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Abstract

In the era of big data, the volume of collected data grows faster than the

growth of computational power. And it becomes prohibitively expensive to

compute the exact answers to analytical queries. This greatly increases the

value of approaches that can compute efficiently approximate, but highly

accurate, answers to analytical queries. Approximate query processing (AQP)

aims to reduce the query latency and memory footprints at the cost of small

quality losses. Previous efforts on AQP largely rely on samples or sketches, etc.

However, trade-offs between query response time (or memory footprint) and

accuracy are unavoidable. Specifically, to guarantee higher accuracy, a large

sample is usually generated and maintained, which leads to increased query

response time and space overheads.

In this thesis, we aim to overcome the drawbacks of current AQP solutions

by applying machine learning models. Instead of accessing data (or samples of

it), models are used to make predictions. Our model-based AQP solutions are

developed and improved in three stages, and are described as follows:

1. We firstly investigate potential regression models for AQP and propose

the query-centric regression, coined QReg. QReg is an ensemble method

based on regression models. It achieves better accuracy than the state-

of-the-art regression models and overcomes the generalization-overfit

dilemma when employing machine learning models within DBMSs.

2. We introduce the first AQP engine DBEst based on classical machine

learning models. Specifically, regression models and density estimators

are trained over the data/samples, and are further combined to produce

the final approximate answers.

ii



3. We further improve DBEst by replacing classical machine learning models

with deep learning networks and word embedding. This overcomes the

drawbacks of queries with large groups, and query response time and

space overheads are further reduced.

We conduct experiments against the state-of-the-art AQP engines over

various datasets, and show that our method achieves better accuracy while

offering orders of magnitude savings in space overheads and query response

time.

iii



Contents

Abstract ii

List of Tables viii

List of Figures ix

Acknowledgments xii

Declarations xiv

1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

2 Sponsorships and Grants . . . . . . . . . . . . . . . . . . . . . . xv

Acronyms xvi

Symbols xviii

Chapter 1 Introduction 1

1.1 Data Analytical Tasks and Machine Learning . . . . . . . . . . 1

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Introduction to query-centric regression . . . . . . . . . 5

1.2.2 Introduction to AQP and Supported Queries . . . . . . 6

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Background and Related Work 10

2.1 Machine Learning Models for AQP . . . . . . . . . . . . . . . . 10

2.1.1 Simple Regression Models . . . . . . . . . . . . . . . . . 11

2.1.2 Ensemble Methods . . . . . . . . . . . . . . . . . . . . . 12

iv



2.1.3 Application of Regression Models and Key Insight . . . 14

2.2 Approximate Query Processing Techniques and Engines . . . . 14

2.2.1 Introduction to Exact Query Processing . . . . . . . . . 14

2.2.2 Approximate Query Processing Techniques . . . . . . . 16

2.3 Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Sampling With/Without Replacement . . . . . . . . . . 19

2.3.2 Random Sampling . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Stratified Sampling . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Hash Sampling . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Challenges of Approximate Query Processing . . . . . . . . . . 22

Chapter 3 QReg: Query-Centric Regression 24

3.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Exemplifying the Problem . . . . . . . . . . . . . . . . . . . . . 26

3.3 Our Systemic Setup and Design Choices . . . . . . . . . . . . . 27

3.3.1 System Architecture . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Model Training Strategy . . . . . . . . . . . . . . . . . . 28

3.3.3 Candidate Base Models . . . . . . . . . . . . . . . . . . 30

3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Data Sets and Dimensionality . . . . . . . . . . . . . . . 32

3.4.2 Experimenting with QReg for AQP Engines . . . . . . . 33

3.4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 34

3.5 Query Space Exploration . . . . . . . . . . . . . . . . . . . . . 35

3.6 QReg Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.1 Workload-centric Perspective: Simple QReg . . . . . . . 41

3.6.2 Workload-centric Perspective: Advanced QReg . . . . . 44

3.6.3 Query-centric Perspective: Simple QReg . . . . . . . . . 46

3.6.4 Query-centric Perspective: Advanced QReg . . . . . . . 48

3.6.5 Analysis of the QReg Classifier . . . . . . . . . . . . . . 50

3.7 QReg Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7.1 QReg Training Time . . . . . . . . . . . . . . . . . . . . 53

v



3.7.2 Query Response Time . . . . . . . . . . . . . . . . . . . 54

3.7.3 Sample Size Planning . . . . . . . . . . . . . . . . . . . 55

3.7.4 Workload-centric Perspective . . . . . . . . . . . . . . . 56

3.7.5 Model Training Time . . . . . . . . . . . . . . . . . . . 57

3.7.6 Application to AQP engines. . . . . . . . . . . . . . . . 58

3.8 Major Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 4 DBEst: A Model-Based AQP Engine 62

4.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 The DBEst AQP Engine . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Supported Queries . . . . . . . . . . . . . . . . . . . . . 66

4.2.3 DBEst Query Processing Foundations . . . . . . . . . . 67

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Density Estimator . . . . . . . . . . . . . . . . . . . . . 75

4.3.3 Regression Model Selection . . . . . . . . . . . . . . . . 75

4.3.4 Selecting which Models to Build . . . . . . . . . . . . . 76

4.3.5 Integral Evaluation . . . . . . . . . . . . . . . . . . . . . 76

4.3.6 Parallel/Distributed Computation . . . . . . . . . . . . 77

4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . 79

4.4.2 DBEst Sensitivity Analysis . . . . . . . . . . . . . . . . 80

4.4.3 CCPP Workload Performance . . . . . . . . . . . . . . . 84

4.4.4 TPC-DS Workload Performance . . . . . . . . . . . . . 86

4.4.5 Beijing Workload Performance . . . . . . . . . . . . . . 88

4.4.6 TPC-DS Group By Performance . . . . . . . . . . . . . 90

4.4.7 Parallel Query Execution . . . . . . . . . . . . . . . . . 92

4.4.8 Join Query Processing . . . . . . . . . . . . . . . . . . . 95

4.4.9 Comparison With MonetDB . . . . . . . . . . . . . . . . 96

vi



4.4.10 Complex TPC-DS Queries . . . . . . . . . . . . . . . . . 100

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 5 DBEst++: An Improved Model-Based AQP Engine103

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Design Choices, Rationale and Motivations . . . . . . . . . . . 104

5.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 DBEst++ Query Processing Foundations . . . . . . . . 106

5.3.2 System Architecture . . . . . . . . . . . . . . . . . . . . 107

5.3.3 Mixture Density Networks . . . . . . . . . . . . . . . . . 109

5.3.4 Word Embeddings . . . . . . . . . . . . . . . . . . . . . 111

5.3.5 Updatability . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . 114

5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . 114

5.4.2 TPC-DS Dataset . . . . . . . . . . . . . . . . . . . . . . 115

5.4.3 Flights Dataset . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.4 Impact of Word Embedding . . . . . . . . . . . . . . . . 121

5.4.5 Sensitivity to Attribute Cardinality . . . . . . . . . . . . 122

5.4.6 Updatability . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.7 Parallel Inference . . . . . . . . . . . . . . . . . . . . . . 128

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Chapter 6 Conclusions and Future Work 130

6.1 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1.1 Overfitting-Generalization Dilemma . . . . . . . . . . . 132

6.1.2 Universal Versus Light Models . . . . . . . . . . . . . . 132

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.1 Universal AQP Interface for All Databases . . . . . . . 133

6.2.2 Error Bound for DBEst . . . . . . . . . . . . . . . . . . 133

6.2.3 Support for Complex Queries . . . . . . . . . . . . . . . 134

6.2.4 Model Updateability - OLTP . . . . . . . . . . . . . . . 134

vii



List of Tables

1.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Complexity of typical regression models . . . . . . . . . . . . . 11

2.2 Online versus offline sampling . . . . . . . . . . . . . . . . . . . 17

3.1 QReg Configurations . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Characteristics of data sets used in experiments. . . . . . . . . 32

3.3 Win-counts of simple RMs. . . . . . . . . . . . . . . . . . . . . 36

3.4 Win counts of all models. . . . . . . . . . . . . . . . . . . . . . 37

3.5 NRMSE values when different RMs win. . . . . . . . . . . . . . 38

3.6 NRMSEs for the top 20% queries per simple RM. . . . . . . . . 39

3.7 Win counts of ensemble RMs. . . . . . . . . . . . . . . . . . . . 40

3.8 NRMSEs when different ensembles win. . . . . . . . . . . . . . 40

3.9 Classification error % of Simple QReg . . . . . . . . . . . . . . 43

3.10 ROL w.r.t. Simple QReg where different simple RMs win for

top 20% of queries. . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.11 ROL w.r.t. QReg when different ensemble RMs win for their

top 20% queries. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Comparison of NRMSEs. . . . . . . . . . . . . . . . . . . . . . 51

3.13 Win counts of ensemble RMs. . . . . . . . . . . . . . . . . . . . 56

4.1 Notation in Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Training time for updating the models to account for a new

batch of 50k unseen tuples . . . . . . . . . . . . . . . . . . . . . 127

viii



List of Figures

1.1 Architecture of Sample-Based AQP Systems. . . . . . . . . . . 2

2.1 Presentation of Stratified Sampling in BlinkDB. . . . . . . . . . 21

3.1 Beijing PM2.5 problem of 2-dimensional space . . . . . . . . . 26

3.2 QReg Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Model Training Strategy of QReg. . . . . . . . . . . . . . . . . 29

3.4 Training Time of Typical Regression Models. . . . . . . . . . . 30

3.5 Query Response Time of Typical Regression Models. . . . . . . 31

3.6 Absolute Error of Typical Regression Models for Data Set 4. . 32

3.7 Distribution of best models for Beijing PM2.5. . . . . . . . . . 36

3.8 QReg distribution of base models. . . . . . . . . . . . . . . . . 41

3.9 Accuracy of Simple QReg vs LR, PR, DTR. . . . . . . . . . . 42

3.10 Accuracy of QReg vs ensemble RMs . . . . . . . . . . . . . . . 42

3.11 Workload-centric collection-level NRMSE ratio . . . . . . . . . 45

3.12 r between Advanced QReg and base ensemble models . . . . . . 45

3.13 Query-centric collection-level NRMSE ratio . . . . . . . . . . . 50

3.14 Classification accuracy for various dimensions . . . . . . . . . . 52

3.15 Comparison of typical classifiers . . . . . . . . . . . . . . . . . . 52

3.16 Comparison of model training time . . . . . . . . . . . . . . . 53

3.17 Comparison of query response time . . . . . . . . . . . . . . . 54

3.18 Workload-centric collection-level NRMSE ratio . . . . . . . . . 57

3.19 Sample Size vs Training Time for store sales . . . . . . . . . . . 58

3.20 Application of QReg to DBEst for TPC-DS dataset . . . . . . 59

ix



3.21 Application of QReg to DBEst for Beijing PM2.5 data set . . . 59

4.1 DBEst architecture. . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Influence of Sample Size on Relative Error . . . . . . . . . . . . 81

4.3 Influence of Sample Size on Response Time . . . . . . . . . . . 82

4.4 DBEst vs VerdictDB Overheads . . . . . . . . . . . . . . . . . . 82

4.5 Influence of Query Range on Relative Error . . . . . . . . . . . 83

4.6 Influence of Query Range on Response Time . . . . . . . . . . 83

4.7 Relative Error: CCPP Dataset (10k Sample) . . . . . . . . . . 84

4.8 Relative Error: CCPP Dataset (100k Sample) . . . . . . . . . . 84

4.9 Response Time for CCPP Dataset . . . . . . . . . . . . . . . . 85

4.10 Relative Error: DBEst vs VerdictDB . . . . . . . . . . . . . . . 86

4.11 Response Time: DBEst vs VerdictDB . . . . . . . . . . . . . . 87

4.12 Overheads: DBEst vs VerdictDB . . . . . . . . . . . . . . . . . 88

4.13 Accuracy: DBEst vs VerdictDB . . . . . . . . . . . . . . . . . . 89

4.14 Response Time: DBEst vs VerdictDB . . . . . . . . . . . . . . 89

4.15 Query Performance for 57 Group Values . . . . . . . . . . . . . 90

4.16 Overheads for 57 Group Values . . . . . . . . . . . . . . . . . . 90

4.17 Accuracy Histogram: SUM for 57 Groups . . . . . . . . . . . . 91

4.18 Accuracy Histogram for 57 GROUPS . . . . . . . . . . . . . . . 91

4.19 Group By Query Response Time Reduction . . . . . . . . . . . 92

4.20 Throughput of Parallel Execution (CCPP) . . . . . . . . . . . . 94

4.21 Throughput with Parallel Query Execution . . . . . . . . . . . 94

4.22 Join Accuracy Comparison . . . . . . . . . . . . . . . . . . . . 95

4.23 Join Performance Comparison . . . . . . . . . . . . . . . . . . . 96

4.24 Error vs MonetDB : TPC-DS Group By . . . . . . . . . . . . . 97

4.25 Error Histogram vs MonetDB: TPC-DS GROUP By Workload 97

4.26 Error vs MonetDB: CCPP Workload . . . . . . . . . . . . . . . 98

4.27 Accuracy Comparison for Join Queries . . . . . . . . . . . . . . 99

4.28 Query Response Time Comparison . . . . . . . . . . . . . . . . 99

4.29 Performance for TPC-DS Queries 5, 7, 77 . . . . . . . . . . . . 101

x



5.1 DBEst++ System Architecture . . . . . . . . . . . . . . . . . . 107

5.2 Structure of Mixture Density Networks . . . . . . . . . . . . . . 109

5.3 Input features and labels for training MDNs . . . . . . . . . . . 110

5.4 Data Pre-processing for Word Embeddings. . . . . . . . . . . . 112

5.5 Relative Error for SUM / COUNT / AVERAGE Queries over

the TPC-DS Dataset (SF=10) . . . . . . . . . . . . . . . . . . 116

5.6 Scalability for COUNT Queries Varying SF . . . . . . . . . . . 116

5.7 Scalability for SUM Queries Varying SF . . . . . . . . . . . . . 117

5.8 Comparison of Query Response Times for Queries over the

TPC-DS Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.9 Comparison of Space Overhead for Queries over the TPC-DS

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.10 Accuracy comparison for Compact Models for Queries over the

TPC-DS Dataset (SF=10) . . . . . . . . . . . . . . . . . . . . . 119

5.11 Comparison of Overall Relative Error for Queries over the TPC-

DS Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.12 Space Overheads for Queries over the TPC-DS Dataset. . . . . 120

5.13 Accuracy Comparison for Queries over the Flights Dataset . . . 120

5.14 Space Overheads for Queries over the Flights Dataset . . . . . 120

5.15 Comparison of Relative Error Between Word Embedding, One-

hot and Binary Encoding for COUNT Queries. . . . . . . . . . 121

5.16 Comparison of Relative Error Between Word Embedding, One-

hot and Binary Encoding for SUM Queries. . . . . . . . . . . . 122

5.17 Comparison of Sensitivity on Large Groups for COUNT Queries.123

5.18 Comparison of Sensitivity on Large Groups for SUM Queries. . 123

5.19 Relative Error When FTs Are Updated Only. . . . . . . . . . . 126

5.20 Relative Error When FTs and MDNs Are Updated. . . . . . . 127

5.21 Fine-tuning Models With a Smaller Learning Rate . . . . . . . 128

5.22 Query Response Time Reduction with Varying Degrees of Par-

allelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xi



Acknowledgments

I would first thank my Ph.D. supervisor Prof. Peter Triantafillou. I was so

lucky to meet him during my master’s study at Glasgow. Attracted by his

personal charm and research interest, I moved to the University of Warwick

and became a Ph.D. student under his guidance. Peter is one of the nicest

persons I have ever met. He deeply cared about my Ph.D. study and daily

life. He would always give me very good suggestions when I have difficulties,

and kept encouraging and supporting me. Also, Peter is excellent at writing

academic papers in a concise and professional way. I learned a lot of writing

and presentation skills from him. I am so glad to become his first Ph.D. student

at the University of Warwick. Now I finish my Ph.D. study, and I know the

importance of having a good supervisor, and I am grateful to be supervised by

Prof. Peter Triantafillou.

I am sincerely grateful to my thesis committee members. Both Hakan

Ferhatosmanoglu and Evangelia Kalyvianaki are so nice to serve on my thesis

committee, and they are supportive. I knew Hakan from the course Advanced

Databases, and I got a better understanding of big data techniques from him.

I would also thank my colleagues in the LEADS team. Mehrdad Almasi and

Meghdad Kurmanji helped a lot in conducting the experiments. Mohammadi

Shanghooshabad shared some good advice to improve the performance of

DBEst++.

My Ph.D. study was also greatly influenced by the data science theme

members at the University of Warwick. Graham Cormode gave me valuable

advice for improving QReg and DBEst. I also had enjoyable discussions with

Michael Shekelyan, and we worked together to solve problems involving joins.

I hope I could have more collaborations with the people at the data science

xii



division.

Last, but most importantly, I deeply thank my parents and wife. I received

endless care and support from them. During the Covid pandemic, life was not

easy. I was so lucky to have my wife with me, and we managed to make it

through. My wife is also a Ph.D. student, I wish she would graduate from

Kings College London successfully.

xiii



Declarations

1 Publications

This thesis is submitted to the University of Warwick in support of my applica-

tion and is presented in accordance with the regulations for the degree of Doctor

of Philosophy. It has been composed by myself and has not been submitted

in any previous applications for any degree. The work in this thesis has been

undertaken by myself under the supervision of Prof. Peter Triantafillou. Parts

of this thesis have been previously published by the author in the following:

[104] Qingzhi Ma and Peter Triantafillou. Dbest: Revisiting approximate query

processing engines with machine learning models. In Proceedings of

the 2019 International Conference on Management of Data (SIGMOD),

pages 1553–1570, 2019

[105] Qingzhi Ma and Peter Triantafillou. Query-centric regression for in-dbms

analytics. In 22nd International Workshop On Design, Optimization,

Languages and Analytical Processing of Big Data (DOLAP), pages 16–25,

2020

[106] Qingzhi Ma and Peter Triantafillou. Query-centric regression. Information

Systems, page 101736, 2021

[107] Qingzhi Ma, Ali Mohhamedi Shanghooshabad, Meghdad Kurmanji,

Mehrdad Almasi, and Peter Triantafillou. Learned approximate query pro-

cessing: Make it light, accurate and fast. In Proceedings of the Conference

on Innovative Data Systems Research (CIDR), 2021

Research was performed in collaboration during the development of this thesis,

but does not form part of the thesis:

xiv



[141] Ali M Shanghooshabad, Meghdad Kurmanji, Qingzhi Ma, Michael Shekelyan,

Mehrdad Almasi, and Peter Triantafillou. Pgmjoins: Random join

sampling with graphical models. In Proceedings of the 2021 International

Conference on Management of Data (SIGMOD), 2021

[143] Michael Shekelyan, Graham Cormode, Qingzhi Ma, Ali M Shanghooshabad,

and Peter Triantafillou. Weighted random sampling over joins. In (sub-

mitted), 2021

2 Sponsorships and Grants

This research presented in this thesis was supported in part by the following

benefactors and sources:

• The ‘Tools, Practices and Systems’ theme of the UK Research and Innov-

ation (UKRI) Strategic Priorities Fund (EPSRC Grant EP/T001569/1)

• The Alan Turing Institute (EPSRC grant EP/N510129/1).

xv



Acronyms

AF Aggregate Function.

AQP Approximate Query Processing.

CCPP Combined Cycle Power Plant.

CP Column Pair.

DBMS Database Management System.

DTR Decision Tree Regression.

FT Frequency Table.

GBoost Gradient Boosting.

IoT Internet of Thing.

KDE Kernel Density Estimation.

KPI Key Performance Indicator.

LR Linear Regression.

MB MegaByte.

MDN Mixture Density Network.

ML Machine Learning.

NNR Nearest Neighbours Regression.

NRMSE Normalized Root Mean Square Error.

xvi



OL Opportunity Loss.

OLAP Online Analytical Processing.

OLTP Online Transaction Processing.

PA Power Analysis.

PLR Piecewise Linear Regression.

PR Polynomial Regression.

RDBMS Relational Database Management System.

RM Regression Model.

ROL Relative Opportunity Loss.

RSPN Relational Sum-Product Networks.

SML Statistical Machine Learning.

SQL Structured Query Language.

SSD Solid-State Drive.

SVR SVM Regression.

UDF User-Defined Function.

WE Word Embedding.

xvii



Symbols

ε estimation error

x the attribute in the range predicate

y the attribute to be aggregated

n the size of a given table

w the weight

T Table T

ST A sample from table T

|T | the size of Table T

R(x) a regression model of x y = R(x)

D(x) a density estimator over column x

µ the mean in a normal distribution

σ2 the variance in a normal distribution

N (µ, σ2) a normal distribution

xviii



Chapter 1

Introduction

1.1 Data Analytical Tasks and Machine Learning

In the era of big data, a huge amount of data is generated and collected. By

the end of 2020, there are 2.8 billion active Facebook users, and more than

4 petabytes of data are generated per day [54]. Take YouTube as another

example. The first video uploaded to YouTube was in 2005. By 2021, there

are 2.3 billion users, and more than 500 hours of fresh video is uploaded per

minute. Furthermore, the growth of data volume is speeding up as increased

mobile devices, high-frequency sensors, and IoTs are being widely used.

As a consequence, the ability to answer queries over increased data is

being challenged in various aspects: (a.) The query response time grows

prohibitively. For instance, it takes several minutes to execute a query over

the Conviva data (of size 7.5TB) by HIVE [6]. (b.) The throughput of queries

is increasing continuously. Take Google as an example, 1.2 Trillion queries are

being executed per day. (c.) More storage and memory resources are needed

to answer queries over increased data.

Even with the state-of-the-art big data frameworks and infrastructures, the

said problems still exist. Typically, data is stored in a distributed file system

(like the Hadoop File System [145]), and each node is only responsible for a

proportion of the final answer [45, 170]. By horizontal scaling, an analyst is

able to reduce the query response time by a factor of 10 at the cost of at least
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10 times the investment in computational resources. Although the reduction in

query response time is linear to the number of computational resources, such

a strategy is uneconomic/unrealistic as monetary investment typically grows

slower than the growth of data [121]. In addition, it is not always necessary to

get the exact query results. For many analytical tasks, people are willing to

accept a fast approximate answer at the cost of minor quality loss. For KPI

analytical tasks, an analyst is more interested in the distribution of a specific

performance indicator, as long as the approximate distribution won’t affect the

final conclusion.

This motivates us that instead of providing exact answers at the cost of an

unacceptably high response time, we could provide approximate answers by

reducing/avoiding the amount of data processed during query execution. Ap-

proximate Query Processing (AQP) aims to reduce the query response time by

providing approximate answers. Efforts in AQP largely fall into four categories:

online aggregation [26, 37, 75, 120, 134], data sketches [40, 41], sample-based

approaches [2, 3, 6, 29, 63, 65, 87, 122, 122, 123, 129] and model-based ap-

proaches [77, 104, 106, 107]. Prior to the research addressed in this thesis, there

was no model-based AQP approach, and AQP was dominated by sample-based

approaches.

Figure 1.1 shows the general system architecture of sample-based AQP

engines. Samples are generated and maintained in the system. During query

execution, instead of accessing tables in the back-end server, samples are used

to answer the query. Typically, the sizes of the samples are much smaller than

the tables. Thus, it takes less time to answer queries using samples.

Sample-Based AQP Engine

Query Parser

Sampling 
Module

Sample Container

Query Planner

Query Executor

user/app backend server

SQL

Result

SQL

Result

Figure 1.1: Architecture of Sample-Based AQP Systems.
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However, the sample size has a direct impact on the quality of the approx-

imate answer. A smaller sample leads to lower query response time, but the

error tends to be higher. On the other hand, if we increase the sample size

in favor of accuracy, query response time grows, and more space investments

are needed. This means there is a trade-off between query accuracy and query

response time/space overheads. For online aggregation, the user stops the query

execution process as long as he is satisfied with the intermediate query result.

For some AQP engines, like VerdictDB and BlinkDB, the sample size could

be automatically allocated within a given threshold. However, the dilemma

between query accuracy and query response time/space overheads still exists.

In this thesis, we show that we can provide high-quality approximate

answers with much lower response times and much lower space overheads by

applying machine learning (ML) models. Instead of using samples, ML models

are used to provide approximate answers. Compared to samples, models take

less time to respond, and the sizes of models are usually orders of magnitude

smaller. In this way, model-based approaches enjoy benefits in all aspects.

We achieve this target in three steps. Firstly, we exploit the existing classical

machine learning models. We examine and investigate potential models that

could be applied for AQP tasks. Specifically, regression models and density

estimators are carefully evaluated and analyzed. And we propose QReg, a

query-centric regression, which fits the context of query answering in database

systems. Secondly, we introduce our first AQP engine, coined DBEst, which

relies on regression models and density estimators. Lastly, we replace classical

machine learning models with deep learning networks and other techniques, and

create an improved AQP engine, called DBEst++.

1.2 Thesis Outline

This thesis is divided into two parts. In the first part, we overview recent

research on approximate query processing and machine learning models. In

the second part, we present the three steps that we used to address the issues

3
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for approximate query processing by machine learning models. The outline of

this thesis is also summarized in Table 1.1.

Table 1.1: Thesis outline

Part Introduction Chapter

Exploiting
Related Work

ML Models: We review potential machine
learning models that could be used for AQP
AQP techniques: State-of-the-art AQP tech-
niques are listed and summarized.

2

AQP by ML
Query-Centric Regression: We firstly propose
a query-centric regression that best fits the context
of analytical tasks for databases.

3

AQP engine DBEst: The first model-based AQP
engine is built over classical machine learning mod-
els, including regressions and density estimators.

4

AQP engine DBEst++: We further improve
DBEst by applying Mixture Density Networks and
word embedding.

5

Chapter 2 overviews the background and summarizes the related work.

Specifically, the background is divided into two parts: (1.) overview of classical

machine learning models, and (2) summary of related work on AQP efforts.

Chapter 3 proposes a query-centric regression, coined QReg, which is an

ensemble method based on regression models. QReg achieves better accuracy

than state-of-the-art regressions. Chapter 4 introduces the first model-based

AQP engine, DBEst. Classical machine learning models, including regressions

and density estimators are used to provide approximate answers for queries.

Chapter 5 improves the work in Chapter 4 by applying Mixture Density

Networks and word embedding. This overcomes the drawbacks of DBEst for

GROUP BY queries and further improves the performance. Finally, Chapter 6

introduces future work and concludes.

Note, the outcomes of this thesis have also been presented at Computer

Science conferences and workshops, including ACM SIGMOD 2019 [104], 22nd

International Workshop On Design, Optimization, Languages and Analytical

Processing of Big Data [105], the Conference on Innovative Data Systems

Research [107] and Information Systems [106].

Here, we will give a detailed introduction to the problems addressed in each
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chapter.

1.2.1 Introduction to query-centric regression

As data analytics is becoming increasingly important in the big data era, a

great impetus is emerging for incorporating machine learning (ML) models

within DBMS analytics engines. Within the data management community

several efforts are underway to augment traditional DB functionality with data

analytics tools and models [24, 35, 38, 76, 78, 80, 110, 110, 131, 165]. These

efforts assume various forms. One prominent class pertains to connectors to

back-end databases, which allow for statistical analyses and related queries

on DB data, like MonetDB.R [113], SciDB-Py [64], and Psycopg [161]. Such

connectors allow the analysis of data using known languages while avoiding

costly data transfers from and to the database. Another class of efforts concerns

learning from past answers to predict the answers to future analytical queries,

e.g. for approximate query processing engines, which provide approximate

answers to aggregate queries, using ML techniques [11–13, 122], or for tuning

database systems [7], and for forecasting workloads [103]. Yet another class

of efforts concerns model and query-prediction serving, like the Velox/Clipper

systems [43, 44] managing ML models for predictive analytics. Finally, vision

papers suggest the move towards model selection management systems [97],

where a primary task is model selection whereby the system is able to select

the best model to use for the task at hand.

In this realm, regression models, being a principal, powerful means for pre-

dictive analytics, are of particular interest to both analysts and data analytics

platforms. An increasing number of major database vendors include in their

products data mining and machine learning analytic tools. RMs are playing an

increasingly important role within data systems. Examples of their extended

use and significance include many modern DBs which provide support for re-

gression, such as XLeratorDB [15] for Microsoft SQL Server, Oracle UTL NLA

[1, 168], IBM Intelligent Miner [156], which provide SQL interfaces for analysts

to specify regression tasks. Academic efforts include MADLib (over Postgr-
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eSQL) [76], MAD [35], and MauveDB [47], which integrates regression models

into a RDBMS. [118, 119] uses User-Defined Functions (UDFs) to compute

statistical machine learning models and data summarization. FunctionDB [152]

builds regression models so that future queries can be evaluated using the mod-

els. Furthermore, [139] integrates and supports least squares regression models

over training data sets defined by join queries on database tables. Finally,

the DBEst and DBEst++ approximate query processing engines [104, 107],

which will be introduced in this thesis, rely on RMs to provide highly accurate

approximate answers for popular queries. Thus, in general, RMs are useful

for query processing and data analytics tasks. In addition, RMs are helpful

for many other key tasks: imputing missing values, testing hypotheses, data

generation, fast visualization, etc.

But, given the large number of available RMs, how can one know which is

the best regression model to use? Is there a model that outperforms the others

for different data sets? Even within a single data set, is there a model that

outperforms the others across all data subsets?

In this thesis, we aim to answer these questions. Chapter 3 tackles these

issues using extensive experimental analyses, which show that different models

win across different data sets and even across different subsets of the same data

set. This is established to hold across many well-known base regression models

and more sophisticated regression ensemble models and across many real-world

datasets. Given this fact, Chapter 3 will also show that one can construct

a new regression model which will comprise existing regression models. It is

designed to always select the best constituent regression model Rk(x) for a

specific query for xj to deploy, with respect to minimizing the estimation errors

ε (i, xj).

1.2.2 Introduction to AQP and Supported Queries

We live in the era of big data, whose timely, accurate, and inexpensive analysis

bears great opportunities and benefits which permeate practically all facets of

our lives. Analytical queries in this realm typically rely on two fundamental
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components. Firstly, selection operators (such as range predicates, equality

and IN conditions) help focus on specific data regions. Secondly, aggregation

functions (such as AVG, SUM, COUNT, PERCENTILE, VARIANCE) are

applied on the selected data regions to provide key insights. In SQL, a core

component of a large class of analytical queries takes the form (and this is the

type of queries the thesis aims to support):

SELECT [g1, ...,] AF(y) FROM T

WHERE x1 BETWEEN lb AND ub

[AND x2='a1']

[AND x3 IN ('a2', 'a3', ...)]

[GROUP BY g1, ...]

where range predicates on attributes (x1) are used to define a data region

within that of (a csv file or) table T, and an aggregation function AF is

used on attribute y. A close look at many real-world data sets and analytical

workloads reveals that certain types of data attributes play a key role. Obviously,

AFs operate on numerical attributes. Additionally, selection operators often

operate on numerical attributes as well, or equivalently on ordinal categorical

attributes, such as dates, time, location, etc. Examples abound: Sensor and

IoT datasets are a significant contributor to the big data phenomenon. Smart

city analytical queries involve ranges on time, location, wind speed, air pressure

e.g., to analyze pollution (e.g., PM2.5, CO2 levels, etc. [100]). Smart home

analytics involve measurements (temperature, humidity, etc.) to analyze home

power consumption. Power plants in operation, engineering plants, scientific

applications (from astronomy to bio-medical applications) are awash with such

data and analytics needs.

Such queries are fundamental to exploratory analytics, where primarily

analysts wish to understand the datasets by exploring various data subspaces

(defined using ranges) and deriving descriptive statistics information (using

AFs) about said subspaces. Within data warehouses/databases, the above

query type may be augmented with GROUP BY operators, whereby the AF is
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performed separately for each value of the group attribute. Finally, queries

may involve more than one table, requiring their join and performing the above

analyses on the join-result table.

Unfortunately, the timely, accurate, and inexpensive analysis of big data

presents formidable challenges. Traditional solutions do not scale well, suffer

from long response times, and/or require large money investments to deploy

them on top of big data analytics stacks (e.g., [45, 162, 171]). To address these

challenges, AQP strives for approximate-but-accurate-enough answers which

can be delivered swiftly. AQP has been studied for over two decades now, and

significant progress has been made. Nonetheless, as data continue to grow in

size, AQP engines struggle to keep up.

1.3 Thesis Contributions

Motivated and inspired by the problems mentioned in Section 1.2, this thesis

focuses on approximate query processing by machine learning models. There

are three major efforts in this thesis. Here, we only summarize the major

contributions, and detailed contributions are presented in Chapter 3-5.

• We propose a query-centric regression, coined QReg. It is an ensemble

method based on regression models. One of the major findings is that

best practice, which suggests to an analyst to use a top-performing

ensemble, is misleading and leads to significant errors for large numbers

of queries. In several cases, despite the fact that different RMs had a

very similar overall error (NRMSE), a significant fraction of queries face

very large differences in error when using seemingly-similarly-performing

RMs. Thus, both sophisticated and simpler RMs cannot cope well, in

order to appease query-sensitive scenarios, where query distributions may

target specific data subspaces.

• We introduce the first model-based AQP engine DBEst. The overriding

guiding principle is to develop and study a model-driven solution, instead

of a data-driven solution, where queries are answered by models of data
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and not the data itself (or samples of it). By using regression and density

estimators, DBEst requires small overheads and shorter response times,

(even with just a single thread). Thus, DBEst renders analytics less

costly and achieves much higher system throughput.

• We contribute another novel AQP engine, coined DBEst++, which

extends our previous effort DBEst, and sets the state of the art in

terms of accuracy and query execution efficiency. The DBEst++ salient

design objective is to derive lightweight ML models for the task, allowing

a plethora of ML models to coexist, covering a very large fraction of

the expected analytical query workload without requiring very large

memory footprints. The DBEst++ salient architectural feature rests on

a novel blending of word embedding models with neural networks tasked

with regression-based predictions for density estimation and aggregation-

attribute values.

9



Chapter 2

Background and Related

Work

In this chapter, we briefly review modern techniques in approximate query

processing and potential machine learning models that could be applied in

AQP. As regression models are fundamental in machine learning, we firstly

review regression models in Section 2.1. Classical regression models consist of

simple regression models and ensemble methods. Ensemble methods are based

on simple regression models, and are designed to reduce prediction variance

and/or bias. A brief comparison of regression models is summarized here, while

a more detailed comparison of regression models is made in Section 3.3.3. In

the second section, we firstly present modern techniques and infrastructures in

exact query processing. After that, we overview AQP methods and engines.

Furthermore, as the majority of AQP solutions are based on samples, we

summarize sampling techniques used for approximate query processing.

2.1 Machine Learning Models for AQP

For approximate query processing tasks, we first review modern regressions.

Our study employs a set of representative and popular regression models (RMs),

grouped into two categories: Simple and ensemble RMs.

10
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2.1.1 Simple Regression Models

Simple RMs include linear regression (LR), polynomial regression (PR) [58],

decision tree regression (DTR) [108], SVM Regression (SVR) [111], Nearest

Neighbours Regression (NNR) [9]. An introduction to these simple regression

models will be presented in the following sub sections. Table 2.1 summarizes

the known asymptotic time complexity for training for key regression models.

And more detailed comparisons are made and discussed in Section 3.3.3.

Table 2.1: Complexity of typical regression models

LR PR DTR NNR SVR Gaussian Process

O(d2n) O(d4n) [O(dnlog(n)), O(n2d)] O(k.log(n)) or O(ndk) O(vn2) O(n3)

Note: d is the dimensionality of the data points, n is the number of points in the
training data, k is the number of neighbors for KNN regression, v is the number
of support vectors for SVM regression.

Linear and Polynomial Regression

Given a data set {xi, yi}ni=1, the relationship between label y and feature x

is assumed to be linear, taking the form yi = w0 + w1xi1 + ...+ wpxip + εi =∑p
j=1wjxij + εi. Linear regression is simple, efficient to train and very popular.

Polynomial regression [58] is similar to linear regression. Uni-variate polyno-

mial regression takes the form yi = w0 +w1xi+ ...+wpx
p
i +εi =

∑p
j=1wjx

j
i +εi

Multi-variate polynomial regression further includes cross terms. Polynomial

regression may be prone to overfitting and not feasible in high dimensional

space due to its complexity.

Decision Tree Regression

Decision Trees [108] are a non-parametric supervised learning method used

for classification and regression. DTR builds simple decision rules from data

features. Internal nodes m define test functions (decisions) on features, with

all data items satisfying all conditions on the path to m (denoted Dm) will

reach m in the decision process. Node m is typically associated with the mean

(or median) of all such data items in Dm. The decision process leads to leaves,
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which store the predicted value. DTR is simple and takes less time to train for

very large data sets.

SVM Regression

SVR [111] is also a supervised model based on SVMs, used for classifica-

tion and regression. Labelled (training) data points are viewed as points in

high-dimensional vector space and SVMs define a hyperplane that maximally

separates the data points in that space using their labels. New data then are

assigned to the space occupied by points with the same label. SVR uses the

parameters of the hyperplane to derive predictions for new data points. SVR

is very effective for high dimensional spaces, but inefficient as the number of

training points increases.

SVR affords the flexibility to employ different kernel functions, e.g., linear

and RBF kernel functions are popular with interesting time-accuracy trade-offs.

SVR is effective for high dimensional spaces but less desirable for very large

data sets.

Nearest Neighbours Regression

NNR [9] is based on defining appropriate distances between data points. For a

given query, kNNR finds the k nearest points to the query, and the average

of the k neighbors constitutes the predicted value. kNN regression is simple,

robust to noise, and very effective for very large data sets.

2.1.2 Ensemble Methods

Ensemble learning is a machine learning paradigm where multiple models (or

“weak learners”) are trained to solve the same problem and combined to get

better results. It is often observed that prediction accuracy is improved by

combining the prediction results in some way (e.g., using weighted averaging

of predictions from various base models) [20]. Ensemble learning is useful for

scaling-up data mining and model prediction [146]. There have been many

well-developed ensemble methods, including bagging (bootstrap aggregating)
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[21], boosting [59, 60], stacking [167], mixture of experts [83], etc. Bagging

tends to make predictions with less variance while boosting and stacking try

to produce strong models with less bias.

Popular ensemble methods include AdaBoost, gradient boosting, XGBoost,

etc. AdaBoost [59], short for“adaptive boosting”, is a popular boosting al-

gorithm. Unlike bootstrap aggregating whose models are trained in parallel, the

prediction models in AdaBoost are trained in sequence. AdaBoost was firstly

proposed to solve classification problems, and was applied to solve regression

problems later on.

Gradient boosting (GBoost)’s objective is to minimize the loss function of

the following form:

L(yi, f(xi)) = MSE =
∑

(yi − f(xi))
2 (2.1)

And the predictions are updated in the direction of gradient descent, which is

f(xi)
r+1 = f(xi)

r + α ∗ ∂L(yi, f(xi)
r)

∂f(xi)r
(2.2)

where r is the iteration number. GBoost usually uses only the first-order

information; Chen et al. incorporate the second-order information in gradient

boosting for conditional random fields, and improve its accuracy [31]. However,

the base models are usually limited to a set of classification and regression

trees (CART). Other regression models are not supported.

XGBoost [30] is a state-of-art boosting method, and is widely used for

competitions due to its fast training time and high accuracy. The objective of

XGBoost is

obj(Θ) = L(Θ) + Ω(Θ) (2.3)

where L(Θ) is the loss function, and controls how close predictions are to the

targets. Ω(Θ) is the regularization term, which controls the complexity of the

model. Over-fitting is avoided if the proper Ω(Θ) is selected. The base models

(booster) can be gbtree, gblinear or dart [163]. Gbtree and dart are tree models
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while gblinear is linear.

2.1.3 Application of Regression Models and Key Insight

As mentioned, traditional ML best-practice, recognizing the plethora of RMs

and the need for models to generalize to different distributions that the one

in a training data set have led to the development of ensemble methods.

This is best exemplified by the ensembles used in various competitions and

challenges, such as Kaggle, Netflix, and KDDCup [18, 49, 150]. For example,

the large majority of top-performers used XGBoost alone or is an ensemble

(KDDCup2015). However, looking closely at related results, a key insight is

that the top-k best performers in these competitions are shown to have almost

identical performance. Nonetheless, the differences among the top 5 were in

the 3rd digit after the decimal! The community wisdom, thus, leads to a “best

practice” that employs any one of such top-performing RMs and uses it for

in-DBMS predictive analytics.

We will reveal that such “best practice” hides significant losses of oppor-

tunity from a data management, query-centric perspective and we will analyze

the space and the performance of possible solutions.

2.2 Approximate Query Processing Techniques and

Engines

In this section, we will review the modern techniques and engines for query

processing. Firstly, we summarize the big data infrastructures for exact query

answering. After that, we review state-of-the-art AQP engines and methods. As

sampling is vital in major AQP engines, we review popular sampling techniques.

2.2.1 Introduction to Exact Query Processing

This work is primarily interested in the efficient and accurate processing of

analytical queries in big data environments. Big data infrastructures, (e.g.,

SPARK [171], Hadoop [45], and TEZ [135]) and query processing engines over
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them, such as Hive [154], Spark SQL [16], Impala [94], Amazon Redshift [72],

and Shark [53] have been a catalyst for analytical query processing. Efficient

analytical QP engines with columnar data representations have also been

developed (e.g., MonetDB [79] or, for streaming environments, Trill [26], which

can also run in distributed .NET environments, (Orleans [23]). A related

thread concerns applying data pre-fetching techniques [81], including semantic

windows [86], or developing caches for analytical query results e.g., Data

Canopy [166].

Such query processing infrastructures usually rely on more advanced

techniques to speed up query processing, including indexing, caching, pre-

computation, etc.

Indexing— Database index is a data structure to speed up the retrieval

operations of tuples within a database. An index structure typically consists

of key-location pairs. Thus, an index helps avoid the costly linear scan of

large tables/partitions among the clusters by accessing the tuples of interest

directly. There are intensive research and efforts in database indexing, and

we list the most recent ones. Helios is a distributed, highly-scalable system

used at Microsoft. It utilizes indexing in the cloud for large streams [128].

Hyperspace, as another example, is an indexing subsystem for Apache Spark

[144]. It adopts the index-on-the-lake concept, which supports any data format,

including text CSV, JSON, Parquet, ORC. As the amount of data to be

scanned is reduced, indexes are particularly efficient in providing tremendous

acceleration for certain workloads. However, for aggregate queries involving a

large amount of data, indexes might not work well.

Caching— A database cache reduces the pressure on the server by caching

the frequently accessed queries or data. Caches might be integrated into

databases, like Result Cache for Oracle [8], and PostgreSQL Query Cache

[71]. It offers 10x-100x improvement in query performance. Caches could also

be stored on dedicated servers outside of databases. Typically, such caches

are built upon key/value NoSQL stores such as Redis [25] and Memcached

[56]. They act as another layer on top of database systems, and are able to
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process up to millions of requests per second. Such caching techniques enjoy

low latency and high throughput, and are widely adopted in the industry.

Although caches bring orders of improvement in query processing, it is only

effective for repeated/cached queries. The backend server still needs to process

the query if it is not seen before.

Pre-computation— Pre-computation techniques, like data cubes, are also

used to boost query processing in databases [70, 73]. Data cubes are multiple-

dimensional (n-D) array of values. The data cube is used to represent data along

some measure of interest. In this study, we are interested in aggregate queries

involving COUNT, SUM, AVG, etc. If the measure of interest is pre-computed

in each cell of the data cube, the final query result could be produced using

the data cube instead of accessing the whole data. COSMOS [134] is such an

effort by applying multi-dimensional cubes for online aggregation tasks. The

results of past queries are stored in the cubes, and are re-used if they fall in the

ranges of new queries. The boundary cases are read from the backend server.

Such an effort reduces query latency and improves throughput. However, this

approach is limited to low-dimensional data due to the exponential explosion

in the number of possible cubes.

2.2.2 Approximate Query Processing Techniques

Many research projects are ongoing to enhance the functionalities of, or replace,

RDBMSs by ML models. ML models are widely used for approximate query

processing [77, 104, 152], workload forecasting [103], and database tuning

[160, 172]. SageDB [96] aims to replace all components in RDBMSs by ML

models. Models could also be used for exact query processing. For instance,

the learned index [95] predicts approximate locations for tuples, and adjacent

pages are also fetched during query processing.

As exact answers for analytical queries can still require very long response

times AQP engines become desirable.With respect to AQP research, the existing

solution space is quite complex. Some approaches based on data sketches have

received considerable attention [39–41]. Others focus on progressive/online

16



CHAPTER 2. BACKGROUND AND RELATED WORK

aggregation [26, 37, 75, 120, 134]. Nonetheless, AQP research has been largely

dominated by sampling-based approaches [2, 3, 6, 29, 63, 65, 87, 122, 122,

123, 129]. A different perspective is to think of forgetting data. DBs with

‘amnesia’[90] could be viewed as equivalent to sampling approaches in that

forgotten items correspond to non-sampled items. It would be interesting to

see how such an approach compares with state-of-the-art AQP engines.

Table 2.2: Online versus offline sampling

Offline Online

Assumption: (Partially) Known Workload No Assumptions
Speedup: High Low

Representatives: BlinkDB [6], VerdictDB [123]
DeepDB [77], DBEst++[104, 107]

QuickR [87]

State-of-the-art sampling-based AQP approaches are broadly divided into

two categories and in general no single approach is a ‘silver bullet’[149]. Tech-

niques that rely on online sampling, create samples on the fly and use them to

approximate answers. But, even the best such efforts (e.g., [87]) only deliver

a ca. 2x speedup. The second category can bring much bigger speedups

[2, 6, 29, 122, 123] exploiting the fact that often query workloads are (at least

partially) predictable: one can know beforehand popular query templates,

including the joined tables and join keys, attributes for range predicates and

grouping, etc. STRAT [29] creates a stratified sample over the unions of

columns that occur in the GROUP BY or HAVING clauses. It considers all com-

binations of the column pairs. BlinkDB [6] showed that such templates can be

identified from a small prefix of a workload. VerdictDB [123] depends on users

providing this information. Samples are created for predictable/popular tables

and column sets offline and kept in memory and queries are processed over the

samples reducing drastically execution times. Table 2.2 summarizes typical

AQP engines and their sampling strategy.

Works on predictable queries with prebuilt, prior samples are closest to

our methods. BlinkDB [6] relies on uniform and stratified sampling and can

trade-off performance vs accuracy, while it supports the COUNT, SUM, AVG
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AFs. DBL [122], builds a ‘learning’ layer on top of AQPs (like BlinkDB) in an

effort to learn how to reduce errors. VerdictDB [123] develops uniform, hashed,

and stratified samples and supports currently COUNT, SUM, AVG. Samples are

at least 10m-tuples each. It contributes fast error approximation techniques,

providing error guarantees with low costs. Our work was inspired by such

efforts. We extend the state of the art in this domain by uniquely combining

machine learning models, which can generalize and provide high accuracy,

even when built over very small samples. These models are very compact

guaranteeing large speedups in query times. However, unlike sampling-based

AQP research, currently our method does not provide a priori error guarantees.

More recently model-based/learned approaches for AQP emerged. Such

efforts include DeepDB [77], deep generative models [153], etc. and they can

achieve lower query response times and higher accuracy. For instance, DeepDB

introduces Relational Sum-Product Networks (RSPNs), which is used to learn a

representation of tables and use the RSPNs to provide an approximate answer.

[142] developed clustering techniques to derive low-error density estimators

(DEs) and showed how to use them for COUNT/SUM/AVG. It does not

use regression models (RMs) and pits DEs vs sampling. FunctionDB, [152]

builds Piecewise Linear (PLR) functions over complete datasets and query

these functions instead: Queries define data regions, R, using ranges. AFs

are computed integrating PLR over sampled data points in R. No DEs are

employed and sampling online is expensive, while PLR often suffers from high

errors. With respect to space overheads, models tend to be smaller than

samples. More recent research on applying ML models include DBL [140] and

[11, 13, 14]. Most of these works make assumptions of the expected workload.

Recent work on learning to forecast workloads [103] may help overcome some

of these assumptions.

Our method builds SML models and queries are answered without any

sample, or base data accesses and our method is “first class citizens”, unlike

DBL, being the only way to answer queries. Unlike [11, 13, 14] it does not

depend on a large number of prior queries to learn while it handles many, not
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just one aggregate function.

2.3 Sampling Techniques

As stated in the last section, sampling plays an important role in approximate

query processing. Many modern AQP engines rely on sampling techniques

to make samples [6, 77, 123]. Typical sampling techniques include random

sampling, stratified sampling and hash sampling, etc.

2.3.1 Sampling With/Without Replacement

A simple random sample without replacement is a subset of the members

of a population, for which each member of the population has the same

probability to be included in the sample. No duplicates are allowed. A simple

random sample with replacement is generated by putting back the selected

random element into the population during sampling generation. A simple

random sample with replacement is usually generated by iterative, or batch

sampling algorithms [117]. In databases, samples are usually generated with

replacement, especially for joins where the tuples from the first table may

be joined with more than one tuple in the second table. Generating samples

without replacement will break the probability that each join path is fetched.

In addition, for a simple random sample with replacement, the distribution is

a binomial distribution. For a simple random sample without replacement, the

distribution is a hypergeometric distribution [159].

Samples are also classified as dependent and independent samples. Sample

dependency are measurements made on two samples from the same population.

Two samples are called independent if the members chosen from one sample do

not determine which members are chosen for the second sample [32]. While for

dependent samples, the members in one sample provide information and affect

the members in the other sample. Usually, two samples are independent if they

are generated with replacement. And they are dependent if they are generated

without replacement [125]. Mathematically, the covariance between the two
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samples is zero if the two samples are independent. When we sample without

replacement, and get a non-zero covariance, the covariance depends on the

population size. For cases where the population is very large, this covariance

is very close to zero and there is no much difference between the two methods.

Sometimes people describe sampling with replacement as sampling from an

infinite population and sampling without replacement as sampling from a finite

population.

2.3.2 Random Sampling

A simple (uniform) random sample is a subset of a statistical population in

which each member of the subset has an equal probability of being chosen. A

simple random sample is meant to be an unbiased representation of a group.

For some sampling algorithms, only the sampling ratio is provided, and the size

of the resulting sample is not fixed. While for other sampling techniques, like

the reservoir sampling [27, 42, 164], the size of the sample is fixed. Generating

a simple random sample usually requires one scan of the table. However,

some sampling techniques like [99] discards some items before the next item is

processed and/or accepted, which reduces the time cost to produce the sample

significantly. The key observation is that this number follows a geometric

distribution and can therefore be computed in constant time.

Weighted random sampling [50, 51] is useful for cases where the sampling

probability is provided as the weights associated with each item. Simple random

sampling is a special case of weighted random sampling where the weights

for all tuples are the same. Weighted random sampling is useful for making

samples over the join queries without generating the actual join results.

A random sample usually works well for AQP queries that do not involve

filters and GROUP BYs. However, for some rare groups in a GROUP BY query, a

random sample will produce 100% error when no samples are generated for

this particular group! A standard approach to solve this problem is stratified

sampling.
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2.3.3 Stratified Sampling

In stratified sampling [29, 157], the population is divided into homogeneous

sub-populations (coined strata). The strata are formed based on specific char-

acteristics or attributes such as gender, income, education, etc. After that, each

stratum is sampled by other sampling techniques like simple random sampling.

As each stratum properly represents a specific characteristic/attribute, stratified

sampling is helpful for a population with diverse characteristics.

.

Figure 2.1: Presentation of Stratified Sampling in BlinkDB.

Figure 2.1 demonstrates a derivative of stratified sampling adopted in the

AQP engine BlinkDB [6]. Here, the size of each stratum is capped with a

fixed size K. For strata with a size less than K, the sample includes all the

rows, and there will be no sampling error for that group. In this way, stratified

sampling has 100% accuracy for rare groups while maintaining high accuracy

for popular groups.

Typically, stratified sampling produces a smaller error in estimation and

greater precision than the simple random sampling. In addition, to guarantee

the same level of accuracy as simple random sampling, stratified sampling needs

a smaller sample, which reduces the storage overheads and query response

time during query processing. However, several conditions must be met before

stratified sampling could work properly. For instance, stratified sampling could

not be applied for scenarios where every member of the population could not

be confidently classified into a group. Overlapping [82] is another issue for

cases where tuples fall into multiple subgroups. Tuples that are in multiple

subgroups are more likely to be selected when random sampling is used, which

produces a misrepresentation of the population.
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2.3.4 Hash Sampling

Hash sampling is used to produce a uniform sample by applying a uniform

hash function to the attributes of interest. Mathematically, given a column set

C, a hashed sample ST over column set C in table T is defined as

ST = {t ∈ T |h(t.C) < τ} (2.4)

Where h(·) is a uniform hash function that maps every value of C in to a real

value in [0, 1]. The sampling probability |ST |/|T | is set to τ . For instance,

τ = 0.01 produces a 1% sample of the population.

Note, once the hash function and the sampling ratio are selected, hash

sampling will always generate the same sample for a given table. Thus, hash

sampling generates a uniform but dependent sample. This is especially useful for

cases when we want to join samples instead of tables. It is widely acknowledged

that joining random samples won’t produce a random sample of the join results

(specifically, sample(R) ./ sample(S) 6= sample(R ./ S)) [28, 173]. By using

hash sampling, joining hashed samples creates a uniform but dependent sample

of the actual join result.

2.4 Challenges of Approximate Query Processing

Prior to the methods proposed in this thesis, approximate query processing

was dominated by sample-based approaches. They offer orders of magnitude

reduction in query response time and space overheads. Although AQP attracts

huge attention since the last several decades, there remain many challenges

and opportunities stated as follows:

1. Limited aggregate functions are supported. Currently, most AQP engines

only support COUNT, SUM and/or AVG, while other aggregate functions

like MIN, MAX, VARIANCE, PERCENTILE are not supported.

2. The support for joins (especially for multi-way joins) remains open.
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3. The space overheads are still high. For sample-based approaches, the

samples can be very large to guarantee high accuracy. For model-based

AQP approaches like DeepDB, the size of the model built over all columns

is similar to the size of the actual table [77, 107].

4. For queries with a large number of groups, the error from current AQP

solutions is high.
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Chapter 3

QReg: Query-Centric

Regression

3.1 Motivations

Given the increasing interest in bridging ML and RMs with DBs, as stated in

Chapter 1, we focus on how seamless this process can be. ML models (and RMs

in particular) are trained to generalize and optimize a loss function (invariably

concerning overall expected error). We refer to this as a workload-centric

view, as the aim is to minimize expected error among all (possible) future queries

in an expected workload. The probability distribution of data items within the

data set and the need for generalization drive this process. The focus thus is

on ensuring accuracy across all possible future queries. However, data systems

research has long recognized that query workloads follow patterns generally

different to data distributions [10, 93]. Therefore, from a data analyst’s point

of view, she is less interested in a model that ensures accuracy over the whole

set of possible queries, but on a model that will ensure as high accuracy as

possible for each of her specific queries, which target specific data subspaces

(e.g., using range or equality selection predicates on various attributes).

If an ML model is weak for a particular query (part of the dataset), it will

suffer from high errors for this query, even though over the whole expected

workload it can achieve high accuracy. And, if such queries are popular, the
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majority of queries will experience undesirable accuracy. This gives rise to the

need for a “query-centric perspective”: We define query-centric regression

as a model which strives to ensure both high average accuracy (across all

queries in a workload) as well as high per-query accuracy, whereby each query

is ensured to enjoy accuracy close to that of the best possible model. Specifically,

given a large number of point queries, the target is not to find a single best

model to serve all the queries, but to dynamically select a best model per

query.

The ML community’s general answer to such problems is to turn to ensemble

methods, in order to lower variance and generalize better (e.g., to different

distributions). Nevertheless, the above discussion reveals a potentially serious

type of an impedance mismatch in the sense that the general ML approach to

train models to generalize needs to be used in an environment where overfitting

is also important.

The above also bears strong practical consequences. Consider a data

analyst using python or R, linked with an ML library (like Apache Spark

MLLib, Scikit-Learn, etc.), or using a DB connector like MonetDB.R or SciDB-

Py, or a prediction serving system like Clipper. The analyst uses a predicate

to define a data subspace of interest and calls a specific RM method: It would

be great if she knew beforehand which RMs to use for which data subspaces.

Alternatively, it would be highly desirable if the system could select the best

RM automatically for the analyst’s query at hand.

We wish to shed light into this possible impedance mismatch problem,

see if it holds for simpler and even for state-of-the-art ensemble RMs, and

discover valuable experience for the seamless use of RMs for in-DBMS analytics.

Specifically, we wish to (i) quantify the phenomenon: in Section 3.5 , we shall

use several real data sets (from the UCI ML repository and TPC-DS data) and

a wide variety of popular RMs and new metrics that reveal workload-centric

and query-centric performance differences. We will reveal the need for different

RMs for different datasets, and even for different sub-space of the dataset and

(ii) see if the problem can be addressed by adopting a query-centric perspective,
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(using a new ensemble method named QReg) whereby instead of selecting a

single model for all queries, a best model is selected per query. We wish to

push the lower bound of prediction errors from regression models by combining

the strength of base regression models. A detailed analysis will be carried out

in Section 3.6.

3.2 Exemplifying the Problem

In general, the data space of interest is denoted D(x, y) ∈ Rd+1, where x =

[x1, ..., xd] are the features (independent variables) and y is the label (dependent

variable). Let us consider the Beijing PM2.5 pollution problem [100] as an

example. The aim is to predict PM2.5 concentrations based on several variables.

This is a real-life dataset and there exists a good relationship between PM2.5 and

other variables. To simplify the problem, only Cumulated Wind Speed (m/s)

Iws is used as the feature. Thus, the data of interest is D(Iws, PM2.5) ∈ R2,

and the feature Iws ∈ R1.

(a) Linear and polynomial curves (b) target regression curve

Figure 3.1: Beijing PM2.5 problem of 2-dimensional space

Figure 3.1(a) shows the problem space D(Iws, PM2.5). Two base models,

linear regression and polynomial regression (from the Scikit-Learn package

[126]), are used to fit the data. Linear regression fits better than polynomial

regression if Iws lies between [450,500], while polynomial regression has higher

accuracy between [250, 450]. This, exemplifies that a regression model can only

be good (accurate) at some unknown specific sub-spaces in the dataset. What

we are after is to combine the strengths of the base regression models in order

to create a new regression method, whose performance will equal that of the
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curve shown in Figure 3.1(b), where obviously the overall accuracy is much

better than any of the base models. (For simplicity, hereafter we consider the

input to F to be one-dimensional, so we will write F (x) instead of F (x).)

More generally, there may be n base regression models {Ri}ni=1 available,

with the corresponding prediction functions Ri(x) = fi(x). Creating a

prediction function F (x) based on these base models {fi}ni=1, F = g(f1, ..., fN ),

which ensures that the best prediction model is selected for each query xq is

obviously desirable.

F (xq) = g(f1(xq), ..., fn(xq)) = fk(xq), k ∈ {1, 2, ..., n} (3.1)

For each query, xq, function F (x) finds the best model (fk(xq)) and uses it.

This is a model selection problem to find the best regression model for each

query. This can be treated as an n−way classification problem, whose output

labels identify one (the best) of the n base regression models. Thus, for a given

query xq, this classifier assigns it to the best prediction model, and this model

will be used to answer this specific prediction query.

Our analysis of the problem will test to see whether indeed the above is a

real-world problem. It will formulate the basic problems and will test them

across a large number of real-world data sets and across a large number of base

regression models and ensemble regression models. Subsequently, it will shed

light into how one decides which should be the constituent regression models

to use. And, on how important is the decision on which classifier to use. And,

on how much improvement in accuracy can one anticipate. And, at what costs.

3.3 Our Systemic Setup and Design Choices

3.3.1 System Architecture

Assume that the data system maintains m regression models. When a query

arrives, the system needs to identify the model with the least prediction error

for this query. We treat this model selection problem as a classification problem.

27



CHAPTER 3. QREG: QUERY-CENTRIC REGRESSION

Figure 3.2 shows the architecture of this classified regression QReg 1.

Model Maintenance Layer

Model 1 Model 2 Model m…

Classifier

Query

Result

Query Classification Layer

.

Figure 3.2: QReg Architecture.

There are two layers in the system. (i) The model maintenance layer,

deploys and maintains the base regression models. (ii) The query classi-

fication layer implements the core of QReg. A query is first passed to the

pre-trained classifier. Because the classifier “knows” the prediction ability of

each model in the various queried data spaces, the query will be assigned to

the model that performs best locally for this query’s data space.

Two configurations are studied for QReg: Simple QReg uses simple regres-

sions, including LR, PR, and DTR. Advanced QReg uses GBoost and XGBoost

as its base models. Although the selection of base regression models depends

on the user’s choice, we find that having RMs with the same level of accuracy

achieves better performance for QReg. And a detailed discussion about the

selection of base RMs is made in Section 3.3.3.

Simple QReg Advanced QReg

Base Models LR, PR, DTR GBoost, XGBoost

Table 3.1: QReg Configurations

3.3.2 Model Training Strategy

Figure 3.3 shows the model training strategy of QReg. In Step 1, the data

set is split into three partitions: (i) RM Partition is used to train the base

regression models; (ii) QReg Partition is used to train the classifier in QReg;

(iii) Testing Partition is used to evaluate the accuracy of QReg.

1The source code for QReg is available at https://github.com/qingzma/qreg
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RM Partition QReg Partition Testing
Partition

RM1

RM2

RMm

…

point RM1 RM2 … RMm

x1 P1,1 P2,1 … Pm,1

x2 P1,2 P2,2 … Pm,2

… … … … …

xn P1,n P2,n … Pm,n

x1, idx1

x2, idx2

…

xn, idxn

QReg

Training Data①

②

③

③

④ ⑤

Figure 3.3: Model Training Strategy of QReg.

In Step 2, the RM Partition is used to train m regression models. The

selection of base models is in principle open and depends on the users’ choice

(taking into account the above issues). For Simple QReg, the base models

include linear regression, polynomial regression and decision tree regression.

After that, Each base model RMi makes predictions pi,j of each data point xj

in QReg Partition, as shown in Step 3. In Step 4, a comparison is made between

the predicted pi,j and the real label yj to find the best prediction model for each

query xj . Having the individual predictions and associated errors, a new data

set is generated by combining the data point xj and the index idxj of the best

model for this query, depicted [xj , idxj ]. This data set is then used to build the

classifier reflecting the prediction ability of base models in the query space. The

classifier is the core of QReg, and a well-designed classifier could potentially

grasp the prediction ability of each model in the query space correctly. Thus,

the prediction accuracy can be significantly improved compared to individual

prediction models.

Note that the original data set is partitioned into 3 subsets instead of 2.

This is done in order to ensure that different training data sets are used to

train the base models and the classifier. In addition, models are fine-tuned via

cross-validation using GridSearchCV() in the scikit-learn package.
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3.3.3 Candidate Base Models

When deciding which models to include in QReg the following key criteria are

considered.

(a.) Model training time. This should be as low as possible and should

exhibit good scalability as the number of the training data points increases.

Figure 3.4: Training Time of Typical Regression Models.

Given the asymptotic complexity, as summarised in Section 2.1.1, a number

of experiments were conducted to quantify the training times for various

regression models. Figure 3.4 is a representative result for data set 4 using 4

dimensions (listed in Table 3.2). It shows how model training time (for six

regression models) is impacted as the number of training instances increases.

Model training time is shown to behave acceptably with respect to the

number of instances in the training data set for LR, PR, DTR, and kNN

regression. The training time of Support Vector Regression – Radial Basis

Function tends to increase much more aggressively as the number of training

points increases. The experiment was repeated for all data sets. The above

conclusion holds across all experiments and are omitted for space reasons.

(b.) Query response time: During the classifier’s training process in

QReg, predictions are made from each base prediction model. To reduce the

overall training time as well as the query response time, the models should have

as low response time as possible. Figure 3.5 shows the typical query response
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time of various regression models for data set 4 using 4 dimensions. And the

size of the data set is set to 10,000. Clearly, LR, PR, DTR and SVR takes less

than 100us to make a prediction, while kNN takes ca. 250us to respond.

LR PR DTR KNN SVR Gaussian
Regression Model
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Figure 3.5: Query Response Time of Typical Regression Models.

(c.) Prediction accuracy: Figure 3.6 compares the average absolute

error. For this specific data set, LR, PR and DTR achieve the least error.

While the error of kNN, SVR and Gaussian is much higher. If only LR, PR

and DTR are used as the base models, the average absolute error obtained

by QReg is 0.0389. However, if kNN is added as another base model (LR,

PR, DTR and kNN are used as the base models), the average absolute error

increases to 0.0489.

This is an interesting issue arising from using different regression models

together, as in QReg. If the base regression models have large differences in

accuracy levels, then this may result in QReg having poorer accuracy as QReg

might be distracted by worst-performing RMs. This is a direct result of errors

introduced during the separate classification process. Therefore, care must be

taken so to ensure that base models enjoy similar and good accuracy levels.
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Figure 3.6: Absolute Error of Typical Regression Models for Data Set 4.

3.4 Experimental Setup

All experiments run on an Ubuntu system, with Intel Core i5-7500 CPU @

3.40GHz × 4 processors and 32GB memory.

3.4.1 Data Sets and Dimensionality

Eight real-world data sets with different characteristics from the UCI machine

learning repository [101] are used, varying the dimensionality from 2 to 5, as

well as a large fact table from the TPC-DS benchmark [115]. In Table 3.2, we

only show the features and labels used in the 5-d experiments.

ID Data set # of Records Features & Label (5d)
1 Online Video Time [46] 168,286 duration, width, i size, utime , umem
2 Physicochemical Properties 45,730 F2, F3, F4, F5 , RMSD
3 Beijing PM2.5 Data [100] 43,824 DEWP, TEMP, PRES, Iws, energy output
4 Online News Popularity [55] 39,797 NTT, NTC, NNSUT, NH, NUT
5 Combined Cycle Power Plant [158] 9,568 T, EV, AP, RH, EO
6 YearPredictionMSD [19] 515,345 c1, c2, c3, c4, year
7 Gas sensor [22] 4,178,504 Methane conc (ppm), c1, c3, c4, c2
8 electric power consumption 2,075,259 GAP, GI, GRP, V, energy
9 store sales [115] 2.6billion ss sales price, etc, ss quantity

Table 3.2: Characteristics of data sets used in experiments.

Data set 1 is a collection of YouTube videos showing input and output video

characteristics along with the transcoding time and memory requirements. Data

set 2 contains Physicochemical properties of Protein Tertiary Structure. The

task is to predict the Size of the residue (RMSD) based on several properties.

There are 45730 decoys and size varies from 0 to 21 armstrong. Data set 3 is

an hourly data set containing the PM2.5 gas concentration data in Beijing.
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The task is to predict PM2.5 concentration (ug/m3), and the independent

variables include pressure (PRES), Cumulated wind speed (Iws), etc. Data

set 4 is an online news popularity data set and tasks include predicting the

number of shares in social networks (popularity). There are totally 39797

records in this data set. In our experiments, the feature adopted is the number

of unique tokens, and the labels include the number of token content, number

of none-stop unique tokens, etc. Data set 5 contains 9568 data points collected

from a Combined Cycle Power Plant over 6 years (2006-2011), and the task

is to predict the net hourly electrical energy output (EP) of the plant. Data

set 6 is the YearPredictionMSD data set used to predict the release year of a

song from audio features. Most of the songs are commercial tracks from 1922

to 2011. Data set 7 contains the recordings of 16 chemical sensors exposed to

two dynamic gas mixtures at varying concentrations. The goal with this data

set is to predict the recording of one specific chemical sensor based on other

sensors and the gas mixtures. This is a time-series data set containing more

than 4 million records in total. Data set 8 records the individual household

electric power consumption in one household for more than four years, and

there are two million records. Features include the voltage, household global

minute-averaged active power (in kilowatt), etc.

We further employ table store sales from the popular TPC-DS bench-

mark [115]. Typical columns used for the experiments include ss list price,

ss wholesale cost, ss sales price and ss ext sales price.

3.4.2 Experimenting with QReg for AQP Engines

We further applied QReg to DBEst, a newly model-based approximate query

processing (AQP) engine [104] (which will be introduced in Chapter 4), to

demonstrate QReg’s performance. DBEst adopts classical machine learning

models (regressors and density estimators) to provide approximate answers to

SQL queries. We replace the default regression model in DBEst (XGBoost) with

Advanced QReg, and compare the accuracy with DBEst using other ensemble

methods, including XGBoost and GBoost. The well-known TPC-DS dataset
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is scaled up with scaling factor of 1000, which contains ∼ 2.6 billion tuples

(1TB). 96 synthetic SQL queries covering 13 column pairs ( like , [ss quantity,

ss ext sales price], [ss wholesale cost, ss list price], etc) are randomly generated

for COUNT, SUM and AVG aggregate functions. For instance, for column pair

[ss quantity, ss sales price], the SQL queries are of the following format:

SELECT SUM(ss_quantity) FROM store_sales

WHERE ss_sales_price BETWEEN lower AND upper

where lower and upper are randomly generated within the space domain.

The DBEst engine is trained over a sample of 100k rows from the complete

dataset. The complete experiments and discussions are introduced in Sec-

tion 3.7.6.

3.4.3 Evaluation Metrics

Accuracy is measured using the Normalized Root Mean Square Error (NRMSE)

metric, defined as:

NRMSE =

√∑n
t=1(ŷt−yt)2

n

ymax − ymin
(3.2)

NRMSE shows overall deviations between predicted and measured values; it

is built upon root mean square error (RMSE), and is scaled to the range of

the measured values. It provides a universal measure of prediction accuracy

between different regression models.

The NRMSE ratio r, compares the prediction accuracy of one RMi against

that of any other RMj , and is defined as: r = NRMSEi
NRMSEj

. If NRMSEj ≤

NRMSEi, this ratio shows how worse RMi is compared to RMj .

The above are standard metrics used for comparing accuracy. However, our

study calls for additional metrics. Inherent in our study is the need to reflect

the differences in accuracy observed by a query as they depend on the model

used. For this we define the concept of Opportunity Loss as a natural way to

reflect how much the query loses in accuracy by using a sub-optimal model.

Assuming RMopt is the RM with the lowest NRMSE, we define Opportunity
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Loss OLi as

OLi =
NRMSEi
NRMSEopt

− 1, (3.3)

which quantifies as a % the error (the opportunity loss) due to not using the

best model RMopt and using RMi instead.

Furthermore, we define

ROLi,k =
OLi
OLk

, (3.4)

as Relative Opportunity Loss, which quantifies how much better RMk does

vs RMi in improving on the opportunity loss.

Intuitively, our aim (which will be discussed in Section 3.5) is to show that,

despite which single model is used, some queries will always be processed by

sub-optimal models. So we wish to quantify this opportunity loss. Furthermore,

our aim (which will be studied in Section 3.6) is to show that a new ensemble

model can help significantly alleviate this problem. The ROLi,j metric will

help quantify how much a model (QReg) improves on this opportunity loss for

queries.

3.5 Query Space Exploration

As introduced in Section 3.1, this section will analyze the performance of various

RMs for different datasets, or even for different sub-regions of the data space.

Consider data set 3, the Beijing PM2.5 data set [100], using Cumulated Wind

Speed (IWS) and Pressure (PRES) as the features, yielding a 3-dimensional

regression problem.

Figure 3.7.(a) shows the distribution of the model with the least error for

all data points. LR, PR, and DTR are used as the base RMs (Simple QReg).

Figure 3.7.(b) shows the distribution of best models when ensemble models

GBoost and XGBoost are used (Advanced QReg).

Take QReg using simple models as an example. LR dominates in the upper-

central region. PR dominates at the lower central regions. DTR performs best
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(a) Simple models (b) Ensemble models

Figure 3.7: Distribution of best models for Beijing PM2.5.

in the rest of the space. The NRMSEs for LR, PR and DTR are 8.48%, 8.84%,

and 8.32%, respectively. However, if for each point the best model can be

selected to make the prediction (as shown in Figure 3.7), the corresponding

(“optimal”) NRMSE drops to 7.19%. This would be a large improvement in

accuracy.

Figures like Figure 3.7 can help analysts decide on which models to use

when querying this space. Similar figures exist for all data sets studied in this

work and are omitted due to space reasons.

Table 3.3: Win-counts of simple RMs.

Data set ID Count of LR Count of PR Count of DTR

1 6468 6919 5366
2 3606 4133 6217
3 1077 1580 1472
4 3618 4826 4155
5 980 885 1307
6 62749 51953 57007
7 9646 4029 4953
8 35702 28800 40311

Table 3.3 adopts a different perspective. It shows the number of most

accurate predictions (“wins”) made by each simple RM, per data set. First,

note that all models have a good number of wins. Second, no model has the

highest number of wins across all data sets. So, there is no single winner. DTR

enjoys the most wins for data sets 2, 5, and 8; PR makes the most accurate

predictions for data sets 1, 3, and 4; LR wins for data sets 6 and 7. Note, the

original data set is much larger than the numbers shown in Table 3.3. For the
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2-d problem, we remove the duplicates.

Table 3.5 zooms in, augmenting Table 3.3 by showing the NRMSEs when

different simple RMs win. For example, for data set 1, we know from Table 3.3

that LR wins 6468 times. For these, the LR’s NRMSE was 11.08%, as indicated

by Table 3.5, whereas for PR was enormous and for DTR was 18.28% – see

the 3 numbers in cell [1,3] in Table 3.5. Similarly, for the 6919 queries where

PR won, LR’s NRMSE was 11.82%, as indicated by Table 3.5 whereas for PR

was 9.35% and for DTR was 11.68% – see the 3 numbers in cell [1,4].

Table 3.4: Win counts of all models.

ID LR PR DTR GBoost XGBoost

1 5193 5113 1692 3581 3174
2 2964 3050 3912 1974 2056
3 858 1179 1144 722 226
4 2870 3088 2792 1475 2374
5 670 490 855 754 403
6 57083 34105 44908 14899 20714
7 7088 1253 1556 6089 2642
8 29839 20213 19876 22189 12696

Consider data set 4. When LR wins, its error is markedly lower (almost

half) that of PR and DTR–unlike their overall NRMSEs which show LR to be

the worst model.

To further facilitate a query-centric perspective, we delve into the perform-

ance of the queries for which each RM reached a top-20% performance. For

data set 1, for example, this includes the best 20% of the 6468 queries for which

LR wins, the best 20% of the 6919 queries for PR wins, and the best 20% of

the 5366 queries for DTR wins. Hence, the NRMSE of interest does not come

from all the queries, but from the top 20% queries for which the least error was

achieved by a simple RM. Table 3.6 shows these results, along with the overall

NRMSE of each simple RM for the whole set of queries. Again, note that the

overall NRMSEs are quite close. However, individual differences are very large.

For data set 1, for instance, the top 20% of queries when LR wins enjoy an

NRMSE that is about half of the NRMSE of the others. Interestingly, the

same holds for PR and DTR! Similar conclusions hold for the other data sets.
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Table 3.5: NRMSE values when different RMs win.

Data set
ID

NRMSE
By

NRMSE
where

LR wins

NRMSE
where

PR wins

NRMSE
where

DTR wins

Overall
NRMSE

LR 11.08% 11.82% 14.23% 12.32%
1 PR �1000% 9.35% �1000% �1000%

DTR 18.28% 11.68% 10.60% 14.06%

LR 27.68% 23.78% 28.61% 27.02%
2 PR 30.96% 20.20% 27.85% 26.72%

DTR 34.24% 26.18% 21.81% 26.79%

LR 8.47% 8.00% 8.99% 8.48%
3 PR 9.91% 6.60% 10.04% 8.84%

DTR 10.54% 7.99% 6.65% 8.32%

LR 2.46% 4.96% 5.55% 4.62%
4 PR 3.82% 2.62% 4.49% 3.67%

DTR 4.07% 3.54% 2.51% 3.41%

LR 16.69% 15.97% 19.91% 17.90%
5 PR 18.75% 13.94% 18.79% 17.56%

DTR 21.07% 16.99% 15.30% 17.72%

LR 11.06% 12.43% 13.39% 12.29%
6 PR 12.15% 11.47% 12.77% 12.15%

DTR 12.30% 12.04% 12.15% 12.17%

LR 80.48% 113.75% 106.84% 95.85%
7 PR 210.45% 83.39% 104.22% 165.31%

DTR 118.60% 111.17% 76.58% 107.31%

LR 8.81% 10.02% 10.49% 9.82%
8 PR 10.36% 8.05% 10.04% 9.66%

DTR 11.13% 9.99% 8.29% 9.80%

Each [i,j] cell shows 3 values for data set i, for the cases where model j wins.
j = 3 (4, or 5) represents LR, (PR, or DTR) respectively. The top number in
each cell shows the NRMSE for LR, the middle shows the NRMSE of PR, and
the bottom the NRMSE for DTR.

We conducted the same experiment using more sophisticated ensemble

regression models. Similarly to Table 3.3 and Table 3.5 which refer to simple

RMs, Table 3.7 and Table 3.8 show the corresponding results for the ensemble

RMs.

Interestingly, a close examination of these tables substantiates the same

conclusions as above, but for ensemble methods. Again, we see from Table 3.7

that both RMs enjoy a large number of wins. From Table 3.8 we see that

NRMSE differences are very high between RMs for queries when GBoost or

XGBoost win.

For completeness, Table 3.4 lists the win counts when all models (LR, PR,
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Table 3.6: NRMSEs for the top 20% queries per simple RM.

Data Set
ID

NRMSE
By

NRMSE
where

LR wins

NRMSE
where

PR wins

NRMSE
where

DTR wins

Overall
NRMSE

LR 3.61% 5.36% 6.67% 5.36%
1 PR 7.06% 2.92% 6.33% 5.72%

DTR 7.96% 5.78% 3.42% 6.01%

LR 18.35% 16.14% 16.10% 16.89%
2 PR 21.26% 12.39% 12.88% 16.04%

DTR 24.14% 17.09% 7.97% 17.69%

LR 3.03% 3.64% 4.83% 3.902%
3 PR 4.89% 1.44% 4.07% 3.76%

DTR 5.35% 2.78% 2.12% 3.69%

LR 0.96% 2.33% 2.74% 2.15%
4 PR 2.33% 0.63% 1.56% 1.66%

DTR 2.54% 1.40% 0.78% 1.74%

LR 7.56% 9.77% 9.44% 8.98%
5 PR 10.00% 7.75% 8.11% 8.68%

DTR 12.11% 10.55% 4.85% 9.69%

LR 4.11% 5.26% 5.500% 5.00%
6 PR 5.22% 4.12% 4.82% 4.74%

DTR 5.42% 4.76% 4.13% 4.80%

LR 42.14% 109.35% 95.42% 87.25%
7 PR 106.72% 80.88% 82.48% 90.80%

DTR 79.49% 106.48% 65.26% 85.47%

LR 3.07% 5.57% 3.65% 4.23%
8 PR 4.37% 3.77% 3.67% 3.95%

DTR 5.17% 5.92% 1.60% 4.63%

DTR, GBoost and XGBoost) compete. Each model has a considerable win

count, substantiating the need for a query-centric perspective. Noticeably,

although ensemble models are designed to have higher prediction accuracy

than simpler models, the win counts of simpler models are often shown to be

higher than those of ensemble models.

To summarize this section, we extensively evaluate the performance of

various RMs over different data sets, or different regions of the queried data

spaces. Experimental results show that different RMs might exhibit higher

accuracy for different regions of the queried data spaces, and a top-performing

ensemble method might not work well for all data sets. In addition, although

said RMs might enjoy similar overall accuracy, the prediction difference can

be large for different regions. In the following section, we will propose an
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Table 3.7: Win counts of ensemble RMs.

Data set ID Count of GBoost Count of XGBoost

1 10334 8419
2 7037 6919
3 2653 1476
4 2142 10457
5 1596 1576
6 92916 78793
7 6991 11637
8 52949 51864

Table 3.8: NRMSEs when different ensembles win.

Data set
ID

NRMSE
By

NRMSE
where

GBoost wins

NRMSE
where

XGBoost wins
Overall
NRMSE

GBoost 14.22% 16.34% 15.21%
1 XGBoost 14.55% 16.02% 15.23%

GBoost 25.43% 26.68% 26.06%
2 XGBoost 26.15% 25.59% 26.05%

GBoost 9.24% 7.17% 8.13%
3 XGBoost 10.53% 6.20% 8.35%

GBoost 2.67% 12.97% 11.87%
4 XGBoost 4.62% 2.85% 3.22%

GBoost 16.21% 18.66% 17.47%
5 XGBoost 17.38% 17.42% 17.40%

GBoost 10.91% 13.45% 12.15%
6 XGBoost 11.07% 13.30% 12.15%

GBoost 103.56% 97.12% 99.58%
7 XGBoost 121.14% 87.67% 97.58%

GBoost 9.04% 10.38% 9.72%
8 XGBoost 10.18% 9.35% 9.77%

ensemble method, coined QReg, based on the key findings from this section.

It is designed to reduce the prediction error based on the error distribution of

various RMs in the queried space.

3.6 QReg Evaluation

This section aims to substantiate whether it is possible to develop a method

that can learn from the key findings of the previous section and leverage them,

automating the decision as to which RM to use, relieving the DB user/analyst

of the conundrum, towards a query-centric RM. Specifically, we study if and
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at what costs a method can: (i) select the best regression model for any query

at hand and (ii) achieve better overall accuracy than any single (simple or

ensemble) method.

It is natural to treat this problem as a model selection problem, using a

classifier for the method selection. We show a new ensemble method, QReg,

which materializes a query-centric perspective achieving the above two aims.2

We have considered various classifiers for QReg, including SVM-linear classi-

fiers, SVM classifiers using the RBF kernel, and the XGBoost classifier. In

Section 3.6.5, we conducted a comprehensive comparison between various clas-

sifiers. Unless explicitly stated otherwise, results for the XGBoost classifier are

shown, due to its overall prediction accuracy and scalability performance.

(a) Simple QReg (b) Advanced QReg

Figure 3.8: QReg distribution of base models.

Figure 3.8 shows the RMs chosen by Simple and Advanced QReg for each

corresponding query, giving a feeling of the overall RM distribution suggested

by QReg. The model distribution shown resembles the distribution of the truly

optimal models across the queried data space, as shown in Figure 3.7. Thus,

QReg does a good job in selecting (near-) optimal RMs per query. As per

Scenario 1, presenting such visualisations can be of real value to analysts.

3.6.1 Workload-centric Perspective: Simple QReg

A workload-centric perspective assumes that the query distribution is identical

to the data distribution, as described in Section 3.1. Simple QReg uses simple

2NB: the aim here is not to find the best method to achieve this. By presenting QReg
we showcase that (i) this is achievable and that (ii) significant gains can be achieved using
easy-to-deploy methods.
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regression models, including LR, PR, and DTR. Figure 3.9 shows the NRMSE

ratio r as defined in Equation (3.2) for all data sets in 3-d space. An NRMSE

ratio r larger than 1 means QReg has less prediction error than the other base

model. QReg is shown to outperform or be as good as any of its base models.

Specifically, for data sets 2, 3, 5, 6, and 8, QReg performs slightly better than

other regression models, whereas for data sets 1, 4, and 7, we can see QReg

being significantly superior versus LR, or PR, or DTR. This shows that even

the base RMs perform badly, QReg has the ability/potential to obtain much

better accuracy.
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Figure 3.9: Accuracy of Simple QReg vs LR, PR, DTR.
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Figure 3.10: Accuracy of QReg vs ensemble RMs
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Figure 3.10 compares the prediction error between Simple QReg against

the more sophisticated ensemble methods, including AdaBoost, GBoost, and

XGBoost. Figure 3.10 shows that the even Simple QReg often achieves better

prediction accuracy than any of the sophisticated ensemble methods. For

example, up to 25% reduction in NRMSE is achieved by Simple QReg for data

set 1 in 3-d space. Note, for the 5-d cases, Simple QReg perform worse than

other ensemble method for data set 5 and 6. And the corresponding NRMSE

ratio is ca. 0.85. This urges us to use more advanced ensembles as the base

models for such data sets.

There are two sources of error for QReg : one comes from the base regression

models, and the other from the classifier. With Table 3.9 we show the proportion

of classification error of the total QReg error NRMSEQReg. For most cases,

the error caused by improper classification is less than 20% of the total QReg

error. However, we see that for datasets with higher dimensionality, the

classification error can become increasingly important. A detailed discussion

on the selection of classifiers is provided in Section 3.6.5.

Table 3.9: Classification error % of Simple QReg

Data Set ID 2D 3D 4D 5D

1 6.85% 9.96% 32.79% 18.42%
2 4.47% 14.76% 16.19% 17.50%
3 8.01% 11.91% 11.94% 16.52%
4 9.74% 25.13% 28.11% 30.38%
5 6.93% 12.38% 19.82% 39.04%
6 3.91% 5.89% 3.29% 24.19%
7 0.00% 2.65% 3.16% 4.35%
8 9.98% 12.53% 13.41% 14.71%

To summarize this section, we evaluate the performance of simple QReg

against its base RMs and the state-of-the-art ensembles. QReg achieves much

better accuracy than its base RMs, and even outperforms other ensembles over

various datasets. In the next section, we will repeat the same experiment, but

for advanced QReg.
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3.6.2 Workload-centric Perspective: Advanced QReg

For the majority of the cases, Simple QReg is shown to outperform simpler

RMs and occasionally more complex ensemble models. For the remainder we

concentrate on Advanced QReg constructed using GBoost and XGBoost.

Delving deeper, we now show the NRMSE ratios between GBoost (or

XGBoost) and QReg, broken down to sub-collections of points in the data

space, specifically, for the sub-collection of points where XGBoost regression

(or GBoost regression) has the best prediction accuracy.

Figure 3.11 shows bands of 2 bars each. Each band of bars shows the

NRMSE ratio between other RM and the best RM for the collection of points.

Take the 4-d data set 1 as an example, for the collection of points where

XGBoost has the best prediction accuracy. The NRMSE ratio between GBoost

(second best RM) and XGBoost (collection-best RM) is 1.3288 (orange bar in

the figure), while the corresponding NRMSE ratio between QReg and XGBoost

is 1.0780 (green bar in the figure). This shows that for this collection of points

where XGBoost has the best prediction accuracy, GBoost suffers from a 32.88%

error relative to the optimal, while using QReg reduces this to 7.80%.

As another example, consider the collection of points where XGBoost has

the best prediction accuracy in the 5-d data set 8. The NRMSE ratio between

GBoost (second best RM) and XGBoost is 1.1458, while the NRMSE ratio

between QReg and XGBoost is 1.0316. Thus, the relative opportunity loss is

0.1458/0.0316 = 4.61, which means the error caused by using GBoost (relative

to the best model) is 4.61 times the error caused by QReg for the collection of

points where XGBoost has the best accuracy. The relative opportunity loss is

much larger for data sets 4 and 5. For data set 7, GBoost and XGBoost have

almost identical performance. And the corresponding NRMSE ratio is 1.0.

Figure 3.12 shows the ratio r of NRMSE between the base (ensemble)

methods and Advanced QReg for the whole data sets. Improvement in 2-d

space is typically small, but from d=4, we start seeing larger improvements

brought about by QReg. For 2-d case, the accuracy of GBoost and XGBoost

44



CHAPTER 3. QREG: QUERY-CENTRIC REGRESSION

1 2 3 4 5 6 7 8
Dataset ID

0.8

1.0

1.2

1.4

1.6

1.8

N
R

M
S

E
 R

at
io

XGboost
Advanced QReg

(a) 4-d GBoost win collection
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(b) 4-d XGBoost win collection
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(c) 5-d GBoost win collection
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Figure 3.11: Workload-centric collection-level NRMSE ratio

regressor are high and almost equal, which explains why QReg cannot improve

things further. For the 3-, 4-, and 5-d cases, almost all ratios are above the
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Figure 3.12: r between Advanced QReg and base ensemble models
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horizontal line r = 1. It shows that models do very well for most data sets.

However, there are some cases where QReg is significantly better than other

ensemble methods, for example against GBoost for the 5-d data set 4 and

against XGBoost for the 4-d data set 8. We see that QReg can improve

accuracy across data sets and dimensionalities. As explained in Section 3.5,

QReg is trained based on the distribution of the best model in the query space,

thus QReg always selects the best model to make the prediciton for a given

query.

Comparing Figure 3.12 with Figure 3.11, we see that even though the

overall NRMSE of various RMs is similar, different RMs give different accuracy

in different subspaces of the data. Interestingly, this figure also shows that for

different data sets different ensemble methods win (as we have seen previously),

showcasing the need for a method like QReg.

In this section, we demonstrate the performance of QReg from a workload-

centric perspective, where we assume that the query space has the same

distribution as the data space. For sub-regions where a base RM outperforms

other RMs, QReg is shown to perform better than other RMs. This shows

that QReg will always (or try to ) select the best RM to make a prediction for

each query.

3.6.3 Query-centric Perspective: Simple QReg

Recall the results regarding RM winning counts and associated errors in the

evaluation part in Section 3.5. These results revealed that, regardless of which

RM is chosen, unavoidably, for a significant fraction of queries, a sub-optimal

method will be used. Adopting a query-centric perspective, our aim is to show

that QReg does very well for the cases revealed above where unavoidably a

non-optimal performer may be used. So we will be looking at cases where LR,

PR, and DTR win (and later in cases where XGBoost and GBoost win). In

fact we will be looking at the top 20% of queries where each RM wins, to delve

into the cases where the minimum error is achieved.

Given that LR (or PR or DTR) wins, our hope for QReg’s performance
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is to be much closer to the best performer than PR and DTR (or LR and

DTR when PR wins, or LR and PR when DTR wins). In other words, we aim

to minimize the “opportunity loss” for queries: that is, offer a performance

that is much better than the performance if we used QReg than if we used

any other non-optimal method. The ROL metric was created exactly for this

reason. Table 3.10 captures this information.

Table 3.10: ROL w.r.t. Simple QReg where different simple RMs win for
top 20% of queries.

Data set where LR wins where PR wins where DTR wins

23.78 261.00 9.10
1 23.92 129.00 12.00

0.53 3.20 5.26
2 1.2 4.77 3.76

1.26 7.78 6.25
3 1.31 4.75 3.82

1.02 19.25 1.93
4 1.67 18.65 1.11

1.08 1.35 3.95
5 2.02 1.87 2.81

2.05 2.85 3.04
6 2.73 2.02 1.80

2944.50 15.90 23.68
7 1931.00 16.12 19.36

1.18 1.33 7.32
8 1.90 1.59 2.39

Table 3.10 focuses on the accuracy performance of Simple QReg vis-a-vis

that of the simple RMs. We use the ROL metric, in an attempt to show how

much of the opportunity loss QReg gains back. Each cell [i,j] (j ∈ {2, 3, 4}) in

Table 3.10 represents performance for data set i, for the cases where RMj is the

winner, focusing only on the queries for which a top-20% error was achieved.

For instance, column 2 (j = 2) refers to the (top 20% of) queries, among all

queries where LR was the winner (among LR, PR, and DTR). The top number

in cell [1,2] denotes that if PR was used, instead of (the optimal) LR, this

would incur an NRMSE higher by 23.78 times, compared to the case where

QReg was used. The bottom number in [1,2] denotes that if DTR was used

instead of (the optimal) LR, this would incur an NRMSE higher by 23.92 times
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compared to the case where QReg was used. This much better performance is

reached, as QReg often selects the best performer (LR in this case).

Similarly, the top number in cell [4,3] shows that if LR was used instead of

PR (which is the best RM for column 3), this would incur an NRMSE higher

by 19.25 times compared to the case where QReg was used, for data set 4.

The bottom number in [4,3] shows that if DTR was used instead of (the best

RM) PR, this would incur an NRMSE higher by 18.65 times, compared to the

case where QReg was used, for data set 4.

Finally, the top number in cell [3,4] denotes that if LR was used instead

of (the best RM for column 4 which is) DTR, this would incur an NRMSE

higher by 6.25 times, compared to the case where QReg was used , for data

set 3. The bottom number in [3,4] denotes that if PR was used instead of (the

best RM for column 4 which is) DTR, this would incur an NRMSE higher by

3.82 times, compared to the case where QReg was used, for data set 3.

Table 3.10 shows that indeed for 20% of the queries, for which the top error

was achieved using either LR, PR, or DTR, using QReg would significantly

reduce the opportunity loss. Notably, there is only one entry that is less than 1,

showing that in all other cases, using QReg instead of the any other 2nd-best

performer would bring about significant improvements in error for even the

most vulnerable of the queried spaces.

In this section, we show the performance of Simple QReg from a query-

centric perspective, where the workload distribution differs from the data

distribution. We use relative opportunity loss (ROL) to measure the improve-

ment made by QReg for not using the 2nd-best performer. Experimental result

shows that using QReg instead of the 2nd-best performer will bring much

improvement in prediction accuracy. In the next section, we will conduct the

same experiments for Advanced QReg from a query-centric perspective.

3.6.4 Query-centric Perspective: Advanced QReg

As discussed in Section 3.6.2, we calculate the NRMSE error of advanced QReg

for the full collection of points where a single ensemble model wins. To zoom
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into the context of query-centric prediction serving, we now focus only in the

top 20% of queries with the least error, as done previously. To summarize

relative performance, the relative opportunity loss between RMs and QReg is

shown in Table 3.11.

Table 3.11: ROL w.r.t. QReg when different ensemble RMs win for their
top 20% queries.

Data set ID where GBoost wins where XGBoost wins

1 3.00 2.39
2 2.77 2.68
3 75.50 2.00
4 0.99 >1000
5 2.77 1.87
6 5.67 1.77
7 7.13 3.44
8 2.64 5.29

The values shown exactly are the ROL of using as a second-best RM

GBoost (XGBoost) vs QReg when XGBoost (GBoost) wins. For example, cell

[1,2]=3.00, says that if XGBoost was used (instead of the optimal in this case

GBoost) it would result in an error that is 3 times higher than if QReg was

used. In other words, previous results have shown that, regardless of which

RM is chosen, this RM will be suboptimal for certain queries. So these ROL

values show how QReg can minimize this cost when being suboptimal.

Similar to Figure 3.11, Figure 3.13 shows the NRMSE ratio for the 4-5

dimensional space, but in the query-centric ( the top 20% of queries) perspective.

Focus on the collection of points where XGBoost has the best prediction

accuracy in the 5-d data set 8 as an example. The NRMSE ratio between

GBoost (second best RM) and XGBoost is 1.3842, while the NRMSE ratio

between QReg and XGBoost is 1.0872. Thus, the relative opportunity loss

is 0.3842/0.0872 = 4.4, which means the error caused by using GBoost is 4.4

times as the error caused by QReg for the collection of points where XGBoost

has the best prediction accuracy.

It is noticeable that the NRMSE ratio from QReg is always less than

that from the second best model, and is very close to 1. Thus, for the most
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(b) 4-d XGboost win collection

1 2 3 4 5 6 7 8
Dataset ID

1.0

1.5

2.0

2.5

3.0

N
R

M
S

E
 R

at
io

XGBoost
Advanced QReg

(c) 5-d GBoost win collection
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Figure 3.13: Query-centric collection-level NRMSE ratio

vulnerable queried spaces (where a single ensemble model wins by far), QReg

can achieve almost the same accuracy, reconciling the otherwise unavoidable

loss.

Again, even from a query-centric perspective, Advanced QReg achieves

much improvement in prediction accuracy for not using the second-best RM.

By using QReg, a user avoids the risks of using ensembles for datasets where

they will perform badly.

3.6.5 Analysis of the QReg Classifier

Classification accuracy is defined as the proportion of correct decisions the

classifier made with respect to chosing the best of the base models.

For the 3-d Bejing PM2.5 problem, Table 3.12 summarizes the NRMSEs

of base models and Simple QReg, and the SVM RBF classifier is used. The

NRMSEQReg achieved using SVM-RBF is 8.12%. This is better than that of

any base model. This is a result to extend Section 3.6 in that the prediction

accuracy of QReg is not bounded by that of the single best model.
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Table 3.12: Comparison of NRMSEs.

LR PR DTR optimal QReg

8.49% 8.84% 8.23% 7.19% 8.12%

When each data point is predicted by the local best model, the optimal

NRMSE (7.19%) is achieved. Notably, there exists a marked difference between

the optimal NRMSE and the NRMSEQReg. However, first note that this is

achieved with not a state of the art classifier, SVM-RBF, which was correct in

only 57% of classifications. So, even with a classifier with fairly low accuracy,

QReg improves accuracy overall. If the accuracy of the classifier can be

increased, then overall accuracy will increase further.

Classification Accuracy

Given the above, we now study three different popular classifiers, namely,

SVM-linear, SVM-RBF and a state of the art ensemble classifier, XGBoost and

observe their affect on overall QReg accuracy. This will shed light as to how

much of an impact the classifier selection can have. We focus on the Beijing

PM2.5 data set.

Figure 3.14 shows the dimensionality influence, as it varies from 2 to 5 ,

and the classification accuracy of the three classifiers. The XGBoost classifier

always has the highest classification accuracy for data sets 1,2,3 and 4. For

data set 5, SVM-RBF achieves (slightly) better classification accuracy than

that of XGBoost. SVM linear classifier has in general the lowest classification

accuracy. Although there is not a single classifier that wins across all data sets,

XGBoost and SVM-RBF classifiers perform distinctively better than SVM-

linear classifier and XGBoost is the desirable classifier, across dimensionality

values.

Classifier Training Time

Nonetheless, classification accuracy does not tell the whole story. Figure 3.15(a)

shows training time vs number of points for the SVM-linear, SVM-RBF, and
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Figure 3.14: Classification accuracy for various dimensions

XGBoost classifiers. Times are shown to be approximately linear to the number

of training points for SVM-linear and XGBoost. The training time for SVM-

RBF is much higher than the other two classifiers and it grows much faster.

With ca. 100k points, it takes about 34 minutes to train SVM-RBF. In contrast,

when the number of training points increases to a million, the training time

of SVM-linear is 427s, while for XGBoost is only 45s. Therefore, although

SVM-RBF enjoys high accuracy, its training time becomes prohibitive with

larger data sets.

(a) Training time of classifiers (b) Influence of dimension on classifica-
tion

Figure 3.15: Comparison of typical classifiers
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Classification Time

Query classification time refers to the time spent on the classifier for each query

to be assigned to a regression model. Figure 3.15(b) shows that the influence

of dimensionality on query classification time is negligible. XGBoost takes a

longer time (0.093ms) to classify each query than SVM-linear (0.026ms). Given

that the overall query execution time is ca. 0.42ms, the classification times

represent ca. 23% and ca. 6% of the overall query execution time.

To summarize this section, we analyze the performance of various classifiers

in three aspects: classification accuracy, model training time, and model

inference time. In terms of classification accuracy, the XGBoost classifier

and SVM-RBF enjoy better accuracy. In addition, as the XGBoost classifier

requires less training time for large datasets, we will hereafter study QReg

using the XGBoost classifier.

3.7 QReg Scalability

3.7.1 QReg Training Time

Figure 3.16 shows the results of our study focusing on the scalability of QReg,

seeing the performance overheads that need be paid for QReg’s accuracy

improvement. There exists an approximately linear relationship between the

Figure 3.16: Comparison of model training time

model training time and number of training points. Even for a relatively
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high number of training points, (e.g., hundreds of thousands), the training

time for QReg is shown to be a few dozen of seconds. Although this is an

order of magnitude worse than XGBoost in absolute value it is acceptable for

medium-sized data sets. Also, about 90% of the training time is spent for

getting predictions from the individual base models. In the current version of

the code, predictions are received sequentially from base models; doing this in

parallel, would reduce the total training time. In contract, in boosting methods,

the weak learners (models) are trained sequentially in a very adaptive way,

and it is not possible to train them in parallel. For bagging methods, the weak

learners are trained independently from each other in parallel and are further

combined following some kind of deterministic averaging process. So bagging

methods are easily parallelizable.

3.7.2 Query Response Time

We now study the query response time overhead inherent in QReg. Figure 3.17

summarizes the QReg query time for eight data sets. Results are shown for

the 4-d case and are indicative of all cases.
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Figure 3.17: Comparison of query response time

GBoost takes the least time, ca. 0.05 ms. XGBoost takes up to 0.20ms.

QReg falls in between these two: ca. 0.14ms. The query response time of

QReg consists of two parts: (a) classification time from the classifier and (b)

prediction time from one of its base models. As a consequence, the query

response time of QReg typically lies in between the query response time of its
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base models.

3.7.3 Sample Size Planning

As discussed in section 3.7.1, the total training time of QReg increases approx-

imately linearly as the data size increases. This limits its application to very

large data sets. For instance, for large data sets consiting of billions of data

points, building a single regression model will be prohibitively expensive. An

approach for addressing this issue is to build samples from the data and train

QReg on the samples. We study the implications of this approach on QReg’s

performance and observe also whether our findings hold for this case as well.

One major question is how big the sample size should be? A smaller sample

requires less training time, but might lead to poor accuracy. According to the

tasks, various strategies could be used to determine the sample size. For general

purposes, Cochran’s formula [33] is usually used to determine the sample size

for a population.

n0 =
z2p(1− p)

e2
(3.5)

where n0 is the sample size, z is the selected critical value of desired

confidence level, p is the degree of variability and e is the desired level of

precision. For instance, we need to determine the sample size of a large

population whose degree of variability is unknown. p = 0.5 indicates maximum

variability, and produces a conservative sample size. Assume we need 95%

confidence interval with 1% precision, the corresponding sample size n0 = 9604.

For datasets with a finite size, the sample size is slightly smaller than the value

obtained in eq. (3.5).

For regression-specific tasks, sample size planning techniques include power

analysis (PA) [34], accuracy in parameter estimation (AIPE) [89], etc. The

sample sizes obtained from both methods are different, and the magnitude

is usually hundreds or thousands. [84] proposes a method to combine these

methods with a specified probability, while [109] recommends that the largest

sample size should be used.
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For classification-specific tasks, [48] finds that many prediction problems do

not require a large training set for classifier training. [17] uses learning curves

to analyze the classification performance as a function of the training sample

size, and concludes that 5-25 independent samples per class are enough to train

classification models with acceptable performance. Also, 75-100 samples will

be adequate for testing purposes.

In this study, the sample size varies from 10k, 100k to 1m, which are

conservative compared to the values obtained by the PA and AIPE methods

for regression tasks, or the size for classification tasks.

3.7.4 Workload-centric Perspective

We show results for data sets 6, 7, 8 and Table store sales from the TPC-DS

data set. Data sets 6, 7, 8 contain 2-4 million records, and Table store sales

is scaled-up to 2.6 billion records. We use reservoir sampling to generate

uniform random samples for these data sets. Experiments are done using

Advanced QReg.

Table 3.13: Win counts of ensemble RMs.

Data set ID Count of GBoost Count of XGBoost

6 16209 17124
7 15854 17479
8 13757 19576

store sales 13415 17003

Table 3.13 shows the occurrences of best predictions (wins) made by each

model, for the samples of size 100k. Similarly to Table 3.3 in section 3.5,

each base model is shown to win for a substantial percentage of queries (or,

equivalently for a considerable part of the data set). This supports Section 3.5

that there is not a single regression model capable of dealing with various data

sets, and each regression model is only good at sub-spaces of the data sets.

Similar to Section 3.6.2, this section focuses on the workload-centric eval-

uation but for sample-based QReg. We show the NRMSE ratio r between

XGBoost (or GBoost) and QReg, broken down to subcollections of points in
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the data space, specifically, for the subcollection of points where GBoost (or

XGBoost regression) has the best accuracy.
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(c) 5-d GBoost win collection
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Figure 3.18: Workload-centric collection-level NRMSE ratio

Consider the collection of points where XGBoost has the best prediction

accuracy in the 5-d data set 7. The NRMSE ratio r between GBoost regression

(second best RM) and XGBoost regression (best RM) is 1.2107, while the

NRMSE ratio between QReg and XGBoost regression is 1.0499. Thus, the

corresponding ROL between GBoost and QReg is 0.2107 /0.0499 = 4.22, which

means for this collection of points, GBoost induces 4.22 times higher error

than QReg.

The same conclusion holds for the query-centric perspective, and is omitted

for space reasons.

3.7.5 Model Training Time

The training time of sample-based QReg consists of two parts: (a) Sampling

time to generate samples from the base tables; (b) Training time to train

QReg over the samples. Figure 3.19 shows the training time of QReg for the
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Figure 3.19: Sample Size vs Training Time for store sales

100m store sales table, while sample sizes vary {10k, 100k, 1m}. It takes ca.

68-72s to generate the samples. For 10k (100k, 1m) samples, it takes less than

3s (22s, 150s) to train QReg. We also trained QReg on a 10m sample, and it

takes ca. 24 minutes to train the model. With 100k samples, QReg performs

excellently. So, in conclusion, sample-based QReg is scalable and enjoys high

accuracy and lower training time as samples could be used to train the model.

3.7.6 Application to AQP engines.

The previous experiments demonstrate the strength and potential of QReg.

In this section, QReg is applied to a real-world, state of the art approximate

query processing engine, DBEst. (which will be introduced in Chapter 4).

DBEst uses regression-based models to approximate answers to aggregation

queries[104]. We replace the default regression model in DBEst (XGBoost)

with Advanced QReg, and compare the accuracy with DBEst using other

ensemble methods, including XGBoost and GBoost. The detailed description

of the experimental setup is introduced in Section 3.4.2.

Figure 3.20 shows the relative error achieved by DBEst using various

regression models. For SUM, the relative errors using XGboost or GBoost are

8.35% and 8.10%. However, if Advanced QReg is used, the relative error drops

to 7.77%. Although Advanced QReg is build upon XGBoost and GBoost, the

relative error of DBEst using Advanced QReg is better than DBEst using
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Figure 3.20: Application of QReg to DBEst for TPC-DS dataset

XGBoost or GBoost only. For further comparison, if the linear regression is

used in DBEst, the relative error becomes 21.20%, which is much higher than

DBEst using Advanced QReg.

We further examine the performance of Advanced QReg in DBEst for data

set 3 (the Beijing PM2.5 data set). 48 SUM and AVG queries are randomly

generated for three column pairs: [TEMP, pm25], [DEWP, pm25] and [PRES,

pm25]. The sample size is set to 100k.
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Figure 3.21: Application of QReg to DBEst for Beijing PM2.5 data set

Figure 3.21 compares the relative error obtained by DBEst using XGBoost,

GBoost and Advanced QReg. For AVG queries, the relative error is 8.73%

(1.78%) if XGBoost (GBoost) is used in DBEst. If Advanced QReg is applied,

the relative error drops to 1.52%, which is a significant reduction in error

compared to other models. For SUM queries, Advanced QReg also achieves the
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least error.

In this section, we apply QReg to DBEst, a model-based AQP engine, which

will be introduced in Chapter 4. Experimental results show that replacing

XGBoost regression with QReg reduces the prediction error significantly, at

the cost of slightly increased inference time.

3.8 Major Lessons Learned

The key lessons learned by this study are:

• Different RMs are better-performing for different data sets and, more

interestingly, for different data subspaces within them. This holds for

simpler models and, perhaps surprisingly, for advanced ensemble RMs,

which are designed to generalize better.

• Each examined RM is best-performing (a winner) for a significant per-

centage of all queries. Necessarily, this implies that, for a significant

percentage of queries, regardless of which (simple or ensemble) RM is

chosen by a DB user/analyst, a suboptimal RM will be used.

• When said suboptimal RMs are used, significant additional errors emerge

for a large percentage of queries.

• Best practice, which suggests to an analyst to use a top-performing

ensemble, is misleading and leads to significant errors for large numbers

of queries. In several cases, despite the fact that different RMs had a

very similar overall error (NRMSE), a significant fraction of queries face

very large differences in error when using seemingly-similarly-performing

RMs. Thus, both sophisticated and simpler RMs cannot cope well, in

order to appease query-sensitive scenarios, where query distributions may

target specific data subspaces.

• A query-centric perspective, as manifested with QReg, can offer higher

accuracy across data sets and dimensionalities. This applies to overall

60



CHAPTER 3. QREG: QUERY-CENTRIC REGRESSION

NRMSEs. More importantly, it applies to query-centric evaluations. The

study revealed that when QReg is used, there are significant accuracy

gains, compared to using any other non-optimal RM (which as mentioned

is unavoidable).

• Accuracy improvements are achieved with small overheads, even with

very large data sizes, using sampling.

3.9 Summary

This chapter studied issues pertaining to the seamless integration of DBMSs

and regression models. The analysis revealed the complexity of the problem of

choosing an appropriate regression model: Different models, despite having

overall very similar accuracy, are shown to offer largely-varying accuracy for

different data sets and for different subsets of the same data set. Given this,

the analysis sheds light on solutions to the problem. It showed and studied

in detail the performance of QReg, which can achieve both high accuracy

over the whole data set and top-notch accuracy, per query targeting specific

data subsets. The analysis also showed the impact of key decisions en route

to QReg, such as selecting different constituent base regression models. In

addition, it studied issues pertaining to scalability, showing that even with

large data sets, the same issues hold and the same model solution can be used

to achieve per-query and overall high accuracy. In general, the proposed QReg

offers a promising approach for taming the generalization-overfit dilemma when

employing ML models within DBMSs. Based on the key findings from this

chapter, we will propose a model-based approximate query processing engine,

and it will be introduced in the next chapter.
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Chapter 4

DBEst: A Model-Based AQP

Engine

In the previous chapter, we investigate the performance of typical regression

models for various datasets and even for different regions of the data space. We

find that it is misleading to always select the best performer for all datasets.

After that, we propose an ensemble method, coined QReg, which enjoys good

accuracy, even for different regions of the data space. In this chapter, we will

introduce a model-based approximate query processing (AQP) engine. It is

based on regression models and density estimators to provide approximate

answers for SQL queries.

4.1 Motivations

The state of the art in AQP research has been dominated by sampling-based

approaches, broadly divided into two categories. First, techniques that rely

on online sampling, create samples on the fly during query execution and use

them to approximate answers. The second category of research, exploits the

fact that often query workloads are (at least partially) predictable, in the

sense that one can know beforehand the popular query templates, including

for example the attributes for range predicates, the joined tables and join keys,

the grouping attributes, used together. Given this knowledge, these works
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create offline samples for selected tables and column sets, kept in memory, and

process queries over said samples. But, across the spectrum, the state of the

art still suffers from several shortcomings.

Major Challenges

Typically, the performance of AQP engines is evaluated from the following

three technical aspects: 1.) query response time, 2.) space overheads, 3.)

prediction accuracy. In addition, the state building time and the types of

supported queries are also considered. Take the Conviva [6] data with the size

of 7.5 TB as an example. It takes HIVE more than 2000 seconds to produce

the query results, while a cluster of 100 machines is used. If an AQP engine,

say BlinkDB, is used with a 1% error bound, the corresponding query response

time reduces to 10s. A large sample is usually generated and maintained to

guarantee high accuracy. Typically, the size of a sample is at least 1% of the

actual data. And a 10% sample means 10% more investment in storage. In

terms of query response time, we wish to reduce the it to less than 1 second

without the usage of a big cluster.

This chapter is driven by these questions, the answers to which currently

leave a lot to be desired. We revisit the problem and solution space. The over-

riding guiding principle is to develop and study a model-driven solu-

tion, instead of a data-driven solution, where queries are answered

by models of data and not the data itself (or samples of it). The prin-

cipal challenges and goals are to develop and experimentally substantiate such

a model-based AQP engine that is much more efficient, ensures high accuracy,

and investigate its benefits and limitations. The key insights of this work

is to exploit the ability of models to generalize. This affords the

luxury of building the models from very small samples. Combined,

these facts ensure small overheads, with shorter response times, even with just

a single-thread, thus rendering analytics less costly and achieving much higher

system throughput.

This chapter will present the design and implementation of DBEst, an AQP
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engine supporting the aforementioned analytical needs, using prebuilt, a priori

state (i.e., models over samples of datasets). Specifically, this chapter will:

• show how to develop and train appropriate models and how to use them to

answer analytical queries.

• analyze the sensitivity of and stress DBEst’s performance on key parameters,

such as sample sizes used to derive the models, the selectivity of selection

operators, the effect of groups in Group By, the effect of joins, etc.

• perform a comprehensive performance evaluation of DBEst, comparing it

against state of the art big data AQP engines, (BlinkDB and VerdictDB),

using queries based on the TPC-DS queries and its schema/data and synthetic

queries over real-life UCI-ML repository datasets.

• evaluate single-threaded and multi-core DBEst performance and show that

even the sequential DBEst can often achieve large (>10x) query processing

speedups against a 12-core state of art AQP engine and that this can help

achieve 10x to 30x speedups in system throughput.

To our knowledge, this is the first AQP engine based on combining sampling,

density estimators, and regression models. DBEst can offer big gains across

all metrics of interest. The chapter also takes a qualitative step forward:

its models can be employed for various other analytical needs: (i) imputing

missing attribute values; (ii) estimating the value of a dependent variable

when values for the independent variables are missing or hypothesized, (iii)

estimating the value of aggregation functions over the dependent variable,

when independent-variable values are missing or hypothesized, (iv) quickly

discovering relationships between attributes, (v) quickly visualizing descriptive

statistics for the dependent attribute in data subspaces, etc. In general, DBEst

provides support for predictive analytics, hypotheses testing, etc.
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4.2 The DBEst AQP Engine

4.2.1 System Overview

Figure 4.1 shows the architecture of DBEst. DBEst is independent of the

underlying storage layer; it can be just a local FS, an RDBMS, or a distributed

FS, and/or a NoSQL DB.

QP EngineDBEst

Analysts

CatalogCatalog

SamplesSamples

ModelsModels

Data Store

Exact QPExact QP

Approx QPApprox QP

Query

Answer

Figure 4.1: DBEst architecture.

There are three major components: (1) The sampling module interacts with

the storage layer to build samples; (2) The models module stores density estim-

ators and regression models, which are built from the samples. (3) The model

catalog stores information for the available models and their correspondence

to the column sets and tables of the base data they model.

To build the model for a specific query template, DBEst will firstly make

samples over the tables (stored locally or distributed in the backend server).

And the reservoir sampling is applied to build uniform samples efficiently. After

that, DBEst builds the corresponding density estimator and regression model

for this column pair. And the model catalog will be notified of the building

of new models. To serve a query, DBEst reads the model catalog to check

for models that could answer it. If there exists such a model for this query,

the particular models will be fetched from the model catalog to process the

query. If not, the query will be sent to the backend server in the level below

it, as shown in the architecture. This can be another AQP engine (e.g., one

with online sampling, QuickR [87]) or it can go directly to an exact answer

QP engine. Sometimes, even though there exists a model to serve the query,

the user might not be satisfied with the prediction accuracy. For such cases,

DBEst allows the user to interact with the backend server directly.
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4.2.2 Supported Queries

DBEst belongs in the class of AQP for predictable/popular query templates.

In this class, as mentioned, DBEst supports analytical queries, involving range

predicates and aggregate functions, including COUNT, SUM, AVG, VARIANCE,

STDDEV and PERCENTILE. DBEst also supports GROUP BY operators. To be

concrete, the following is typical in queries in TPC-DS [114]. Given a table

store sales, with the column of interest, ss quantity, return the average

value of ss ext discount amt within a specific range.

SELECT ss_store_sk , SUM(ss_sales_price)

FROM store_sales

WHERE ss_sold_date_sk BETWEEN lb AND ub

GROUP BY ss_store_sk;

returns the sum of ss sales price within the given range of ss sold date sk,

for each ss store sk group value.

Thus, DBEst supports straightforwardly selections on numerical and ordinal

categorical attributes for all AFs mentioned above, optionally coupled with

GROUP BY operators. DBEst can also provide support for selections on nominal

categorical attributes, as will be discussed later.

DBEst does not support ad hoc join queries with no prebuilt models. In

these cases, DBEst will revert to the underlying AQP engine (e.g., QuickR

[87], or VerdictDB [124]).

DBEst supports joins for predictable/popular joined tables using two

alternative approaches. The first approach follows the following steps: First,

precompute the join result table, then build a (small) sample over it, and

finally build regression and density estimator models over this sample. Please

note that this is particularly possible for DBEst, as neither the original join

result nor any large sample of it need be maintained - both join result and the

sample can simply be discarded after models are built. Only the models need

be stored and used during query processing. And models are very small in size

(typically a few 100s KBs). This is in contrast to the state of the art AQP
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engines [87, 124] which must compute the join based on (universe/hashed)

per-table samples (each having typically 10s of millions of tuples) online during

query execution. The performance evaluation section will provide details and

quantify the resulting benefits.

The second approach improves on the precomputation time when joining

very large tables. Specifically, each large join table can be sampled (using

hashed samples) and the join be computed based on these samples (a la

VerdictDB and QuickR). Finally, a small uniform sample is built from the

sample join and models are built from this small sample.

DBEst does not support general nested queries. When nested queries can

be ’flattened’ using joins, (as done in VerdictDB [124]) then DBEst can support

these nested queries using the above explained support for joins. Finally, DBEst

does not currently support UDFs.

4.2.3 DBEst Query Processing Foundations

In contrast to competing AQP approaches where samples are generated and

maintained to answer queries, DBEst chooses an alternative approach. It builds

models, specifically regression models and density estimators, through which

aggregate queries are answered with high accuracy and efficiency and at lower

costs. In this section, we describe in detail the mathematical foundations for

providing approximate answers for analytical queries.

DBEst uses the density estimator and/or the regression model to compute

the AF answer. Based on whether a regression model is involved in making the

approximate prediction, the supported aggregate functions are divided into two

categories: density-based and regression-based . For density-based aggregate

functions, only the density estimator D(x) is needed to make the prediction;

for regression-based aggregate functions, both the density estimator D(x) and

the regression model R(x) are involved. Table 4.1 contains the notation used

in this section.

We now discuss how each aggregate is processed in DBEst. The PER-

CENTILE AF has a syntax a la HIVE, which is:
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Notation Description

T original table

Q a query

AF
a supported aggregate function, is one of
COUNT, SUM, AVG, VARIANCE,
STDDEV, PERCENTILE

x
the independent variable (column),
usually accompanied with a condition.

y
the dependent variable (column) in the query,
which is the aggregate attribute

p
the pth percentile point for
a PERCENTILE query.

CP a unique column pair, consisting of x and y

N the size of Table T

n the size of the sample

S(CP,n)
the sample, for column pair CP,
with the sample size of n

lb the lower bound of x for the aggregate query

ub the high bound of x for the aggregate query

R(x)
the regression model of x,
training from [x,y] pairs.

D(x)
the density estimator over column x,
which is normalized to unity.

Table 4.1: Notation in Section 4.2

SELECT PERCENTILE(x, p) FROM T;

which returns an approximate pth percentile of the numeric column x for Table

T.

For regression-based aggregate functions, as a regression model R(x) is

built between y and x, R(x) is used to provide an approximate answer for

y. DBEst could answer two kinds of VARIANCE AFs: regression-based and

density-based. Density-based VARIANCE AFs take the following general form:

SELECT VARIANCE(x) FROM T

WHERE x BETWEEN lb AND ub;

where only (column) x is involved in the query. Regression-based VARIANCE

queries take the following form:

SELECT VARIANCE(y) FROM T

WHERE x BETWEEN lb AND ub;
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having both independent and dependent variables. These require both the

density estimator and the regression model.

Computing Aggregates with Density Estimators

Density-Based Aggregate Functions include COUNT, VARIANCE, STDDEV and

PERCENTILE.

COUNT

Formally:

COUNT (y) ≈ N ·
∫ ub

lb
D(x)dx (4.1)

The integral of the density estimator is evaluated in interval given in the range

selection operator, i.e.,
∫ ub
lb D(x)dx, yielding the proportion of data points that

lie within this range. N (the size of the table), scales up
∫ ub
lb D(x)dx to be an

approximate representation of the total number of points in this range.

VARIANCE and STDDEV

Formally:

V ARIANCE x(x) = E
[
x2
]
− [E [x]]2

=

∫ ub
lb x2D(x)dx∫ ub
lb D(x)dx

−
[∫ ub

lb xD(x)dx∫ ub
lb D(x)dx

]2 (4.2)

STDDEV x(x) =
√
V ARIANCE x(x)

=

√√√√∫ ublb x2D(x)dx∫ ub
lb D(x)dx

−
[∫ ub

lb xD(x)dx∫ ub
lb D(x)dx

]2 (4.3)

By definition, the variance of x is equal to E
[
x2
]
− [E [x]]2. The expectation

of x and x2 could be calculated via the integrals involving the density estimator

D(x) as shown above.
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PERCENTILE

In general, PERCENTILE returns the value p, for which P (x < α) = p. Thus,

given the probability density estimator D(x) and the pth percentile point,

the problem translates to finding the value α that meets
∫ α
−∞D(x)dx = p.

Note,
∫ α
−∞ d(x)dx is the cumulative distribution function (CDF), and is usually

denoted as F (x). Thus, the problem becomes finding the root for equation

F (x) = p (4.4)

If the reverse of the CDF, F−1(p), could be obtained, then the pth percentile

for Column x is

α = F−1(p) (4.5)

However, there is usually not a theoretical solution for F−1(p), and a more

practical solution adopted in DBEst is to find the solution for Equation 4.4

through an iterative process, which is the Naive Bisection method for finding

the root [85].

Computing Aggregates with Regression Models

Aggregates that can be computed using regression models include SUM, AVG,

VARIANCE and STDDEV.

AVG

Formally:

AV G(y) = E [y]

≈ E [R(x)]

=

∫ ub
lb D(x)R(x)dx∫ ub

lb D(x)dx

(4.6)

The average value of y, or its expectation E [y], could be approximately

treated as the expectation of R(x), which is E [R(x)]. To calculate the average
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value of a continuous function R(x), we only need to know its density function.

SUM

Formally:

SUM(y) = COUNT (y) ·AV G(y)

≈ COUNT (y) · E [R(x)]

= N ·
∫ ub

lb
D(x)dx ·

∫ ub
lb D(x)R(x)dx∫ ub

lb D(x)dx

= N ·
∫ ub

lb
D(x)R(x)dx

(4.7)

The sum of y equals the product of the count and the average value of

y. From Equation 4.1 and 4.6, we get the approximate representations of the

count and average value of y: multiplying equation 4.1 by equation 4.6, we get

the approximate representation of SUM(y), which is N ·
∫ ub
lb D(x)R(x)dx.

VARIANCE and STDDEV

(Please refer to Density-Based Aggregate Functions for the density-based

VARIANCE and STDDEV AFs). Formally:

V ARIANCE y(y) = E
[
y2
]
− [E [y]]2

≈ E
[
R2(x)

]
− [E [R(x)]]2

=

∫ ub
lb R2(x)D(x)dx∫ ub

lb D(x)dx
−
[∫ ub

lb R(x)D(x)dx∫ ub
lb D(x)dx

]2 (4.8)

STDDEV y(y) =
√
V ARIANCE y(y)

≈
√
V ARIANCE x(R(x))

=

√√√√∫ ublb R2(x)D(x)dx∫ ub
lb D(x)dx

−
[∫ ub

lb R(x)D(x)dx∫ ub
lb D(x)dx

]2 (4.9)

By definition, the variance of y is equal to E
[
y2
]
− [E [y]]2. Replacing y

with R(x), gives an approximation of VARIANCE(y).
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Supporting Group By

DBEst supports GROUP BY queries of the form:

SELECT z, AVG(y) FROM T

WHERE x BETWEEN lb AND ub

GROUP BY z;

DBEst’s rationale is to treat each value of z as a separate data set over which

to evaluate the given AF. Therefore, during sampling, a sample is recorded

per each z value. Subsequently, the models are built and used per each such

sample to compute the AFs, as detailed above.

Thus, given a GROUP BY query, DBEst will call all models built for the z

values, and the predictions from all models form the result for this particular

query.

Supporting Multivariate Selection Operators

So far, supported queries included a range predicate over a single attribute.

The multivariate range-selection operator can be straightforwardly supported.

The mathematical foundation for multivariate aggregate query processing is

similar to the univariate query processing. Take AVG queries as an example

and an aggregate query with the following form:

SELECT AVG(y) FROM T

WHERE x1 BETWEEN lb1 AND ub1

AND x2 BETWEEN lb2 AND ub2;

The AVG aggregate of y could be approximately treated as:

AV G(y) = E [y]

≈ E [R(x1, x2)]

=

∫ ub1
lb1

∫ ub2
lb2 D(x1, x2)R(x1, x2)dx2dx1∫ ub1
lb1

∫ ub2
lb2

D(x1, x2)dx2dx1

(4.10)

And this could be extended to higher dimensions, as well as other aggregates,

following the formulas given earlier.
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Supporting Categorical Attributes

For ordinal attributes the treatment is straightforward as attribute values

essentially map to ordered numbers. Hence, supported queries include range

predicates on such attributes. For nominal attributes there is no simple

way to transfer the values to meaningful numbers. DBEst’s support for

nominal categorical attributes mimics the support for GROUP BY attributes by

maintaining regression and density estimator models for each nominal value,

such as store ids, city, or classes of products in a commercial application, etc.

Limitations

We note that GROUP BY queries with large numbers of groups pose special

challenges for DBEst. First, the number of models grows linearly with the

number of groups. For instance, if there are ten GROUP BY values, DBEst

has to train models for each of the groups. This affects overall training time.

(Fortunately, this task is embarrassingly parallelizable). Likewise, this affects

also query response times: Each model (one per group) needs be evaluated;

again, this is embarrassingly parallelizable.

Similarly, although per-model the space savings of DBEst are very large,

the required space grows linearly with the number of groups. DBEst has the

following alternatives: First, to not build models when the number of groups

is too large. This is inline with what VerdictDB does for “large cardinality”

groups, reverting to an exact answer QP engine for such queries. Admittedly,

alas, the problem for DBEst is more serious. Second, to ‘sacrifice’ DBEst’s

space savings in order to just enjoy the large speedups when processing queries

over the models instead of on (sampled) data.

Even further, DBEst can store models for queries having very large group

cardinalities in an SSD. We have implemented this creating model bundles,

each of which bundles all the models needed by a query with a large number

of groups. Concretely, consider a query that requires a join of a (10m-row

sample of a) large fact table with a small dimension table and 500 of groups
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(models). Serializing this bundle of 500 models amounts to 97MBs. Reading

from the SSD and deserializing such a bundle takes <132ms. Added to the ca.

600ms needed to process this join with GROUP BY query in DBEst gives a total

of <800ms response time. To put this in context, VerdictDB requires ca. 8secs

for such a query, a speedup of 10x.

Small groups pose additional limitations. Specifically, building models over

small groups is an overkill; it is preferable to just keep and process the small

number of tuples in the group. This is inline with what state of the art AQP

engines: they do not build samples over small tables. Even QuickR [87] which

builds samples online, discovered that a 25% of all queries in TPC-DS cannot

be supported due to groups not having enough support.

Finally, unlike sampling-based AQP engines, DBEst currently does not

provide a priori error guarantees.

4.3 Implementation

The code of DBEst is available at https://github.com/qingzma/DBEstPy. It

is written in python with more than 13,000 lines of code. To train the models

for a specific query, as shown in Figure 4.1, a sample is firstly generated for

every column set of interest. After that, the sample is used to train a regression

model and a density estimator, which are in turn then used to answer analytical

queries on this column set.

4.3.1 Sampling

Stratified sampling [102] is usually the first choice when we try to filter or

group data. It avoids the difficulties when dealing with rare groups and highly

skewed data distributions. However, it also increases the difficulty if we try to

build a regression model or a density estimator over a stratified sample. DBEst

relies solely on reservoir sampling [155] to generate uniform samples over the

original table. Different GROUP BY values are recorded from the original table

during the training process, and they are further used to check whether any
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group is underrepresented in the samples. Our experiments show that this

suffices to provide excellent performance with respect to accuracy and efficiency

for all AFs and for GROUP BY, across all tested data sets.

As DBEst is a model-based AQP engine, any samples it builds are deleted

after model training. Thus, DBEst significantly reduces memory requirements,

as its models are significantly smaller than the samples. Also, as accuracy

depends on sample sizes, this indirectly affords the opportunity to use larger

samples for training models.

4.3.2 Density Estimator

There are many existing density estimation methods, including the kernel

estimator, the nearest neighbor method, the variable kernel method, orthogonal

series estimators, etc [147]. Histograms are the simplest form of density

estimators and have enjoyed a prominent role in DBs [5] for enhancing query

processing performance. However, their discrete nature is at odds with the

continuous-function view employed within DBEst. Therefore, the kernel density

estimation method is chosen as the density estimator in DBEst as it has been

found to be highly accurate and efficient.

The density estimation implementation is based on sklearn.neighbors.

KernelDensity from the scikit-learn package [126], which uses the Ball Tree

or KD Tree. In addition, kernel density estimation can be performed in any

number of dimensions, allowing DBEst to extend its support for multivariate

query processing.

4.3.3 Regression Model Selection

High performance regression models include XGBoost [30], catboost [130],

LightGBM [88], gradient boosting (GBoost) [61], etc. DBEst resorted to

boosted regression tree models since its models must be powerful so to generalize

as they are built from small samples.

We used standard scikit-learn packages (GridSearchCV) to tune the models

using cross-validation. Note that as samples increase, the regression tree models
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use deeper and more trees. However, the choice of an appropriate regression

model is complex: Different models work better for different data regions. Our

implementations have used various regression models from piece-wise linear

models to XGBoost, and GBoost and also built an ensemble regressor based on

XGBoost and GBoost. First, each model is trained separately. Subsequently,

the accuracy performance of each of these models is evaluated, using random

queries over the independent attribute’s domain. This evaluation data was

then used to train a classifier, which learned which of the constituent regressors

is best for a given range predicate.The XGBoost classifier was used for this

purpose. To shed light into the impact of the regression model, our evaluation

section provides more details for the related times-accuracy-speed trade-offs.

4.3.4 Selecting which Models to Build

This is a generic problem faced by all related efforts in AQP, that build, a priori

state (samples, sketches, or ML models, as we do) for popular/predictable

queries. Approaches range from trying all combinations for column sets (e.g.

[2, 29]), mining query logs, like BlinkDB [6] which showed that interesting

column sets can be identified early in the execution of a typical workload,

or depending on users, like VerdictDB [123], to identify popular tables, etc.

DBEst is rather orthogonal to this - any of the above approaches can be used.

All experiments assume knowledge of said column sets of interest, given which

DBEst builds samples, models, and evaluates queries.

4.3.5 Integral Evaluation

The efficiency of the integral evaluation implementation has a great impact

on the performance of DBEst, with interesting accuracy-efficiency trade-offs.

Fortunately, this is a well-studied problem. The integral evaluation package

adopted in DBEst comes from the integrate module in SciPy [85], which

uses a technique from the Fortran library QUADPACK [127]. The underlying

Gauss-Kronrod quadrature sums are fundamental to many of the automatic
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subroutines in QUADPACK. Given an integral

Iw[lb, ub]f =

∫ ub

lb
w(x)f(x)dx (4.11)

over an interval [lb, ub], where w(.) is a weight function, then a quadrature

sum yields an approximation

Iw[lb, ub]f ≈
n∑
k=1

wkf(xk) (4.12)

In Equation 4.12, the numbers x1, x2, ..., xn are nodes, and w1, w2, ..., wn are

weights corresponding to these nodes. To calculate a numerical approximation

for the integral problem within absolute accuracy εa or a relative accuracy εr,

QUADPACK computes the sequences

{Rnk
, Enk

}, k = 1, 2, ..., N (4.13)

Where Rnk
is an estimation to the integral value, and Enk

is an error estimation

at the iteration step nk. QUADPACK chooses an adaptive approach that the

position of the integration points of the nth iterate depends on the information

gathered from iterate 1, ..., n− 1.

4.3.6 Parallel/Distributed Computation

Much of DBEst’s internal functioning is embarrassingly parallelizable and can

be performed on centralized data nodes or on clusters of data nodes within

big data analytics stacks. First, sampling is easily parallelizable, as different

nodes storing dataset partitions can independently participate in the sampling

process. Secondly, model training can be performed in parallel. And, for models

supporting GROUP BY queries, samples for each group can be distributed and

model training can occur in parallel. As mentioned, the chosen regression model

is an ensemble, consisting currently of two different regression models (gradient

boosting and XGBoost). Each of these can be trained in parallel. In fact,

several open-source packages are available. For the parallel implementation of
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DBEst we have used these packages.

Thirdly, query processing can easily be parallel. Alternatively, DBEst query

execution can remain sequential and additional nodes/cores in the system can

be utilized to process other queries, improving significantly system throughput.

Our evaluation section will quantify such savings.

For GROUP BY queries, evaluation of the models of the different group at-

tribute values can be done in parallel. Our implementation for this feature

is currently suboptimal: (i) as it is Python-based, we ran into the Global

Interpreter Lock problem (only 1 thread can use the interpreter at a time)

and the fix we implemented (based on using multiple separate processes is

suboptimal); (ii) the packages we use for model evaluation and integral compu-

tation are amenable to parallel execution but currently we have implemented

no control to orchestrate overall core/node assignment to tasks. As a result,

these subtasks conflict with each other for resources. Despite this, our results

show that parallel DBEst can achieve speedups per query which can be >10x

faster for queries involving joins with or without GROUP BY.

Actually, a key goal is to avoid relying on big data clusters or multi-

core/node use during query execution as much as possible. And as we shall

see, sequential DBEst, even for large data sets, often outperforms multi-core

VerdictDB.

4.4 Performance Evaluation

We have evaluated DBEst using queries using column sets queried in the TPC-

DS queries and its schema/data and synthetic queries over real-life UCI-ML

repository datasets. Additionally, as we wanted to study the sensitivity of

DBEst on key parameters (selectivity of predicates, sample sizes, supported

AFs, etc.) we used synthetic queries over selected column sets from TPC-DS.

The above allows us to systematically study separately the effects of GROUP

BY and join operations, as well as the impact of using multiple cores/nodes on

DBEst and competing solutions. Finally, in addition, we have experimented
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with a few complex queries as found in TPC-DS for stress-testing purposes.

Experiments ran on an Ubuntu 18.04 Server with 12 Intel Xeon X5650

cores, 64GB RAM and 4TB of SSD disk space.

4.4.1 Experimental Setup

TPC-DS Workload

We used scale factors 40-1000, resulting in the largest table having ≈2.6 Bil-

lion rows and >1TB of data. The queries involved 16 column pairs from 4

tables. We performed 5 experiments: a.) Multi-column-pair analysis con-

tains ≈100 SELECT-FROM-WHERE queries with a range predicate on one

attribute and an AF on another, involving all 16 column pairs. b.) Sensitiv-

ity analysis consists of 1,000 queries, measuring performance under various

AFs, varying query ranges, and sample sizes. The column pair [ss list

price, ss wholesale cost] is selected and 200 queries are randomly gen-

erated for each of COUNT, SUM, AVG, PERCENTILE, VARIANCE and STDDEV.

Sample sizes are 10k, 100k, 1 million tuples, and the query range varies

from 0.1%,0.5%, 1% to 10% of the range-attribute’s domain. c.) Group-

by analysis contains 30 randomly generated queries for the column pair

ss sold date sk, ss sales price with the Group By attribute ss store sk.

d.) Join analysis contains 42 randomly generated join queries between table

store sales and table store on join key ss store sk. The performance of

aggregates on ss whole sale cost and ss net profit is analyzed by varying

s number of employees. e.) Complex TPC-DS uses query number 7 and

(complex subqueries of) query 5 and 77 from TPC-DS involving 2-way and

5-way joins, 2-4 AFs, and 57 to 25,000 groups (in Section 4.4.10).

Combined Cycle Power Plant Workload

CCPP [158] contains 9568 rows showing hourly average ambient variables of

a power plant. It is scaled up to 2.6 billion records. There are 5 columns:

Temperature (T), Ambient Pressure (AP), Relative Humidity (RH), Exhaust
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Vacuum (V), and Net hourly energy output (EP). 108 queries are randomly

generated for three column pairs [T,EP], [AP,EP] and [RH, EP], with query

ranges varying from 0.1%,1%,5% to 10%.

Beijing PM2.5 Workload

This data set [100] contains PM2.5 data of Beijing International Airport and US

Embassy. There are 43824 records totally and this dataset is similarly scaled up.

The target is to predict pm2.5[PM25] level, given Dew Point (DEWP), Pressure

(PRES), Temperature (TEMP), Cumulated wind speed (IWS), etc. 72 queries

are randomly generated for four column pairs [DEMP, PM25], [PRES, PM25],

[TEMP, PM25] and [IWS, PM25], and similar range-query selectivity was used.

Baseline Comparison Setup

We compare DBEst against state of the art AQP engines: VerdictDB [123]

(source code obtained from [124]), BlinkDB [6] (source code obtained from

[136]). We also compare with the results from an exact-answer columnar

analytics RDBMS (MonetDB [79]) using uniform samples to approximate

results (in Section 4.4.9). Initially, DBEst is configured to run using a single

thread and BlinkDB is deployed in pseudo-cluster mode in order to compare

fairly (without hiding costs for acquiring/using large clusters). After that,

DBEst is configured to use all cores. VerdictDB always runs over Spark using

all 12-cores.

4.4.2 DBEst Sensitivity Analysis

We stress-test DBEst under varying (i) range-query sizes (selectivity), (ii)

sample sizes (used to build the density estimator and regression models), and

(iii) across all AFs.

Sample Size Effect

Query ranges are set at 1% of the domain size. Sample sizes vary from 10k,

100k, 1M, and 5M records. Figure 4.2 shows DBEst’s relative errors. The
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Figure 4.2: Influence of Sample Size on Relative Error

relative error is less than 10%, regardless of sample size, and as the sample size

increases the relative error drops significantly, bringing it to below 1% when

the sample has 1 million records.

Figure 4.3 shows the corresponding query response times. As expected,

smaller samples yield shorter response times and that approximately, an order

of magnitude smaller sample yields an order of magnitude shorter response

time. The message here is that with a sample of 10k records, response times

are well below 100 milliseconds! And this buys a relative error of < 10%.

Investing into samples of 100k records, brings down relative errors to below 1%

for PERCENTILE, VARIANCE, STDDEV, AVG and to a few % for COUNT, SUM

while response times hover around 0.3 second.

To provide more context, Figure 4.4(a) shows results for DBEst and Ver-

dictDB for state-building times (sampling + model training time for DBEst

and sampling time for VerdictDB). Results show that envisaged DBEst sample

sizes, yield big improvements in state building times compared to VerdictDB.

It is noticed that when the sample size goes beyond 5m, the state building

time of DBEst is larger than VerdictDB. We argue that it is not necessary

to generate a sample larger than 5m as DBEst achieves a good prediction

accuracy when the sample size is 100k or 1m.

Figure 4.4(b) shows the space overhead of DBEst and VerdictDB. Recall,
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Figure 4.3: Influence of Sample Size on Response Time
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Figure 4.4: DBEst vs VerdictDB Overheads

DBEst needs to maintain only the models and not the samples for query

execution. The space overhead of DBEst is 1 to 2 orders of magnitude less

than VerdictDB’s.

Query Range Effect

In this section, we will analyze the effect of query selectivity on the performance

of DBEst. In a RDBMS, a large query selectivity means more rows will be

scanned during query processing, which leads to higher query response time. To

control the query selectivity, we select (0.1%, 1% to 10%) of the query domain

as the query ranges, and the sample sizes are fixed at 100k. In Figure 4.5, as

ranges increase, we see a decrease in the error for all AFs. This is expected

as smaller samples are pressed hard to find enough representatives. However,
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accuracy performance is nonetheless excellent.
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Figure 4.5: Influence of Query Range on Relative Error

Figure 4.6 shows response times. Except for PERCENTILE, (as multiple
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Figure 4.6: Influence of Query Range on Response Time

integrals are involved in finding the pth point and times are 1.2secs) the query

time for all other AFs is less than 1 second. As expected, query times increase

as query ranges increase, as integral evaluation take more time.

To summarize this section, we conduct the sensitivity analysis of DBEst

by varying the query range and sample size. Increasing the sample size will

improve the prediction accuracy of DBEst at the cost of slightly increased

query response time. In terms of selectivities, DBEst tends to achieve better
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accuracy for queries with a larger selectivity, while the query response time

might increase.

4.4.3 CCPP Workload Performance

CCPP is scaled to include 2.6 billion records, (similar to the scaled-up TPC-DS)

totaling around 1.4TB in size. 108 queries are randomly generated for COUNT,

SUM and AVG for 3 column pairs, stress-testing with low-selectivity query ranges

(0.1%, 0.5% to 1%). We compare the accuracy performance between DBEst,

VerdictDB, and BlinkDB over samples sizes varying of 10k to 100k.
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Figure 4.7: Relative Error: CCPP Dataset (10k Sample)
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Figure 4.8: Relative Error: CCPP Dataset (100k Sample)
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Figure 4.7 and Figure 4.8 summarize the average relative error of DBEst,

VerdictDB and BlinkDB. The overall error of DBEst is 3.5%, while for the

other QP engines, the corresponding error is more than 10% for 10k samples

(especially for COUNT and SUM). For 100k samples, DBEst error drops to 1.9%

and the error of VerdictDB drops to 3.5%. Thus, to achieve the same accuracy,

VerdictDB acquires one order of magnitude larger sample size. The accuracy

of BlinkDB is worse than VerdictDB.

It is worth pointing out that the error of AVG queries is always less than

COUNT and SUM queries. This could be explained by Equation (4.1), Equa-

tion (4.6) and Equation (4.7). For COUNT and SUM, there is a scaling factor N ,

which is used to scale up the prediction from samples to represent the actual

data. For AVG, there is no such scaling factor, and we assume that the average

value from the sample is identical to the average value of the population.

Figure 4.9 shows the query times for DBEst and VerdictDB. For DBEst

they are less than 0.3 seconds. The average query response time is around 0.02

seconds if the sample size is 10k, and increases to 0.27 seconds for 100k samples.

The time cost for VerdictDB varies between 0.6 to 0.9 seconds. Hence, DBEst

brings speedups from ca. 4x to ca. 30x. Please note that VerdictDB uses all

12 cores, while DBEst uses 1 thread.
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Figure 4.9: Response Time for CCPP Dataset

We also conduct the experiments using MonetDB [79], and the comprehens-

ive comparison results between DBEst and MonetDB are shown in Section 4.4.9.
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4.4.4 TPC-DS Workload Performance

Using appropriate values (the sample size and query range from the sensitivity

analysis) we evaluate accuracy, response times and time/space overheads for

both DBEst and VerdictDB for TPC-DS.

Accuracy

Figure 4.10 shows the average relative errors. Given the same sample size,

DBEst always achieves better prediction accuracy than VerdictDB for aggreg-

ates COUNT, SUM and AVG. For this workload, if/when the sample size is 10k,
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Figure 4.10: Relative Error: DBEst vs VerdictDB

there is a big difference in accuracy: Overall, DBEst achieves 5.26% relative

error, while VerdictDB involves more than 10% relative error. For 100k samples,

both DBEst and VerdictDB have excellent error, and DBEst wins only slightly.

The relative error is less than 8% for DBEst and BlinkDB, which shows their

great abilities to provide approximate answers.

Again, the relative error for AVG queries is much smaller than COUNT and

SUM queries. This is due to the error caused by the scaling factor for COUNT

and SUM, please refer to Section 4.4.3 for a detailed explanation.

Query Response Time

Figure 4.11 shows corresponding query times of DBEst and VerdictDB. For
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Figure 4.11: Response Time: DBEst vs VerdictDB

10k samples, DBEst takes less than 0.02 seconds to process a query, while

VerdictDB takes around 0.33 second. Query response times of DBEst increase

to 0.12 second for 100k samples while VerdictDB requires >0.40 seconds to

process the same queries. Juxtaposing the last two figures yield consistent

conclusions with what we observed from the sensitivity analysis with respect

to trade-offs between response times and accuracy. Overall, DBEst enjoys

speedups from ca. 3.5x to ca. 16x than VerdictDB and better accuracy. Please

note that VerdictDB times use all 12 cores, while DBEst uses just 1 thread.

Space Overheads

We now evaluate both the training time and space overheads of DBEst and

VerdictDB. Figure 4.12(a) summarizes the averaged model sample+training

time of DBEst and VerdictDB’s sampling time per column pair.For 10k samples,

DBEst takes around 68s to generate a sample and 0.65s to build the models.

While the average time for VerdictDB to generate the sample is around 108s.

When the sample size increases to 100k, the time cost to generate samples

remains the same, while it takes around 4.97s for DBEst to build the models.

Overall, the total state building time of DBEst is less than that of VerdictDB.

Figure 4.12(b) shows the space overheads. For 10k samples it takes DBEst

about 0.192MB to keep one regression model and one density estimator, while
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Figure 4.12: Overheads: DBEst vs VerdictDB

the memory overhead for VerdictDB is 1.7MB to keep the sample. For 100k

samples, DBEst needs about 1.68MB to keep the models, while VerdictDB

needs ca. 9.7MB for its samples. So, in terms of space DBEst offers an

improvement from 5x to 9x.

In this section, we evaluate the performance of DBEst for the TPC-DS

dataset from several perspectives. DBEst outperforms VerdictDB in prediction

accuracy, while achieving orders of magnitude savings in query response time

and space overheads.

4.4.5 Beijing Workload Performance

The Beijing data set is scaled up to 100 million records, and 72 queries are

randomly generated across AFs.

Figure 4.13 displays relative errors obtained by DBEst and VerdictDB.

We notice a big difference in accuracy when small samples are used. For 10k

samples, the average relative error by DBEst is 4.72%, while the relative error

by VerdictDB is 9.57%. For 100k samples, the relative errors drop to 1.67%

and 4.41%, respectively. Thus, as before, sample-based AQPs give higher

errors if the sample size is small (especially when range predicate selectivity

is small). As DBEst adopts models on top of samples, which can generalize,

DBEst requires smaller samples to make more accurate estimations.

Figure 4.14 shows the corresponding query response times for various

sample sizes. Even if the sample size is 10k, VerdictDB still needs at least

0.38s to produce the answer, while around 0.6s are needed for 100k samples.
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Figure 4.13: Accuracy: DBEst vs VerdictDB

With 10k samples, DBEst needs only 0.013s to provide an answer; with 100k

samples, DBEst needs around 0.23s, This agrees with the above sensitivity

study. Overall, DBEst brings speedups from ca. 3x to ca. 30x compared to

VerdictDB. Please note that VerdictDB times use all 12 cores, while DBEst

uses just 1 thread.
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Figure 4.14: Response Time: DBEst vs VerdictDB

Again, DBEst outperforms VerdictDB in both prediction accuracy and

query response time for a different data set.
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4.4.6 TPC-DS Group By Performance

In total, 90 queries are used for the [ss wholesale cost sk, ss list price]

column pair from the TPC-DS workload, having 30 queries for each of COUNT,

SUM and AVG, where the GROUP BY attribute is ss store sk. The table used

is store sales and is scaled up to include 100 million tuples. There are 57

distinct values for the GROUP BY attribute. The sample size for DBEst is chosen

so that on average there will be 10k rows for each GROUP BY value.

Figure 4.15(a) shows average relative errors (averaged over all 57 groups).

For COUNT and SUM, DBEst outperforms VerdictDB significantly. For AVG, both

have similar relative error, which is less than 3%, and DBEst performs slightly

better.
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Figure 4.15: Query Performance for 57 Group Values

Query response times are shown in Figure 4.15(b). VerdictDB takes slightly

less time than DBEst for a GROUP BY query. Note, VerdictDB uses all cores,

while DBEst only uses one. section 4.4.7 will show a DBEst with parallel

GROUP BY processing.
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Figure 4.16: Overheads for 57 Group Values
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Figure 4.16 shows the time/space overheads for building the states required

by DBEst and VerdictDB. The conclusions for the Group By case are consistent

with all previous results on overheads of DBEst and VerdictDB. Note, DBEst

models are currently trained in sequence. If the models are trained in parallel,

the training time is 1 order of magnitude smaller.

We now study error performance for individual groups. Figure 4.17 shows

the histogram of the relative error for the 57 groups for SUM queries. The

average error for the SUM queries in DBEst is 5.84% and for VerdictDB 16.32%.

More than 80% of the 57 groups have a relative error <7.0% for DBEst. For

VerdictDB, the minimum achieved error is around 10%. Note also that variance

around the mean is smaller for DBEst and large for VerdictDB. The maximum

relative errors are ca. 10% and 24%, respectively, and several groups suffer

from errors >20% with VerdictDB.

Figure 4.17: Accuracy Histogram: SUM for 57 Groups

(a) COUNT (b) AVG

Figure 4.18: Accuracy Histogram for 57 GROUPS
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Here, we also demonstrate the same for AFs COUNT and AVG, as shown in

Figure 4.18. For COUNT, the average relative errors by DBEst and VerdictDB

are 5.34% and 16.13%, respectively. It is also noticeable that the error has

a smaller variance from DBEst, while VerdictDB tends to produce a bad

prediction with a big variance. VerdictDB, as a sample-based AQP engine, uses

samples to produce the answer. There will be fewer records for rare groups,

which leads to higher variance in the prediction accuracy across groups. The

generalization of models in DBEst helps to reduce the variance between groups.

The same conclusion holds for AF AVG as well.

4.4.7 Parallel Query Execution

Previous experiments had DBEst run with a single thread, while VerdictDB

(or Spark) made use of all 12 cores. Here, we show DBEst’s performance when

running in parallel.

Parallel GROUP BY

If there are n distinct groups DBEst builds n models uses them all to answer

the query. The n models can be evaluated in parallel. Recall that, our current

implementation for parallel model evaluation is suboptimal as python has the

global interpreter lock issue during parallel inference.
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Figure 4.19: Group By Query Response Time Reduction

Single-threaded DBEst needs 1.46s, while VerdictDB using all 12 cores
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needs 0.82s. Multi-core DBEst brings the total query response time down to

0.57s, as shown in Figure 4.19.

To be fair, with the current implementation, DBEst would take more time

than VerdictDB when the number of groups exceeds ca. 100. But this is

largely an implementation issue, as in principle, per-group model evaluation is

embarrassingly parallelizable. For queries with a large number of groups, we

could distribute models among a cluster, and each node is only responsible

for a partition of the groups. In this way, we could further reduce the query

response time. It is also important to note that the Group By queries tested

did not involve any joins. As will be shown later, processing even relatively

small joins is ca. 60x more expensive in VerdictDB (as it needs to compute the

join of million-tuple samples), whereas DBEst does not. In such cases, Group

By in DBEst becomes better practically always than VerdictDB (since when

the number of groups becomes very high, none of the systems would develop

samples/models and let the exact-answer QP engine handle such queries).

Nonetheless, as we see below, it may be preferable to accept longer query

processing times, even using per-query single-threaded execution, in order to

increase system throughput.

Throughput with Parallel Execution

All state of the art AQP engines utilize many or all nodes/cores in the system for

each query execution - intra-query parallelism - in order to reduce response times

to acceptable levels. In principle, this will reduce overall system throughput, as

concurrently executing queries would conflict for threads/cores. DBEst allows

for large inter-query parallelism levels, as most queries execute using a single

thread.

Figure 4.20 displays the impact of the number of cores on the total query

response time for the CCPP dataset. With DBEst, time decreases as more

cores are used. With 12 cores, the total time drops from 35.4s to 5.78s (from

4.6 to 0.9) for 100k (10k) samples. However, for VerdictDB, as each query uses

all cores, the total query processing time remains unaffected. DBEst improves
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Figure 4.20: Throughput of Parallel Execution (CCPP)

throughput by ca. 6x to 30x.
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Figure 4.21: Throughput with Parallel Query Execution

Here we further demonstrate DBEst’s abilities in processing queries for the

TPC-DS and Beijing PM2.5 Datasets. Figure 4.21(a) shows the overall time

for processing all 97 queries in the TPC-DS dataset, as the number of processes

increases from 1 to 12. For example, with 100k-samples, it takes ca. 24s for

DBEst to process all 97 queries with a single process. This time drops to 3.07s

when 12 processes are running in parallel. This means that to answer a single

query, DBEst only needs around 32ms on average. The same conclusions hold

for the Beijing PM2.5 dataset, (Figure 4.21(b)). We observe speedups up to

ca. 10x by utilizing all available cores.
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4.4.8 Join Query Processing

We now demonstrate DBEst’s performance for join queries. Two tables

from TPC-DS store sales and store, are joined on ss store sk. Ag-

gregates on ss net profit and ss wholesale cost are analyzed by varying

store.s number of employees.

COUNT SUM AVG OVERALL
0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

Re
la

tiv
e 

Er
ro

r (
%

)

DBEst_10k
DBEst_100k
DBEst_1m
VerdictDB_10m

Figure 4.22: Join Accuracy Comparison

42 queries are used for the [s number of employees, ss net profit] and

[s number of employees, ss wholesale cost] column pairs, having 14 quer-

ies for each of COUNT, SUM and AVG. VerdictDB joins a sample of the large fact

table (default size of 10m tuples) with the actual small 60-row dimension table.

Figure 4.22 shows the overall DBEst error is 4.48% (10k samples) and 2.24%

(1m samples). As VerdictDB uses a very large 10m sample, the error is slightly

better (1.66%). Section 4.4.10 will show cases where VerdictDB has a higher

error than DBEst. Section 4.4.9 will also show how robust DBEst accuracy is

for joins even when stressed with skewed join-attribute distributions, unlike

other approaches.

Turning to Figure 4.23, for 10k samples, DBEst needs only 0.028s and

0.37MB. For 1m samples, it needs 0.82s and 1.12MB. VerdictDB, takes 6.7s,

while requiring >270MB. Overall, DBEst achieves speedups from 8x to >200x

and smaller space overhead from ca. 100x to 250x. The improvements would

be much larger if two large tables were joined.
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Figure 4.23: Join Performance Comparison

4.4.9 Comparison With MonetDB

It is instructive to discuss how a standard exact-answer system, turned into an

approximate query engine by operating on samples, would fair against DBEst

and other AQP engines. Here we address this issue using a state-of-the-art

columnar DB for analytics, MonetDB.

There is little argument that such systems, like MonetDB, could crunch very

efficiently samples and produce approximate answers. The point here is not

about response times. Using an exact-answer QP engine over a sample, could

yield large errors, unless samples got very large. The relative error bounds

achievable with such techniques are well understood. For example, (using 0.9

probabilty Hoeffding bounds) [65] for COUNT, relative errors are ca. 1.22

/ (s×
√

(n)), where s is the selectivity in the query result before the aggregate

operation (i.e., combined selectivity of all selection and join operations) and n

is the sample size. As these are bounds, we conducted the experiments below

using our datasets and queries from above.

As many models are needed to support the GROUP BY queries, DBEst needs

significantly higher query response time to process each group sequentially,

but, in any case, overall response time is 360ms (single-threaded) or 107ms

(12 cores), while MonetDB processes the query with a few ms. Turning to

errors, Figure 4.24 compares the performance between DBEst and MonetDB

for the TPC-DS GROUP BY workload. Using 10k samples, DBEst achieves an

overall relative error of 4.43%, while MonetDB’s corresponding relative error
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Figure 4.24: Error vs MonetDB : TPC-DS Group By

is 12.46%. To shed more light into accuracy-performance, the histograms of

relative errors for COUNT, SUM and AVG are summarised in Figure 4.25.
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Figure 4.25: Error Histogram vs MonetDB: TPC-DS GROUP By Workload

Take SUM as an example. The maximum (minimum) error produced by

DBEst is ca. 10% (2%). While for MonetDB, the corresponding relative

errors are >30% (ca. 8%). So, DBEst provides estimations with low mean

error and variance among groups, while for several groups MonetDB’s error is

unacceptably high.

Figure 4.26 summarizes DBEst and MonetDB’s accuracy for CCPP. The

same conclusions hold. DBEst error is better than MonetDB’s, even when

the latter uses an order of magnitude larger samples. As models are ca. one

order of magnitude more compact than actual samples, the above translates

to achieving lower error with ca. 53x smaller space requirements (340KB vs

18.24MB).
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Figure 4.26: Error vs MonetDB: CCPP Workload

Approximate MonetDB and Joins

We now study approximate MonetDB for join queries. [28, 173] state that

the join result accuracy is greatly influenced by the distribution of the join

attribute. We create two tables A(x,y) and B(z,y), whose join attribute y

follows the Zipf distribution with density function p(x = k) = k−s/ζ(s) where

k is the rank, s is the Zipf parameter (s ≥ 1 and higher values yield more

skewed distribution) and ζ() is the Riemman’s zeta function. Here, s = 2.

Table A (B) has 100k (100m) records. And y in Table B has a skewed and

a non-skewed region. MonetDB answers 20 queries (10 for the skewed region)

of the form:

SELECT COUNT(z), SUM(z), AVG(z)

FROM A, B

WHERE A.y=B.y

using 10k, 100k, and 1m samples from Table B and small Table A.

Figure 4.27 shows that MonetDB is significantly more challenged with such

distributions. Unlike DBEst, MonetDB error is unacceptably high and it could

not answer any query (3 queries) with the 10k (100k) samples. This is expected

as MonetDB will at most achieve the same accuracy as VerdictDB (sometimes

even worse, depends on the sampling method), as they both use samples to

make the prediction.
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Figure 4.27: Accuracy Comparison for Join Queries
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Figure 4.28: Query Response Time Comparison

Even with 1m samples, MonetDB errors for COUNT and SUM are 25.41% and

25.39%. In contrast, DBEst always achieves high accuracy, with errors ranging

from 1.74% to 3.51%.

Figure 4.28 shows that MonetDB is much more efficient than DBEst: for

10k (100k) sample, DBEst takes 17.57ms (129ms), while MonetDB only requires

0.74ms (2.65ms). This is as expected, since MonetDB has been optimized for

over 2 decades now (and it is also written in C which is inherently much faster

than Python). Nonetheless, DBEst’s time is in absolute terms very fast (less

than 100ms), while also guaranteeing high accuracy. As you can see, DBEst

trained over a 100k sample usually outperforms MonetDB trained with a 1m

sample. This showcases DBEst’s all-around strong performance.

To summarize this section, we compare the performance of DBEst against

MonetDB for simple and join queries. MonetDB requires far less time to

respond to a query as it has been optimized for decades. In terms of prediction
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accuracy, MonetDB acts as a sample-based AQP engine, does not work well

for the workloads. DBEst achieves much better accuracy at the cost of slightly

higher query response time.

4.4.10 Complex TPC-DS Queries

We now turn to DBEst’s performance for complex queries as they appear

exactly in the benchmark: Namely, Query 7 and (complex subqueries of)

Query 5 and Query 77. These queries involve 2 to 4 AFs, 2- to 5-way joins, as

well as nested subqueries (flattened out and materialized for DBEst).

There are 57 groups for Query 5 and 77, and >25,000 for Query 7. As

stressed earlier, queries like Query 7 would not be handled by DBEst due to the

very large number of groups. In fact, query 7 will not be handled by systems

like QuickR either (as groups have a very low support – less than 20 entries

per group). So, this represents an extreme stress-test.

Performance is summarized in Figure 4.29. Sample sizes vary from 10k

to 100k. Overall, DBEst achieves higher accuracy and significantly smaller

response times: For Query 77 and 10k-samples, as an example, DBEst (Ver-

dictDB) achieves an overall relative error of 7.56% (11.24%). If the sample size

increases to 100k, the relative error drops to 2.76% and 3.42%, respectively.

Note this is in contrast to the accuracy observed in Figure 4.22. For Query 7,

as the joined tables have fewer than 10m rows, VerdictDB computes the exact

answer (zero error). Given that each of the 25k groups consists of <20 records,

DBEst is trained on the complete join-table instead of on samples. The overall

error is <6%, although a small percentage of groups have relative errors higher

than 20%.

As explained, DBEst’s query response time is greatly influenced by the

number of groups in the queries. For Query 7, the query response time is ca.

600s using a single-threaded implementation. Figure 4.29(b) shows performance

with multi-threaded DBEst, which exploits all 12 cores and reduces the response

time to ca. 50 seconds. Dividing the 25k groups into N model bundles and

using a scale-out cluster of N such 12-core nodes would reduce further the time
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Figure 4.29: Performance for TPC-DS Queries 5, 7, 77

by a factor equal to N . So, a cluster of ca. 50 such nodes would be required to

attain a sub-second response time.

In this section, we compare the performance of DBEst against VerdictDB

for complex queries as they appear exactly in the benchmark. We show that

for queries with a small number of groups, DBEst achieves better performance

(in both query response time and prediction accuracy). However, for queries

with a large number of groups, we see an increase in the query response from

DBEst. This is one of the limitations of DBEst, which will be handled in the

following chapter.

4.5 Summary

With this chapter we presented DBEst, an SML-model-based AQP engine.

DBEst’s salient feature is that it processes queries using regression and density-

estimator models. Its key insight is that derived models can generalize nicely,

thus able to attain high accuracy despite being built from very small samples.

These facts allow DBEst to offer highly accurate AQP with dramatic speedups,

while being very frugal in memory requirements, as models are very compact.

DBEst’s philosophy additionally departs from related work in being frugal with

respect to demands for system resources during AQP: often single-threaded

DBEst outperforms multi-core AQP engines. This chapter studied DBEst’s

sensitivity on key parameters and systematically evaluated it against two state

of the art AQP engines, studying separately the effects of range predicate
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selectivities, GROUP BY, and join operations, as well as the impact of using

multiple cores/nodes. In the next chapter, we will introduce an improved AQP

engine based on deep learning networks. It overcomes the major drawbacks

of DBEst and will have better support for categorical attributes and model

updating.
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Chapter 5

DBEst++: An Improved

Model-Based AQP Engine

In Chapter 4, we introduce the model-based AQP engine DBEst. It is based

on regression models and density estimators to produce approximate answers

to SQL queries. DBEst achieves better accuracy than other AQP solutions,

including VerdictDB and BlinkDB, while enjoys orders of magnitude savings

in space overheads and query response time. However, DBEst has some

limitations. For example, DBEst is not an ideal solution for queries with a

large number of groups. In this chapter, we aim to overcome these drawbacks

by applying deep learning networks and word embeddings. We will also look

into the updateability issue of models.

5.1 Introduction

Augmenting the functionalities of database systems with ML models is receiving

great attention nowadays. Such ML models take various forms, including

classical regression and density estimators (like XLeratorDB [57] for Microsoft

SQL Server, MADLib [76] over PostgreSQL), or deep neural networks (like

[77, 116], and for tasks such as deriving learned cost models [91, 148]), workload

forecasting [103], database tuning [96, 160, 172], cardinality and selectivity

estimation [74, 77, 169] and learned indexing [95] etc).

103



CHAPTER 5. DBEST++: AN IMPROVED MODEL-BASED AQP ENGINE

Approximate query processing has traditionally relied on sampling ap-

proaches. These are largely classified as online [87] (i.e., the sample is generated

after the query arrives) or offline (i.e., samples are generated in advance, either

for popular queries [6] or for all possible queries for the schema [123]). As very

large sample sizes are typically required to achieve high accuracy - a fact that

necessarily implies poor response times, the community started looking into

alternative approaches. More recently, machine learning models were adapted

for processing various aggregate queries instead of using (samples of) data. The

first efforts by our group focused on using regression-based techniques to predict

and/or explain approximate query answers [11–14, 105, 137, 138]. Learned

AQP engines also emerged that would holistically process aggregate queries,

promising to improve both accuracy and efficiency. The first such effort to our

knowledge was DBEst [104], as introduced in Section 4.2, followed by DeepDB

[77], and [153], etc. Learned AQP engines, like DBEst and DeepDB, adopt a

data-driven perspective. Specifically, uniform samples are firstly generated, and

models are trained based on samples. Subsequently only the models are used

for query processing, For instance, DeepDB trains Relational Sum Product

Networks (RSPNs) over the tables’ columns, whereas DBEst trains Kernel

Density Estimators (KDEs) and Regression Models (RMs) over column sets.

Despite these developments and the improvements they introduced in terms of

accuracy and efficiency, much more is left to be done, with respect to efficiency

and accuracy and, more importantly, in terms of related memory overheads.

5.2 Design Choices, Rationale and Motivations

Given the good success thus far, and the large promises of ML for improving

data systems internals, many a researcher are expected to continue to contribute

more and more ML models for various data processing tasks. Unfortunately in

our view, this is done without much consideration to the aggregate requirements

for AQP tasks. In other words, prediction accuracy is not the only requirement,

we should consider other factors, including space overheads and response time.
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Primarily we are concerned here with space/memory requirements of said ML

models – hence, our emphasis on light models.

Following this rationale, a salient design feature of the proposed light engine,

which goes against the grain in the current school of thought, is that it avoids

the development of universal models: These models aim to be able to answer

all queries involving any possible combination of attributes of a given schema.

While the benefits of these approaches are highly touted, such universal models

are typically very large and coarse-grained. As such, they waste all of the

memory required to store a universal model to support all possible queries

when typically only a very small subset (among all possible) queries will be

executed (i.e., the queries involving popular combinations of columns).

Viewed from a different angle, as we move away from data accesses to model

accesses, we view the ML models we propose as the counterpart to indexes

(and other access structures) and data used traditionally for answering a query

at hand. Except that the models should be dramatically smaller so that a

large number of them would already be in memory and, if not, the time cost

for their IO and (de)serialization would be also very small.

In the overall vision, the AQP engine would employ a query-to-models

index, in order to map an incoming query to the model(s) it needs. Said models,

as argued above, would likely be in memory already or would be fetched and

deserialized from nonvolatile memory very fast.

Complementarily, a key issue is what are the appropriate models to leverage

in order to develop these light AQP engines? Although this is an open problem,

we will present our approach based on specific ML models, utilizing word

embeddings and mixture density networks (MDNs) which, when appropriately

combined, provide excellent space-accuracy-time performance.

Therefore, compared with DBEst as introduced in Chapter 4, our key

concern and contribution with this chapter is the development of a learned

AQP engine that:

• pushes the lower bounds of required space for its ML models (offering
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orders of magnitude space savings), while

• offering better query execution times (especially being embarrassingly

parallelizable, reducing query times at will with additional investment),

and

• offering better accuracy (circa 2X better than state of the art learned

approaches for more demanding datasets), and

• ensures its high accuracy, even in the presence of data updates, and

• can deal effectively with high-cardinality categorical attributes, which

introduce challenging space/time vs accuracy dilemmas.

Extensive experimentation with real and benchmark datasets will showcase

the gains introduced by DBEst++ and analyze key sensitivities.

The remainder of this chapter is organized as follows. Section 5.2 presents

the rationale, motivations, and overall vision and contributions of DBEst++.

Section 5.3 overviews the DBEst++ internals. It explains its core ML models,

how models are trained, and how models are used for inference. Section 5.4

demonstrates the performance of DBEst++ for the TPC-DS and the Flights

datasets and compares it against DeepDB and VerdictDB. Section 5.5 concludes.

5.3 System Overview

5.3.1 DBEst++ Query Processing Foundations

This chapter shares the similar mathematical foundations as DBEst, which

is introduced in Chapter 4. As an example, given regression model y = R(x)

and density estimator D(x), DBEst++ uses the following formula to produce

approximate answers to SUM queries.

SUM(y) = N ·
∫ ub

lb
D(x)R(x)dx (5.1)

where N is the scaling factor, and lb, ub are the lower bound and upper

bound of the range selector. The formula for COUNT and AVG are addressed in
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Chapter 4. They are omitted for space reasons.

Unlike DBEst which used KDEs and a Regressor (XGBoost), DBEst++

employs Mixture Density Networks (MDNs) for both the density estimation

and the regression tasks. Using these neural networks in DBEst++ avoids the

need for having different models (say for different group and categorical values

in the WHERE clause) with a single neural network handling all. Furthermore,

MDNs help with updatability and also improve accuracy, especially when

combined with embedding models.

Due to the simplicity of MDN models, DBEst++ could easily be extended

to also support other aggregates more efficiently. Take VARIANCE queries as an

example. As mentioned, the output of MDN models is a mixture of Gaussians.

Specifically, p(x) =
∑m

i=1wi · N (µi, σi). And VARIANCE is obtained by [62].

V ar(x) = E[(x− µ)2]

=
m∑
i=1

wi(σ
2
i + µ2i − µ2)

(5.2)

where µ = E[x] =
∑m

i=1wiµi.

5.3.2 System Architecture
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Figure 5.1: DBEst++ System Architecture

Figure 5.1 shows the system architecture of DBEst++. DBEst++ consists
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of several components: (i) The Parser parses incoming SQL queries, and checks

whether the query is a SELECT query or a MODEL CREATION query; (ii) The

Model Container maintains in-memory metadata and the models (i.e., MDNs

and embeddings). MDN models are used to provide accurate predictions

for probability densities of variables (attributes) and for values of dependent

variables given independent variable values (such as those set by relational

selection operators and/or group ids in GROUP BYs); (iii) The Model Manager

selects the appropriate models from the Model Container to use per query and

also selects representative data points from the range of variable values specified

in selection range predicates with which to call for MDN predictions. The

representative points are selected so that the range of interest is uniform divided.

After that, these representative values from MDNs are used to (approximately)

evaluate the integrals needed for the approximation (as shown above) and

aggregates the predictions to provide the final approximate query answer; (iv)

The sampler interfaces with the DB in order to create samples of tables, based

on which ML models will be build; (v) The Model Trainer module trains

embedding and MDN models upon the drawn samples.

Model Creation Query. Suppose the user asks to create a model to answer

SQL queries of the following format:

SELECT g , AF( y ) FROM t b l

WHERE x BETWEEN low AND high

[AND c i t y=”London” AND . . . ]

GROUP BY g

(where aggregate function AF is typically COUNT, SUM or AVG.) The Sampler

will by default use reservoir sampling to make random samples for table tbl.

Reservoir sampling is fast in producing a uniform sample with a fixed size.

Afterwards, the Model Trainer will train one MDN model for density estimation

of the independent variables (i.e., x given g, P (x|g)) and one MDN model for

regression, yielding essentially P (y|g, x).
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Figure 5.2: Structure of Mixture Density Networks

SELECT Query For a SELECT query, the Integral Module will select rep-

resentative points between low and high for x, ask the corresponding MDN

models to make predictions for these representative points, and aggregate to

provide the final approximate results, as explained later.

5.3.3 Mixture Density Networks

There are two types of MDN models employed by DBEst++. The MDN-

regressor is used for regression tasks and the MDN-density is used for density

estimation. The structures of the networks are the same for MDN-regressor

and MDN-density. However, the inputs to the two network types are slightly

different.

MDNs are simple and straightforward - one of the main reasons we selected

them. Combining a deep neural network and a mixture of distributions creates

a MDN model. Many modern neural networks could be easily extended to

support MDNs, including LSTMs, CovNets, etc. We chose to use MDNs as

they are widely applied to solve real-world problems [68, 69] with high success.

For instance, Apple uses MDNs for speech recognition [151].

Figure 5.2 shows the structure of typical mixture density networks. The

cost function is the average negative log-likelihood (NLL), and gradient descent

is used to minimize the cost function. Assuming the input features are x, and
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labels are y, NLL takes the format of

argmin
θ

l(Θ) = − 1

|D|
∑

(x,y)∈D
log p(y|x) (5.3)

As said, the input features and labels are different for the regression and

density estimation tasks. Consider a simple query of the following format

SELECT g , AF( y ) FROM t b l

WHERE x BETWEEN low AND high

GROUP BY g

For the density estimation tasks, the input features are the word embedding

format of the g values, coined WE(g) (which will be introduced in Section 5.3.4),

and the corresponding labels are x. The MDN density estimator aims to predict

the distribution of x for all groups. For regression tasks, the input features are

[WE(g),x], and the corresponding labels are y. The task of MDN regression

is to predict the average value of y for a given group g and x. Figure 5.3

summarizes the input features and labels for training MDNs. In general,

the output of MDN models is a mixture of Gaussians which can model the

distribution of values of the dependent variable(s) (e.g., y) given the values of

independent variables (e.g. x and g). The central hyper-parameter in MDNs

is the number of Gaussians used. And grid search is used to find the optimal

number of Gaussians for each query template.
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Figure 5.3: Input features and labels for training MDNs
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5.3.4 Word Embeddings

In ML, dealing with categorical (nominal) variables is always challenging. Some

of the ML algorithms can easily deal with categorical variables such as Decision

Tree algorithms [133] and Association Rule Mining methods [4], but many

modern ML methods based on NNs can only operate on numerical/continuous

data. This means those variables must be converted to such a form. One-hot,

binary, dummy variable or integer(ordinal) encoding methods are usually used

for this aim. These methods map categorical values into arrays of 0 and 1s, and

since the output is numerical, they can be used in all ML methods. Nonetheless,

none of the mentioned encoding approaches can assign a meaning into output

values. For example, a binary encoding for “red” and “blue” cannot give us

information about how similar these colors are. To capture the meaningful

encoding for categorical values, mostly, embedding approaches are used. Once

a meaningful vector representation for each single categorical value was learned,

it could significantly improve the accuracy of the models.

There are many embedding approaches like [36], [98] and [66], but Skip Gram

[112] have been highly successful. In Section 5.4.4 we will compare the per-

formance of word embedding against one-hot/binary encoding in DBEst++,

and the Skip Gram model is used to transform group-attribute values and

other categorical attributes into a real valued vector representation. As cat-

egorical attributes have no meaningful distance between successive values (ie

city=“Toronto” vs city=“New York”), learning a relationship between a cat-

egorical independent variable and a dependent one is very difficult. Using word

embedding introduces such a meaningful distance between different independ-

ent categorical-attribute values (e.g., g, x) so that learning P (y|g, x) becomes

easier and more accurate.

For instance, Figure 5.4(a) shows the salary information of employees in

different cities. Toronto and New York share more common salaries (40-45k

in this example) than Toronto and a small town. Therefore the embedding

vectors for Toronto and New York will be similar, whereas for Toronto and
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small towns their distance in the embedded space will be much larger.

Salary City

40k-45k Toronto

35-40k Toronto
40-45k New York

… …

20k-25k Small Town

Salary City

Salary 40k-45k City Toronto

Salary 35-40k City Toronto
Salary 40-45k City New York

… …

Salary 20k-25k City Small Town

(a) Raw Data (b) Processed Data

Figure 5.4: Data Pre-processing for Word Embeddings.

To use word embedding approaches in our solution, we need to prepare

the training data in the same way NLP methods work. For our task, instead

of dealing with sentences in a document, we have rows in a table. When

preparing the training data, instead of creating a dataset of pairs of words

that come together in the sentences, we create the dataset with the pairs of

categorical-attribute values that come together in a row of the table. For

example, for a row like (“London”,“red”,“Laptop”), to learn the embedding

for the first attribute (City names), we create two training data pairs like

(“London”,“red”) and (“London”,“Laptop”). These pairs are given to the Skip

Gram model which tries to find similar vector representations for cities that

have common pairs. To create the training pairs, we only use the attributes

that are involved in the query. If the involved attributes are not categorical,

we discretize them first. Furthermore, it is possible that a distinct value exists

in two different attributes, so to avoid pushing wrong information to the Skip

Gram model, we add a prefix for each distinct value in the attributes. For

example, if the name of the attribute is “City” and the value is “London”, we

instead use “City London”.

The key hyper-parameter for word embeddings is the size of the embedding

vector. Grid search is used to find the optimal vector size with respect to

accuracy.
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5.3.5 Updatability

DBEst++ supports data updates - here we discuss insertions of new data that

was not seen when building the model. This is challenging because in the

end DBEst++ must maintain all info it has leaned from ‘old’ data, while also

learning to incorporate the new data in its knowledge.

We sketch and compare two naive approaches: (a) Only frequency tables

(FTs) are updated; (b) both frequency tables and the MDN models are updated.

The general scheme of the experiment is described as follows: Firstly, a base

model is trained, as discussed in the previous sections. Subsequently (batches

of) new data items arrive. When new batches of data arrive, we aim to handle

these updates with minor changes to the model.

In the first method, we only update the frequency tables and predictions

are made based on the previously learned MDNs. In the second approach,

we also update the MDNs by re-using the weights from a previous state (e.g.,

the old original model) and retrain the model using the new batch of data.

Our first approach basically evaluates the generalization of the MDN model to

unseen data. After updating the FTs, the model relies on the generalization of

MDNs to produce approximate answers for queries now involving unseen data.

Although this method is fast and easy to implement, it disregards the major

part of information that are introduced in the new data. We use this method

as a baseline in our study.

The second approach, on the other hand, avoids missing any new knowledge

by retraining the MDN model on the new data batches. This is achieved as

follows. The weights of the old MDN are retained and copied into a new MDN

structure. Then the new data items in the batch are feed-forwarded to the new

MDN, which adjusts its weights accordingly using back propagation.

However, this approach may suffer from the problem of “catastrophic

forgetting”. In other words, while we fine-tune the MDN network on the new

data, the new MDN fits the new distribution and forgets the knowledge that

has been acquired previously. Most previous works [67, 92, 132] that address
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this problem require major efforts that sometimes also include the deformation

of the architecture.

For our task we have achieved highly promising results with a rather simple

idea: while updating the MDN model on new data batches, the learning rate

used for learning from each new batch is kept smaller. The insight behind this

idea is that the smaller learning rate, create finer changes in the model’s weights.

Therefore, the model does not drastically forget the previous knowledge. At

the same time, it learns from the new batches of data. The detailed results are

provided in Section 5.4.

5.4 PERFORMANCE EVALUATION

All code, datasets, and query workloads used in the following experiments can

be found at: https://github.com/qingzma/DBEst MDN. DBEst++ is written

in python with more than 11,000 lines of code.

5.4.1 Experimental Setup

We have evaluated DBEst++ using column sets from queries in TPC-DS dataset

[115]. We use scaling factors 10, 100 and 1000 to produce three versions of the

dataset, with sizes of 10GB, 100GB and 1TB, respectively. Firstly, comparisons

are made between DBEst++ and universal approaches: Namely, a learned

approach, DeepDB, and a sampling-based one, VerdictDB. We compare space

overheads, accuracy (relative error), and query response times. As the DeepDB

code did not support TPC-DS, we had several interactions with the DeepDB

authors and used their suggestions to properly tune DeepDB for this setting.

To evaluate how well the DBEst++ models work as lightweight models, we also

compare against a “compact” version of DeepDB, whereby it is trained only over

the same columns as DBEst++. We further demonstrate the embarrassingly

parallelizable nature of DBEst++, using parallel inference. We also evaluate

DBEst++ with a real-world dataset, the Flights dataset, 1, which was also

1https://www.kaggle.com/usdot/flight-delays

114

https://www.kaggle.com/usdot/flight-delays


CHAPTER 5. DBEST++: AN IMPROVED MODEL-BASED AQP ENGINE

used in the DeepDB paper. IDEBench [52] is used to scale up this dataset to

contain 1 billion tuples.

In addition, we report on our experiments and results regarding the following

key issues with respect to DBEst++ (and, actually, any machine-learning-based

method for AQP): Namely, (i) the performance/sensitivity of the models with

respect high-cardinality categorical attributes, (ii) the impact to accuracy that

the embedding model within DBEst++ have on accuracy, (iii) the accuracy

performance of the approach that DBEst++ adopts for updatability, and (iv)

the performance of the parallel version of DBEst++ on query response times.

Hyper-parameter tuning for the DBEst++ models was as follows. For

the MDNs, we used values between 5 and 20 for the number of Gaussians.

For embedddings we used Word2Vec (from the gensim package 2) to train

Skip Gram models with vector size values varying between 15 and 35.

5.4.2 TPC-DS Dataset

For fairness, DBEst++ and DeepDB use the same samples (from the original

dataset) to build their models. Then, 30 queries are randomly generated,

covering COUNT, SUM and AVG in equal portions and containing GROUP BY and

different selections operators.

Universal Models

Figure 5.5 summarizes the average relative errors of DBEst++, universal

DeepDB and VerdictDB for COUNT, SUM and AVG queries. The relative error

of VerdictDB is around 2% for all aggregate queries, and is the highest among

all. DeepDB has similar accuracy as VerdictDB for COUNT and SUM queries.

For AVG queries, DeepDB achieves the least error (0.12%). The relative error

of DBEst++ is much smaller than that obtained by DeepDB or VerdictDB

for COUNT and SUM queries. And the overall relative error by DBEst++ is only

1.09%!

The same experiment is repeated for TPC-DS with scaling factors (SFs)

2https://radimrehurek.com/gensim/models/word2vec.html
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Figure 5.5: Relative Error for SUM / COUNT / AVERAGE Queries over the
TPC-DS Dataset (SF=10)

equal to 100 and 1000. Relative errors for COUNT and SUM are shown in

Figures 5.6 and 5.7. Again, DBEst++ achieves smaller errors across all SFs.
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Figure 5.6: Scalability for COUNT Queries Varying SF

Figure 5.8 shows the corresponding query response times. VerdictDB

requires 1 order of magnitude longer time than model-based AQP engines.

This shows the strength of models for fast query processing. Specifically, when

a sample is used to produce the query result, the whole sample is scanned,

which is a time-consuming process. While models are faster to respond. Query

response times of DBEst++ are slightly lower than those for DeepDB. Both

DBEst++ and DeepDB require less than ca. 400ms (even for SF=1000) to

respond to all queries. DBEst++ outperforms DeepDB by a factor of ca. 25%
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Figure 5.7: Scalability for SUM Queries Varying SF

to 40%.
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Figure 5.8: Comparison of Query Response Times for Queries over the TPC-DS
Dataset

As DBEst++ is put forth also as a “light” learned-AQP approach, we

now turn our attention to required memory space for the various approaches.

So, space-wise, as shown in Figure 5.9, DBEst++ achieves ca. 3 orders of

magnitude savings compared to DeepDB or VerdictDB. Interestingly, universal

DeepDB requires even higher space overheads than VerdictDB.
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Figure 5.9: Comparison of Space Overhead for Queries over the TPC-DS
Dataset

Compact Models

Figure 5.10 corresponds to Figure 5.5, showing the relative errors for COUNT,

SUM and AVG queries over the TPC-DS dataset with SF=10. Figure 5.11

corresponds to Figures 5.6 and 5.7, demonstrating the overall accuracy of

DBEst++ and DeepDB for the TPC-DS dataset, and as the dataset scales

up. Clearly, DBEst++ achieves higher overall accuracy than DeepDB. It is

interesting to note that when switching from universal DeepDB to compact

DeepDB, we see a reduction in relative error. Take TPC-DS with SF=10 as

an example: the relative error for COUNT obtained by universal DeepDB is

2.13% (see Figure 5.6). The corresponding relative error obtained by compact

DeepDB is 1.84% (see Figure 5.10). This shows that building a universal model

for all types of queries may lead to higher errors.

Figure 5.12 compares the space overheads between DBEst++ and compact

DeepDB. As compact DeepDB is trained over relevant columns only, the size

of RSPNs reduces significantly (compared against that of universal DeepDB).

Despite this reduction, DBEst++ still outperforms with respect to space

overheads by about 1 order of magnitude. This testifies that the DBEst++

approach which integrates embeddings plus the two MDNs truly delivers in all

fronts.
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Figure 5.11: Comparison of Overall Relative Error for Queries over the TPC-DS
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5.4.3 Flights Dataset

We now further evaluate the performance of the above approaches using the

Flights dataset, which was also used in the DeepDB paper. 9 queries covering

COUNT, SUM and AVG are taken from the DeepDB paper and are used here.

Samples of size 1m and 5m are used to train models for DBEst++ and universal

DeepDB.

Figure 5.13 shows the relative errors for the Flights dataset. This dataset

is much simpler and easier to achieve great performance than TPC-DS. We
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Figure 5.12: Space Overheads for Queries over the TPC-DS Dataset.
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Figure 5.13: Accuracy Comparison for Queries over the Flights Dataset

include it here only in order to have a common test dataset to compare against

DeepDB. It is noted that DeepDB achieves slightly better accuracy than

DBEst++while both enjoy extremely high accuracy. As the flight dataset is

simple, it is hard to reduce the error further. For instance, if the 5m sample

is used, the overall relative error is below 0.5% for DBEst++ and DeepDB.

As the sample size increases from 1 million to 5 million, we see a reduction in

relative errors for DBEst++ and DeepDB.
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Figure 5.14: Space Overheads for Queries over the Flights Dataset

Figure 5.14 compares the space overheads between DBEst++ and DeepDB.

Again, we see a big difference in space overheads between DBEst++ and
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DeepDB. For instance, if the 5m sample is used, DBEst++ requires 35 kilobytes,

while DeepDB needs 4.3 megabytes. This represents more than 2 orders of

magnitude savings in memory footprint.

5.4.4 Impact of Word Embedding

Section 5.3.4 introduced word embeddings within DBEst++ for categorical

attributes, and explained the rationale and intuition underpinning its utilization

and expected improvements over other the traditional techniques, such as one-

hot encoding and binary encoding for inputing data to neural networks. We

expected that word embeddings would group together ”similar” items in the

embedded space. Similarity here refers to the values of attributes among

different rows. (Therefore, the model’s accuracy is improved.) Using only

a one-hot or binary encoding would fail to capture such latent relationships

between items as they would be transformed into an orthogonal representation

in another dimension.

We conduct the same experiments as in Section 5.4.2. Instead of using word

embeddings, one-hot encoding or binary encoding is used to input categorical

attributes into the MDNs. This would reveal the gains due to embeddings.
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Figure 5.15: Comparison of Relative Error Between Word Embedding, One-hot
and Binary Encoding for COUNT Queries.

Figures 5.15 and 5.16 summarize the relative error of DBEst++ for quer-
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Figure 5.16: Comparison of Relative Error Between Word Embedding, One-hot
and Binary Encoding for SUM Queries.

ies over the TPC-DS dataset using one-hot and binary encoding, and word

embedding. Take COUNT queries as an example, as shown in Figure 5.15. For

scaling factor equal to 10, the relative error is 3.26% (3.73%) if binary (one-

hot) encoding is used. We see a significant decrease in relative error if word

embedding is used – the corresponding relative error is only 1.49%. The same

conclusion holds for the TPC-DS dataset with various scaling factors and SUM,

AVG queries. Also, it is worthwhile to note that we do not have statistics of

one-hot encoding for scaling factor=1000. One-hot encoding requires much

larger memory and is not ideal for large groups.

5.4.5 Sensitivity to Attribute Cardinality

It is known that sample-based AQP solutions (like VerdictDB) are challenged

for GROUP BY queries with a large number of groups. There must be enough

representative points per group to guarantee high accuracy. As a consequence,

the sample size must be greatly increased to achieve good accuracy. Ex-

pert readers will also know that even ML-based approaches struggle with

high-cardinality categorical attributes. Here, we compare the performance of

DBEst++, DeepDB and VerdictDB for 30 GROUP BY queries with the following

query template:
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SELECT s s s t o r e s k , s s quant i ty , AF( s s s a l e s p r i c e )

FROM s t o r e s a l e s

WHERE s s s o l d d a t e s k BETWEEN low AND high

GROUP BY s s s t o r e s k , s s q u a n t i t y

where the aggregate function (AF) is COUNT, SUM or AVG, and the range

predicate is randomly generated within the space domain. Here, the TPC DS

dataset is scaled up with SF=1000, resulting in 2.8 billion tuples and the

grouping attribute has more than 50,000 distinct values (groups). The sample

size ranges from 2.5m to 30m.
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Figure 5.17: Comparison of Sensitivity on Large Groups for COUNT Queries.
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Figures 5.17 and 5.18 show the effect of sample size on relative error for

DBEst++, DeepDB and VerdictDB. Take COUNT queries as an example, as

shown in Figure 5.17. With a sample of size 2.5m, VerdictDB’s relative error

(27.23%) is unacceptably high. The relative error for DBEst++ and DeepDB

is 11.90% and 5.47%, respectively. This substantiates the intuition that the

sample-based AQP engine VerdictDB performs worse for large groups. In other

words, for queries with large groups, there will be fewer rows in each group,

which leads to higher error for each group. Due to the generalization of models,

model-based AQP engines tend to perform better. However, note that also

the accuracy of DBEst++ is poor. On the other hand, the error of DeepDB is

better for small sample sizes. However, note that this error, albeit better for

small sample sizes, it is still very high (approximately 5%). And, unfortunately,

it is stable even for increasing sample sizes. As the sample size increases, the

error of DBEst++ and VerdictDB decreases.

As the sample size increases to more than 20m, DBEst++ overtakes DeepDB

and becomes the most accurate AQP solution for large groups. The same

conclusion holds for SUM queries.

By default, DBEst++ uses the frequency table (FT) obtained from the

samples to scale up the predictions (see eq. (5.1)). When sample sizes are

smaller, as shown in Figures 5.17 and 5.18, DBEst++ has a higher error,

largely caused by the inaccuracy of estimating the frequency table from the

samples. So we set out to see the effect of this scaling up error, computing the

exact frequency table statistics - which only requires one COUNT/Group BY

query beforehand to compute. Use the exact frequency table to scale up the

results reported by the DBEst++ AQP engine, (marked as DBEst++ with

FT) are shown in Figures 5.17 and 5.18. Clearly, even for the small sample

of size 2.5m, DBEst++ with FT achieves smaller relative error (5.19%) than

DeepDB(5.47%), or that of DBEst++ with estimated frequency tables (11.90%)

for COUNT queries. This is even better than DeepDB trained over a 30m sample.

As the sample size increases, the relative error of DBEst++ with FT decreases

slightly.
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Overall, sample-based AQP solutions like VerdictDB do not deal with

large groups accurately. DeepDB achieves much better accuracy than Ver-

dictDB. However, increasing the sample size does not decrease the overall error.

DBEst++, as a model-based AQP approach, provides the most accurate answer

with its error improved with larger samples. And also provide the smallest

error even with small samples with exact frequency statistics.

5.4.6 Updatability

In this subsection, we conduct experiments to study how well DBEst++

performs when unseen-previously data is inserted into the database. We use

a 100-million-row store sales table from the TPC-DS dataset. The setup we

use is similar to that used by DeepDB, which showed how well it handles such

updates (only for COUNT queries).

Our experiments are conducted as follows: We split the 100-million-row

table into two partitions, P1 and P2: P1 has 90% of the table (90m rows) as

the original data from which the DBEst++ model will be created. P2 has

10% of the original table (10m rows). P2 will be used as a pool from which to

derive the new previously-unseen data items to be inserted into the DB. As

before, the DBEst++ models will be trained on a small sample (5m rows) of

the original data (90m rows). And updates/insertions will be “streaming”into

the system in batches. We generate 19 such batches. Each batch contains 50k

rows sampled (without-replacement) from partition P2. We track the accuracy

of DBEst++ estimations after each batch.

As explained in Section 5.3.5, we will use different strategies to update the

models. Figure 5.19-21 will demonstrate the performance of these updating

strategies.

Figure 5.19 illustrates the mean relative error if only the FTs are updated.

At batch 0, we create the DBEst++ model from a 5m sample from P1. At

batch 1, a new 50k batch arrives (a 50k sample without replacement from P2).

At this point we update the frequency tables of DBEst++ and then re-calculate

the error of the same queries. This repeats for every new batch until batch 19.
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Figure 5.19: Relative Error When FTs Are Updated Only.

For COUNT queries, the curve is a constant. This implies that the MDN density

estimator generalizes nicely and can predict cardinalities without performance

degradation. Also, despite the unpredictable behavior on new batches, for

many batches (1, 3, 5, 6, 7, . . . ) the model can make accurate predictions for

SUM and AVG queries with small performance degradation. With the first

experiment, the only thing that we capture from new data is the change of

cardinality. Due to the generalization of the model, DBEst++ enjoys good

accuracy.

In the second experiment, we update the frequency tables and the MDN

models. Figure 5.20 shows the errors for this case. At batch 0 we train

DBEst++. At batch 1, a new batch of data arrives and we update FTs and also

update the MDN models. Updating the MDN models in this case means that

we maintain the weights of the previously-built models at batch 0 (copying

them to a new MDN network) and feed-forward each of the new items in the

50k batch, which updates the overall MDN weights to account for the new

items. This repeats for every new batch of data until batch 19. As shown in

the figure, the relative error gradually converges to another state (after 12

updates). This phenomenon is due to a well known in incremental learning,

known as “catastrophic forgetting”.

To rectify this increased error we turn to using a smaller learning rate
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Figure 5.20: Relative Error When FTs and MDNs Are Updated.

when we feed-forward the new items through the MDNs. Figure 5.21 shows

the results for this approach. Specifically, here we set LR new to LR base/100

where LR base is the learning rate we used to train the original model. (We

chose to decrease it by a factor of 100 as each batch size is 1/100 of the

sample size with which we trained the original models.) This figure illustrates

the ability of DBEst++ to deal with such data updates. It even shows that

accuracy improves with time. This can be intuitively explained as the model

sees increasingly more of the data after each batch.

In the following table, Table 5.1 we depict the time costs associated with

updating the DBEst++ models for the above experiments. As we can see,

DBEst++ can maintain high accuracy even when faced with fairly large batches

of new data insertions, while the overhead to maintain such high accuracy is

very small (2-46s).

Table 5.1: Training time for updating the models to account for a new batch
of 50k unseen tuples

Method 1 Method 2 Method 2: Smaller lr

Training time (s) 2 44 46

To summarize this section, we evaluate the updateability of DBEst++ using

three strategies. In the first experiment, we assume the new data has the same

data distribution as the old data, and only the FTs are updated. However,

such an updating strategy is not realistic and will only work for simple cases.
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Figure 5.21: Fine-tuning Models With a Smaller Learning Rate

In the second experiment, we update both the FTs and models. After several

batches of updates, the updated model “forgets” the old distribution, and we

see increased prediction error. Finally, we update the model with a reduced

learning rate. In this way, the updated model enjoys high accuracy for both old

workload and new workload. We believe updating the model with a reduced

learning rate is a correct direction for model updating.

5.4.7 Parallel Inference

As mentioned, DBEst++ is embarrassingly parallelizable. This is achieved by

dividing the search space (e.g., the number of values of a categorical/group

attribute) into the number of available threads. Currently, DeepDB does not

support parallel inferencing and it is not clear how to do this. We run 10 GROUP

BY queries with more than 50,000 groups, each from the TPC-DS data.

Figure 5.22 shows that query response time decreases linearly as the degree

of parallelism increases. For instance, it takes 13.38s for DBEst++ to process

such a query. If 20 cores are used, query response time drops to 0.78s.
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5.5 Summary

In this chapter, we have argued for light learned AQP engines and introduced

the DBEst++ AQP engine. At its essence, DBEst++ is underpinned by

a regression-inspired approach to estimating answers to analytical queries,

continuing in this respect the insights of the original DBEst engine, as intro-

duced in Chapter 4. The new engine, DBEst++ puts forth a novel learned

AQP architecture comprised of models for (i) word embedding, (ii) density

estimation using MDNs, and (iii) regression-based prediction for aggregation

function/variable values using again MDNs. Experimental results show that

DBEst++ achieves higher accuracy and shorter response time performance

than the current state of the art sampling-based and learned approaches. At

the same time it comes with dramatically reduced memory footprints. Our

results also show that DBEst++ maintains high accuracy even under settings

where the underlying datasets are changing with time. Likewise, DBEst++

shows the best performance for challenging cases, such as high-cardinality

categorical attributes. We hope this contribution will spark a discussion in our

community and a trend towards light AQP learned DB functionality and their

integration into DB engines.
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Conclusions and Future Work

In the era of big data, it takes a long time to get the exact query result

from a modern database. Aiming to reduce the query response time by

providing approximate answers, approximate query processing is receiving

greater attention due to the rapid growth of data volume. Previous AQP

solutions were dominated by sample-based approaches. They provide orders of

magnitude reduction in query response time at the cost of minor query quality

loss. Given the current speed of data growth and the requirement to handle

massive queries, approximate query processing remains an essential tool for

data analytical tasks.

In this thesis, we have presented our approximate query processing solutions

by applying machine learning models in three stages, as listed below:

Chapter 3: We reveal and shed light into an interesting ‘impedance

mismatch′ phenomenon between ML and data systems: namely, as analysts

typically target specific data subspaces to analyze (using range/search queries

on attributes of interest), top-notch RMs perform poorly for different such data

subspaces, despite the fact that said RMs have been trained to generalize and

achieve great accuracy-performance over the whole data domain. We use eight

real-life data sets and data from TPC-DS, with various dimensionalities to

quantify this phenomenon. We also employ new appropriate metrics, substan-

tiating the problem across a wide variety of popular RMs, ranging from simple

linear models to advanced, state-of-the-art, ensembles. This essentially surfaces
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a model-management problem. Second, we put forth and study a new type of

solution, based on a classification-based ensemble, which bears a query-centric

perspective: That is, the proposed solution will improve per-query accuracy,

regardless of the dataset and the subspaces analyzed, using near-always the

best model for the task at hand. Finally, we study the solution’s scalability

limitations and show how to overcome them.

Chapter 4: We present DBEst, a model-based approximate query pro-

cessing engine. Unlike sample-based AQP engines where samples are generated

and maintained to produce an approximate answer, models are used instead.

As models can generalize nicely, they achieve higher accuracy than samples.

Specifically, regression models and density estimators are the main tools for

producing approximate answers for aggregate queries. We extensively analyze

the performance of DBEst against two sample-based AQP engines for various

datasets. And it turns out that DBEst achieves better accuracy, while enjoys

orders of magnitude savings in space overheads and response time. We also

conduct experiments to reveal DBEst’s performance for GROUP BY and join

queries. In addition, we demonstrate/stress-test a parallel version of DBEst

for queries with a large number of groups.

Chapter 5: We learn lessons from DBEst and propose an improved AQP

engine, coined DBEst++. This new engine is comprised of mixture density

networks (MDNs) and word embedding. Specifically, MDNs are used for

regression and density estimation tasks as they are capable of serving queries

with a large number of groups accurately and efficiently. And word embedding

improves the prediction accuracy significantly. Also, as MDNs are compact

models and are fast to respond, DBEst++ further achieves 1-2 orders of

magnitude savings in space overheads and response time. In addition, we look

into the issue of model updating, and propose a new updating strategy by

applying a reduced learning rate.

As we have demonstrated, model-based AQP engines like DBEst++ out-

perform sample-based AQP engines in various aspects, including prediction

accuracy, space overheads and response time. We hope that the proposed tech-
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niques in this thesis open up new directions for approximate query processing

by machine learning. Now, we will list the key findings and future work in the

following sections.

6.1 Key Findings

6.1.1 Overfitting-Generalization Dilemma

Regression Models (RMs) and Machine Learning models (ML) in general, aim

to offer high prediction accuracy, even for unforeseen queries/datasets. This

depends on their fundamental ability to generalize. However, overfitting a

model, with respect to the current DB state, may be best suited to offer excellent

accuracy. This overfit-generalize divide bears many practical implications

faced by a data analyst. Best practice, which suggests to an analyst to use

a top-performing ensemble, is misleading and leads to significant errors for

large numbers of queries. The query-centric regression proposed in this study

addresses this problem by improving per-query accuracy while also offering

excellent overall accuracy.

6.1.2 Universal Versus Light Models

A salient design feature of the proposed light engine, which goes against the

grain in the current school of thought, is that it avoids the development of

universal models: These models aim to be able to answer all queries involving

any possible combination of attributes of a given schema, like DeepDB [77].

While the benefits of these approaches are highly touted, such universal models

are typically very large and coarse-grained. As such, they waste all of the

memory required to store a universal model to support all possible queries

when typically only a very small subset (among all possible) queries will be

executed (i.e., the queries involving popular combinations of columns). Our

suggestion is to build light models for popular query templates only.
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6.2 Future Work

During the study of this thesis, we have discovered and realized several inter-

esting opportunities as the future work to improve and promote the usage of

AQP engines. Here we list four interesting topics.

6.2.1 Universal AQP Interface for All Databases

Modern AQP engines have no/limited support for popular back-end servers.

The works in this thesis [104, 107] and other model-based AQP engines like

[77] only support AQP over files in the local file systems. They act as a

demonstration to show the promises brought by models for AQP. This greatly

limits their applications as modern analytical tasks are typically carried on

databases with tables residing in a distributed storage. Some AQP engines

have better support for various back-end servers. BlinkDB allows Spark as the

backend server [6]. VerdictDB [123], as a successful AQP engine, supports the

majority of popular databases.

In addition, the current AQP solutions acts as an additional layer above

the local file systems/back-end servers, and there is no implementation of AQP

methods into databases [6, 77, 104, 107, 123]. It would be great if DBEst++ is

able to support various backend servers. And this is a big step further towards

the wide usage of AQP engines in real workloads.

6.2.2 Error Bound for DBEst

Currently, there is no error bound for the model-based AQP engines proposed in

this thesis. Some AQP engines produce confidence intervals for the approximate

answers [6, 77], while other engines like VerdictDB could automatically select

the proper sample size based on the error threshold provided by users. In this

study, we use regression and density estimator to produce the approximate

answers. There are established theories for building confident intervals for

regressions/density estimators. However, as an integral process is carried to

aggregate the predictions from these models, the issue of calculating error
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bound for our AQP methods remains open. To be specific, the new engine

should be able to predict the error bound for the prediction it makes for each

query. For instance, the new engine might guarantee that the error is less than

1% within a 95% confidence interval.

6.2.3 Support for Complex Queries

Another factor that affects the application of AQP engines is the limitation

in the supported queries. Currently DBEst++ supports queries with range

predicates, equality conditions and/or a GROUP BY clause. However, more

complex queries are not supported. For instance, join queries are only supported

by firstly generating samples from the actual join result. While models built

over different tables could not be extended to produce an approximate join

result. Nested queries are not supported. Also, complex operations in the

SELECT clause are not supported. For instance, DBEst++ is not able to answer

queries with such complex aggregate SUM(income) - SUM(outcome).

6.2.4 Model Updateability - OLTP

Approximate query processing engines should support both Online Analytical

Processing (OLAP) and Online Transaction Processing (OLTP). However, the

current solutions are focusing on OLAP and there is only limited support for

OLTP. In the era of big data, the data volume is increasing at a fast speed,

which opens up new research areas for updateability. For some scenarios only

insertion occurs as new data are appended to the end of the tables. Other

scenarios involve insertion, deletion and updates. Currently, DBEst++ only

supports insertion, while the solution for deletion remains open.
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