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Abstract

In this thesis, we present two different methodologies; one for processing time
series data for use in machine learning and the other, a robust linear regression
for clustered data. The foundation in both of these methodologies is attempting
to utilise time series data in ways in which have traditionally been prohibitive,
owing to the ragged nature of such data.

In order to use standard machine learning tools to classify online Arabic
handwritten characters, we develop a dyadic iterated integral path signature
approach to processing the underlying time series data. The process developed
transforms raw online Arabic handwritten character data in the form of multiple
time series, into a single set of features that can be used as features for machine
learning. When applied to the Online KHATT segmented character dataset, the
methodology combined with both random forests and long short term memory
(LSTM) neural networks demonstrates a dramatic improvement in recognition
performance over the previously published best (using hidden Markov models).
Furthermore, this processing methodology can be applied to any number of
similar scenarios including other online handwritten scripts and even drawings
on tablets.

Secondly, with the aim of carrying out polynomial regression using the it-
erated integral path log signature, we present a robust eigenvalue polynomial
regression. This new form of regression is designed to significantly reduce the
impact of clustered data on the fitting of a polynomial approximation to the
data. Using knowledge of the location of the clusters of data in space, combined
with the region over which we wish to obtain a robust estimate, this eigen-
value based method can be seen to have vast improvements over standard least
squares linear regression. The methodology is demonstrated to result in a large
decrease in the L2 error of polynomial approximations to a number of functions.

x



Chapter 1
Introduction

This thesis is comprised of two distinct research projects; one focussing on ma-

chine learning using the dyadic iterated integral path signature, and the other

introducing a novel robust polynomial regression methodology. Whilst these

two projects may seem rather separate, they are intrinsically linked as the loga-

rithm of the iterated integral path signature is a prime candidate for use in high

dimensional polynomial regression and has been presented as such by both Ni

& Levin [Ni17; LLN13].

1.1 Thesis Overview

The format of this thesis is as follows:

Chapters 2 & 3

These chapters provide an introduction to the theory of iterated integral path

signatures and the space in which they lie. The iterated integral path signature

is an incredibly powerful tool as, much like an individual’s signature is unique

to them, it uniquely identifies the underlying path.

The iterated integral path signature has been used as a tool for encoding

time series data for machine learning in fields as diverse as handwriting recogni-

tion [Gra13; Xie+18], activity classification from short video clips [Yan+19] and

1



CHAPTER 1. INTRODUCTION 2

detecting psychiatric conditions in mental health patients [PA+18]. Such is the

popularity of the path signature as a tool for machine learning, that Chevyrev

& Kormilitzin have produced a primer for people wishing to use the path signa-

ture as a tool for machine learning [CK16] and two Python packages available

from PyPI - esig [LM] and iisignature [RG18; Rei] - have been developed to

compute the path signature, with work underway to integrate both into major

machine learning libraries such as keras, pytorch, theano and tensorflow.

Chapter 4

This chapter’s contents are based upon a paper presented at ASAR2018 [WN+18].

In this chapter, a methodology for preprocessing online Arabic handwriting data

is presented. Online handwriting recognition is the study of recognising hand-

writing that is received as spatio-temporal data, i.e. data as a time series [PS00].

Online handwriting recognition receives significantly less study than the

other major area of handwriting recognition; offline handwriting recognition

which deals with spatio-luminescent data, i.e. image data. We present a

methodology that is used to recognise online Arabic handwriting. Using the

iterated integral path signature introduced in Chapters 2 & 3, we are able to

reduce the error on a major dataset within the Arabic handwriting recogni-

tion field by more than 50%. Furthermore, the methodology developed can be

implemented on numerous other spatio-temporal datasets such as online hand-

writing recognition in other scripts such as Roman script and has even been

shown to perform strongly on simple drawings using the Google “Quick, Draw!”

dataset [Fer21].

Chapter 5

The content of this chapter, presents and demonstrates the capabilities of a

novel polynomial regression tool which is able to robustly deal with clustered

data where the clustered nature of the observations can negatively impact the

result of an approximation using least squares polynomial regression.
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When attempting to use the iterated integral path signature for polynomial

regression, it was observed that the signature was clustered within space and

that often at least one of the clusters would contain only a few observations.

These clusters containing small numbers of points were found to negatively

impact the fit of a polynomial approximation to the data using least squares

regression. The problem of a small number of points strongly influencing the

fit of an approximation using least squares regression is present not just in high

dimensional examples such as using the signature, but also in low dimensions

such as R2. The methodology developed utilises knowledge of the regions where

the clusters of data lie, the region of space where a polynomial estimate of the

unknown function is desired and the data itself. The result of applying this

methodology is a robust polynomial approximation that is not impacted by the

small number of points in any given region.

Chapter 6

The final chapter of this thesis provides some concluding remarks and discussion

regarding future work and study opportunities building on the methodologies

developed.



Chapter 2
Tensor Algebra Spaces

In this chapter, we provide an introduction to the space known as the tensor

algebra and a related Lie algebra. Knowledge of these spaces will form a vital

basis for the understanding of the path signature which will be introduced in

Chapter 3. The theory covered in this chapter is found in much greater depth

in [Reu93], which is the key text in this field. In addition, the theory is presented

in both [LCL07; FV10] which explain the role of these spaces in the context of

the iterated integral path signature and rough path theory in general.

2.1 Tensor Algebras

Consider a space that contains all sequences such that each element is a succes-

sive tensor power of an element of V , equivalently{
(a0, a1, . . . , an, . . . )

∣∣∣∀n ∈ N0, an ∈ (V )⊗n
}
, (2.1)

here, we follow the convention that (V )⊗0 = R. This space is known as the

tensor algebra of V .

Definition 2.1. For a vector space V defined over R, define the tensor algebra

of V , notated as T ((V )), to be the direct sum of V ⊗n for n = 0, 1, 2 . . .

T ((V )) =
∞⊕
n=0

V ⊗n = V ⊗0 ⊕ V ⊗1 ⊕ V ⊗2 ⊕ · · ·

= R⊕ V ⊕ V ⊗2 ⊕ · · · (2.2)

4



CHAPTER 2. TENSOR ALGEBRA SPACES 5

alternatively, this can be represented as

=
{

(a0, a1, . . . , an, . . . )
∣∣∣∀n ∈ N0, an ∈ (V )⊗n

}
. (2.3)

Proposition 2.2. The space T ((V )) equipped with the following addition, mul-

tiplication and scalar multiplication operations is an algebra with unit and zero

elements given by

1 := (1, 0, 0, . . . ) ∈ T ((V )) , 0 := (0, 0, 0, . . . ) ∈ T ((V )) . (2.4)

Note. It is important to realise here that in 1 and 0 defined above, the 0 in the

n-th position (for n ≥ 1) is the zero element of V ⊗n, and not simply 0 ∈ R.

Addition For a,b ∈ T ((V )),

a + b = (a0 + b0, a1 + b1, a2 + b2, . . . ) (2.5)

Multiplication For a,b ∈ T ((V )),

a ⊗ b = (c0, c1, c2, . . . ) , (2.6)

with

cn =
n∑
k=0

ak ⊗ bn−k, (2.7)

where ak⊗ bn−k is the standard tensor multiplication between two tensors.

Scalar Multiplication For a ∈ T ((V )) and α ∈ R,

α · a = (αa0, αa1, αa2, . . . ) (2.8)

Proof. A vector space V , equipped with addition (+), multiplication (⊗) and

scalar multiplication (·) operations, is an algebra if the three following properties

hold:

• Right distributivity: for x,y, z ∈ V ,

(x + y)⊗ z = x⊗ z + y⊗ z. (2.9)
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Proof. By the definitions of + and ⊗ in Proposition 2.2, we can see that

for x,y, z ∈ T ((V )),

(x + y)⊗ z = ((x0, x1, x2, . . . ) + (y0, y1, y2 . . . ))⊗ z

= ((x0 + y0, x1 + y1, x2 + y2 . . . ))⊗ z

= (x0z0 + y0z0, x0z1 + y0z1 + x1z0 + y1z0, . . . )

= (x0z0, x0z1 + x1z0, . . . ) + (y0z0, y0z1 + y1z0, . . . )

= x⊗ z + y⊗ z

• Left distributivity: for x,y, z ∈ V ,

x⊗ (y + z) = x⊗ y + x⊗ z. (2.10)

Proof. Owing to the reflexive nature of the definitions of + and ⊗ in

Proposition 2.2, this follows naturally from the proof of right distributivity.

• Compatibility with scalars: for α, β ∈ R and x,y ∈ V

(α · x)⊗ (β · y) = (αβ) · (x⊗ y) . (2.11)

Proof. By the definitions of ⊗ and · in Proposition 2.2, we can see that

for α, β ∈ R and x,y ∈ T ((V )),

(α · x)⊗ (β · y) = (αx0, αx1, αx2, . . . )⊗ (βy0, βy1, βy2, . . . )

= (αβx0y0, αβx0y1 + αβx1y0, . . . )

= αβ · (x0y0, x0y1 + x1y0, . . . )

= (αβ) · (x⊗ y)

As each of these three properties has been satisfied, the space T ((V )) equipped

with +, ⊗ and · as defined is an algebra.

Owing the the infinite nature of any given a ∈ T ((V )), one might wish to

consider only a finite portion of this a. In this case, we introduce the truncated

tensor algebra of order N .
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Definition 2.3. For a vector space V defined over R and some N ∈ N, define

the truncated tensor algebra of order N of V , notated as TN(V ), to be the direct

sum of V ⊗n for n = 0, 1, 2 . . . , N

TN(V ) =
N⊕
n=0

V ⊗n = V ⊗0 ⊕ V ⊗1 ⊕ · · · ⊕ V ⊗N

= R⊕ V ⊕ V ⊗2 ⊕ · · · ⊕ V ⊗N (2.12)

alternatively, this can be represented as

=
{

(a0, a1, . . . , aN)
∣∣∣∀n ∈ {1, 2, . . . , N} , an ∈ V ⊗n} . (2.13)

Recall the operations +, ⊗ and · as defined in 2.2, these work with TN(V )

simply by truncating the operations; e.g.

Addition For a,b ∈ TN(V ),

a + b = (a0 + b0, a1 + b1, a2 + b2, . . . , aN + bN) (2.14)

Multiplication For a,b ∈ TN(V ),

a ⊗ b = (c0, c1, c2, . . . , cN) , (2.15)

with

cn =
n∑
k=0

ak ⊗ bn−k, (2.16)

where ak ⊗ bn−k is the tensor multiplication between two tensors.

Scalar Multiplication For a ∈ TN(V ) and α ∈ R,

α · a = (αa0, αa1, αa2, . . . , αaN) (2.17)

For the remainder of this chapter we consider only the truncated tensor

algebra TN(V ) for some N and V .

2.2 Some important subspaces

For the path signature, as will be seen in Chapter 3, we wish to consider two

restricted versions of the truncated tensor algebra, namely the following two
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subspaces

tN0 (V ) =
{
a ∈ TN(V )

∣∣∣π0(a) = 0
}

(2.18)

=
{

(0, a1, . . . , aN)
∣∣∣∀n ∈ {1, . . . , N} , an ∈ (V )⊗n

}
and

tN1 (V ) =
{
a ∈ TN(V )

∣∣∣π0(a) = 1
}

(2.19)

=
{

(1, a1, . . . , aN)
∣∣∣∀n ∈ {1, . . . , N} , an ∈ (V )⊗n

}
.

Note. For completeness sake, define

t0(V ) = t∞0 (V ) = {a ∈ T ((V ))|π0(a) = 0} (2.20)

=
{

(0, a1, . . . , an, . . . )
∣∣∣∀n ∈ {1, . . . , N} , an ∈ (V )⊗n

}
and

t1(V ) = t∞1 (V ) = {a ∈ T ((V ))|π0(a) = 1} (2.21)

=
{

(1, a1, . . . , an, . . . )
∣∣∣∀n ∈ {1, . . . , N} , an ∈ (V )⊗n

}
.

Where πi(a) is the projection of the i-th element of a.

It is immediately obvious that tN0 (V ) is a subspace of TN(V ), and it is also

clear that as tN1 (V ) = 1 + tN0 (V ), then tN1 (V ) is an affine subspace of TN(V ).

First we shall look into some of the properties of tN0 (V ).

Proposition 2.4. The set tN0 (V ) equipped with addition (+), multiplication (⊗)

and scalar multiplication (·) as defined before is an algebra.

Proof. The proof of this is very similar to the proof that T ((V )) is an algebra,

so will not be repeated here unnecessarily.

Recall the definition of a Lie algebra, from which we will go on to show that

along with the standard commutator for an algebra, tN0 (V ) is a Lie algebra.

Definition 2.5. A Lie algebra is an algebra g defined over a field K equipped

with an additional binary operation [·, ·] : g×g→ g with the following properties
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Anticommutativity for all a,b ∈ g,

[a,b] = − [b, a] (2.22)

Jacobi identity for all a,b, c ∈ g,

[a, [b, c]] + [c, [a,b]] + [b, [c, a]] = 0. (2.23)

The operation [·, ·] is known as the Lie bracket.

As tN0 (V ) forms an algebra, we can consider the commutator

[a,b] = a ⊗ b− b⊗ a, (2.24)

as the Lie bracket.

Proposition 2.6. The algebra
(
tN0 (V ) ,+, ·,⊗

)
is a Lie algebra when equipped

with the Lie bracket defined in (2.24)

Proof. To show that
(
tN0 (V ) ,+, ·,⊗

)
with [a,b] = a⊗b−b⊗a is a Lie algebra,

we need to show that both anticommutativity and the Jacobi identity hold.

• Anticommutativity: for all a,b ∈ g, [a,b] = − [b, a].

Proof.

[a,b] = a ⊗ b− b⊗ a

= − (b⊗ a − a ⊗ b)

= − [b, a]
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• Jacobi identity: for all a,b, c ∈ g, [a, [b, c]] + [c, [a,b]] + [b, [c, a]] = 0.

Proof.

[a, [b, c]] + [c, [a,b]] + [b, [c, a]]

= [a,b⊗ c− c⊗ b] + [c, a ⊗ b− b⊗ a] + [b, c⊗ a − a ⊗ c]

= a ⊗ (b⊗ c− c⊗ b)− (b⊗ c− c⊗ b)⊗ a

+ c⊗ (a ⊗ b− b⊗ a)− (a ⊗ b− b⊗ a)⊗ c

+ b⊗ (c⊗ a − a ⊗ c)− (c⊗ a − a ⊗ c)⊗ b

= 0.

Therefore as both conditions hold,
(
tN0 (V ) ,+, ·,⊗

)
equipped with [·, ·] is a Lie

algebra.

Now we look into some of the properties of tN1 (V ).

Proposition 2.7. The set tN1 (V ) equipped with the operation ⊗ as defined before

is a group.

Proof. To show that tN1 (V ) is a group, it is necessary to show that the following

properties hold.

• Closure: if a,b ∈ tN1 (V ), then a ⊗ b ∈ tN1 (V )

Proof. From the definition of ⊗,

a ⊗ b = (1, a1, a2, . . . , aN)⊗ (1, b1, b2, . . . , bN)

= (1, a1 + b1, . . . , aN + · · ·+ bN) ∈ tN1 (V )

• Associativity: for all a,b, c ∈ tN1 (V ), the following result holds

(a ⊗ b)⊗ c = a ⊗ (b⊗ c) (2.25)
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Proof. By the definition of ⊗, we get that

(a ⊗ b)⊗ c = ((1, a1, a2, . . . , aN)⊗ (1, b1, b2, . . . , bN))⊗ c

= (1, a1 + b1, . . . , aN + · · ·+ bN)⊗ (1, c1, c2, . . . , cN)

= (1, a1 + b1 + c1, . . . , aN + · · ·+ bN + · · ·+ cN)

= (1, a1, a2, . . . , aN)⊗ (1, b1 + c1, . . . , bN + · · ·+ cN)

= a ⊗ ((1, b1, b2, . . . , bN)⊗ (1, c1, c2, . . . , cN))

= a ⊗ (b⊗ c)

• Identity element: there exists e ∈ tN1 (V ) such that a ⊗ e = a for all

a ∈ tN1 (V )

Proof. Recall from Proposition 2.2 that the identity element was defined

to be 1 = (1, 0, 0, . . . , 0) ∈ tN1 (V ). We have that

a ⊗ e = (1, a1, a2, . . . , aN)⊗ (1, 0, 0, . . . , 0)

= (1, a1 · 1 + 1 · 0, a2 · 1 + a1 · 0 + 0 · 1, . . . ,

aN · 1 + aN−1 · 0 + · · ·+ a1 · 0 + 1 · 0)

= (1, a1, a2, . . . , aN)

= a

• Inverse element: for each a ∈ tN1 (V ) there exists b ∈ tN1 (V ) such that

a ⊗ b = e where e is the identity element

Proof. The inverse of a is given by

b = a−1 =
N∑
k=0

(1− a)⊗k =
N∑
k=0

(−1)k (a − 1)⊗k . (2.26)

Recall that the Taylor series expansion of (x+ 1)−1 is ∑ (−1)n xn for n ≥
0, then notice that a = (a − 1 + 1), so from the Taylor expansion,

a−1 = (a − 1 + 1)−1

=
N∑
k=0

(−1)k (a − 1)⊗k
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Therefore, as each of the properties required are satisfied, the set tN1 (V )

equipped with ⊗ is a group.

It is shown in [FV10] that
(
tN1 (V ) ,⊗

)
is not only a group, but also a Lie

group, the definition of which is also found in the same source. Recall that when

we have a Lie group and a Lie algebra associated with it, then we can define an

exponential map.

Definition 2.8. For a vector space V , for the Lie group tN1 (V ) and the associ-

ated Lie algebra tN0 (V ), there exists an exponential map exp : tN0 (V )→ tN1 (V ),

defined as
exp : a 7→

N∑
n=0

a⊗n
n!

a 7→ 1 + a + a⊗2

2 + · · ·+ a⊗N
N ! .

(2.27)

Additionally, we can define the inverse of the exponential function, the log-

arithm function.

Definition 2.9. The function log : tN1 (V )→ tN0 (V ) is defined as

log : a 7→
N∑
n=1

(−1)n+1 (a − 1)⊗n

n

a 7→ (a − 1)− (a − 1)⊗2

2 + · · ·+ (−1)N+1 (a − 1)⊗N

N
.

(2.28)

Thus ends this introduction to the tensor algebra space and some of its

associated subspaces. These spaces will be used in the next chapter where an

introduction to the iterated integral path signature is provided.



Chapter 3
Path Signatures

In the following chapter, we will introduce the theory of iterated integral path

signatures. The path signature in a primitive state was proposed by Chen in

1958 [Che58] and was subsequently revisited by Lyons in the 1990s [Lyo98] as

a tool for the study of controlled differential equations. Since the introduction

and formalisation of the theory by Lyons, there has been a constant and steady

increase in the use and study of both rough path theory and specifically the

path signature. In the past 5-10 years, the path signature has received strong

recognition for use as a tool for processing time series data for use in machine

learning with Graham in 2013 [Gra13] being one of the pioneers of its usage. It

is as a result of both the uniqueness of the signature and its proven performance

for use in classification [Gra13; PA+18; Fer21; MLG19] that this interest has

been so strong.

3.1 Motivation

The path signature has its origins in the study of differential equations of the

form

dYt = f(Yt) dXt, Y0 = ξ, (3.1)

with X : [0, T ] → V1, Y : [0, T ] → V2 and f : V2 → L(V1, V2) (where L(V,W )

is the set of all continuous linear maps from the space V to W ), when X is

13
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highly oscillatory. From the Picard-Lindelöf theorem, it is known that if X has

bounded variation and f is Lipschitz continuous, then ∀ξ ∈ V2, the differential

equation has a unique solution.

First consider the following simple ODE of first order

dy = f(x, y) dx, y(x0) = y0, (3.2)

where y : R → R and f(x, y) is continuous in x and uniformly Lipschitz con-

tinuous in y. This ODE satisfies the conditions of the Picard-Lindelöf theorem

which implies that an approximate solution to (3.2) can be found using Picard’s

method. In order to find this approximate solution, the integral form of (3.2) is

used:

y(x) = y(x0) +
∫ x

x0
f(t, y(t)) dt (3.3)

Applying the fixed point theorem to (3.3), we obtain a solution to (3.2)

y(x) = lim
n→∞ yn(x) , (3.4)

where

yi(x) = y(x0) +
∫ x

x0
f(τ, yi−1(τ)) dτ. (3.5)

Example 3.1. Consider the following ODE of the same form as (3.2)

dy = 2x (1− y) dx, y(0) = 2. (3.6)

Applying the Picard iteration, the result is

y1(x) = 2− x2

y2(x) = 2− x2 + x4

2

y3(x) = 2− x2 + x4

2 + x6

6
...

yn(x) = 2− x2 + x4

2 + . . .+ (−1)n x
2n

n!

One can see that limn→∞ yn = 1 + e−x2 , which is equal to the exact solution to

(3.6).
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Extending this to (3.1), the integral form is

Yt = ξ +
∫ t

0
f(Ys) dXs, (3.7)

then, the unique solution to the differential equation in (3.1) when X has

bounded variation can be found by considering the Picard iteration method.

Y
[1]
t = ξ

Y
[2]
t = ξ +

∫ t

0
f
(
Y [1]
u1

)
dXu1 = ξ + f(ξ)

∫ t

0
dXu1

Y
[3]
t = ξ +

∫ t

0
f
(
Y [2]
u2

)
dXu2 (3.8)

= ξ +
∫ t

0
f(ξ) + f

(
f(ξ)

∫ u2

0
dXu1

)
dXu2

...

this converges to

Yt = ξ +
∞∑
n=0

f⊗n(ξ)
∫

0≤u1≤···≤un≤T
dXu1 ⊗ · · · ⊗ dXun , (3.9)

where f⊗n(ξ) can be defined as in [Lyo14].

3.2 Path Signatures

From above, it can be seen that the k-th step of the Picard iteration is a linear

function of ∫
0≤u1≤···≤uk≤T

dXu1 ⊗ · · · ⊗ dXuk
. (3.10)

It has been proven [Che58; HL10] that for piecewise smooth paths and paths of

bounded variation, the collection of iterated integrals ∫
0≤u1≤···≤uk≤T

dXu1 ⊗ · · · ⊗ dXun


n≥0

, (3.11)

is well-defined and it is from that conclusion that we define the signature of the

path as the collection of all such integrals.
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Definition 3.2. Let V be some space defined over R and let X : [0, T ]→ V be

a path with bounded variation. Define, for some interval [s, t] ⊆ [0, T ],

S
(n)
[s,t](X) :=

∫
u1≤···≤un

u1,...,un∈[s,t]

dXu1 ⊗ · · · ⊗ dXun , (3.12)

then the signature of X over [s, t] is notated S[s,t](X) and is defined as

S[s,t](X) =

1,
∫

u1∈[s,t]

dXu1 ,
∫

u1≤u2
u1,u2∈[s,t]

dXu1 ⊗ dXu2 , . . .

 (3.13)

=
(
1, S(1)

[s,t](X) , S(2)
[s,t](X) , . . . , S(n)

[s,t](X) , . . .
)
. (3.14)

The initial element of the signature is always equal to 1 ∈ R = V ⊗0, this is

a convention as the first element is the empty integral which we define to be 1.

Note. For ease of notation, the interval over which the signature is computed

is often omitted, for example, the signature over the whole domain of a path

X : [0, T ]→ V will often be written as S(X) := S[0,T ](X).

Notice that the definition of S(n)
[s,t](X) implies that

S
(n)
[s,t](X) ∈ V ⊗n = V ⊗ · · · ⊗ V, (3.15)

therefore the signature of a path X : [0, T ] → V must lie in (possibly some

subset of) t1(V ). Let us define

G(V ) :=
{
S[a,b](X)

∣∣∣∀[a, b] ⊆ [s, t], X : [s, t]→ V
}
. (3.16)

It turns out (as we shall see later), that the space t1(V ) is actually larger than

G(V ). In §2.2 it was shown that it is possible to compute the logarithm of

elements of t1(V ). We therefore introduce the log signature of a path.

Definition 3.3. Let V be some space defined over R and let X : [0, T ] → V

be a path with bounded variation. If S[s,t](X) is the signature of this path over

the region [s, t] then

s[s,t](X) = log
(
S[s,t](X)

)
(3.17)
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is the log signature of X over [s, t]. The initial element of the log signature is

always equal to 0 ∈ R = V ⊗0.

Note. As with the signature, for ease of notation, the interval over which the log

signature is computed is often omitted, for example, the log signature over the

whole domain of a pathX : [0, T ]→ V will often be written as s(X) := s[0,T ](X).

As with tensor algebra spaces, there are truncated versions of the signature

and log signature. These are what will be used for the work in this thesis and

are what is used in practice as the infinite signature and log signature are clearly

not suitable for use.

Definition 3.4. Let V be some space defined over R and let X : [0, T ] → V

be a path with bounded variation. Define, for some interval [s, t] ⊆ [0, T ] and

some N the step-N truncated signature of X over [s, t] to be

SN[s,t](X) =

1,
∫

u1∈[s,t]

dXu1 , . . . ,
∫

u1≤···≤uN
u1,...,uN∈[s,t]

dXu1 ⊗ · · · ⊗ dXuN

 (3.18)

=
(
1, S(1)

[s,t](X) , S(2)
[s,t](X) , . . . , S(N)

[s,t](X)
)
. (3.19)

And similarly, the step-N truncated log signature of X over [s, t] is

sN[s,t](X) = log
(
SN[s,t](X)

)
(3.20)

3.3 Uniqueness of the Signature

The signature possesses a number of properties, here we shall introduce what is

possibly one of the most important features of the signature, uniqueness.

Theorem 3.5 (Lyons & Hambly [HL10]). Let X : [s, t] → Rd be a path with

bounded p-variation for p = 1, then S[s,t](X) determines X up to the tree-like

equivalence.

Tree-like paths are ones that “double back” on themselves, this means that

there is a “redundant” part of the path. For example, in Figure 3.1, there are



CHAPTER 3. PATH SIGNATURES 18

(0, 0)

(1, 1)

(0, 2) (2, 2)

X1
t

(a) Path with tree-like section from
(1, 1) to (0, 2)

(0, 0)

(1, 1)

(2, 0)

(2, 2)

X2
t

(b) Path with tree-like section from
(1, 1) to (2, 0)

(0, 0)

(1, 1)

(2, 2)

X3
t

(c) Tree-reduced version of the above
two paths

X1
t is the linear interpolation of the points {(0, 0), (1, 1), (0, 2), (1, 1), (2, 2)}

X2
t is the linear interpolation of the points {(0, 0), (1, 1), (2, 0), (1, 1), (2, 2)}

X3
t is the linear interpolation of the points {(0, 0), (1, 1), (2, 2)}

Figure 3.1: Examples of three paths with tree-like equivalence and therefore
equal signatures

three paths with the same signature. This is owing to their “tree-like equiv-

alence”. Paths X1
t and X2

t both have “tree-like” sections, whereby the path

doubles back on itself. These paths are equivalent in signature to the tree-

reduced version X3
t . The level 3 signature (represented as an element of Rd) of

all three paths is

S3
(
X1
t

)
= S3

(
X2
t

)
= S3

(
X3
t

)
=
(

1, 2, 2, 2, 2, 2, 2, 4
3 ,

4
3 ,

4
3 ,

4
3 ,

4
3 ,

4
3 ,

4
3 ,

4
3

)
.

(3.21)

Theorem 3.5 states that it is not just the level 3 signature that is equal

for each path, but the whole signature is equal for all three paths. The fol-

lowing Lemma provides an excellent way of reducing the problem of tree-like
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equivalence within data.

Lemma 3.6. Let X : [0, T ]→ V be a path with bounded p-variation for p = 1,

with a fixed starting point and where at least one coordinate of X is a monotone

function, then S[0,T ](X) determines X uniquely.

As a result of Lemma 3.6, taking the paths X1
t , X2

t and X3
t and adding a

time dimension, i.e.

X1
t is the linear interpolation of the points {(0, 0, 0), (1, 1, 1), (0, 2, 2),

(1, 1, 3), (2, 2, 4)}

X2
t is the linear interpolation of the points {(0, 0, 0), (1, 1, 1), (2, 0, 2),

(1, 1, 3), (2, 2, 4)}

X3
t is the linear interpolation of the points {(0, 0, 0), (1, 1, 1), (2, 2, 2)} ,

results in three different signatures, (here only the level 2 signature is shown for

brevity)
S3
(
X1
t

)
= (1, 2, 2, 4, 2, 2, 3, 2, 2, 5, 5, 3, 8)

S3
(
X2
t

)
= (1, 2, 2, 4, 2, 2, 5, 2, 2, 3, 3, 5, 8)

S3
(
X3
t

)
=
(

1, 2, 2, 3, 2, 2, 7
2 , 2, 2,

7
2 ,

5
2 ,

5
2 ,

9
2

) (3.22)

3.4 Calculation of Signatures

Recall the definition of the n-th level of the signature,

S
(n)
[a,b](X) :=

∫
u1≤···≤un

u1,...,un∈[a,b]

dXu1 ⊗ · · · ⊗ dXun , (3.23)

this is most easily calculated elementwise, i.e. by calculating

S
{τ}
[a,b](X) = S

(τ1,τ2,...,τn)
[a,b] (X) =

∫
u1≤···≤un

u1,...,un∈[a,b]

dX(τ1)
u1 · · · dX(τn)

un
, (3.24)

where {τ} = (τ1, . . . , τn) is a word of length n, with letters τi ∈ {1, . . . , n},
i = 1, . . . , n, and X(τi)

uj
denotes the τi-th element of Xuj

. Higher order iterated
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integrals clearly involve a large amount of integration, in order to make these

integrals easier to compute, we introduce a form of integration by parts that

relies on the following definition.

Definition 3.7. The shuffle product of two words {τ} and {η} of lengthm and n

respectively, is given by {τ}�{η} and is defined to be the set of the (m+n)!
m!n! words,

formed by considering all possible orderings of the letters contained within {τ}
and {η} such that the letters retain their original ordering.

Example 3.8. If {τ} = (1, 5) and {η} = (2, 4, 7) then {τ} � {η} consists of
(2+3)!

2!3! = 10 words,

{τ}� {η} = {(1, 5, 2, 4, 7) , (1, 2, 5, 4, 7) , (1, 2, 4, 5, 7) , (1, 2, 4, 7, 5) , (2, 1, 5, 4, 7) ,

(2, 1, 4, 5, 7) , (2, 1, 4, 7, 5) , (2, 4, 1, 5, 7) , (2, 4, 1, 7, 5) , (2, 4, 7, 1, 5)} .
(3.25)

This is then used in the integration by parts that follows,

Proposition 3.9. Let X : [s, t]→ Rd and let {τ} and {η} be two words, then

S
{τ}
[a,b](X)S{η}[a,b](X) =

∑
{ρ}∈{τ}�{η}

S
{ρ}
[a,b](X) (3.26)

Proof. By considering the individual coordinate signatures,

X
{τ}
[0,T ] = X

(τ1,...,τn)
[0,T ] =

∫
u1≤···≤un

u1,...,un∈[0,T ]

dX(τ1)
u1 · · · dX(τn)

un

X
{η}
[0,T ] = X

(η1,...,ηm)
[0,T ] =

∫
v1≤···≤vm

v1,...,vm∈[0,T ]

dX(η1)
v1 · · · dX(ηm)

vm
,

we see that

X
{τ}
[0,T ]X

{η}
[0,T ] =

∫
u1≤···≤un
v1≤···≤vm

u1,...,un,v1,...,vm∈[0,T ]

dX(τ1)
u1 · · · dX(τn)

un
dX(η1)

v1 · · · dX(ηm)
vm
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We need to find all the possible ways of ordering the integrals such that the ui
and vj maintain the correct ordering, i.e. ui ≤ uj and vi ≤ vj for i < j. This

is done using the shuffle product as it generates every single way of permuting

the elements without changing the ordering within the original words.

=
∑

{ρ}∈{τ}�{η}

∫
w1≤···≤wm+n

w1,...,wm∈[0,T ]

dX(ρ1)
w1 · · · dX(ρm+n)

wm+n

=
∑

{ρ}∈{τ}�{η}
X
{ρ}
[0,T ].

As a result of this proposition, it is possible to compute the log signature

and show that a number of the elements are reduced to zero. As an example,

let us consider a path X : [0, 1]→ R2, the level two signature of the path lies in

(some subspace of) the space t21(R2), and can be represented as the following:

a = S2(X) = (1, a1, a2, a11, a12, a21, a22) . (3.27)

Computing log(a), one obtains

log(a) =
(

0, a1, a2, a11 −
a2

1
2 , a12 −

a1a2

2 , a21 −
a1a2

2 , a22 −
a2

2
2

)
. (3.28)

We know from Proposition 3.9 that a2
1 = S{1}(X)S{1}(X) = 2S{1,1}(X) = 2a11

so a11 − a2
1

2 = 0, and the same holds for a22 − a2
2

2 . Furthermore, notice that

a1a2 = a12+a21 and therefore, a12− a1a2
2 = a12

2 − a21
2 = −

(
a21
2 − a1a2

2

)
= a21− a1a2

2 .

This gives us

log(a) =
(

0, a1, a2, 0,
1
2 (a12 − a21) , −1

2 (a12 − a21) , 0
)
. (3.29)

The calculation of signatures of streams of data is something that has been

worked on significantly by two different groups. Terry Lyons’ group in Oxford,

through their CoRoPa (Computational Rough Path) project, have published the

Python package esig [LM] and Jeremy Reizenstein during his time at Warwick

produced the iisignature Python package [RG18], both of these packages are

available on PyPI (Python Package Index).
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3.5 Space of signatures and log signatures

We wish to concretely define the spaces in which the signature and the log signa-

ture lie. Recall that in (3.16), we loosely defined the space of signatures G(V ),

let us similarly define the space GN(V ) to be the set of all step-N signatures of

paths in V .

GN(V ) :=
{
SN[a,b](X)

∣∣∣∀[a, b] ⊆ [s, t], X : [s, t]→ V
}
. (3.30)

For the moment, we will not define this space more concretely but will instead

come back to it once we have first looked at the space of log signatures.

Now that we have an arbitrary space for the signatures, we shall define the

space containing the log signatures as a particular subset of tN0 (V ). First, define

a sequence (Li)Ni=0 where L0 = 0, L1 = V and

Ln = [V, Ln−1] , n ∈ {2, . . . , N} . (3.31)

For each n, Ln is defined as the space of homogeneous Lie polynomials of degree

n and it is easy to see that for every n, Ln is a linear subspace of V ⊗n. Using

this, we define gN(V ).

Definition 3.10. The free N-step nilpotent Lie algebra is defined as

gN(V ) =
N⊕
n=0

Ln = L0 ⊕ L1 ⊕ L2 ⊕ · · · ⊕ LN

= V ⊕ [V, V ]⊕ [V, [V, V ]]⊕ · · · ⊕
N − 1 brackets︷ ︸︸ ︷

[V, [..., [V, V ]]]

= {(l0, l1, . . . , lN)|ln ∈ Ln}

(3.32)

The bases of this space are known as the Hall bases. We will go on to discuss

one specific Hall basis, the one that is used within both esig [lyons_esig_nodate_pypi;

LM] and CoRoPa [Lyo] - the C++ package upon which esig is built. First, an

example.

Example 3.11. Assume that V is of dimension 2, then we can write the basis

of V as e1, e2. Now, If we consider g2(V ), we have that

g2(V ) = V ⊕ [V, V ] , (3.33)
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so naïvely, one might assume that a basis could be the following collection of

elements f1, . . . , f8 ∈ g1(V ),

f1 = e1 + [e1, e1] f2 = e2 + [e1, e1]

= e1 + e1 ⊗ e1 − e1 ⊗ e1 = e2 + e1 ⊗ e1 − e1 ⊗ e1

= e1 = e2

f3 = e1 + [e2, e1] f4 = e1 + [e1, e2]

= e1 + e2 ⊗ e1 − e1 ⊗ e2 = e1 + e1 ⊗ e2 − e2 ⊗ e1

f5 = e2 + [e2, e1] f6 = e2 + [e1, e2]

= e2 + e2 ⊗ e1 − e1 ⊗ e2 = e2 + e1 ⊗ e2 − e2 ⊗ e1

f7 = e1 + [e2, e2] f8 = e2 + [e2, e2]

= e1 + e2 ⊗ e2 − e2 ⊗ e2 = e2 + e2 ⊗ e2 − e2 ⊗ e2

= e1 = e2

It is clear here that this collection of elements of g1(V ) has a large amount of

redundancy and therefore is not a basis, for example,

f1 = f7 and f2 = f8,

furthermore, if g = e1 ⊗ e2 − e2 ⊗ e1, then

f3 = f1 − g and f4 = f1 + g

f5 = f2 − g and f6 = f2 + g.

Therefore it is clear that in fact, a basis for g1(V ) is simply

e[1] = e1, e[2] = e2, e[1,2] = e1 ⊗ e2 − e2 ⊗ e1.

The method of generating a basis of this form for gN(V ) is a recursive one,

and is presented in Algorithm 3.1.
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Algorithm 3.1: Generating basis for gN(V ).

Inputs: A basis for V given by e1, . . . , ed

Step 1: Start with basis for V and then define the “first level” of the basis
of gN(V ) to be e[i] = ei for i = 1, . . . , d

Step 2: For the “second level” of the basis, generate all bracketed pairs
(that is [i, j]) such that i < j for i, j ∈ {1, . . . , d}, then define for each
bracketed pair [i, j], e[i,j] = [ei, ej] = ei⊗ ej − ej ⊗ ei to be the “second
level” of the basis

Step 3: For the “n-th level” (3 ≤ n ≤ N), obtain all possible bracketed
pairs of the form [i, A] where i ∈ {1, . . . , d} and A is a bracketed pair
from the (n − 1)-th level of the basis. The n-th level of the basis is
then formed using each bracketed pair [i, A], using e[i,A] = e[i,[...,[j,k]]] =
[ei, [. . . , [ej, ek]]].

Therefore we have concretely defined the space in which the log signature

lies. The space of signatures can now be defined from the following theorem.

Theorem 3.12. Where GN(V ) is the set of all step-N signatures of paths in

V and gN(V ) is the free N-step nilpotent Lie algebra, the following relationship

holds

GN(V ) = exp
(
gN(V )

)
. (3.34)

GN(V ) is known as the free n-step nilpotent group over V and is a closed sub-Lie

group of
(
tN1 (V ) ,⊗

)
.

Proof. The proof of this can be found in Fritz & Victoir [FV10] (pp. 143-

144).

From the way in which gN(V ) is defined, it is clear that every element

a ∈ gN(V ) is a log signature and by definition of GN(V ), every a ∈ GN(V ) is

a signature. However owing to the fact that the space GN(V ) has no known

closed form, we will consider the two main spaces used to be tN1 (V ) and gN(V ).
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3.6 Polynomials in the log signature

It is a well known theorem within the study of Lie algebras that polynomials in

the linear functionals of the log signature form the same space of functions on

paths as linear functionals of the signature, each with a different basis [Reu93;

LCL07]. We wish to investigate the relationship between these bases. In doing

this, we will look at two bases for the linear functionals on the log signature,

these are

• Monomials e.g. (in two dimensions up to degree 2) 1, x, y, x2, xy, y2

• Chebyshev polynomials of the first kind e.g. (in two dimensions up to

degree 2) 1, x, y, 2x2 − 1, xy, 2y2 − 1

In order to define these polynomials, it is necessary to first understand the

linear functionals on the log signature and signature.

3.6.1 Linear functionals on the signature and log signature

Given a normed vector space (V, ‖·‖) defined over R of dimension d, let e1, . . . , ed
be a basis for V . The space V ⊗n is then equipped with the basis

eI = e(i1,...,in) = ei1 ⊗ · · · ⊗ eiN , ∀I = (i1, . . . , in) ∈ {1, . . . , d}n , (3.35)

by taking the direct sum of these bases for all n, we obtain a basis for the space

T ((V )). The dual of V is the set of all bounded linear functionals from V to R,

V ∗ = {ϕ : V → R|ϕ is bounded} (3.36)

and has a basis e∗1, . . . , e∗d, where

〈e∗i , ej〉 = e∗i (ej) = δij. (3.37)

Note. δij is the Kronecker delta function

δij =


0 if i 6= j,

1 if i = j.

(3.38)
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The space (V ⊗n)∗ = (V ∗)⊗n then has a basis

e∗i = e∗(i1,...,in) = e∗i1 ⊗ · · · ⊗ e∗in , ∀I = (i1, . . . , in) ∈ {1, . . . , d}n . (3.39)

It follows that T ((V )) has a basis
∞⊕
n=0

ei1 ⊗ · · · ⊗ ein (3.40)

and T (V ∗) has a basis
∞⊕
n=0

e∗i1 ⊗ · · · ⊗ e∗in . (3.41)

Take ∑ aIeI = a ∈ T ((V )), then

e∗I(a) = aI , (3.42)

i.e. the I = (i1, . . . , in)-th coordinate of a.

We now investigate what happens if we take f∗,g∗ ∈ T (V ∗) and consider

their pointwise product. We know that if f∗,g∗ : T ((V )) → R then f∗ · g∗ :

T ((V ))→ R and then

(f∗ · g∗)(a) = f∗(a) · g∗(a) (3.43)

is a quadratic form on T ((V )). It is known [LCL07] that there exists an addi-

tional, unique third element of T (V ∗) that we shall denote f∗ t g∗ that has the

property that f∗ ·g∗ and f∗tg∗ are equal on a subset of t1(V ). As f∗ and g∗ can

be written as linear combinations of basis elements of T (V ∗), we shall define this

third element in terms of basis elements. This third element is defined using as

follows;

Definition 3.13. Given e∗I , e∗J ∈ T (V ∗) with the indices being the words I =

(i1, . . . , in) and J = (j1, . . . , jm) (for some m,n ∈ N), define the shuffle product

of e∗I and e∗J , notated as e∗I t e∗J to be

eI t eJ =
∑

K∈I�J
eK , (3.44)

where I � J is the shuffle product of the two words I and J where I consists

of n letters and J consists of m letters. It is defined to be the set of the (n+m)!
n!m!

words of length n+m formed by considering all possible orderings of the letters

contained within I and J such that the letters retain their original ordering.



CHAPTER 3. PATH SIGNATURES 27

Example 3.14. Consider e11 and e2, then

(1, 1)� (2) = {(1, 1, 2) , (1, 2, 1) , (2, 1, 1)} , (3.45)

and therefore

e11 t e2 = e112 + e121 + e211 (3.46)

Using these properties, we are able to define polynomials on elements of

gN(V ). Let us consider the example of t21(V ) where V is of dimension 2. Now this

space has a basis {e0, e1, e2, e11, e12, e21, e22} and dual basis

{e∗0, e∗1, e∗2, e∗11, e∗12, e∗21, e∗22}, and the corresponding space gN(V ) has a basis

{e[0], e[1], e[2], e[1,2]} and dual basis {e∗[0], e∗[1], e∗[2], e∗[1,2]}. For some a ∈ gN(V ),

we have the following monomials:

degree 0:
{

e∗[0](a) = e∗0(a) (3.47)

degree 1:


e∗[1](a) = e∗1(a)

e∗[2](a) = e∗2(a)
(3.48)

degree 2:



e∗[1,2](a) = e∗12(a)− e∗21(a)

(e∗[1] · e∗[2])(a) = (e∗[1] t e∗[2])(a) = e∗12(a) + e∗21(a)

(e∗[1] · e∗[1])(a) = (e∗[1] t e∗[1])(a) = e∗11(a) + e∗11(a) = 2e∗11(a)

(e∗[2] · e∗[2])(a) = (e∗[2] t e∗[2])(a) = e∗22(a) + e∗22(a) = 2e∗22(a)

(3.49)

3.7 Wolfram Mathematica package

In order to assist with the investigation into polynomials of log signature, I have

produced a Mathematica package. This section will list and demonstrate some

of the main functions of interest in the package.

3.7.1 Generating Hall bases

In order to define the polynomials, one needs the Hall basis for gN(V ) where

dim(V ) = d and dim(N) = m; the function GenerateStandardHallBasis[d,m] is
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designed to do just that. This function (and indeed most others in this package)

rely on symbolic computation in Mathematica and some are based upon code

produced as path of the iisignature Python package [reizenstein_bottleriisignature_nodate].

Given d and m, Hall basis elements will be output in the form of bracketed expres-

sions such as {e1,{e1,e2}} which is the representation of [e1, [e1, e2]] = e[1,[1,2]]

grouped by the depth of their brackets. In order to obtain a list of the Hall

basis elements ungrouped, the list must be flattened by 1 level.

In[1]:= GenerateStandardHallBasis[2,3]

Out[1]= {{e1, e2}, {{e1, e2}},

{{e1, {e1, e2}}, {e2, {e1, e2}}}}

It is important to note that, the way in which the bases are notated means

that it is only possible to generate the Hall basis for up to d=9. After that, the

notation methodology chosen causes the code to breakdown, this is owing to the

fact that the notation relies on single digit numbers; e10 could be considered to

be either a level 1 or level 2 basis element.

3.7.2 Expanding Hall basis brackets

Once the basis has been obtained, we wish to expand the brackets to ob-

tain the basis in terms of basis elements of tN1 (V ). This is done using the

ExpandBracketedExp[x,d] function. This function takes a bracketed expres-

sion x in the form produced by GenerateStandardHallBasis[d,m] (for example

{e1,{e1,e2}}) and d, the dimension of the space V .

In[2]:= ExpandBracketedExp[{e1,{e1,e2}},2]

Out[2]= e112 - 2 e121 + e211
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In[3]:= ExpandBracketedExp[{e3,{e1,{e2,e4}}},4]

Out[3]= - e1243 + e1423 + e2413 + e3124 - e3142

- e3241 + e3421 - e4213

3.7.3 Shuffle product

Having expanded the Hall basis elements, it is necessary to find the monomi-

als. The monomials are dependent upon the shuffle product. In the package

I have provided two different shuffle product functions, ShuffleW[s1,s2] takes

two words s1 and s2 in the form of lists and outputs a list containing all possible

shuffles of these two words, i.e. s1� s2.

In[4]:= ShuffleW[{1, 2, 3}, {2, 5}]

Out[4]= {{1, 2, 3, 2, 5}, {1, 2, 2, 3, 5}, {1, 2, 2, 5, 3},

{1, 2, 2, 3, 5}, {1, 2, 2, 5, 3}, {1, 2, 5, 2, 3},

{2, 1, 2, 3, 5}, {2, 1, 2, 5, 3},

{2, 1, 5, 2, 3}, {2, 5, 1, 2, 3}}

The other shuffle product function Shuffle[a,b] takes two expanded Hall

basis elements (i.e. a linear combination of basis elements of tN1 (V )) and outputs

the shuffle product of the two, i.e. a t b.

In[5]:= Shuffle[e1, e2]

Out[5]= e12 + e21
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In[6]:= Shuffle[4e2 - 3e1, -e22]

Out[6]= 3 e122 + 3 e212 + 3 e221 - 12 e222

3.7.4 Monomials and Chebyshev Polynomials

The BasisMonomials[d,m] function takes d and m as defined previously and gen-

erates all possible monomials (up to and including degree m) in terms of the

expanded Hall basis elements.

In[7]:= BasisMonomials[2,3]

Out[7]= {1, e1, e2, 2 e11, e12 - e21, e12 + e21, 2 e22, 6 e111,

2 e112 - 2 e211, e112 - 2 e121 + e211,

2 e112 + 2 e121 + 2 e211, 2 e122 - 2 e221,

-e122 + 2 e212 - e221,

2 e122 + 2 e212 + 2 e221, 6 e222}

In[8]:= BasisMonomials[4,2]

Out[8]= {1, e1, e2, e3, e4, 2 e11, e12 - e21, e12 + e21, 2 e22,

e13 - e31, e13 + e31, e23 - e32, e23 + e32, 2 e33,

e14 - e41, e14 + e41, e24 - e42, e24 + e42,

e34 - e43, e34 + e43, 2 e44}

For generating Chebyshev polynomials, BasisChebyshevPolynomials[d,m] takes

d and m as defined previously and generates all possible Chebyshev polynomials

in terms of the expanded Hall basis elements.
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In[9]:= BasisChebyshevPolynomials[2,2]

Out[9]= {1, e1, e2, 4 e11 - 1, e12 - e21, e12 + e21, 4 e22 - 1}

3.7.5 Operations on tensor algebra structures

There are a handful of functions to carry out operations on tensor algebra struc-

tures which take as input representations of tensor objects such as

{1,{a1,a2},{{a11,a12},{a21,a22}}}, below a handful of these functions are

demonstrated.

• TensorAlgebraProduct[a,b] computes a⊗ b where a, b ∈ TN((V ))

• TensorAlgebraSum[a,b] computes a + b where a, b ∈ TN((V ))

• TensorAlgebraScalarProduct[k,a] computes k · b where k ∈ V and b ∈
TN((V ))

• TensorAlgebraLieBracket[a,b] computes [a, b] where a, b ∈ tN0 (V )

• TensorAlgebraInverse[a] computes a−1 for a ∈ tN1 (V )

• TensorAlgebraExp[a] computes exp(a) for a ∈ tN0 (V )

• TensorAlgebraLog[a] computes log(a) for a ∈ tN1 (V )

In[10]:= TensorAlgebraProduct[

{1,{a1,a2},{{a11,a12},{a12,a22}}},

{1,{b1,b2},{{b11,b12},{b12,b22}}}]

Out[10]= {1, {a1 + b1, a2 + b2},

{{a11 + a1 b1 + b11, a12 + b12 + a1 b2},

{a21 + a2 b1 + b21, a22 + a2 b2 + b22}}}
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In[11]:= TensorAlgebraSum[

{0,{a1,a2},{{a11,a12},{a12,a22}}},

{0,{b1,b2},{{b11,b12},{b12,b22}}}]

Out[11]= {0, {a1 + b1, a2 + b2},

{{a11 + b11, a12 + b12}, {a21 + b21, a22 + b22}}}

In[12]:= TensorAlgebraScalarProduct[k,

{1,{a1,a2},{{a11,b12},{b12,b22}}}]

Out[12]= {k, {k * a1, k * a2},

{{k * a11, k * a12}, {k * a21, k * a22}}}

In[13]:= TensorAlgebraLieBracket[

{0,{a1,a2},{{a11,a12},{a12,a22}}},

{0,{b1,b2},{{b11,b12},{b12,b22}}}]

Out[13]= {0, {0, 0}, {{0, -a2 b1 + a1 b2}, {a2 b1 - a1 b2, 0}}}

In[14]:= TensorAlgebraInverse[

{1,{a1,a2},{{a11,a12},{a12,a22}}}]

Out[14]= {1, {-a1, -a2}, {{a1^2 - a11, -a12 + a1 a2},

{a1 a2 - a21, a2^2 - a22}}}

In[15]:= TensorAlgebraExp[

{0,{a1,a2},{{a11,a12},{a12,a22}}}]

Out[15]= {1, {a1, a2}, {{a1^2/2 + a11, a12 + (a1 a2)/2},

{(a1 a2)/2 + a21, a2^2/2 + a22}}}
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In[16]:= TensorAlgebraLog[

{1,{a1,a2},{{a11,a12},{a12,a22}}}]

Out[16]= {0, {a1, a2}, {{-(a1^2/2) + a11, a12 - (a1 a2)/2},

{-((a1 a2)/2) + a21, -(a2^2/2) + a22}}}

By combining this Mathematica package [WN21] with the code developed by

Jeremy Reizenstein [reizenstein_bottleriisignature_nodate] to compute

signatures using Mathematica, these form a very powerful tool for computing

and manipulating signatures and log signatures.



Chapter 4
Online Arabic Handwritten

Character Recognition Using

Dyadic Signatures

In this chapter, we present a methodology using the iterated integral path sig-

nature, to transform sequential data for use with machine learning, applied to

online Arabic handwritten characters.

Signatures have been demonstrated to be an excellent tool for classifying

sequential data in the form of Chinese online handwriting [Gra13; Xie+18].

Building on the successes of researchers at both The University of Warwick

and South China University of Technology, we introduce a new methodology

using the iterated integral path signature for the classification of online Arabic

handwritten characters.

The contents of this chapter are based upon a paper [WN+18] presented at

ASAR2018 - the 2018 IEEE 2nd International Workshop on Arabic and Derived

Script Analysis and Recognition.

The structure of this chapter is as follows; §4.1-4.2 briefly introduce the study

of online handwriting recognition and the segmented Online KHATT dataset

that will be used in this chapter, §4.3 explains the methodology that has been

34
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developed, §4.4 introduces the two different classification methodologies that

will be used and finally, §4.5 & 4.6 present the results of applying the dyadic

signature approach and provide a conclusion.

4.1 Online Handwriting Recognition

Handwriting recognition methods are of two distinct types; online and offline.

Online handwriting recognition deals with data recorded “in time”, i.e. data

that is represented as a function of time. Offline handwriting recognition, on

the other hand, deals with recognition of data that is in image format. On-

line handwriting recognition deals with the spatio-temporal resolution of the

input whereas offline handwriting recognition deals with the spatio-luminance

of an image [PS00]. Handwriting recognition has a number of important appli-

cation areas, from converting handwriting to text on a tablet or touch screen to

signature verification for bank fraud to digitisation of ancient manuscripts for

historical study [Pri+16].

Recent advances in computing and deep learning have resulted in a large

amount of interest in the area of handwriting recognition, with over 30,000 re-

sults for “handwriting recognition” appearing on Google Scholar since 2013. The

popularity of the field has lead to significant developments and advancements

in recent years. Online handwriting recognition is a topic that has been studied

since the 1960s and has been greatly studied in the past decade, with competi-

tions emerging for recognition of online handwriting at major conferences such as

ICDAR (International Conference on Document Analysis and Recognition) and

ICFHR (International Conference on Frontiers in Handwriting Recognition), in

many languages and scripts ranging from Chinese to English to Arabic.
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Figure 4.1: Online handwritten Arabic characters (nūn and shīn)

4.2 Online Handwritten Arabic Characters Data -

KHATT

Online handwritten characters are sequences of (x, y) coordinates, possibly with

multiple sequences per character to indicate multiple strokes within a single

character. The general format of these characters is shown in (4.1), where Yi is

the class of the character whose data is contained within Xi, i.e. Yi is the label

of Xi.

Xi = {

Arbitrary number of coordinates per stroke

↑︷ ︸︸ ︷[
(x, y)1 , (x, y)2 , . . . , (x, y)`1

]
1
, . . . ,

[
(x, y)1 , (x, y)2 , . . . , (x, y)`N

]
N︸ ︷︷ ︸

↓
Arbitrary number of strokes per character

, Yi},

(4.1)

The data used in this chapter comes from the Online KHATT dataset with

individual characters segmented. This data has been produced and worked on

by Al-Helali and Mahmoud [AHM16]. Fig. 4.1 shows two examples of characters

from this dataset. The dataset contains 22,795 observations, each observation

may fall into one of 59 different classes. Note that whilst the Arabic alphabet

contains 28 characters, the number of classes is higher owing to the presence of

ligatures, characters that the researchers were unable to separate and various

punctuation marks. The dataset is split into training and testing sets as shown

in Table 4.1, the remainder of the data is kept for use as a validation set. The

testing set is chosen such that all the classes that appear in the testing set are

ones that also appear in the training set. Of the 59 different classes in the data,

54 are represented in the training set. Appendix A shows an example character
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from each class as well as information about the number of observations from

that class in each of the training, testing and validation sets and the percentage

of observations in each set that are from that specific class. No attempt was

made to ensure that the class proportions were equal within the training, testing

and validation sets but as can be seen in Appendix A, the proportions are mostly

the same within each of the three sets.

Set Size No. Classes

Training 11397 54

Testing 6833 51

Validation 4559 49

Table 4.1: Breakdown of splitting of the dataset into training and testing sets

4.2.1 Background

Historically, the most commonly used tool for online handwriting recognition

is Hidden Markov Models (HMM), this tool works by predicting an underlying

distribution of a hidden time series, from which the handwritten data is sam-

pled [Car+20]. The HMM method still receives a large amount of interest and

was recently proposed as a method for classifying segmented Arabic characters

by al Helali and Mahmoud [AHM16], resulting in an 82% recognition rate on

a database consisting of segmented characters taken from the Online KHATT

database. A large number of other papers propose HMM based classifiers for

online Arabic handwriting [TKA13].

More recently, the breakthrough in computing abilities (particularly the use

of GPUs) combined with the use of machine learning and deep learning has

lead to more advanced Neural Networks being used for handwriting recogni-

tion [Car+20; AHM17]. Recently Tagougui et al. [Tag+14] implemented a mul-

tilayer perception classifier using neural networks and Assaleh et al. [ASH09]

used a k Nearest Neighbours approach. These approaches have been shown to
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significantly improve on the performance of HMMs and are regarded by many

to be the only tool currently capable of accurately recognising handwriting.

1. Hidden Markov Models: An HMM is a tool that is used to express prob-

ability distributions on sequences of observations of a time series. These

discrete observations of the time series form a discrete stochastic process

Yt, where the structure of Yt is of any form (real valued, integer, letters

etc.) with the restriction that it is possible to define a probability dis-

tribution on the process. The stochastic process Yt is assumed to behave

dependent on some unknown hidden Markov process Xt.

2. Neural Networks: Neural networks were originally an attempt to mimic

the way in which the human brain works. Through multiplication of input

data by a large number of weights at nodes, followed by an optimisation

of the weights so as to achieve the best possible outcome, neural networks

have achieved significant prominence in the field of classification owing to

their abilities.

4.3 Methodology

The methodology presented below transforms the raw character data (assumed

to lie in [−1, 1]2) to a set of feature variables that can be used for classification

with a tool such as neural networks.

4.3.1 Fixing dimensionality

Each character contains a number of strokes and each stroke contains a number

of coordinates (x, y). The first step is to change the character from a list of

strokes to a single list of coordinates. To do this, a third dimension is added,

and a number of “jump points” are also added. This third dimension may be

thought of as a discrete time dimension, encoding each stroke or jump as its

own epoch. For ease of notation, let (x, y)ki be the i-th coordinate of stroke k.
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The third dimension, P , is added through the following mechanism:

(x, y)ki 7→ (x, y, P )ki , (4.2)

where

P = 2× (k − 1) , (4.3)

where k is the number of the stroke that contains the coordinate. For example,

the coordinate (0.1, 0.5)2
2 (i.e. the second coordinate in stroke 2) would become

(0.1, 0.5, 2)2
2. The data is now of the form:

Xi = {(x, y, 0)1
1, . . . , (x, y, 0)1

`1 ,

(x, y, 2)2
1, . . . , (x, y, 2)2

`2 ,

. . .

(x, y, 2N − 2)N1 , . . . , (x, y, 2N − 2)N`N}.

(4.4)

The second step to this stage, is to add coordinates to indicate where the

pen leaves the paper (tablet). These are added between coordinates where a

new stroke begins and have the exact same x and y coordinate values as the end

point of one stroke and beginning point of the next. The P value of these two

coordinates that are added is equal to the odd integer that lies between the two

even integers of the existing coordinates. For example, the data in (4.4) would

become
Xi = {(x, y, 0)1

1, . . . , (x, y, 0)1
`1 ,

new → (x, y, 1)1
`1 , (x, y, 1)2

1,

(x, y, 2)2
1, . . . , (x, y, 2)2

`2 ,

. . .

new → (x, y, 2N − 3)N−1
`N−1

, (x, y, 2N − 3)N1 ,

(x, y, 2N − 2)N1 , . . . , (x, y, 2N − 2)N`N}.

(4.5)

A handful of other ways of fixing the dimensionality of the data have been

tested, these included the following:

• Setting the third coordinate to simply be the stroke number and linearly

interpolating between the end of one stroke and the beginning of the next.
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• Adding coordinates in the same way as above however setting the third

dimension to equal 0 when the pen/stylus is on the paper and 1 when the

pen is off the paper/tablet

• Concatenating all the strokes and adding a third dimension as time/coor-

dinate number normalised to t ∈ [0, 1].

These alternate methods for dealing with the dimensionality of the data did

not prove to be as powerful as the one presented earlier in this section. It is

possible that the number of strokes is of significance and thus as using any of

the other processes described removes this piece of information, performance is

not as strong.

4.3.2 Signature of the Character

After the data has been converted to a single series of coordinates in R3, the

data extraction method in preparation for the classifier is to be carried out.

The method that will be used in this work is known as the dyadic signa-

ture, developed based on the iterated integral path signature, invented by Terry

Lyons [CK16]1. The signature of a path was introduced in Chapter 3.

The first step to using the signature to encode details of the characters is to

take a linear interpolation - at constant speed - of the sequence of points in 3D

that were produced in the first stage. By computing a linear interpolation of the

points, this results in an interpretation that is independent of both the speed at

which the user wrote the character and the sampling speed of the tablet. Second

is to consider this as a path in 3D and to compute either the signature or the

log signature of each character (up to a fixed level, say M). The resulting data

is used as the input for a classifier.

Previous work using the path signature as a tool for preprocessing online

Chinese handwriting has involved the use of a sliding window [Xie+18]. A

sliding window of fixed length is applied to the character and the signature of
1note that this citation is not by Prof T Lyons, but provides a very easy to follow intro-

duction for using the iterated integral path signature in machine learning
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Figure 4.2: Transformation from original character to linearly interpolated char-
acter with “pen” dimension added (character qāf ) and then split into 4 dyadic
intervals

each snapshot of the character within the sliding window is computed. This

results in a very large amount of data and it is possible for Arabic handwriting

which is inherently less complex than Chinese handwriting, this level of detail is

unnecessary. The methodology proposed herein attempts to mimic the sliding

window but also to drastically decrease the amount of data and the number of

computations necessary. Instead of using a sliding window, the character is split
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into dyadic intervals.

Definition 4.1. For a given pair of natural numbers j, k ∈ N0, where k < 2j,

the dyadic interval Ij,k ⊆ [0, 1] ⊂ R is the interval

Ij,k =
[
k

2j ,
k + 1

2j

]
. (4.6)

Normally, one would consider the partition of [0, 1] formed by {Ij,k}j−1
k=0 for

some j.

In order to use dyadic signatures, instead of calculating the signature of the

whole path, the path is split into 2k sections of equal length and the signature

of each of these sections is calculated. The final step is to prepend each of

the dyadic signatures with the (x, y, P ) coordinates at the start of each dyadic

interval. This provides the classification tool with details of the path shape

(through the level N iterated integral path signature/log signature) and its

location in space. It is this combination of location plus signature that is used

as input for the classifier. Thus, when expressing the signature as en element of

Rd (for an appropriate value of d), the resultant data for the first dyadic interval

is of the format

(x, y, P, S(1)
[0,1/2n](X) , . . . , S(3)

[0,1/2n](X) , S(1,1)
[0,1/2n](X) , . . . ) (4.7)

4.4 Classification methodologies

Two different methodologies are used to classify the processed characters;

• Random Forests

• LSTM Neural Networks

4.4.1 Random Forests

Classification trees have been a tool used for classification informally since the

18th Century however the theory was only formalised in 1984 by Breiman et
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al [Bre+84]. Owing to the comparatively small number of classes in the seg-

mented Online KHATT dataset, using classification trees becomes a suitable

methodology for use with this data.

Classification trees on continuous data have a property that there are in-

finitely many possible trees2, each with different split points. Furthermore,

owing to the greedy nature of the algorithm (picking the best initial split) the

best possible classification tree is unlikely to be selected. In order to counteract

this issue, N different random subsets of the variables xj are picked and N dif-

ferent classification trees are produced based on these subsets. The resulting N

classification trees are then combined into one tree through a process known as

voting (whereby the split which occurs most often at a given point is picked).

This is the foundation of the theory of random forests [Yiu19]. Random forests

were introduced by Tin Kam Ho in 1995 [Tin95].

4.4.2 LSTM Neural Networks

Neural networks are a tool used in data science that have been around for a

number of years, however have dramatically increased in usage over the past

few years owing to the increase in size of datasets available and also owing to a

significant increase in computing abilities, particularly parallel processing and

GPU computing abilities. A basic neural network consists of different layers; an

input layer, a number of hidden layers; and an output layer.

Building on the theory of neural networks, more complex networks can be

employed for different data types; one such example is Recurrent Neural Net-

works (RNNs). RNNs have the property that the output of each node is fed

back into itself, as a way of learning from itself. This is very important for

when sequential data or data that has a temporal aspect is employed. One lim-

itation of recurrent neural networks for use with sequential data is how these

networks “forget” the past quickly, i.e. large changes in the input will result

in sudden large changes in the model, thus forgetting the historical informa-
2indeed if one had data containing just 6 Boolean attributes, there would be

18,446,744,073,709,551,616 possible classification trees
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tion. To counteract the “forgetfulness” of the network, it is common to add an

extra “memory” state to the RNN. This additional state helps to improve the

short term memory of the neural network. This is the foundation of a Long

Short Term Memory (LSTM) network [Ola]. LSTMs were first introduced by

Hochreiter and Schmidhuber in 1997 [HS97].

4.5 Results

Using the two classification methodologies introduced in 4.4, models are fitted

to the training data. For this section, when dyadic level n is used, it implies

that the following signatures are calculated and used for recognition:

{S[0,1](X), S[0,1/2](X), S[1/2,1](X), . . . , S[0,1/2n](X), . . . , S[(2n−1)/2n,1](X)}, (4.8)

i.e. the signature of the whole character ([0, 1]), the signature of each half of

the character ([0, 1/2], [1/2, 1]) and all the way up to the signature of each

dyadic interval of length 1/2n of the character. The results of applying these

classification methodologies to the data are presented in this section.

4.5.1 Random Forests

Using the ExtraTreesClassifier classifier in the Python package scikit-learn,

based on the Extremely Randomised Trees concept developed by Geurts et

al. [GEW06], the data is classified by adjusting various parameters. Fixing the

function parameters n_estimators=1000 and max_depth=20, whilst adjusting

the signature level and the number of dyadic intervals, the results shown in

Table 4.2 are obtained.

From the table, a number of conclusions can be drawn, first of all, that the

recognition rate of 82% achieved by al Hilali and Mahmoud [AHM16] is easy

to not only equal, but to better by approximately 8% using this methodology.

Secondly, it is interesting to note that by fixing the dyadic level to be low and

increasing the level of the signature, an increase in recognition can be obtained.
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This is owing to the fact that more information is contained within higher levels

of the signature, furthermore, once the random forest is able to select from more

variables, it is more likely to be able to find a better solution. If on the other

hand, the dyadic level is fixed to be large, increasing the signature level can be

seen to result in a decrease in recognition rate. It is believed that this is a direct

result of the greedy nature of the random forest methodology - in that it selects

subsequently good splits, ignoring the potential for a better split later on at the

expense of a bad split earlier on. Whilst this greediness has been decreased as a

result of using random forests as opposed to classification trees, there is still an

element of greediness in the algorithm. This is an issue that will be alleviated

using neural networks - see §4.5.2. Thirdly, for lower level signatures, increasing

the number of dyadic intervals has a direct increase in recognition rate, however

increases at the lower dyadic levels are more impactful than at the higher level.

In the higher level signatures, such as level 5, increasing the number of dyadic

intervals results in a lower recognition rate. It is believed that this is again a

result of the greedy nature of the random forest. Finally, it is noticeable that for

lower signature level, using the log signature as opposed to the signature resulted

in an increased recognition rate. This is likely as a result of the log signature

removing a large amount of the redundancy within the signature. Determining

the optimal combination of signature level and dyadic level is a hyperparameter

choice problem.

4.5.2 LSTM Neural Networks

A custom LSTM was built using the keras and tensorflow-gpu Python pack-

ages. A custom LSTM was developed, as opposed to an (potentially signifi-

cantly more complex) off the shelf LSTM, in order to highlight the performance

of the preprocessing technique that has been developed as well as to ensure

repeatability and reproducibility. This LSTM network has three hidden layers,

each containing 50 nodes, and was trained using the training set assisted by

an NVidia GTX 1080Ti graphics card. The results obtained after training the
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Run (Log) Sig Signature
Level

Dyadic
Level

Avg Result %
(st. dev.)

1 Sig 2 0 72.26 (0.0743)
2 Sig 2 1 85.44 (0.0438)
3 Sig 2 2 89.10 (0.0785)
4 Sig 2 3 90.15 (0.0418)
5 Sig 2 4 90.43 (0.0841)
6 Sig 2 5 90.37 (0.0749)
7 Log Sig 2 0 73.82 (0.0941)
8 Log Sig 2 1 86.01 (0.0991)
9 Log Sig 2 2 89.05 (0.0898)
10 Log Sig 2 3 90.06 (0.0503)
11 Log Sig 2 4 90.39 (0.0865)
12 Log Sig 2 5 90.32 (0.0365)
13 Sig 3 0 79.48 (0.0648)
14 Sig 3 1 87.65 (0.0450)
15 Sig 3 2 89.87 (0.0778)
16 Sig 3 3 90.58 (0.0825)
17 Sig 3 4 90.32 (0.0697)
18 Sig 3 5 90.13 (0.0399)
19 Log Sig 3 0 80.46 (0.0397)
20 Log Sig 3 1 87.94 (0.0520)
21 Log Sig 3 2 89.97 (0.0312)
22 Log Sig 3 3 90.48 (0.0468)
23 Log Sig 3 4 90.31 (0.0170)
24 Log Sig 3 5 90.11 (0.0397)
25 Sig 5 0 83.14 (0.110)
26 Sig 5 1 88.58 (0.0835)
27 Sig 5 2 89.59 (0.0843)
28 Sig 5 3 89.64 (0.0498)
29 Sig 5 4 89.15 (0.0574)
30 Sig 5 5 88.81 (0.117)
31 Log Sig 5 0 80.64 (0.825)
32 Log Sig 5 1 87.56 (0.107)
33 Log Sig 5 2 89.33 (0.0719)
34 Log Sig 5 3 89.57 (0.0529)
35 Log Sig 5 4 89.38 (0.0794)
36 Log Sig 5 5 89.22 (0.0861)

Table 4.2: Results of using random forest as classification methodology.



CHAPTER 4. ONLINE ARABIC HANDWRITING RECOGNITION 47

LSTM using varying signature signature levels and number of dyadic intervals

are obtained and presented in Table 4.3.

The results show that we obtain a recognition rate of over 92.5% when

using either the signature or the log signature up to level 5 and with 32 (25)

dyadic intervals of the character. This rate is a significant improvement on

the 82% achieved by Hilali and Mahmoud in their original paper, indeed this

represents a 58.3% decrease in incorrect recognition rate. The results in the

table demonstrate that by increasing both the signature level and the number

of dyadic intervals, the recognition rate on average increases, however with the

level 10 signature there was a decrease in the recognition rate. This decrease

is likely owing to the dimensionality of the input and the relative simplicity of

the LSTM, in order to deal with such a large input, more layers or more nodes

per layer may be necessary. Furthermore, it can be seen that when using lower

signature levels, the difference between the recognition results when using the

signature and log signature is negligible and may possibly be different simply

owing to different starting conditions for training the network, suggesting that

the LSTM “learnt” about the redundancy within the signature and handled it

accordingly. The final point to highlight is that the recognition rate when using

the level 10 log signature was markedly higher than when using the level 10

signature. This is further evidence that the complexity of the LSTM used was

not enough to deal with the incredibly high dimensionality of the input, indeed

the level 10 signature of a path X : R3 → R contains 88572 values whereas the

level 10 log signature of the same path contains only 9382 values.

4.6 Conclusion

It has been demonstrated that the dyadic iterated integral path signature ap-

proach to online Arabic character recognition when combined with both random

forests and LSTM neural networks, has the ability to perform very well. A num-

ber of opportunities present themselves as a result of this methodology, including
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Run (Log) Sig Signature
Level

Dyadic
Level

Recognition
Rate (%)

1 Sig 2 3 90.44

2 Sig 2 4 90.95

3 Sig 2 5 91.26

4 Log Sig 2 3 90.37

5 Log Sig 2 4 90.83

6 Log Sig 2 5 91.41

7 Sig 3 3 90.47

8 Sig 3 4 91.29

9 Sig 3 5 91.78

10 Log Sig 3 3 90.49

11 Log Sig 3 4 91.13

12 Log Sig 3 5 91.75

13 Sig 5 3 90.63

14 Sig 5 4 92.01

15 Sig 5 5 92.57

16 Log Sig 5 3 90.73

17 Log Sig 5 4 91.88

18 Log Sig 5 5 92.50

19 Sig 10 3 90.62

20 Sig 10 4 91.38

21 Sig 10 5 91.92

22 Log Sig 10 3 90.97

23 Log Sig 10 4 91.50

24 Log Sig 10 5 92.16

Table 4.3: Results of LSTM networks trained using various parameters
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the ability for very fast recognition of new characters, owing to the fact that

computation of the signature is very fast and capable of being carried out on

smartphone processors. Furthermore, the methodology presented here for Ara-

bic Handwriting recognition has been exploited further by Fermanian [Fer21]

with success on other datasets including the Google “Quick Draw!” dataset.



Chapter 5
Robust Eigenvalue

Polynomial Regression

In §3, it was seen that one can compute polynomials of log signatures. This

provides an opportunity to investigate another methodology for building models

based upon data and signatures; linear and polynomial regression. One of the

biggest drawbacks of using signatures for linear and polynomial regression is

that signatures are often clustered in space, and as such standard least squares

regression can result in poor results. This is even more so the case when only a

small number of points lie in one of these clusters. To highlight this, take the

following example using data in R instead of signatures in signature space.

5.1 An Example

Consider the following scenario; one is presented with data that has been sam-

pled from an unknown smooth function f , the data is contained within three

distinct intervals of R,

R1 = [−5,−4], R2 =
[
−1

2 ,
1
2

]
R3 = [4, 5]. (5.1)

For the purposes of this example, the unknown function f : R→ R is defined

50
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as

f(x) = 1
1 + x2 . (5.2)

Throughout this chapter, the following notation is used: data in Ri is rep-

resented as Xi =
{
x

(i)
1 , . . . , x

(i)
Mi

}
and Yi =

{
y

(i)
1 , . . . , y

(i)
Mi

}
where x(i)

k ∈ Ri and

y
(i)
k = f(x(i)

k ).

For this example, there are 20 points in each of R1 and R2 and 3 points in

R3, Figure 5.1a plots this data and the actual data can be found in Appendix B.
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(a) Example data sampled from R.
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(b) Degree 5 polynomial fitted to the data.

Figure 5.1: Data and fitted degree 5 polynomial using least squares polynomial
regression.

With this data, we wish to obtain a degree 5 polynomial approximation

of the underlying function f over the region where we have data, i.e. [−5, 5].

The standard approach to a situation such as this one is to use least square

regression and find the unique set of parameters c0, . . . , cN (which thus describe

the polynomial) that minimises
M∑
j=1

(
N∑
k=0

ckx
k
j − yj

)2

, (5.3)

where all three X1, X2 and X3 are joined and treated as a single dataset where

M = M1 + M2 + M3 and N is the dimension of the space of polynomials that

we wish to use, e.g. for fitting a degree 5 polynomial (as we do in this example),

N = 6. The result of this is demonstrated in 5.1b.

By definition, least squares regression will result in the least possible l2 error

of the fitted values from the polynomial approximation and the data from which
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the approximation is derived is minimised. Unfortunately, upon comparing the

approximation to the actual underlying function, it is clear that there is a large

L2 error between the two functions - this comparison can be seen in Figure 5.2.

The three data points in region R3 being clustered very close together results

in the large variation between the actual function and the approximation. This

is a demonstration of the concept of points of high influence.

−4 −2 0 2 4
−1

0

1

2

x

f
(x

) least squares regression
actual function

Figure 5.2: Comparison between fitted model from Figure 5.1b and underlying
function.

Throughout this chapter, a novel methodology for producing robust polyno-

mial approximations of smooth functions from clustered data with one cluster

being highly influential such as in this example is presented. The results of using

this new methodology are demonstrated throughout the rest of this example.

The intuition behind this novel methodology is to use a subspace of the

space of polynomials to fit an approximation to each region, instead of using

the full space of polynomials as is done in standard least squares regression.

The polynomial approximation for the function is obtained using the following

minimisation in each of the regions Ri, i = 1 . . . , K:

Mi∑
j=1

 Ni∑
k=0

c
(i)
k θ

(i)
k (x(i)

j )− y(i)
j

2

, (5.4)

whereMi is the number of points in regionRi, Ni is the number of basis functions

of the space of polynomials to use for the data in region Ri, θ(i)
k are particular

basis functions for the space of polynomials, x(i)
k ∈ Ri and f(x(i)

k ) = y
(i)
k . In this
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example,
K = 3, M1 = 20,

M2 = 20, M3 = 3,
(5.5)

whilst Ni and θ(i)
k will be explained further in this chapter. After applying this

minimisation, an iterative process is used to improve the fit.

By applying the robust eigenvalue polynomial regression, the resultant ap-

proximation is shown in Figure 5.3. Note that the three points in R3 have not

resulted in very large perturbations away from the actual function.

In this chapter, to determine the performance of different models, we will

consider two different error measures; one on the individual points (l2) and one

on the whole fitted models (L2). For two continuous functions f, g : U 7→ R

where U ⊆ Rd for some d, the error measures are:

l2 error:

√√√√ N∑
i=1

(f(xi)− g(xi))2 (5.6)

L2 error:
√∫

V
(f(x)− g(x))2 dx, (5.7)

where N is the number of points used for fitting the model, xi are the points

used for fitting the model, V ⊆ U is the subset over which we wish to consider

the L2 error and x ∈ V .Table 5.1 lists some statistics measuring the ability of

the fitted model to approximate the underlying function.

−4 −2 0 2 4
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new methodology

Figure 5.3: Example 1 (same example that has been used throughout this chap-
ter).
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Model Statistic Value

Linear regression
l2 error 0.254942

L2 error over R 1.3125

L2 error over ∪Ri 0.79377

New methodology
l2 error 0.288437

L2 error over R 0.847252

L2 error over ∪Ri 0.0867305

Table 5.1: l2 and L2 error statistics (as defined in (5.6) and (5.7)) for each model
in Figure 5.3

From Table 5.1, it is clear that whilst there is some loss of accuracy in terms

of l2 error (i.e. the difference between the actual and fitted values using each

approximation), there is a significant increase in accuracy in an L2 sense, over

both the whole region and the union of the individual regions.

5.2 Introduction

It is often the case that samples from an unknown function are received in

different mutually exclusive intervals [Gua17]. These intervals could contain

any number of points, and if the underlying, unknown, function is computa-

tionally expensive then there is a possibility that in one of these regions, the

number of observations may be small. When fitting polynomial approximations

to the data, the cluster containing a small number of points has the potential

to aversely impact the fit of a polynomial approximation using standard least

squares regression. These points are known as influential observations [Bri98].

Definition 5.1. An influential observation is an observation with the prop-

erty that if it is removed, when a regression model is refitted, there is a large

difference in the parameter estimates model.

Whilst in the case of noisy data sampled from a population, such influential

observations may be considered outliers [Ken92], in the scenario outlined above
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there is no concept of outliers as the data is known to be sampled from the

underlying function.

A majority of the methodologies utilised in applied fields such as econo-

metrics [Ken92] and geography [BBR09] focus on identification of influential

points through commonly used tools such as cross validation or minimising the

l2 error of a fitted model through processes such as M -estimators [Hub64] and

L-estimators [Sti73]; all of which are focussed on reducing the impact of the

influential point(s) on the l2 error of the rest of the model.

Work done by Guan [Gua17] introduces a methodology specific to obtaining

mixture model approximations for probability density functions where samples

come in clusters. Whilst the methodology proposed by Guan addresses the issue

of clustered data and fitting polynomial approximations to clustered data, the

methodology does not address the issue of influential observations.

The structure of this chapter follows the following format; §5.3 provides an

overview of the method, §5.4-5.6 explains the details of the process to carry out

the robust eigenvalue polynomial regression, §5.7 demonstrates the performance

of the robust eigenvalue polynomial regression with a number of examples, show-

ing scenarios in which this methodology performs well and finally §5.8 includes

closing remarks and explains some limitations of this methodology.

5.3 Method

In this section, we introduce the details of the methodology demonstrated in

§5.1 whereby one can generate single polynomial approximations for functions

where an imbalance in the number of points in each region does not impact the

resulting fitted model, i.e. the data is grouped and one of the groups is a cluster

of high leverage points. As seen in the example in §5.1, a small number of high

leverage points can adversely impact the fit of the polynomial approximation.

The intuition behind the methodology presented within lies in fitting an

individual polynomial model to each of the N regions of data, computing the
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sum of these models and iteratively adjusting the resultant model in order to

find a stable solution. The N initial models are fitted using subspaces of the

space of polynomials (of the chosen degree), where the subspace is chosen such

that information is maximised within the region containing data and minimised

outside of the region.

As mentioned above, the intuition is to fit a separate model (say f̂Rk
) to

the data in each individual region Rk, and compute the sum of these individual

models. In an ideal scenario, f̂Rk
would be compactly supported on Rk for each

k, however the aim is for the final model f̂ = ∑
f̂Rk

to be a polynomial and

the only way in which ∑ f̂Rk
is a polynomial is if f̂Rk

are all polynomials. This

leads to an impossible situation as polynomials are not compactly supported.

In order to obtain the subspaces of the space of polynomials mentioned

above, the intuition is to find K bases (i.e. one for each Ri) for the space of

polynomials (of the desired degree and dimension) where in each basis, each

basis function is non-zero over the region where the data lies and as close to

zero as possible outside of that region. As an example, Figure 5.4 demonstrates

such a basis for the space of polynomials in one variable up to degree 3 (which

shall be notated for ease as R3[x1] where in general the space of polynomials in

d variables up to degree m is notated as Rm[x1, . . . , xd]), where the functions

are attempting to match the following form:

f̂R1,R(x) =


g(x), x ∈ R1

≈ 0, x ∈ R \R1

, (5.8)

where R1 = [0, 1] and R = [0, 2.5]. The basis functions in Figure 5.4 are

produced using the methodology presented in Algorithm 5.1.

Notice in Figure 5.4 that the basis functions are ordered 1 through 4, with

basis function γ1 closest to resembling what we were looking for and γ4 the

furthest from the desired shape with γ2 and γ3 incrementally decreasing in their

ability to match our desired properties. Table 5.2 shows the value of

〈f, g〉L2(R) =
∫
R

(f(x) · g(x)) dx, (5.9)
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Figure 5.4: Example basis of polynomial space with desired properties

for γ1, . . . , γ4 using R1, R \R1 and R.

Function 〈·, ·〉L2(R1) 〈·, ·〉L2(R\R1) 〈·, ·〉L2(R) 〈·, ·〉L2(R)/〈·, ·〉L2(R1)

γ1 0.0427862 0.0000468582 0.0428331 1.0011

γ2 0.00689222 0.00248732 0.00937954 1.36089

γ3 0.00114839 0.0405525 0.0417009 36.3124

γ4 0.000105745 4.97664 4.97674 47063.8

Table 5.2: Comparison between 〈·, ·〉L2(·) for different R for each basis function
in Figure 5.4

By taking K (one for each Ri) such bases and using only a portion of each,

it is possible to obtain K subspaces of the space of polynomials. By fitting a

least squares optimised polynomial approximation using the data in each region,

one obtains K polynomials and these are the closest possible polynomials to

matching the desired form shown in (5.8). Notice that it is necessary to use

only a portion of the basis for each region as using the whole basis would be no

different to doing standard least squares regression in each region.

5.4 Obtaining the basis

When defining the K different bases for the space of polynomials, the basis that

we pick is dependent upon two regions, the region where the data lies (for each
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given cluster R1, R2, . . . , RK) and also the region, R, over which we wish to

obtain an estimate for the function.

The process to obtain the basis for the space of polynomials with the desired

properties as explained above, for each region R1, R2, . . . , Rn is presented in

Algorithm 5.1.

Algorithm 5.1: Computing basis for the space of polynomials where the basis
functions exhibit the desired properties.

Inputs: Degree of polynomial = m; dimension of polynomial = d;
interval containing cluster = Rk; interval over which estimate is
desired = R; any basis of the space of polynomials Rm[x1, . . . , xd],
β = {β1(x1, . . . , xd), . . . , βN(x1, . . . , xd)}

Step 1: Define the matrices A = {ai,j}i,j≥1 and B = {bi,j}i,j≥1 where

ai,j = 〈βi, βj〉L2(Rk)

bi,j = 〈βi, βj〉L2(R)
(5.10)

this computes the inner product of each pair of basis functions over
each region.

Step 2: Let [T ]β = A−1B be the representation with respect to the basis
β of the linear transformation T between the space of polynomials
defined over Ri to the space of polynomials defined over R

Step 3: Compute the eigenvalues (α = {α1, . . . , αN}) [where for ease of
notation, αi ≤ αj for i < j] and eigenvectors (φ = {φ1, . . . , φN}) of
the matrix [T ]β

Step 4: Treat β as a vector and compute the
dot product β.φi for each i to obtain
γ = {γ1(x1, . . . , xn), . . . , γN(x1, . . . , xn)}, this γ forms a basis
for the space of polynomials with the desired property. γ is known as
the eigenfunctions of [T ]β.

Notes to Algorithm 5.1:

1. Whilst the eigenfunctions/eigenvectors of [T ]β depend on the choice of β,

the eigenvalues will remain the same
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2. N =
(
d+m
d

)
is the dimension of the space Rm[x1, . . . , xd]

5.4.1 The meaning of these basis functions

The γ obtained from Algorithm 5.1 form the basis that we have been looking

for. The basis function based upon the eigenvector associated with the small-

est magnitude eigenvalue is the basis function that most closely matches our

desired form and the function based upon the eigenvector associated with the

largest magnitude eigenvalue is the one that least matches our desired format

as presented in (5.8). More concisely, for low values of i, γi closely matches

the form in (5.8) but as i increases, the functions are increasingly different in

shape to the objective format. This is precisely as a result of the fact that the

eigenvalues are the ratio of the inner product of the eigenfunctions, i.e.

αi =
〈γi, γi〉L2(R)

〈γi, γi〉L2(Rk)
. (5.11)

If the eigenvalue is close to 1, then the majority of the weight of the basis

function is centred over Rk whereas a larger eigenvalue indicates that a larger

portion of the weight of the basis function is in R \Rk than in Rk.

5.5 Fitting the model

Having computed the basis functions for each Rk using the methodology de-

scribed in Algorithm 5.1, the next step in fitting a model using our proposed

methodology is to do a “recursive regression”, this is done in three steps:

1. For each region Rk, fit an initial model, f̂Rk
, from the data in Rk, using

a subspace of the space of polynomials defined using the basis functions

computed in Algorithm 5.1. See §5.5.1 and Algorithm 5.2.

2. Obtain an initial polynomial approximation f̂ = ∑
f̂Rk

. See Step 3 of

Algorithm 5.2.

3. Iteratively alter f̂ using the data in each of the regions to adjust for the

impact of f̂Rk
inR1, . . . , Rk−1, Rk+1, . . . , RK . See §5.5.2 and Algorithm 5.3.
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The final step here is necessary as each f̂Rk
contains information within R\Rk

which therefore, as a result of computing the sum, will have a detrimental impact

on the fit of f̂ for i 6= k.

5.5.1 Fitting the initial model

The first step is relatively simple, and that is to fit K initial models using the

data in each of the K regions and some subset of the basis functions. The

methodology through which this subset is chosen is discussed further on in this

chapter. Recall equations (5.3) and (5.4) in the introduction to this chapter.

Whereas in standard polynomial regression, a model is fitted by choosing the

parameters c0, c1, . . . , cN that minimise

M∑
j=1

(
N∑
k=0

ckx
k
j − yj

)2

, (5.3)

we instead wish to minimise

Mi∑
j=1

 Ni∑
k=0

c
(i)
k θ

(i)
k (x(i)

j )− y(i)
j

2

. (5.4)

for each Ri, where the parameters are as explained previously. The steps to

produce the initial model are presented in Algorithm 5.2.

Notes to Algorithm 5.2: Step 2 of this algorithm involves selecting the number

of basis functions to use in each region, this will be discussed in §5.6. It is

important to note that the number of basis functions in each region must not

exceed the number of points in that region, i.e. Ni ≤Mi for all i.

5.5.2 Iteratively altering the model

Having fitted the initial model using the methodology presented in Algorithm 5.2,

the next key part of this methodology is to iteratively alter the model. The idea

behind this is as follows; we have fitted K linear models and taken the sum of

these linear models, whilst we have used subsets of the space of polynomials

that were optimised to minimise interaction between the component parts of
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Algorithm 5.2: Fitting the initial model

Inputs: Degree of polynomial = m; dimension of polynomial = d;
K intervals containing clusters = {Ri}Ki=1; interval over which estimate
is desired = R;
K sets of data Xi = {x(i)

1 , . . . ,x(i)
Mi
} and associated Yi = {y(i)

1 , . . . , y
(i)
Mi
}

Step 1: Compute the basis functions for each Ri using Algorithm 5.1 and
let γ(i) = {γ(i)

0 (x), . . . , γ(i)
N (x)} be the basis functions associated with

the region Ri

Step 2: For each Ri, pick Ni; the number of basis functions to use to fit
the model, and find c(i)

0 , . . . , c
(i)
Ni

such that

Mi∑
j=1

 Ni∑
k=0

c
(i)
k γ

(i)
k (x(i)

j )− y(i)
j

2

(5.12)

is minimised. This gives

f̂Ri,Ni
(x) =

Ni∑
k=0

c
(i)
k γ

(i)
k (x) (5.13)

Step 3: Obtain the whole initial fitted model as

f̂1,N(x) =
K∑
i=1

f̂Ri,Ni
(x)

=
K∑
i=1

Ni∑
k=0

c
(i)
k γ

(i)
k (x) (5.14)

where N = {N1, . . . , NK}.
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the sum, this is far from perfect as the non-zero nature of the basis functions

outside of their intended regions will result in interactions which degrade the

fitting (in an l2 sense) of the model. By iteratively altering the model, it is

the aim that these interactions between the models are minimised and a well

fitting (in an l2 sense) single polynomial model over the entire of the region R

is the result. The methodology for the iterative improvements are presented in

Algorithm 5.3.

Algorithm 5.3: Iteratively altering the initial model to reduce interference be-
tween submodels.

Inputs: K sets of data Xi = {x(i)
1 , . . . ,x(i)

Mi
} and associated Yi =

{y(i)
1 , . . . , y

(i)
Mi
}; initial model f̂1,N from Algorithm 5.2

For k=1, ...

Step 1: Apply f̂k,N to the data in Xi for each i and subtract the
correct value to obtain residuals:

Ei,k = {y(i)
1 − f̂k,N(x(i)

1 ), . . . , y(i)
Mi
− f̂k,N(x(i)

Mi
)} (5.15)

= {ε(i)
1,N,k, . . . , ε

(i)
Mi,N,k}

Step 2: Repeat Algorithm 5.2 using Ei,k instead of Yi. The result
of Algorithm 5.2 when applied to the residuals is the correction
term Ĉk,N

Step 3: The updated full model is then given as

f̂k+1,N = f̂k,N + Ĉk,N. (5.16)

Step 4: Continue the loop until the sequence of functions has con-
verged or the sequence has exploded. The sequence converges
if: √∫

R

(
f̂k+1,N(x)− f̂k,N(x)

)2
dx→ 0 (5.17)

as k increases. Using eigenfunctions associated with smaller
eigenvalues will converge whilst those associated with larger val-
ues will explode.

The final result of applying Algorithms 5.1, 5.2 & 5.3 will be a linear combi-
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nation of fitted polynomials forming a single polynomial approximation of the

data.

5.6 Subspace selection

Thus far, we have introduced the process for implementing the methodology.

In Algorithm 5.2 where the initial model is fitted to the data, Step 2 requires

selecting an Ni for each Ri, i.e. selecting the number of basis functions (and

therefore the dimension) of the space of polynomials to use for each region.

From the explanation in §5.4.1, it is seen that the higher the eigenvalue, the

worse the associated basis function is in terms of maximising information over

Ri when compared with the rest of R. On the other hand, by including only

one basis function (for example) then the number of degrees of freedom is not

high and therefore the fit of the model will be poor. It is therefore necessary to

determine what the optimal Ni is for each region.

5.6.1 Different selection schemata

We were unable to determine a single rule to always select the optimal eigen-

function combination. This was, in the main part, owing to the variability of

scenarios, i.e. different number of regions, different lengths of regions, differing

number of points in each region etc, all impacting the optimal choice for the

number of basis functions per region. We therefore propose to fit a number

of different models to the data and select the best performing model of those

returned based on the l2 error of the resulting polynomial approximations. In

order to determine what may be the best process to select the basis functions

for each region, a number of different schemata were tested. The three criteria

that remained constant throughout each schema were:

• the number of basis functions within each region cannot be more than the

number of points in that region, this is because it is not possible to fit a
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stable model using more degrees of freedom than there are data points –

this would introduce multicollinearity

• the collection of all basis functions used across all the regions must be

linearly independent; this is because adding linearly dependant basis func-

tions results in no convergence of the model during the iteration stage –

this is once again as a result of multicollinearity

• if within region k, a basis function associated with an eigenvalue α(k)
i is

included, then all basis functions that are associated with α
(k)
j for j < i

must also be included (recall that αi < αj for i < j)

The three selection schemata are as follows, where each has the caveat that the

three criteria above must be satisfied:

• Exhaustive search – try every single combination

• Same number from each region – search with much fewer options, selecting

exactly n from each region for n = 1, . . . , N

• Eigenvalue based filter – select basis functions from each region based

upon their eigenvalue, see Algorithm 5.4

Each of these had various advantages and disadvantages.

Exhaustive search: Using a full exhaustive search and selecting the basis

function combination that results in the lowest l2 error will always give the

best result in an l2 sense that is possible with this methodology. However, it is

computationally intensive and a vast amount of unnecessary calculation is done.

The complexity of this methodology is O(NK) where N is the dimension of the

space of polynomials in which the model is being approximated and K is the

number of regions Ri that are used. Furthermore, the selection which results

in the lowest l2 error may be one that uses a large number of basis functions

from one region, thus reducing the ability of the methodology to select a model

which is not overly impacted by the data in one particular region.
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Same number from each region: Reducing the number of possible options

to choose from in the exhaustive search is clearly a favourable option as it

decreases the complexity from O(NK) to O(NK). Upon testing this selection

schema, it was found that often the better basis function selection were not

included and thus not able to be chosen; this was as a result of the eigenvalues

in each region following different distributions.

Eigenvalue based filter: This schema is equal in terms of computational

complexity to the previous one however improves upon it as it uses information

about the basis functions, i.e. the associated eigenvalue. By selecting basis

functions based upon the eigenvalue, the impact of differing eigenvalue distri-

butions associated with each region was lessened. The schema is described in

Algorithm 5.4. The intuition behind this selection schema is that if a basis

function is added in one region, another need not be added in another unless

they are similarly behaved in terms of information both in and outside of the

region.

Notes to Algorithm 5.4:

• Given that one of the main aims of this methodology is to work when a

region of data contains a small number of highly influential points, care

must be taken with the region containing these points. It is not pos-

sible to fit a model using more basis functions than there are points in

the region, therefore it is only necessary to look at Λk up to the point

whereby there are at most Mi eigenvalues selected in region Ri where

i = arg min(M1, . . . ,MK).

• The filtering of eigenvalues based on some real valued threshold in (5.18)

is possible because the eigenvalues are all real-valued. Indeed, each eigen-

value is a ratio of two inner products - see (5.11).
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Algorithm 5.4: Schema for selecting number of basis functions for each region.

Inputs: Eigenvalues α(i) = {α(i)
1 , . . . , α

(i)
N } from Algorithm 5.2 for each Ri

Step 1: Define H(α(i), `) to be the number of eigenvalues in α(i) that are
less than or equal to ` ∈ R, that is

H(α(i), `) =
∣∣∣{α ∈ α(i)|α ≤ `}

∣∣∣ (5.18)

Step 2: Let Λk be defined as

Λk = min{` ∈ R|max(H(α(1), `), . . . , H(α(K), `)) = k and
min(H(α(1), `), . . . , H(α(K), `)) ≥ 1},

(5.19)

that is, let Λk be the smallest value of ` such that at least one eigenvalue
is less than or equal to ` in each α(i) and there is at least one α(i)

containing exactly k eigenvalues less than or equal to ` and none of
the α(i) contain more than k eigenvalues greater than `.

Step 3: For each value of Λk select the eigenvalues in each α(i) such that
α

(i)
j ≤ Λk. These eigenvalues correspond to eigenfunction basis ele-

ments and these are the combinations for which to compute the models
to compare.

Step 4: With the collections of basis functions chosen in Step 3, select
only those such that the following two conditions hold:

• The number of basis functions selected in each region must be
less than or equal to the number of points in that region

• The basis functions selected must all be linearly independent
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5.6.2 Demonstration of three selection schemata

Using the example in §5.1, the three different selection schemata are demon-

strated here.

Exhaustive search

By looking at every single possible model that satisfies the three criteria, in

this instance there are 19 different possible basis function selections. These are

presented in Figure 5.5.
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Figure 5.5: Model selection using exhaustive search.

The l2 errors for each model are shown in Table 5.3. It can be seen from this

table that “Selection 18” offers the lowest l2 error and thus this is the one that

is selected. When looking at the plot of the fitted model associated with this

selection, one can see that it is very similar to the result provided by standard
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least squares regression - see §5.1. Therefore it is possible that this selection

has not benefited from the basis functions that have been generated.

Selection l2 error
Eigenvalues

Selection l2 error
Eigenvalues

R1 R2 R3 R1 R2 R3

1 0.761147 1 1 1 11 0.289988 2 1 2

2 1.18314 1 1 2 12 0.357073 2 1 3

3 1.06604 1 1 3 13 0.263927 2 2 1

4 0.831548 1 2 1 14 0.288437 2 2 2

5 1.07444 1 2 2 15 0.690424 2 3 1

6 1.30776 1 2 3 16 0.278391 3 1 1

7 6.00071 1 3 1 17 0.386383 3 1 2

8 14.1242 1 3 2 18 0.257126 3 2 1

9 10.5149 1 4 1 19 0.748469 4 1 1

10 0.316847 2 1 1

Table 5.3: l2 error for each model in Figure 5.5

Same number from each region

Owing to the fact that there are only three points contained within region

R3, there are a maximum of three possible models using this selection schema.

Notice, however, that if three basis functions are selected in each region, it is

not possible for all 9 basis functions to be linearly independent as the dimension

of the space of polynomials of degree 5 in one variable is only 6. We therefore

have only two choices of basis selection. These are presented in Figure 5.6.

The l2 errors for each model are shown in Table 5.4. Clearly the number of

models has been massively reduced (from 19 to just 2 in this case), Furthermore,

it can be seen from the table that “Selection 2” offers the lowest l2 error and

thus this is the one that is selected.
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Figure 5.6: Model selection using same number from each region.

Selection l2 error
Eigenvalues

R1 R2 R3

1 0.761147 1 1 1

2 0.288437 2 2 2

Table 5.4: l2 error for each model in Figure 5.6

Eigenvalue based filter

By adding basis functions in each region based upon the eigenvalues associated

with each basis function, three models are generated. In this particular example,

two remain the same as when selecting an equal number from each region,

however an additional one is also included. The three different fitted models are

presented in Figure 5.7.

The l2 errors for each model are shown in Table 5.5. Notice that whilst

Selection 2 has been added, when compared to using the same number of basis

functions in each region. In this example, “Selection 3” (which is the same as

“Selection 2” from Table 5.4) has been chosen. Indeed this model is the one

that is shown in §5.1.
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Figure 5.7: Model selection using eigenvalue based filter described in Algo-
rithm 5.4.

Selection l2 error
Eigenvalues

R1 R2 R3

1 0.761147 1 1 1

2 0.289988 2 1 2

3 0.288437 2 2 2

Table 5.5: l2 error for each model in Figure 5.7

5.7 Examples

In this section, a handful of examples are provided to demonstrate the abilities

of the methodology.

5.7.1 Example 1

For this first example, the underlying function is one for which no closed form

exists, and is computationally expensive to compute values, therefore obtaining

a polynomial estimate can be useful.

The data is clustered in two regions:

R1 = [−20,−15] , R2 = [−5, 5] , (5.20)

with 3 points in R1 and 20 points in R2. We aim to find a degree 6 polynomial

approximation to the underlying function over the region [−20, 5]. Figure 5.8
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shows the data, the fitted polynomial using both standard least squares regres-

sion as well as our methodology and the actual function. Statistics about the

capability of the approximations are presented in Table 5.6.
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Figure 5.8: Data and degree 6 polynomials fitted to the data.

The underlying function here is

f(x) =


∫ x

0

sin(t)
t

dt, x ≥ 0∫ 0

x

sin(t)
t

dt, x < 0
(5.21)

Model Statistic Value

Linear regression
l2 error 0.235091

L2 error over R 16.4546

L2 error over ∪Ri 6.90063

New methodology
l2 error 0.338999

L2 error over R 5.00754

L2 error over ∪Ri 2.5914

Table 5.6: l2 and L2 error statistics for each model in Figure 5.8

5.7.2 Example 2

This example once again uses an underlying function that has no closed form.

f(x) =


1− 2

π

∫ x

0
e−t2 dt, x ≥ 0

1− 2
π

∫ 0

x
e−t2 dt, x < 0

, (5.22)
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and data has been generated in the intervals

R1 =
[
−5

2 ,−
9
4

]
, R2 =

[
−1

2 , 0
]
, R3 =

[1
2 , 1

]
, (5.23)

thus giving R =
[
−5

2 , 1
]
with 3 points in R1, 15 in R2 and 25 points in R3. The

data and results of standard least squares regression and our methodology are

demonstrated in Figure 5.9 and the summary statistics are provided in Table 5.7.
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Figure 5.9: Data and degree 4 polynomials fitted to the data.

Model Statistic Value

Linear regression
l2 error 0.0176658

L2 error over R 0.152454

L2 error over ∪Ri 0.0397447

New methodology
l2 error 0.0329347

L2 error over R 0.0307476

L2 error over ∪Ri 0.0115115

Table 5.7: l2 and L2 error statistics for each model in Figure 5.9

5.7.3 Example 3

Thus far, all of the examples that have been presented use data that is sampled

directly from the underlying function. There is, however, no reason why this

methodology cannot be used on noisy samples from the underlying function. In
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this example, noisy data is sampled from

f(x) = sin(
√
x) (5.24)

in the regions

R1 = [0, 5] , R2 = [18, 20] , (5.25)

with 30 points sampled in R1 and 2 in R2. The data and the results of fitting

polynomial approximations using standard least squares regression and the ro-

bust eigenvalue polynomial regression are shown in Figure 5.10 with summary

statistics shown in Table 5.8.
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Figure 5.10: Data and degree 5 polynomials fitted to the data.

Model Statistic Value

Linear regression
l2 error 0.51663

L2 error over R 5.51128

L2 error over ∪Ri 0.26299

New methodology
l2 error 0.534192

L2 error over R 1.10391

L2 error over ∪Ri 0.2258

Table 5.8: l2 and L2 error statistics for each model in Figure 5.10
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5.7.4 Example 4

This final example demonstrates that whilst so far we have only presented ex-

amples working in R, there is no reason why one cannot consider Rd for d > 1.

In this example, data is sampled from a function very similar to that used in

the example in §5.1 but defined instead over R2.

f(x1, x2) = −1
1 + x2

1 + x2
2

(5.26)

in the regions

R1 = [−3,−1]2 , R2 = [0, 1]2 , (5.27)

with 35 points sampled in R1 and 3 in R2. The data and the results of fitting

polynomial approximations using standard least squares regression and the new

robust eigenvalue polynomial regression are shown in Figure 5.11 with summary

statistics shown in Table 5.9. Whilst in 3D, it is significantly harder to deter-

mine the differences from the plot, the statistics clearly indicate an approx 12%

increase in l2 error with a more than 53% decrease in the L2 error over R which

in this case is equal to [−3, 1]2.

−2
0 −2

0−1

0

1

x1
x2

least squares regression
actual function

new methodology

Figure 5.11: Data and degree 2 polynomials fitted to the data.

5.8 Conclusion

Throughout the course of this chapter, the robust eigenvalue polynomial re-

gression methodology has been introduced and its performance shown on an
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Model Statistic Value

Linear regression
l2 error 0.48321

L2 error over R 1.23667

L2 error over ∪Ri 0.903843

New methodology
l2 error 0.539906

L2 error over R 0.660852

L2 error over ∪Ri 0.310041

Table 5.9: l2 and L2 error statistics for each model in Figure 5.11

initial example in §5.1 and four further examples in §5.7. The examples have

highlighted the performance of the methodology when compared to standard

least squares regression in different situations circumstances. Throughout these

examples, the robust eigenvalue polynomial regression methodology developed

has shown to result in a significant improvement in performance over standard

least squares regression.

5.8.1 Issues

It should be noted, however, that this methodology is not better than standard

least squares regression in all situations and indeed standard least squares re-

gression will always result in a model with a better l2 error as a result of the least

squares optimisation. Other issues which arise when using this methodology are

the following:

Speed: Standard least squares regression is very fast and computationally easy

to do – it is simply matrix algebra which is optimised to work on computer

processors. The methodology proposed in this report requires significantly

more computing time to yield a result. Whilst the times are not long (< 1

sec), this is magnitudes slower than standard least squares regression.

Computational limitations: Further to the speed issue highlighted above,

the most significant issue with this methodology is the requirement to
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compute eigenvectors and eigenvalues of potentially large and sparse ma-

trices. With standard computing techniques, the numbers involved tend

to be both very large and very small, this results in matrices which are

difficult to compute the eigenvectors and eigenvalues for without running

into numerical errors.

Single solution: Least squares regression will always result in a single solution

(assuming no issues with multicollinearity etc), and whilst the proposed

methodology does result in a single solution, it is the result of computing

a number of solutions and picking the best amongst those. Whilst the

number of solutions returned is small and hence it is possible to generate

all of them and choose the one that is “best”, this is not as simple as

standard least squares regression.



Chapter 6
Summary & Future Work

In this thesis, we have presented two processes; one for processing time series

data for machine learning and the other for obtaining robust polynomial ap-

proximations to data. In addition, we have provided an introduction into the

theory of iterated integral path signatures and log signatures upon which time

series data preparation process is built and the robust polynomial regression

had its origin.

In this chapter, possible further areas of study and research for each of the

two methodologies are discussed. Given the nature of the two processes, there

are vastly more directions for further study for the robust eigenvalue polynomial

regression methodology than the time series preprocessing methodology.

6.1 Further Work for Chapter 4

The possible further work for Chapter 4 is relatively limited however there are

still a few areas where improvements can be made.

More advanced neural networks: As was discussed in §4.5.2, it was shown

that when using an LSTM, the recognition rate was increasing as the

level of the truncated signature used also increased. It was, however,

also highlighted that when the level 10 truncated iterated integral path

signature or log signature was used, the recognition rate was lower than

77
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may have been expected. Owing to the relative simplicity of the LSTM

used, it is possible that by increasing the complexity of the LSTM, a higher

recognition rate can be achieved.

Higher level signature: If the work suggested above to use a more complex

LSTM is completed, then it would be a logical step to test the performance

of the recognition methodology with higher still levels of the truncated

iterated integral path signature and log signature. This is because more

detail is contained about the path as the level of the signature increases.

Higher resolution data: One key point to note is that whilst the data used

had sufficiently high resolution to work well with this recognition method-

ology, if the data were higher resolution then it would be possible to use

a larger number of dyadic intervals over the character. Currently we have

limited the number of dyadic intervals to 25 = 32 owing to the fact that

some characters contained only a few points more than that. If one were

to use finer resolution data then there would be no issue in increasing the

number of dyadic intervals.

6.2 Further Work for Chapter 5

It is important to highlight that whilst the methodology presented within Chap-

ter 5 has demonstrated its performance in the five examples provided, there are

ways in which this methodology can be enhanced through further work or by

combining with other tools.

Higher dimension data: It was discussed at the beginning of Chapter 5 that

the original aim was to use log signatures as the underlying data for poly-

nomial regression. Owing to the computational limitations, it was unfortu-

nately not possible to compute the eigenvalues and eigenvectors necessary

to use the robust eigenvalue polynomial regression in dimensions large

enough for the methodology to be usable. An area of further work would
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be to determine an optimal way to compute the eigenvalues and eigen-

vectors such that the basis functions can be derived for higher dimension

data and higher degree polynomials.

Initial basis: Note that in Algorithm 5.1, the input specified “any basis of the

space of polynomials Rm[x1, . . . , xd]”. Throughout each of the examples

provided, the basis that was chosen was the Chebyshev polynomials of the

first kind, scaled and translated into the correct regions where necessary.

Another basis that was used during development of the algorithm was the

standard monomial basis. Whilst both bases provided identical results

in terms of final result, it was seen that when using the monomial basis,

computation errors were more likely to occur within the computation of

the eigenvalues and eigenfunctions (see §5.8.1).

Choosing the regions: In each of the examples presented, the regions were

first chosen and the points subsequently generated within these regions.

This scenario matches what may occur in real world statistics whereby a

computationally expensive function can be sampled within a region and

the results returned. Another common scenario is to be presented with

data and then to have to find an approximation using this data. The way

in which this methodology can be utilised in this situation is to apply a

clustering algorithm such as k-means clustering and then use the regions

obtained to carry out the methodology.

Number of points: The robust eigenvalue polynomial regression methodology

is shown to be a powerful tool for use when one of the regions of data

contains a very small number of points, resulting in a highly influential

group of points. In the examples provided, this small number was always

3 except one example where the number of points was only 2. An open

question is the number of points at which the benefits of using the robust

eigenvalue polynomial regression method are no longer enough to warrant

use as opposed to standard least squares regression.
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More regions: In the scenario where data is being sampled from an unknown

underlying function that is computationally expensive, one may consider

the option of sampling a small number of additional observations either in

one of the regions where the observations already exist or in a completely

new region in space. Using knowledge of the eigenvalues, it may be possible

to strategically pick the new region to obtain data in such a way that the

model may be improved. As an example, if adding data in a specific region

would necessitate adding basis functions associated with large eigenvalues

than it is likely that this would impact the quality of the fit in other

regions. On the other hand, if one were able to find a region where an

additional basis function did not negatively impact the fit in other regions

to a large degree and improved the fit in the new region; this would be

valuable.
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Appendix A
Online KHATT Data

The plots in this chapter provide an example from each class of the data that is

used in Chapter 4. Each plot demonmstrates one randomly selected observation

of the class. The title of each plot is of the following format:

name - character (shape)

ntrain, ntest, nvalidate

xtrain%, xtest%, xvalidate%

Where:

• “name” is an English transliteration of the Arabic name for the character.

in the class

• “character” is the Arabic character in its isolated form.

• “shape” is the typed representation of the shape which the character has

taken in the plot. This is only included if the character is not shown in

its isolated form.

• “nset” is the number of observations of this class in the set.

• “xset%” is the percentage (to 1 decimal place) of the set that is formed of

observations of this class.
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A.1 Arabic Alphabet

−1 0 1
−1

0

1

y
alif - �

1,682, 1,055, 727

14.8%, 15.4%, 15.9%

−1 0 1
−1

0

1

bā - 
 (þ�)
422, 257, 177

3.7%, 3.8%, 3.9%

−1 0 1
−1

0

1

j̄im - � (þ�)

148, 116, 75

1.3%, 1.7%, 1.6%

−1 0 1
−1

0

1

dāl -  (dþ)

240, 164, 105

2.1%, 2.4%, 2.3%

−1 0 1
−1

0

1

y

hā - £ (þhþ)

415, 308, 174

3.6%, 4.5%, 3.8%

−1 0 1
−1

0

1

wāw - ¤
756, 427, 301

6.6%, 6.2%, 6.6%

−1 0 1
−1

0

1

zāy - E (zþ)

93, 51, 28

0.8%, 0.7%, 0.6%

−1 0 1
−1

0

1

h. ā - � (þ�)

206, 108, 65

1.8%, 1.6%, 1.4%

−1 0 1
−1

0

1

y

t.ā - ª (þV)

120, 72, 43

1.1%, 1.1%, 0.9%

−1 0 1
−1

0

1

yā - © (þ§)
728, 442, 282

6.4%, 6.5%, 6.2%

−1 0 1
−1

0

1

kāf - � (þ�)

260, 161, 97

2.3%, 2.4%, 2.1%

−1 0 1
−1

0

1

lām - � (�þ)

1,090, 625, 415

9.6%, 9.1%, 9.1%

−1 0 1
−1

0

1

y

mīm - � (þ�)

570, 357, 210

5.0%, 5.2%, 4.6%

−1 0 1
−1

0

1

nūn -  
715, 399, 277

6.3%, 5.8%, 6.1%

−1 0 1
−1

0

1

sīn - x (þF)

238, 130, 91

2.1%, 1.9%, 2.0%

−1 0 1
−1

0

1

ayn - � (þ`þ)

443, 256, 195

3.9%, 3.7%, 4.3%

−1 0 1
−1

0

1

x

y

fā - � (þ�)

305, 160, 122

2.7%, 2.3%, 2.7%

−1 0 1
−1

0

1

x

s. ād - Q
125, 58, 51

1.1%, 0.8%, 1.1%

−1 0 1
−1

0

1

x

qāf - � (þ�)

266, 176, 105

2.3%, 2.6%, 2.3%

−1 0 1
−1

0

1

x

rā - C
631, 356, 218

5.5%, 5.2%, 4.8%
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−1 0 1
−1

0

1

y

shīn - M (þJ)

90, 50, 40

0.8%, 0.7%, 0.9%

−1 0 1
−1

0

1

tā - � (þ�)
426, 247, 171

3.7%, 3.6%, 3.8%

−1 0 1
−1

0

1

thā - � (þ�)

73, 53, 31

0.6%, 0.8%, 0.7%

−1 0 1
−1

0

1

khā - � (þ�)

115, 84, 56

1.0%, 1.2%, 1.2%

−1 0 1
−1

0

1

x

y

dhāl - Ð (@þ)

89, 58, 41

0.8%, 0.8%, 0.9%

−1 0 1
−1

0

1

x

d. ād - | (þR)

85, 44, 32

0.7%, 0.6%, 0.7%

−1 0 1
−1

0

1

x

z. ā - _ (þZ)

32, 15, 10

0.3%, 0.2%, 0.2%

−1 0 1
−1

0

1

x

ghayn - � (þ�)

57, 35, 25

0.5%, 0.5%, 0.5%

A.2 Special characters

In Arabic, there are a number of additional letters which are variations of those

in the standard alphabet, these are presented in this section.

−1 0 1
−1

0

1

y

alif hamzah - �
218, 125, 76

1.9%, 1.8%, 1.7%

−1 0 1
−1

0

1

alif hamzah - �
104, 50, 53

0.9%, 0.7%, 1.2%

−1 0 1
−1

0

1

wāw hamzah - ¦
16, 13, 3

0.1%, 0.2%, 0.1%

−1 0 1
−1

0

1

yā hamzah - ¹ (þ¶)
24, 18, 15

0.2%, 0.3%, 0.3%

−1 0 1
−1

0

1

x

y

alif maddah - �
16, 13, 5

0.1%, 0.2%, 0.1%

−1 0 1
−1

0

1

x

tā marbūt.ah - 
279, 169, 108

2.4%, 2.5%, 2.4%

−1 0 1
−1

0

1

x

alif maqs. ūrah - «
125, 77, 52

1.1%, 1.1%, 1.1%

−1 0 1
−1

0

1

x

hamzah - º
41, 21, 15

0.4%, 0.3%, 0.3%
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A.3 Ligatures

Note that a majority of ligatures in Arabic occur only in handwriting and there-

fore when typed do not accurately represent what would occur when written by

hand.

−1 0 1
−1

0

1

y

lām alif - ¯
22, 10, 11

0.2%, 0.1%, 0.2%

−1 0 1
−1

0

1

y
lām alif hamzah - ±

14, 7, 7

0.1%, 0.1%, 0.2%

−1 0 1
−1

0

1

y

lām alif hamzah - ³
15, 5, 5

0.1%, 0.1%, 0.1%

−1 0 1
−1

0

1

y

lām yā - Y�
3, 3, 2

0.0%, 0.0%, 0.0%

−1 0 1
−1

0

1

y

lām h. ā - þ��
4, 2, 0

0.0%, 0.0%, 0.0%

−1 0 1
−1

0

1

x

lām khā - þ��
1, 0, 0

0.0%, 0.0%, 0.0%

−1 0 1
−1

0

1

x

lām mīm - þm�
18, 19, 8

0.2%, 0.3%, 0.2%

−1 0 1
−1

0

1

x

mīm h. ā - þ��
1, 0, 0

0.0%, 0.0%, 0.0%

−1 0 1
−1

0

1

x

y

alif lām - þ��
1, 0, 0

0.0%, 0.0%, 0.0%
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A.4 Punctuation and other symbols

−1 0 1
−1

0

1

y
spacial symbol

3, 2, 5

0.0%, 0.0%, 0.1%

−1 0 1
−1

0

1

bracket - (

5, 1, 2

0.0%, 0.0%, 0.1%

−1 0 1
−1

0

1

bracket - )

4, 3, 1

0.0%, 0.0%, 0.0%

−1 0 1
−1

0

1

colon - :

7, 1, 1

0.1%, 0.0%, 0.0%

−1 0 1
−1

0

1

y

comma - ,
36, 22, 14

0.3%, 0.3%, 0.3%

−1 0 1
−1

0

1

x

quotation mark - ”

10, 1, 5

0.1%, 0.0%, 0.1%

−1 0 1
−1

0

1

x

full stop - .

8, 5, 6

0.1%, 0.1%, 0.1%

−1 0 1
−1

0

1

x

forward slash - /

1, 1, 1

0.0%, 0.0%, 0.0%

−1 0 1
−1

0

1

x

y

hyphen - -

1, 1, 0

0.0%, 0.0%, 0.0%



Appendix B
Example Data

In this appendix, label a denotes R1, b denotes R2 and c denotes R3.

B.1 Introductory Example

Below is the data used in the example in §5.1.

1 x y label x y label
2 -4.51004 0.0468594 a 0.0103023 0.999894 b
3 -4.48342 0.047391 a 0.490886 0.805822 b
4 -4.79215 0.0417281 a -0.406876 0.857965 b
5 -4.57794 0.0455425 a -0.443821 0.835438 b
6 -4.49993 0.0470602 a 0.0634227 0.995994 b
7 -4.42451 0.0485997 a 0.499321 0.800435 b
8 -4.0184 0.0583175 a 0.0967509 0.990726 b
9 -4.88039 0.0402929 a 0.219663 0.953969 b

10 -4.57577 0.0455837 a -0.28129 0.926678 b
11 -4.8954 0.0400562 a -0.0653653 0.995746 b
12 -4.4432 0.0482113 a 0.0752992 0.994362 b
13 -4.60079 0.0451116 a -0.0320785 0.998972 b
14 -4.14449 0.0550153 a 0.286541 0.924124 b
15 -4.66597 0.043915 a 0.296307 0.919288 b
16 -4.86161 0.0405923 a -0.390914 0.867443 b
17 -4.53697 0.0463304 a 0.487641 0.807889 b
18 -4.12746 0.0554449 a 0.0821692 0.993293 b
19 -4.4667 0.0477296 a -0.265171 0.934304 b
20 -4.73865 0.0426352 a 0.0479974 0.997702 b
21 -4.84687 0.0408294 a 0.183241 0.967513 b
22 4.43123 0.0484596 c
23 4.48459 0.0473674 c
24 4.42554 0.0485781 c

93
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B.2 Example 1

Below is the data used in the example in §5.7.1.

1 x y label x y label
2 -19.5794 -1.53121 a -3.14275 -1.85194 b
3 -19.036 -1.51895 a -2.54853 -1.78965 b
4 -19.2322 -1.52182 a 2.09531 1.64677 b
5 -1.85204 -1.53339 b -4.44296 -1.66653 b
6 -1.66025 -1.42608 b -0.293555 -0.292153 b
7 2.67347 1.81387 b 0.7085 0.689037 b
8 3.28817 1.84863 b -4.9618 -1.55733 b
9 -2.08577 -1.64281 b -0.572734 -0.562399 b

10 -4.62815 -1.62639 b -2.39542 -1.75119 b
11 -4.17362 -1.72382 b -4.84946 -1.57979 b
12 3.59051 1.82311 b -1.42253 -1.27199 b
13 2.47811 1.77318 b

B.3 Example 2

Below is the data used in the example in §5.7.2.

1 x y label x y label
2 -2.25334 1.99856 a 0.81459 0.24932 c
3 -2.26924 1.99867 a 0.566669 0.422906 c
4 -0.459342 1.48405 b 0.872033 0.217486 c
5 -0.120105 1.13488 b 0.962596 0.173414 c
6 -0.283791 1.31183 b 0.862627 0.222488 c
7 -0.144307 1.16171 b 0.997513 0.158334 c
8 -0.130239 1.14613 b 0.534353 0.449835 c
9 -0.354951 1.38432 b 0.864101 0.221699 c

10 -0.389228 1.41799 b 0.687979 0.330579 c
11 -0.0370687 1.04181 b 0.88655 0.209925 c
12 -0.399107 1.42753 b 0.82863 0.241253 c
13 -0.0911024 1.10251 b 0.690375 0.328897 c
14 -0.272839 1.30039 b 0.887096 0.209645 c
15 -0.316528 1.34559 b 0.508658 0.471925 c
16 -0.0831479 1.09361 b 0.736472 0.297631 c
17 -0.317302 1.34638 b 0.63577 0.368591 c
18 -0.173468 1.19379 b 0.998846 0.157779 c
19 0.728326 0.303006 c 0.601218 0.395185 c
20 0.627961 0.374502 c 0.889481 0.208422 c
21 0.604277 0.392786 c 0.712035 0.313949 c
22 0.877644 0.214541 c 0.915622 0.19536 c
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B.4 Example 3

Below is the data used in the example in §5.7.3.

1 x y label x y label
2 1.00904 0.847063 a 2.71278 0.987273 a
3 3.19856 1.09173 a 2.67932 1.04598 a
4 4.48808 0.795198 a 1.38145 1.00429 a
5 2.41996 0.884731 a 1.22429 0.859805 a
6 2.85276 1.08747 a 0.0583265 0.215705 a
7 1.05255 0.687788 a 2.86061 0.884412 a
8 4.65956 0.841669 a 4.42914 0.844983 a
9 2.36021 0.91336 a 0.626463 0.815657 a

10 3.25704 0.907092 a 1.37816 0.819531 a
11 2.73276 1.08366 a 1.85951 1.10738 a
12 2.70135 0.9866 a 2.55588 0.968816 a
13 4.42041 0.911129 a 2.85025 1.00925 a
14 2.00586 0.827967 a 0.307521 0.571447 a
15 4.25295 0.66669 a 3.15784 1.01819 a
16 2.24483 1.01792 a 18.7636 -0.901753 b
17 0.0429018 0.105066 a 19.5602 -1.04276 b

B.5 Example 4

Below is the data used in the example in §5.7.4. Here the l column is the same

as the label column elswhere in this appendix.

1 x y z l x y z l
2 -2.32127 -1.64043 -0.110141 a -2.91149 -1.475 -0.0858192 a
3 -1.02182 -2.54771 -0.117166 a -1.01311 -2.30823 -0.135975 a
4 -2.39537 -2.63449 -0.0731082 a -2.77582 -2.78774 -0.0606918 a
5 -2.8509 -2.77388 -0.0594459 a -2.66855 -2.11083 -0.0795117 a
6 -1.96741 -2.47314 -0.0910158 a -2.08382 -2.9417 -0.0714495 a
7 -1.94977 -2.49606 -0.090646 a -1.37389 -1.57975 -0.185764 a
8 -2.25771 -2.45335 -0.0825342 a -2.60647 -1.19388 -0.108471 a
9 -2.114 -2.07318 -0.102385 a -1.52789 -2.34188 -0.113394 a

10 -2.444 -1.59863 -0.104945 a -2.90008 -1.85598 -0.0777898 a
11 -2.84311 -2.86889 -0.0577574 a -2.75218 -2.76586 -0.0616353 a
12 -1.71943 -2.3154 -0.107324 a -1.91978 -1.24985 -0.160059 a
13 -2.65795 -1.89652 -0.0857521 a -2.72699 -2.43081 -0.069709 a
14 -2.87362 -1.39154 -0.0893329 a -2.13557 -2.30209 -0.0920788 a
15 -2.07456 -1.14052 -0.15141 a -1.74137 -1.70961 -0.143779 a
16 -1.56229 -2.61998 -0.0970399 a -2.25927 -2.97338 -0.0669106 a
17 -2.618 -2.9481 -0.0604404 a -2.85726 -2.56083 -0.063606 a
18 -2.31632 -1.77943 -0.104913 a 0.0210433 0.0806178 -0.993106 b
19 -2.13557 -2.7018 -0.0777581 a 0.507136 0.810484 -0.522447 b
20 -1.53766 -2.50082 -0.103966 a 0.385014 0.880368 -0.519944 b
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