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Abstract

We consider a sequential blocked matching (SBM) model
where strategic agents repeatedly report ordinal preferences
over a set of services to a central planner. The planner’s goal
is to elicit agents’ true preferences and design a policy that
matches services to agents in order to maximize the expected
social welfare with the added constraint that each matched
service can be blocked or unavailable for a number of time
periods. Naturally, SBM models the repeated allocation of
reusable services to a set of agents where each allocated ser-
vice becomes unavailable for a fixed duration.
We first consider the offline SBM setting, where the strategic
agents are aware of their true preferences. We measure the
performance of any policy by distortion, the worst-case mul-
tiplicative approximation guaranteed by any policy. For the
setting with s services, we establish lower bounds of Ω(s)
and Ω(

√
s) on the distortions of any deterministic and ran-

domised mechanisms, respectively. We complement these re-
sults by providing approximately truthful, measured by in-
centive ratio, deterministic and randomised policies based on
random serial dictatorship which match our lower bounds.
Our results show that there is a significant improvement if
one considers the class of randomised policies. Finally, we
consider the online SBM setting with bandit feedback where
each agent is initially unaware of her true preferences, and
the planner must facilitate each agent in the learning of their
preferences through the matching of services over time. We
design an approximately truthful mechanism based on the
Explore-then-Commit paradigm, which achieves logarithmic
dynamic approximate regret.

1 Introduction
In recent years, machine learning algorithms have been ex-
tremely successful in various domains, from playing games
to screening cancer. However, despite such success, most
learning algorithms cannot be deployed directly in practice
to make decisions under uncertainty. The main reason is
that most real-world applications involve multiple agents,
and learning algorithms are often constrained due to the un-
availability of resources. Motivated by such constraints in
multi-agent systems, we consider the problem of repeated
matching with blocking constraints, a scenario where mul-
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tiple agents simultaneously learn their preferences with re-
peated blocking or unavailability of resources.

In particular, we are interested in the repeated one-sided
matching problem where strategic agents report their or-
dinal preferences based on their expected rewards over a
set of alternatives, or services. The agents are matched to
the services given their reported preferences each time pe-
riod or round. It is well-known that one-sided matching
can be used to model various real-world situations such
as matching patients to kidneys across health institutions
(Durlauf and Blume 2008; Roth, Sönmez, and Ünver 2004),
assigning students to rooms in residential halls (Durlauf and
Blume 2008), allocating workers to tasks in crowdsourc-
ing (Difallah, Demartini, and Cudré-Mauroux 2013; Ald-
hahri, Shandilya, and Shiva 2015), and recommending users
to activities in recommender systems (Satzger, Endres, and
Kießling 2006; Ansari, Essegaier, and Kohli 2000; Isinkaye,
Folajimi, and Ojokoh 2015).

In many of these situations, there are several obstacles.
First, for a setting with reusable services, a major caveat is
that an agent-alternative match within a round can result in
blocking of some services in which the services may not be
available until a later time. For example, a recommended
activity (e.g., a special promotion offer from a restaurant)
that is matched to (or used by) a user may not be available
to all users again until a later time. Or, in cloud computing,
where tasks are matched to resources (e.g. GPUs), once a
task is assigned to a resource, that resource is blocked for a
certain number of rounds.

Second, the agents are often unaware of their exact pref-
erences, and the planner must coordinate their explorations
without incurring a significant loss. This is often true for
recommending restaurants to customers, as the restaurants
have limited capacity and people are rarely informed of all
possible choices (Waldfogel 2008). Note that, even when the
agents are themselves using learning algorithms over time,
coordination by the planner becomes necessary to avoid dif-
ferent agents exploring the same service at a time – a prob-
lem which is exacerbated by blocking of the services.

Finally, in several settings, the agents are aware of their
preferences, but they might be strategic in reporting their
preferences for getting matched to better services. This
is particularly prominent in assigning rooms to students.
Rooms can be blocked due to occupancy and can be made



available again once the students leave the rooms. As a re-
sult, there is a potential for the students to misreport their
private preferences to manipulate matching outcomes.

1.1 Main Contributions
In order to capture the notion of one-sided matching
with blocking, we introduce a sequential blocked match-
ing (SBM) model, in which a set of n strategic agents are
matched to a set of s services repeatedly over rounds and
where matched services are blocked for a deterministic num-
ber of time steps. Each agent reports her ordinal preferences
over the services every round, based on her current estimates
of the expected rewards of the services. As is standard in the
matching literature, we focus on the setting where agents
just report ordinal preferences over the services. The plan-
ner’s goal is to derive a matching policy that, at each round,
elicits true preferences from the agents and matches them to
services in order to maximize the expected social welfare,
which is the sum of the expected utilities of the agents from
the matchings over time, whilst accounting for the blocking
of services. To the best of our knowledge, SBM models have
not been studied before and can be applied to a wide range
of real-world matching scenarios.

We investigate the offline and online variations of the
SBM model. For both variations, we are interested in deriv-
ing deterministic and randomized policies that are approxi-
mately truthful and efficient. We measure truthfulness by in-
centive ratio (Chen et al. 2012), which measures how much
a single agent can gain via misreporting preferences. We
measure efficiency through the notion of distortion from so-
cial choice theory (Procaccia and Rosenschein 2006), which
measures the loss in social welfare due to access to only
preferences, and not utility functions and rewards. We for-
mally define these concepts in Section 3.

Offline SBM Benchmarks. In the offline setting of SBM,
each agent knows their own preferences and rewards over
the services, but the planner does not. In addition, each agent
reports their preferences only once to the planner, before
matching begins. Essentially, the offline benchmarks estab-
lish what we can achieve in terms of distortion if the agents’
don’t have to learn. Table 1 summarizes our results. More
specifically, we derive lower bounds on the distortion of
any deterministic and randomised mechanism. The main in-
gredient of our proof is the careful construction of reward
profiles that are consistent with reported preferences that
guarantees poor social welfare for the planner. We then fo-
cus on the upper bound and provide approximately truth-
ful mechanisms with bounded incentive ratios that match
the distortion lower bounds. In short, both the determinis-
tic and randomised mechanisms we provide are based on
the repeated random serial dictatorship (RSD) mechanism
for one-shot one-sided matching problems. Our randomised
mechanism, repeated RSD (RRSD), iterates randomly over
all agents, greedily choosing the current agents’ preferred
service at each time step. Our deterministic mechanism, de-
randomised RRSD (DRRSD), is a derandomised version of
this algorithm and matches the corresponding lower bound.
Interestingly, we find that there is a strict separation of

√
s

between the achievable distortion by a deterministic and ran-

domized mechanism.
Online SBM Algorithms. For the online setting of

SBM, the agents do not know their preferences or re-
wards and must learn their preferences via repeated match-
ing to services. After each matching, the agents update
their preferences and strategically report them to the plan-
ner. We design an approximately truthful mechanism, bandit
RRSD (BRRSD), based on the Explore-then-Commit (ETC)
paradigm, which achieves sublinear dynamic approximate
regret. In particular, BRRSD has two phases. In the first
phase, it allows the participating agents to learn their pref-
erences via uniform allocation of services. Using the learnt
estimates from this phase, the mechanism then runs RRSD
in the second phase.

1.2 Related Work
We provide a brief discussion of the related work in the
matching and bandit literature and highlight major differ-
ences comparing to our SBM models, which have not been
considered previously.

Ordinal Matching and Distortion. We consider the ob-
jective of maximizing expected rewards as our offline bench-
mark. Since we do not observe the exact utilities of the
agents rather ordinal preferences over items, we use the no-
tion of distortion (Procaccia and Rosenschein 2006) from
voting to quantify such a benchmark. In the context of vot-
ing, distortion measures the loss of performance due to lim-
ited availability of reward profiles (Boutilier et al. 2015;
Mandal et al. 2019; Anshelevich et al. 2018; Kempe 2020;
Anshelevich and Postl 2017). Our offline benchmark is re-
lated to the literature on the distortion of matching (Ama-
natidis et al. 2021; Filos-Ratsikas, Frederiksen, and Zhang
2014; Anshelevich and Sekar 2016). However, our offline
benchmark needs to consider repeated matching over time,
and because of the blocking of services, has a very different
distortion than the distortion of a single-round matching.

Online Matching. There are existing online notions of
weighted bipartite matching (e.g., (Karp, Vazirani, and Vazi-
rani 1990; Kalyanasundaram and Pruhs 1993; Karande,
Mehta, and Tripathi 2011)) and stable matching (e.g.,
(Khuller, Mitchell, and Vazirani 1994)) where the matching
entities (i.e. agents or services) arrive dynamically over time
and the corresponding information in the notions is publicly
known (e.g., weights of the matched pairs or agents’ ordinal
preferences). These online settings are different from our re-
peated matching settings, where the entities do not arrive
dynamically and our objective is to maximize expected re-
wards of the repeated matching given agents’ ordinal pref-
erences. Other recent works explore dynamic agent prefer-
ences that can change over time (e.g., (Parkes and Procac-
cia 2013; Hosseini, Larson, and Cohen 2015a,b)). However,
they do not consider the problem of maximizing expected
rewards and blocking.

Blocking Bandits. Our work in the online SBM models
is closely related to the recent literature on blocking ban-
dit models (Basu et al. 2021, 2019; Bishop et al. 2020),
where each pulled arm (i.e., service) can be blocked for a
fixed number of rounds. Our work is also related to ban-
dits with different types of arm-availability constraints (Neu



Table 1: Lower and Upper Bound Results for Offline SBM Models

Distortion Incentive Ratio
Any Deterministic Mechanism (lower bound) Ω(s) (0, 1]

Derandomized Repeated Random Serial Dictatorship (upper bound) O(s) (1− 1/e)
Any Randomised Mechanisms (lower bound) Ω(

√
s) (0, 1]

Repeated Random Serial Dictatorship (upper bound) O(
√
s) (1− 1/e)

and Valko 2014; Kleinberg and Immorlica 2018; Kleinberg,
Niculescu-Mizil, and Sharma 2010). However, these models
do not consider the sequential matching setting where multi-
ple strategic agents have (possibly unknown) ordinal prefer-
ences over arms and report ordinal preferences to a planner
in order to be matched to some arm at each round.

Multi-agent multi-armed bandits. The online setting
in our work is broadly related to the growing literature
on multi-agent multi-armed bandits (Liu, Mania, and Jor-
dan 2020; Sankararaman, Basu, and Sankararaman 2021;
Bistritz et al. 2020). Liu, Mania, and Jordan (2020) con-
sider a matching setting where strategic agents learn their
preferences over time, and the planner outputs a match-
ing every round based on their reported preferences. How-
ever, our setting is more challenging as we need to com-
pete against a dynamic offline benchmark because of the
blocking of services, whereas the existing works compete
against a fixed benchmark e.g. repeated applications of Gale-
Shapley matching in each round (Liu, Mania, and Jordan
2020).

2 Preliminaries
In this section, we introduce our model for sequential
blocked matching. We start by describing how the prefer-
ences of each agent are modeled and describe formally how
agents can be matched to services in a single time step. Af-
ter which, we introduce the first of two sequential settings
that we study in this paper, which features the blocking of
services when they are assigned to agents.

In our model, we have a set of agents, N = {1, . . . , n},
who hold cardinal preferences over a set of services, S =
{1, . . . , s}, where s � n 1. We use µi,j ∈ R+ to describe
the cardinal reward agent i receives for being assigned ser-
vice j. Similarly, we denote by µi = (µ)sj=1 the vector of
rewards associated with agent i. In what follows, we will
also refer to µi as the reward profile associated with agent i.
Moreover, we restrict ourselves to reward profiles which lie
in the probability simplex. That is, we assume µi ∈ ∆s−1

for all i ∈ N . In other words, we make a unit-sum assump-
tion about the reward profile of each agent. Bounding con-
straints on reward profiles are common in the ordinal one-
sided matching literature (Filos-Ratsikas, Frederiksen, and
Zhang 2014), and are typically required in order to prove
lower bounds for truthful algorithms such as RSD. More-
over, the unit-sum assumption is prevalent in social choice
theory (Boutilier et al. 2015). Lastly, we denote by µ the n
by s matrix of rewards.

1Note that this is without loss of generality, as we may always
add dummy services corresponding to a null assignment.

We say that agent i (weakly) prefers service a to service
b if agent i receives greater reward by being assigned ser-
vice a over service b. That is, agent i prefers service a over
service b if and only if µi,a ≥ µi,b. We use the standard
notation a �i b to say that agent i prefers service a to ser-
vice b. Additionally, we use the notation �i(j) to indicate
the service in the jth position of the preference ordering
�i. Note that every reward profile induces a linear prefer-
ence ordering of services 2. We use the notation µi B �i
to denote that �i is a preference ordering induced by agent
i’s reward profile. We let P(S), or P for short, denote the
class of all linear preferences over S. We write �i to denote
the preferences induced by agent i’s reward profile. Further-
more, we let �= (�)ni=1 ∈ Pn denote the preference pro-
file of the agents. As is standard, we write �−i to denote
(�1, . . . ,�i−1,�i+1, . . . ,�n). As a result, we may denote
� by (�i,�−i).

A matchingm : N → S∪{0} is a mapping from agents to
services. We let m(i) denote the service allocated to agent
i by the matching m. We use 0 to denote the null assign-
ment. That is, agent i is assigned no service in a matching
if m(i) = 0. We let ∅ denote the null matching, in which
no agent is assigned a service. We say matching is feasible
if no two agents are mapped to the same service. We letM
denote the set of all feasible matchings.

In this paper, we consider discrete-time sequential deci-
sion problems, in which a planner selects a sequence of (fea-
sible) matchings over T time steps. We let mt denote the
matching chosen by the planner at time step t, and denote
by M = (mt)

T
t=1 a sequence of T matchings. We denote by

M(t, i) = mt(i) the service matched to agent i at time t.
Furthermore, we assume that, when a service is assigned,

it may be blocked for a time period depending on the agent it
was assigned to. More specifically, when agent i is matched
with service j, we assume that service j cannot be matched
to any agent for the nextDi,j−1 time steps. We refer toDi,j

as the blocking delay associated with the agent-service pair
i and j. Additionally, we let D̃ denote the maximal block-
ing delay possible, and let D denote the n by s matrix of
blocking delays.

From now on, we assume that all blocking delays are
known a priori by both the planner and all agents. We say
that a matching sequence M is feasible with respect to the
delay matrixD if no service is matched to an agent on a time
step where it has been blocked by a previous matching.

Definition 1. For a given blocking delay matrix D, the set

2One reward profile may induce many linear orderings. How-
ever, the linear preference profile induced by a reward profile can
be made unique via tie-breaking rules.



of feasible matching sequences of length T , MD
T ⊆ MT ,

is the set of all matching sequences M ∈ MT such that
for all t ∈ {1, . . . , T}, i ∈ N , and j ∈ S, if M(t, i) = j
then M(t′, i′) 6= j for all i′ ∈ N and for all t′ such that
t < t′ ≤ t+Di,j − 1.

In other words, we say that a matching sequence is fea-
sible if there is no matching in the sequence which assigns
an agent a service which has been blocked by a previous
matching. Note that blocking of services is a common phe-
nomenon in real-world scenarios. For example, consider a
setting in which each service corresponds to a freelance con-
tractor, and each agent corresponds to an employer. The
matching of services and agents then corresponds to em-
ployers contracting freelancers. For the duration of the con-
tract, which may differ from employer to employer, the
matched freelancer is unavailable before returning to the
pool of available services once their contract ends.

We define the utility, Wi(M,µi), agent i receives from
a matching sequence M as the sum of rewards it receives
from each matching in the sequence. That is, Wi(M,µi) =∑T
t=1 µi,M(t,i). Similarly, we define the social welfare,

SW(M,µ), of a matching sequence M as the summation of
the utilities for all agents. More specifically, SW(M,µ) =∑n
i=1Wi(M,µi).
Next, we will describe the first sequential matching set-

ting we consider in this paper, which we call the offline SBM
setting. In this setting, the planner must produce a feasible
matching sequence of length T . Prior to the selection of a
matching sequence, each agent submits a linear preference
ordering to the planner. We denote by �̃i the preference or-
dering, or report, submitted by agent i. Analogously, we de-
fine �̃ as the preference profile submitted cumulatively by
the agents, and call it the report profile. A matching policy
π(M | �̃, D) assigns a probability of returning a matching
sequenceM given a submitted report profile �̃ and blocking
delay matrixD. When it is clear from context, we will abuse
notation and use π(�̃, D) to refer to the (random) matching
sequence prescribed by a policy π given a report profile �̃
and blocking delay matrix D.

We say that a matching policy is admissible, if for all pos-
sible report profiles and blocking delay matrices, the match-
ing sequence returned by the policy is always feasible. The
goal of the planner is to adopt an admissible matching pol-
icy which achieves high social welfare in expectation rel-
ative to the best feasible matching sequence in hindsight,
M∗(µ,D) = argmaxM∈MD

T
SW(M,µ).

We assume that each agent, with full knowledge of the
matching policy employed the planner, submits a linear pref-
erence ordering with the intention of maximising their own
utility, and therefore may try to manipulate the planner by
submitting a preference ordering which is not induced by
their underlying cardinal preferences. We say that an agent
is truthful if they submit a preference ordering induced by
their underlying cardinal preferences. That is, an agent is
truthful if µi B �̃i. We denote by �∗i the report by agent i
which maximises agent i’s utility in expectation under the
assumption that all other agents are truthful. We say that a
policy is truthful if for all possible µ and D it is optimal for

each agent to be truthful if all other agents are truthful. In
other words, a policy is truthful if for all µ and D we have
that µi B�∗i for all i ∈ N .

To evaluate the efficiency of a given policy we use dis-
tortion, a standard notion of approximation for settings with
ordinal preferences.

Definition 2. The distortion of a matching policy is the
worst-case ratio between the expected social welfare of the
matching sequence, π(�, D), returned by the policy under
the assumption that all agents are truthful, and the social
welfare of the optimal matching sequence, M∗(µ,D):

sup
µ,D

SW(M∗(µ,D), µ)

E [SW(π(�, D), µ)]

Definition. The distortion of a matching policy π is the
worst-case ratio between the expected social welfare of the
matching sequence, π(�, D), returned by π and the social
welfare of the optimal matching sequence, M∗(µ,D):

sup
µ,D

SW(M∗(µ,D), µ)

E [SW(π(�, D), µ)]

Note that distortion is the approximation ratio of the pol-
icy π with respect to best matching sequence. In addition,
note that the distortion is only a useful measure of a match-
ing policies efficiency if said policy encourages truthful re-
porting. For example, for truthful policies, distortion is com-
pletely characterising of a policy’s expected performance.
As a result, we not only seek policies which have low dis-
tortion, but also policies which incentivise agents to submit
their reports truthfully.

To this end, we introduce the notion of incentive ratio,
which measures the relative improvement in utility an agent
can achieve by lying about their preferences.

Definition 3. The incentive ratio ζ(π) ∈ R+ of a matching
policy π is given by:

ζ(π) = max
D,�−i, µiB�i

E[Wi(π((�i,�−i), D), µi)]

E[Wi(π((�∗i ,�−i), D), µi)]

Definition. The incentive ratio ζ(π) ∈ R+ of a matching
policy π is given by:

ζ(π) = max
D,�−i, µiB�i

E[Wi(π((�i,�−i), D), µi)]

E[Wi(π((�∗i ,�−i), D), µi)]

If a policy has an incentive ratio of 1, then it is truthful.
There are many reasons that we may expect a policy with
bounded incentive ratio to do well. A bounded incentive ra-
tio implies truth telling is a good approximation to the opti-
mal report. If computing the optimal report is computation-
ally intractable for the agent, being truthful is therefore an
attractive alternative, especially if the approximation ratio
implied by the incentive ratio is tight. In summary, we seek
matching policies with good guarantees when it comes to
both incentive ratio and distortion. This topic is treated in
detail in the forthcoming sections.



3 The Offline SBM Setting
In this section, we present our analysis of the offline SBM
setting. We first provide a lower bound on the distortion
achievable by both randomised and deterministic policies.
Then, we discuss why trivial extensions of truthful one-shot
matching algorithms do not result in truthful policies. In-
stead, we focus on designing policies which use truthful
one-shot matching mechanisms as a basis, and have bounded
incentive ratio. More precisely, we present the RRSD algo-
rithm. We show that the incentive ratio of RRSD is bounded
below by 1−1/e, and provide upper bounds on the distortion
achieved by RRSD, which match our previously established
lower bounds on the best distortion achievable by any ran-
domised algorithm.

3.1 Lower Bounds on the Distortion of
Deterministic and Randomised Policies

First, we prove that the distortion of any deterministic pol-
icy is Ω(s). That is, the distortion of any deterministic policy
scales linearly with the number of services in the best case.
In the proof, we first carefully construct a set of ordinal pref-
erences. Then, given any matching sequence M , we show
that there exists a set of reward profiles which induces the
aforementioned ordinal preferences and on which M incurs
distortion of order Ω(s).3

Theorem. The distortion of any deterministic policy is
Ω(s).

Theorem 1. The distortion of any deterministic policy is
Ω(s).

Next, we prove that the distortion incurred by any ran-
domised policy is Ω(

√
s). To prove this, we first show that

it is sufficient to consider only anonymous policies. That is,
policies that assign each service to each agent the same num-
ber of times in expectation for all possible preference pro-
files. Then, we construct a set of reward profiles which yields
the desired distortion for all anonymous truthful policies.

Theorem. The distortion of the best randomised policy is
Ω(
√
s).

Theorem 2. The distortion of the best randomised policy is
Ω(
√
s).

3.2 Constructing Truthful Algorithms for the
Offline SBM Setting

As previously mentioned, we assume that agents submit re-
ports with the intention of maximising their own utility. As
a result, the distortion incurred by a policy may not reflect
its performance in practice, as agents may be incentivised
to misreport their preferences in order to increase their util-
ity. Note that in standard one-shot one-sided matching prob-
lems, this issue is sidestepped via the employment of truthful
policies, like RSD. In addition, the restriction to considering
truthful policies is well justified by the revelation principle.
In a similar way, we would like to develop truthful algo-
rithms for the offline SBM setting.

3All missing proofs are deferred to the full version

One may be tempted to apply such truthful one-shot poli-
cies to our setting directly. That is, to apply an algorithm
such as RSD repeatedly on every time step in sequence in
order to devise a matching sequence. This intuition is cor-
rect when there is no blocking, as the matching problems
for each time step are then independent of each other. How-
ever, with blocking, the matchings from previous time steps
will have a substantial effect on the set of matchings which
preserve the feasibility of the matching sequence in future
rounds. As a result, immediately obvious approaches, such
as matching according to RSD repeatedly, do not result in
truthful policies.

One simple way of generating truthful policies is to run
a truthful one-shot one-sided matching policy once every D̃
time steps and simply return the empty matching in the re-
maining time steps. Such an approach decouples each time
step from the next, resulting in truthfulness, but comes at the
cost of only matching in at most dT/D̃e rounds.

Instead, we construct an algorithm for the offline SBM
setting from truthful one-shot matching algorithms in a dif-
ferent manner. More specifically, we propose the repeated
random serial dictatorship (RRSD) algorithm, which uses
RSD as a basis. Whilst RRSD is not truthful, it does have
bounded incentive ratio.

3.3 A Greedy Algorithm for the Offline SBM
Setting

The RRSD algorithm slowly builds up a matching sequence
M over time by iterating through agents and services. In
other words, RRSD begins with the empty matching se-
quence, where M(t, i) = 0 for all t and i ∈ N . To begin,
RRSD samples a permutation of agents σ uniformly at ran-
dom. Next, RRSD iterates through the agents in the order
given by the permutation sampled. For each agent i, RRSD
iterates through services in the order specified by the pref-
erence ordering �̃i reported by agent i. For a given service
j, RRSD repeatedly assigns service j to agent i at the ear-
liest time step which does not cause the matching sequence
to become infeasible. When no such time step exists, RRSD
moves onto the next service in agent i’s preference order-
ing. Once RRSD has iterated through the entire preference
ordering of agent i, RRSD moves onto the next agent in the
permutation σ and repeats this process until the end of the
permutation is reached. The pseudocode for RRSD is given
in the full version.

We will now briefly give the intuition behind RRSD. In
essence, RRSD attempts to mimic the RSD algorithm for
one-shot matching problems by allowing each agent to se-
quentially choose a feasible assignment of services over the
entire time horizon (whilst respecting the assignments cho-
sen by previous agents) via its reported ordering. In the case
of RSD, given an agent’s preference ordering, the same as-
signment is always optimal no matter the underlying the re-
ward profile of the agent. That is, it is optimal for the agent
to be assigned its most preferred available service, no matter
its cardinal preferences. As a result, RSD is trivially truthful
in the one-shot matching setting. In contrast, in the offline
SBM setting, the optimal assignment of services can be dif-



ferent for two reward profiles which induce the same prefer-
ence ordering. Hence, there is no trivial assignment, based
on the preference ordering submitted by the agent which
guarantees that agents are truthful.

Instead, given an agent’s preference ordering, we attempt
to find an assignment which performs reasonably well, no
matter the underlying reward profile of the agent. RRSD uses
a greedy algorithm to compute the assignment given to an
agent. As long as this greedy algorithm is a good approxi-
mation of the optimal assignment, no matter the agent’s un-
derlying reward profile, then RRSD will have a bounded in-
centive ratio. The next theorem formalises this argument.
Theorem 3. The incentive ratio of RRSD is asymptotically
bounded below by 1− 1/e.
Theorem. The incentive ratio of RRSD is asymptotically
bounded below by 1− 1/e.
Remark. It is an open question as to whether we can achieve
incentive ratios better than 1 − 1/e when RRSD is used.
In particular, one can show that many scheduling problems
such as generic job interval scheduling and (dense) pin-
wheel scheduling can be reduced to the optimal manipula-
tion problem each agent faces in RRSD. Whilst it is known
that generic job interval scheduling problems are MAXSNP-
hard (Chuzhoy, Ostrovsky, and Rabani 2006), it is still not
known whether there exists a scheduling algorithm with ap-
proximation ratio better than 1− 1/e.

We now provide an upper bound on the distortion
achieved by RRSD, which matches our previously estab-
lished lower bound for randomised policies described in
Theorem 2.
Theorem 4. The distortion of RRSD is at most O(

√
s).

Finally, we show that it is possible to match the previously
established lower bound for the distortion of deterministic
algorithms. More specifically, we show that a derandomised
version of RRSD incurs a distortion of at most O(s). The
main idea is that we can select O(n2 log n) permutations of
agents so that the number of times an agent i is selected in
the jth position is Θ(n log n). We can then run through these
permutations one by one instead of selecting one permuta-
tion uniformly at random as in the RRSD algorithm.
Theorem 5. There is an admissible deterministic policy
with distortion at most O(s) for any T ≥ O(n2 log(n))

4 SBM with Bandit Feedback
Note that, in order for the guarantees above to hold in prac-
tice, we must assume that agents are fully aware of their
ordinal preferences before matching begins. However, in
many real-world scenarios, agents may be initially unaware
of their preferences and learn them over time by matching
with services. In addition, the reward an agent receives for
being matched with a service may be inherently stochastic,
depending on unobservable aspects of the underlying envi-
ronment. With these concerns in mind we present a new se-
quential blocked matching setting, which we call the online
SBM setting with bandit feedback, or online SBM for short.

In the online SBM setting, matching occurs time step by
time step. At the beginning of each time step, every agent

must submit a report, �̃ti, to the planner. The planner is then
tasked with returning a matching of agents to services which
obeys the blocking constraints imposed by the matchings
from previous time steps. At the end of each time step, agent
i receives a reward, ri,t ∈ [0, 1], sampled from a distribution
with mean µi,j , where j is the service agent i was assigned
in the matching returned by the planner. Additionally, we
assume that each agent maintains an internal estimation,�ti,
of its own preference ordering at every time step, based on
the rewards received thus far.

We use H�t = (�̃1
, . . . , �̃t) to denote the report history

up to time step t. Furthermore, we use Hm
t = (m1, . . . ,mt)

to describe the matching history at the end of time step t.
We say that a matching history is feasible if its matchings
form a feasible matching sequence. Similarly, we use Hr

t =
(r1, . . . , rt) to denote the reward history. That, is the tuple of
reward vectors, rt, observed by the agents at every time step.
An (online) matching policy π = (π1, . . . , πT ) is a tuple
of functions πt(m|H̃�t , Hm

t , D) which assigns a probability
of returning the matching m given a report history H�t , a
feasible matching history Hm

t and a blocking delay matrix
D. Similarly to the offline setting, we say that a matching
policy is admissible if it always returns a feasible matching
sequence.

Likewise, an (online) report policy for agent i, ψ̃i =

(ψ̃1, . . . ψ̃t), is a tuple of functions ψ̃t(�̃ti|Hr
t , H

m
t , D)

which assign a probability of agent i reporting �̃ti at time
step t given a reward history Hr

t , a matching history
Hm
t , and blocking delay matrix D. We denote by ψ̃ =

(ψ̃1, . . . , . . . ψ̃n) the tuple of report policies used by the
agents. As before we use the notation ψ̃−i to denote the re-
port policies of all agents bar agent i and use ψ to denote
the tuple of report policies where each agent reports its in-
ternal estimation �ti at every time step. We say that an agent
is truthful if it employs the report policy ψi.

The goal of each agent is to employ a report policy that
maximises the sum of their own rewards across the time
horizon. In contrast, goal of the planner is to employ a
matching policy which maximises the sum of rewards across
all agents and across all time steps.

In the bandit literature, a performance metric that is typ-
ically used to measure the efficiency of a policy is regret,
which is defined as the expected difference between the re-
wards accumulated by a matching policy, and the expected
reward accumulated by the best fixed matching policy in
hindsight. That is, the best policy which repeatedly selects
the same matching in as many time steps as possible. Such
a benchmark policy may have very poor performance rela-
tive to the optimal matching sequence in expectation, and as
such, the classical notion of regret is an unsuitable perfor-
mance measure in the online SBM setting. To resolve this
issue, we propose the following regret definition:
Definition 4. The dynamic α-regret of a policy π is:

Rαπ(D,µ, T ) = αSW(M∗, µ)− Eψ,π

[
n∑
i=1

T∑
t=1

ri,t

]
In other words, we compare the expected performance of



a matching policy against a dynamic oracle which returns
an 1/α-optimal solution to the corresponding offline SBM
problem, under the assumption that agents truthfully report
their internal estimation of their preferences at each time
step. Recall that, in the offline SBM setting, the distortion
incurred by any policy is at least Ω(s). As a result, we can-
not expect to construct algorithms with vanishing 1/α-regret
for α <

√
s. In addition, one would not expect any match-

ing policy to have low dynamic regret if the internal estima-
tions computed by each agent are inaccurate. For example, if
any agent’s internal estimator consists of returning a random
preference ordering, then we cannot hope to learn about said
agent’s preferences. As a result, we need to make reasonable
assumptions regarding the internal estimator of each agent.

Similar to distortion for the offline SBM setting, dynamic
α-regret is only a meaningful performance measure for poli-
cies which motivate agents to adopt truthful reporting poli-
cies. Inspired by the concept of incentive ratio for the offline
SBM setting, we define a new notion of regret which, given a
matching policy π captures the expected gain in cumulative
reward an agent can achieve by misreporting.

Definition 5. For a given matching policy π, we define agent
i’s α–IC regret (or α incentive compatible regret) as follows:

Iαπ(D,µ, T ) = αmax
ψ̃

E(ψ−i,ψ̃i),π

[
T∑
t=1

ri,t

]
−Eψ,π

[
T∑
t=1

ri,t

]
Note that for some matching policies, computing the op-

timal reporting policy may be computational intractable. If
agents have vanishing α-IC regret for a such policy, then
adopting a truthtelling forms a good approximation of each
agent’s optimal reporting policy. If this approximation is bet-
ter than what can be computed by the agent, then we can
expect each agent to adopt their truthful reporting policy.
Thus, we seek matching policies with good guarantees with
respect to both dynamic α-regret and α-IC regret.

4.1 Algorithms for Online SBM
Next, we present a matching policy which achieves mean-
ingful guarantees with respect to both dynamic α-regret and
α-IC regret. More precisely, we present the bandit repeated
random serial dictatorship (BRRSD) algorithm. Before we
describe BRRSD formally, we first state our assumptions re-
garding the internal estimator used by each agent.

Let µ̂i,j denote the empirical mean of the reward samples
agent i receives from being assigned service j. We say that
an agent i is mean-based if service a is preferred to service b
in �ti if and only if µ̂i,a ≥ µ̂i,b. That is, a mean-based agent
prefers services with higher empirical mean reward. From
hereon, we assume that all agents are mean-based.

Additionally, we use ∆min to denote the smallest gap in
mean rewards between two services for the same agent. That
is, ∆min = mini,a6=b |µi,a − µi,b|. Note that ∆min is analo-
gous to common complexity measures used in bandit ex-
ploration problems. Intuitively, if the mean rewards received
from being assigned two services are similar, it will take
more samples for a mean-based agent to decide which ser-
vice they prefer.

We are now ready to describe BRRSD. BRRSD is split into
two phases. In the first phase, BRRSD assigns each agent
each service exactly

⌈
2 log(2Tsn)/∆2

min

⌉
times. BRRSD

performs these assignments in a greedy manner. At each
time step, BRRSD iterates through the agent-service pairs
that still need to be assigned in an arbitrary order. If an agent-
service pair does not violate blocking constraints, then it is
added to the current matching. Once this iteration is com-
pleted, or all agents have been assigned services, the match-
ing is returned and BRRSD moves onto the next time step.
Once all required assignments have been completed, BRRSD
waits until all services are available, matching no agents to
services in the meantime. Note that this takes a maximum
of D̃ rounds. Then, BRRSD begins its second phase. At the
beginning of the next time step, BRRSD observes the report
profile �̃ti and selects matchings according to RRSD using
this report profile for the remainder of the time horizon. The
full pseudocode for BRRSD is deferred to the full version.
BRRSD falls in the class of explore-then-commit (ETC)

algorithms common in the bandit literature. The first phase
of BRRSD serves as an exploration phase in which agent’s
learn their preference ordering. Meanwhile, the second
phase of BRRSD serves as exploitation phase in which
agents have the opportunity to disclose their accumulated
knowledge to the planner in the form of ordinal preferences.
Observe that this decoupling of exploration and exploitation
avoids complicated incentive issues that may arise for se-
quential algorithms, which make no such clear separation.

The exploration phase of BRRSD is simple relative to
typical approaches in the bandit exploration literature. One
may hope to apply a more complicated scheme for explo-
ration, however approaches with better performance guar-
antees typically depend directly on the reward samples ob-
served, which the planner does not access to. The next theo-
rem describes the guarantees of BRRSD.
Theorem 6. Under the assumption that agents are mean-
based, the following is true for all µ and D:
(i) The dynamic (1/

√
s)-regret of BRRSD is

O
(
D̃
√
s log (Tsn) /∆2

min

)
.

(ii) The (1 − 1/e)-IC regret for all agents under BRRSD is

O
(
D̃s log (Tsn) /∆2

min

)
.

(iii) The greedy algorithm used by BRRSD in the exploration
phase uses at most twice as many time steps as the shortest
feasible matching sequence which completes the required
assignments.

5 Conclusions and Future Work
In this paper, we introduced the sequential blocking match-
ing (SBM) model to capture repeated one-sided matching
with blocking constraints. For the offline setting, we lower
bounded the performance of both deterministic and ran-
domised policies, presented algorithms with matching per-
formance guarantees and bounded incentive ratio. Then, we
analysed an online SBM setting, in which agents are initially
unaware of their preferences and must learn them. For this
setting, we presented an algorithm with sublinear regret with
respect to an offline approximation oracle.



There are many interesting directions for future work.
A natural generalisation would be to consider a two-sided
matching setting (Roth and Sotomayor 1992) where services
also hold preferences over agents. Additionally, our algo-
rithms for both the offline and online settings are centralised.
It is worth investigating whether similar performance guar-
antees can be achieved by a decentralised approach. Further-
more, we assumed that the preferences are static over time.
It remains to be seen whether our approach generalises to
settings where agents’ preferences are dynamic and change
over time (Bergemann and Välimäki 2019).
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A Proofs
A.1 Proof of Theorem 1
Proof. We now consider an instance of SBM with n agents
and n services, where each agent has the same preferences.
That is, �a = �b for all (a, b) ∈ N . Furthermore, assume
that, without loss of generality, service j is in the jth position
of this preference ordering. That is, assume that �a(j) = j

for all j ∈ S. Lastly, assume that the blocking delay on each
of the n services is D̃ for all agents. In other words, put more
formally, assume that Dij = D̃ for all i ∈ N and all j ∈ S.

We proceed with the proof in the following manner. Given
the matching sequence M returned by a deterministic pol-
icy using the above preference profile and blocking delay
matrix, we will show that there exists a set of reward pro-
files which induce the preference profile, and on which the
matching sequence M suffers a distortion of O(n) = O(s).
We construct this reward profile via an inductive argument.

Firstly, observe that there must exist some agent, i1 ∈ N ,
who is assigned service 1 at most T/D̃n times in the match-
ing sequence M by the pigeonhole principle. We set the re-
ward profile of agent i1 to (1, 0, . . . , 0). Disregarding agent
i1, observe that there must exist different agent, i2 ∈ N ,
who is assigned service 1 or 2 at most T/D̃(n − 1) times,
once again by the pigeonhole principle. We set the reward
profile of agent i2 to (1/2, 1/2, 0, . . . , 0). Disregarding both
agents i1 i2, we can find a new agent, i3 ∈ N , who has been
assigned services 1, 2 or 3 at most T/D̃(n−2) times. we set
the reward profile of agent i3 to (1/3, 1/3, 1/3, 0 . . . , 0). We
proceed in this pattern for a total of n steps, until all agents
are assigned reward profile. Note that the reward profiles in-
duce the desired preference profile (assuming that a numeric
tie-breaking rule is used).

Given the assigned reward profiles, it is obvious that
an optimal matching sequence assigns service j to agent
ij whenever the service is available. The social welfare
of this optimal matching sequence is therefore of order
O(log (n)T/D̃). In contrast, the matching sequence M has
social welfare of order O(log (n)T/D̃n). As we can always
construct such a reward profile, no matter the matching se-
quence M returned by a policy, this implies that the distor-
tion of any policy is of order O(n) = O(s).

A.2 Proof of Theorem 2
Proof. Similarly to Theorem 1, we consider an instance of
SBM with n agents and n services. Additionally, assume
that the blocking delays for all services is the same for all
agents. That is, Dij = d for some d ≤ D̃.

Before moving to the content of the proof, we first show
that it is sufficient to consider only anonymous policies.
Given a preference profile�, we letAij(�) ∈ {0, 1, . . . , T}
denote the random variable that indicates the number of
times agent i was allocated service j. We call a randomised
matching algorithm anonymous if E[Aij(�1, . . . ,�n)] =
E[Aσ(i)j(�σ(1), . . . ,�σ(n))] for all permutations σ. In other
words, a matching policy is anonymous if each agent is as-
signed each policy the same number of times in expectation,
regardless of the agents’ relative positions in the preference
profile.

Now, suppose we are given a matching policy which has
distortion at most ρ i.e.

∑
ij µijE[Aij(�)] ≥ ρOPT(µ). We

can consider a new matching policy that selects a permuta-
tion σ uniformly at random and then applies the same policy
on the input �σ = (�σ(1), . . . ,�σ(n)). Then the expected



social welfare of the new policy is

Eσ

∑
ij

µσ(i)jAσ(i)j(�σ)

 ≥ Eσ [ρOPT(µσ)] = ρOPT(µ)

The first inequality follows because the original policy
gives ρ distortion even when applied to the profile µσ and
the second equality follows because the optimal welfare
(OPT(µ) =

∑
ij µijA

∗
ij) is invariant to permutation. There-

fore, the new anonymous policy has distortion at most ρ.
This implies that for any matching policy, there is an anony-
mous matching policy with identical performance with re-
spect to distortion. As a result, from now on, we restrict our
consideration to anonymous matching policies without loss
of generality.

Next we will show that any anonymous matching policy
incurs distortion of order Ω(s) via construction of a special
set of reward profiles. The reward profiles we construct are
very similar to the ones constructed in the proof of Lemma 8
of (Filos-Ratsikas, Frederiksen, and Zhang 2014). For each
i ∈ [
√
n], define

µi,j =

{
1−

∑
j 6=i µi,j if j = i

n−j
10n3d o.w.

And for each ` ∈ [
√
n− 1], define

µi+`
√
n,j =


1−

∑
j 6=i µi,j if j = i

1√
n
− j

10n2 if j 6= i & j ≤
√
n

n−j
10n3d o.w.

The n agents are grouped into
√
n groups and all agents in

group i have the same preference order. Let Gi = {i} ∪
{i+ `

√
n : ` = 1, . . . ,

√
n− 1}. Observe that all the agents

in group Gi have preference order i � 1 � . . . � i − 1 �
i+ 1 � . . . � n. Therefore, for any service j, all the agents
in group Gi have the same expected number of allocations.
Let us call this number of allocations Tij . Since any service
j can be allocated at most T/d times we have

√
n∑

i=1

∑
p∈Gi

Tij ≤
T

d
⇒

√
n∑

i=1

Tij ≤
T

d
√
n

(1)

We now bound the expected social welfare of any random-
ized and anonymous matching policy with the given reward
profile. For any agent i ∈ [

√
n], the maximum expected util-

ity over the T rounds is at most Tii +
∑
j 6=i Tij

n−j
10n3d ≤

Tii + O
(
T
nd

)
. Now consider an agent i + `

√
n for ` ∈

[
√
n−1]. Such an agent’s utility over the T rounds is at most

TiiO
(

1√
n

)
+
∑
j 6=i,j≤

√
n Tij

1√
n

+
∑
j>
√
n Tij

n−j
10n3d ≤

O
(

1√
n

)∑√n
j=1 Tij + O

(
T
nd

)
. Therefore, the total utility

over all the n agents is bounded by
√
n∑

i=1

Tii +O

(
1√
n

) √n∑
i=1

√
n−1∑
`=1

√
n∑

j=1

Tij +O

(
T

d

)

≤

√
n∑

i=1

Tii +

√
n∑

i=1

√
n∑

j=1

Tij +O

(
T

d

)

≤ 2

√
n∑

j=1

√
n∑

i=1

Tij +O

(
T

d

)

≤ 2

√
n∑

j=1

T

d
√
n

+O

(
T

d

)
= O

(
T

d

)
where the last line follows from equation (1). On the other
hand, any deterministic and non-anonymous allocation rule
that always assigns service i to agent i every D rounds
achieves a social welfare of at least

√
nTd (1 − 1

10nd ) ≥
O
(
T
√
n

d

)
. This establishes a bound of O(

√
n) = O(

√
s)

on distortion.

A.3 Proof of Theorem 3
Proof. Without loss of generality, assume that agent k is se-
lected at random in the kth position of the permutation σ
sampled by RRSD. Assume, for the moment, that agents 1 to
k − 1 are not allocated any services. Additionally, suppose
that agent k is free to choose its own allocation of services
independent of the RRSD algorithm. Under these assump-
tions, agent k is posed with an offline blocking bandits prob-
lem as described in (Basu et al. 2019). The solution proposed
by RRSD corresponds to a greedy approach in which the best
service available is allocated at each time step. Thus, proving
that such a greedy algorithm has an approximation ratio of
1− 1

e implies the result in this restricted case. This fact was
proven in (Basu et al. 2019). We will show that this result
holds more generally, regardless of the allocations chosen
by RRSD in previous time steps.

Again, assume agent k is free to choose its own allocation,
independent of RRSD. That is, agent k is tasked with solving
the following integer linear programming problem (ILP):

max
xt,j

T∑
t=1

s∑
j=1

µk,jxt,j

s.t. xt,j ∈ {0, 1} ∀j ∈ S
yt,j + xt,j ≤ 1 ∀t ∈ [T ],∀j ∈ S
s∑
j=1

xt,j = 1 ∀t ∈ [T ]

∑
t∈[Dk,s]

xt+t0,j ≤ 1 ∀t0 ∈ T, ∀j ∈ S

The variables xt,j indicate whether agent k is assigned ser-
vice j at time step t. Meanwhile, the constants yt,j indicate
whether agent k cannot be assigned service j on time step
t due to blocking delay constraints imposed by allocations



of service j to agents 1 through k − 1. The second set of
constraints ensure that the assignments chosen by agent k
do not breach the delay constraints imposed by preexisting
assignments of services to agents 1 to k − 1. The third set
of constraints ensure that agent k may only be matched to
one service at each time step. Lastly, the fourth set of con-
straints ensure that agent k chooses a sequence of assign-
ments which obeys its own blocking delay constraints.

We will proceed to develop an upper bound on this ILP
through a series of relaxations. We will then compare this
upper bound to an assignment which is outperformed by
RRSD to prove an asymptotic bound on the incentive ratio,
as desired.

Computing the upper bound of the optimal solution.
We derive an upper bound for this ILP through a series of
relaxations. First of all, we relax the integer constraints, so
that at each time step agent k can assign itself a fractional
mixture of services. Additionally, we replace the constants
yt,j with variables zt,j constrained to lie in [0, 1]. The idea
in introducing these variables is to remove the blocking con-
straints imposed by the previous players and replace it with
a constraint that stipulates that the total reduction in the time
horizon available for agent k to assign itself each service j
must remain the same. That is, agent k is free to fractionally
redistribute the blocked parts of the time horizon imposed
by the previous k − 1 agents. This results in the following
linear program (LP):

max
xt,j , zt,j

T∑
t=1

s∑
j=1

µk,jxt,j

s.t. xt,j ∈ [0, 1] ∀j ∈ S
zt,j + xt,j ≤ 1 ∀t ∈ [T ],∀j ∈ S
s∑
j=1

xt,j = 1 ∀t ∈ [T ]

T∑
t=1

zt,j =

T∑
t=1

yt,j ∀j ∈ [k − 1]∑
t∈[Dk,s]

xt+t0,j ≤ 1 ∀t0 ∈ T, ∀j ∈ S

It should be immediately obvious that this problem can be
reformulated further, and, in fact, the individual fractional
assignments per time step can be replaced with fractional as-
signments of agents to services for the entire time horizon.
Similarly, the newly introduced auxiliary variables zt,j can
be removed completely. In other words, it is clearly optimal
for agent k to spread the blocked parts of the time horizon
evenly across all time slots, and then greedily match services
to itself in each time step whilst obeying its own delay con-
straints. Therefore, it only matters how often each service is
matched to agent k, as the fractional amount matched for ev-
ery time step will be the same. This leads us to the following,

equivalent, LP reformulation:

max
aj

s∑
j=1

ajµk,j ∀j ∈ S

s.t. aj ∈ [0, T/Dk,j ]

aj +

T∑
t=1

yt,j ≤ T ∀j ∈ S

s∑
j=1

aj = T

Additionally, we define Cj = {t ∈ [T ] : yt,j = 1} as
the set of time steps in which agent k cannot (in practice) be
matched with service j because of delay constraints imposed
by previous agents. Next, we show that this LP can be fur-
ther formulated as a fractional bounded knapsack problem
as follows.

Consider each service j as an item with weight Dk,j and
value µk,j . From this perspective, aj is the (fractional) num-
ber of times we pack item j into a knapsack (whose ca-
pacity is T ). Note that the maximum value aj can get in
the previous LP is determined by the pattern of Cj , and is
also capped by T/Dk,j . Therefore, in our bounded knap-
sack formulation, we can replace the constraints of aj to
be aj ≤ T/Dk,j − bj where bj is the number of blocks
caused by Cj . Note that in general bj 6= |Cj |, as it heav-
ily depends on the pattern of the blocks. Since aj ≥ 0, we
have that T

Dk,j
≥ bj . It is well known that this fractional

bounded knapsack admits the optimal solution ∀j ∈ S, a∗j =

min{T/Dk,j− bj , (T − bj−
∑j−1
l=1 a

∗
l )

+}. Note that the so-
lution a∗j implicitly specifies an upper bound for the original
ILP.

Computing the lower bound of the greedy sequence of
matches. Now consider the greedy sequence of matches for
agent k generated by the RRSD algorithm. Let agj denote the
number of times service j is matched to agent k by RRSD.
Similarly letAj denote the set of time slots in which agent k
is allocated services 1 to j− 1. The time slot where the peri-
odic matching of service j to agent k collides with previous
matches is denoted by colj = {t ∈ Aj ∪Cj : Dk,j | t}. The
number of times service j is assigned to agent k is at least
d(T − |colj |)/Dk,je. This holds because for service j we
can remove the time slots with collisions and perform peri-
odic placement perfectly with the remaining. T −|colj | time
slots. Note that |colj | ≤

∑j−1
l=1 a

g
l +

∑T
t=1 yt,j − |Aj ∩Cj |.

We now define for each j ∈ S, a′j = Tj/Dk,j − bj ,

and Tj =
(
T −

∑j−1
l=1 a

′
l + |Aj ∩ Cj |

)+
. We claim that∑j

l=1 a
g
l ≥

∑j
l=1 a

′
l. In turn, this immediately implies that∑s

j=1 a
g
jµk,j ≥

∑s
j=1 a

′
jµk,j . In other words, we will at-

tempt to prove that the solution a′j specifies a lower bound
on the performance of RRSD.

We prove the claim using induction on j. We know that
ag1 ≥ d(T − b1)D1,ke, so the base case is satisfied. By the
inductive hypothesis, assume that

∑j
l=1 a

g
l ≥

∑j
l=1 a

′
l for



all j < j′. We have:

agj′ ≥ d(T − |colj′ |)/Dk,j′e

≥ 1

Dk,j′

T − j′−1∑
l=1

agl − bj′ + |Aj′ ∩ Cj′ |


=

1

Dk,j′

T − j′−1∑
l=1

a′l −
j′−1∑
l=1

(agl − a
′
l)− bj′ + |Aj′ ∩ Cj′ |


= a′j′ −

1

Dk,j′

j′−1∑
l=1

(agl − a
′
l)

Thus we have that

j′∑
l=1

(agl − a
′
l) ≥ (1− 1/Dk,j′)

j′∑
l=1

(agl − a
′
l)

which means
∑j′

l=1 a
g
l ≥

∑j′

l=1 a
′
l, and the inductive hy-

pothesis holds. In what follows, we will refer to a′ as the
lower bound solution. Similarly, we will refer to a∗ as the
upper bound solution.

Comparing the bounds. Note that for any j, if T
Dk,j

= bj
then both the upper bound and lower bound solutions will
not contain service j (as a′j ≤ a∗j = 0). Therefore, with-
out loss of generality, we assume that T

Dk,j
> bj . We set

D′k,j such that 1
D′k,j

= 1
Dk,j

− bj
T . With induction in j we

can show that a′j = T
D′k,j

∏j−1
l=1 (1 − 1

D′k,l
). In addition, we

can also show that a∗j ≤ T
D′k,j

+ 1. The remainder of the

proof consists of showing that the allocation a′j performs
asymptotically well compared to the optimal allocation a∗
via the closed forms above, which in turn implies the de-
sired asymptotic bound on the incentive ratio of RRSD. The
proof of this fact is contained in the proof for the blocking
bandits setting provided by (Basu et al. 2019), and as a result
is omitted. We point the enthusiastic reader to the ’Greedy
Lower Bound vs LP Upper Bound’ subsection of the proof
of Theorem 3.3 in (Basu et al. 2019).

A.4 Proof of Theorem 4
Proof. Our proof proceeds by upper bounding the distortion
of RRSD by the distortion of RSD on a new set of reward
profiles. The distortion of RRSD is given as

ρ = sup
µ,D

SW(M∗(µ,D), µ)

E[SW(RRSD(�, D), µ)]

We first upper bound SW(M∗(µ,D), µ) by expected wel-
fare on a new instance with no blocking. For this new in-
stance, there are D̃n total agents and s services. The Dmaxn
agents are partitioned into n groups, one for each agent in
the original profile. We will write the group of agents corre-
sponding to agent i in the original profile by Gi and the `-th

agent in group Gi will be denoted by i`. The new reward
profile µ̃ ∈ RDmaxn×s is defined as follows

µ̃i`,j =
µi,j
Dij

∀j ∀i` ∈ Gi

In the new instance, there is no blocking i.e. all the blocking
lengths are one.

Now let π∗ = M∗(µ,D) be the optimal policy for the
original instance µ with blocking. We now construct a new
policy for the non-blocking setting with reward matrix µ̃.
The new policy π̃ works as follows. At time t, if π∗ allocated
service j to agent i, then we select one available agent from
the group Gi (say i`) and repeatedly allocate service j to
agent i` for the next Di,j rounds i.e. we set π̃t′(i`) = j for
t′ = t, t + 1, . . . , t + Di,j − 1. Notice that, since there are
D̃ agents in group Gi, it is always possible to find such an
available service i` whose allocation hasn’t been determined
at round t. This is because under the original policy π∗, at
any time at most D̃ services can be simultaneously blocked
as result of being assigned to agent i. Algorithm 1 describes
how to construct the new policy π̃ from the old policy π∗.

Let us now compare the social welfare of policy π∗ with
reward instance µ, and social welfare of policy π̃ with re-
ward instance µ̃. Notice that whenever π∗ allocates service
j to agent i, a corresponding agent (say i`) is assigned ser-
vice j exactlyDi,j times under the new policy π̃. As the new
rewards are normalized by the blocking lengths, this implies
that the total reward gathered by i under π∗ is the same as
the total reward gathered by all the agents in Gi under the
new policy π̃. Thus, summing over all the agents, we have
SW(π∗, µ) = SW(π̃, µ̃).

Now observe that, under the new instance µ̃, there is no
blocking, so the optimal allocation rule is obtained by ap-
plying a fixed matching (say σ∗)4 repeatedly over the T
rounds. Let SW0(σ∗, µ̃) be the one-round social welfare of
the matching σ∗. Then under the non-blocking reward in-
stance µ̃, the best possible social welfare is T · SW0(σ∗, µ̃).
This gives us the following bound on the welfare of the orig-
inal policy π∗ for the blocking instance.

SW(π∗, µ) ≤ SW(π̃, µ̃) ≤ T · SW0(σ∗, µ̃) (2)

We now prove a lower bound on the expected social wel-
fare of RRSD under the original reward instance µ. RRSD
is a randomized policy, but for a given order of agents, the
sequence of assignments generated by RRSD becomes a de-
terministic policy. Any such deterministic policy π can be
converted to an equivalent policy (say g(π)) through Algo-
rithm 1. Moreover, the new policy g(π) preserves the social
welfare under the new reward instance µ̃. The expected so-
cial welfare of RRSD is given as

E[SW(RRSD, µ)] = Eπ∼RRSD[SW(π, µ)]

= Eπ∼RRSD[SW(g(π), µ̃)]

4Ideally σ∗ is an assignment from Dmaxn agents to s services
based on the optimal achievable social welfare and not a one-to-one
matching. But we will use the term matching instead of assignment
to be consistent with the rest of the paper.



Algorithm 1: Policy Conversion (π∗ → π̃).
Input: T , N , S, D, Policy π∗
Output: π̃
/* Matrix F keeps track of the

available agents within each
group Gi. */

1 F (i, i`) = 0 ∀i` ∈ Gi ∀i ∈ N
2 for t ∈ {1, . . . , T} do
3 for i ∈ N do
4 if π∗t (i) = j then

/* Find an available agent
within group Gi */

5 Choose i` s.t. F (i, i`) = 0
6 π̃t′(i`) = j ∀t′ ∈ [t, . . . , t+Dij − 1]
7 F (i, i`) = 1
8 end

/* If any arm becomes
available under π∗, then we
make corresponding agents
available */

9 for j ∈ S do
10 if π∗t−Di,j+1(i) = j then

/* ij ∈ Gi is the
corresponding agent
with repeated
allocations from
{t−Di,j + 1, . . . , t} under π̃

*/
11 F (i, ij) = 0
12 end
13 end
14 end
15 end
16 return π̃

The last line follows from the welfare preservation property
of Algorithm 1. Moreover, given a policy π, the new pol-
icy g(π) actually assigns the same service repeatedly to the
same agent. This is because whenever the original RRSD as-
signs a new service to agent i, algorithm 1 selects a new
agent in Gi, and assigns the new service to the new agent.
Now given g(π) consider a simpler policy g′(π) which only
makes the first repeated assignments to any member from
Gi for all i. Since this new policy makes fewer assignments
than g(π) we have the following inequality.

Eπ∼RRSD[SW(g(π), µ̃)] ≥ Eπ∼RRSD[SW(g′(π), µ̃)]

Since the sequence π was generated under RRSD for the
original instance µ, an alternative way to generate the se-
quence g′(π) is the following: first random choose an order
of the set N , and then replace each agent i in this sequence
with a randomly choose agent from Gi. Let us call this new
randomised policy GRSD (short for grouped RSD). Then we
have,

Eπ∼RRSD[SW(g′(π), µ̃)] = T · E[SW0(GRSD, µ̃)]

= T · E[SW0(RSD, µ̃)]

The last equality follows from the following two observa-
tions. Under GRSD, the probability that an agent from group
i shows up at position j equals 1/n. On the other hand, under
RSD, the probability that an agent from group i shows up at
position j equals D̃ × (1/D̃n) = 1/n. Second, conditioned
on the event an agent from group i shows up at position j,
the expected utility of the agent is the same, as all the agents
in group Gi are duplicates of the original agent i and have
the same reward profile. Therefore, we have established the
following lower bound on the expected welfare of RRSD un-
der the original instance µ.

E[SW(RRSD, µ)] ≥ T · E[SW0(RSD, µ̃)] (3)

We can now bound the distortion of RRSD as follows.

ρ = sup
µ

SW(π?, µ)

Eπ∼RRSD[SW(π, µ)]

≤ sup
µ̃

T · SW0(σ?, µ̃)

T · Eσ∼RSD[SW0(σ, µ̃)]

= sup
µ̃

SW0(σ?, µ̃)

Eσ∼RSD[SW0(σ, µ̃)]

Where the inequality is due to the lower bound from eq. 3
and the upper bound from eq. 2. Since the last quantity is just
the distortion of RSD in the one-shot matching setting, we
can apply Lemma 4 from (Filos-Ratsikas, Frederiksen, and
Zhang 2014) and get a bound of O(

√
s) on the distortion.5

A.5 Derandomised RRSD
In this section, we present a deterministic matching policy
for the offline SBM setting. More precisely, we present de-
randomised RRSD (DRRSD), which, as the name suggests, is
a derandomised version of RRSD. Instead of sampling a sin-
gle permutation, like RRSD, DRRSD uses a set of 4n2 log(n)
permutations. In addition, this set is constrained to ensure
that the fraction of permutations in which an agent i appears
in the jth position is at least 1

2n . The following lemma stip-
ulates that such a set of permutations always exists.
Lemma 1. There exists a set of 4n2 log(n) permutations
over n agents such that the fraction of times agent i appears
at the jth position is at least 1

2n .

Proof. The proof is by the probabilistic method. Let us draw
P permutations over the n agents uniformly at random. Let
Xij be the fraction of times agent i appears at jth position
over the P permutations. Then E[Xij ] = 1/n. Moreover,
from the Chernoff-Hoeffding inequality,

P

(
Xij ≤

1

2n

)
≤ 2e−2P

1
4n2 = 2e−

P
2n2 .

Moreover, by a union bound over the n agents and n posi-
tions we get that

P

(
∃i, j Xij ≤

1

2n

)
≤ 2e−

P
2n2 .

5Filos-Ratsikas, Frederiksen, and Zhang (2014) actually con-
sidered a setting where n = s, but their proof naturally generalizes
for the setting with n > s



Therefore, if P ≥ 4n2 log(n), the probability of observing
a set of permutations such that each Xij ≥ 1/2n is positive.
This implies that if P = 4n2 log(n), we can find a required
set of permutations.

DRRSD splits the time horizon into evenly sized blocks.
In each block, a different permutation is used. Within each
block, agents are assigned to services by the same greedy
method used by RRSD, with one caveat. If the blocking de-
lay caused by the assignment of an agent-service pair would
overrun into the next block, then this assignment is skipped.
This to ensure that all services will be available at the begin-
ning of each block. The pseudocode for DRRSD is presented
in Algorithm 2.

Next, we prove that DRRSD incurs a distortion of order
O(s), which matches the lower bound we established for the
distortion of deterministic policies in Theorem 1.

A.6 Proof of Theorem 5
Proof. We will write ij to denote agent i’s jth favourite ser-
vice. That is, ij = �i(j). By Lemma 1, agent i gets her
jth favourite service (or better) in at least P

2n groups. Within
any such group, there are T/P time slots, and agent i is as-
signed her jth favourite service at least

⌊
T/(PDi,ij )

⌋
times.

Therefore, the total welfare guaranteed by DRRSD is at least

n∑
i=1

S∑
j=1

µi,ij
P

2n

⌊
T

PDi,ij

⌋

≥
n∑
i=1

s∑
j=1

µi,ij
P

4n

T

PDi,ij

=
T

4n

n∑
i=1

s∑
j=1

µi,ij
Di,ij

On the other hand, consider a matching algorithm that as-
signs service ij to agent i exactlyAi,j times. Whenever item
j is matched to agent i, it is blocked for Di,ij rounds. This
implies that Ai,j ≤ T/Di,ij . Therefore, the maximum wel-
fare achievable by such a matching algorithm is at most

n∑
i=1

s∑
j=1

µi,jAi,j ≤
n∑
i=1

s∑
j=1

µi,j
T

Di,ij

This establishes that the distortion of DRRSD is at most 4n =
O(s).

A.7 Proof of Theorem 6
The pseudocode for BRRSD is given in Algorithm 3. We
now restate the three claims of the Theorem 6, and proceed
with a proof below:
(i) The dynamic (1/

√
s)-regret of BRRSD is

O
(
D̃
√
s log (Tsn) /∆2

min

)
.

(ii) The (1 − 1/e)-IC regret for all agents under BRRSD is

O
(
D̃s log (Tsn) /∆2

min

)
.

(iii) The greedy algorithm used by BRRSD in the exploration

Algorithm 2: DRRSD (Derandomized RRSD)
Input: T , N , D, S, �, and a set of P = 4n2 log(n)

permutations {σ1, . . . , σP }
1 M = (mt)

T
t=1 = (∅)Tt=1

2 for p = 1, . . . , P do
3 σ = σp
4 for i = 1, . . . , n do

// Select agent
5 ag = σ(i)
6 start = (p− 1)T/P
7 end = pT/P
8 for j = 1, . . . , s do

// Select service
9 ser = �̃ag(j)

10 while available(M, ag, ser, start, end) do
11 t = earliest(M, ag, ser, start, end)
12 if overrun(ag, ser, t, end) then
13 break
14 end
15 M(t, ag) = ser
16 end
17 end
18 end
19 end
20 return M

phase uses at most twice as many time steps as the shortest
feasible matching sequence which completes the required
assignments.

Proof. Claim (i) can be proved as follows. By the end of
the exploration phase, we know that each agent has re-
ceived a reward from being assigned each service at least⌈
2 log(2Tsn)/∆2

min

⌉
times. In addition, note that this ex-

ploration phase takes at most D̃s
⌈
2 log(2Tsn)/∆2

min

⌉
+ D̃

rounds. By the Chernoff-Hoeffding inequality, we have that
for all agents i and services j:

P

(
|µi,j − µ̂i,j | ≥

∆min

2

)
≤ 1

Tsn

Thus, by the union bound and the assumption that all
agents are mean-based, with probability 1−1/T , the internal
estimation of every agent will be correct. From now, unless
explicitly stated, we will assume that all agents have learned
the correct preference ordering by the end of the exploration
phase.

For the sake of simplicity, let T1 denote the number of
rounds for which the exploration phase runs, and let T2 de-
note the number of rounds for which the exploitation phase
runs. Similarly let OPT1 denote the social welfare of the
optimal matching sequence of length T1, and OPT2 de-
note the social welfare of the optimal matching sequence
of length T2. Furthermore, let SW1(BRRSD) denote the so-
cial welfare generated by BRRSD in the exploration phase,
and SW2(BRRSD) denote the social welfare generated by
BRSSD in the exploitation phase.



As each reward is bounded between [0, 1], and the explo-
ration phase proceeds for at most D̃s

⌈
2 log(2Tsn)/∆2

min

⌉
+

D̃ time steps, it is easy to show that
1√
s
E [OPT1]− E [SW1(BRRSD)] ≤

1√
s

(
D̃s
⌈
2 log(2Tsn)/∆2

min

⌉
+ D̃

)
In addition, by Theorem 4, and the assumption that agents
are mean-based, we have the following lower bound:

1√
s
E [OPT2] ≤ E [SW2(BRRSD)]

Let OPT denote the social welfare of the optimal matching
sequence of length T . Combining the bounds above and not-
ing that OPT ≤ E[OPT1] + E[OPT2] we have:

1√
s
E[OPT]− E[SW(BRRSD)] ≤

1√
s

(
D̃s
⌈
2 log(2Tsn)/∆2

min

⌉
+ D̃

)
For the case when at least 1 agent does not learn the
correct preference ordering by the end of the exploration
phase, the ( 1√

s
)-dynamic regret of BRRSD is bounded above

by 1√
s
nT . Combining both cases together, we see that

the dynamic ( 1√
s
)-regret of BRRSD is bounded above by

1√
s

(
D̃s
⌈
2 log(2Tsn)/∆2

min

⌉
+ D̃

)
+ 1√

s
n, implying the

desired regret bound.
To prove claim (ii), note that the an agent can only af-

fect its assignment of services in the exploitation phase,
in which BRRSD deploys the RRSD algorithm. Thus, fol-
lowing a similar argument as above, replacing the use
of Theorem 4 with Theorem 3, we find that the (1 −
1/e)-IC regret of BRRSD is bounded above by (1 −
1/e)

(
D̃s
⌈
2 log(2Tsn)/∆2

min

⌉
+ D̃

)
+ (1− 1/e)n.

Finally, to prove claim (iii), we consider the following
scheduling problem:

Open Shop Scheduling: An instance of the open shop
problem consists of a set of N machines and S jobs. As-
sociated with each job j is a set of n independent tasks
j1, . . . , jn. The task j for job i must be processed on ma-
chine i for an uninterrupted Di,j time units. A schedule as-
signs every task ji to a time interval Di,j so that no job is
simultaneously processed on two different machines, and so
that no machine simultaneously processes two different jobs.
The makespan Cmax of a schedule is the longest job com-
pletion time. The optimal makespan is denoted by C∗max.

It is easy to show that the exploration phase of BRRSD
reduces to an open shop scheduling problem in which there
is a job for each agent i, and a task for each assignment of
service j to agent i. Similarly, observe that the assignment
procedure used by BRRSD is simply an implementation of
the greedy algorithm for open shop scheduling as described
by (Woeginger 2018). The claim follows from that fact that
the greedy algorithm is a 2-approximation for open shop
scheduling (see (Woeginger 2018)).

B Computational complexity of Offline SBM
In this section, we investigate the computational complexity
of the offline SBM setting. Observe that, when there is only
one agent, offline SBM corresponds to the stochastic block-
ing bandit problem defined in (Basu et al. 2019). Therefore,
offline SBM inherits the complexity issues of the offline
stochastic blocking bandit problem. More precisely, there is
no pseudopolynomial time algorithm for offline SBM setting
unless the randomised exponential time hypothesis (Calabro
et al. 2008) is false.
Theorem 7. Offline SBM problem does not admit a pseu-
dopolynomial time policy unless the randomised exponential
time hypothesis is false.

C Additional Pseudocode
In this section, for clarity, we provide additional pseudocode
regarding the subroutines used by RRSD, DRRSD, and
BRRSD. Pseudocode for available(), which checks whether a
service can be assigned to an agent, is given in Algorithm 4.
The pseudocode for earliest(), which checks the earliest time
step in which an agent can be assigned a service, is given in
Algorithm 5. The pseudocode for overrun(), which checks
whether an assignment of a service in one block of DRRSD
will cause a blocking delay in the next block, is given in Al-
gorithm 6. Lastly, the pseudocode for buildJobList(), which
specifies the agent-service assignments for BRRSD to com-
plete during the exploration phase, is given in Algorithm 7.



Algorithm 3: BRRSD (Bandit RRSD)
Input: T , N , D, S, ∆min

1 M = (mt)
T
t=1 = (∅)Tt=1

2 repeats =
⌈
2 log(2Tsn)/∆2

min

⌉
// Build a list of exploration

assignments
3 jobList = buildJobList(n, s, repeats)
4 explore = true
5 waiting = false
6 count = 0
7 for t = 1, . . . T do

// Exploration phase
8 if explore then

// Greedily add remaining
agent-service pairs to
current matching

9 for (i, j) in jobList do
10 if available(M , i, j, t) then
11 M(t, i) = j
12 jobList.remove(i, j)
13 end
14 end

// Start waiting phase
15 if jobList.isEmpty then
16 explore = false
17 waiting = true
18 end
19 end

// Wait for all services to
become available

20 if waiting then
21 if count < D̃ then
22 count++
23 end

// Start exploitation phase
24 else
25 �̃ = �̃t
26 Sample σ
27 waiting = false
28 end
29 end

// Exploitation phase
30 else
31 for i = 1, . . . n do
32 ag = σ(i)
33 for j = 1, . . . , s do
34 ser = �̃ag(j)
35 if available(M, ag, ser, t) then
36 M(t, ag) = ser
37 end
38 end
39 end
40 end
41 end
42 return M

Algorithm 4: Different versions of the auxiliary pro-
cess available

1 Function available(M , i1, j, t0):
2 if M(t0, i1) 6= 0 then
3 return false
4 end
5 for i = 1, . . . , n do
6 for t = t0 −Di,j + 1, . . . , t0 +Di,j − 1 do
7 if M(t, i) = j then
8 return false
9 end

10 end
11 end
12 return true
13 End Function
14 Function available(M , i, j, start, end):
15 for t = start, . . . , end do
16 if available(M, i, j, t) then
17 return true
18 end
19 end
20 return false
21 End Function
22 Function available(M , i, j):
23 start = 1
24 end = T
25 return available(M , i, j, start, end)
26 End Function

Algorithm 5: Different versions of the auxiliary pro-
cess earliest

1 Function earliest(M , i, j, start, end):
2 for t = start, . . . , end do
3 if available(M, i, j, t) then
4 return t
5 end
6 end

// Failure state
7 return 0
8 End Function
9 Function earliest(M , i, j):

10 start = 1
11 end = T
12 return earliest(M, i, j, start, end)
13 End Function

Algorithm 6: The auxiliary process overrun
1 Function overrun(M , i, j, t, end):
2 if t+Di,j − 1 ≥ end then
3 return false
4 end
5 return true
6 End Function



Algorithm 7: The auxiliary process buildJobList
1 Function buildJobList(n, s, repeat):
2 list = []
3 for i = 1, . . . , n do
4 for j = 1, . . . , s do
5 for k = 1, . . . , repeat do
6 list.append((i, j))
7 end
8 end
9 end

10 End Function


