we do not have any insight into the optimal
parameters of CQAR. Therefore, we start with some random, non-optimal parameters
a and σ , and then these parameters are dynamically tuned on a part of test data. In these
experiments, we use the first quarter of the test data to estimate the optimal parameters
of CQAR. We start with a = σ = 1, after 25% of the outcomes is revealed, we
estimate the optimal parameters to be a = 0.5 and σ = 0.7 with the pinball loss 58.66
and the acceptance rate 41%. Table 9 shows the coverage tests for CQAR(2). We can
see that CQAR(2) provides a worse fit in comparison to ARMA(1, 1)-GARCH(1, 1)
as p-values are lower. In addition, for 90% quantile, it rejects the null hypothesis of
both conditional and unconditional coverage tests. The use of non-optimal parameters
might affect the performance of CQAR and might lead to a slower convergence.
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Table 9 Coverage tests for CQAR(2) for breach sizes at test data

Method Quantile Exp Act uc.LRp cc.LRp uc.D cc.D

CQAR(2) 0.90 58 41 0.0101 0.0361 R R

CQAR(2) 0.92 47 35 0.0561 0.0674 FR FR

CQAR(2) 0.95 29 22 0.1435 0.3333 FR FR

Table 10 BIC of different orders
of ARMA(p, q)

p \ q 0 1 2

0 3004.5 3002.2 2985.4

1 2999.0 2920.8 2926.9

2 2978.0 2926.8 2931.4

Table 11 Coverage tests of ARMA(1, 1)-GARCH(1, 1) and CQAR(2) for inter-arrival times at test data

method quantile exp act uc.LRp cc.LRp uc.D cc.D

ARMA-GARCH 0.90 61 65 0.6801 0.4293 FR FR

ARMA-GARCH 0.92 49 45 0.4969 0.7878 FR FR

ARMA-GARCH 0.95 30 18 0.0097 0.0207 R R

CQAR(2) 0.90 61 70 0.2867 0.3782 FR FR

CQAR(2) 0.92 49 54 0.5125 0.0954 FR FR

CQAR(2) 0.95 30 31 0.9926 0.0519 FR FR

7.2.2 Unintended disclosure of sensitive information

In this subsection, we repeat the same experiments for the prediction of inter-arrival
times of data breaches caused by unintended disclosure of sensitive information posted
publicly, mishandled or sent to the wrong party. The total number of observations after
removing all incomplete, unknown, and missing breaches is 1552 with the first 60% of
observations held for the training of ARMA-GARCH. Table 10 shows BIC of different
orders of ARMA(p, q). As before, the minimum is achieved for p = q = 1 (shown
in bold), and therefore we use ARMA(1, 1)-GARCH(1, 1) for modelling. As in the
previous experiment, we start to train CQAR(2) on the test data with non-optimal
parameters a = σ = 1 and after we see the first 25% of observations we re-estimate
the parameters. The optimal parameters found are a = 0.7 and σ = 1 with the pinball
loss 19.65 and the acceptance rate 35%. Table 11 illustrates the coverage tests of both
methods. We can see from the table, that for quantiles 0.9 and 0.92, most of the p-
values of ARMA(1, 1)-GARCH(1, 1) are higher than the ones of CQAR(2). However,
CQAR(2) fails to reject all tests, whereas ARMA(1, 1)-GARCH(1, 1) rejects the null
hypothesis for quantile 0.95.
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7.3 Discussion

We provide an extensive experimental evaluation of proposed cyber risk estimation
methods, QAR and CQAR. We show that both approaches provide a good fit to cyber
breaches’ sizes and inter-arrival times. The comparison of CQAR with ARMA(1,
1)-GARCH(1, 1) illustrates that the methods are on par with each other even though
CQAR uses a much smaller dataset for its training. ARMA(1, 1)-GARCH(1, 1) rejects
the null hypothesis of both unconditional and conditional coverage tests for one quan-
tile of data breaches caused by unintended disclosure of sensitive information. It is
possible that if we tested the higher orders of GARCH it might have provided a better
fit for the data. Another limitation is the choice of CQAR’s parameters. If we have
some information on the optimal parameters the method converges faster and provides
good results. However, when no information is available andwe start with non-optimal
parameters the method might not sample well. Therefore, it is important to keep track
of the acceptance rate of the sampling parameters and re-estimate them when more
data becomes available.

8 Conclusions

In this paper, we have presented two approaches to cyber VaR estimation of time-
series. VaR gives a prediction of extreme values with the desired confidence level
for a different kind of time-series. These estimates can sequentially be translated into
the monetary VaR, which is essential for budget planning and allocation. The first
approach to estimate VaR is based on QAR, which provides a new way to model
extreme values with the desired confidence level. QAR is more flexible compared to
the previously proposed approaches as it allows to model VaR for each confidence
level with a separate stochastic process, and hence relies on fewer assumptions on the
nature of the data.

The second proposed approach, called CQAR, provides a new framework for
dynamic cyber risk estimation. The method re-estimates VaR at each step as soon as
new data becomes available. A significant property of this approach is the theoretical
guarantee that it asymptotically performs as well as the best QAR found retrospec-
tively. This important property provides confidence in the prediction as it will hold for
any new unseen data, while at the same time the method allows adapting to a changing
environment.

Finally, we demonstrate that both methods provide a good fit for predicting the
size and inter-arrival times of different types of cyber breaches by running coverage
tests. We show that CQAR asymptotically performs as well as the best QAR which
conforms to the theoretical bounds of the method. The performance of CQAR also
in par with ARMA(1, 1)-GARCH(1, 1). In addition, we provide a fully-reproducible
code of our experiments.
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Appendix

Lemma 2 (Lemma 2 in Levina et al. (2010)) Let λ(y, γ ) ≤ L for all y ∈ Ω and
γ ∈ Γ . The Weak Aggregating Algorithm guarantees that, for all T

LT ≤ √
T

(
− ln

∫

Θ

exp

(
− Lθ

T√
T

)
P0(dθ) + L2

)
.

Proof of Lemma 1 The proof is the same as the Proof of Theorem 1 fromDzhamtyrova
and Kalnishkan (2020) adjusted for the time-series data. We provide the proof here
for completeness.

Recall, that the learner makes a prediction γt based on the signal xt =
(1, yt−1, . . . , yt−p) ∈ R

p+1, and outcomes come from the interval [A, B]. We choose
an initial distribution of parameters (14):

P0(dθ) =
(a
2

)p+1
e−a‖θ‖1dθ,

for some a > 0, and θ ∈ R
p+1. Let us define the truncated prediction strategy Ẽθ

which at step t outputs:

ξ̃t (θ) =

⎧
⎪⎨

⎪⎩

A, if x ′
tθ < A

x ′
tθ, if A ≤ x ′

tθ ≤ B

B, if x ′
tθ > B

. (18)

Let us denote L̃θ
T the cumulative loss of prediction strategy Ẽθ at the step T :

L̃θ
T :=

T∑

t=1

λ(yt , ξ̃t (θ)). (19)

We apply the algorithm’s prediction (16) with truncated prediction strategies Ẽθ . As
prediction strategies output predictions inside the interval [A, B], and the algorithm’s
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prediction is a weighted average of strategies’ predictions, then γt lies in the interval
[A, B], ∀t .

We can bound the maximum loss at each time step:

L := max
y∈[A,B], γ∈[A,B] λ(y, γ ) ≤ (B − A)max(α, 1 − α) ≤ B − A. (20)

Lemma 2 provides the theoretical guarantees for the strategy that followsWAA (16)
used by our algorithm. Applying Lemma 2 for initial distribution (14) and putting the
maximum loss (20) we obtain:

LT ≤ √
T

(
− ln

((a
2

)p+1
∫

Rp+1
e− J̃ (θ)dθ

)
+ (B − A)2

)
, (21)

where

J̃ (θ) := L̃θ
T√
T

+ a‖θ‖1. (22)

For all θ, θ0 ∈ R
p+1 we have:

∑

t=1,...,T :
yt<x ′

t θ

|x ′
tθ − yt | ≤

∑

t=1,...,T :
yt<x ′

t θ

|x ′
tθ0 − yt | +

∑

t=1,...,T :
yt<x ′

t θ

|x ′
tθ − x ′

tθ0|

≤
∑

t=1,...,T :
yt<x ′

t θ

|x ′
tθ0 − yt | +

∑

t=1,...,T :
yt<x ′

t θ

max
t=1,...,T

‖xt‖∞‖θ − θ0‖1

≤
∑

t=1,...,T :
yt<x ′

t θ

|x ′
tθ0 − yt | + T max(1, B)‖θ − θ0‖1. (23)

Analogously, we have:

∑

t=1,...,T :
yt>x ′

t θ

|x ′
tθ − yt | ≤

∑

t=1,...,T :
yt>x ′

t θ

|x ′
tθ0 − yt |

+T max(1, B)‖θ − θ0‖1. (24)

By multiplying inequality (23) by (1−α), inequality (24) by α and summing them,
we have:

Lθ
T ≤ Lθ0

T + T max(1, B)‖θ − θ0‖1. (25)

The cumulative loss of truncated prediction strategy Ẽθ cannot exceed the cumula-
tive loss of non-truncated prediction strategy Eθ for all θ ∈ R

p+1:

L̃θ
T ≤ Lθ

T . (26)
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By dividing (25) by
√
T and adding a‖θ‖1 to both parts, we have:

J̃T (θ) ≤ JT (θ) ≤ JT (θ0) + √
T max(1, B)‖θ − θ0‖1 + a (‖θ‖1 − ‖θ0‖1)

≤ JT (θ0) +
(√

T max(1, B) + a
)

‖θ − θ0‖1, (27)

where

JT (θ) := Lθ
T√
T

+ a‖θ‖1. (28)

Let us denote bT = √
T max(1, B) + a. We evaluate the integral:

∫

Rp+1
e− J̃T (θ)dθ ≥

∫

Rp+1
e−(JT (θ0)+bT ‖θ−θ0‖1)dθ

= e−JT (θ0)

∫

R

. . .

∫

R

e−bT
∑p+1

i=1 |θi−θi,0|dθi

= e−JT (θ0)

∫

R

. . .

∫

R

p+1∏

i=1

e−bT |θi−θi,0|dθi

= e−JT (θ0)

p+1∏

i=1

∫

R

e−bT |θi−θi,0|dθi = e−JT (θ0)

(
2

bT

)p+1

.

By putting this expression in (21) we obtain:

LT ≤ Lθ
T + √

Ta‖θ‖1 + √
T

(
(p + 1) ln

(
1 +

√
T

a
max(1, B)

)
+ (B − A)2

)
.

By putting this expression in formula for the average regret (10) we obtain the theo-
retical bound from Lemma 1. ��
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