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Abstract 9 

Mismanagement of plastic waste globally has resulted in a multitude of environmental issues, 10 

which could be tackled by boosting plastic recycling rates. Chemometrics has emerged as a 11 

useful tool for boosting plastic recycling rates by automating the plastic sorting and recycling 12 

process. This paper will comprehensively review the recent works applying chemometric 13 

methods to plastic waste sorting. The review begins by introducing spectroscopic methods and 14 

chemometric tools that are commonly used in the plastic chemometrics literature. The 15 

spectroscopic methods include near-infrared spectroscopy (NIR), mid-infrared spectroscopy 16 

(MIR), Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS). The 17 

chemometric tools include principal component analysis (PCA), linear discriminant analysis 18 

(LDA), partial least square (PLS), k-nearest neighbors (k-NN), support vector machines (SVM), 19 

random forests (RF), artificial neural networks (ANNs), convolutional neural networks (CNNs) 20 

and K-means clustering. This review revealed four main findings. 1) The scope of plastic waste 21 

should be expanded in terms of types, contamination and degradation level to mirror the 22 

heterogeneous plastic waste received at recycling plants towards understanding potential 23 

application in the recycling industry. 2) The use of hybrid spectroscopic method could 24 

potentially overcome the limitations of each spectroscopic methods. 3) Develop an open-25 

sourced standardized database of plastic waste spectra would help to further expand the field. 26 

4) There is limited use of more novel machine learning tools such as deep learning for plastic 27 

sorting.  28 

Keywords: Chemometrics; spectroscopy; hyperspectral imaging; spectral analysis; machine 29 

learning; plastic recycling   30 
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Abbreviations  31 

ABS - Acrylonitrile Butadiene Styrene 32 

HDPE – High Density Polyethylene 33 

HSI - Hyperspectral Imaging 34 

IR - Infrared 35 

LDPE – Low Density Polyethylene 36 

LLDPE – Linear Low Density Polyethylene 37 

LIBS – Laser-induced Breakdown Spectroscopy 38 

MIR – Mid Infrared 39 

NIR – Near Infrared 40 

PA - Polyamide 41 

PC - Polycarbonate 42 

PE - Polyethylene 43 

PLA – Polylactic Acid 44 

PMMA – Polymethyl Methacrylate  45 

POM - Polyoxymethylene 46 

PP – Polypropylene  47 

PS - Polystyrene 48 

PTFE - Polytetrafluoroethylene 49 

PU - Polyurethane 50 

PVC – Polyvinyl Chloride 51 

 52 
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1. Introduction 61 

Plastic is a versatile material used for a wide range of applications, such as packaging, 62 

construction and agriculture. The demand for plastics has increased 200-fold over the past 70 63 

years, with 381 million tons of plastics produced annually in 2015 and over 8 billion tons of 64 

total production produced to date (Geyer et al., 2017; Ritchie, 2018). Managing the resulting 65 

increase in plastics waste generated has become an increasingly critical global challenge. It has 66 

been estimated that only 9% of all the plastics ever generated have been recycled, while the 67 

vast majority were landfilled (Geyer et al., 2017). 68 

Due to the mismanagement of plastic waste, a large amount of plastic waste has leaked into the 69 

oceans; this has been linked to a multitude of environmental issues (Jambeck et al., 2015). 70 

Plastic is known to be extremely persistent in the environment and could disrupt the marine 71 

ecosystem through pathways such as ingestion or entanglement (Ferronato and Torretta, 2019). 72 

Microplastics also accumulate in the food chain and were recently found in human placenta 73 

(Ragusa et al., 2021), which could potentially be linked to harmful effects for humans 74 

(Campanale et al., 2020). At the current rate of plastic waste management, it is projected that 75 

the weight of plastics in the ocean would exceed that of fish by 2050 (Ellen MacArthur 76 

Foundation, 2017), highlighting the severity and urgency of addressing plastic pollution, which 77 

could be addressed by boosting plastic recycling. 78 

While plastic recycling rates have generally been trending upwards over the years, plastic 79 

recycling rates remain low globally at around 18% (OECD, 2018). The factors contributing to 80 

low recycling rate for plastics has been well studied, and includes various economic, 81 

information, technical and legislation barriers (Hopewell et al., 2009; Milios et al., 2018; 82 

Suchismita, 2017; Tesfaye and Kitaw, 2020). Proper sorting of plastic waste is one way to 83 

overcome some of the barriers. Plastic sorting has traditionally relied on a combination of 84 

manual labor and physical methods (Dodbiba and Fujita, 2004). These traditional methods 85 

utilize physical properties of plastic for sorting, such as density and electrical conductivity. 86 

More detailed reviews of these traditional methods have previously been conducted and will 87 

be out of scope of this paper (Al-Salem et al., 2009; Gundupalli et al., 2017; Malcolm Richard 88 

et al., 2011; Wang et al., 2015; Wu et al., 2013).  89 

One drawback of physical methods is the lack of a feedback mechanism to constantly monitor 90 

the quality of plastic waste going into recycling, limiting the traceability of plastic type and 91 

quality for recycling. In recent times, solutions focusing on automated plastic sorting systems 92 
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with machine learning techniques are on the rise. Some systems have approached it as an image 93 

recognition task, which is useful for identifying common plastic products like mineral water 94 

bottles (Wang et al., 2019). Other systems have explored using chemometrics, which involves 95 

the use of chemical data from spectroscopy methods (Heberger, 2008) for automatic sorting of 96 

plastic waste. Chemometrics have been widely applied towards quality control in the food 97 

(Liang et al., 2020) and pharmaceutical industries (Biancolillo and Marini, 2018), 98 

environmental modelling (Chapman et al., 2020) and forensics (Sauzier et al., 2021), but 99 

chemometric techniques have only recently gained popularity in the area of plastic waste (da 100 

Silva and Wiebeck, 2020). A broad review of various physical and chemometric-based method 101 

for municipal solid waste sorting was performed recently (Gundupalli et al., 2017). Other 102 

reviews have studied the use of chemometrics for microplastics detection with Raman (Araujo 103 

et al., 2018) and Fourier transform infrared (FTIR) spectroscopy (Veerasingam et al., 2020), 104 

but none, so far, have focused on plastic waste sorting.  105 

This work aims to build upon the literature by comprehensively reviewing the use of 106 

chemometric method specifically for plastic waste sorting, and assessing the state of the field 107 

for application in the recycling industry. This would contribute towards helping to determine 108 

the research directions that can be undertaken to help develop a state-of-the-art plastic sorting 109 

approach which can effectively sort out recyclable polymers from post-consumer plastic waste. 110 

The surveyed literature was found using the search terms ‘plastic’, ‘recycling’ and 111 

‘chemometrics’ or one of the spectroscopic method ‘Infrared’, ‘Raman’, ‘LIBS’ on Scopus, 112 

Web of Science and Google Scholar. Section 2 will provide a background on spectroscopic 113 

methods that can be used to obtain chemical data of plastics, and chemometric techniques to 114 

analyze the chemical data; section 3 will cover methodology applied for the literature review; 115 

sections 4 to 6 will cover specific works that have been done in this field using infrared, Raman 116 

and LIBS data respectively; section 7 will discuss and evaluate the limitations and gaps in using 117 

spectroscopic data for chemometric analysis.  118 

 119 

 120 

 121 

 122 

 123 
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2. Background 124 

This section will first introduce some spectroscopic methods that have been widely used to 125 

obtain chemical data from plastic in a non-destructive manner. Following that, chemometric 126 

techniques that are widely used to analyze spectroscopic data of plastics will be introduced. 127 

2.1 Spectroscopic Methods 128 

Spectroscopy is the study of interaction between electromagnetic radiation and matter. There 129 

are broadly three types of spectroscopic methods that are commonly used for chemometrics 130 

sorting of plastic, which are infrared spectroscopy, Raman spectroscopy and laser-induced 131 

breakdown spectroscopy, which will be described in this section. A comparison of the three 132 

spectroscopic methods will be further presented in section 7.  133 

2.1.1 Infrared Spectroscopy 134 

Infrared (IR) spectroscopy measures the absorption or reflectance of IR radiation by chemicals 135 

or materials (Griffiths et al., 2007). The electromagnetic radiation in this region is typically 136 

associated with the rotational and vibrational frequencies of different chemical bonds within 137 

the molecules. These are termed resonant frequencies, which are absorbed by the molecules, 138 

while the other frequencies would be transmitted. Fourier transform infrared spectroscopy 139 

(FTIR) applies a mathematical technique known as Fourier transform to convert the raw time 140 

domain signals into an easily visualizable IR spectrum (Griffiths et al., 2007), which maps the 141 

IR radiation absorbed/transmitted over each frequency, thus generating a molecular fingerprint. 142 

The IR region is further divided into far-, mid- and near-IR, each containing different 143 

information. Rotational frequencies can be found within far-IR, while fundamental vibrational 144 

frequencies can be found within mid-IR and overtones of vibrational frequencies can be found 145 

within near-IR (Veerasingam et al., 2020). 146 

2.1.2 Raman Spectroscopy 147 

Raman spectroscopy is another technique used to study the rotational and vibrational 148 

frequencies of chemical bonds within a molecule (McCreery, 2005). When photons from a 149 

laser interact with the molecular vibrations, molecules can be excited to a higher energy level. 150 

Most of this energy will be dissipated through elastic scattering (or Rayleigh scattering), where 151 

the energy of the emitted photons is equal to the photon from the laser. Raman spectroscopy 152 

measures the wavelength of inelastically scattered photons, where the emitted photon is higher 153 

or lower in energy as compared to the photon from the laser, which can be visualized in a 154 
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spectrum of intensity over wavelength. As the majority of scattered photons are elastically 155 

scattered, a light filter is often used to filter out the scattered radiation to allow better 156 

observation of the inelastically scattered photons. 157 

2.1.3 Laser-induced Breakdown Spectroscopy 158 

Laser-induced breakdown spectroscopy (LIBS) is an elemental analysis technique that can be 159 

used to detect the presence of all elements (Singh and Thakur, 2020). It focuses a high energy 160 

laser on a sample to vaporize and atomize a small amount of material into plasma. 161 

Characteristic radiation emitted by each of the element can be detected to confirm the presence 162 

of different elements. 163 

2.2 Chemometric Techniques 164 

The chemical data obtained via spectroscopic methods can be analyzed with various 165 

chemometric tools. While there are significant numbers of possible tools, this work will focus 166 

on the ones used in the chemometrics publications. A broad category of tools frequently used 167 

in chemometrics research are dimensionality reduction tools such as principal component 168 

analysis (PCA), linear discrimination analysis (LDA) and partial least squares regression (PLS). 169 

Supervised machine learning, where labelled data is used to train the model to classify the 170 

plastic from the spectrum obtained using spectroscopic methods, can also be used. These 171 

include tools like k-nearest neighbor (k-NN), support vector machines (SVM), random forest 172 

and neural networks. Limited works also explored unsupervised machine learning in the form 173 

of k-means clustering.  174 

2.2.1 Principal Component Analysis 175 

PCA is a dimensionality reduction tool used for multi-dimensional datasets (Jolliffe and 176 

Cadima, 2016; Smith, 2002). This statistical tool constructs new axes known as principal 177 

components that are linear combinations of the initial variables. Each principal component is 178 

constructed in a way to maximize the variance, hence capturing as much information as 179 

possible. The contribution of each principal component to the overall data variance can be 180 

visualized by the explained variance ratio. By plotting the principal components with the 181 

highest explained variance ratio, the data can easily be visualized in a two-dimensional graph. 182 

Data belonging to the same category would typically be clustered together in the plot and would 183 

be sufficiently distinct from other clusters. PCA has been used to reduce the dimension of 184 

plastic spectra before passing the principal components as input data into different classifier 185 
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models (Musu et al., 2019; Yang et al., 2020; Zhu et al., 2019). A sample PCA plot for high 186 

density polyethylene (HDPE) and polyethylene terephthalate (PET) is shown in Fig 1.  187 

Soft independent modelling by class analogy (SIMCA) is an extension of PCA used for 188 

classification. For each class, a plane or hyper-plane is constructed from the PCs, and new 189 

samples are classified based upon the distance to the plane or hyper-plane. This method is a 190 

soft classification, as it is possible for each sample to be classified into multiple classes, 191 

depending on the threshold distance for classification (Costa et al., 2017; Wienke et al., 1995).  192 

2.2.2 Linear Discrimination Analysis  193 

LDA is related to PCA as a dimensionality reduction tool. However, in LDA, new axes are 194 

constructed in a way that maximizes class separation (Izenman, 2008). This is done by 195 

maximizing the distance between the means of each class while minimizing the scatter of the 196 

dataset within each class. The data is then mapped to the new lower dimension axis. LDA was 197 

used to classify different plastics (Wu et al., 2020) and plastics with different types of 198 

brominated flame retardants (Stefas et al., 2019). 199 

2.2.3 Partial Least Square 200 

PLS regression is a statistical method that uses latent variables to study the relationship 201 

between two matrices (Haenlein and Kaplan, 2004) The latent variables are constructed in a 202 

way to find the vector in the X space that corresponds to the vector in the Y space with 203 

maximum variance. When used for classification problem, a variant called PLS discriminant 204 

analysis (PLS-DA) is used, where the Y matrix will be expressed as a dummy matrix of 1 and 205 

0. PLS-DA is one of the more popular chemometric techniques that has been used for 206 

classifying different types of plastics (Calvini et al., 2018; Liu et al., 2019b; Pieszczek and 207 

Daszykowski, 2019; Saeki et al., 2003; Sato et al., 2002; Silva and Wiebeck, 2019). 208 

2.2.4 k-Nearest Neighbor 209 

k-NN is a classification algorithm which classifies based upon the identity of the k-nearest 210 

neighbors to the new observation (Altman, 1992), where k is a parameter that can be tuned. 211 

The majority class in the k nearest neighbors will determine the class of the new observation. 212 

k-NN can also be combined with PCA for datasets with large dimensions, which is illustrated 213 

in Fig 1. Costa et al., (2017) and Yang et al., (2020) used this algorithm in their works on plastic 214 

classification.  215 
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2.2.5 Support Vector Machine 216 

SVM is a classification algorithm that constructs a decision boundary to maximize the distance 217 

between the different classes (Wang, 2005). New samples will then be classified based on the 218 

side of the decision boundary that it falls on in a non-probabilistic manner. Traditionally a 219 

binary classification algorithm, more recent advancement allows for SVM to solve multi-class 220 

classification problems (Lee et al., 2004), including for plastic classification (Musu et al., 2019; 221 

Yang et al., 2020; Yu et al., 2014; Zhu et al., 2019). SVM can also be combined with PCA for 222 

datasets with large dimensions, which is illustrated in Fig 1. 223 

 224 

Fig 1. PCA, k-NN and SVM for chemometric analysis of plastic FTIR data. The dataset from 225 

Chabuka and Kalivas, (2020) was used to build the classifier.  226 

2.2.6 Random Forests 227 

Random forest is an ensemble machine learning technique built using many decision trees 228 

(Breiman, 2001). The output of the random forest algorithm is the mean of the prediction 229 

outputs of all the decision trees. Bagging is employed during the learning process, where each 230 

decision tree is built using different training data. This helps to prevent overfitting to the dataset. 231 

Random forest regression was used with LIBS to quantify the presence of toxic heavy metal 232 

elements in plastics (Liu et al., 2019c). 233 

2.2.7 Neural Networks 234 

Artificial neural networks (ANNs) fall under a branch of machine learning known as deep 235 

learning used for predictive modelling (Krenker et al., 2011). The inputs matrix in the input 236 

layer is mapped to the classified output using neurons in hidden layers. Each of the neurons 237 

contains a function that applies a weight to different part of the input, and together all the 238 

neurons help to learn a complex function. During the training process, the weights are usually 239 
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adjusted through an iterative backpropagation process to reduce the loss via gradient descent. 240 

Variations of ANN architectures have been widely used in plastic classification (Bae et al., 241 

2019; Boueri et al., 2011; Junjuri and Gundawar, 2020, 2019; Musu et al., 2019; Roh et al., 242 

2017; Saeki et al., 2003; Wienke et al., 1995; Yang et al., 2020). A sample ANN architecture 243 

for classifying plastics is shown in Fig 2. 244 

 245 

Fig 2. Sample ANN architecture for plastic classification. The image was built with NN-246 

SVG. 247 

Convolutional neural network (CNN) is one variant of neural network architecture developed 248 

in recent years (Lecun et al., 1998) that has been used with spectra signals (Chen & Wang, 249 

2019; Liu et al., 2017; Ng et al., 2019, 2020; Stiebel et al., 2018; Zhang et al., 2019). CNNs 250 

consist of three types of layers – convolutional layers that extracts features from the input data, 251 

pooling layers that help to reduce the dimension, and fully connected layers that are essentially 252 

ANNs. A sample CNN architecture for classifying plastic is shown in Fig 3. 253 
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 254 

Fig 3. Sample CNN architecture for plastic classification. The image was built with NN-255 

SVG. 256 

2.2.8 K-means Clustering 257 

K-means clustering is an unsupervised machine learning algorithm which groups each 258 

observation into one of k clusters based on the distance to the centroid of each cluster, where 259 

k is a hyperparameter to be tuned (Likas et al., 2003). During the learning process, the cluster 260 

centroids are first randomly defined, and each observation is assigned to the nearest centroid 261 

based on Euclidean distance. A new centroid is then defined for all the points in each cluster, 262 

and the process is repeated iteratively until convergence is reached. While K-means clustering 263 

is not meant to a classification algorithm, polymers of the same type are likely to be clustered 264 

together, which could result in good polymer sorting if each of the cluster represents a particular 265 

polymer type. K-mean clustering was used by Guo et al. (2018) to group 20 different polymer 266 

samples into each own cluster.. 267 

 268 

3. Methodology 269 

The following sections will discuss the results and limitation from previous chemometric 270 

studies for plastic sorting. This section will outline the characteristics that will be discussed for 271 

each method. 272 

For each study, the methodology and the dataset characteristics will be summarized. In 273 

particular, for each study we will outline: 274 
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1) Spectroscopic method – IR spectroscopy (including near IR, mid IR and hyperspectral 275 

imaging), Raman spectroscopy and LIBS. 276 

2) Samples – the resin type of samples used in the study, which includes the six common 277 

types of high density polyethylene (HDPE), low density polyethylene (LDPE), 278 

polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl 279 

chloride (PVC), and other types such as acrylonitrile butadiene styrene (ABS), 280 

polyamide (PA), polycarbonate (PC), polylactic acid (PLA), polymethyl methacrylate 281 

(PMMA), polyoxymethylene (POM), polytetrafluoroethylene (PTFE) and 282 

polyurethane (PU). 283 

3) Hardware – the instrument and its specifications. 284 

4) Input – the parts of the chemical data obtained from spectroscopy that is used for 285 

chemometric analysis. 286 

5) Software – the software used to run the chemometric tool. 287 

6) Chemometric tool – tools used to analyze spectroscopic data, including PCA, LDA, 288 

kNN, PLS, SVM, RF, neural networks. 289 

7) Results – accuracy, precision and recall (equation 1-3) for classification, root mean 290 

square error of prediction (RMSEP) for regression. 291 

8) Dataset characteristics – the data size, color and source of plastic samples (Table S1 to 292 

S3). 293 

The equations used for 7 above are: 294 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (4) 

Where TP is True Positive, FP is False Positive, TN is True Negative and FN is False Negative. 295 

Most chemometric classification studies only report the accuracy of plastic sorting, which is 296 

useful as a general indication of the model performance. However, whenever possible, this 297 

review will also derive precision and recall metrics for a more complete picture. Precision 298 

allows for understanding the level of contamination associated with the sorted polymers. 299 

However, when some studies report specificity values (equation 4) without a confusion matrix, 300 

making it impossible to derive the precision value. For those studies, the specificity metrics 301 

was reported instead. Recall allows for understanding the percentage recovery of polymers of 302 
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each class. To extract the highest market value from plastic waste, precision should be 303 

prioritized to produce high quality recycled plastic, followed by recall to ensure that potentially 304 

recyclable polymers are not downcycled. However, the recall metric should also be suitably 305 

high such that a fair amount of recyclable plastic can be recovered for the process to be 306 

economically sustainable. 307 

The summarized dataset characteristics include the plastic sample color and source. Color on 308 

plastics is due to either organic or inorganic colorants, while the source may give an indication 309 

of possible contamination and degradation. These are important factors that could affect both 310 

identification of the plastic and the recyclability of the plastic. Different colored plastic should 311 

be processed separately during the recycling process for an aesthetically pleasing recycled 312 

product (Ruj et al., 2015). Colorless or white samples have the highest market value as recycled 313 

plastics, since they can be re-dyed with any color (Gabriel and Maulana, 2018). On the other 314 

hand, black samples can only be recycled into black plastics. Contaminants found on plastics 315 

are typically volatile organic compounds (VOCs), which affects the odor quality of the recycled 316 

product (Cabanes et al., 2020; Strangl et al., 2021). Contaminants like detergent could also be 317 

linked to increased thermal degradation effects during the recycling process (Mylläri et al., 318 

2016). Degradation of plastics are usually associated with formation of carbonyl or hydroxyl 319 

groups on the surface (Canopoli et al., 2020; Pelegrini et al., 2019) which causes changes in 320 

the resulting spectra that could result in misclassification. Degradation also results in decreased 321 

mechanical and rheological properties as compared to virgin plastic (Brouwer et al., 2020).  322 

 323 

 324 

 325 

4.  Chemometrics with IR 326 

Among the three spectroscopic methods discussed in section 3, IR spectroscopy is the most 327 

widely applied spectroscopic method for chemometric analysis for plastic waste sorting. 328 

Broadly speaking, FTIR spectroscopy can be split into 3 ranges – near-infrared (NIR) with 329 

wavenumber from 14,000 – 4000 cm-1, mid-infrared (MIR) with wavenumber from 4000 – 400 330 

cm-1 and far infrared (FIR) with wavenumber from 400 – 10 cm-1 (Veerasingam et al., 2020). 331 

Both NIR and MIR are suitable ranges for plastic sorting. 332 

4.1 Near Infrared 333 
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Table 1 summarizes the methodology and result of works in the literature that utilized NIR for 334 

chemometric analysis of plastic waste. 335 

The use of NIR for chemometric analysis of plastic waste is well established, which is evident 336 

from the results (average classification accuracy ranging from 97-100% in the reported works). 337 

Early works identified ANN in combination with NIR as an effective method for sorting 338 

common post-consumer plastic waste with high accuracy (Feldhoff et al., 1997; Huth-Fehre et 339 

al., 1995; Wienke et al., 1995). Highly sensitive detectors in the NIR region by indium gallium 340 

arsenide (InGaAs) based sensors also makes it suitable for use with in-line conveyer belt 341 

systems in the recycling industry (Feldhoff et al., 1995). Much of the research direction 342 

afterwards shifted towards NIR hyperspectral imaging (HSI), which involves generating a 3D 343 

‘hypercube’ with two spatial dimensions and one spectral dimension (Caporaso et al., 2018). 344 

and will be further covered below in Section 4.1.1. More recent works explored the use of 345 

portable NIR systems and found that they were as effective (Kumar et al., 2014; Rani et al., 346 

2019; Said et al., 2020; Yang et al., 2020), which opens the door for potential deployment in 347 

decentralized sorting systems such as smart sorting bins.  348 

NIR data has also been used to build regression models that provides good age-prediction 349 

accuracy for plastics by subjecting plastic samples to thermal-oxidative aging and extrusion 350 

cycles (Alassali et al., 2020, 2018), which could provide useful information for determining 351 

the recyclability of plastic waste.  352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 
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Table 1: Summary of NIR chemometrics study for plastic waste sorting. 362 

Reference Samples Hardware Input Software 
Chemometric 

Tool 
Accuracy Precision Recall 

Main 

Misclassification 

1 

(Huth-Fehre 

et al., 1995; 

Wienke et al., 

1995) 

PE, PP, 

PET,  

PS, PVC 

PolyTec 

X-DAP, 

InGaAs 

detector 

Full NIR 

spectrum (825 – 

1700nm) 

ARTHUR 

 

MATLAB 

 

SIMCA 

 

ANN 

 

Median sorting purity of 98% - 

2 

(Feldhoff et 

al., 1997) 

PE, PP, 

PET,  

PS, PVC 

PolyTec 

X-DAP, 

InGaAs 

detector 

Full NIR 

spectrum (825 – 

1700nm) 

Not stated ANN Overall 97%   PE and PP 

3 

(Saeki et al., 

2003) 

 

HDPE, 

LDPE, 

LLDPE 

 

PlaScan-SH 

(Opt 

Research 

Inc., Japan) 

Second-

derivative of 

full NIR 

spectrum 

(1100-2200nm) 

 

 

Pirouette,  

NEUROSI

M/L 

PCR 

 

PLS 

 

ANN 

 

 

RMSEP of 0.0043 

 

RMSEP of 0.0031 

 

RMSEP of 0.00026 

 

PE density range 0.898-0.962 g cm-3 

- 

4 

(Zhao and 

Chen, 2015) 

PE, PP, 

ABS, 

PMMA 

Jiaoda 

spectrometer 

First 3 Principal 

components for 

NIR spectrum 

(900-1700nm) 

Not stated 
Mahalanobis 

distance 

88.9-100% 

(Overall 97%) 

88.9-100%  

(Overall 97%) 

90.9-100%  

(Overall 97%) 
ABS predicted as PP 
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5 

(Zhu et al., 

2019) 

 

PE, PP, 

PET, PS, 

ABS, 

PMMA 

 

NIR optical 

fiber 

spectrometer 

with InGaAs 

detector 

First 7 principal 

components for 

NIR spectrum 

(1000-1700nm) 

LabVIEW PCA-SVM 

85-100% 

(Overall 

97.5%) 

87-100%  

(Overall 

97.8%) 

85 – 100% 

 (Overall 

97.5%) 

PE predicted as PP 

6 

(Rani et al., 

2019) 

PE, PP, 

PET, PS, 

PVC 

MicroNIR 

On-site 

Full NIR 

spectrum 

(900-1700nm) 

MicroNIR

TM Pro 

v3.0 

software 

PLS-DA Overall Accuracy: 100%  

7 

(Wu et al., 

2020) 

PP, PS, 

ABS, 

ABS/PC 

blend 

Ocean Optics 
NIR512 

Part of NIR 

spectrum 

(1084-1562nm) 

Python 

PLS-DA 

 

PCA-LDA 

99.5-100%  

(Overall 

99.9%) 

99.1-100%  

(Overall 

99.9%) 

99.5-100%  

(Overall 99.9%) 
- 

8  

(Yang et al., 

2020) 

PE, PP, 

PET, PVC, 

PS, ABS, 

PC 

 

White and 

transparent 

samples 

Pynect NIR-

S-G1 NIR 

handheld 

spectrometer 

Full NIR 

spectrum 

(900-1700nm) 

Python 

(PyCharm) 

PCA-SVM 

 

 

PCA-KNN 

 

 

 

PCA-ANN 

 

100% (All) 

 

100% 

(Transparent) 

99.95% 

(White) 

 

100% 

(Transparent) 

99.94% 

(White) 

100% (All) 

 

100% 

(Transparent) 

99.96% 

(White) 

 

100% 

(Transparent) 

99.94% 

(White 

100% (All) 

 

100% 

(Transparent) 

99.95% (White) 

 

100% 

(Transparent) 

99.94% (White 

- 

9  

(Said et al., 

2020) 

PP, PET 

Miniaturized 

MEMS FTIR 

spectrometer 

First 2 latent 

variables for 

NIR spectrum 

(1350-2500nm) 

Not stated PLS, KNN Overall Accuracy: 100% - 

363 
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4.1.1 Near Infrared Hyperspectral Imaging 364 

Hyperspectral imaging (HSI) in the NIR range have started to be adopted by some industries 365 

(WRAP, 2016), The imaging capabilities help to provide information about the purity of plastic 366 

samples through the spatial distribution of different spectra on the sample. Some of the NIR 367 

hyperspectral imaging technologies currently in the market includes the Specim FX17 (Specim, 368 

2020a), KUSTAx.x MSI series (LLA Instruments, n.d.), Pika NIR series (Resonon, 2020) and 369 

INNO-SPEC RedEye (Acal Bfi, 2015a), some of  which have been utilized in the reported 370 

literature (Calvini et al., 2018; Pieszczek and Daszykowski, 2019). Table 2 summarizes the 371 

methodology and result of the work in the literature that utilized HSI-NIR for chemometric 372 

analysis of plastic waste. 373 

Initial work in this field using PCA found clear separation between two different groups of 374 

polymers such as PE and PP, PE and PET or PET and PLA (De Biasio et al., 2010; Serranti et 375 

al., 2012, 2011; Ulrici et al., 2013). More recently, 100% accuracy was obtained in classifying 376 

PE and PP using PLS-DA (Serranti et al., 2015).  With an increase in scope of polymer class 377 

considered, there is a slight drop in overall results (Calvini et al., 2018; Karaca et al., 2013; 378 

Pieszczek and Daszykowski, 2019; Stiebel et al., 2018) as compared to the results shown in 379 

Table 1 with the use of NIR spectrometer, which could be partly due to poorer resolutions in 380 

HSI-NIR spectra. However, the accuracies reflect pixel accuracies, rather than sample 381 

accuracies. In most cases, the majority of pixels in the plastic sample is correctly classified, 382 

which would have likely resulted in positive identification of the sample. Furthermore, it was 383 

also found that using selected bands representing 10% of the initial input data do not 384 

compromise the overall performance (Kim and Kim, 2016). To further improve the sorting 385 

accuracy, the effect of different pre-processing methods can be explored, as it can significantly 386 

influence the final results (Galdón-Navarro et al., 2018).  387 

 388 

 More recent works have attempted to make use of the spatial information captured within HSI-389 

NIR for more detailed chemometric analysis, such asin detecting contamination in plastics such 390 

as bromine flame retardants (Bonifazi et al., 2020; Caballero et al., 2019), identifying multi-391 

layered polymers (Bonifazi et al., 2021; Chen et al., 2021b; Stiebel et al., 2018) and 392 

distinguishing between plastic of varying degradation levels (Chen et al., 2021a),  393 

 394 

While the research in this field is mature, there remains some gaps in this field. Most of the 395 

work has focused on variations of the six common plastic – HDPE, LDPE, PET, PP, PS and 396 
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PVC. In reality, the mix of plastic waste would be much more heterogenous, which may affect 397 

the accuracy of chemometric models. The use of NIR in chemometric analysis of polyolefins 398 

should also be better understood, as not many works have split the class of PE in HDPE and 399 

LDPE (Calvini et al., 2018; Karaca et al., 2013; Saeki et al., 2003; Stiebel et al., 2018). Some 400 

work also reported mislabeling of some PE and PP samples (Pieszczek and Daszykowski, 2019; 401 

Zhu et al., 2019). There is also lack of an open-sourced NIR polymer database, which limits 402 

further research in this field.  403 

 404 

Furthermore, there are glaring limitations of NIR in sorting plastic waste. One of the major 405 

drawbacks with NIR is the inability to differentiate black plastics, as electromagnetic radiation 406 

in the NIR region is strongly absorbed by black material due to its proximity to the visible light  407 

range (Becker et al., 2017). Furthermore, NIR is composed of overtones and combination bands 408 

of different functional groups such as C-H, N-H and O-H, resulting in weaker spectral features 409 

that may present difficulties towards unique identification (Vázquez-Guardado et al., 2015). In 410 

order to manage the heterogenous plastic waste at recycling facilities, NIR data can be 411 

supplemented with data from other non-destructive spectroscopic sets like MIR, Raman and 412 

LIBS, which will be covered in later sections.    413 

 414 
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Table 2: Summary of HSI-NIR chemometrics study for plastic waste sorting. 415 

Reference Samples Hardware Input Software 
Chemometric 

Tool 
Accuracy Precision Recall 

Main 

misclassification 

1 

(De Biasio et 

al., 2010) 

PE, PP 
NIR scanner 

from Titech 

HSI-NIR 

(1000-

2500nm) 

Not stated PCA 

 

PE and PP can be distinguished, different PP products can be 

distinguished as well. 

 

- 

2 

(Serranti et 

al., 2011) 

 

PE, PET 

 

Specim NIR 

Spectral 

Camera with 

InGaAs 

detector 

HSI-NIR 

(1000-

1700nm) 

Spectral 

Scanner 

v2.3 

PCA 
PE and PP can be distinguished from other contaminants 

(aluminum, wood, foam) 
- 

3 

(Serranti et 

al., 2012) 

PE, PP 

Specim NIR 

Spectral 

Camera with 

InGaAs 

detector 

HSI-NIR 

(1000-

1700nm) 

Spectral 

Scanner 

v2.3 

PLS-DA Not stated 94-95% 94-95%  

4 

(Karaca et al., 

2013) 

 

HDPE, 

LDPE, PP, 

PET, PVC, 

PS 

SWIR 

Camera 

HSI-NIR 

(1000-

2500nm) 

Self-

developed 
SVM 93.5-96.9%  Not stated Not stated 

LDPE predicted 

as HDPE 

5 

 (Ulrici et al., 

2013) 

PET, PLA 

Specim 

ImSpector 

N17 

HSI-NIR 

(1000-

1700nm) 

Not stated PLS-DA 98.7-100% Not stated Not stated - 
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6 

 (Bonifazi et 

al., 2014) 

PE, PP, 

PET, PS, 

PVC 

Specim 

ImSpector 

N17 

HSI-NIR 

(1000-

1700nm) 

MATLAB PLS-DA Not stated 99.8-100% 100% - 

7 

 (Serranti et 

al., 2015) 

PE, PP 

Specim 

ImSpector 

N17 

HSI-NIR 

(1000-

1700nm) 

MATLAB PLS-DA 100% 100% 100% - 

8 

(Calvini et al., 

2018) 

HDPE, 

LDPE, PP, 

PET, PVC, 

PS, 

 ABS, PLA 

HSI Camera 

KUSTA1.9M

SI, LLA 

Instruments 

with InGaAs 

detector 

Zeiss f/2.4, 

10 mm 

optical lens 

HSI-NIR 

(1330 – 

1900nm) 

MATLAB Soft PLS-DA 98.4% 
Specificity: 97.4-

100% 
92.1-100%  

9 

(Stiebel et al., 

2018) 

 

HDPE, 

LDPE, PP, 

PET, PVC, 

PS, ABS 

and mixed 

samples 

hyperspectral 

NIR-camera 

HSI-NIR 

(900-

1700nm) 

Python 

(Tensorflo

w/Keras) 

CNN 

(Hypnet) 
92% Not stated Not stated  

10 

(Pieszczek 

and 

Daszykowski, 

2019) 

HDPE, PP, 

PS, 

PET, ABS 

Specim 

FX17e 

camera with 

InGaAs 

detector 

HSI-NIR 

(1000-

1700nm) 

MATLAB OC-PLS Not stated 
Specificity: 99.5-

99.9% 
93.4-98.6% 

PP predicted as 

HDPE 
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11 

(Serranti et 

al., 2020) 

HDPE, PP 

 

White, red, 

orange, 

yellow 

green, blue 

samples 

Specim 

ImSpector 

N25E 

imaging 

spectrograph,  

 

ImSpector 

V10E 

VIS0BUR 

canera 

HSI-NIR 

(1000-

2500nm) 

MATLAB PLS-DA Not stated 

Type class 

100%  

 

Color class  

92.6-100% 

Type class 

100%  

 

Color class  

98.9-100% 

- 

12 

(Chen et al., 

2021a) 

PE, PP, 

PET, PS 

 

Varying 

degradatio

n  

Helios-G2-

320 

NIR sensor 

from EVK DI 

Kerschhaggl 

GmbH 

HSI-NIR 

(930-

1700nm) 

Python 

Scikit-learn 
PLS-DA 

Postconsumer 

plastic: 99 – 

99.8% 

 

Landfill plastic: 

89.8 – 99.5% 

 

Marine plastic: 

75.5 – 90.1% 

Not stated Not stated - 

416 
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4.2 Mid Infrared 417 

The MIR region contains fundamental vibrational bands with distinct spectral features and is 418 

also known as the molecular fingerprint region. Since the MIR region is sufficiently distinct 419 

from the visible light region, it is not affected by black plastics (Becker et al., 2017; Signoret 420 

et al., 2020). In addition, MIR spectroscopy is less affected by surface morphology and color 421 

of the plastic sample as compared to NIR spectroscopy (Vázquez-Guardado et al., 2015). 422 

Despite the above listed advantages that MIR has over NIR, the use of this technology in plastic 423 

recycling applications has been limited by the spectral acquisition speed with less sensitive 424 

photodetectors, two of the most commonly used being deuterated triglycine sulfate and 425 

mercury cadmium telluride (Kempfert et al., 2001). Becker et al., (2017) managed to employ a 426 

photon-up conversion technique to convert MIR photons to higher energy NIR signal, which 427 

can be picked up using a more sensitive InGaAs sensor, which improves the economic viability.  428 

Table 3 summarizes the methodology and result of two works in the literature that utilized MIR 429 

for chemometric analysis of plastic waste. Both studies suggest 100% sorting accuracy, but a 430 

further study in this field would be needed to better understand the effectiveness of MIR 431 

technology for plastic sorting. This includes broadening the types of chemometric tools and 432 

plastic samples used. Some works have begun building up MIR spectral characteristics for 433 

polyolefins and styrenic polymers towards potential industrial application (Signoret et al., 434 

2019a, 2019b). There are also open-sourced MIR polymer data that can be used for further 435 

chemometric studies (Baskaran and Sathiavelu, 2020; Chabuka and Kalivas, 2020; Cowger et 436 

al., 2021).  437 

 438 

4.2.1 Mid Infrared Hyperspectral Imaging 439 

Recent technological improvements have led to MIR-HSI being introduced into the market, 440 

allowing for potential application in an industrial setting (Signoret et al., 2019a, 2019b). Some 441 

of the products on the market now includes the Specim FX50 (Specim, 2020b) and INNO-442 

SPEC BlackEye (Acal Bfi, 2015b). MIR-HSI was recently explored via cautious machine 443 

learning method, such that samples with high uncertainty in the prediction are rejected. The 444 

study method was employed to sort styrenic polymers and polyolefins with higher purity 445 

(Jacquin et al., 2021).   446 

 447 

 448 
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Table 3: Summary of MIR chemometrics study for plastic waste sorting. 449 

Reference Samples Hardware Input Software 
Chemometric 

Tool 
Accuracy Precision Recall 

1 

(Kassouf et 

al., 2014) 

 

 

HDPE, 

LDPE, PP, 

PET, PS, 

PLA 

 

Bruker 

ATR FTIR 

Full MIR 

spectrum 

(600-4000cm-1) 

MATLAB ICA Plastics can be discriminated from each other 

2 

(Bae et al., 

2019) 

PP, PET, 

PS 

Bruker 

ATR FTIR 

Extracted peaks 

from MIR 

spectrum 

(600-2000cm-1) 

 

WEKA 

3.8 
RBFNN 99-100% Not stated Not stated 

450 
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5. Chemometrics with Raman  451 

Raman spectroscopy is the second of the three spectroscopic methods introduced in section 3 452 

that could potentially be combined with chemometric tool towards plastic waste sorting. Raman 453 

has emerged as a technique that overcomes the shortcomings of NIR, such as inability to handle 454 

black plastics and poor spectral resolution in a rapid fashion (Chen et al., 2017; Musu et al., 455 

2019; Tsuchida et al., 2009). Furthermore, Raman spectroscopy is often described as a 456 

complementary technique to MIR, as vibrational modes that are IR active are often not Raman 457 

active, and vice versa. However, the use of Raman spectroscopy for plastic identification is 458 

much less widespread when compared to IR, due to background fluorescence which can often 459 

overshadow certain peaks of interest (Araujo et al., 2018; Dong et al., 2020). Table 4 460 

summarizes the methodology and result of works in the literature that utilized Raman 461 

spectroscopy for chemometric analysis of plastic waste.  462 

Florestan et al. (1994) first identified the potential for Raman spectroscopy to be used to 463 

distinctly identify HDPE, PP, PET and PVC through comparison to a reference library. The 464 

authors also found that PP with fillers could be differentiated from pure PP from the Raman 465 

spectra. Allen et al. (1999) later expanded the polymer scope to include LDPE and PS, but 466 

could not achieve good overall accuracy. With the rise in popularity of machine learning 467 

models, more recent works have demonstrated the potential of chemometric tools like neural 468 

networks and SVM for analysis of Raman data for qualitative analysis of plastic, achieving 469 

between 94-100% accuracy in classifying plastic (Chen et al., 2017; Musu et al., 2019; Roh et 470 

al., 2017; Tsuchida et al., 2009).  471 

Chemometric analysis of Raman spectra has also been shown to be effective in sorting 472 

polyethylene of different densities, as the intensities of CH2 scissoring and wagging mode in 473 

the Raman spectrum are sensitive to the crystallinity of PE (Sato et al., 2002). Allen et al. (1999) 474 

first demonstrated this with 100% correct identification of both HDPE and LDPE in his work, 475 

even while the identification of other polymers was not as effective. Other work demonstrates 476 

the quantitative analysis of the density through PLS regression models, allowing for finer 477 

distinction between HDPE, LDPE and LLDPE (Sato et al., 2002) or different HDPE/LDPE 478 

blends (Silva and Wiebeck, 2019). 479 

Despite the demonstrated potential, there are still some gaps that need to be addressed. Most 480 

of these works extracted specific peaks for the polymer of interest to build the classification 481 

model (Musu et al., 2019; Roh et al., 2017; Tsuchida et al., 2009). This may limit the potential 482 
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use in a potential industry application, where a much wider variety of polymer is encountered. 483 

Polymers that were not included in the training data could be falsely labeled, resulting in 484 

contamination that affects the quality of recycled plastic. Furthermore, no further information 485 

about the quality of the plastics, such as presence of additives and contamination, can be 486 

obtained from only studying the extracted peaks. While colored pigments can result in 487 

additional peaks or broad fluorescence bands (Florestan et al., 1994; Marica et al., 2019), the 488 

effect of different colored plastics on the performance of chemometric analysis with Raman 489 

spectra is also not well studied, as most of the works focused on plastic samples with largely 490 

homogenous colors (Chen et al., 2017; Roh et al., 2017) (Table S2).  491 

Further work in this field should focus on broadening the scope of Raman spectra to a wider 492 

variety of polymer samples and colors that more closely resembles heterogenous plastic waste 493 

received at a recycling plant. There are currently several open-sourced Raman databases that 494 

could be utilized for such chemometric studies (Cowger et al., 2021; Dong et al., 2020; Munno 495 

et al., 2020). The potential for Raman spectra to be used with chemometric analysis for 496 

determining contamination and degradation levels within polymer samples have also not been 497 

studied. 498 
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Table 4: Summary of Raman chemometrics study for plastic waste sorting. 499 

Reference Samples Hardware Input Software 
Chemometric 

Tool 
Accuracy Precision Recall 

1 

(Florestan 

et al., 1994) 

HDPE, PP, 

PET, PVC 

Bruker IFS 66 

spectrometer 

with 300 mW 

YAG laser 

Full Spectrum 

(400-4000cm-

1) 

In-built 

sofrware 

Library 

searching 
Not stated 

2 

(Allen et 

al., 1999) 

HDPE, LDPE, 

PP, PET, PVC, 

PS 

Spex Raman 

Spectrometer 

with CCD, 

514.5 nm 

laser 

Full Spectrum 

(850-1800cm-

1) 

SpectraMax 

(in-built 

software) 

PCA-kNN 

 

Library 

searching 

 

100% 

 

38 – 100% 

(Overall 

87%) 

Not stated Not stated 

3 

(Sato et al., 

2002) 

HDPE, LDPE, 

LLDPE 

JASCO NRS 

2001 Raman 

spectrometer 

with CCD, 

514.5 nm 

laser 

Full Spectrum 

(600-1800cm-

1) 

Unscrambler PLS 
RMSEP of 0.0015 for PE density (range 

from 0.918 to 0.964 g/cm3) 

4 

(Tsuchida 

et al., 2009) 

PP, PS, ABS 

Homemade 

Raman 

Apparatus 

with CCD, 

785 nm laser 

diode 

Extracted 

peaks from 

full spectrum 

(300-3500cm-

1) 

R 
Multivariate 

Analysis 

Overall 

Accuracy: 

94% 

Not stated Not stated 

5 

(Chen et 

al., 2017) 

PE, PP, PET, 

PVC, PS 

PMMA, POM 

LabRAM HR 

Evolution 

microscopic 

confocal 

First seven 

principal 

components of 

full spectrum 

Not stated SVM Overall Accuracy: 100% 
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Raman 

spectrometer, 

532 nm laser 

(200-2400cm-

1) 

6 

(Roh et al., 

2017) 

PP, PET, PS Not stated 

 

Extracted 

peaks from 

full spectrum 

(200-3000cm-

1) 

Not stated FRBFNN 

Overall 

Accuracy: 

95% 

Not stated Not stated 

7 

(Musu et 

al., 2019) 

PP, PS, ABS 

Homemade 

Raman 

Apparatus 

with CCD, 

785 nm laser 

diode 

 

Extracted 

peaks from 

full spectrum 

(100-3300cm-

1) 
 

 

R (e1071 

library) 

 

Python 

(TensorFlow 

/Keras) 

PCA-SVM 

 

ANN 

Overall Accuracy: 100% 

8 

(Silva and 

Wiebeck, 

2019) 

HDPE/LDPE 

blends 

Confocal 

Raman 

Microscope 

Alpha300 R, 

532nm laser 

 

Extracted 

peaks from 

full spectrum 

(210-3875cm-

1) 

MATLAB PLS 
RMSEP of 4.062 wt% of LDPE 

(range from 0 to 100%) 

500 
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6. Chemometrics with LIBS  501 

LIBS is the last of the three spectroscopic methods introduced in section 3. When compared to 502 

IR and Raman, LIBS is a relatively newer spectroscopic method that has, in recent years, been 503 

used for chemometric analysis of plastic waste in a laboratory setting. (Liu et al., 2019a; Zeng 504 

et al., 2021). Since LIBS reflects the elemental composition of the sample, it does not suffer 505 

from the drawback of insensitivity to specific chemical bonds with IR or Raman spectroscopy. 506 

The relative intensity of spectral lines within a LIBS spectrum is indicative of the elemental 507 

ratio within the polymers, which can be used to differentiate different types of polymers. The 508 

ability to detect different types of elements broaden the range of plastics that can be identified, 509 

including polymers such as PTFE, PU, PA, PMMA and POM that were hardly or never 510 

explored using Raman and IR spectroscopy. Table 5 summarizes the methodology and result 511 

of works in the literature that utilized LIBS for chemometric analysis of plastic waste. 512 

LIBS was realized as a technique that could be used for sorting common post-consumer plastics 513 

(HDPE, LDPE, PET, PP, PS, PVC) as each polymer had different C/H ratios using a simple 514 

calibration curve (Anzano et al., 2008; Gondal and Siddiqui, 2007). Some mixed success was 515 

subsequently achieved in sorting via LIBS data through Euclidean distance comparison to a 516 

reference library (Anzano et al., 2010). Banaee and Tavassoli (2012) later achieved good 517 

overall accuracy of 99% with the common post-consumer plastics using statistical methods. 518 

Since then, more recent works focused on expanding the scope of plastic for classification with 519 

various more modern machine learning methods. LIBS has also been shown to distinguish 520 

between different polymer samples of the same resin type (Guo et al., 2018; Tang et al., 2018; 521 

Yan et al., 2021), highlighting the potential in precise sorting of plastic waste. Most recently, 522 

a CNN-based approach was explored, which was found to out perform other machine learning 523 

models like ANN, SVM and kNN (Peng et al., 2021). 524 

The studies using chemometrics with LIBS show good overall results, with 13 out of the 16 525 

reviewed works reporting average accuracies of over 95%. The works that report high 526 

accuracies across a wide range of polymer types employed either features selection methods 527 

such as variable importance (Liu et al., 2019b) or adjusted spectral weightings (Tang et al., 528 

2018; Yu et al., 2014). These techniques allow for accentuating weak spectral features such as 529 

CN, C2 and O emission lines (Yu et al., 2014). 530 

As an elemental analysis technique, chemometric analysis of LIBS can also be used to detect 531 

the presence of inorganic elements that could be linked to different additives, such as metallic-532 
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based colorants or fillers (Ángel Aguirre et al., 2013; Boueri et al., 2011; Godoi et al., 2011; 533 

Liu et al., 2019c). The chemometric methods used include ANN, RF, PLS-DA, SIMCA and 534 

KNN. Atomic spectral emissions associated with halogens like Cl and Br lie in a less sensitive 535 

region in the spectra, making it hard to observe without more specialized equipment. However, 536 

LIBS has also been used to some success to detect presence of brominated flame retardants 537 

(Stefas et al., 2019) and chlorine containing polymers (Huber et al., 2014; Vahid Dastjerdi et 538 

al., 2018). 539 

Despite the promising results, there are some limitations associated with LIBS as an elemental 540 

analysis technique since information on the molecular structure is lost. Hence, polymers with 541 

similar elemental compositions could be hard to distinguish, such as PS and ABS (Costa et al., 542 

2017)  or PS and PC (Tang et al., 2018). While is an absence of oxygen in PS, the difficulty in 543 

sorting PC and PS was attributed to the similar relative content of C and H in both polymers, 544 

and the fact that experiments were ran in open air, where oxygen from the atmosphere 545 

interfered with the spectrum results. Supplementing LIBS data with IR or Raman spectroscopic 546 

data could potentially help to address this limitation. There could be some challenge with 547 

distinguishing between HDPE and LDPE as well, since both polymers are chemically similar. 548 

Some works have found success in this area (Costa and Pereira, 2020; Junjuri and Gundawar, 549 

2020, 2019; Liu et al., 2019b) which could be due to the difference in additives used in both 550 

types of polymers (Arias et al., 2009).  551 

In addition, some gaps remain in the literature. Firstly, a large majority of the works used very 552 

limited samples, often just using spectra taken from different locations of the same sample for 553 

each polymer type (Table S3). However, polymers of the same resin type from different 554 

suppliers can differ in the LIBS spectra due to presence of different additives (Peng et al., 2021). 555 

A more comprehensive study with a larger sample size would provide higher confidence that 556 

the results would generalize well to an industry. Secondly, despite the shift towards the use of 557 

LIBS for analyzing post-consumer plastics in recent years, there is a lack of open-sourced LIBS 558 

database, which limits further work in the field. Lastly, while LIBS has been used to detect the 559 

presence of metal contaminants, the potential application in predicting degradation levels are 560 

not well understood. Since degradation is associated with formation of oxygenated groups like 561 

carbonyl and hydroxyl, the O/C emission lines ratio could be a good indication of degradation 562 

levels. 563 
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Table 5. Summary of LIBS chemometrics study for plastic waste sorting. 564 

Reference Samples Hardware 
Spectral 

Lines 
Software 

Chemometric 

Tool 
Accuracy Precision Recall 

Main 

misclassification 

1 

(Anzano et 

al., 2010) 

PE, PP, 

PET, PS 

 

Q switched 

Nd: YAG 

Laser at 

532nm, 

ICCD 

Full 

Spectrum 

Microsoft 

Excel 

Euclidean 

Distance 

67 – 100% 

(Overall 87%) 
Not stated Not stated  

2  

(Grégoire et 

al., 2011) 

PE, PP, PS, 

PA, PC 

fourth-

harmonic 

Nd:YAG 

laser, ICCD 

C, H, N, O, 

CN, C2 

AnaLIBS 

(IVEA) 
PCA Polymers can be distinguished from each other  

3 

(Boueri et 

al., 2011) 

PE, PP, 

PVC, PTFE, 

POM, PA, 

PC, PMMA 

 

Quadrupled 

Nd :YAG 

pulsed laser 

266nm, 

ICCD 

C, H, N, O, 

F, Cl 

Na, Mg, K, 

Ca, Ti 

CN 

In-built 

software 
ANN 

81 – 100% 

(Overall 96%) 
Not stated Not stated  

4 

(Banaee and 

Tavassoli, 

2012) 

HDPE, 

LPDE, PP, 

PET, PS, 

PVC 

Q switched 

Nd: YAG 

Laser at 

1064nm, 

ICCD 

C, H, N, O, 

Cl, CN, C2 
SPSS 17.0 

Discriminant 

Function 

Analysis 

94 – 100% 

(Average 99%) 

96.2-100% 

(Average 

98.8%) 

94 – 100% 

(Average 99%) 

PP predicted as 

HDPE and 

LDPE 

5 

(Yu et al., 

2014) 

 

PE, PP, 

PVC, PS, 

ABS, PTFE, 

PA, PC, 

PMMA, PU, 

POM 

 

Q switched 

Nd: YAG 

Laser at 

532nm, 

ICCD 

 

C, H, N, O, 

F, Cl 

Na, Mg, K, 

Ca, Ti 

CN, C2 

 

MATLAB 

SVM, with 

adjusted spectral 

weightings 

Overall accuracy: 100%  
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6 

(Costa et 

al., 2017) 

PE, PP, 

ABS/PS, 

PA, PC 

Nd:YAG 

Laser, CCD 

spectrometer 

C, H, N, O 
Aurora 

Software 

KNN 

 

 

SIMCA 

91 – 100% 

(Overall 98%) 

 

89 – 96% 

(Overall 92%) 

97 – 98% 

(Overall 97%) 

 

91 – 93% 

(Overall 92%) 

91 – 100% 

(Overall 98%) 

 

89 – 96% 

(Overall 92%) 

 

7  

(Roh et al., 

2018) 

PP, PS, ABS Not stated 

Extracted 

features 

using PCA 

and ICA 

Not stated RBFNN 95.83% Not stated Not stated  

8  

(Vahid 

Dastjerdi et 

al., 2018) 

PVC and 

others (PE, 

PP, PS, 

PMMA) 

Q switched 

Nd: YAG 

Laser at 

1064nm 

C, N, C2 MATLAB SVM 

90.5% 

(Separating 

PVC from other 

polymers) 

Not stated Not stated  

9 

(Guo et al., 

2018) 

PE, PP, 

PVC, PS, 

ABS, PTFE, 

PA, PC, 

PMMA, PU, 

POM 

Q switched 

Nd: YAG 

Laser at 

532nm, 

ICCD 

C, H, O CN MATLAB 
K-means 

clustering 
99.6% Not stated Not stated  

10 

(Tang et al., 

2018) 

PE, PP, 

PVC, PS, 

ABS, PTFE, 

PA, PC, 

PMMA, PU, 

POM 

Q switched 

Nd: YAG 

Laser at 

532nm, 

ICCD 

C, H, N, O 

CN, C2 
MATLAB 

SOM with 

adjusted spectral 

weightings, K-

means 

96 – 100% 

(Overall: 99%) 
Not stated Not stated  



31 
 

11 

 (Stefas et 

al., 2019) 

ABS (with 

different 

additives) 

Q switched 

Nd: YAG 

Laser 

Full 

spectrum 

Python 

Scikit-learn 
LDA Overall accuracy: 100%  

12  

(Junjuri et 

al., 2019) 

HDPE, 

LDPE, PP, 

PET, PS 

ABS, PC, 

HIPS, 

Q switched 

Nd: YAG 

Laser at 

532nm, 

ICCD 

Full 

spectrum 

In-built 

Labview 

programme 

PLS-DA 

87.2 – 97.2% 

(Overall 

93.3%) 

Not stated Not stated  

13 

(Liu et al., 

2019b) 

 

 

HDPE, 

LDPE, PP, 

PVC, PS 

ABS, PTFE, 

PC, PMMA, 

PU, POM 

Solid-state 

Q-switched 

laser at 1064 

nm 

18 latent 

variables 

selected 

from full 

spectrum 

MATLAB PLS-DA 99.55% Not stated Not stated  

14 

(Junjuri and 

Gundawar, 

2019) 

 

HDPE, 

LDPE, PP, 

PET, PS 

Ti:Sapphire 

laser 

System at 

800nm, 

ICCD 

 

C, H, N, O 

Na, Mg, K, 

Ti 

CN, C2, NH 

 

MATLAB ANN 

97.8-100% 

(Overall 

99.3%) 

97.8-100% 

(Overall  

99.3%) 

97.8-100% 

(Overall 

99.3%) 

LDPE predicted 

as HDPE 

15 

(Junjuri and 

Gundawar, 

2020) 

 

HDPE, 

LDPE, PP, 

PET, PS 

ABS, PC, 

HIPS, 

Q switched 

Nd: YAG 

Laser at 

532nm, 

ICCD 

C, H, N, O 

Na, Mg, K, 

Ca, Ti 

CN, C2, NH 

 

In-built 

Labview 

programme 

ANN with 

feature selection 

95.1 – 99% 

(Overall 97%) 
Not stated Not stated  

16 

(Yan et al., 

2021) 

PE, PP, 

PVC, PS, 

ABS, PTFE, 

Q switched 

Nd: YAG 

Laser at 

20 PCs 

from full 

spectrum 

MATLAB PCA-kNN 

92.1 – 100% 

(Overall 

99.6%) 

Not stated Not stated  
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PA, PC, 

PMMA, PU, 

POM 

532nm, 

ICCD 

17 

(Peng et al., 

2021) 

PVC, ABS, 

PA, PMMA 

Q switched 

Nd: YAG 

Laser at 

532nm, 

ICCD 

Full 

spectrum 
Not stated CNN (ResNet) 100% 100% 100%  

565 
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7. Discussion 566 

The review of relevant literature revealed the following gaps in the field: 1) scope of plastic 567 

covered, 2) hybrid spectroscopic methods, 3) open-sourced database and 4) deep learning 568 

methods. They will be covered in detail from sections 7.1-7.4. 569 

7.1 Scope of Plastic Covered 570 

The type of plastic considered in current studies is limited largely to some of the most common 571 

materials found in post-consumer plastic waste. Furthermore, some studies typically focus on 572 

just separating between very specific choices of plastic type. In reality, post-consumer plastic 573 

waste can also contain some less common polymers such as natural polymers and specialized 574 

engineering polymers. Exclusion of these polymers from the dataset may result in 575 

misclassification into potentially recyclable polymer classes, lowering the quality of the 576 

recycled plastic. Hence, less common plastics should also be included in future studies in order 577 

to build a more robust chemometric model for dealing with heterogenous polymer mix. 578 

Further sorting of plastic types based on quality characteristics like contamination and 579 

degradation level, which are important considerations for the recyclability, have also not been 580 

well studied. These characteristics would be especially important for widely recyclable plastics 581 

like HDPE, PET and PP. Some preliminary works suggests that LIBS could be used to detect 582 

the presence of additives and contaminants in plastic waste, such as chlorine containing 583 

polymers (Huber et al., 2014), heavy metals (Costa and Pereira, 2020; Godoi et al., 2011) and 584 

brominated flame retardants (Stefas et al., 2019). Degradation typically results in formation of 585 

carbonyl or hydroxyl groups, leading to increased O/C ratio which can be picked up using NIR 586 

or MIR (Alassali et al., 2020, 2018; Dong et al., 2020).  587 

7.2 Hybrid Spectroscopic Methods 588 

While NIR is the predominant spectroscopic method used in the recycling industry today, other 589 

discussed spectroscopic methods (MIR, Raman, LIBS) have shown good potential as well, with 590 

most of the reviewed works reporting similar accuracies (well above 95%) to NIR studies. 591 

Since most of the spectra for different plastics are distinctly different, these results come as no 592 

surprise. Each of the methods have their own benefits and drawbacks, which are summarised 593 

in Table 6. NIR is the cheapest spectroscopic method of the four, but suffers in spectra 594 

resolution and dealing with black plastics (Beigbeder et al., 2013). On the flipside, MIR is not 595 

limited by black plastics, but has a much slower speed of spectrum acquisition (Kassouf et al., 596 
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2014). For IR spectroscopy, the presence of water can affect the IR spectrum due to strong 597 

absorption of IR radiation by O-H bonds. This effect is more pronounced in MIR than in NIR 598 

(Pasquini, 2018), where the O-H peaks could completely overlay other peaks of interest, most 599 

notably characteristic C-H peaks for different polymers (Primpke et al., 2020). In addition, 600 

sorting between HDPE and LDPE using IR spectroscopy could be potentially problematic, 601 

requiring some pre-processing such as using second derivatives before the difference in 602 

spectral features can be discerned (Saeki et al., 2003). The difference in spectral features 603 

between HDPE and LDPE are more distinct with Raman spectroscopy (Allen et al., 1999), but 604 

the method suffers from low sensitivity and interference of fluorescence (Dong et al., 2020). 605 

LIBS has the potential to identify the largest scope of plastics as compared to other three 606 

method, while also providing information on metallic contaminants (Ángel Aguirre et al., 2013; 607 

Liu et al., 2019c). However, LIBS spectra do not contain information about the molecular 608 

structure, and may struggle in distinguishing polymers with similar chemical formula (Costa 609 

et al., 2017). 610 

Table 6. Comparison of different spectroscopic methods 611 

Spectroscopic 

Method 
Advantages Disadvantages 

Cost 

(Portable options) 

NIR 

• Rapid and 

cost-effective 

• Well-

researched  

• Weak spectral features 

• Unable to identify 

black plastics 

• Spectra affected by 

presence of water 

NIR Spectrometer 

Ocean Insight NIRQuest - 

$17,000 

(Ocean Insights, n.d.) 

 

StellarCASE-NIR - $20,000 

(StellarNet Inc, n.d.) 

 

NIR HSI 

Specim FX17 – $42,500 (Stuart 

et al., 2020) 

 

MIR 

• Intense spectral 

features 

• Not limited by 

black plastics 

 

• Slow spectral 

acquisition 

• Spectra strongly 

affected by presence 

of water 

 

MIR HSI 

Specim FX50 - $200,000 (Stuart 

et al., 2020) 

Raman 

• Able to 

distinguish PE 

of different 

densities 

  

• Strongly affected by 

fluorescence  

• Low sensitivity  

 

Ocean Insight QE Pro Raman 

Series Spectrometers - $15,000 

(Ocean Insights, n.d.) 

 

StellarCASE-Raman - $20,000 

(StellarNet Inc, n.d.) 
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LIBS 

• Applicable to 

large polymer 

scope 

• Able to identify 

metallic 

contaminants 

• Struggle in 

distinguishing 

polymers with similar 

chemical formula 

 

StellarCASE-LIBS - $30,000 

(StellarNet Inc, n.d.) 

Table 6 shows that there is not an ideal single method for all possible plastic waste fractions 612 

with each having pros and cons. This points to potential benefits of combining different 613 

methods for plastic waste sorting, but this has not been well studied in the literature. In 614 

particular, LIBS and Raman spectroscopy share some synergies in terms of instrumentation, 615 

since both methods involve focusing a laser beam onto the sample, but at different energy 616 

requirements. (Jolivet et al., 2019). Shameem et al., (2017) studied a hybrid LIBS-Raman 617 

system with PE, PP, PET and PS, and found that both methods offer complementary 618 

information. Raman spectroscopy resulted in a clearer separation of different transparent 619 

polymer types but the colored plastic did not form any clear cluster. On the other hand, LIBS 620 

data formed distinct clusters for each of the different plastic types regardless of the color, but 621 

the data were a lot less distinct on a PCA plot. In a related area, Ng et al., (2019) studied the 622 

use of NIR and MIR both separately and in combination for predicting soil properties. The 623 

model built using NIR data was found to perform the worst, while the model built using MIR 624 

data perform at a similar level to the model built using combined NIR and MIR data, which 625 

might point to the redundancy of NIR data in a hybrid system. Therefore, future studies can 626 

focus on performance of hybrid spectroscopic chemometric systems. Developing a unified, 627 

open-sourced database that contains different spectra of the same sample would greatly benefit 628 

exploration of this research direction. 629 

7.3 Development of Open-Sourced Database 630 

There are currently existing attempts at building an open-sourced database (Cowger et al., 2021; 631 

Munno et al., 2020). However, in order to realize further developments in the field, namely 632 

expanding of plastic scope and hybrid spectroscopic methods as discussed above, the 633 

information captured in current databases should be expanded, or another standardized open-634 

sourced database should be developed. This database could contain spectra data of polymers 635 

as a pristine stage, and after simulated aging and contamination (Chabuka and Kalivas, 2020; 636 

Jung et al., 2018; Munno et al., 2020). The difference in spectral features can then be better 637 

captured towards building a chemometric tool for plastic waste sorting that can provide 638 

information on both plastic type and quality. Furthermore, spectra from each of the discussed 639 

spectroscopic methods (NIR, MIR, Raman and LIBS) should be captured for each polymer 640 
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sample. This allows for potential study to understand whether the use of hybrid spectroscopic 641 

methods can offer better performance in the chemometric analysis. The development of an 642 

open-sourced database can also help to facilitate further exploration of deep learning as 643 

chemometric tool (further discussed in the section below), which relies on large amount of data 644 

for training.  645 

7.4 Deep Learning as Chemometric Tool 646 

Deep learning techniques are considered state-of-the art in many tasks as it allows for learning 647 

of more intricate features as compared to traditional machine learning models (LeCun et al., 648 

2015). Several works in the literature have explored the use of neural networks as chemometric 649 

tool, but most of the network architectures explored have been basic three-layered ANNs. In 650 

recent years, the field of deep learning has expanded rapidly with different variants of other 651 

neural network architectures like convolutional neural networks (CNN) and recurrent neural 652 

networks (RNN) and generative adversarial networks (GAN) (Wang et al., 2020). In particular, 653 

several works have explored the combination of more novel neural network architectures with 654 

different spectral data in other areas (Chen & Wang, 2019; Liu et al., 2017; Ng et al., 2019, 655 

2020; Peng et al., 2021; Stiebel et al., 2018; Zhang et al., 2019), but only Stiebel et al. (2018) 656 

and Peng et al. (2021) have applied it to plastic sorting. Due to the feature extraction nature of 657 

the network architecture, CNN has been shown to perform well even without any pre-658 

processing of spectral data (Liu et al., 2017), which reduces the model computation time needed 659 

as compared to other chemometric tools. When applied to classification of the same polymer 660 

LIBS dataset, deep learning models were found to outperform machine learning models like 661 

ANN, SVM and kNN (Peng et al., 2021), which supports the case that the use of deep learning 662 

as chemometric techniques for plastic sorting that should be further explored. 663 

 664 

 665 

8. Conclusion 666 

Tackling plastic pollution remains one of the key challenges of the 21st century. A lot of 667 

research has been done to help transition the plastic economy to a circular economy, but many 668 

barriers still remain today. In the increasingly digital and fast-moving world, an automated 669 

system built upon chemometrics has shown great potential in helping to boost recycling rates 670 

by improving the sorting process. This review presented a comprehensive overview of the 671 
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recent works combining the following non-destructive spectroscopic methods - Infrared 672 

spectroscopy, Raman spectroscopy and Laser-induced breakdown spectroscopy with 673 

chemometric tools like principal component analysis, partial least square regression, k-nearest 674 

neighbors, support vector machine and neural networks. Through this review, it can be 675 

concluded that chemometrics combined with non-destructive spectroscopic methods show 676 

good potential in sorting plastics. In an industrial setting, the implementation of chemometrics 677 

have started with near infrared, but the suitability of other spectroscopic methods can be further 678 

tested. The review also reveals that there is potential for further work in this field to derive 679 

further insights from chemical data. Broadly speaking, these include 1) the need to incorporate 680 

other less common polymers or polymers of varying contamination and degradation levels in 681 

training chemometric models, 2) the use of hybrid spectroscopic methods as input data to 682 

overcome the limitations of each of the spectroscopic method, 3) building a standardised 683 

dataset for plastic waste and 4) exploring deep neural networks. By expanding the literature in 684 

these directions, the authors hope that industries will be able to optimize the recycling process 685 

by capturing the maximum value out of plastic waste and transition into a circular economy. 686 

 687 

 688 
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