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4.9 Protégé flow chart for operation two. . . . . . . . . . . . . . . . . . 145
4.10 The SQWRL query and results in Protégé. . . . . . . . . . . . . . . 147
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Abstract

The effect of globalisation and mass customisation necessitates that manufacturing
systems respond to market trends and changes with celerity. With the increase in
product variety and customisation, industries need to secure a competitive advan-
tage over their adversaries. To realise this, it is vital to pursue a strategy to shorten
the duration of the various phases of a manufacturing project. One such critical
phase of the manufacturing lifecycle that has garnered relatively less attention in
literature, is the scale-up phase. The main aim of this research is to propose an
industrially applicable robust systematic approach to support and guide scale-up
at various phases of the manufacturing system lifecycle. To fulfill this aim, it is
envisioned that a two-stage Data-Driven Scale-up Model encompassing the virtual
modelling and analysis of potential assembly system and workstation configura-
tions can enable the selection of a good system design without the need to procure
and commission the actual physical elements. For this purpose, the data integration
of kinematic modelling tools and Discrete-Event Simulation (DES) is first explored
such that the accuracy of DES input data is improved. Secondly, the approach is
coupled with a multi-objective genetic algorithm optimisation module to identify
assembly system designs that can lead to successful scale-up. The identified design
solutions are analysed according to the pre-defined scale-up criteria and the alter-
nate options are compared. The results of the comparison are visualised using radar
charts and tables which support the decision making. An application of the DDSM
framework for battery module assembly case study is provided and its benefits and
shortcomings are identified.

Keywords: Scale-up, Assembly system design, Discrete-Event Simulation, Kine-
matic modelling, Knowledge representation, Multi-objective optimisation
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Chapter 1

Introduction

This chapter provides an insight into the motivation behind choosing the research
topic, the background and formulation of the research aims and objectives. It also
imparts a brief introduction to the research methodology followed by an overview
of the thesis structure. The constant technological advancements in manufactur-
ing industries, subsequently lead to the introduction of new products that kick-off
projects requiring the testing and validation of both products and processes. How-
ever, the frequent changes in the customer requirements and market trends lead to
uncertainty and demand fluctuations. Due to these reasons, industries need to con-
stantly test and roll out new products and technologies at a rapid rate. Typically,
this includes an initial phase of product and process validation at low volume fol-
lowed by scale-up to a higher volume. To achieve successful scale-up, it is vital
that industries determine strategies for smooth transition from low volume to high
volume. In this regard, the aim of this chapter is to provide an understanding of the
importance of scale-up phase in discrete manufacturing industries and highlight the
challenges faced. A systematic approach to support decision-making during this
critical phase forms the fundamental element of this research work.

1.1 Research background

The manufacturing system lifecycle, in its infant stages, comprises of the concep-
tual/design phase where a number of planning activities are performed. In a number
of situations, the progress through the lifecycle is marked by a significant increase in
product demand that necessitates the production line scale-up. The scale-up phase
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is a critical period during the manufacturing system lifecycle and in order to touch
upon its significance, it is essential to reach a consensus about the meaning behind
the term ‘scale-up’. In process and pharmaceutical industries, the term ‘scale-up’

refers to an increase in the batch-size and volume of the manufacturing containers
used to mix and produce the products from pilot-scale to commercial-scale [Levin,
2001; Tsinontides et al., 2004; Faure et al., 2001; Leuenberger, 2001]. In discrete
manufacturing systems, ‘scale-up’ refers to a significant increase in the number of
finished products, either machined or assembled. Although innumerable number of
guidelines and approaches have been proposed for process industry scale-up, there
is a dearth of much needed literature on scale-up phase planning and implementa-
tion in the domain of discrete manufacturing industries. It is to be noted that there
are significant differences between the methods and techniques used for the process
or pharmaceutical industry scale-up and discrete manufacturing industry scale-up.
As a result, the vast majority of knowledge that is available in the field of process
industry scale-up cannot be directly translated for use in the discrete manufacturing
industries. This lack of knowledge on performing efficient scale-up is evident from
failed projects that result in wasted efforts, time and money.

1.2 Problem definition

In the current industrial settings, on completion of product and process validation,
the next significant hurdle is to make the production line operational. If the associ-
ated technologies are fairly novel, the difficulty of the hurdle is set even higher. Due
to the lack of prior knowledge about the technology, personnel experienced in that
particular technology are not readily available and hence there is no clear strategy
or approach to transition from low volume to high volume production. For example,
consider the recent increase in the popularity of electric vehicle powertrains which
is a relatively recent technology when compared to the standard Internal Combus-
tion Engines (ICE). In this situation, the exact approach of how to scale-up a battery
assembly line is a topic that needs to be given some thought. There is need for scale-
up planning not only in the initial concept phase but also during operational phase
(explained in more detail in section 2.4). In such situations, there is a tendency to
use trial and error-based approaches to buy equipment, plan assembly system de-
sign and allocate operators. However, this approach might not be efficient in the
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long run and in the worst-case scenario, it might prove to be more expensive than
necessary. Considering the above-mentioned issues, there is potential for formu-
lating a methodology that is not entirely dependent on the experience of personnel
and makes use of digital manufacturing to support the transition from low volume
to high volume production.

1.3 Research scope

The practice of scale-up is prevalent in various industrial domains such as process-
ing industries, pharmaceutical and discrete manufacturing systems. However, the
focus of this thesis is limited to the scale-up of manual, semi-automatic and au-
tomatic discrete assembly systems. The scale-up transition is a multi-faceted pro-
cedure that requires a careful consideration of the different aspects of a manufac-
turing system. Some of these facets include the organisational behaviour, software
domains, hardware domains, manufacturing execution systems and their integration
with the production line, data communication procedures, etc. The author primarily
focuses on the hardware, software and personnel modifications such as upgrading
equipment, making software changes to improve functionality, increasing the num-
ber of operators, etc., to the existing production line that need to be undertaken due
to the need to satisfy the new demand.

In this study, the manufacturing system is decomposed into a) component b) work-
station c) pilot line d) production line and e) factory. They will, henceforth, be
referred to as ‘levels’. The ‘component’ level represents the highest level of gran-
ularity and a ‘component’ is the basic unit of a system which can be further sub-
divided into elements [Lohse, 2006]. As an example, a robot is a component that
is composed of elements such as motors, drives, etc. Although the robot can be
decomposed into its constituent elements, the robot, as equipment, performs the
necessary assemblies. Therefore, the component is not decomposed further within
the research scope. The ‘workstation’ level is one step higher than the ‘compo-

nent’ level in terms of abstraction and represents processing units that can assem-
ble/manufacture the workpiece or product. The ‘pilot line’ level which is the next
higher step to the ‘station’ level represents a prototype line that is used for process
and product validation at low-volume. When considering production volume in-
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Figure 1.1: Scope of the thesis.

crease and scale-up, the term ‘pilot line’ is relevant and is hence considered within
the scope. It is to be noted that, in some manufacturing settings, pilot lines may
not be built due to various reasons. The ‘production line’ layer encompasses work-
stations and material handling units and is associated with assembly/manufacture
of parts at a higher volume than that of the pilot line. The ‘production line’ level,
however, does not cover the logistics and warehouse areas. The ‘factory’ level
comprises of logistics, warehouses and includes one or more production lines. A
manufacturing enterprise might comprise of interconnected factories as part of a
‘supply chain’. The modelling of factories, warehouses and impact of the supply
chain are outside the scope of this thesis.

From Figure 1.1, three dimensions are considered for the research scope. In the
physical system dimension, the component, station, pilot line and production line
levels are considered within the scope and the factory and supply chain levels are not
considered. In the virtual system dimension, the scope is limited to kinematic mod-
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els and DES models. Other modelling methods such as system dynamics, agent-
based modelling, multi-physics models, etc., are not investigated as part of this
research. The system lifecycle dimension includes the concept, implementation,
operation and end-of-life phases. As part of this research, the pre-operational phase
scale-up that happens during the implementation phase of lifecycle and the opera-
tional phase scale-up that happens during the operational phase of the lifecycle are
considered within the scope. More details on the flow of data among the modelling
entities of the virtual system dimension and between the virtual and physical system
entities are provided in Chapter 3 of the thesis.

The intended stakeholders of the research are system designers and personnel in-
volved in scale-up of discrete manufacturing systems that perform assembly oper-
ations. The benefits of the research can also be communicated to the higher level
management using charts and graphs that allow the comparison of the considered
system design solutions.

1.4 Research motivation

1.4.1 Challenges during scale-up

• Revenue loss with increase in time-to-volume
The body of existing literature has acknowledged that scale-up phase is a crit-
ical one that proves to be a challenge in most situations [Tsinontides et al.,
2004; Nahm and Steinfeld, 2014; Bull et al., 2008; Wirges et al., 2013]. Care-
ful analysis of the underlying factors reveals that the degree of novelty, and
product and process complexity affect the success of the scale-up projects.
Industries are at a risk of losing revenue and customer satisfaction if they fail
to deliver projects on time, since this phase of project overlaps with the most
profitable period of a product’s lifecycle. Although time-to-market is given
sufficient discussion in literature, time-to-volume is not discussed in detail. In
automotive, consumer electronics, and personal computer manufacturing in-
dustries, the product prices can plummet rapidly [Kurawarwala and Matsuo,
1996; Burt, June 19, 2002; Carrillo and Franza, 2006]; therefore, significant
benefits can be achieved by reducing the time to volume [Terwiesch et al.,
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2001].

• Disturbances impeding the progress

The scale-up phase is characterised by several disturbances arising from ma-
chine stoppages, inexperienced personnel, product and process modifications,
operator skill, equipment availability, material quality, equipment calibration,
etc. It is crucial to limit and control these unfavourable factors as much as
possible as they can lead to additional costs during the scale-up phase [Leuen-
berger, 2001]. Knowledge of the system at the pilot phase or low-volume
production plays a significant role in optimisation of the system at a higher
volume [Faure et al., 2001].

• Impact of personnel experience on decision making
Scale-up is accompanied by assembly system design and technical changes
[Shibasaki et al., 2006] and one main challenge during this transition is the
shortage of experienced personnel; this heavily impacts the duration of the
scale-up phase. From literature, it is found that relationship exists between
the experience of operators and their involvement when making decisions
[Karuppan and Kepes, 2006]. In novel situations, decision making is done
based on inductive reasoning that involves predictions championed by the ex-
isting knowledge or experience. In such situations, inexperienced personnel
can make wrong decisions or choose trial and error-based planning meth-
ods [Doltsinis et al., 2013] which could have adverse effects on the cost and
time spent on the project. Additionally, the cognitive load induced by the
decision making process, especially for complex manufacturing systems that
involve a number of decision variables such as workstations, operators, ma-
terial handling solutions, etc., can result in errors while choosing the system
configurations and equipment.

The presence of such challenges hinders the success of scale-up but the existing
knowledge on strategies, methods and approaches to overcome these challenges is
lacking [Deif and ElMaraghy, 2007a]. The pitfalls associated with the implemen-
tation of scale-up that are mentioned above need to be addressed in order for indus-
tries to stay on par with their competitors. This further underscores the importance
of the scale-up phase.
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1.4.2 Need for framework employing simulation concepts

“Digital factory is a complete model of all the resources of a factory such as lo-

cation, buildings, infrastructural media supply, logistics, machines, tools, fixtures,

etc., in a standardised 3D system and managed by a factory data management sys-

tem” [Westkämper, 2007]

Within the context of digital factory, it is proven that simulation and modelling helps
statistical analysis of ‘what-if’ scenarios and reduces the time and cost of decision
making. The simulation models are also usually integrated with other Information
Technology (IT) systems to support production planning and optimisation [Chrys-
solouris et al., 2009]. With the perceivable benefits of digital factory, the author
proposes to overcome the scale-up challenges mentioned in section 1.4.1 with the
help of simulation and modelling of the manufacturing system. The use of a robust
and objective framework coupled with knowledge from simulation models reduces
dependency on humans in projects where no prior experience is available. Conse-
quently, this helps reduce human errors. Moreover, integration with digital software
modules is found to be beneficial to model the potential scale-up scenarios [Kuhn,
2006; Klocke et al., 2016]. This assists the development of a system design that is
robust to disturbances with reduced throughput losses [Colledani et al., 2018]. Two
prominent digital simulation methods, Discrete-Event Simulation (DES) and kine-
matic modelling are adopted to model the manufacturing system; the former will
model the ‘pilot’ and ‘production line’ levels and the latter will model the ‘com-

ponent’ and ‘station’ levels [Caggiano et al., 2015]. Kinematic modelling tools
are typically used to support collision detection, path planning, process planning,
optimal cell design and creating digital mock-up of assembly stations [Caggiano
and Teti, 2018]. On the other hand, DES simulates the operational behaviour of a
production line and is favourable for throughput analysis, resource utilisation and
comparison of production strategies [Caggiano and Teti, 2018]. The author would
like to highlight that the exchange of simulation data, presented in section 3.2.4,
between the kinematic modelling software and DES software is necessary to un-
derstand and analyse complex manufacturing systems; it also supports the decision
making process within DES [Caggiano et al., 2015; Ghani et al., 2015].
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1.5 Research hypothesis

The framework that will be proposed is structured on the data integration of the
DES models of the assembly line and kinematic models of the system workstations
to improve the accuracy of input data within DES. The framework will henceforth
be referred to as ‘Data-Driven Scale-up Model’ (DDSM).

‘It is hypothesised that employing the DDSM framework for the transition from

low-volume to high-volume production of discrete assembly systems reduces the

time-to-volume and enables the selection of assembly system designs that are cost-

effective and beneficial for the scale-up project.’

1.6 Research question

In discrete assembly systems, despite the criticality of the scale-up phase, there
is lack of a robust framework to support it. This research study investigates the
data integration and interoperability between DES and kinematic modelling soft-
ware within an overarching framework that supports the scale-up phase of discrete
assembly systems and answers the following question:

‘How can the data integration and interoperability between kinematic and DES

models for decision-making regarding the assembly system design during scale-up

planning phase be achieved in a seamless way?.’

1.6.1 Research aims and objectives

• To identify the data from the physical system/shop floor that are required by

digital simulation tools, namely kinematic modelling tool and DES, which

are used for modelling workstations and production lines, respectively. This

is crucial to determine the type and level of data integration that would be

necessary to support scale-up.

• To propose a robust framework for multi-domain data integration of software

at two different levels of granularity, the workstation level and system level, to

identify potential workstation and system configurations that can accommo-

date the increased capacity following scale-up. This will provide engineers
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with a decision support system that can save time, cost and effort of perform-

ing the scale-up.

• To demonstrate the application of the proposed methodology to support the

transition from low to high volume production in a pilot line case study. This

will help highlight the importance and benefits of the proposed approach.

1.6.2 Research approach

In order to achieve the above mentioned objectives, the research approach is identi-
fied (Figure 1.2 ) and explained in the following points.

Figure 1.2: Research approach.

1. Literature review to understand the current industrial practices of scale-up
and relevant knowledge existing in research articles.
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2. Identification of the type, format and frequency of the data that is required by
the kinematic and DES models. The required data are identified by referring
to literature and focus groups with experts in the field of DES and kinematic
modelling.

3. Stage one of the methodology that is associated with the workstation con-
figuration generation is formulated. A knowledge-based kinematic model is
employed for the selection of workstation equipment that can fulfill the re-
quired process.

4. Stage two of the methodology that involves the assembly line configuration
generation is established. A simulation-based multi-objective optimisation
approach is explored for this purpose.

5. The level and method of integration between the different modelling software
such as kinematic modelling and DES software are discussed and the data
structure for the integration is presented.

6. The two-stage methodology is implemented in a test case of battery module
assembly and the methodology is critically reviewed.

7. The validation of the methodology to support scale-up is done by checking
whether i) decision making is simplified with the help of methodology ii)
the assembly system and workstation designs selected by the methodology
are capable of achieving the required production volume and iii) the scale-up
project time, cost and effort can be reduced. For this purpose, opinions from a
focus group consisting of domain experts and system engineers are gathered.

1.7 Dissertation outline

The dissertation covers, in five chapters, the concepts of the scale-up problem, for-
mulation of the two-stage DDSM methodology that enables assembly system de-
sign selection and decision-support using simulation based multi-objective optimi-
sation. The various chapters in this thesis are outlined in Figure 1.3. The remainder
of the thesis provides:
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Figure 1.3: Thesis roadmap

• a detailed review of the existing approaches for scale-up, integration of data
sources, and benefits and disadvantages of simulation models (Chapter 2);

• a discussion of the two-stage DDSM research methodology that is built upon
the two pillars of workstation configuration selection using a knowledge-
based kinematic model and system configuration selection using multi-objective
simulation optimisation (Chapter 3);

• a demonstration of the DDSM methodology in an electric vehicle assembly
setting, critical analysis and an evaluation of the presented work with certain
criteria such as time, cost, effort, reusability, extendability, applicability and
traceability (Chapter 4);

• an assessment of whether the research objectives are fulfilled and the direc-
tions for future works (Chapter 5).
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Chapter 2

Literature review

The primary objective of this chapter is to provide a deeper understanding of the
research topics upon which the methodology is constructed and critically analyse
the relevant research works. Having provided the context of the research work,
the subsequent sections provide a critical discussion of the relevant research work,
highlighting the research gaps, eliciting the benefits of the DDSM methodology
and comparing existing research with the DDSM framework. Section 2.1 provides
a broad description of manufacturing systems, the various economic factors that
influence it and the strategies and paradigms that are associated with it. Section
2.2, unfolds the definitions of scalability, scale-up and capacity planning phase and
sheds some light on the background of the research topic. Following this, in section
2.3, two specific phases of the manufacturing system lifecycle, the pre-operational
and operational phases, are briefly explained to highlight the stages of the lifecy-
cle that are associated with scale-up. Subsequently, the importance of scale-up
is addressed to justify the need for research on scale-up. The difference between
scale-up in a process industry and discrete manufacturing industry is also described
to elicit the inability to effectively apply existing scale-up research to the problem
at hand. The existing literature on ramp-up is discussed in section 2.4, to iden-
tify approaches and practices revolving around ramp-up that can be adapted for
the scale-up phase, followed by a general discussion on the differences between
the scale-up phase and ramp-up phase. An assessment of the potential of simu-
lation and modelling to support the virtual engineering of complex manufacturing
systems and its capability to aid the scale-up endeavour also forms a significant
part of this chapter. A detailed review of modelling the workstations using kine-
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matic models and assembly lines of production systems using DES is also provided
in section 2.5. Since the modelling of complex manufacturing systems requires
the data exchange among different computer-aided design and engineering soft-
ware such as Solidworks, ANSYS, Catia, Process simulate, etc., a short write-up
on existing frameworks for data exchange and in specific, the data integration of
DES and kinematic modelling is presented in section 2.6. Since the latter part
of the methodology adopts simulation-based optimisation for system configuration
selection, section 2.7 is dedicated to explain the basics and the rationale behind
its selection. Section 2.8 reviews the current trends in manufacturing scale-up and
presents a comprehensive review of the relevant work in the area of scale-up and
assembly system and workstation configuration selection. The chapter concludes
by summarising the findings of the literature review which ultimately leads to the
identification of research gaps.

2.1 Introduction to manufacturing systems

The term ‘manufacturing system’ is used to represent the combination of manu-
facturing equipment, human resource, raw materials, process and information flow
that enable the transformation of a product from raw material to final design. It was
defined, in 1983 by CIRP (International Conference on Production Engineering) as

“ a series of interrelated activities and operations involving the design, materials

selection, planning, manufacturing production, quality assurance, management and

marketing of the products of the manufacturing industries”

[Hitomi, 1996]
Manufacturing systems are generally divided into two types: processing and as-
sembly. The former involves the processing of products to transform their shape,
material or properties. The latter involves the joining of individual parts to form
sub-assemblies or the assembly of a number of sub-assemblies to form the final as-
sembly [Chryssolouris, 2013].

From Figure 2.1, the processing type manufacturing system is further classified
into project shop, job shop, cellular system, continuous system and flow line. In
project shop, the product or workpiece remains stationary and the required mate-
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Figure 2.1: Manufacturing system classification (adopted from [Chryssolouris,
2013]).

rials, equipment and human resources are brought to it. On the other hand, in a
job shop processing, similar machines and equipment are grouped together and the
products move through them according to the process plan. In cellular systems, the
machines that perform the required processes for a certain family of products are
grouped together in a cell. Flow line processing comprises of a sequence of ma-
chines that perform the necessary processes on the product that flows through the
system. The four processing types mentioned in this section are concerned with the
manufacturing of discrete products. The last type of processing which is the con-
tinuous system involves products such as liquids, gases and powders. Moving onto
the assembly type manufacturing, they are classified into moving part systems and
stationary part systems. Both these sub-classes can be further divided depending on
whether the workpiece is also moving or stationary. The stationary part systems are
common in the aeronautical sector where the parts cannot be moved around easily.
The moving part systems are common in the automobile sector where the raw ma-
terials and sub-assemblies are usually transported from one station to another using
the material handling units [Chryssolouris, 2013].

2.1.1 Manufacturing system lifecycle

A typical manufacturing system consists of the lifecycle as illustrated in Figure
2.2. During the design phase, the production system is conceptualised, followed
by the implementation phase where the commissioning and realisation of concepts

14



is achieved. However, a critical hurdle that needs to be cleared to reach the oper-
ational phase is the transition to higher productivity or throughput. This transition
is not a characteristic of the implementation phase alone. This demand increase
can also occur in the later phases of the operational assembly system. The activity
of transitioning from low-volume to high-volume is considered as scale-up and is
an inseparable part of the present-day manufacturing systems. Scale-up is indeed
inevitable, however, it is desirable to minimise this duration as much as possible to
ensure survivability in the competitive markets.

Figure 2.2: Manufacturing system lifecycle [Chase and Aquilano, 1977].

As an example, consider the case of lithium-ion battery demand surge; with the
evident use of these batteries in electric vehicles, the top five battery manufacturers
have been working to triple their capacity [Economist, n.d.]. Compared with the
use of 17,000 electric cars in 2010, there were 7.2 million electric cars on the road
in 2019. This is a booming sector which is expected to grow from 2.5 million
in 2020 to 11.2 million in 2025 and reaching 31.1 million by 2030 [Woodward,
2020] and hence the need to continually increase the production capacity to meet
the growing demand. In another example, the use of hydrogen powered automobiles
are expected to increase and it is envisioned that by 2050, 400 million passenger
vehicles, 5 million trucks, and more than 15 million buses will run on hydrogen [Up,
2017]. Compared with 2015, this could lead to a tenfold increase in the demand. In
such scenarios, it is generally expected that industries have a proper procedure in
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place to execute such scale-up projects [Up, 2017]. However, a survey conducted
by McKinsey and company in 2019 identified that industries are stuck in the pilot
phase, prior to scale-up, which is termed as the ‘pilot purgatory’. The primary
reasons for this were investigated and this represented in Figure 2.3; it was found
that 45% of the respondents declared that the lack of resources and knowledge on
the strategy and method to increase the production volume and the costs associated
with scale-up such as planning, concept development, operator training, capital and
commissioning costs, serve as major roadblocks that prevent the project’s success
[Garms et al., 2019]. This elicits the need for a systematic approach to support the
scale-up planning and decision making.

Figure 2.3: Roadblocks preventing pilot to full-scale production [Garms et al.,
2019].

With the advent of Industry 4.0, manufacturing industries have started their journey
towards digitalisation. Accordingly, the use of digital models to simulate the man-
ufacturing entities is seen as an enabling technology for decision making [Mahdavi
et al., 2010; Kádár et al., 2004]. The use of software that enable computer-aided
manufacturing, design and engineering, allows better visualisation and embodiment
of the ideas, concepts and designs pertaining to the future assembly system. This
further supports the decision making process and ultimately enables faster time-to-
volume. Having provided a brief introduction of the manufacturing system, its types
and the necessity of scale-up, the next section describes the various manufacturing
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system paradigms.

2.2 Manufacturing system paradigms

Manufacturing systems have undergone several changes and paradigm shifts due to
emerging technologies and market changes. Before the establishment of the exist-
ing manufacturing systems, ‘craft production’ was prevalent from the 1850s. The
products were tailored to the customer’s needs, but they were expensive and the
craftsmen were generally localised; this posed challenges for scaling up the pro-
duction [Koren, 2010; Hu et al., 2011]. To overcome this issue and reduce costs
associated with production, ‘mass production’ paradigm comprising of assembly
lines was introduced in 1900s [Hu, 2013; Ford and Crowther, 1922]. This was
followed by ‘lean manufacturing’ paradigm in 1955, where the idea was to reduce
waste, waiting time and defects while continuously improving the system [Womack
et al., 2007; Holweg, 2007]. The late 1980s saw the introduction of the ‘mass cus-

tomisation’ paradigm which was constructed upon the concept of Flexible Manu-
facturing Systems (FMS). This paradigm shift was accompanied by the huge variety
and diversity of products [Hu et al., 2011; Gilmore et al., 1997]. The concept of Re-
configurable Manufacturing System (RMS) gained traction in the 1990s to enable
scalable capacity and changeable functionality [ElMaraghy, 2005]. This paradigm
was soon followed by ‘personalised production’ in the 2000s with the advent of
additive manufacturing to provide the customers with personalised unique products
[Hu, 2013; Mourtzis and Doukas, 2012]. The more recent paradigm shift is towards
Cloud Manufacturing, which is a service-oriented networked product development
model that allows access to shared collection of distributed manufacturing resources
[Wu et al., 2012, 2015]. A summary of the manufacturing system paradigms is pro-
vided in Table 2.1. The mass production, lean manufacturing, mass customisation,
RMS, personalised production, and cloud-based manufacturing paradigms and their
impact on production scale-up planning are discussed in more detail in the follow-
ing sections.
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Table 2.1: Evolution of manufacturing system paradigms

Year Paradigm Reference Characteristic

1850 Craft production [Koren, 2010] High cost

Good quality

[Hu et al., 2011] Localised production

1900 Mass production [Hu, 2013] High productivity

[Ford and Crowther, 1922] Low variety

Fixed control system

Special-purpose machines

1955 Lean manufacturing [Ohno, 1988; Womack et al., 2007] Reduce waste and defects

[Holweg, 2007] Continuous improvement

1980 Mass customisation [Slack, 1987; Hu et al., 2011] Catering to product variety

[Gilmore et al., 1997] Programmable control system

1990 RMS [ElMaraghy, 2005] Changeable functionality,

Scalable capacity

Multi-tools

2000 Personalised production [Hu, 2013] On-demand manufacturing

[Mourtzis and Doukas, 2012] Unique one-off products

2010 Cloud Manufacturing [Wu et al., 2012, 2015] Service-oriented network

Distributed manufacturing

2.2.1 Mass production

The paradigm of mass production was introduced in 1900s with Henry Ford’s as-
sembly line; the main goal was to cater to the increased productivity. The systems
were typically ‘dedicated’ and had the ability to roll out approximately 15 million
Model Ts of the same colour between 1908-27 [Williams et al., 1992]. The opin-
ions of the customers did not matter much; they were forced to choose from the
available options [Hu, 2013]. In the automotive and consumer goods industries, au-
tomated transfer lines helped the work in progress travel shorter, more direct routes.
This played an important role in reducing the price of Model T from $ 950 in 1908
to $ 360 in 1916 [Williams et al., 1992; Hitomi, 2017].

The mass production systems are inherently inflexible with high capital investment
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and in the event of unprecedented breakdowns or machine stoppages, the whole
production line is affected. This renders the system inefficient and subsequently
increases the product cost [Chryssolouris, 2013]. An approach that overcomes the
rigid practices of the mass production paradigm was sought after by many indus-
tries due to the intense global competition and evolving market requirements driven
by the diversification of consumer preferences. For example, the number of unique
vehicle designs in US increased by four-fold over a span of 35 years and the num-
ber of different running shoe styles increased from 5 to 280 over a span of twenty
years [Mourtzis, Doukas, Psarommatis, Giannoulis and Michalos, 2014]. The ded-
icated systems used in mass production are not flexible enough to handle the highly
customised products [Hu et al., 2011]. Moreover, when the demand increases, for
example, by five to ten-fold, the whole transfer line needs to be replicated; this in-
volves major changes to the hardware. However, the decision to replicate the trans-
fer lines is not cognitively demanding on the decision maker since it just involves
the replication of an entire production line. Therefore, it is possible for system
designers to select assembly system designs without the guidance of a decision-
support system.

2.2.2 Lean Manufacturing

The core idea behind lean manufacturing is the elimination of waste. It is also re-
ferred to as the Toyota Production System and considers several types of waste such
as overproduction, excess inventory, waiting, transportation, over-processing and
defects. The various concepts established as part of Lean Manufacturing include
the standardisation of operation, production smoothing, Just In Time (JIT), reduc-
tion of setup time and kanban [Ohno, 1988; Monden, 2011]. It is possible to use
DES to virtually represent the production system and identify wastes and non-value
added activities by monitoring the resource utilisation, travel times, travel path and
distance, shift times, labour utilisation and product waiting time in queue; this im-
proves the productivity and quality [Heilala et al., 2008]. In production systems that
follow lean manufacturing principles, when the system needs to be redesigned for
scale-up, the decision making involves the consideration of automating the work-
stations, upgrading the equipment and improving the material handling in addition
to replication of production lines. Since there are a number of decision variables
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involved in this process, it is beneficial to employ a decision-support system.

2.2.3 Mass customisation

The mass customisation paradigm became popular in the late 1980s due to the need
to adapt to the changing market preferences by introducing flexibility into the sys-
tem. The concepts and technologies of product family architecture and delayed
differentiation are considered as key enablers for this paradigm [Slack, 1987; Hu,
2013]. However, this is also accompanied by the increase in the production sys-
tem complexity with respect to the structure, operation, decision-making, etc. The
FMSs play an important role in shortening the product lifecycle, time-to-market and
coping with unpredictable demands [Mourtzis, Doukas, Psarommatis, Giannoulis
and Michalos, 2014]. For this purpose, FMSs are beneficial, especially because they
are better suited to accommodate changes than the DMSs. In FMSs, the machines,
robots and equipment can be programmed to do different tasks and are not limited
to producing one product type. When unprecedented events such as stoppages or
machine breakdowns occur, it is still possible to continue production. However, the
justification of capital expenditure is quite challenging in such systems. In general,
FMSs are able to adapt to market changes and demand uncertainties but they have
the problem of having more production capacity than required which could lead to
a situation where the machines and system resources remain idle and are not used
efficiently [Chryssolouris, 2013]. The various types of flexibilities in FMSs are: i)
machine flexibility, ii) material handling flexibility, iii) operation flexibility, iv) pro-
cess flexibility, v) product flexibility, vi) routing flexibility, vii) volume flexibility,
viii) expansion flexibility, ix) control program flexibility, and x) production flexibil-
ity [ElMaraghy, 2005]. These different types of flexibilities provide the freedom of
assembly system design while increasing the cognitive load on the decision makers.
This is due to the possible combinations of solutions that can arise from the diverse
range of flexibilities. Therefore, the use of a decision support system can help the
system designers and decision makers in the domain of FMS scale-up.

2.2.4 Reconfigurable Manufacturing Systems

In Reconfigurable Manufacturing Systems, the machine components and material
handling units can be removed, modified, added or interchanged as and when nec-
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essary. In other words, the flexibility of the system can be adjusted according to
the requirements; the functionality and capacity can be varied when needed. Some
of the enablers of RMSs are modular machines, standard interfaces, reconfigurable
controls, sensors, adaptive controls and reconfigurable machine tools [ElMaraghy,
2005]. However, due to the addition of various modules along with their respective
interfaces and integration, the RMSs exhibit increased interface, structural and oper-
ational complexity. [Wiendahl and Scholtissek, 1994]. The primary characteristics
of RMSs are presented by [Koren, 2006] as modularity, integrability, customisation,
scalability, convertibility and diagnosability. However, throughout the whole life,
the RMSs are associated with reconfiguration costs such as incremental system cap-
ital cost, additional repeated reconfiguration and ramp-up costs [ElMaraghy, 2005].
In RMSs, when considering system design for scale-up, several design solutions are
possible due to the various configurations of equipment, machine and workstations.
Therefore, it is beneficial to use a decision support system for scale-up planning in
such systems.

2.2.5 Personalised production

Personalised production enables tailored production of products based on the cus-
tomer’s preferences and needs by using technologies such as additive manufactur-
ing, 3D printing and cyber-physical systems. The innovative products are realised
by collaboration between customers and manufacturers. In this paradigm, visu-
alisation of the design choices is very important. In parallel, it is also important
to have analytical tools to evaluate the designs [Hu, 2013]. Each design can be
divided into editable parts and fixed parts; the fixed parts are determined by the
manufacturers to ensure required functionality. The editable parts are showcased
to customers using technologies such as Virtual Reality (VR), Augmented Real-
ity (AR) and user-friendly interfaces [Mourtzis, Doukas, Psarommatis, Giannoulis
and Michalos, 2014]. The personalised productions make use of on-demand manu-
facturing strategies and the products are unique. In personalised production, since
each product is unique, it is closely related to craft production. The personalised
production paradigm is considered out of scope of the DDSM framework that will
be proposed in the next chapter.
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2.2.6 Cloud manufacturing

Cloud manufacturing uses network, computing and manufacturing technologies to
transform manufacturing resources into services. This allows the efficient manage-
ment of the resources and enables their sharing in a safe and reliable fashion across
the system lifecycle. The manufacturing cloud operator imports the resources from
the resource provider and exports it to the resource users. The cloud manufactur-
ing architecture consists of five layers: i) resource layer, ii) perception layer, iii)
service layer, iv) middleware layer, and v) application layer. The resource layer
comprises of the manufacturing resources such as machine tools, assembly equip-
ment, computational data, software, operators and knowledge. The perception layer
is responsible for connecting the resource layer to the network. The service layer is
responsible for virtualisation and encapsulation of the resources and capabilities to
form service pools. The middleware layer comprises of the support services such
as the energy management, failure management, cloud service management, etc.
The application layer allows the users to access the cloud services [Wu et al., 2015;
Zhang et al., 2014]. In cloud manufacturing paradigm, the resources are shared
among different users and the operation of the manufacturing system is distributed
across the cloud platforms and therefore, it is different to the other manufacturing
paradigms discussed till now. This paradigm will hence not be considered for the
DDSM framework.

2.3 Product Lifecycle Management

In this research, the DDSM framework will be built upon the concepts of virtu-
alisation and digital manufacturing that subsequently allows the encapsulation of
production system using virtual models. These models can be used throughout the
lifecycle and can be updated as and when there are changes in the system. Since the
DDSM framework supports the Product Lifecycle Management (PLM), it is neces-
sary to discuss the existing state of PLM and their applicability in industries. The
concept of PLM emerged in the early 2000s to support the lifecycle of the product
and the integration of the various software tools that form part of the production
process [Segonds et al., 2016]. PLM allows the management of product informa-
tion and knowledge and brings innovation in product development and transfers
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the knowledge from industrial personnel to data management systems [Goto and
Yoshie, 2019]. The family of software suites that provide functionalities intended
to support the whole manufacturing lifecycle are referred to as Product Lifecycle
Management (PLM) tools.

The benefits of PLM is highlighted with the case of an industrial machinery manu-
facturer where the various data were manually input and the Bill of Material (BOM),
2D drawings, 3D models and technical data were all stored separately. Several is-
sues arose between the design team and manufacturing team due to the non-value
added activities of redundant data input, data queries, etc. Additionally, there was
dependency on operator for data retrieval; the absence of the operator delayed the
whole project. With the help of PLM, however, significant improvements were no-
ticed, especially in data organisation and queries; there was also reduced risk of
losing data. Moreover, additional benefits of 3D data model distribution, reduction
of manufacturing rework and associated costs were also realised [Goto and Yoshie,
2019].

Figure 2.4: Siemens PLM software overview [Sendler, 2009].

PLM has evolved over the years and the more recent cloud PLM provides digital
collaboration between products and stakeholders. This removes PLM from being
bound within industry premises and allows for better collaboration and reachability
[Singh and Misra, 2019]. It is to be noted that aerospace firms such as Airbus and
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Boeing have shown interest in PLM as a cloud service [Mas et al., 2015]. Although
it is considered as an enabler for Industry 4.0, it is a relatively new concept. The
industries that are already equipped with an on-premise PLM software face with
the challenges of adaptability and migration to cloud PLM.

The scale-up is an activity that happens at specific phases of the product and sys-
tem lifecycle. Therefore, the planning and decision making activities that need
to be done are part of the product lifecycle management. There are a number of
PLM tools available in the market including Enovia [Integrity, 2012], Teamcen-
ter [Siemens, 2009], Windchill, Oracle Agile PLM and Share-A-space [Bergström
and Dunford, 2007]; an illustration of the Siemens PLM software is adopted from
[Siemens, 2009] and presented in Figure 2.4. The current PLM tools seemingly
communicate in a seamless manner with each of their specialised modules. How-
ever, they are expensive and built-upon proprietary languages that do not readily
integrate with other proprietary virtual modelling software that are not part of the
PLM suite and enterprise information systems; they also do not meet the required
industrial functionality. When establishing PLM software in industry, it disrupts
the existing projects due to the installation and migration process [Sacco et al.,
2010]; adopting a commercial PLM suite involves changes to the industry’s pro-
cesses [Vezzetti et al., 2014] and is difficult to implement and involves installation,
training and maintenance costs [Hewett, 2010]. There is the need to enter a phase
of transition if the industry uses a number of different software systems that have
different data formats [Soto-Acosta et al., 2016]. Due to the associated costs that
were discussed above and the complex adoption process, the PLM software suites
may cater to the needs of large industries but fail to meet the needs of the small-
scale ones [Terkaj et al., 2012].

On the other hand, the DDSM framework is not designed to be part of any specific
PLM suite and hence is not restricted or bound by specific software languages. It
proposes a framework that can connect with various software that may or may not
be open source; the integration can be done using any database and the framework
only defines the type and structure of data that needs to be integrated. The DDSM
framework is intended to support the planning and decision making during scale-
up phase which is only one part of the system lifecycle. The PLM suites, on the

24



other hand, are intended to support the whole lifecycle. The DDSM framework can
be employed as a low cost solution that is affordable by industries in contrast to
the more expensive, proprietary solutions available in the market for the scale-up
planning phase.

2.4 Scale-up

2.4.1 Defining scale-up

According to Putnik et.al, more than 1500 papers that have been published, refer-
ence the term scalability [Putnik et al., 2013], which affirms the importance of the
subject matter. Koren defines the term ‘scalability’ as

“the design of a manufacturing system and its machines with adjustable structure

that enables system adjustment in response to market demand changes. The struc-

ture may be adjusted at the system level (e.g., adding machines) and at the machine

level (changing machine hardware and control software).”

[Koren, 2006].

Scalability is regarded as a subset of reconfigurability and is closely associated with
changeable manufacturing and flexibility [Putnik et al., 2013]; it is also identified as
one of the characteristics of Reconfigurable Manufacturing Systems (RMS)[Koren
and Ulsoy, 2002].

Closely associated with scalability is the term ‘scale-up’, originating from computer-
science background, which can be defined as

“expanding a system by incrementally adding more devices to an existing node,

typically by adding cpus, disks, and NICs to a node.”

[Devlin et al., 1999].

The term ‘scale-up’ can be interpreted in different ways depending on the context of
its use. Henceforth, it is essential that it is sufficiently explored to reach consensus
pertaining its definition and purpose throughout this research study. The aforemen-
tioned definition of ‘scale-up’ is modified and re-defined by the author to adopt it
to the manufacturing domain as

25



“the transition from low-volume or pilot-scale to high-volume or commercial-scale

production that is realised with changes in the manufacturing system to accommo-

date the increase in production volume.”

The scale-up phase is characterised by modifications to the software, hardware, op-
erator allocation and material handling units until the production volume require-
ments are met [Koren, 2006]. It is not possible to achieve the new demand for
various products by performing minor modifications to the control strategies and
manufacturing policies. Typically, the production lines need to be stopped when
the line modifications are performed.

2.4.2 Difference between capacity planning and scale-up

Another term akin to the above definitions is ‘capacity planning’ and it is associ-
ated with modifying the configurations of a system, both physical and logical, to
accommodate demand changes [Deif and ElMaraghy, 2007b,a]. However, as seen
from Figure 2.5, the capacity planning phase considers the daily demand change
and endeavours to meet the demand, primarily, by modifying operational policies.

The capacity planning phase is characterised and influenced by the frequent but
slight demand changes and modifications to the system by changes in the various
operational policies such as scheduling and sequencing rules. No major hardware
or software changes are generally executed and it does not comprise of production
line stoppages since the scale of demand change, for example, from 300 products
on day one to 320 or 290 products on day two, does not warrant such practices.
On the other hand, the scale-up phase is a project that is undertaken to make major
modifications to the facility, both hardware and software, that is necessitated by
maybe a five-fold or ten-fold increase in demand. As highlighted from Figure 2.5,
a sudden jump in demand from around 300 products to more than 1000 products
is considered as a significant increase in demand and requires modifications to the
production facility; it is represented as the scale-up phase and involves production
line stoppages. Figure 2.6 further highlights the key differences between capacity
planning and scale-up.
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Figure 2.5: Illustration of capacity planning vs. scale-up.

2.4.3 Process industry scale-up

Scale-up in the manufacturing industry is categorised into two types: scale-up for
discrete manufacturing system and scale-up for process industries. Industries that
deal with pharmaceutical, food, chemical manufacturing, etc., can be regarded as
process industries where the products are not discrete entities. Process industry
scale-up is widely discussed in the body of literature where the term scale-up is
used to refer to an increase in the manufacturing batch volume.
A notable work done by Levin explores the area of pharmaceutical scale-up [Levin,
2001]. Accordingly, the scale-up from the pilot production line involves dimen-
sional analysis and due to the complexity of mixing and processing operations,
simple extrapolation methods are not sufficient to determine the behaviour of the
materials at high-volume manufacturing. Additionally, since large quantities of
material are involved, there is need to give sufficient thought about the storage and
material handling methods. The fundamental approach in pharmaceutical manu-
facturing, according to Levin, is to do a mathematical modelling of the process and
perform validation at different scale-up ratios. In other related works, the scale-up
of the pharmaceutical wet granulation process is discussed [Faure et al., 2001] and
an approach to scale-up a pharmaceutical process is provided [Tsinontides et al.,
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Figure 2.6: Differences between scale-up and capacity planning.

2004]. The scale-up of coating process is also analysed by Wirges et.al [Wirges
et al., 2013]. From the provided references, it is understood that the fundamental
differences in the operation of the process industries and discrete manufacturing
makes it difficult to adopt the scale-up practices from process industries to discrete
manufacturing industries. Having provided a very brief overview of the scale-up
consideration in process industries, the remainder of this chapter will discuss scale-
up in discrete manufacturing settings.

2.4.4 Discrete manufacturing scale-up

In discrete manufacturing, the products that are manufactured are discrete units.
Therefore, there is no continuous flow of material as in process industries. Due to
this reason, process industry practices such as increasing the volume of the manu-
facturing container for scale-up are irrelevant when it comes to discrete manufac-
turing. As discussed previously, in discrete manufacturing, the actual approach and
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method of scale-up has not been explored sufficiently. Interviews with manufactur-
ers and white paper reviews reveal that when either new products are produced or
when line is modified for volume increase, it is carried out as an ad-hoc procedure
without any robust framework or systematic approach [Chemicals, 2018; Kinaxis,
2018; Kinzoku, 2008, 2018b, 2019; Volvo, 2007]. Conclusively, the risks associ-
ated with trial and error based methods such as choosing sub-optimal solutions,
project delay or failure, delayed detection of defects, etc., are understood and their
impact on the time and cost of the scale-up projects is evident [Altair, April 2021].
This further emphasizes the need for a framework to support discrete manufactur-
ing scale-up. Henceforth, the term ‘scale-up’ refers to the discrete assembly system
scale-up.

2.4.5 Phases of scale-up

A typical manufacturing system lifecycle, as adapted from [Zhai et al., 2002; Jain
et al., 2001], starts with the concept phase involving planning and design which
leads to the implementation and commissioning of the pilot lines for prototype test-
ing. The migration from pilot to fully operational line is an expensive process and
in the case of battery assembly facilities, this is approximately 1 billion euros for
an annual output of 16GWh [Volkswagen, June 2019].
Scale-up can occur at any point after the implementation of the system, but within
the scope of the study, the occurrence of scale-up in two main sections, the pre-
operational phase, after pilot line commissioning, and during the operational phase
is considered. Scale-up includes a planning process, in which the various system
configurations that satisfy the new demand are identified and compared with alter-
native solutions to decide the most suitable system design. It is followed by the
procurement of new machines, layout changes and various modifications that need
to be done to obtain the considered system design for scale-up. If new equipment or
machines are procured, there might be some calibration or testing phase involved.
In some situations, this might be part of a ramp-up phase. A more detailed expla-
nation of this is provided in the following sections.
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Pre-operational scale-up

Typically, early stages of manufacturing lifecycle are associated with the concept
development and planning of product and process design. The validation of the con-
ceptual design can be done either by building a pilot production line or through vir-
tual prototyping [Wang, 2002]; this forms part of the implementation phase where
concepts are implemented and tested. Virtual prototyping entails the development
of the prototype model in a computer which subsequently results in cost savings
of approximately 20 - 55% and time savings of approximately 40- 60% [Liu et al.,
2012] [Brown and Caddick, 2003]. It has, in many aspects, partly replaced physi-
cal prototyping, however, in some situations, computational errors, image process-
ing time delays [Wang, 2002] and issues associated with human factors and er-
gonomics, warrant physical prototyping. In this regard, Liu emphasises that virtual
and physical prototyping complement each other [Liu et al., 2012].

The pre-operational phase physical prototyping is associated with the pilot phase
of the manufacturing system lifecycle and is necessary for effective scale-up from
concept/design phase to commercial scale production [Gomez and Strathy, 2001].
The pilot lines are commissioned prior to commencing the actual production run
and typically, the production volume of the pilot line is very low. For example,
in battery cell production this is in the range of 10 cells per day [Volkswagen, June
2019] and in battery module production this is in the range of 2 - 4 modules per day.
The testing and validation of products and processes are the predominant activity;
the phase primarily consists of manual operations [Butter et al., 2015].The associ-
ated benefits of pilot line include operator training, avoiding damage to equipment,
determining best operating conditions, improving efficiency and ensuring safety in
design and operation [Guidebook on Design, Construction and Operation of Pilot

Plants for Uranium Ore Processing, 1990]. As the implementation phase comes to
a halt, the scale-up phase is commenced. It is important to point out that the pi-
lot production lines serve as the primary sources of data during the pre-operational
phase. This pool of data, if used in a smart way to support the system, as explained
in Chapter 3, could significantly reduce challenges and potential issues during the
operational phase of the production line. Subsequently, the scale-up process can be
better executed and the time-to-volume shortened.
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Operational phase scale-up

The operational phase of a manufacturing system lifecycle commences with the
production lines performing assembly operations following the pilot line testing
phase and assembly line implementation or in some situations following the ramp-
up phase [Almgren, 2000; Remiel et al., 2014]. During the operational phase, the
production line is fully operational for commercial scale production. The customer
demand during this period might stay constant or vary slightly; this might neces-
sitate capacity planning. In some situations, due to predicted or sudden steep in-
crease in customer demand, the need to scale-up might arise. The author refers to
this phase as ‘operational phase scale-up’. In contrast with pre-operational phase
scale-up, data such as processing, setup, transportation time, shift and machine
breakdown, etc., are considered to be more readily available during the operational
phase scale-up. Although the actual process of scale-up is similar in both situations,
the system configurations identified during the operational phase scale-up planning
might be more reasonable considering the availability and quality of production line
data for decision making.

Table 2.2: Differences between pre-operational and operational phase scale-up.

Subject Pre-operational scale-up Operational scale-up

Data availability Low High

Connection to virtual system Off-line Real-time

Material handling system Install Upgrade

Hardware & software change flexibility High Low

Table 2.2 highlights the differences between the two phases of scale-up. As seen
from the table, the data available during the pre-operational phase is relatively lower
than the data available during operational phase. Since the pilot line is used to test
the product and process and not used as an actual production line, the maintenance-
related data such as first-time failure, Mean-Time Between Failures, etc., are not
available. The connection to virtual models are also off-line in the case of a pilot
line. On the other hand, the data availability during the operational phase is high and
since the production line is completely operational, it is possible to have real-time

31



connection to the virtual models. When considering the material handling system,
the pre-operational phase comprises of mostly manual operations with operators
transporting the products between stations. Therefore, there is need to install new
material handling systems. In contrast, the operational phase might already have
operational material handling systems and hence they might only need to be up-
graded to more productive ones. Finally, considering the flexibility of the system in
terms of hardware and software changes, since in the pre-operational phase, the sys-
tem is still in development, there is more freedom to make changes to the hardware
and software without incurring huge cost penalties. However, in the operational
phase, the hardware and software are already fixed and in operation. Therefore,
identifying defects and making changes in the operational phase is difficult in terms
of time and cost recovery [Altair, April 2021].

2.4.6 Importance of scale-up

Scale-up is seen as a vital element in reducing time to market and it provides indus-
tries a competitive advantage. Disturbances and issues identified during this transi-
tion can have significant impact on the efficiency of the production. The scale-up
phase is characterised by high demand, low productivity and uncertainty [Haller
et al., 2003]. Therefore, it is important to enable the scale-up in a smooth way
to ensure that post scale-up phase can be successful [Terwiesch and Bohn, 2001].
Moreover, reduced time-to-market can enable securing more revenue before com-
petitors since the price of high technology products, consumer goods and automo-
tive products reduce with time [Terwiesch et al., 2001]. An example of the impor-
tance of scale-up phase for new technologies can be signposted to the recent era of
powertrain electrification. The rapid rise in the demand of electric vehicles across
the world has resulted in an intense competition among manufacturers to leverage
the opportunity to their advantage [Kampker et al., 2017]. A study conducted in
1998 on 41 chemical-based project cases identified that it is possible to classify
the projects into different categories. The projects that were most successful em-
ployed mature technologies and thorough pilot-scale testing of operations. These
category one projects were able to achieve 90% capacity in six months. Category
two projects took two years to reach 90% capacity and had incomplete pilot scale
testing. Category three projects had an average of 80% capacity after two years but
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had very limited pilot testing [Mcnulty, 1998]. According to the findings of Global
Lighthouse Network, 70% of manufacturers are stuck in the pilot phase without
being able to progress. However, with proper procedures put in place to support
the transition, productivity increases of up to 90%, 10-8% reduction in lead times,
15-20% increases in configuration accuracy and 50% increase in energy efficiency
were noticeable [Betti et al., 2020]. This further underscores the need for proper
scale-up planning and decision making.

2.4.7 Current industrial practices for scale-up

Despite the criticality of the scale-up phase, the current practices are not robust and
systematic. This sections provides a brief summary of scale-up practices in indus-
tries. The first example is the case of a semiconductor manufacturer and as a plan for
scale-up, the capacity forecasting experts determine the number of production lines
required to meet new demand. Additionally, a committee formed of representa-
tives from finance, industrial engineering, equipment engineering and construction,
was given the task of reviewing the major decisions. The project execution team
comprises of personnel from procurement and utilities and the project management
ensures that the project is kept on course [Patel et al., 2016].

In another example, the increase in demand is achieved by changing the target cycle
time. The new target cycle time is calculated and two different procedures are
considered as seen from Figure 2.7. In procedure one, the stations that overwork
are identified and identical machines are added in parallel such that the productivity
is increased. However, it should be noted that the additional machines that are
added in such situations also increase the need for operators and thus necessitate the
procurement of automated machines or recruitment of new operators. In procedure
two, the process allocations to the stations are revisited and the stations are modified
and rebuilt [Tracht and Hogreve, 2012]. Following this, the new system layout is
selected.
In other similar cases of scale-up, measures taken by [Kinzoku, 2018b] to up-
grade the existing line by installing new equipment resulted in the increase of the
MicroThinTM capacity from 1.8 million m2 to 2.4 million m2. The strategy of up-
grading existing line and modifying existing equipment for scale-up was pursued by
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Figure 2.7: An example of scale-up practice in industry [Tracht and Hogreve, 2012].

[Kinzoku, 2019], through which the VSP® production capacity was increased from
175 tons to 420 tons per month. On a similar note, [Kinaxis, 2018] resorted to the
strategy of establishing new production lines to improve their production capacity.
In case of [Kinzoku, 2018a], a completely new production plant was established to
improve the production capacity by 40%. [Chemicals, 2018] resorted to improving
the level of automation and integration as their scale-up strategy. They also fo-
cused on increasing the system interoperability, which enables the communication
between different software and ERP systems. [Volvo, 2007] decided to build new
plants and production equipment along with increasing the degree of automation as
their strategy. [Nazzal et al., 2006] added more machines to improve productivity,
whereas [Venkataraman et al., 2014] focused on process improvement, modification
and tooling change. A summary of these scale-up practices is provided in Figure
2.8.
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The above-mentioned measures or practices for scale-up could be the result of de-
cisions made by respective personnel based on experience or intuition. Experience-
based decision making is where the personnel who have significant experience in
system design and process improvement make decisions based on their previous
experiences. However, if the organisation does not have an experienced engineer or
manager, there is a risk that the decisions taken could actually prolong the scale-up
phase due to unprecedented errors. Similarly, if the technology, process or product
is new then there is no prior experience in handling such situations. Therefore, there
is the risk of making wrong decisions. Apart from experience-based decision mak-
ing, there is the possibility of simulation-based decision making for scale-up where
the scale-up decisions are not made as an ad-hoc activity. The simulation-based
decision making is discussed in more detail in Chapter 3.

2.5 Ramp-up knowledge applicable for scale-up

Ramp-up phase is defined as

“the time between the first part produced following system reconfiguration until

reaching the required throughput level.”

[Colledani et al., 2018].
The ramp-up phase in early-design stages is characterised by transition from devel-
opment to commercial scale production; main tasks in ramp-up involve achieving
the required level of quality, cost and throughput [Elstner and Krause, 2014]. In
literature, the terms ‘ramp-up’ and ‘scale-up’ have been used interchangeably and
hence this section is intended to provide more clarity and consistency in the use of
the terms. In the manufacturing system lifecycle, ramp-up phase commences on
conclusion of the implementation stage where process conception and development
is done [Slamanig and Winkler, 2011] and is primarily associated with New Product
Introduction (NPI) and product design modifications.
On the other hand, scale-up phase is not necessarily tied to NPI. Depending on the
industry and the phase of the system lifecycle, scale-up phase may or may not be
pursued by a ramp-up phase. While the term ramp-up considers product volume,
variety and quality and commences on completion of the planning activities for

36



Figure 2.9: Differences between scale-up and ramp-up.

major system modifications and ends on achieving the desired targets, the term
scale-up primarily considers product volume increase. The key differences between
ramp-up and scale-up are represented in Figure 2.9.
It is to be noted that ramp-up phase might be prolonged with additional adjustments
to meet the target if the planning phase involves poor decision making. Since both
scale-up phase and ramp-up phase intend to achieve the desired volume, it is envi-
sioned that the available research and knowledge on ramp-up could be applicable
for scale-up. Hence the review on ramp-up as part of the literature survey.

2.5.1 Review of relevant work

This section identifies the ramp-up research work which can potentially be applied
to the considered research problem. Stauder [Stauder et al., 2014] identified a
framework to assess whether a set of selected technologies could provide the re-
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quired process capability following ramp-up. The framework provides decision
support for technology selection in the context of high volume production and is
the first published research for detailed technology selection during ramp-up. This
concept proved beneficial for formulation of Stage one workstation configuration
selection of the DDSM framework. The second research work that is discussed
is by [Klocke et al., 2016], who proposed a framework where a hybrid simulation
model using DES and system dynamics simulation was used to support the ramp-
up phase. In their research, they identified that the various factors affecting the
dynamics of ramp-up include disturbances such as machine tool breakdowns, im-
provement measures, and process variability from worker capability, machine tool
capability, and planning uncertainty and adjustments. With the focus on the ma-
chine tool breakdown, the impact of the manufacturing technology on the ramp-up
was analysed as part of their research. This helped develop the workstation config-
uration selection process for the DDSM framework. In another related work, [Sur-
bier et al., 2014] summarised available literature pertaining to ramp-up in which
they mentioned the characteristics of ramp-up phase and the problems faced during
ramp-up. This provided insights into the type of problems and disturbances that
might extend the time-to-volume.

A simulation-based approach to plan for personnel during ramp-up was discussed as
part of another research, where an algorithm using Plant Simulation was employed
and DES-based decision support during ramp-up phase for planning the human
resource was proposed [Lanza and Sauer, 2012]. This underscores the benefits of
using DES models for decision making during the ramp-up phase and subsequently,
the scale-up phase. According to [Colledani et al., 2018], the anticipation of dis-
turbances that affect the system can lead to reduction of throughput losses during
ramp-up by creating a system design that is robust. Moreover, strategies to im-
prove the efficiency of production ramp-up is proposed as part of their work. From
this research, the potential of data analytics, digital manufacturing, communication
standards and on-line data acquisition to reduce the time-to-volume and improve the
efficiency of the ramp-up phase is evident. In another piece of work, three perfor-
mance metrics, functionality, quality and performance optimisation were discussed
to measure the progress of ramp-up [Doltsinis et al., 2013]. These performance
measures and their significance in determining the success of the ramp-up phase
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are considered important and can be adopted for the comparison of alternate sys-
tem designs in the DDSM framework. This concludes the review of relevant work
and the next section explains simulation and modelling which is one of the key
enabling technologies for scale-up.

2.6 Enabling technology for scale-up

2.6.1 Simulation and modelling

“Simulation modelling and analysis is the process of creating and experimenting

with a computerized mathematical model of a physical system”

[Chung, 2003]

The history of simulation can be traced back to the introduction of Monte-carlo
simulation in 1777. From this period onwards, the evolution of simulation and
its use across various domains is presented by Mourtzis in their article [Mourtzis,
Doukas and Bernidaki, 2014; Mourtzis, 2020a]. The first general purpose simula-
tion model was created in 1960 by Tochter and Owen under the General Simula-
tion Program to simulate an industrial plant [Tocher and Owen, 2008]. From then
on, simulation and modelling activities gained traction and several approaches and
techniques for the same were proposed. It found widespread use in a diverse range
of domains including healthcare, manufacturing, service, military, telecommunica-
tion and transportation [Fishman, 2013]. Specifically, in manufacturing systems,
simulation and modelling can be employed at various levels of abstraction for mod-
elling the machining, assembly, material handling and logistics, human resource
modelling, thermodynamics, product flow and warehousing. Concurrently, service-
based simulations are employed in healthcare, food and entertainment, information
technology, and retail stores. In the field of transportation, simulation and mod-
elling is used to model airport, train, bus and logistics [Chung, 2003].

The basic elements of a digital factory are identified as i) construction, that repre-
sents the mechanical or construction information such as dimensions or connector
types, ii) function, that represents the operating functions or tasks, iii) performance,
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that represents the cycle time, energy consumption, etc., iv) location, that represents
the absolute, relative or global location and v) business, that represents the demand,
delivery time, etc. The relationship between these elements can be structural or op-
erational, permanent or temporary [BSI, 2016]. The cornerstone of digital factory is
the use of virtual engineering to simulate and model the stations, machines, robots,
and the control logic of a production line and allow data transfer in a seamless way.
The modelling and simulation of the manufacturing systems is considered as a very
effective tool to experiment and validate product, process and systems before the
production systems become operational.

Simulation is even more useful in current days to model the complex industrial sce-
narios [Mourtzis, Doukas and Bernidaki, 2014]. In specific, simulation and mod-
elling is found effective in testing new strategies, comparing alternate solutions
and understanding more about the system-at-hand. For this purpose, a myriad of
simulation tools and methods ranging from CAD, physics-based modelling, robot
path planning, process and kinematic modelling, layout optimisation, assembly line
balancing, capacity planning, scheduling and resource allocation exist [Jahangirian
et al., 2010]. Kuhn has highlighted the reasoning behind the need for an integrated
digital factory using virtual modelling tools [Kuhn, 2006]; the key advantages are
highlighted as the reduction in time-to-market and time-to-benefit.

According to [Law, 1986], a typical simulation study generally consists of the fol-
lowing steps:

1. The problem is formulated and objectives are defined. The criteria for com-
paring system designs are specified and the cost and time of study is investi-
gated.

2. The relevant data are collected and the model is defined. Since the accuracy
of the simulation results depend on the input data, a lot of importance needs
to be given to this step. The input data can come from various sources such as
time studies, historical records, supplier documents, intuition and experience.

3. The statistical distributions and stochasticity are modelled in this step. An
example is the machine failure modelling where the breakdown and repair
times are indicated as statistical distributions.
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4. After the model is built with necessary data and distributions, it needs to be
verified to check that the model is constructed the way it was intended to.
The model also needs to be validated to check if it represents the system that
is modelled.

5. The experiment needs to be designed by considering the various scenarios
and the value of variables for those scenarios. Additionally, experimentation
parameters such as the number of simulation runs, warm-up time, etc., need
to be defined

6. The last step is to analyse the value of the performance measures obtained
from the experimentation, validate and verify the simulation results, and per-
form objective-specific studies.

2.6.2 Merits and demerits of simulation and modelling

There are various reasons for employing simulation in production systems. Simu-
lation models provide the benefit of experimentation in shorter periods of time and
have the ability to expand or shorten the time period to understand the dynamics of
the considered system. Therefore, various analyses can be performed in an efficient
way. Prior to the establishment of dynamic simulations, systems were studied as
static models. However, in recent days, the flexibility offered by simulation tools
allows modelling of systems with more accuracy and realism. With simulation
tools, the analysis of manufacturing systems has become easier as the user does
not need to worry about the calculations and analytics that run in the background.
For example, the use of robot path planning software enables the user to plan the
path of the robot using either forward or inverse kinematics without the need to
actually do the calculations regarding the orientation and displacement. Moreover,
simulation allows visualising the manufacturing system dynamics and is paramount
for management decision making [Chung, 2003; Fishman, 2013; Bangsow, 2012].
Moreover, in early stages of production systems, due to the absence of the physi-
cal assembly line, the various design formulations and ideas need to be bolstered
by the virtual models that can help sharpen the understanding of the system. This
enables the comparison of various alternatives in the virtual environment which is
less expensive than building physical models.
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However, on the downside, simulation heavily relies on the quality of input data;
lack of high quality input data adversely impacts the simulation results. In some
simulation software such as DES, specialised training and understanding of statis-
tics is important [Chung, 2003]. In addition to the initial licensing cost of simulation
tool, the training cost, maintenance upgrade costs, hardware cost, data acquisition
cost, translation of the company data cost, system integration cost and database cost
play an important role in limiting its implementation in manufacturing industries
[McLean and Leong, 2001]. The process of modelling requires data and under-
standing of the production system that is being modelled. Running the simulation
model becomes time-consuming and computationally demanding with the increase
in the number of replications and model details [Brailsford, 2014]. The use of
simulation in industrial settings is affected by the cost of simulation software; the
simulation affordability is affected by the availability of experienced staff, infor-
mation system infrastructure, complexity of the application area, availability and
format of input data.

2.6.3 Use of simulation across manufacturing system lifecycle

The simulation and modelling techniques can be used across the lifecycle of a man-
ufacturing system and do not have to be limited to a specific phase of the lifecycle.
Digital tools are used across the lifecycle for activities ranging from product design
analysis to data management and optimisation of resources [Camba et al., 2017].
Due to these benefits, the migration from a conventional system to a model-based
enterprise is understandable. It has been highlighted by [Bishop, 2015] that the
advantages of simulation can be exploited when the simulation models are used
throughout the lifecycle for various applications such as supporting decision mak-
ing, performance prediction, testing, evaluation, etc. This is also reflected in the
concept of Model-Based System Engineering.

“Model-Based System Engineering is the formalized application of modeling to

support system requirements, design, analysis, verification and validation, begin-

ning in the conceptual design phase and continuing throughout development and

later lifecycle phases.”

[INCOSE, 2007]
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Figure 2.10: Usage of simulation and modelling tools across the lifecycle.

Figure 2.10 shows the author’s work and interpretation of the usage of simula-
tion tools across the lifecycle, starting from the concept phase. The solid lines in
the Figure show the phase of lifecycle where the simulation software are predom-
inantly used for a particular application. Although the use of simulation tools, the
type of method and duration of usage across the lifecycle depends on the application
and industry, Figure 2.10 is used to provide a general understanding of the concept
and is adapted from research done by Mourtzis [Mourtzis, Doukas and Bernidaki,
2014]. In their work, Mourtzis elicit that simulation tools can be used for vari-
ous applications such as i) CAD, ii) CAPP, iii) digital mock-up, iv) ergonomics, v)
robot simulation, vi) virtual commissioning, vii) life-cycle assessment, viii) layout
planning, and ix) material flow simulation. The following sections provide a brief
description of the use of simulation for each application.

The first and most important modelling tool that is considered is the Computer-
Aided Design (CAD) software. It is used for two-dimensional and three-dimensional
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engineering drawings of products and plays an important role in product, equipment
and system design. The various design concepts are visualised during this stage and
it is predominantly used in the planning phase. It is generally used for geometric
modeling, engineering analysis, simulation and scientific computing [Xue, 2018].

The next application is the Computer Aided Machining that is usually prevalent
during the later stages of the planning phase as shown in [Mourtzis, Doukas and
Bernidaki, 2014]. With the help of computer-aided machining, it is possible to con-
vert the CAD design that was created during the planning phase into a set of manu-
facturing instructions. This is achieved using G-code, which is a language used by
numerically controlled machine tools. CAM reduces the involvement of human op-
erators, enables automation of the manufacturing process and subsequently reduces
cost and increases profit [Xue, 2018].

The next application that is considered is the analysis of multiple physical phenom-
ena such as heat transfer, acoustics, fluid flow, etc. using multi-physics modelling.
Multi-physics modelling is generally used in a number of applications in the man-
ufacturing industry to analyse the stress distribution, thermal performance and var-
ious other structural and functional analyses. In the system lifecycle, it is generally
located after the CAD modelling since the created CAD models play an important
role in the analysis [Zhang and Cen, 2015].

The next application that is considered is the ergonomic analysis. Ergonomics deals
with fitting the tasks and processes to the operator. It comprises of various investi-
gations regarding the musculoskeletal, psychophysiological, cognitive aspects, etc.
In general, this is predominantly done before the operational phase to ensure that
the operators have good working conditions that does not hinder their efficiency
[Stanton et al., 2004].

Robotic simulation includes the use of software that specifically model the robot
behaviour which allows the analysis of kinematic, robot interaction, collision de-
tection and path or motion planning [Rohmer et al., 2013]. This allows the planning
for automatic and semi-automatic operations. In a similar way, various software
tools such as Delmia Ergonomics and Tecnomatix Jack allow the modelling of the
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human operators and the tasks they perform during the planning phase. The impact
of various factors such as noise level, humidity, shift pattern, job rotation, work
teams, hierarchy, diversity, age, gender, skill level, etc., on the performance of the
operator is analysed [Baines et al., 2005]; they are generally done during the imple-
mentation and operation phase.

Supply chain modelling is important during the implementation and operational
phase of the lifecycle. A supply chain network comprises of the material and
information flow and it is necessary to understand where in the supply chain the
risks might occur. It also supports operational policy selection and decision making
[Gjerdrum et al., 2001]. By effectively modelling the supply chain using software
such as Simio, AnyLogic, etc., the costs associated with the inventory, warehouse,
logistics and potential risks can be monitored and controlled.

Layout planning involves the allocation of the resources such as machines, opera-
tors, robots, vehicles, etc., within the defined space. It also deals with the grouping
of similar machines such that the efficiency of the operations can be increased. It
is also important to consider the resource orientation, space consumption, resource
location constraints and collision possibilities [Jiang et al., 2014] and software such
as SmartDraw and Delmia Plant Layout Designer can be used for this purpose. The
layout planning needs to be considered every time a scale-up project happens.

Computer Aided Process Planning (CAPP) deals with deciding the method of man-
ufacture or assembly of the product by using software. It is a very important activity
that is typically done once the product designs are finalised. It also comprises of
determining the sequence of operations and optimisation of the process parameters.
Using CAPP, it is possible to automate the process planning activities [Trstenjak
and Cosic, 2017].

Material flow activities are planned in parallel to the layout planning activities. Ma-
terial flow simulations allow the comparison of alternate scenarios in a stochastic
environment [Reinhardt et al., 2019]. They also allow planning for the quantity and
path that these resources need to take. It is also important to check for any potential
risks and hazards that the use of AGVs or vehicles might have on the manufacturing
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system. Additionally, the collision detection, efficiency and travel time can also be
investigated using material flow simulations using software such as Visual Compo-
nents, Ciros, etc.

Other applications include Augmented Reality (AR) and Virtual Reality (VR) which
enable the digitalisation of manufacturing system. They are increasingly used to
support system modelling. The interest towards these technologies is on the rise
[Bottani and Vignali, 2019].

The modelling of maintenance involves the continuous monitoring of the system
and its resources. It aids the decision making regarding maintenance activities and
reduces the risk of equipment failure [Okoh et al., 2017]. The maintenance deci-
sions also affect the operational performance of the production system. Therefore,
enough emphasis needs to be given to the modelling of maintenance activities; it
is possible to perform analysis regarding maintenance using DES software such as
Lanner Witness, FlexSim, etc.

2.6.4 Simulation method selection

Although there are different methods and techniques of simulation, within the scope
of this research, the DES and kinematic modelling software are considered. The
reasons for selecting them are discussed below. There is need to use a simulation
method that has the capability to model workstation, operator, material handling,
process and other manufacturing resources, in addition to having the capability to
calculate the station processing time. For this purpose, the kinematic modelling
tool is considered to be the most suitable candidate. The second simulation method
should be capable of modelling the assembly line, material handling and product
flow, in addition to having the capability to perform operational research. From a
review of literature, the three simulation techniques that are chiefly used for manu-
facturing system modelling are DES, Agent-based Modelling, and System Dynam-
ics (SD). Their suitability for DDSM will be discussed in the following paragraphs.

SD is a continuous simulation technique that has two main aspects: qualitative

46



and quantitative. Causal loops are drawn to show the way the elements of system
are related and SD models are, in general, not used for optimisation or prediction.
Commercial SD software include Vensim, Stella, iThink, Powersim, and Simile.
SD methods are widely used tools for logistics and supply chain decision making
[Tako and Robinson, 2012]. SD models are typically modelled at a higher level
of abstraction than DES [Brailsford et al., 2014]. Moreover, SD is a deterministic
simulation approach and hence not suitable to model the randomness that is a char-
acteristic of the scale-up phase as previously explained. Also, the level of detail in
the SD simulation is not enough to model a detailed assembly line. Therefore, SD
is considered unsuitable for DDSM.

Another prevalent simulation tool is the Agent-based Modelling, where a complex
system is modelled as autonomous agents and rules describe the interaction be-
tween agents. This helps to see various patterns that were not initially programmed
to emerge [Macal and North, 2010]. Agent-based modelling is typically used to
model war scenarios, spread of epidemic, supply chains and stock markets. Agents
get information from environment and take decisions based on rules. Agent-based
modelling is a stochastic technique and a bottom-up approach [Maidstone, 2012].
Agent-based simulation platforms include MASON, Repast (JAVA and Objective-
C versions), Swarm, and NetLogo [Seleim et al., 2012]. Agent-based modelling is
not as established as DES for research on queuing systems and the models are more
difficult to develop, especially during the planning stages [Maidstone, 2012]; hence,
the Agent-based modelling technique is not considered for the purpose of this study.

The last simulation method that is considered for the scale-up modelling is the DES
since it is an established technique for analysis in systems where queuing is evi-
dent. DES also models the manufacturing system at a higher level of detail which
is important for simulating the workstation details. Moreover, DES is relevant for
modelling stochastic scenarios and produces different results each time the simu-
lation is run due to the use of probability distributions. Additionally, it is suitable
for modelling the manufacturing system in the concept phase to compare different
‘what-if’ scenarios and system designs [Maidstone, 2012]. A comparison of the
DES, Agent-based and SD methods is provided in Table 2.3.

47



Table 2.3: Comparison of modelling using DES, Agent-based and SD methods.

Subject DES Agent-based System Dynamics

Level of detail High High Low

Level of abstraction Low Low High

Suitability for queuing system High Low Low

Modelling randomness Yes Yes No

Across the representation of simulation tool usage in Figure 2.10, DES can be
used during various phases depending on the application ranging from layout plan-
ning, resource allocation to process planning. Similarly, kinematic model can be
used across the lifecycle for process planning, robot and operator modelling, path
planning, collision detection and such. This underscores the importance and need
for simulation and modelling tools for product lifecycle management and decision
making activities.

In this research, it is hypothesised that the data integration of DES software and
kinematic modelling tool will support decision making during scale-up planning
phase. Hence the next few sections will touch upon the workflow and functioning
of DES and kinematic modelling software.

2.6.5 Simulation using kinematic modelling software

The family of software that enable the virtual building and testing of manufactur-
ing workstations prior to the commissioning of the production line are cited using
many related terms such as ‘Virtual Engineering’ [Ghani, 2013],‘3D Simulation’
[Wischnewski et al., 2012; Caggiano, 2010],‘Digital Mock-up’ [Mourtzis, Doukas
and Bernidaki, 2014], etc. To achieve consistency in the use of words related to the
aforementioned family of software, the author intends to use the term ‘kinematic
model’ due to their inherent capability to model the kinematics and motions of var-
ious workstation elements. Using kinematic modelling software, digital models are
created to simulate the production system layout, process plans and system con-
figurations. They also allow the verification of assembly processes in the absence
of a physical system [Maropoulos and Ceglarek, 2010]. They can be used to rep-
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resent how the real workstations would look like on completion [Ghani et al., 2015].

Primarily, a kinematic modelling software consists of three dimensions: kinemat-
ics, behaviour and reference co-ordinates. The kinematics dimension encompasses
the information related to the geometry, links and joints, whereas, the behaviour
dimension comprises of transition and states [Liu et al., 2012]. Moreover, col-
lision detection, robot simulation and material handling system selection can be
performed with such simulation techniques [Caggiano and Teti, 2012]. According
to Caggiano [Caggiano and Teti, 2018], the input data such as digital human mod-
els, kinematics and geometry of robot, geometry of equipment and cell layout are
necessary for creation of a model. The output data that could be received from the
simulation tools include the collision free paths for robots, operators and AGVs,
and optimal station layouts. The use of kinematic modelling to virtually engineer
and validate the workstations, robots, and other resources is anticipated to reduce
the ramp-up time [Falkman et al., 2009]; the building and testing of a system virtu-
ally provides cost and time savings. For example, Seidel reports that the modelling
of material handling solutions helped reduce the commissioning time by 25% in an
industrial facility [Seidel et al., 2012] and Makris highlights that the use of virtual
commissioning helped reduce cost by 15% reduction of human resources [Makris
et al., 2012]. Typically, the workflow of a kinematic model generation involves
the following steps: CAD processing to remove unnecessary geometry, export of
CAD models to either Virtual Reality Modelling Language (VRML) or Jupiter Tes-
sellation (JT format), assembly of components within the kinematic modelling tool,
modelling the kinematics, connection to physical system and validation of the mod-
els [Bathelt et al., 2005].

Depending on the software that is used, the CAD processing activity can be per-
formed at varying levels of detail that enable the selection of identical elements,
replacing selections, closing gaps in the CAD surface, deleting geometry, closing
drill holes, reducing polygons, simplifying round edges and merging vertices. To
simplify the process of gathering layout data, some software even have point cloud
support to automate the layout capture. The exact procedure of data capture, CAD
processing, kinematic definition, logic building, etc., varies depending on the soft-
ware used but the set of data that are required for the kinematic modelling software
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generally remain the same across the tools. This will be discussed in greater detail
in the next chapter.

2.6.6 Simulation using DES software

A typical DES software comprises of a system clock, event list, statistical counters,
system date and report generator that enables it to record the activities and statis-
tics of a simulation model. In DES, unlike continuous simulation, the focus is on
the change of system state which is referred to as an ‘event’. The events happen
at irregular intervals and hence the system clock jumps to these discrete points of
time when the state changes occur. This makes the DES model efficient and fast
[Brailsford et al., 2014].

A DES software generally comprises of certain characteristics that enables it to per-
form the various analyses. They are as follows: i) a DES software comprises of a
number of statistical distributions for modelling the shop-floor data, ii) it also uses
pseudo-random numbers that enable the modelling of stochastic systems, iii) it also
has the capability to replicate the simulation runs with different streams of random
numbers, and iv) it has the capability to provide results in confidence interval and
can take an input value for warm up period to achieve better statistical results by
waiting for the system to reach steady state. [Chryssolouris, 2013].

A literature review performed by Jahangirian [Jahangirian et al., 2010] and [Mourtzis,
2020b] about simulation techniques indicated that the use of DES in manufactur-
ing had considerably increased throughout the years. DES is a very promising tool
for manufacturing systems and helps experiment different strategies and system
configurations for decision making [Negahban and Smith, 2014]. Manufacturing
systems have complex interdependencies that prove difficult to be contemplated by
the human brain; this gap can be filled by use of DES for decision support [Barlas
et al., 2014]. Although DES was initially created for manufacturing systems, it later
gained popularity in other fields such as healthcare, transportation, etc. [Robinson
and Brailsford, 2014]. In DES, elements with attributes are modelled to perform
activities and it is primarily used in two major phases of manufacturing system life-
cycle: design phase and operation phase. During system design phase, the applica-
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tions involve layout planning, material handling design, manufacturing line design,
etc. During operational phase, the applications involve operation planning, real-
time control, scheduling, etc. DES can be used for comparing different scenarios
for decision making and can help predict operational performance and utilisation of
production lines [Azab et al., 2012]. The benefits of DES during the planning stages
to enable fast decision making and reducing time-to-volume are also highlighted by
[Kampker et al., 2017]. In their work, they have presented a methodology to use
DES to support the early developmental phase and modelling of scalable produc-
tion system.

Figure 2.11: Capabilities of DES and kinematic modelling software.

This summarises the details pertaining to the kinematic modelling software and
DES and Figure 2.11 highlights the capabilities of both software. The following
sections introduce the various standards that are relevant to the integration of simu-
lation models.

2.7 Integration of simulation models

A multitude of simulation and modelling tools are currently employed in various
manufacturing industries at varying levels of detail. The increasingly complex man-
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ufacturing systems need the assistance of different types of engineering tools for
various reasons ranging from data storage to decision making. In addition to en-
suring that these models communicate among themselves, it is also important to
ensure that they are properly integrated with the data sources from physical system.
It is important to ensure seamless communication between simulation models and
other elements of the manufacturing systems. This also supports the re-usability of
the software tools. However, not all engineering tools are developed in a standard
way that provides a platform for communication.

As previously mentioned in section 2.3, PLM tools represent the family of software
suites that provide functionalities that are intended to support the whole manufac-
turing lifecycle. Although they are very beneficial and support the manufacturing
system in several dimensions, the software tools have their own proprietary format
that makes it difficult to exchange data. Together with the lack of transparency
about standards, protocols and technology, the key intention of such commercial
tool developers is not in the best interest of the user [Popplewell et al., 2010]. Such
problems exist in the domain of a homogeneous set of tools that are integrated over
a common platform, but similar problems also hinder the interoperability across
the wide spectrum of heterogeneous tools, each specialising in a specific domain.
Terkaj and Urgo [Terkaj and Urgo, 2015] argue that a lack of effective interoper-
ability among the multitude of software, reduces the support provided by them for
complex manufacturing systems. Two possible ways to overcome the aforemen-
tioned issues are co-simulation and the use of neutral data format for exchange of
information across various tools; this could reduce the cost of simulation model
building [Shao et al., 2010; Liu et al., 2014]. The DDSM framework will comprise
of more than one software to support the scale-up phase of the lifecycle and hence
it is important to consider how the software will communicate with each other.
Several works are available in literature in the areas of communication, common
software platform, data exchange and interoperability. A few relevant ones will be
discussed in this section.
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2.7.1 Existing frameworks

Tolio identifies the characteristics that a virtual factory platform should have as i)
the ability to handle heterogeneous information from various phases of lifecycle,
ii) integration of knowledge and information from various tools at varying levels of
hierarchy, and iii) the ability to allow engineers to use and exploit the advantages
of simulation without the experience of specialists. Most importantly, their work
highlights the need for a shared platform where data can be accessed and input by
different tools [Tolio et al., 2013]. Although a number of standards and frameworks
are proposed for the common data model, they are specific to certain areas of the
factory. It is highlighted that there are three major approaches to achieve the data
exchange between data management systems and software i) ontology and semantic
web technologies [Terkaj and Urgo, 2015], ii) Standards, and iii) Application Pro-
gramming Interface (API) and web services. In this regard, the XML (eXtensible
Markup Language) is found to be the most used standard language [Penciuc et al.,
2014].

The various prominent work in the area of software interoperability for data ex-
change are highlighted below. A neutral data format, Automation ML, based on
XML for data communication between engineering tools was developed with the
collaboration of Daimler, ABB, Siemens, Rockwell, Kuka, Zühlke, netAllied as
well as the Universities of Magdeburg and Karlsruhe [Hundt et al., 2008]. The goal
of AutomationML is to interconnect heterogeneous automation tools. Accordingly,
typical objects in plant automation are classified as topology, geometry, kinemat-
ics and logic (sequencing, behaviour, control). The inherent architecture in Au-
tomationML is distributed; the core concept being the top level data format using
(Computer Aided Engineering Exchange) CAEX, geometry and kinematic storage
using (COLLAborative Design Activity) COLLADA and logic information using
PLCopen. Using these existing formats, AutomationML defines the association be-
tween them to favour data communication [Hundt et al., 2008].

Another architecture is the CIMOSA (Open System Architecture for Computer In-
tegrated Manufacturing) proposed by ESPRIT consortium AMICE, which is a ref-
erence architecture for enterprise modelling to exploit the enterprise knowledge. It
is intended to support decision making in production systems throughout the lifecy-
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cle [ESPRIT Consortium AMICE Staff, 1993] and monitor model-driven operation
systems. In CIMOSA, four different modelling views are proposed and they are
function, information, resource and organisation; it follows enterprise engineering
concept and decouples the functionality and behaviour; the concept is validated in a
number of case studies where the identified benefits include increasing efficiency of
modelling and decision support systems [ESPRIT Consortium AMICE Staff, 1993].

Another relevant framework is the Factory Data Model (FDM), which is essen-
tially a blueprint of the information available in the enterprise which is stored in an
object-oriented database; a single FDM can go on to support many factory models
and it is based on the gradual collection and refinement of data. The model pro-
poses how a manufacturing system should be designed and performance evaluation
should be done by using a factory model and data warehouse [Harding and Yu,
1999].

[Bloomfield et al., 2012] proposed the Core Manufacturing Simulation Data In-
formation Model (CMSDIM) to enhance interoperability between the manufac-
turing systems and software tools. A standard XML-based schema is adopted to
standardize the transfer of information. The proposed standard is found suitable
for providing manufacturing data to software used in the simulation environment.
CMSDIM encompasses six packages: layout, part information,support, resource
information, production operations, and production planning [Bloomfield et al.,
2012].

[Terkaj et al., 2012] proposed the Virtual Factory Data Model (VFDM), built us-
ing semantic web technologies, the aim being to develop an integrated virtual envi-
ronment that supports the data transfer between the software and factory throughout
the lifecycle. The framework consists of the Virtual Factory Data Model, Seman-
tic Virtual Factory Manager and Decoupled Virtual Factory Modules. It provides
a data model to cover the following domains: building, product, process, resource,
production system and factory. The VFDM forms one of the three pillars of the
(Virtual Factory Framework) VFF European project. The framework was demon-
strated with a test case using a non-commercial software and its ability to exchange
data as aspired [Terkaj et al., 2012].
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Briefly touching upon another relevant work, the Knowledge Configuration Model
(KCM), is a knowledge management model based on the web services-based inter-
operability; one of the core issues it can help mitigate is the problem arising from
the diversity of simulation software [Penciuc et al., 2014].

The ISA 95 is a standard developed by Instrumentation System and Automation
which is adopted under IEC/ISO 62246 to provide integration between control sys-
tems and enterprises [He et al., 2012; Harjunkoski and Bauer, 2014]. The Inte-
grated Simulation Method (ISM) is another approach to support data management
of digital factory which provides an architecture that comprises of six layers and a
Virtual Factory Data Management System [Zhai et al., 2002].

A standard XML based neutral data format called PPRX to exchange data between
heterogeneous PLM tools with the help of PLM integrator was proposed by Choi et
al [Choi et al., 2010]. In their work, the data from the PLM tool is exported based
on PPRX that represents the (Product Process Resource) PPR information.

This section provided an overview of the existing frameworks for digital factory
integration and a summary is provided in Table 2.4; the next section delves deeper
into the knowledge available on data integration of DES and kinematic modelling
software.

2.7.2 Data integration of DES and kinematic modelling software

Digital factory represents a model that consists of various elements, automation as-
sets and involves mapping their behaviour and relationships [BSI, 2016]. Within
the wider concept of digital factory, there needs to be considerations about the data
exchange, not only from manufacturing systems to modelling software, but also
between the heterogeneous modelling software. Specifically, the data integration
between DES and kinematic modelling software is considered beneficial [Caggiano
and Teti, 2018, 2012]. Although DES can be used to perform simulation models
that allow operational research, it lacks the underlying information that is neces-
sary to identify the feasibility of the modelled scenarios with respect to the station
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processing times, machine failure, robot and digital human operating times, etc.
Especially in the early planning stages, the exploitation of the capability of DES
to perform statistical analysis is restricted due to the lack of accurate data [Ghani,
2013]. During the concept and planning stages, for entering the time values within
DES, the target cycle time or process time is generally used instead of the actual
production time. However, the accuracy of input data in DES is very important for
meaningful results [Mieth et al., 2019]. In such situations, information from the
kinematic models that are used to analyse the workstations can complement the ex-
isting capabilities of DES models [Caggiano and Teti, 2018].

Ghani et al. [Ghani et al., 2015], have in their research studies proposed approaches
to perform this integration between kinematic model and DES. In order for suc-
cessful integration of the two software, it is essential to understand the common
data that is required by both simulation models. The integration also paves way for
understanding the impact of changes in workstation level on the system behaviour
at the higher level which enables better decision making. In this regard, it is worth-
while to spend time to understand about the format of data exchange to make it
generic for the integration of any kinematic model to DES software. In the algo-
rithm proposed by Ghani for the integration, process time and maintenance data are
passed to DES using a middleware for data processing with the XML format. It is
also identified that there is lack of data compatibility between DES and kinematic
model software. From Ghani’s thesis [Ghani, 2013], the possibility to encapsulate
parametric data such as velocity, torque, motion time of the various considered el-
ements within the kinematic environment is explored in detail. This enables the
reuse of data which ultimately aligns with the goal of improving accuracy of DES
models for early lifecycle production systems that are yet to be commissioned. In
another related work, the integration of kinematic model and DES for visualisation
purpose is discussed; the need for a neutral format for data exchange is also empha-
sised [Kibira and McLean, 2002].

In order to understand the best means of data exchange between the DES and kine-
matic modelling software, it is important to understand the various types of inte-
gration. Since the DES models represent the assembly system and the kinematic
models represent the workstation levels, this integrated model is considered as a
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multi-scale model. Multi-scale model is associated with the modelling of systems
at different levels of abstraction [Brailsford et al., 2014]. Single scale models that
are independently validated are integrated to form the multi-scale model and the
integration can be one of the following five types.

• Serial method: A single model on one scale passes information to a model in
another scale and they operate sequentially.

• Simultaneous method: Models operate simultaneously; lower scale models
are used to generate system information which is sampled and used by higher
scale models.

• Hierarchical method: Lower scale models are embedded within higher scale
models and they operate simultaneously.

• Multi-domain method: Information between lower scale and higher scale
model is passed using an interface.

• Parallel method: Model comprises of several multi-scale models.

From the considered integration types, the multi-domain method is the most suit-
able one for the considered scenario. The data from the lower level workstation
models are intended to be passed to the higher level assembly system models using
an interface. In the case of DDSM, this interface is a database. This multi-domain
method of integration can be employed for supporting the decision making process.
The simulation-based decision making forms the major part of the DDSM frame-
work and a detailed explanation of the methodology will be provided in the next
chapter.

2.8 Critical analysis of relevant work

2.8.1 The aspect of scalability

A plethora of papers discuss scalability of manufacturing systems with most of
the papers focussing on reconfigurable manufacturing systems. From a survey of
related papers, two important principles for implementing scalability that can be
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subsequently adapted for scale-up are identified as i) linking or adding identical el-
ements/stations to increase the productivity, and ii) increasing / decreasing the per-
formance of an element/station by changing its functionality [Putnik et al., 2013;
Fricke and Schulz, 2005]. Principle one is referred to as resource replication and
principle two is referred to as resource upgrade. The replication principle is also
referred as parallelism, however, unrestricted replication is not possible because of
the space and budget limitations [Putnik et al., 2013].

In this regard, a method of quantification of scalability within the wider context of
changeability is proposed by [Ross et al., 2008]. The relationship between change-
ability and scalability is explored in their work. A notable work that discusses cost
modelling for capacity scalability is proposed by [Deif and ElMaraghy, 2007b].
From their research, Reconfigurable Manufacturing Systems (RMS) are inherently
scalable systems and are modular enough to be scaled-up in both physical and logi-
cal domains. The approach generates an optimal capacity scalability schedule with
the help of GA, which highlights when, where and by how much system should be
scaled-up to meet the new demand. In another related paper, [Deif and ElMaraghy,
2007a] have discussed the importance of managing capacity scalability and have
assessed alternate strategies for different demand scenarios for RMS with the help
of a System Dynamics model. The core aspect of both reviewed research works
is fixed upon the capacity scalability of RMS; the considered scale and frequency
of demand change are significantly different to the scale-up phase considered for
DDSM.

Considering scalability planning and management at the production line level, [Alm-
gren, 2000] emphasises the importance of identifying disturbances during pilot
phase and classifies them as internal and external. Internal disturbances include
setup time, breakdown stoppages, operator performance and motivation; external
disturbances emerge from material quality issues. The understanding of the dis-
turbances can help smooth the transition from the pilot phase to operational phase.
Consequently, the importance of modelling failure, breakdown of workstations and
introducing randomness is elicited clearly in their work. Wang and Koren have pre-
sented a GA-based optimisation algorithm that can help decision making regarding
adding or removing machines from production lines in the event of new market
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demand [Wang and Koren, 2012; Koren et al., 2017]. Although the approach con-
siders task reallocation and specifies the quantity and location of where the new
machines can be added, the material flow, labour, operational cost and space occu-
pancy are not considered in much detail. Moreover, the workstation level configu-
ration changes and production line scheduling and dispatching rules, which have an
impact on the scale-up, are not discussed comprehensively.

2.8.2 Manufacturing system and station configuration selection

There are a number of papers tackling the problem of assembly system configura-
tion and line balancing. The presented discussion reviews only a few among the
several existing publications on assembly system configuration selection; specifi-
cally, those that are relevant to the DDSM framework are selected for discussion.

In the domain of workstation level scale-up, [Bensmaine et al., 2013] have tack-
led the machine selection problem for RMS with Non-dominated Sorting Genetic
Algorithm (NSGA - II). The main focus of their work is the selection of machines
from a candidate list considering two main criteria, the minimum total cost and min-
imum total time. In order to achieve this, the multi-objective optimisation method
called NSGA-II was employed with the objective of minimising the time and cost
while selecting a set of machines that can perform all the required operations. The
cost function in their problem formulation comprises of four elements: machine
usage cost, configuration change cost, tool change cost and tool usage cost. Simi-
larly, the time function comprises of the processing time, tool changeover time and
configuration change time. Their methodology is demonstrated with a case study
that comprises of ten candidate machines and a product comprising of three features
that need certain operations. By using their method, the decision makers can select
the suitable machines that would fulfill their requirements. Although the approach
is very beneficial and supports decision making, it is primarily focussed on RMS,
Reconfigurable Machine Tools (RMT) and machining operations. Additionally, the
initial selection of candidate machines is subjective and experience-based; discus-
sions relevant to the method for calculation and sourcing of process time data is
lacking. Moreover, product variants are not considered in their approach.
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[Manzini et al., 2018] proposed an integrated design approach in which four com-
putational tools, namely assembly system configuration tool, assembly cell config-
uration tool, production planning and simulation and reconfiguration planning tool
operate using a database designed around the Core Manufacturing Simulation Data
(CMSD) standard to support production system design and reconfiguration. To im-
prove the design process, these tools also have feedback loop. Through the use of
the tools, the following activities are carried out. Firstly, the system design that
defines the number of cells, task allocation, process sequence and product routing
is identified. Secondly, the detailed design of the assembly cell along with task
sequence and allocation is identified. Thirdly, the capability of the selected con-
figuration to meet the needs of the OEM are verified. Finally, the reconfiguration
aspects of the selected design are considered. An illustration of their framework can
be seen from Figure 2.12. In their research, the general template of an assembly
cell comprises of a seven-axis robot for handling and transportation with stations
around a central rail.

Figure 2.12: Integrated design approach proposed by [Manzini et al., 2018].

The key focus of their work lies on the automated design of production systems and
selection of suitable assembly system configurations, detailed analysis of the phys-
ical layout, task sequencing and dynamic performance evaluation, predicting future
scenarios and operation-related cost, and guiding the reconfiguration of assembly
systems. The approach starts with the selection of production line configuration
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and drills deeper to define the workstation configurations for assembly systems at
the early planning phases of the system lifecycle. The specific focus is provided to
cellular architectures and modular assembly systems and the approach presents a
top-down workflow which starts with the generation of high-level system configu-
rations.

In summary, the approach provides a very detailed holistic approach to the assem-
bly system design selection problem, however, the selection and decision making
of system level resource architecture and layout before detailing the cell level leads
to the analysis performed at a high level (assembly system) without data from the
lower level (assembly cell). Though good configurations might be obtained, it is
more beneficial to adopt a bottom-up approach where the data from the lower levels
are encapsulated into the higher level model thus enabling more meaningful analy-
sis without the conventional black box approaches. Additionally, details pertaining
to the data architecture and workflow of integration is lacking.

[Guschinskaya et al., 2008] proposed a heuristics-based optimisation procedure for
designing serial machining lines. Their objective is to minimise the machining
line cost; constraints such as precedence, inclusion, station exclusion and block
exclusion are considered in their optimisation model. Their formulation of the ob-
jective function is purely mathematical and their research work only considers a
single objective. However, manufacturing systems have inherent randomness that
is not considered as part of this research. Moreover, the consideration of a single
objective is less beneficial than considering a manufacturing system problem as a
multi-objective one. This is because the single-objective optimisation problem pro-
vides one solution that satisfies the considered objective, however, more than one
objective needs to be considered to model the manufacturing system realistically.

A two stage approach for assembly line configuration selection and resource plan-
ning based on multiple criteria is presented by [Michalos et al., 2015]. Their ap-
proach is represented in Figure 2.13. The various criteria considered for config-
uration selection include, but are not limited to, the machine utilisation, energy
consumption, investment cost, etc. The first stage comprises of an analytical cal-
culation of the required number of resources and stations and the second stage in-
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Figure 2.13: Assembly line configuration selection proposed by [Michalos et al.,
2015].

volves DES-based assembly line configuration selection coupled with an intelligent
search algorithm. The approach also benefits from automated DES model configu-
ration. Despite the holistic view of the approach for assembly line design selection,
the consideration of product variant and material handling units and the concepts
related to interoperability and seamless data transfer among the software associ-
ated with design selection procedure are lacking. The major shortcoming has been
identified as the time consuming calculation of process time; there is potential to
overcome this issue with the use of kinematic modelling for comparison of design
alternatives at the workstation level.

In the domain of system configuration selection for scale-up planning of Reconfig-
urable Manufacturing Systems, [Wang and Koren, 2012] have proposed a GA based
optimisation procedure. The objective function is a mathematical formulation that
seeks to identify the minimum number of machines required to meet the new mar-
ket demand. The task allocation and machine allocation are the considered decision
variables. The outlook of the approach is centered around a deterministic viewpoint
of the system; the decision making process can also be made more flexible with the
use of multi-objective optimisation to allow the comparison of alternate solutions.
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Moreover, workstation configuration selection is not considered within the scope of
their research.

[Ghani, 2013] has presented a framework using kinematic modelling and DES. In
Ghani’s research, kinematic modelling is used for visualising the reconfigurability,
cycle time analysis and locating equipment; DES is used for analysis of productiv-
ity indicators. The integration of DES and kinematic model is actually beneficial
because when using DES in the planning phase, lot of assumptions are made. In
Ghani’s approach, the process time analysis that is done in vueOne is used increase
the accuracy of the DES models. The key application areas and focus of the work
is on energy consumption, breakdown and human performance modelling at the
kinematic model level. The method of integration proposed in Ghani’s thesis is
using XML data format; the (Virtual Driven Discrete Event Simulation) VDSim in-
tegration environment accepts input data, for instance, regarding maintenance and
breakdown and the data processing is done using Visual Basic. This data is then
sent to Excel and ultimately transferred to DES. Ghani has emphasized the need for
structured information and the data model is specific for the application of recon-
figuration and new product introduction.

Although their work emphasized the need for integration of kinematic modelling
and DES within the context of virtual factory and proposed a novel approach for
the implementation of such an integration, the work does not address the decision
support required for scale-up planning and their data model is specific for their
application. From the reviewed literature, the author finds that Ghani’s work is the
closest to what the DDSM framework intends to achieve. Therefore, the work done
by [Ghani, 2013] will be explored in more detail and extended to provide a holistic
approach that enables the workstation design selection, assembly system design
optimisation and decision support for the transition to high volume.

2.9 Summary

The chapter started with an introduction to manufacturing systems and paradigms
and funnelled towards the key concepts and ideas surrounding the term scale-up. To
achieve consensus in the use of the term ‘scale-up’, it was defined and differentiated
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from related terms. The existing knowledge on scale-up were gathered from several
academic articles and industrial white papers and critically reviewed to identify the
shortcomings in planning and realising the scale-up phase. A significant proportion
of the reviewed papers focus on the disturbances and events that occur during pro-
duction scale-up and the approaches to manage and prevent these disturbances.

As perceived from Table 2.5, the body of literature holds relevant research works
on scale-up. The majority of the studies focus on a particular aspect of the manu-
facturing system or have limited applicability. For instance, a detailed discussion
might be provided for configuration selection of an assembly station but little or
no discussion made for the assembly line configuration which is at a higher level
of abstraction than the assembly station. There is lack of literature and research
on an integrated approach for configuration selection that encompasses all aspects
of a manufacturing system. Although some generic research work on assembly
line design selection can be applied to the scale-up decision making problem, they
do not tackle certain aspects of the scale-up problem. These primarily include i)
application-specific criteria for decision making that are relevant for scale-up are
not provided, and ii) scale-up relevant principles such as ‘replication’ and ‘upgrade’
are not considered. This makes it difficult to seamlessly incorporate the configura-
tion selection methodologies to support the scale-up transition.

There is lack of a robust objective approach to select suitable production system
configurations during the planning stages for scale-up implementation. Moreover,
the industrial procedures for scale-up are identified to be ad-hoc, experience-based
procedures that support the transition to higher production volume. This results
in increased time-to-market, re-analysis or failure of scale-up projects due to poor
system configuration choice, conducting expensive workshops and brainstorming
sessions that rely solely on the opinion of experts to make decisions. There is also
the risk of overstating the benefits of a system that leads to ignoring better solutions.
If the chosen solutions are expensive in terms of capital and implementation cost
and do not meet the required production capacity, it could lead to a situation where
the cumulative system cost tends be relatively higher than those solutions that can
cater to the required demand. However, manually searching the whole design space
for complex manufacturing settings is not feasible. Therefore, the simulation-based
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scale-up planning activities were explored and the use of DES for performing what-
if scenario analysis along with optimisation packages to explore the entire design
space was suggested.

The use of DES as a stand alone model results in infeasible solutions which cannot
be validated due to the absence of a physical model. To overcome this issue, this re-
search proposes a bottom-up approach with parametric DES-based multi-objective
simulation optimisation that obtains data from physical system and the kinematic
model which increases the accuracy of the DES models even in the absence of a
physical system.

2.9.1 Research gaps

The primary research gaps corroborated by the review are identified in this section.
This step paves way for formulation of the research methodology.

Lack of a holistic approach

The review of current literature revealed that there are dissociated studies that relate
to specific aspects of the manufacturing system design, configuration and scale-up
implementation. These studies provide a deeper understanding of only a portion
or abstraction level of the manufacturing system scale-up. However, they do not
provide a holistic approach that considers the manufacturing system at varying lev-
els of granularity. For example, the research done by [Bensmaine et al., 2013]
focusses on the machine configuration selection, which is only one aspect of the
manufacturing system. Their research does not detail the assembly line configura-
tion selection following the selection of machines. Additionally, from a review of
multiple approaches to assembly system design, [Manzini et al., 2018] have identi-
fied that there is lack of research on improving the higher abstraction level models,
such as DES, based on data and solutions from lower abstraction levels, such as
station level models.
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System design selection for scale-up

Another important gap that was identified was the lack of design and decision sup-
port for scale-up [Terwiesch et al., 2001]. Although a number of papers discuss
the scale-up management problem and explain the various strategies that can be
considered for scale-up, there is not much work in scale-up specific assembly sys-
tem design selection. The industrial white papers such as [Kinzoku, 2019; Volvo,
2007] also ascertain this fact by employing ad-hoc strategies to design the system
for higher production volume. Therefore, the design space is not explored for better
solutions.

Expensive solutions for scale-up management

Since the scale-up phase is part of the manufacturing system lifecycle, it is possi-
ble to apply existing PLM software to support the planning and decision-making
activities. However, the commercial PLM solutions are expensive and cost around
£100,000 and it is difficult to adopt them in small and medium size industries [Soto-
Acosta et al., 2016; Terkaj et al., 2012]. If seamless communication could be estab-
lished between heterogeneous software packages that perform the same tasks as that
of the PLM, then this cost can be reduced. Therefore, it is necessary to identify a
solution that can enable communication between heterogeneous software packages
while also supporting scale-up decision making.

Need for data-driven approach

For scale-up management and decision making activities, it is important that the
available data from the various sources are efficiently used. With the advent of In-
dustry 4.0 and Internet of Things, it is even more critical that the proper sources
of data for scale-up decision making are identified and embedded in the virtual
models for scale-up planning. [Michalos et al., 2015] have identified the data that
are required by the virtual models to perform assembly line configuration selec-
tion. However, this represents the generic data for assembly line configuration and
whether this would be sufficient for scale-up planning is something that needs to be
explored. Therefore, there needs to be more work done in this area to fulfill the gap
that the lack of data-driven scale-up approaches have created.
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Chapter 3

Methodology

3.1 Overview of the approach

The previous chapter highlighted the research gaps and underscored the need for a
framework to support the scale-up phase, especially in the planning stages where
critical decisions on assembly line modifications are done. To fulfill the research
gaps and support the scale-up phase, a two-stage bottom-up approach named as the
Data-Driven Scale-up Model (DDSM) is proposed and explained in this chapter.
This two-staged approach aims to identify system designs that help realise scale-up
by employing various digital manufacturing tools. The ultimate goal is to have a
successful scale-up transition and to reach this goal, it is necessary to make mod-
ifications to the hardware and software. Essentially, this can be considered as an
assembly line design configuration problem that is tailored for scale-up.

The DDSM is a bottom-up approach where the data from low level workstation
models, built using kinematic modelling software, are leveraged to improve the ac-
curacy and detail of high level system models in DES software to further perform
meaningful analysis that support decision-making during scale-up phase. Since
this type of behaviour modelling of complex systems demands a broad spectrum
of software, data integration is all the more important. While commercially avail-
able software platforms for digital manufacturing promise interoperability among
a multitude of software, their capability to support heterogeneous software is not
quantified. The DDSM methodology does not consider software interoperability in
much detail but touches upon certain aspects of it.
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The two main pillars of the methodology are the Workstation Configuration Se-
lector (WCS) and System Configuration Selector (SCS) as represented in Figure
3.1. Stage one (WCS) is framed upon the assumption that the workstations com-
prise of one or more equipment to perform the required assembly operations on
a product and that there can be different configurations or designs of workstations
that perform similar, if not the same operations. It is to be noted that the term ‘prod-

uct’, in the DDSM methodology, is used to represent the ‘workpiece’ that will be
assembled. From Figure 3.1, it can be seen that WCS comprises of two modules:
the kinematic model module and the knowledge representation module. The details
of knowledge representation module and the reason behind choosing ontology will
be explained in section 3.3.2. Each module has different capabilities and they will
be discussed in more detail in the later sections.

Stage two of the methodology comprises of two modules: the DES model module
and the optimisation module. Again, the capabilities and method of data exchange
between the modules will be explained in detail in the later sections. From Figure
3.1, the workstation KPI data from Stage one is accessed by the DES module for
improving the accuracy of assembly line models. For example, the data such as the
workstation process time, capital cost, operator allocation, etc., that are generally
assumed within the DES model are instead obtained from Stage one. Ultimately, the
data from the kinematic models at lower hierarchical level are accessible by the DES
modules at the higher hierarchical level to subsequently improve the accuracy of
input data. Furthermore, the DES model is coupled with the optimisation module,
wherein, a multi-objective optimisation model for selecting near-optimal assembly
system designs that minimise the scale-up cost and maximise the throughput is
formulated. The steps involved in methodology can be summarised as follows:

1. Identify the current design of the assembly line that needs to be scaled-up and
create virtual models of the assembly stations within kinematic modelling
software. For this purpose, resource-related data and product-related data are
necessary as indicated in Figure 3.1.

2. Within kinematic modelling software, identify process level details such as
process sequence, task sequence and parameters for the assembly stations
modelled and the product that needs to be assembled. This comprises of the
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process design step in Figure 3.1.

3. The next step is to identify the set of equipment that can perform the re-
quired processes. To support the equipment selection process, query an ex-
isting equipment catalog or library within an ontology editor to retrieve those
equipment that meet the process requirements. In Figure 3.1, this is indicated
by the data flow between the kinematic modelling module and the knowledge
representation module (ontology editor). Within the ontology editor, there
are four classes that enable the equipment selection process.

4. Following the selection of suitable equipment, the resulting workstation con-
figurations need to be validated within the kinematic model. The validated
configurations are represented in the workstation design table along with their
respective KPIs such as process time, energy consumption, cost, etc., and
stored in the common database. More details about the database and work-
station KPIs is provided in section 3.3.3.

5. Create a parametric DES model of the existing line and create communi-
cation interfaces with optimisation module and the database. This allows the
exchange of optimisation variable values and workstation KPI data. This data
is indicated as the input data to DES and optimisation module in Figure 3.1.

6. Code the fitness evaluation function/objective function and the optimisation
algorithm within the optimisation module and set the initialising parameters.
The data integration between the DES model module and optimisation mod-
ule enables the simulation optimisation as indicated by the arrows in Figure
3.1.

7. Perform simulation optimisation, at the end of which the pareto front that rep-
resents the good solutions are obtained. The solutions represent the assembly
line and station configurations; these solutions need to be validated in DES
software.

8. The validated assembly line configurations are compared using Scale-up KPI
schema and user priorities. The configurations are compared for decision
making and displayed in a radar chart which indicates the assembly line per-
formance with respect to a set of criteria.
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Steps one to four provide an essence of how the WCS (Stage one) works. Steps
five to eight provide details about SCS (Stage two). Section 3.2 provides details
pertaining to the data modelling and investigation of the data required by kinematic
modelling software and DES at various stages of the lifecycle and this is in align-
ment with research objective one. A thorough explanation of each stage of the
methodology is provided in sections 3.3 and 3.4 of this chapter.

3.2 Data modelling along the system lifecycle

As explained in Chapter two, simulation and modelling play a vital role in differ-
ent phases of manufacturing system lifecycle. Several heterogeneous software that
specialise in computer aided design, computer aided process planning, augmented
reality, digital-mock up, lifecycle assessment, ergonomics, computer aided manu-
facturing, layout planning, supply chain simulation, process simulation, etc. need to
communicate with each other for successful modelling of complex manufacturing
systems. Within the context of this thesis, the use of CAD, kinematic modelling,
DES and their dependencies will be discussed in detail as they form part of the
workflow. To better understand the dependency and allow data integration among
them, it is crucial to understand when, where and how these software are utilised
across the lifecycle and the type and frequency of data that are passed between
the aforementioned heterogeneous software. Figure 3.2 represents the use of DES
and kinematic modelling software across the lifecycle of the manufacturing system
which is explained in detail in the following sections.

3.2.1 Concept stage

From Figure 3.2, the manufacturing system lifecycle is represented on the ‘y’ axis
and includes the concept, implementation, operational and end of life phase. The
arrows in the diagram indicate the direct or indirect data flow among the various
modelling entities and between the modelling entities and assembly line . The ‘x’

axis represents the assembly system, both physical and virtual; the former includes
any tangible component in the real world manufacturing system such as fixtures,
grippers, pilot line and assembly systems, and the latter includes virtual process and
resource development and virtual product development. At the start of the manu-
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Figure 3.2: Use of DES and kinematic model software across the lifecycle.

facturing system lifecycle, in the virtual product development that happens during
the concept phase, the data exchange between the CAD and multi-physics models
helps analyse and validate the product design. This is represented in Figure 3.2 us-
ing the arrow between product CAD and multi-physics model in the virtual product
development dimension. Several iterations are done before the final product design
is obtained. This acts as the catalyst for the virtual process and resource develop-
ment where the station CAD models are manipulated to perform various analyses
in the virtual environment. This is represented using arrow 1 between station CAD
and product CAD. During the planning and development stages of assembly work-
stations, there might be situations where standard off-the-shelf equipment might be
enough to perform the required assembly process. In some other situations, if there
are no existing equipment that can perform the required assembly process, bespoke
designs need to be developed. In case of such bespoke machine designs, initially,
the design of machines are first created virtually followed by several iterations be-
fore the actual machine is accepted into the line. In case of standard off the shelf
equipment, this process can be skipped and they can be readily modelled in the vir-
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tual environment using data obtained from data sheets and other such sources. This
information can be encapsulated within kinematic modelling tool, as represented by
the arrow 2 between the Station CAD and kinematic model in Figure 3.2, for plan-
ning the process. Moreover, the information regarding the product from the product
CAD and relevant component data such as gripper range, robot payload, etc. from
shop floor/physical system can also be accommodated within the kinematic model
to enhance it. This process enables the creation of a library within the kinematic
model that allows the re-use of the created virtual components for future projects.

3.2.2 Implementation stage

Progressing onto the implementation phase, the workstations can be commissioned
after performing basic analyses such as collision detection and path planning within
the kinematic model. The component and workstation entities in the real physical
system, once they are commissioned and in operation, are potential sources of data.
From Figure 3.2, the arrow between component (a) and kinematic model repre-
sented by 3 and the arrow between workstation (b) and kinematic model represented
by 4 signify this. The pilot line (c) which is used to test the assembly of the prod-
uct, comprises of the components (a) and workstations (b) and is also represented
in Figure 3.2. The arrow 5 represents the data flow between the pilot line and the
DES model. This data enables the modelling of pilot line within the DES software;
the models can be refined and improved in an iterative manner. The pre-operational
scale-up usually happens around this stage. When the pilot phase is completed and
the line needs to be scaled-up, the existing workstation models of the pilot line
within the kinematic modelling software can be used to further establish new con-
figurations both at workstation and system levels. The assembly line designs can be
modelled within DES which allows the system designers to make better decisions.
This enables the conceptualisation of the production line even before its implemen-
tation. The arrow 6 represents the data flow from the production/assembly line to
the DES models. The analyses performed within the kinematic modelling software,
with proper integration, can provide useful data for the DES model and this is rep-
resented by arrow 7.
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3.2.3 Operational phase

Moving on to the operational phase, there is opportunity to get more data from the
assembly lines to update the virtual models such that they better represent the phys-
ical system. At this stage, data from the real system can be used to support the DES
models to further analyse potential scenarios. The operational phase scale-up might
happen due increase in product demand while the assembly line is operational. The
connection between the DES model and the real system can be classified as on-line
or off-line. In off-line simulation, the model is not coupled to the real system; in
on-line simulation, the model is connected to the real system and the collected data
can be used for real-time planning and scheduling [Mirdamadi et al., 2007]. Despite
the benefits of using the data for improving potential DES models, it has been iden-
tified that they are typically not in a form which is readily usable by the simulation
software. Another major issue during this phase is the possibility of human error
when manually entering data [Mieth et al., 2019]. To get more clarity on this, the
various types of data available and their usability is investigated in the following
section. The end of life is not considered within the scope of the thesis and hence
will not be discussed in detail.

3.2.4 Data usage across the system lifecycle

This section discusses the various data that are required at various stages of the life-
cycle from both the shop floor and other simulation models. They can be classified
into datasets as follows.

• Dataset 1 - Data from the CAD model for creation of component and station
level models; this data is further used in kinematic modelling tool during the
concept phase and is represented by arrows 1 and 2 in Figure 3.2.

• Dataset 2 - Data from the kinematic model of the workstations and compo-
nents to the shop floor; this data is used to commission the new pilot line and
is represented by arrows 3 and 4 in Figure 3.2.

• Dataset 3 - Data from the real pilot line workstations and components to kine-
matic model and DES in the implementation phase; this data is the feedback
from the physical system to improve the virtual assembly line, workstation
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and component models. In the Figure 3.2, this dataset is represented by ar-
rows 3, 4 and 5.

• Dataset 4 - Data from kinematic model to DES to create the new scale-up
line model; this represents the pre-operational scale-up and the workstation
and component virtual models within the kinematic modelling software can
be used to support the DES modelling during the implementation phase. This
dataset is represented by arrow 7.

• Dataset 5 - Data regarding the assembly system from the DES model to kine-
matic modelling software. The analysis performed within DES might indi-
cate the lack of productivity and this is useful feedback to workstation mod-
els within kinematic modelling software. With this feedback, the workstation
design can be modified by replacing the existing equipment with more pro-
ductive ones. This dataset is again represented by arrow 7 and is used during
implementation phase.

• Dataset 6 - Data from the DES model to the assembly line or shop floor; this
data is beneficial for commissioning the new pre-operational phase scale-up
design during the implementation phases. Based on the analysis performed
within the DES software, the new assembly system design can be realised;
this dataset is represented by arrow 6.

• Dataset 7 - Data from the assembly system or shop floor to the DES software
and from workstations and components to the kinematic modelling software.
This is essentially the feedback data from the implemented production line
to improve the virtual model. This dataset is typically used in operational
phase and the connection to DES is represented by arrow 6. The connection
to kinematic modelling software is represented by arrows 4 and 5.

• Dataset 8 - Data from kinematic model to DES software during the opera-
tional scale-up phase to create the new assembly system design. This data is
used in the operational phase and is represented by arrow 7.

• Dataset 9 - Data from DES to kinematic model regarding the new assembly
system models that were created in DES. For example, the feedback regarding
lack of productivity can be used within the kinematic modelling software to
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identify workstation designs that exhibit more productivity. This data is used
in the operational phase and is indicated by arrow 7.

• Dataset 10 - The final dataset is the data from the DES software to the as-
sembly line or shop floor to commission the new operational phase scale-up
design that was identified. This data is used in the operational phase and is
indicated by arrow 6.

In the above datasets, it is assumed that when data from DES is communicated to
the real assembly system, the associated workstation and component level data are
communicated as well. The flow of data from concept phase to the operational
phase for scale-up is discussed along with a detailed explanation of the datasets.
Some of the data in the datasets might overlap with each other which implies that
they are critical across various phases. Sometimes, the data that were commu-
nicated between the entities during the implementation phase might be the same
type of data that is communicated in the operational phase. Therefore, the datasets
are not mutually exclusive. The various data obtained from shop floor can be cate-
gorised into simulation relevant, simulation irrelevant, directly usable and indirectly
usable [Mieth et al., 2019]. The data that are simulation relevant are considered
within the context of this thesis. Based on this, the author has represented the
datasets in Figure 3.3 and Figure 3.5 to represent the data.

Component data

Figure 3.3 shows the component and station data required for kinematic modelling
software along with a brief description of each. Starting with the native component
CAD, it is generally not in a format that can be directly imported into the kinematic
model. It needs to be processed to lightweight CAD by removing unnecessary ge-
ometry information and converted to a suitable format depending on the modelling
software used. Typically used formats include VRML and JT, however, most kine-
matic modelling software claim to support a number of formats. The processing
to lightweight format involves the identification of dynamic and static elements of
CAD; the dynamic elements are saved separately such that the kinematic behaviour
can be associated with the geometry within the kinematic modelling software. The
effort involved in importing the CAD is high due to the CAD processing. However,

78



Figure 3.3: Component and station data for kinematic model.

if the components are built once, then they can be re-used in future models. There-
fore, the effort involved reduces if pre-defined library models are used. The overall
workflow in using CAD within kinematic model can be summarised as follows: ge-
ometry acquisition, dynamic parts identification and CAD processing, format con-
version and model import, model assembly and kinematic behaviour definition and
logical behaviour definition. This is followed by analysis within the software. De-
pending on which software is considered, these steps may vary slightly. Some soft-
ware allow better user interface with options to drag and drop pre-defined library
elements without the need to build the library from scratch. This is very useful,
especially in concept stages. The component CAD data is simulation relevant data,
but it is not available in a format readily usable within kinematic modelling soft-
ware.
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Within the kinematic modelling software, components mean the entities such as
workstation frame, AGVs, human resource, etc. Workpiece-related information is
also considered as component data. For example, the weight of the workpiece is
very useful data that aids the selection of suitable grippers or actuators that can per-
form the assembly. Similarly, the weight of the gripper also aids the understanding
of whether a robot can accommodate that particular gripper. On a similar note,
the torque of some tools like nutrunners need to be known to verify whether they
would be suitable for the considered set of process parameters. Similarly, the di-
rection of motion of certain material handling units like conveyors and gantry units,
helps investigate their suitability for the considered process parameters. Data such
as the range of motion provides information about the maximum stroke distance
of grippers and actuators to understand their suitability to assemble the considered
product or workpiece. Sometimes, from sustainable engineering perspective, the
energy consumption of workstations needs to be addressed, but it should be noted
that the energy consumption data might not always be available and in such situa-
tions the effort involved is high because it needs to be calculated either manually
or empirically. In summary, not all component level data might be necessary for
building the virtual models since some of them are application-specific.

Station data

The required station level data for kinematic model are represented in Figure 3.3.
The first data represented is the station footprint; it is used to select those equip-
ment that fit an available workstation space. It is to be noted that different stations
might occupy varying amounts of space in the shopfloor. The process sequence data
represents the sequence of operations that need to be done to assemble a specific
product in that station. The process sequence might change according to the product
assembled, but the data is useful for station process time calculation and selection
of suitable equipment to perform the process. Safety interlock data is essential for
control code generation and understanding the dependency between different com-
ponents of a station. An example where safety interlock data is used is the gripper
modelling; when it picks up a part, the part should not be dropped while the gripper
is in motion. For this purpose, safety interlock condition is created to prevent the
gripper dropping the part abruptly. The machine setup time data is useful when
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different product variants are assembled in the same station. This setup time data
further enables the process time evaluation and throughput analysis. The energy
consumption data for the station can be calculated by using the energy consump-
tion values of the individual equipment.

The energy consumption data can be used to filter equipment that meet the required
standards of sustainability. The work instruction data refers to the sequence of tasks
that are defined for the operator and this data allows ergonomic analysis and oper-
ator task time analysis. The motion time data of component is a crucial piece of
information that can be obtained from historical data or empirical sources. If sim-
ilar actuators, to what is intended to be used, were used in the past, the motion
time data can be speculated from existing data. The motion time data can also be
extracted from datasheets and it is essential to calculate the workstation processing
times. Control components like actuator and gripper fingers might go through var-
ious states to advance from one location to another location and this is represented
in the form of state transition diagrams. The state transition position refers to the
location of the actuator or gripper relative to the coordinate system used in the soft-
ware. This data enables process modelling, collision detection and path planning.

The layout data defines the way that stations and machines are arranged in the
available floorspace. If layout data is already available from another software, it can
be imported, otherwise, it has to be created again and this can be time consuming.
To overcome this, it is possible to use point cloud data to automatically capture
information about an existing layout. However, this is not feasible in the concept
stage and hence there is need to rely on CAD layouts of the future assembly lines.
From the sets of data that were investigated for the component and the workstations,
a component and workstation schema is provided in Figure 3.4 that explains the
data along with their formats and respective categories. It is perceivable that the
component is categorised into control and non-control component. This will be
explained in more detail in section 3.3.1.

Input data for DES: control-related

The assembly system level input data required for the DES model is tabulated in
Figure 3.5; they are categorised into logic, stochastic and control data. The control-
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Figure 3.5: Assembly system data for DES model.
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related data are further classified into quantity, layout and resource. The quantity
data represents the number of operators, workstation, buffers, transporters and prod-
ucts that need to be considered in the DES model. The term ‘transporters’ is used to
indicate the various material handling units such as AGV, Automated Storage and
Retrieval Systems (ASRS), conveyor systems, etc. The quantity of the resources
is essential data to construct the DES model, to represent the system structure and
to calculate the resource utilisation and cost functions. The data pertaining to the
buffer capacity indicates the total number of parts that a buffer can hold and is used
for capacity optimisation and operational performance evaluation. The last of the
quantity data is the batch size which refers to the total number of products that are
assembled as a batch; for mixed model production the batch size is one. This data
is relevant for constructing the product flow and scheduling within the DES model.

The layout-related data consists of floorspace, AGV control point, transportation
path, operator guide path and equipment layout. The floorspace data is essential for
constructing the DES model, locating the various workstations within the available
space and perceiving the total available space. It is also essential for reconfigu-
ration, modifying existing DES models and layout optimisation. The AGV control
point and path data needs to be indicated in the layout; this data can also be obtained
from AGV fleet manager software. It is primarily used for layout optimisation and
operational performance analysis. Operator guide path refers to the path or route
taken by operators when transporting products, workpieces or raw material between
stations; it needs to be defined within the layout. The equipment layout is an in-
dication of where in the defined production system layout, the equipment will be
commissioned or set up.

The resource-related data comprises of the resource list and type, capacity, shift-
related information, sensor and Radio-Frequency Identification (RFID) location,
cost and energy consumption data, resource allocation and machine maintenance
data. Resource type refers to DES-specific details regarding the equipment used in
the workstations and this can vary depending on the software used. For example,
assembly machines that need to wait for certain set of raw materials before it can
begin processing, or disassembly stations that separate the product into parts, etc.,
have specific behaviour that needs to be defined within DES to enrich the model.
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Resource type also includes the various types of transporters depending on their
behaviours and the various categories of operators according to their skill-level or
certifications. The resource capacity refers to the number of products that a par-
ticular workstation can assemble simultaneously. It also refers to the total number
of products that transporters and operators can handle simultaneously. Shift-related
data refers to the shift pattern for all considered resources and it is essential for
human resource utilisation analysis and cost analysis. When workstations or trans-
porters have sensors or RFID tags attached to them, certain decisions are made with
that data. For example, a pallet on a conveyor might have an RFID tag attached to it
to read and check the status of the product on the pallet. Depending on the product
status, the product route needs to be decided. This forms a core part within DES
modelling logic and hence is simulation-relevant data.

Input data for DES: stochasticity-related

The considered stochasticity-related data are classified into time-related and quality-
related. They are referred to as stochastic since the time and quality-related param-
eters, in reality, do not have a single value but rather take a value within a defined
probability distribution. For the time-related data, the process, setup, transport time,
operator travel time are considered. The process time considered here, is the time
to produce or assemble a product in a workstation. However, within the context of
DES, it does not include the setup time, which is the time taken to prepare or setup
a workstation and it is more prominently used when more than one product variant
is assembled. The reason that process time and setup time are separated in such a
way is because they are considered as separate parameters in DES; but this might be
software-specific. The last of the time-related parameters considered are the trans-
port time and operator travel time; it refers to the time taken by transporters and
operators to travel and transport the raw materials or workpieces from one location
to another.

Considering the quality-related data, the defect rate, first time failure, Mean Time
Between Failures (MTBF) and Mean Time To Repair (MTTR) are considered. The
defect rate refers to the number of products that fail due to various reasons such
as assembly or material issues. First time failure is the time that the machine that
is in operation is expected to fail for the first time from the start of simulation
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run. MTBF represents the mean of the time between failures for the considered
equipment. MTTR represents the average of the time to restore a failed equipment.
All these data are necessary to perform maintenance-related modelling in DES.

Input data for DES: logic-related

The data related to the model logic are further categorised into scheduling-related
and routing-related. The data regarding the input and output rules for station or
transporter determines the source or location from where the product to be assem-
bled is selected, in case of input rule or the location to where the assembled product
is sent to, in case of output rule. The data pertaining to resource dispatching rule
indicates how a specific operator or transporter is selected from a pool of available
resources to do a particular job. For example, if there are ten operators available to
perform an assembly at a specific station but only one is required, the rationale be-
hind choosing one operator among the ten available is defined by these set of rules.

Among the routing-related data, the product routing determines the sequence of
processes or stations that a product needs to go through in order to be assembled.
In a similar fashion, the path taken by operators and transporters is defined in the
operator and transporter routing respectively. Although the logic-related data are
important for simulation, they form the most difficult set of data that hinder the
automation of DES model creation; the effort involved in obtaining the data is also
very high.

Output data from kinematic modelling software

The output data from the kinematic modelling software is provided in Figure 3.6.
Some of these data, support modelling within DES, whereas some of them may not
really be required for DES modelling. It can be seen that some of the data such
as processing time, resource type, operator routing, transporter routing, number of
operators, etc. which are mentioned in the Figure 3.6 are also seen in Figure 3.5
where the input data for DES are illustrated. This signifies the importance of the
data obtained from kinematic modelling software. The data that might not be re-
quired within the DES software include PLC control code, detailed robot program-
ming, collision detection, etc. The output data from kinematic modelling software
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helps system designers, control engineers and personnel involved in process plan-
ning and also helps work instruction generation. The simulation of the assembly
process can be visualised and exported as video files that help explain the assem-
bly concept. They play an important role in decision making at the workstation
level, in the absence of a physical system. Additionally, they play an important role
in control code generation and virtual (hardware-in-the-loop) commissioning and
constructive commissioning [Lee and Park, 2014].

Figure 3.6: Output data from kinematic modelling software.

Figure 3.7: Output data from DES software.

Output data from DES

The output data from DES are presented in Figure 3.7. It should be noted that the
presented set of data is only a representative list and not an exhaustive one. Majority
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of the data from the DES software are the results of ‘what-if’ analysis and they pro-
vide decision support for different scenarios that could potentially occur. Data such
as throughput, mean flow time, resource utilisation and work-in-progress are useful
for scale-up analysis. This is because they indicate the productivity of the differ-
ent scenarios considered for scale-up. Without these indicators, it becomes diffi-
cult to choose a specific solution amongst the many available possibilities. From
simulation-optimisation perspective, the output data from DES plays a critical role
in calculating the objective function; especially data related to cost and produc-
tivity are considered important; a number of manufacturing system optimisation
problems consider them as part of their objective functions [Prajapat and Tiwari,
2017]. This set of output data from DES software is useful for decision making and
can be passed from the DES model to the system designers and decision makers
using dashboards, reports or other visualisation software.

The investigation of data that are required by simulation tools, especially kinematic
modelling and DES, at various stages of the lifecycle and the use of the data and its
importance for simulation was presented. From the analysis, some critical data that
are used across multiple phases and software are the processing time, layout, op-
erator and transporter path, and resource quantity. Since the data are shared across
various software, the next section explains the methods for exchange of data.

3.2.5 Data exchange

This section provides a brief write-up of the data transfer between different soft-
ware that will be discussed in the methodology. Two options for data transfer were
considered as shown in Figure 3.8. In option 1, the software communicate with
each other either directly or with the help of an interface without the use of a com-
mon data repository. On the other hand, in option 2, the software communicate with
each other through a common data repository; this repository could be a database.
A database, typically comprises of related data which are deposited in one location.
For the DDSM methodology, option 2 will be adopted and a common database will
be used for storing and retrieving the data. The reasons for selecting option 2 can
be summarised as follows: i) storage of necessary data in a centralised hub, thereby
enabling integration of data from heterogeneous sources [Boucelma et al., 2002]
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Figure 3.8: Data exchange options.

ii) to avoid descriptive conflicts [Tolk and Muguira, 2003] and duplication of data
[Al-Najjar, 1996], and iii) achieving a holistic view of the simulation-relevant data
for scale-up [Kans and Ingwald, 2008]. In the DDSM methodology, all data will
be provided with a unique ‘identifier’ to avoid duplication. There are many ways to
establish connection with the database. It can be done manually or automatically,
by direct data transfer or indirect data transfer using Application Programming In-
terface (API). The following sections will discuss the data exchange standards and
formats.

Various standards and formats for data exchange have been proposed in literature.
One such standard is the Core Manufacturing Simulation Data (CMSD) and this
standard will be adopted for the DDSM methodology. CMSD is chosen for this re-
search because of its suitability to provide interoperability between manufacturing
system and simulation data. One of the core benefits of using CMSD is to allow
for the automation of data transfer which eliminates human errors during data input
[Bloomfield et al., 2012]. CMSD provides a neutral data format for the interoper-
ability between simulation software and manufacturing system and the specification
is available in two different methods: Extensible Markup Language (XML) and
Unified Modelling Language (UML). Simulation Interoperability Standards Or-
ganisation (SISO) proposed the standards for CMSD UML format in 2010 [CMSD,
2010] and XML representation in later in 2012 [CMSD, 2012] released the XML
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Figure 3.9: Example of CMSD document adopted from SISO [CMSD, 2012]

representation. An example of the CMSD document is depicted in Figure 3.9.

From the standard [CMSD, 2012], the CMSD model does not focus on all aspects of
manufacturing; the main areas of focus are process planning, scheduling, inventory
management, production management and plant layout; it comprises of six pack-
ages: i) layout, ii) part info, iii) support, iv) resource info, v) production operation,
and vi) production planning. The layout package consists of classes and relation-
ships that are associated with spatial representations and manufacturing layout. The
part information package consists of classes associated with part-related data such
as batch size, work in progress raw material, finished products, etc. Production op-
eration class comprises of order status, scheduling elements, processing time, parts
produced, etc. The resource information is associated with equipment characteris-
tics, operator skills, setup information, etc. The production operation is associated
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with shift schedule, process plan, maintenance plan, etc. For the DDSM methodol-
ogy, however, not all of these packages might be utilised. The data exchange format
is explained in more detail in the latter part of section 3.3.1.

The data exchange and flow between the various software modules in DDSM is
highlighted in Figure 3.10. This schematic is obtained from the investigations and
analyses performed in section 3.2.4. Each alphabet in Figure 3.10, is assigned to
a set of data that is transferred or exchanged. Set (a) represents the data that is
passed to the common database from kinematic model to be used in the knowledge
representation module or ontology editor. This set of data enables the query design
within the ontology editor and comprises of the following: i) workpiece attributes
such as dimensions, weight, product identifier, shape, gripping surface area, ii) pro-
cess related information such as sequence, number of processes, task types in each
operation, degree of freedom, axes of motion required and other process-specific
parameters, and iii) resource-related data such as station footprint and allowable
weight. The set (b) comprises of data from the knowledge representation mod-
ule or ontology editor that is passed back to the common database. This is used
within the kinematic modelling software for validating the query results; the results
represent a group of equipment that have the capability to perform the required pro-
cesses. Example of data in set (b) include equipment data such as the attributes,
tasks performed, motion time, cost and energy consumption, etc.

The workstation configuration data are represented in set (c) and they are passed
from kinematic model after the validation to the common database. Typically, the
workstation KPIs such as the workstation process time, energy consumption, cost,
etc., are part of set (c). This data is necessary to improve the quality and accuracy
of the assembly line models in DES. Dataset (d) represents the workstation data
transferred from the common database to the optimisation module for calculating
the objective function. As an example, consider a cost function defined in the opti-
misation objective which comprises of various elements of cost. These elements of
cost for the considered workstation configurations are obtained from the common
database and forms part of set (d). Depending on the formulation of the objective
function, the data that will be required varies.
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The dataset (e) consists of data such as the workstation process time, maintenance
data, operator travel time data, etc. This set is passed to DES software from the
common database and is necessary to perform good calculations and decisions
within DES. This set of data originally arises from the workstation configurations
that were validated within the kinematic model and later stored in the common
database. Dataset (f) refers to the decision variables that are passed from the op-
timisation module to the DES model. The decision variables are those that need
to be optimised and their values are obtained from the optimisation module. They
play a vital role in simulation optimisation. Dataset (g) represents data such as the
throughput, lead time, work in progress, etc., that are passed from the simulation
back to the optimisation module. This dataset plays a vital role in calculating the
objective function that will be detailed in section 3.5. This summarises the data
that are exchanged or transferred between the different software and their role in
the DDSM framework. The exact data format that will be used and the way the
connection will be established is discussed in the following section.

3.3 Stage one: Workstation Configuration Selector

Stage one of the methodology comprises of two modules: kinematic modelling
module and knowledge representation module. Figure 3.11 provides a detailed
view of Stage one of DDSM methodology. The kinematic modelling module corre-
sponds to the kinematic modelling software and its primary objective is the analysis
of the process sequence, parameters, constraints, etc., of the existing virtual model
of the production line prior to the modifications. The kinematic modelling module
is coupled with the knowledge representation module which is built upon a Product
Process Resource Resource attribute (PPRR) framework. The knowledge repre-
sentation module comprises of an ontology editor; using the knowledge mapping
between PPRR, the candidate equipment list will be queried to identify those equip-
ment that can perform the required operations. Both modules communicate through
the common database and the results of the analysis provides the the workstation
designs, the constituent equipment and the workstation KPIs that can be used for
comparing the alternative designs.
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Figure 3.11: Stage one of DDSM methodology.

3.3.1 Kinematic modelling module

The kinematic modelling module mainly comprises of the kinematic modelling
software which is typically used to model and visualise production systems, pri-
marily for path planning, clash detection and verification of assembly process in
the absence of a physical system [Maropoulos and Ceglarek, 2010]. Due to their
ability to model the kinematics, they can predict the workstation processing time
[Caggiano and Teti, 2018]. The workstation processing time data from the kine-
matic model can be leveraged to increase the accuracy of DES models [Chinnathai
et al., 2019] . The input data from the shopfloor for use within this module were
highlighted in Figure 3.3. Within the kinematic model, the modelling can be done
at two abstraction levels: the component level and workstation level. The com-
ponent model encapsulates information regarding the various components such as
robots, gantries, grippers, etc. The workstation model encapsulates within it several
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component models. For example, a welding station model can have several com-
ponents such as weld gun, welding robot, fixtures, etc. Moreover, process-related
modelling is also done at the workstation level. The following three steps form part
of the initial workflow in this part of the methodology.

1. Create component model of the pilot or production line components within
the kinematic modelling software.

2. Combine the component models to create the workstation model within the
kinematic modelling software.

3. Investigate the relevant process-related data that will form part of dataset
(a) which will eventually be passed to the knowledge representation module
through the common database.

During this data exchange between the kinematic modelling software and knowl-
edge representation module, data such as the process parameters, constraints, pro-
cess sequence, machine setup, etc., are passed from the kinematic modelling mod-
ule to the knowledge representation module. At this stage, the various product,
process and resource elements such as workpiece, processes, AGVs, conveyors,
etc., are referenced with an ‘identification tag’ that is unique to them. After nec-
essary analyses are performed in the ontology editor, the selected equipment and
their attributes are passed back to the common database. Following this, they are
validated and their performance is tested. A kinematic modelling tool developed by
the Automation Systems Group in the University of Warwick, known as vueOne, is
used for the purpose of kinematic modelling in DDSM; more detailed explanation
of vueOne is provided in the next section.

VueOne engineering tool description

For the purpose of kinematic modelling, VueOne Engineering toolset is used in this
thesis. The VueOne toolset was built by the Automation Systems Group (ASG),
University of Warwick. VueOne was originally structured upon component-based
modelling approach [Lee et al., 2007, 2005] and it fits well within our bottom-up
two stage methodology. Due to this reason, the DDSM framework can be consid-
ered as a component-based bottom-up modelling approach. The vueOne software
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enables the use of component library. This allows faster building of systems using
the pre-built components or modules. Additional benefits include the shortening of
planning stage and encapsulation of the physical system as a virtual model. [Müller
and Horbach, 2012] consider two types of components: object and planning. The
object components represent the structural entities of a factory and the planning
component represents elements associated with the planning process.

The toolset supports the lifecycle using the following applications: process plan-
ning, system reconfiguration, control code generation, basic ergonomic analysis
and virtual commissioning. Additionally, several extensions to the capability of the
software have been proposed over the years [Ghani, 2013; Alkan, 2018; Ahmad,
2017; Mus’ab H, 2017]. VueOne is intended to be a lightweight virtual engineer-
ing tool that uses the standard XML format for data exchange. The lightweight
models are characterised by the reduced level of detail in the number of polygons,
simplified geometry features and reduced number of parts. This is achieved by pre-
processing the component CAD before its use in vueOne and converting the format
from the native CAD to a VRML format. During this transformation, unnecessary
data such as nuts, bolts and screw which do not add any value to the required ob-
jective are removed and the geometry is simplified. The movable elements of the
component CAD are identified and saved as a separate file. The kinematics of the
movable elements are then defined within the kinematic model. Additionally, the
transparency, color and other visual aspects of the CAD elements can be modified
as required during the processing stage.

Figure 3.12 shows the vueOne component initialisation and library. The workflow
in the kinematic modelling process starts with the component modelling where the
geometry of the structural elements of the assembly line are selected and modified
as required. The component library provides a list of all existing component models
in the software. It is possible to add as many models as required.

VueOne: Component modelling

The modelling process within the software involves two main platforms: compo-
nent and system/workstation. In component modelling, the first step is to define
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Figure 3.12: vueOne component library.

the ‘type’ of the component that will be modelled. The ‘type’ determines the be-
haviour of the component. For example, the component might be an actuator, robot,
operator model, etc. Once this is determined, the next step is to visualise the geom-
etry. The geometry of the components is imported within the software from the 3D
model editor module and an example of the geometry library is shown in Figure
3.13. Following this, the behaviour of the component needs to be modelled. In
this step, the various component-related data such as the payload, mass, range of
motion and energy consumption that are mentioned in Figure 3.4 are added as ‘pa-

rameters’. This step is important for the encapsulation of component-related data
and for re-use of the component models for other related applications.

VueOne: Non-control component

Two main categories of components are modelled in vueOne: control and non-
control components. The term ‘non-control component’ refers to the entities such as
workstation frame, station platform, support elements, etc. They are passive com-
ponents that are not directly involved in the assembly processes and are generally
stationary. However, it is important to model them since they provide visualisation
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Figure 3.13: vueOne geometry definition, V-Rob and V-Man.

Figure 3.14: vueOne kinematics definition and system library.

and support the analysis of necessary workstation features such as station footprint
and weight capacity which are useful to compare the workstation configurations.

VueOne: Control component

The term ‘control component’ refers to entities such as grippers and robots. They
are typically involved in the assembly process and exhibit kinematics behaviour.
Control components can be further classified into actuators, robots, human model,
sensor, etc. The movable elements of the component that were separated during
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Figure 3.15: vueOne process flow and system model.

CAD processing are modelled as actuators as they are associated with control logic.
The control logic is defined with IEC-61131-3 compliant State Transition Diagrams
(STDs) [Ahmad, 2017]. These states can be static, dynamic or initial; initial rep-
resents the home position. The static and dynamic states represent the stationary
and moving states, respectively. As an example of modelling control components,
consider a ‘pusher’ consisting of two elements: frame and an actuator to push the
workpiece. Figure 3.14 shows a screenshot of the 3D model editor for a pusher. As
seen from the Figure, the two elements are defined as two ‘constructs’, CNS 1 and
CNS 2 within vueOne; they are linked together using two ‘linkpoints’, LNK base
and LNK cylinder at specific co-ordinates. After this, one of the two types of kine-
matic behaviour, translation or rotation kinematic needs to be defined. The ‘pusher’

will have to push the workpiece from location A to B and for this purpose a transla-
tion kinematic, ‘kin CNS 2’, is defined. The ‘axis’ option in the ‘3D model editor’

is used to define the direction of motion and the range is defined using the ‘max-

imum’ and ‘minimum’ options. The ‘current value’ option provides the current
distance travelled by the actuator. In this way, the actuators and other control com-
ponents are virtually modelled.
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VueOne: V-Rob and V-Man

In vueOne, human modelling and robot modelling have their unique modules named
V-Man and V-Rob, respectively and an illustration of this is provided in Figure
3.13. The V-Man module utilises MODular Arrangement of Predetermined Time
Standards (MODAPTS) for determining the operator task time values. By defining
the process that is being done based on work instructions, the time that an operator
will take to perform a process can hence be calculated. Additionally, the V-Man
module allows the analysis of basic ergonomics which flags up specific instances
and issues that need to be analysed further, possibly with another software. The
V-Rob, in a similar fashion, allows the determination of the time taken to perform
certain activities by robots. V-Rob has an inbuilt library of robots that can be used
whenever the necessity arises. Additionally, there is the possibility of adding more
robots as and when necessary. By combining V-Man and V-Rob activities, it is pos-
sible to model manual, automatic and semi-automatic workstations. In this manner,
the various components such as two-finger grippers, three axis gantries, six axis
robots, etc., are stored in the component library. Each component is assigned a
unique ID that will remain with the component throughout the lifecycle.

VueOne: System modelling

The next step is the system modelling and an illustration of this is provided in the
Figure 3.15; the first activity is to import the required components from the library.
These components are the ones that were created during component modelling.
They are then assembled together using linkpoints; this is followed by definition
of the logical behaviour, process sequence and process flow. The process sequence
determines which components need to perform the required processes and in what
order they perform; this further dictates the relationship between the various com-
ponents of a system. The relationship between the components are defined using
the (State Transition Diagrams) STDs. It is also possible to use sensors to signify
decision points in the model. The product that is assembled or manufactured is re-
ferred to as the workpiece and it can be picked up and placed at various locations
within the model using workpiece linkpoints.

Once the system is constructed and the logical behaviours are described, the process
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Figure 3.16: Workpiece data from kinematic model to database.

Figure 3.17: Process data from kinematic model to database.

time analysis, collision detection, path planning, control code generation, virtual
commissioning, comparison of concepts, etc., can be done. Specifically, in DDSM,
process time analysis and comparison of different workstation design concepts are
the primary targeted activities. On completion, the model can be exported to XML
format such that the data can be utilised in another software. Using the CMSD
standard as the base, XML schemas for the workpiece information, resource infor-
mation, process information that will be passed from kinematic modelling software
to the common database is provided in Figures 3.16, 3.17, 3.18, respectively.

3.3.2 Knowledge Representation module

The knowledge representation module is designed using Protégé, a free open source
ontology editor developed by Stanford Centre for Biomedical Informatics Research
[Knublauch et al., 2004]. It was selected due to its wide and active user com-
munity, accessibility and availability of support [Jain and Singh, 2013; Knublauch
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Figure 3.18: Resource data from kinematic model to database.

et al., 2004]. Ontology, as explained by Gruber, “is an explicit specification of a

conceptualization” [Gruber et al., 1993]. The reasons for using ontology can be
summarised as follows: i) providing people and software a shared understanding
of concepts and terminologies, ii) for knowledge reuse and analysis, iii) to store
collections of data and query its contents for information retrieval [Uschold and
Gruninger, 1996], and iv) to achieve data mapping between heterogeneous soft-
ware [Penciuc et al., 2014]. Having presented the benefits of using ontology, the
following brief write-up explains the need to employ ontology for this particular
research. The DDSM methodology, in Stage one, endeavors to generate potential
workstation configurations by retrieving suitable candidates from an existing cata-
logue of equipment that meet the process requirements. Additionally, considering
the fact that the manufacturing system is comprised of the physical existing enti-
ties, it is suitable to use ontology, which typically deals with the study of existence
and relationships, for specifying and mapping the workpiece, equipment and their
relations. Moreover, an ontology-based approach is considered suitable for repre-
senting complex manufacturing systems [Lohse et al., 2005].

In this paragraph, two relevant ontology models for manufacturing systems are dis-
cussed. The first one is a PPR ontology adapted from [Ferrer et al., 2016, 2015],
wherein product attributes are mapped to process and resource concepts and inte-
grated with a kinematic modelling software. The application area is to improve
the product, process and resource modelling of assembly automation systems. The
second work presents a holistic equipment ontology incorporating a Function Be-
haviour Structure paradigm for equipment selection [Lohse et al., 2005] for Recon-
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figurable Assembly System design and re-engineering process. The main objec-
tives are to select suitable equipment, configure the selected equipment and eval-
uate alternate configurations to select the most suitable one. In their framework,
the equipment is further decomposed into system, cell, workstation, unit, device
and element. The equipment is linked to its functions and behaviours. Function
determines what the assembly process does and behaviour and structure together
determine the property and performance of the equipment. The equipment, through
its behaviour, fulfils the required function.

Although both ontology models focus on assembly systems, the PPR framework
considers the integration with kinematic model and is more relevant for the DDSM
methodology. Therefore, the original PPR framework is adapted and modified to
the PPRR framework to support the equipment selection process in DDSM. The
structure of the ontology is presented in Figure 3.19. Additionally, the structure
of the PPR ontology framework correlates with the structure of the vueOne kine-
matic modelling software; the vueOne component architecture comprises of control
and non-control component and the PPR ontology model represents this. However,
the ontology model used in the DDSM methodology differs from the mentioned
articles in that i) it pursues the objective of supporting system configuration selec-
tion for transition from low-volume to high-volume, ii) it has a ‘resource attribute’

class which represents the resource attributes that need to be queried for selection
of suitable equipment, and iii) it provides a comprehensive list of resource data
properties such as payload, weight, working range, dimensions, gripping force, ac-
curacy, torque, maximum thrust, etc., that relate to process parameters for assembly
operations. Another point to note is that the DDSM ontology architecture isn’t nec-
essarily bound to system reconfiguration but also considers the commissioning of
new facilities and replacement of existing workstations if they are found unfit for
purpose. A summary of the key features of the ontology model in DDSM are pro-
vided in Table 3.1.

Product and process class

The PPRR framework comprises of product, process, resource and resource at-
tribute classes as explained in Figure 3.16. The product class comprises of a
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Table 3.1: Features of DDSM ontology model.

Ontology feature Description

Structure of ontology Product, process, resource and resource attribute classes

Application area Workstation configuration selection

Integrated software Kinematic modelling software through database

Preferred query engine Semantic Query-enhanced Web Rule Language

Reasoner Pellet

‘workpiece’ or ‘part’ that is mapped to a resource as well as the required assembly
process. The process class comprises of two elements: operation and task. Each
workstation is linked to one or more operations. The operations are composed of
tasks that are the elementary actions that cannot be further sub-divided. They can
be derived from the process sequence that can either be obtained from the kine-
matic module or the production system. Within the kinematic module, the process
sequences are represented in the State Transition Diagrams.

Task subclass

For the purpose of this research, five task types adopted from [Chinnathai, Alkan
and Harrison, 2017], move, hold/release, feed, transport and join are considered for
the query process and they are represented as five instances that belong to the ‘task’

subclass. When they are defined as instances, they become individuals or members
of the ‘task’ subclass. In Protégé, an instance can be mapped to another instance
using ‘object property’. It is important that the equipment in the catalogue that are
considered for the selection process are also defined as instances such that they can
be mapped to the respective instance of the task subclass. For example, consider
a hopper that feeds parts into the line. To model this in Protégé for DDSM, the
hopper needs to be an instance of the resource class and the ‘feed task’ needs to be
an instance of the task subclass. Following this, the mapping between the hopper
and feed task is established using the ‘performsTask’ object property. It is possible
for one equipment to be mapped to more than one task instance. The instance defi-
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nition for resource class is explained in detail in the next paragraph.

Resource class

The resource class is sub-divided into system, station and component sub-classes
in increasing order of granularity; a system is built up of stations and stations are
built up of components. The term component here refers to the equipment such as
weld gun and robots that are used to perform the various tasks. Components are
further subdivided into control and non-control component, as explained in Figure
3.4, depending on whether they have logical behaviour or not. This is in alignment
with the modelling architecture of vueOne.

Five types of control components are considered in the resource class: the gripper,
Automated Guided Vehicle (AGV), manipulator, bowl feeder and conveyors; the
components may or may not differ in the type of tasks that they perform. A spe-
cific component such as a ‘two-finger gripper’ from brand ‘XY’ can be added as an
‘instance’ to the gripper subclass. In this way, the various components are added
to their corresponding subclasses as ‘instances’ and mapped to one or more of the
defined five tasks using the ‘performsTask’ object property. To illustrate this, con-
sider a robot ‘ABC’ capable of performing the ‘move’ as well as ‘feed’ tasks; robot
‘ABC’ is an instance of the ‘robot’ subclass and ‘move’ and ‘feed’ are instances of
the ‘task’ subclass and ‘ABC’ is mapped to the two tasks using the ‘performsTask’

object property.

Data properties are used to map an instance to a specific type of data that can be a
real number, integer or string. The values of data properties such as range, dimen-
sions and payload of the resource elements can be obtained from various sources.
Consider a pneumatic gripper named ‘GAXF1’ having a payload of 500g; it is an
instance of the ‘gripper’ subclass. To map the gripper to the value of 500g, the data
property ‘hasPayload’ is used.
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Resource attribute class

The novel ‘resource attribute’ class consists of two sub-classes: i) axis of motion
and ii) resource category, which includes the robot type, joint type, gripper type
and feeder type. This information is useful to enrich the workstation configuration
selection process by screening the resources that possess the desired behaviour and
category. The reason behind adding the attributes as a separate class is to have the
attributes as instances and not as data properties. This enables mapping them to
equipment instances using the object property. For example, consider a ‘four axis

robot’ that is added as an instance to the ‘manipulator’ sub-class. The information
regarding the axis of motion is important for the selection process and hence it is
necessary to link the robot to this data. There are two options to do this: i) add
the information about the axis as a data property or ii) add the information about
the axis as an instance to the resource attribute class. The axis of motion can be
classified into x,y,z, for translation and a,b,c for rotation. It is hence limited to six
values which makes it possible to add it as an instance that can be mapped to the
equipment instances. On the other hand, adding them as a data property means that
the value needs to be entered every time an equipment is defined. Therefore, the
option of adding them as an instance saves time since they do not have to be added
to each and every equipment data property but could instead be selected from the
existing six values.

Similarly, considering the resource category, the various resource types can also be
added as instances instead of data properties since the categories are limited. It is
to be noted that, certain equipment properties such as payload, length, height, etc.,
can take up a value from a number of possible values and it does not make sense to
add them as instances. The resource category comprises of four instances: feeder
type, gripper type, joint type and robot type. Each of them is explained in detail in
the next paragraph.

The ‘feeder type’ instance considers feeders that do bulk feeding and those that feed
individual components or parts. It might be important to choose a feeder that feeds
individual components in situations where the components are fragile or safety criti-
cal such as batteries. The ‘joint type’ instance considers the equipment that perform
welding or mechanical joining. This can include specific methods such as pulse arc
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welding, friction stir welding, brazing, etc. The ‘robot type’ instance considers the
various categories of robot such as SCARA, cartesian, six-axis, cylindrical, delta,
co-bots and mobile manipulators. The ‘gripper type’ instance considers the differ-
ent mechanisms of gripping such as vacuum, hydraulic, magnetic, etc. The resource
categories, in overall, is intended to allow for better querying and selection of equip-
ment.

Protégé workflow

The workflow in the knowledge representation model is represented in Figure 3.20.
The flow starts with the product and process data from kinematic model and is fol-
lowed by the analysis of the process sequence and number of operations. The tasks
that belong to each operation are verified to understand whether they belong to one
of the five defined task types. If they do, then the equipment that can perform the
tasks belonging to that operation are identified within Protégé as explained in Fig-
ure 3.20. Within Protégé, the process requirements for each operation are first con-
sidered and translated to parameters that are used to screen the existing set of com-
ponents using ‘query language’ to identify suitable equipment. Once the equipment
are identified, the equipment along with their attributes are passed to the kinematic
model through the common database. They are later modelled in the kinematic
modelling software for validation. During the validation process, the equipment
are combined to form the workstation configurations and these configurations are
represented as a design table in the database which lists the various workstation
configurations along with their KPIs; an example of the workstation design table is
provided in Figure 4.14. Considering decision point in Figure 3.20, if an operation
has tasks that do not belong to the defined five tasks, the operation will be ignored
and the next operation in sequence will be subjected to the same procedure. As
seen from Figure 3.20, the equipment selection is done for all the operations in
the sequence after which the workstation configurations can be generated with the
selected equipment. A detailed example of this is provided in section 4.2.2.
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Figure 3.20: Protégé workflow.

Query design

In order to design the query, it is necessary to analyse the data obtained from the
kinematic model. The operations are identified as ‘O’ and the total number of op-
erations is ‘No’. The information regarding the tasks performed in each operation
are obtained from the kinematic model. The process of information retrieval is
done with the help of the query language, ‘Semantic Query-enhanced Web Rule

109



Language’ (SQWRL). In Protégé, primarily, three query languages are used and
they are ‘Simple Protocol And Resource description framework Query Language’

(SPARQL), ‘Description Language’ (DL) and SQWRL. SPARQL is a standard Re-
source Description Framework (RDF) query language that inherently does not have
understanding of Web Ontology Language (OWL). It is based on graph patterns
and has a rich set of operators. It is widely available and not necessarily specific
to Protégé. DL is a Protégé-specific query language and while it can be used for
performing simple queries, it cannot do arithmetical operations and has a limited
set of operators. SQWRL is a Protégé-specific language that understands OWL.
Moreover, it is capable of doing arithmetical operations and it is a semantically ro-
bust, simple and expressive query language that is built upon the ‘Semantic Web

Rule Language rules’ (SWRL) [O’Connor and Das, 2009]. Conclusively, since the
query that will be designed for the equipment selection for Stage one (WCS) will
be a complex one with the involvement of arithmetic operators, SQWRL is chosen
as the most suitable query language.

Using the query it is possible to screen a catalogue of equipment, that are defined
as ‘instances’ within component subclass of the resource class, to find those that
are suitable to perform the required tasks as set out in the process sequence. To
better illustrate the query process, a demonstration is provided in chapter 4, section
4.2.2. Since it is not possible to do certain validations that ascertain the feasibility
of the solutions within the knowledge representation module, the selected equip-
ment are first filtered within Protégé and then modelled in the kinematic module.
For instance, after performing query, the selected equipment might meet all the re-
quired process parameters, but in reality, when it is installed in the workstation and
begins operation, it might collide with an object in its path of motion. Although
these discrepancies cannot be identified within the knowledge representation mod-
ule, they can be diagnosed within the kinematic modelling module. In addition to
validation using kinematic model, the workstation processing time can also be cal-
culated, which is also highlighted in a previous work done by the author where the
benefits of the integration of kinematic model and ontology module are discussed
[Chinnathai et al., 2019]. The results of the query are stored in an XML format as
shown in Figure 3.21.
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Figure 3.21: XML data structure for the query results from Protégé.

Summary of knowledge representation module

To summarise the characteristics of the knowledge representation module, it is nec-
essary to explain how the kinematic model and ontology complement each other.
The knowledge representation module is typically used to select those equipment
that meet certain requirements or criteria and eliminate those that do not; the se-
lection is done from a pool of standard off-the-shelf equipment that are available in
the industry catalogue or equipment library. However, there are certain limitations
in using this method. It is difficult to calculate the workstation process time, in-
vestigate collision detection, perform path planning and ergonomical analysis, and
check assembly feasibility within the ontology editor. These issues can, however,
be overcome by using the kinematic model and hence the coupling of both mod-
ules makes the virtual models more realistic. An important point to note is that the
solutions provided at the end of the selection process in Protégé are by no means
the only feasible solutions and there is always the possibility of designing bespoke
equipment. Hence, the ontology-based selection process should be considered as
an elementary guideline to support the equipment selection process.

3.3.3 Workstation design configuration and selection

The workstation design table comprises of the workstation KPI schema which serves
as a template for the table. An example of the workstation design table is provided
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in chapter 4, section 4.2. The design table consists of the workstation candidate
configurations that were validated in the kinematic model. In the design table, for
each workstation configuration, the equipment that are suitable for the considered
processes and the corresponding metrics such as investment cost, processing time,
energy consumption, geometry and Computer-Aided Design (CAD) information of
the workstation are highlighted. This data is important for the simulation optimisa-
tion that will be performed in stage 2 of the DDSM methodology. The production
capacity of the post-scale-up facility depends on the process time; the cost values
are important to ensure that the selected solutions are within the project budget and
the geometry data is important for layout planning and ensuring that the selected
workstation configurations can fit within the available space. The data is stored
in the common database such that it is accessible by the software used in Stage
two (SCS) of the methodology. This workstation design table also provides a good
representation for system engineers to compare the alternate configurations before
stepping into Stage two of the DDSM. Figure 3.19 provides the XML data struc-
ture for the selected workstation configurations that will be stored in the common
database.

Figure 3.22: XML data structure for workstation configurations.

3.4 Stage two: System Configuration Selector

The primary aim of Stage two is to identify potential assembly line configurations
with the help of two modules, ‘DES Model’ module and ‘optimisation’ module, that
facilitate simulation optimisation for stochastic discrete-event systems. The bene-
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fits of using DES for production planning have been discussed in previous chapters;
considering the wide spectrum of benefits provided by DES, it is not surprising that
it is increasingly employed in the field of manufacturing for building models that
allow the comparison of alternate scenarios, answering ‘what-if’ questions and sup-
porting decision making [Azab et al., 2012; Negahban and Smith, 2014; Jahangirian
et al., 2010]. The inherent capability of DES to model production systems is a key
reason to use it as part of the DDSM methodology. However, one major shortcom-
ing in using DES in concept stage is that the system models in DES may be used
to create scenarios that might, in reality, be impossible or impractical to build. To
overcome this drawback, it is possible to integrate DES with kinematic modelling
software such that the input data accuracy of the DES models can be increased
[Chinnathai et al., 2019; Ghani et al., 2015; Ghani, 2013].

Optimisation is the process of finding one or more solutions that either maximise or
minimise the formulated objective function while satisfying the defined constraints
[Branke et al., 2008]. It is challenging to follow traditional optimisation approaches
for stochastic systems due to the presence of probabilistic elements which make it
difficult to derive a closed-form expression of the objective function. In such situa-
tions, it is possible to use DES to replace the closed-form expression of the objective
function. Additionally, since real world complex manufacturing problems consist
of a number of conflicting objectives, it is considered appropriate to employ multi-
objective optimisation for the proposed research [Konak et al., 2006]. The software
that will be used for performing the optimisation is MATLAB; the reason for choos-
ing MATLAB is i) its capability to communicate to OPC-UA server using the OPC
toolbox [MathWorks, 2021a], and ii) the availability of functions that support the
visualisation of the optimisation progress for better control over the optimisation
parameters [MathWorks, 2021b].

An overview of the workflow in Stage two is presented in Figure 3.23. For data
communication between the DES module and optimisation module, real-time auto-
mated data integration is achieved with KEPServerEX using OPC-Unified Archi-
tecture communication protocol through which i) the optimisation variables such as
the number of workstations, operators and material handling units are passed from
MATLAB to FlexSim DES model and ii) variant-specific throughput is passed back
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Figure 3.23: Stage two of DDSM methodology.

to MATLAB from FlexSim DES model. A more detailed description of the con-
nection is provided in the following sections.

3.4.1 DES model module

Pilot line scale-up using DES to investigate the impact of scheduling policy and
scale-up principles on certain system level KPIs was demonstrated by the author
in a previously published work [Chinnathai et al., 2018]. As part of the research,
additional stations and configuration changes were implemented in the DES model
in order to meet the new demand. However, it was not possible to analyse the
practicality of such solutions using DES alone. This was due to the top-down mod-
elling approach using a standalone DES model in which there is no access to the
workstation-level data. This is a major shortcoming that needs to be addressed since
without the data from the workstation models, the process time, maintenance and
energy values are assumed within DES models. Two important points to highlight
about the DES module in DDSM is that i) it is the cornerstone for the assembly
system configuration selection process, and ii) the modelling accuracy and trans-
parency is improved by it receiving the data from the modules in Stage one. The
workstation configuration data obtained from Stage one are represented as worksta-
tion KPIs and as explained in section 3.3.3, they are represented as XML schema
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and stored in the database. The conventional black box approach to the DES sta-
tions are challenged and the workstations in DES model are populated with data
from lower level models. Additionally, certain user inputs such as the consideration
of model abstraction, simulation graphic settings and parameters, representation of
the process logic, etc., need to be provided for the model to perform good analyses.

Software selection

There are a number of commercially available software for DES modelling. For
our purpose, the DES software that will be selected should be capable of communi-
cating with other software and accept input decision variables from MATLAB and
workstation KPI information from the lower level models. Moreover, it should be
capable of modelling human operators, performing energy consumption analysis
and breakdown analysis depending on the application. It should also be capable
of modelling the randomness of a manufacturing system. Considering scale-up in
specific, since the material handling units and their activities play a major role in
increasing the productivity of the system, importance should be given to the mod-
elling of material handling units/transporters. Additionally, there is need to run
multiple replications for each combination of parameters that are decided by MAT-
LAB. For this purpose, the DES software should have the capability to perform
replications with random streams. Considering all these requirements, FlexSim
was selected as the most suitable DES software, primarily due to its availability and
relative ease of communication with OPC-UA servers. Additionally, the availability
of pre-defined library elements within FlexSim, that represent the production sys-
tem is very beneficial for modelling in the planning phase. Moreover, the FlexSim
user community is quite active and it is possible to find and utilise the user-defined
libraries that are posted in the official forums. The following paragraphs provide
more details about FlexSim DES software and why it is considered suitable for the
DDSM framework.

FlexSim: Overview

FlexSim is a DES software that is primarily used for manufacturing, healthcare,
material handling and warehousing simulations. The software has options to use
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the drag and drop method of modelling or the process flow-based modelling or an
integration of both to cater to the user’s needs. The FlexSim library consists of i)
fixed resources such as source, queue, sink, etc., ii) task executors such as opera-
tors, transporters, robots, ASRS, iii) travel networks, and iv) conveyors. Addition-
ally, detailed modelling of AGV, algorithm for AGV path planning, fluid modelling
are also available. This kind of support in modelling material handling units is
very useful for the scale-up analysis. Moreover, the FlexSim toolbox consists of
breakdown modelling, dashboards, process flow elements for flow chart, statistics
tracker, connectivity tool, shift tool and global tables.

FlexSim: Operator and transporter modelling

FlexSim comprises of a model element called ‘dispatcher’ which allows centralised
control of operators and transporters in the DES model. The dispatcher is responsi-
ble for selecting which operator and in what sequence they will perform the assem-
bly operations. The operators can either follow a pre-defined path or they can define
a new path based on the start and destination positions. The dispatcher and oper-
ator modelling in FlexSim is presented in Figure 3.24. Similarly, the transporter
modelling also involves the use of dispatchers that are used to select and schedule
the activities of the material handling units. The parameters used for transporter
modelling varies depending on the type of material handling unit used. Various el-
ements such as AGVs, vehicles, robot and operators can be used for the purpose of
material handling and in general, the relevant parameters such as the travel speed,
acceleration, collision spheres for collision detection, queue strategy and priority
need to be added and many of these can be defined as distributions. Similar to the
operator path planning, for the transporter travel path, pre-defined networks can be
used or the inherent algorithms for path planning can be used. The transporter mod-
elling in FlexSim is provided in Figure 3.25

FlexSim: Workstation modelling

In FlexSim, the workstations are referred to as ‘processors’ and they have cer-
tain properties that can be defined using the interface. These include defining the
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Figure 3.24: Operator modelling in FlexSim.

setup time, process time, input and output ports, operator or transporter require-
ment, etc. The input and output ports are used to determine the flow of workpiece
through the system. The processors also have the capability to perform certain
actions when workpiece-specific events such as ‘workpiece entry’,‘workpiece pro-

cessing’,‘process finish’,etc., take place. The actions include updating the variable
or label values, changing workpiece dimensions or colour, reading label values of
the workpiece, etc. With these actions it is possible to enrich both the visual and
statistical aspects of the simulation. An image of the workstation modelling in
FlexSim is provided in Figure 3.26.
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Figure 3.25: Maintenance and transporter modelling in FlexSim.

Figure 3.26: Workstation modelling in FlexSim.

FlexSim: Maintenance modelling

It is also possible to do maintenance-related analysis within FlexSim using the
MTBF/MTTR tool. The FlexSim maintenance modelling user interface is provided
in Figure 3.25. The operators, workstations and transporters are added as members
to the created MTBF/MTTR element and the functions such as first failure time,
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Figure 3.27: Connectivity tool in FlexSim.

down time and up time are defined in the form of probability distributions. Typical
scenarios that can be considered as breakdown include the re-calibration, tool wear,
breakage and stoppages due to programming error. When considering transporters,
the breakdown scenarios include the unprecedented stoppages, battery recharge or
fuel refill and waiting for parts. In case of operators, the breakdown includes tak-
ing break outside rest hours, waiting for parts, etc. In addition to the maintenance
modelling described above, it is also possible to consider scheduled maintenance
and predictive maintenance.

FlexSim: Connectivity tool and experimenter

The core feature that makes FlexSim suitable for the DDSM is the connectivity tool
that enables integration with other software. The connector enables communication
to the database using the database connector, and the OPC UA server using the
emulator. Figure 3.27 shows the database connector and emulator in FlexSim.
Within the emulator, necessary variables are created and depending on whether
the values need to be imported or exported, they are defined as ‘read’ variables
or ‘write’ variables. For each tag that will be created in the KEPServerEX, the
corresponding variable should be created within the emulator. Another important
feature of FlexSim that is essential for simulation optimisation is the experimenter.
Figure 3.28 shows the experimenter tool in FlexSim. For each iteration of the
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Figure 3.28: Experimenter tool in FlexSim.

optimisation, several runs of the simulation need to be done to obtain a meaningful
result. Within the experimenter, several scenarios can be defined along with the
number of replications for each scenario. The performance measure that needs to
be evaluated is also defined and the parameters for the experiment such as the run
time and warm-up time are provided. The last important feature that is essential
for simulation optimisation is the ability to trigger the DES software and control
it from outside the DES platform. In the case of FlexSim, it is possible to trigger
and control the model start, run speed, etc., by using a ‘batch file’. This enables
triggering the software automatically each time a simulation run is needed and an
example script is provided in Figure 3.29.

Figure 3.29: An example of batch file for automating simulation optimisation.
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Parametric DES model

Creating a parametric DES model allows it to reach the desired level of configurabil-
ity and adaptability which is considered vital for simulation optimisation [Aggogeri
et al., 2015]. The parameters that are created can take up different values depending
on the optimisation module. An example of a parametric DES model is provided
in Figure 3.30. From the Figure, the parameters in the DES include the quantities
of workstation, operator and AGV. The actual values of these parameters are not
known and hence they are registered as variables. The values are then passed from
an external software such as the optimisation module to the DES model.

In DDSM, the considered parameters include the quantity of operators, AGVs,
workstations and type/configuration of workstations. The reason for choosing these
parameters is that they are the decision variables for the optimisation procedure and
this will be explained in detail in section 3.5. The next step is to ensure that these
parameters can be modified from outside the DES model automatically. To achieve
this, the connectivity tool is utilised and the variables are defined such that they can
communicate to the KEPServerEX. Any changes to the values in this server will
automatically update the parameters within DES on simulation start. This method
can be applied to create a generic model that can be adaptable to different scenarios.

Figure 3.30: Illustration of a parametric DES model.

The DES module comprises of the FlexSim software and its characteristics and ca-
pabilities were discussed. The procedure to create a parametric DES model was
also provided. Depending on the test case, the relevant layout needs to be consid-
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ered along with other DES-specific data and the model needs to be created. On
creation of the model, the parameters need to be identified and the connection with
server needs to be established. The next step is to verify and validate the model
to ensure that the model is performing what it was intended to. Additionally, it is
important to have certain number of test runs to check the connectivity with the
server. The verification and validation phase can go through some iterations until
the designer is confident that the model will produce reasonable results. The next
step is to explain the working of the optimisation module.

3.4.2 Optimisation module

In this section, the fundamentals of the optimisation module, the connectivity and
data transfer are discussed. The actual problem formulation and Genetic Algorithm
(GA) will be discussed in the section 3.5. The optimisation module is responsi-
ble for optimising the model using GA and is coded in MATLAB. The reason for
choosing MATLAB being the availability of software and the existence of extensive
functions that allow the optimisation without the need to do a lot of coding. The
reason for choosing GA will be explained in the following paragraphs.

Multi-objective optimisation

Multi-objective optimisation focusses on maximising the rewards or minimising the
costs. It involves the optimisation of more than one objective function which may
be conflicting [Wang et al., 2011]. The problems that involve finding the value
of the decision variables or parameters are referred to as parametric optimisation
problems [Gosavi, 2015]. Since real world problems are not simple enough to be
represented using one objective alone, it would be artificial to try to reduce the num-
ber of objectives; it is also not realistic to aggregate them.

In multi-objective optimisation, there are three phases: model building, optimisa-
tion and decision making. During the model building, the optimisation objectives
and decision variables are set out. The decision variables can take up values be-
tween a certain range and can either be discrete or continuous. For each iteration
of the optimisation, the values of the decision variables change depending on the
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algorithm considered. These values are referred to as the decision variable vector.
At the end of the optimisation iteration, the scores of each decision variable vector
corresponding to the considered objectives are evaluated. The decision variables
that have relatively better score values are then plotted on the pareto-front that rep-
resents the value of the objective function one vs. objective function two in case of
bi-objective optimisation.

The decision making generally involves the preferences of the decision maker with
the option of incorporating his preferences before the actual run of optimisation or
post-optimisation [Branke et al., 2008]. There are a number of different algorithms
available for performing multi-objective optimisation and evolutionary algorithms
represent one such category. The evolutionary algorithms use a population-based
approach that allows finding multiple solutions that are non-dominated, simultane-
ously for a single iteration of the optimisation. In general, evolutionary algorithms
aim to find a set of pareto-optimal decision vectors that are diverse enough to rep-
resent entire range of the non-dominated solutions [Wang et al., 2011].

Multi-objective optimisation allows better understanding of the problem and avail-
able alternatives and ultimately helps make better choices. When the considered
objectives are conflicting, the resultant solutions represent a trade-off between both
objectives considered, which is represented in the form of pareto front. Analysis of
pareto front helps to gain a better understanding of the inter-dependencies among
the decision variables, objectives and constraints [Branke et al., 2008].

Simulation-based multi-objective optimisation

Simulation-based multi-objective optimisation follows the same procedure of a multi-
objective optimisation, where an objective function is defined during model formu-
lation along with the consideration of decision variables and their range of values.
The key difference is the coupling of simulation model to the optimisation algo-
rithm. For modeling the complex manufacturing problems, it is difficult to obtain a
closed form of the objective function due to the presence of probabilistic elements
such as probability density function or cumulative distribution function for one or
more variables in the objective function. Since the closed form of objective function
is time consuming to obtain and difficult to calculate, an estimation can be obtained
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from simulation.

For example, consider an optimisation problem where the objective is to maximise
the daily system throughput. In this case, it is challenging to represent this objective
function as a closed form as the throughput is the culmination of the interaction be-
tween a number of elements in the production system. Therefore, in such situation,
DES can be used to obtain the values of the throughput to provide an estimate of the
objective function. The more the number of samples obtained from DES, the closer
the estimate to the actual value of the objective function. It is in these situations,
simulation plays a significant role to estimate the value of the objective function in
the optimisation procedure. For this purpose, the optimisation techniques that do
not require the closed form but only the numerical values of the objective functions
are paired with DES to perform the simulation optimisation procedure [Gosavi,
2015].

Parametric numerical optimisation techniques are suitable for simulation opti-
misation and these techniques are also called as model-free or black box techniques
and the underlying assumption is that it is possible to obtain the true value of the
objective function when averaging the objective function values over numerous sim-
ulation replications for a decision variable vector in the design space. The vector, in
design space, indicates a set of values for the decision variable that are considered
for the optimisation.

The use of exhaustive simulation optimisation techniques is very tedious and time-
consuming to the extent that it makes it infeasible. The alternative is to use ‘meta-

heuristics’ that instead of scanning the entire design space, follow heuristics to
search for good pareto-optimal solutions. Although meta-heuristics do not have the
best of convergence properties, they are useful for complex manufacturing prob-
lems where the consideration of a number of decision variables makes it infeasible
to explore the entire design space to arrive at optimal solutions. Although meta-
heuristics do not guarantee optimal solutions they provide good solutions and the
oldest of the meta-heuristics is the ‘Genetic Algorithm’ (GA); it has been exten-
sively used in industries with success and it is compatible with DES for simulation
optimisation. It is an evolutionary algorithm that involves the selection of popula-
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tion members and computation for each member of population space; they are then
sorted according to the domination principle [Goldberg, 1989].
In GA, the individuals of each generation are comprised of different values of the
decision variables and a certain number of these individuals make up the population.
Each simulation run corresponds to one individual from the population selected
and their decision variable values are used to control the simulation parameters.
Through the process of evolution, fitter solutions are selected for subsequent gener-
ations. Two essential operators, ‘mutation and crossover’ are used to generate new
solutions. During crossover, a portion of population participate in the crossover
and the remaining are directly taken along with the child populations. The child
solutions are subjected to mutation depending on some predefined probability val-
ues [Goldberg, 1989]. Crossover operator is considered to support convergence by
combining two chromosomes of parents to form new chromosomes. In such a way,
it is expected that good chromosomes appear more frequently. Mutation introduces
diversity back into the population and is vital for escaping the local minima [Konak
et al., 2006].

Steps in optimisation module

In DDSM, the optimisation module focuses on multi-objective optimisation and
considers two conflicting objectives. For this purpose, ‘gamultiobj solver’, which
is a MATLAB solver for optimising multi-objective problems is used. The solver
is built upon a controlled elitist GA which is a form of Non-dominated Sorting
Genetic Algorithm (NSGA-II) [Deb et al., 2003] that uses the ‘elitist principle’ to
preserve diversity and emphasise the non-dominated solutions; the diversity of the
set of non-dominated resultant solutions is considered essential for convergence.
Elitism operators aim at keeping the better solutions from the combined old and
new populations to ensure a performance that cannot degrade. Elitism is controlled
by the ‘pareto fraction’ and ‘distance function’ options. The former limits the num-
ber of solutions on the front and the latter favours diversity.

The pareto front plays a key role in decision making and represents the solutions
that exhibit a good trade-off for both considered objectives. Figure 3.31 shows a
representation of the pareto front. The pareto front population fraction determines
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Figure 3.31: Example of a pareto chart obtained from MATLAB.

the number of solution points on the pareto front; the default value for population
fraction in MATLAB optimisation toolbox is 0.35. It is important to ensure that the
individuals represented on the pareto front are diverse enough to represent the range
of pareto front. The pareto front solutions around the ‘curved part’ of the front ex-
hibit acceptable fitness scores for both the objectives considered. The initial set of
population is selected at random and subsequent populations for future generations
are chosen using non-dominated rank and distance function. The individuals are
given a non-dominated rank depending on their fitness value. The distance func-
tion, namely ‘crowding distance’, is used for selection when two individuals of a
population have the same rank. Typically, three different stopping criteria can be
considered for termination of the optimisation. These are: i) maximum number of
generations for which the optimisation will run, ii) the stall generation limit which
checks for optimisation convergence using a tolerance value, and iii) maximum
time limit for the optimisation run. The steps involved in the simulation optimisa-
tion given in Table 3.2.

3.4.3 Data exchange between DES and optimisation module

Two sets of data will be exchanged between the DES module and optimisation
module. As explained in Figure 3.10, the dataset (f) represents the data that needs
to be communicated to DES module from optimisation module and the dataset (g)
represents the data that needs to be communicated to the optimisation module from
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Table 3.2: Genetic Algorithm pseudo code.

Pseudo code of the GA

(1) Initialisation and population selection;

(2) Evaluate the initial population through fitness function;

(3) For (generation < max gen.)

(4) While (not meet the stopping criteria)

(5) Select parents for next generation using

binary tournament selection;

(6) Create children using mutation and crossover;

(7) Combine current population and children;

(8) Compute rank and crowding distance;

(9) Trim population size;

(9) End While

(10) Evaluate the new population fitness;

(11) End For

(12) Output the best solutions;

the DES module. As part of dataset (f), the values of the decision variables that
are decided within the optimisation algorithm in MATLAB need to be passed on to
FlexSim. Each decision variable is associated with a corresponding variable inside
FlexSim and it represents a particular parameter. The communication is achieved
in real-time with the help of OPC UA communication protocol and KEPServerEX
software. Depending on the number of decision variables considered, tags are cre-
ated within KEPServerEX to store the values of the variable. The communication
between MATLAB and the server is established using ‘OPC toolbox’ in MATLAB.
On the other hand, FlexSim is also connected to the server using the ‘emulator tool’.
The tags in the server hold the values of the decision variables which are passed to
FlexSim. Similarly, at the end of the simulation run in FlexSim, the throughput val-
ues are passed back to MATLAB using the server. Using this approach, the datasets
(g) and (f) are communicated across both modules. Depending on the software used
for the DES and optimisation, this procedure might vary. However, the underlying
approach and objectives remain similar. The generic workflow of the data exchange
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between the MATLAB and FlexSim is explained in the following steps. A detailed
explanation with case study is provided in the next chapter.

1. The initial set of values for decision variables are decided in MATLAB ‘initial

population’ function randomly and the first iteration is now initialised.

2. In the first iteration, the values of the first member of the population, which is
essentially a combination of decision variable values, are passed from MAT-
LAB to FlexSim through the server along with the signal to trigger FlexSim.

3. The simulation model is run for the pre-defined parameters of speed, warm-
up time and simulation run time for a certain number of replications.

4. The average throughput value for the considered product variants are calcu-
lated at the end of the simulation run and passed back to MATLAB through
the server.

5. As the simulation terminates, a signal is passed back to MATLAB to continue
the optimisation process, such that the obtained throughput values can be used
to calculate the objective function.

6. In this way, the optimisation process continues for the next member in the
population till all the members are evaluated; this constitutes one generation.
The next generation is initialised and the process continues until the stopping
conditions are met.

3.4.4 Decision making module

On meeting the stopping conditions, the pareto front can be obtained by plotting
the objective scores of the best members of the population over a number of gener-
ations. The scores represent how well the values of a particular population member
is good at either maximising or minimising the value of the objective function. The
results from the pareto front will be analysed in the decision making module.

The decision making module obtains input from three different sources, ‘the user

priorities, optimisation module and scale-up KPI schema’. The scale-up KPI schema
refers to a set of criteria that are used to compare the pareto front solutions obtained
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from optimisation. The user priorities refer to the preferences of the decision maker
when it comes to selecting a solution after comparison. The pareto front is obtained
from the optimisation module. To enable the decision making, four main criteria are
considered; they are throughput, compactness, ease of transition and cost-efficiency.

The ‘compactness’ is a measure of the space occupied and is represented as c2/slots
occupied. The number of slots occupied is obtained from the total number of work-
stations that are employed for that particular solution and the ease of transition is
a subjective criteria that is obtained from discussions with system engineers and
process planners. Since the compactness is the inverse of the space occupancy, the
constant c2 is introduced. The ‘cost efficiency’ is represented as c1/scale-up cost,
and since the cost efficiency is the inverse of the scale-up cost, the constant c1 is
introduced. The scale-up cost values are calculated using the objective function.
The ‘throughput’ is considered as the total number of each product variant that gets
processed in the assembly system and received at any designated buffer or sink after
the completion of assembly at the last workstation on simulation run completion.
The throughput values are obtained from FlexSim.

Figure 3.32: Sample radar chart representation of the alternate design solution.

The visualisation of the results is done with a radar chart as shown in Figure 3.32,
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where the higher the value of a solution for a particular criteria the better that so-
lution satisfies that criteria. Since the ultimate aim is to compare the solutions
obtained from the optimisation model, the solutions should be judged across a com-
mon ground and hence the total simulation time is kept as a constant across all the
simulation runs. It is assumed that infinite number of products are available for
processing to avoid starvation of workstations that might artificially reduce the ef-
ficiency of a solution. On the downside, it is difficult to compare the solutions with
regards to scheduling policies that actually prioritise one product over the other. For
such cases and applications, it might be better to allocate a finite number of prod-
ucts at the start of the simulation and consider the simulation time as a variable.

This section discussed the Stage two of the DDSM methodology which is the Sys-
tem Configuration Selector (SCS). The DES module, optimisation module and the
data exchange between these two modules was discussed. The pareto front and
the decision making from the results of the simulation optimisation was also dis-
cussed as part of this chapter. The next section explains the problem formulation
and objective function definition in more detail.

3.5 Problem formulation

3.5.1 Objective functions

In this section, the objective function that will be used in the optimisation module
is explained in detail. The considered optimisation problem has two conflicting
objectives, i) ‘scale-up cost’ which is detailed in Equation 3.1 and ii) ‘system

throughput’ which is detailed in Equation 3.2. The specific aims of this optimi-
sation study are to: i) identify the number of workstations of each type required,
ii) identify the number of operators of each type required, iii) identify the number
of Material Handling Units or transporters of each type required and iv) identify
the suitable configuration of workstations such that the required throughput can be
achieved while within the scale-up budget. All considered mathematical notations
are given in Table 3.3.

The workstations are categorised according to the operations performed and all

130



workstations that perform the same operation belong to the same type (represented
as ‘w’). For some of the considered workstation types, different alternative equip-
ment performing the same operation are identified in Stage one to obtain the differ-
ent workstation configurations. To put this into perspective, consider an example
where two assembly operations, pick and place and welding are done. Operation
one and two require a workstation each and these two workstations differ in their
type. Therefore, ‘w = 1’ and ‘w = 2’ represent the workstations that perform oper-
ation one and two, respectively; they are referred to as workstation types one and
two. For workstation type one, there can be different workstation configurations, as
per the analysis in WCS of DDSM the methodology. The workstation type one is
associated with a variable, within the optimisation module, to determine which of
these alternate configurations will be selected for a particular iteration. Similarly,
variables are used to identify each workstation type that has alternate configura-
tions. There may be some workstation types for which only one configuration is
considered. In such situations, there is no configuration variable associated with
that workstation type. In this way, the workstation types with alternate configura-
tions are associated with a decision variable; this variable corresponds to the work-
station configuration chosen for a particular iteration of the simulation optimisation.

Four types of decision variables are considered for the optimisation study as fol-
lows:

• x1
i (i = 1, ...,Nw) to decide the number of each type of workstation required,

• x2
j ( j = 1, ...,Nm) to decide the number of each type of MHU required,

• x3
k (k = 1, ...,No) to decide the number of each type of operator required,

• x4
l (l = 1, ...,Nt) to decide the workstation configuration of each type of work-

station considered.

The first decision variable is used to indicate the number of copies of a particular
workstation type that is considered. Along with the second and third decision vari-
able types, the three initial variable types are related to the replication principle of
scale-up and the fourth decision variable is related to the principle of upgrading. It
is for the fourth decision variable that the input from Stage one regarding the work-
station configurations are necessary. The other three variable do not need input
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from Stage one. Additionally, two types of design constraints are considered in this
case study: i) integer constraints and ii) bound constraints. The integer constraints
are defined to allow GA to perform the optimisation for integer decision variables.
The bound constraints are used to limit the maximum number of stations, operators
and transporters due to budget restrictions.

Table 3.3: Notations.

Notation Description

w index to represent the workstation type

NW total types of workstations

Kw total number of workstations of type ‘w’

t index to represent the workstation types that have alternate

configurations

Nt total number of workstation types with alternate configurations

Sw cost of workstation of type ‘w’

m index to represent the MHU type

NM total types of MHU

Qm total number of MHUs of type ‘m’

Mm cost of MHU of type ‘m’

ω index to represent operator type

NL total types of operators

Rω total number of operators of type ‘ω’

Wω hourly wage of operator type ‘ω’

T total production time in hours

Tω total shift time for operator type ‘ω’

β penalty cost for exceeding the available space

p index to represent product type

Np total number of product variants

εp throughput of product ‘p’ at the end of time ‘T ’

Objective 1 is the scale-up cost which consists of four main elements. The first
element is the investment cost of adding new machines, the second element is the
cost of material handling units and the third element is the cost of labour. The fourth
element is a penalty cost for exceeding the available space; the space is represented
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as slots within which workstations can be added. If the space restrictions are not
violated, then the penalty cost, β , is zero. However, on violation of the space
constraint, the penalty cost is a number that is five times the summation of other
cost elements. The method of determining the penalty cost can be changed but the
important point is to ensure that the chosen value penalises the solution that exceeds
the space constraint. This way that particular solution will not be considered for the
next generation.

f1(x1
i ,x

2
j ,x

3
k ,x

4
l ) = Min(

NW

∑
w=1

(Sw ·Kw)+
NM

∑
m=1

(Mm ·Qm)

+
NL

∑
ω=1

(Wω ·Tω ·Rω)+β )
(3.1)

Please note that, the direct and indirect raw material costs, indirect labour costs
and maintenance costs are not considered in this objective function. The reason is
that their impact on the decision making process is considered less important than
the considered scale-up cost elements. However, the scale-up cost function can be
modified depending on the application and preferences of the decision maker.

Objective 2 is to maximise the system throughput. In this case, all product variants
are assumed to be equally important and hence no weights are considered. However,
if there arises a scenario where product have different priorities, then the equation
should be adjusted accordingly. The total system throughput is considered to be the
sum of all product variants that are assembled and collected at the last workstation
or collection point at the end of the production time T .

f2(x1
i ,x
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j ,x
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k ,x

4
l ) = Max(
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∑
p=1

εp) (3.2)

3.5.2 Assumptions

The following assumptions are considered for the optimisation. The station foot-
prints of all workstations are assumed to be the same. The production facility is
divided into a number of slots to represent the available space and each workstation
occupies only one slot. The new demand for which the scale-up transition is done
is assumed to remain constant during the simulation period. Only production line
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and associated operations are considered and it is considered sufficient to perform
the analysis required for the DDSM methodology.

3.6 Summary

The primary aim of this chapter was to introduce the two-stage methodology that
supports data integration at two different levels of granularity, the workstation level
and system level and explore and identify the data and their sources that are neces-
sary to support scale-up decision making. Additionally, the data format and formu-
lation of the optimisation problem were explained with relevant examples, tables
and figures. The novel concept of using data from a knowledge-based kinematic
model to support the simulation optimisation process was introduced and the work-
flow of the knowledge mapping and kinematic model creation was presented. This
chapter also provided an approach to achieve the data integration between the kine-
matic and DES models to support assembly system decision making. This brings
the readers to the next chapter which will discuss the implementation of the method-
ology on a battery module assembly line.

134



Chapter 4

Case study

A detailed explanation of the two stage methodology was provided in the previous
chapter. Moving on chapter 4, the DDSM methodology will be applied to a battery
module assembly line to demonstrate its use and benefits. The chapter starts with
an explanation of the battery module assembly line and then demonstrates the ap-
plication of the methodology for the considered case and concludes by discussing
the pros and cons of the DDSM methodology.

4.1 Case study overview

The considered case study is a prototype battery module assembly facility that is
located in Warwick Manufacturing Group (WMG) at the University of Warwick.
The pilot line is part of a project named AMPLiFII - Automated Module to pack
Pilot Line For Industrial Innovation. An image of the pilot line facility at the Uni-
versity of Warwick is presented in Figure 4.1. The same facility is modelled in
VueOne and represented in Figure 4.2. The vision around the assembly line is the
use of a modular assembly system design that can cater to the needs of different
battery module designs that comprise of cylindrical battery cells. Typical assem-
bly processes include battery testing, welding, module testing and cooling system
assembly. The scale of production is very small in the range of 2 - 5 modules per
day since it is a pilot line where industrial partners are able test their processes and
products. However, once the products and the respective processes are tested, the
industrial partners have plans to build a large scale battery assembly facility for
which the pilot line is considered as the representative model. To expand this pilot
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Figure 4.1: Pilot line for battery module assembly in WMG.

line design into a fully operational assembly line is a challenging task since the ap-
proach towards the up-scaling of the pilot level design to a high-volume production
facility is not clearly understood due to lack of experience and novelty of the elec-
tric vehicle powertrain and cylindrical lithium ion battery technologies. Especially
with regards to the electric vehicle battery manufacturing and assembly, there are
various problems when moving from the concept phase to full-scale production that
stem from the material handling, labour and material feeding, functionality change
and automation.

Although several different product designs have been tested in the pilot line, two
different variants of battery modules, module A and B, are considered for this case
study. The two variants differ in their designs and the number of cylindrical cells
they house. The assembly process for both variants is similar with some variations
present in the welding and cooling system assembly. A total of five assembly work-
stations assemble the battery modules and each workstation is virtually modelled
with the details of the geometry, kinematics and logical behaviour in the kinematic
modelling software. The assembly operations are allocated to the workstations as
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Figure 4.2: Pilot battery module assembly facility modelled in vueOne.

Table 4.1: Allocation of operations to workstations.

Station number Operation number Operation name

Station 1 Operation 1 Cell testing

Operation 2 Cell loading

Station 2 Operation 3 Thermistor assembly

Operation 4 Cooling system assembly

Station 3 Operation 5 Plastic welding

Operation 6 Busbar assembly

Station 4 Operation 7 Pulse arc welding

Station 5 Operation 8 Ultrasonic wire bonding

follows: testing (operation one) and cell loading (operation two) are performed in
workstation one, thermistor assembly (operation three) and cooling system assem-
bly (operation four) are performed in workstation two, plastic welding (operation
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five) and busbar assembly (operation six) are performed in workstation three, pulse
arc welding (operation seven) for variant A is performed in workstation four and
ultrasonic wire bonding (operation eight) for variant B is performed in workstation
five. The operation allocation is also presented in Table 4.1. Each of the five work-
stations perform different assembly operations and hence it can be considered that
there are five workstation types.

According to the process allocation, station types four and five perform the bat-
tery welding process, however, they differ in the technology of welding. Therefore,
workstation type four is bypassed by module B which does not require pulse-arc
welding. Similarly, workstation type five is bypassed by module A since it does not
require wire bonding. The length and width is one meter for both workstations and
all stations have the same footprint and are modular. Product transfer on assembly
completion is achieved using conveyor belts that are used to transfer the products
from one station to another using pallets; buffers to store products between stations
are not available. The pallets have RFID tags to track the status of the product as it
moves through the line. If a product is found to be faulty, the status will be marked
as ‘rework’ and it will, therefore, bypass all other stations and will subsequently be
removed from the pilot line.

The battery cells are received in cartons from the supplier and the carton for product
variant A has five rows of 24 cells each and the carton for product variant B has five
rows of 18 cells each. Product variant A comprises of cylindrical cells of ‘18650’

type and variant B comprises of cylindrical cells of ‘21700’ type. Due to confiden-
tiality of the product designs, a detailed explanation of the product is not provided
but a generic description of the Li-ion battery module design is discussed. A bat-
tery module comprises of the battery, busbar, electrical connections and insulations,
cooling system and the battery module frame [KUKA, 2020]. The battery geometry
can be cylindrical, prismatic or pouch and the electrical connections are achieved
by welding busbars onto the batteries. In case of cylindrical batteries, the numbers
‘18650’ and ‘21700’ are used to represent the battery diameter and height. For ex-
ample, 18650 represents a cylindrical Li-ion battery having a diameter of 18mm and
height of 65mm. The electrical connections are achieved using welding processes
such as pulse arc, ultrasonic and laser welding and the cooling system could be liq-
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uid, solid or air-based cooling [Saariluoma et al., 2020]. All these components play
an important role in the design of the battery module. With this, the explanation
of the assembly facility is complete and hence, the next paragraph explains the two
processes that are considered for demonstration of the DDSM methodology. The
task sequences of operation one and operation two are represented in Figures 4.3
and 4.4, respectively. When applying DDSM to the case study, the first step is to
model and encapsulate the data pertaining to the five workstation types in the kine-
matic modelling software. To scale-up the pilot line, it is necessary to have a new
target daily demand; this is 65 products of variant A and 65 products of variant B
and the current daily production volume is 20 products of variant A and 20 products
of variant B.

Figure 4.3: Task sequence for operation one (cell testing).

This concludes the basic overview of the case study. The operation sequence, prod-
uct variants, demand, assembly facility and the application were explained in detail.
The next section explains the application of the DDSM methodology to the battery
module assembly case study.

4.2 Demonstration of methodology: Stage one

The stage one of the methodology comprises of kinematic modelling module, knowl-
edge representation module and workstation configuration selection. For the pur-
pose of demonstrating the DDSM methodology, workstation one is selected and the
workflow is explained in detail. Although other workstations are also modelled in
vueOne for process time calculation, they are not explored beyond the kinematic
modelling stage. In other words, the alternate workstation configurations for work-
stations other than station one are not considered.
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Figure 4.4: Task sequence for operation two (cell loading).

4.2.1 Modelling in vueOne

For the virtual modelling, a combination of control and non-control components are
employed in the model building process. Specifically, for workstation one which
has testing and cell loading operations, the primary control components utilised
include the actuators, human resource, robot and grippers. The non-control compo-
nents include the station frame, fixtures, pallet stoppers, pallets and shelves.

Operation one

From Figure 4.3, the operation one task sequence for product A comprises of two
types of tasks that are a combination of testing battery cells and moving them. Sim-
ilarly, product B also has the same tasks but the difference is the module design and
the number of cells being assembled. In order to model the operations in vueOne, it
is important to understand the various equipment that are required for the operation.
Operation one comprises of testing battery cells and for this purpose, a Hioki multi-
plex cell testing machine is used in the pilot line. The vueOne model just replicates

140



the tasks performed in the pilot line using the cell testing equipment CAD and actu-
ators to lift and lower the testing system to the cell cartons. Translation kinematics
are defined on the actuators as they move along the ‘z axis’.

Operation two

From Figure 4.4, there are 25 tasks that need to be modelled. Figure 4.5 repre-
sents the kinematic model of operation two alongside the real system. Operation
two utilises a robot in the pilot line and hence, it is necessary to do the same in the
model. Therefore, the ‘V-Rob’ module is used for this model. The V-Rob mod-
ule has a pre-defined library of robots and a general purpose ABB robot is selected.
This saves time since the robot does not have to be modelled from scratch. The grip-
pers, in the real system, are 3-finger grippers that are capable of holding cylindrical
cells. The gripper CAD is imported into the model and the translation kinematic are
defined on all three fingers such that they operate simultaneously when the signal is
received. The robot picks the battery cells from the cell carriers that are available
on either sides and loads them into the battery module.

Figure 4.5: Kinematic model of operation two (cell loading) in vueOne.
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Validating the model

After the virtual model is completed, it was validated using the time taken for the
cell loading operation. The cell loading operation is performed in workstation one
and it comprises of the tasks and sequence mentioned in Figure 4.4; considering
product variant A, it took approximately 10 minutes for this assembly operation
in the kinematic model. Comparing this with the actual process time, there was
a difference of about 30 seconds. This difference might be due to the component
weight, friction, offset in position, etc., that are not considered in the virtual model.
The deviation is still considered acceptable for the considered proof of concept to
demonstrate the methodology.

Model output data

Following the virtual model creation, the next step is to export the data which is part
of dataset (a) to the common database. This includes data such as the workpiece
attributes, operation sequence, number of operations, task types, station footprint,
axis of motion and process parameters. This dataset is categorised into three differ-
ent XML representations for the workpiece, process and resource data, respectively.
They are represented more clearly in Figures 4.6 and 4.7. The next paragraph
demonstrates the use of the kinematic modelling module for selecting equipment
for the case study.

4.2.2 Knowledge representation module

The above-mentioned workpiece, process and resource data will be used for the
equipment selection within the knowledge representation module. Especially, the
process data such as process parameters, sequence and task types are utilised to
perform the query using the Protégé workflow chart that was introduced in section
3.3.2. Using the flow chart, the eight operations that are distributed across the work-
stations are considered one by one.
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Figure 4.6: XML representation of the workpiece and process data from kinematic
model.

Figure 4.7: XML representation of the resource data from kinematic model.

Protégé: Operation one (cell testing)

The activities in the ontology editor start with operation one, ‘O’ = 1, which com-
prises of the battery testing. From Figure 4.8, it can be seen that operation one
comprises of the test task which is not within the defined five tasks. The ontol-
ogy, in its current form, does not support the selection of testing equipment since
there are more parameters and considerations that need to be included in the knowl-
edge representation for the testing tasks. Therefore, the existing testing time of 30
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Figure 4.8: Protégé flow chart for operation one.

seconds obtained from the pilot line will be added to the process time and this is ex-
plained in section 4.2.2 under validating the query results. Accordingly, operation
one will not be considered for further analysis and the value of ‘O’ is increased to
2. This process is now repeated for operation two.

Protégé: Operation two (cell loading)

Advancing to operation two, the cell loading process has move and hold/release
tasks. Since they are within the defined five tasks, operation two is considered for
further analysis and Figure 4.9 represents this. As explained previously, operation
one and two are only considered in detail for demonstration of the methodology.
As operation two is eligible for further analysis, it is necessary to perform the query
process. For this purpose, the information such as product weight, dimensions, as-
sembly directions, batch size, gripping force required, drive type, gripping distance,
repeatability, accuracy, gripper range, payload, space available in the workstation,
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and allowable weight are obtained from the database.

Figure 4.9: Protégé flow chart for operation two.
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Operation two: Query

The query is designed considering the process parameters for both product vari-
ant A and B. The query design depends on the number of different task types in
an operation. If there is only one task type, the query comprises of just finding
the equipment that performs that particular task. However, when two or more task
types exist in the same operation, the query comprises of more sections. Consider
an example of move and hold tasks that are part of an operation; it is necessary
to find an equipment or a combination of equipment that performs the tasks. The
query comprises of three sections: finding an equipment that performs the move
task, finding an equipment that performs the hold task, and combining them into a
single set of results. It is important to note that the number of sections in the query
design might increase with the number of task types in the process.

The following process parameters were considered for the query design. The weight
of the battery cell ranges from 45g for 18650 cells and 70g for 21700 cells. There-
fore, an actuator or robot that can handle these cells should be selected. Addition-
ally, a gripper which is capable of picking up the cells according to their dimensions
needs to be selected. Moreover, there are three axes of motion, x,y and z which need
to be considered for the assembly during the pick and place process. For selecting
equipment that perform the move task, there are different parameters such as the
axis of motion, the range of motion, repeatability, accuracy, etc., that need to be
considered.

Considering the gripping of the cells, different parameters such as gripper stroke,
gripper payload, gripper weight and gripping force can be considered. It can be
seen that these parameters are not necessarily associated with the equipment that
perform the move task. Therefore it is necessary to separate the equipment for the
two different task types; hence the need to split the query into different sections.
The first and second sections are for finding components that perform the move
tasks and hold/release tasks, respectively. Section three is for combining the results
of the first and second sections. In order to initially create the two separate sets of
results, the ‘sqwrl:makeSet’ is used; one set for each task type is created and the
‘sqwrl:union’ is used to combine both sets together at the end of the query.
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Figure 4.10: The SQWRL query and results in Protégé.

The degree of freedom and working range are considered as primary criteria for
selecting the equipment that perform the move task; the selected equipment form
part of set one. The payload and gripper stroke are considered as primary criteria for
selecting equipment that perform the hold task; the selected equipment form part
of set two. The components from both sets are combined using the ‘sqwrl:union’

function to provide a total of 30 components that meet the defined criteria. Figure
4.10 shows a few of the components that meet the criteria. An XML representation
of the results is provided in Figure 4.11.
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Figure 4.11: XML representation of the results of the query.

Validating the query results

The query results need to be validated in the vueOne toolset by creation creation of
kinematic models and checking for collision and process time. For validation, from
the set one, ‘three axis gantry and delta robot’ are selected. From set two, two dif-
ferent ‘vacuum grippers’ are considered for modelling in ‘vueOne’. This process of
selecting specific equipment for further validation is according to user preferences.
Workstation configuration 1, referenced as ‘WS1GRG24LB13’, is obtained by pair-
ing the vacuum gripper and gantry. The IDs of the vacuum gripper and gantry
are ‘GRG24WEGWR34’ and ‘LB13TR314242’, respectively. Similarly, the second
vacuum gripper and delta robot having IDs ‘DB434DGSH’ and ‘GR4668HTDSD3’,
respectively, form workstation configuration two with an ID ‘WS1GRG28LB15’.
Both workstation configurations are associated with their respective workstation
KPIs using the references IDs. The two workstation configurations are validated
and their images are shown in Figure 4.12
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Figure 4.12: Validation of the query results.

Figure 4.13: XML representation of the workstation configuration results.

Through the validation of selected configurations in vueOne, the new configura-
tions are visualised and the workstation process time is calculated. The process
time calculation is done with the motion time data available in data sheets and the
inherent capability of kinematic modelling tools to calculate the process time using
the kinematic behaviour of the equipment. It was found that the time taken to per-
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form operation two in workstation configuration one is 360 seconds for product A
and 270 seconds for product B. Similarly, the time taken to perform operation two
in configuration two is 120 seconds for product A and 90 seconds for product B.
Since for operation one, which is the cell testing operation, the Protègè workflow
did not identify alternate equipment, the current pilot line testing time of 30 sec-
onds is added to the time taken for operation two, to get the total process time for
workstation one.

In addition to the process time calculation, the possibility of the gantry or robot
colliding with other components of the workstation is also assessed. An XML rep-
resentation of the workstation configuration results is presented in Figure 4.13. The
workstation design table is shown in Figure 4.14, following which the data such as
process time, cost, MTBF, MTTR, etc., are stored in the common database.

4.3 Demonstration of methodology: Stage two

The Stage two of DDSM methodology involves the system configuration selection
process. As a first step, the battery module assembly line is virtually modelled in
DES software such that it represents the existing pilot line. Figure 4.15 represents
the DES model of the pilot line under study.

Figure 4.15: Pilot line model for battery module assembly case study in FlexSim.
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4.3.1 DES model module

Model building

The assembly system that is considered, is a mixed model assembly line and all
workstations are assumed to be available at time zero of the simulation model. The
workstations are arranged in a sequential manner with the AGVs transporting prod-
ucts between the stations. In the existing pilot line, conveyors transfer parts be-
tween the stations. However, to support the scale-up modelling, the conveyors are
replaced with AGVs such that there is more flexibility in the model. This is be-
cause the AGV can be programmed to cater to whichever workstations are present
within its network and it does not need to follow a defined path. This is beneficial
for simulation optimisation since the addition or removal of workstations from the
DES models automatically alters the AGV allocation and routing to workstations;
this is not the case when conveyors are used in the simulation model. Buffers are
allocated between the stations for part storage and can hold a maximum of five
products. The stations can be bypassed if a product variant does not need to be
processed in it. First-in-first-out (FIFO) scheduling policy is considered for transfer
of products from buffers to workstations.

Five workstation types, corresponding to the allocation in Table 4.1 are modelled in
DES and each workstation assembles only one product at a time. Similarly, AGVs
can transport only one part at a time. The source represents the location where
the battery cartons enter the model and the sink represents the location where the
modules that have been assembled are stored. Each workstation has setup time for
product changeover which is assumed to be the same for changing from product
A to product B and vice-versa. Preemption of operators who are already working
on a specific job is not allowed and once the operators start working on a product,
they remain in the corresponding workstation until the operations on that product
are finished. The AGVs that are used for transportation have control points where
they are charged; they return to these points on completion of transportation tasks.
Both AGVs and operators are monitored using the task executor which allocates the
job on a FIFO basis. Therefore, both AGV and operator are free to work on any
workstation and are not restricted to any particular region of the production system.
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Operators are assumed to be multi-skilled; operators and AGVs are assumed to be
always available excluding the break times. Stochasticity is introduced in the model
using probability distributions. Five different aspects of the system where proba-
bility is introduced are i) part arrival, ii) process and setup times, iii) downtime, iv)
time between failure, and v) first time failure. The process time, setup times and
down times follow triangular distribution [Banks, 1998], whereas part arrival fol-
lows exponential distribution. These distributions are obtained based on literature
and data from pilot line. After several experimental runs, a warm-up time of 2500
seconds was found suitable for the model; the warm-up time enables the calculation
of statistics in the simulation model once it reaches steady state [Robinson, 2007].
The total simulation time that represents a single shift is 28800 seconds and only
one shift is modelled. The sub-components and raw material required for the as-
sembly are assumed to be always available.

Verification and validation

After the model creation, it is verified, tested and validated. The model verification
generally involves checking whether the model is built correctly. Model validation
involves ensuring that the model behaviour is consistent with the real production
system behaviour. This section is primarily referenced from [Banks, 1998]. There
are over 75 techniques for verification, validation and testing that are classified into
informal, static, dynamic and formal. However, a number of these techniques are
data-intensive. Considering the fact that this simulation study is done in the early
design phases, subjective approaches for verification and validation are employed.
Firstly, the informal technique of ‘desk checking’ is employed. Desk checking in-
volves either the self-examination of the work or peer review to ensure correctness,
completeness, consistency along with checking the syntax and code of any logic or
algorithm that was built within the DES model. Additionally, since FlexSim en-
ables the visualisation of the simulation run, visual verification of the model was
also was done. After ensuring that the model is correct, face validation was done
with members of the project; it is an informal validation technique where the peo-
ple knowledgeable in the subject area use their experience and intuition to assess
the model and its results [Banks, 1998]. The time values from the pilot line were
used in the simulation run and the validation parameter was selected as the number
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of battery modules produced daily when four operators are employed. The results
were found consistent with the real pilot line scenarios and this was also reviewed
with two field experts and three project members.

Parametric DES model

Once the skeleton model is created, it is important to ensure that it is parametric.
The DES model will be updated with i) information from Stage one pertaining to
the workstation processing and setup time, cost of workstations and IDs of the se-
lected candidates, and ii) the values of the decision variables from MATLAB to
generate scale-up solutions. The various parameters that can be tuned from outside
FlexSim are as follows: the workstation quantity, operator quantity, AGV quantity,
station process time and station setup time.

The available space in the layout is divided into ‘slots’. The workstations are allo-
cated to ‘slots’ and when new workstations of the same type need to be added to the
model, they are assumed to be added in parallel to the existing ones. In other words,
each of the five workstation types can have copies of the same to improve produc-
tivity, which is represented using five decision variables. Each variable corresponds
to one workstation type and it refers to the quantity of the respective workstation
type. For instance, if the second decision variable from MATLAB has a value of
two, it means that workstation type two has another replica in parallel that performs
the thermistor assembly (operation three) and cooling system assembly (operation
four). The decision variables are explained in more detail in the next section.

Connecting FlexSim and KEPServerEX

This section explains the details of the KEPServerEX and FlexSim connection. The
local server is first created and the device and groups are defined within it. Within
the group, various ‘tags’ can be added and their name plays an important role in
establishing the link with both MATLAB and FlexSim. The ‘emulator’ tool in
FlexSim allows creation of two types of variables, those that need to be read and
those that need to be written. The decision variable values from the MATLAB need
to be read by FlexSim. On the other hand, the KPIs such as system throughput
that are necessary for objective function evaluation need to be written by FlexSim.
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Since the DES model is parametric, all time-related, maintenance-related values and
other resource-related parameters can be stored in the form of a ‘Global Table’ in
FlexSim. In this way, all necessary input sources for FlexSim are established. The
run speed and model termination time can be controlled from outside FlexSim using
a batch file. The use of the termination time enables automation of the simulation
optimisation process since the MATLAB optimisation can be continued only when
the execution of FlexSim is stopped. For each optimisation iteration in MATLAB,
ten replication are of the experiment are done within FlexSim. The average of the
throughput values across these ten replications for products A and B is passed back
to MATLAB. These replications are very important as they impact the convergence
of the simulation optimisation; based on trial and error, it was found that ten repli-
cations were sufficient for good convergence to a pareto front for the considered
case study.

4.3.2 Optimisation module

Following the creation of the parametric DES model, the optimisation problem is
formulated in MATLAB and for this purpose, several ‘functions’ need to be written.

Step 1: Fitness function

Starting with the core ‘optimisation algorithm’, the first step is to create the fitness
function which evaluates the score of a particular population with respect to the
objective function. As explained in Chapter three, two conflicting objectives, scale-
up cost and throughput are considered. For objective one, the aim is to minimise
the scale-up cost and for objective two, the aim is to maximise the throughput.
However, since MATLAB aims to minimise the objective functions, objective two
is modified to minimise (1/throughput).

Step 2: Decision variables

The next step is to define the number and parameter of the decision variables. The
four types of decision variables considered for the optimisation study are x1

i , x2
j , x3

k ,
x4

l that represent the number of each type of workstation, number of each type of
MHU, number of each type of operator, and the number of workstations that have
alternate configurations, respectively. For this case study, because there are five
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different types of workstations, in x1
i , the value of i ranges from one to five. Con-

sidering the variable x2
j , only one type of MHU is considered and hence the value

of j is one. For the variable x3
k , only one type of operator is considered and hence

the value of k is one. For the last variable type, the workstation configuration selec-
tion was done in the ontology editor only for the first workstation and hence only
workstation one has alternate configurations; therefore, the value of the variable l

is one.

In total, there are eight decision variables and the memory load that is brought about
due to the simulation optimisation restricts the total number of decision variables
that can be considered. All eight decision variables considered are integers and
hence a multi-objective simulation optimisation with integer GA is selected.

Step 3: Boundary conditions

Following this, the upper bound and lower bound for the decision variables are set
as shown in Table 4.2. A total of 22 slots are considered for the workstations and
this restricts the maximum number of workstations that can be accommodated. If
the variables x1

1 to x1
5 have the upper bound values of five, then the total number of

workstations exceeds the available space. To overcome this, it is possible to add
inequality constraints in the algorithm. However, it is not advisable to add the in-
equality constraint whilst already having integer constraints in the MATLAB GA
algorithm. Hence, for those iterations where the number of workstations exceed
the available space, a penalty cost is added to the scale-up cost. In this way, such
iterations will not be considered as good solutions and will be removed from the
solution space.

Step 4: Optimisation options

As a next step, the various genetic algorithm solver options such as the initial popu-
lation creation, mutation function, crossover function, maximum stall generations,
maximum generations, ‘pareto fraction’ and plot functions are considered. For
the initial population creation, mutation, crossover functions, instead of writing the
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Table 4.2: Decision variables and their values.

Variable Description Lower bound Upper bound

x1
1 number of workstations of type 1 1 5

x1
2 number of workstations of type 2 1 5

x1
3 number of workstations of type 3 1 5

x1
4 number of workstations of type 4 1 5

x1
5 number of workstations of type 5 1 5

x2
1 number of MHUs of type 1 1 2

x3
1 number of operators of type 1 1 6

x4
1 workstation configuration for workstation type 1 1 2

code from scratch, the default functions provided by MATLAB for integer GA is
used. A ‘population size’ of 20 and a ‘maximum generation limit’ of 100 is se-
lected. Ten simulation repetitions for each evaluation or iteration are considered.
The ‘stall generation limit’ is set to 15. The settings are decided after experimenta-
tion and are found sufficient to provide the required set of non-dominated solutions.
The pareto fraction is set as 0.7 and the default settings used for distance calcula-
tion and function tolerance for pareto spread are ‘phenotype’ and 1e-4, respectively.

To monitor the the progress towards convergence, the ‘best fitness scores’ for both
objective functions are plotted at the end of each generation. The diversity of the
pareto front is checked by the measuring the distance and pareto spread. The dis-
tance measurement ensures even spread of solutions on the pareto front, provided
it is continuous. The average change in the pareto spread over the ‘MaxStallGen-

erations’ is a parameter that terminates the optimisation on satisfying the stopping
criteria. If this average change is less than the function tolerance value of 1e-4, then
optimisation will be terminated. For a diverse pareto front, it is expected that the
average distance measure and spread of pareto front have low values.
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Function: FlexSim initialisation

Now that the core optimisation algorithm is defined, two other functions are written
in MATLAB to support the core function. Both these functions are run for every
single iteration and they need to be provided with the new values of the decision
variables for that particular iteration. The first function is the FlexSim initialisa-
tion function that is used to initialise the ‘batch file’ that starts the simulation. The
pseudocode for the FlexSim initialisation function is shown in Table 4.3. It starts
with the creation of ‘daobj’ to connect to the server. This is followed by the cre-
ation of a ‘Group’ to store the decision variables. Step three, from Table 4.3, is
very important for establishing the link between the decision variables in MAT-
LAB to the ‘tags’ in KEPServerEX. In this step, the decision variables are defined.
The ‘Device’ and ‘Group’ mentioned in step three represent the elements in the
KEPServerEX and the ‘AGVQty’ represents the tag in the server. The next step is
to store the values of the decision variables that are decided by MATLAB for each
iteration in the ‘AGVQty’ item object. The ‘flexin’ vector represents the values of
the decision variables decided within MATLAB. The last step is to write a code to
start FlexSim from MATLAB, for which the batch file is used.

As shown in Figure 4.16, in MATLAB OPC toolbox, one object is created for each
variable that needs to be communicated to Flexsim. For instance, the variable that
represents the number of MHUs is x2

j and only AGV is considered for material han-
dling and transportation then j is equal to one. This variable can take up different
values for each iteration of the optimisation and this needs to be communicated to
Flexsim. Therefore, this particular variable i.e. x2

1 is created as an ‘item object’

in the MATLAB OPC toolbox (Steps 1, 2 and 3). After creation of this object, it
then needs to be written to KEPServerEX using the write function (Step 4). In this
way, all eight decision variables are linked to KEPServerEX. Certain other variables
such as process time, maintenance and cost can be added to a lookup table within
Flexsim using the ‘Global Table’ tool.
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Table 4.3: FlexSim initialisation function.

Initialisation function

(1) Create ‘daobj’ to connect to server using OPC UA protocols;

daobj = opcda(‘localhost’,‘Kepware.KEPServerEX.V6’);

(2) Create group for item objects; this represents the decision variables;

Grp = addgroup(daobj,‘Group’)

set(Grp,‘LogFileNAme’,‘opcdatalog.olf’);

(3) Create item objects for eight variables within created group and set their datatype;

AGVQty = additem(Grp,‘MFConnection.Device.Group.AGVQty’);

set(AGVQty,‘DataType’,‘int16’);

(4) Write the values for the decision variables;

write(AGVQty,flexin(6));

(5) Run batch file to start Flexsim;

command = “C:\Users\RunFlexsim.bat”;

[status,cmdout] = system(command);

Function: Fitness evaluation

The fitness evaluation function is essential for calculating the scores of the objec-
tive function. From Chapter three, the objective functions are represented in two
equations, 3.1 and 3.2. The equations are utilised in this function to calculate what
is known as the fitness score. This is essentially the value obtained while solving
the two equations. The steps involved in the function are explained as follows:

1. The ‘flexin’ vector that has the values of the eight decision variables is the
input for this function. The equation 3.1 which represents the scale-up cost is
considered.

2. It comprises of four elements of cost: the processor cost, material handling
cost, operator-related cost and penalty cost. The values of the first three cost
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Figure 4.16: MATLAB and FlexSim integration.

elements are obtained from the common database and stored in a lookup table
within MATLAB.

3. The fourth element, penalty cost, depends on the space occupation; if the total
number of workstations is more than 22, which is the maximum number of
available slots, then the penalty cost is considered. This evaluation of scale-
up cost can be done without DES module.
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4. The second objective is the throughput for which it is necessary to use DES.
The ‘FlexSim initialisation’ function that was described above is ‘called’ to
initiate the DES model. MATLAB is temporarily paused while the simulation
runs and resumes on termination of DES.

5. The DES model communicates the throughput values to the the server with
the help of the ‘emulator’ in FlexSim. These values are read by MATLAB to
calculate the second objective function.

6. A new group and two item objects are created within MATLAB for acquir-
ing the throughput data from the server. The first item object represents
the throughput value of product A and the second item object represents the
throughput value for product B.

7. Using these values, the score of objective function two is obtained. In this
case, both products are assumed to be equally important and hence no weights
are given to throughput values. But if this is deemed necessary, it can be
added to the objective function.

The simulation optimisation is achieved using a laptop with Intel Core i7 with a
processor speed of 2.60GHz. Figure 4.17 shows the trade-off solutions, also known
as pareto front, obtained as a result of the multi-objective optimisation. The pareto
front is a representation of the fitness evaluation scores for both objective functions.
The ‘x axis’ represents objective one, which is the ‘scale-up cost’, and ‘y axis’

represents objective two, which is ‘(1/throughput)’. The plots to the left of the chart
indicate low scale-up cost and the plots to the right indicate high scale-up cost. Each
plot is a potential solution and represents a vector of the decision variable values. To
ensure the validity of the non-dominated solutions, for each objective function, at
the end of the generation, the best fitness score was identified and plotted in charts
shown in Figures 4.18 and 4.19. From the plots, for the first few generations, the
fitness scores are very high and as the optimisation progresses, better solutions are
identified. This is clearly represented in the plots for both objectives. This ensures
that the solutions on the pareto front have good fitness scores for both objectives.
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Figure 4.17: Non-dominated solutions for the battery module assembly case study.

Figure 4.18: Best fitness scores for objective one.
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Figure 4.19: Best fitness scores for objective two.

Another plot that is used to monitor the simulation optimisation is the pareto spread.
The pareto spread is an important criteria for stopping the simulation optimisation.
As the simulation optimisation converges, the change in the average spread starts
to reduce. This is noticeable from the plot shown in Figure 4.20 where the average
spread across the generations is provided. From the Figure, it can be seen that the
average spread for the first few generations is 1. As the optimisation starts to con-
verge at around 60 generations, the average spread value does not vary too much.
The two stopping criteria considered for this case study were the i) maximum num-
ber of generations and ii) stall generation limit. Although the maximum generation
limit of 100 was not reached, the optimisation was terminated since the stall genera-
tion limit criteria was achieved, i.e. the average change in spread of pareto solutions
was less than the function tolerance across fifteen generations.

Having plotted the solutions in the form of pareto front, they now need to be com-
pared. For the purpose of comparing the alternate DES scenarios, the total simu-
lation time in DES was considered as a constant and infinite number of products
were made available for processing. Although this enables the comparison of the
solutions according to certain criteria, it is difficult to compare the solutions with
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Figure 4.20: Average spread of optimisation.

regards to scheduling policies that prioritise one product over the other. Therefore,
if there is need to compare the scheduling policies in DES, it might be better to
allocate a finite number of products at the start of the simulation and consider the
simulation time as a variable.

Figure 4.21: Simulation optimisation convergence.

4.3.3 Decision making

For the comparison of solutions, depending on the preference of the system designer
or decision maker, the best solution in their point of view needs to be selected using
‘a posteriori’ approach, where the preferences are used to select a suitable solu-
tion from the considered list after the optimisation. This is a subjective procedure
which involves some criteria and decision making according to those criteria. The
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evaluation is performed according to the ‘Scale-up KPIs’ such as i) cost efficiency
(c1/scale-up cost), where c1 is a constant value, ii) throughput (product A), iii)
throughput (product B), iv) ease of transition, and v) compactness (c2/no. of slots
occupied), where c2 is a constant value. The term ‘ease of transition’ is a subjec-
tive term that is used to express the ease of transitioning, during a scale-up project,
from a pilot line to a fully operational line using a particular design solution. Fol-
lowing this, the filtering of the optimisation results is necessary as the verification
of whether the target demand is achievable by the proposed solutions is not done as
part of the optimisation run.

Verification of the optimisation results

Table 4.4: Trade-off solutions selected for further analysis.

Optimisation parameters & results Soln. 1 Soln. 2 Soln. 3 Soln. 4

No. of workstations of type 1 (x1
1) 1 1 2 2

No. of workstations of type 2 (x1
2) 2 2 2 3

No. of workstations of type 3 (x1
3) 2 3 3 4

No. of workstations of type 4 (x1
4) 1 2 2 2

No. of workstations of type 5 (x1
5) 2 2 3 3

No. of MHUs of type 1 (x2
1) 1 1 2 2

No. of operators of type 1 (x3
1) 4 5 5 5

workstation configuration for station type 1 (x4
1) 1 1 1 1

Objective 1 - Cost (units) 65520 74000 98400 112100

Objective 2 - 1/(Throughput A + Throughput B) 0.0064 0.0051 0.0046 0.0045

Throughput A (ε1) 77 100 105 108

Throughput B (ε2) 78 93 112 114

From Figure 4.17, the solutions marked with an asterisk indicate those that do not
meet the required minimum throughput. The four solutions that are marked with
a circle are chosen for further decision making as they provide good trade-off for
both objectives considered. The decision variable values and objective function
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scores for the four solutions are provided in Table 4.4. From the table, for the pur-
pose of validating the results of simulation optimisation, the individual throughput
values for product A and product B are obtained by running the specific solutions
separately in FlexSim. These values will differ, by a small margin, from those ob-
tained from the simulation optimisation due to the use of probability distributions
and pseudo random numbers. In this way, the throughput values obtained from
FlexSim are verified against the results of optimisation as seen from Table 4.5. The
comparison reveals that the 1/(Throughput A + Throughput B) values do not vary
much.

Table 4.5: Verification of 1/(Throughput A + Throughput B) values.

Solution No. Throughput from optimiser Throughput from FlexSim run

1 0.00640 0.00641

2 0.00507 0.00519

3 0.00460 0.00459

4 0.00450 0.00447

Comparison of alternate solutions

A radar chart is provided in Figure 4.22 to compare the considered four solutions
using the indicated scale-up KPIs. The higher the value of a particular solution in
the plot, the better that solution is in terms of the considered KPI. Solution one,
represented in blue has the best results in terms of cost efficiency, compactness and
ease of transition. Solution four, represented in purple has the best results in terms
of throughput. All four solutions are capable of achieving the target throughput
of 65 products of variant A and 65 products of variant B. However, solution four
has far more production capacity than required. Depending on the application and
scenario under consideration, the decision maker might consider implementing so-
lution four i) if the production line is intended to be used over a long period of time
and/or, ii) if the demand is expected to increase again in the future. Despite the
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Figure 4.22: Evaluation of selected solutions with respect to scale-up KPIs.

solution being expensive and exacting a lot of effort for the transition, the buffer ca-
pacity provided by solutions three and four might be considered useful in the long
run. On the other hand, the solutions one and two might be considered i) for pro-
duction lines that have relatively shorter lifespan and/or, ii) for products predicted
to become obsolete after a few months.

4.3.4 Summary

The results of the simulation optimisation were checked by modelling them in
FlexSim, but there is no actual physical system to compare the results with. Hence,
face validation with a team of experts in the field was done and according to the
feedback from the discussion, the solutions were found to be reasonable and real-
istic. The radar chart provided a good representation and means of comparing the
alternate solutions. One point to note is that the equipment that were selected during
workstation configuration selection process did not have a specific price and since
the primary way to obtain this was from supplier quotation, the cost values that
were considered during the implementation were estimated based on the relative
design and operational complexity of the considered equipment and the experience
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of engineers and technicians. For example, two workstation configurations were
considered for station type one (cell testing and loading operations). Configura-
tion one is relatively less expensive and comprises of three axis gantry and vacuum
gripper. Configuration two is slightly more expensive because of the use of delta
robot. Although the exact values of cost were not used, an estimate was done with a
group of system engineers. Additionally, when the workstation configurations were
selected and the optimisation was modelled, it was hypothesised that a majority of
the solutions on the pareto front would comprise of configuration one which is the
cheaper of the two. This is attested from Figure 4.17, where out of the eleven plots
only the three rightmost ones consider workstation configuration two.

This concludes the demonstration of the two stage methodology on a battery mod-
ule assembly case study. Examples were provided to explain the implementation
of each step of the approach and tables and figures were provided to illustrate the
results. The validation of the methodology was also performed and the final assem-
bly system design solutions were evaluated in a focus group. It is now important to
analyse the DDSM methodology and discuss its benefits and shortcomings.

4.4 Discussion

This section evaluates the DDSM methodology, its applicability and shortcomings.
It was mentioned in Chapter one that the DDSM methodology will support scale-
up transition by reducing the time, effort and cost involved in scale-up. This is
also verified to determine whether the methodology is able to support the scale-up
transition.

4.4.1 Evaluation of the DDSM methodology

The methodology is explored in terms of its industrial applicability and evaluated
according to criteria such as ‘cost, time, effort, re-usability, flexibility, applicability

and traceability’. A summary of the evaluation is provided in Table 4.6. In order
to evaluate the methodology, a focus group was set up with participants who have
experience working in the manufacturing industry and virtual modelling. The de-
tails of the discussion are provided in the following paragraphs.
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Focus groups are used by market researchers to provide insights into the experiences
of the participants on a subject matter such as launching a new mobile phone model
and evaluating concept designs [Oates, 2000]. For the purpose of evaluating the
DDSM methodology, seven participants were identified as follows: i) participant
one with approximately forty years’ experience working in the automotive industry,
ii) participant two with four years’ experience working in the manufacturing sector,
iii) participant three with ten years’ experience working in digital manufacturing,
specifically using DES to support manufacturing industries, iv) participant four with
five years’ experience working the electric vehicle sector, v) participant five with
thirty years’ experience working in using statistical analysis to support manufac-
turing, vi) participant six with five years’ experience working in virtual modelling,
optimisation and applying artificial intelligence to support manufacturing systems,
and vii) participant seven with five years’ experience working in kinematic mod-
elling. The diverse range of experience of the participants allowed the evaluation of
the DDSM framework from multiple aspects. During the focus group session, face
validation of the simulation optimisation results were also performed to ensure that
the virtual models reflect the physical system behaviour [Banks, 1998].

The participants were provided with a thirty minutes presentation of the DDSM
methodology following which various questions were asked to evaluate the method-
ology. The following questions were asked during the focus group session to eval-
uate the DDSM framework according to the considered seven criteria.

1. What are your thoughts on using the DDSM methodology to support indus-
trial scale-up?

2. Do you think that DDSM approach can support data integration across het-
erogeneous modelling software such as DES, robot path planning software,
operator modelling software, etc.?

3. What are your thoughts about bottom-up component modelling approach
used in the methodology?

4. Do you think a decision-support system for scale-up can support the industrial
scale-up projects?
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5. What are your thoughts about using the methodology to reduce time-to-volume?

6. Do you think that the workstation KPIs and scale-up KPIs are comprehensive
enough to represent the data used for decision-making in scale-up projects?

7. Can you provide insights into how this approach can be used in a project that
you worked on?

8. How can the DDSM methodology support traceability in manufacturing sys-
tems?

9. What are your thoughts on using data from workstation models to support the
simulation optimisation?

During the focus group, the participants presented their opinions and thoughts re-
garding the questions that were asked. The opinions and comments from the expe-
rienced participants enabled the evaluation of the methodology as follows.

Criteria 1: Time

The first evaluation criteria that is considered is the time, which in this context refers
to the time-to-market and time-to-volume. In current industrial scenarios, ad-hoc
procedures are put in place during scale-up planning due to various reasons such as
i) need for a quick-fix without much thought, ii) carelessness, and iii) lack of proper
procedures in place. As a result, the investigations regarding ergonomics, possibil-
ity of collision, human resource, space consumption, etc. are not given enough
importance. Therefore, the project may get prolonged or even fail due to loss of
resources. Owing to the fact that the current ad-hoc approaches lead to erroneous
decisions, the time-to-market is delayed. The use of DDSM methodology, in place
of the trial and error based approaches, can reduce the time taken for physical pro-
totyping and enable faster time-to-market. This is achieved by the use of software
tools that can model the various assembly line resources virtually and reduce the de-
pendence on the experience of personnel. This subsequently contributes to reduced
errors during the decision-making process.
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Criteria 2: Cost

As previously explained, the ad-hoc approaches are associated with project fail-
ure, procurement of resources that might not be utilised, procurement of additional
resources to replace those that were bought as a result of wrong decisions. Addi-
tionally, it is not understood whether the selected scale-up designs are actually good
and efficient in terms of meeting the demand. Therefore, there is every possibility
for unprecedented issues to arise due to the lack of proper investigation. To over-
come this, there is the urgent need to replace the failed design or plan with anything
that can do the job. The cost of making such mistakes is very expensive. Since the
designs or solutions were not investigated and thoroughly compared with alternate
solutions, there is the risk of them being sub-optimal and possibly more expensive
than required. This leads to excessive spending that is usually unnoticed.

With the use of DDSM methodology, every solution or design that is selected can be
justified at every step. This allows tight monitoring of project spending on worth-
while solutions. It is also possible to assess the new assembly system designs with
respect to system KPIs to understand whether the new solutions lead to an improve-
ment in the KPIs. This is possible due to the modelling of what-if scenarios in DES
coupled with the optimisation module. Another aspect is the issue with current
PLM platform having a lucrative outlook; therefore, when a PLM suite needs to be
implemented in industries, it demands expensive transformation, change and adap-
tation. As an alternative, industries can benefit from approaches such as DDSM that
provide framework for communication among several tools that are not part of the
same platform or language. In this way, it saves a lot of cost for industries and gives
them the freedom to choose the software that they need. It is also possible to create
their own software to perform the kinematic modelling, DES and optimisation and
still achieve interoperability at a relatively cheaper cost.

Criteria 3: Effort

In any manufacturing system, during planning stages, there is usually a number of
possible solutions that need to be considered. This becomes all the more difficult
with the increase in the complexity of the system. This makes it cognitively com-
plex for the human brain to choose a particular solution. Without proper decision
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support, the planning stage is cognitively complex and can inadvertently result in
errors. With the additional burden of project time constraints, the effort that engi-
neers and managers need to put into the project increases. The whole procedure
of investigation, followed by procurement and commissioning is a daunting one.
Therefore, the DDSM methodology helps to reduce the burden from the shoulders
of managers and engineers. This is achieved by creating libraries in the kinematic
modelling software, DES and ontology editor. The elements in the library only need
to created once and they are re-usable.

The decision support provided in Stage two for the assembly system design selec-
tion can speed up the decision making process while still maintaining the quality
of the solutions. It is also possibility to use the approach for product variant anal-
ysis. The mapping of product, process and resource in Protégé also allows change
control since the links and associations are embedded in the model. Therefore, the
impact of the change in a workpiece-related parameter on the process and system
resource can be identified automatically.

Criteria 4: Reusability

The use of various libraries within kinematic model, creation of model templates
in DES and creation of equipment catalog within the ontology editor allows the
encapsulation of data from the assembly line at various levels of granularity. As a
result, when new concepts need to be developed in the planning stages, the avail-
ability of libraries and model templates saves a lot of time that can be redirected
to productive decision making and analyses. This further feeds into reducing the
effort and time-to-market. The concept of one time modelling and multiple reuse is
possible due to the current era of digitalisation. Hence, it is important to leverage it
carefully to gain maximum benefit. In DDSM, the DES model is parametric due to
the need to connect to the optimisation module. Some of the considered parameters
include the number of workstations, operators and transporters. Since a majority of
‘what-if’ scenario analyses in DES make use of the mentioned parameters, there is
possibility to adopt this model as a template for various applications. Further work
needs to be done in this area and this will be discussed in Chapter five.
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Table 4.6: Evaluation of DDSM methodology.

Evaluation criteria Assessment of DDSM methodology

Time reduces time-to-market and time-to-volume

virtual validation of concepts reduces the time spent on physical prototyping

reduces human errors

Cost reduces risk of choosing expensive sub-optimal solutions

reduces risk of project failure

provides alternate solution to product lifecycle management suites

Effort provides decision support for cognitively complex design solutions

pre-defined libraries reduce effort involved in virtual model creation

Reusability use of parametric models supports reusability

data encapsulation in virtual models supports planning stages

Extendability the methodology could be extended by addition of other software

Traceability use of common database with IDs enables traceability

use of digital twins enables performing quality checks at every stage

Applicability applicable to industries that envision digital transformation

decision support using virtual models drives the digital transformation

Criteria 5: Extendability

The term ‘extendability’ in this context refers to ability to extend the methodology
by adding other software for various applications such as robot path planning, mo-
bile robot routing, etc. Extendability is an important criteria during the planning
stages. The DDSM methodology is found to be extendable due to the parametric
nature of the models. The method is not limited to a particular phase of the lifecy-
cle and can be used whenever scale-up planning is required. Although the type of
data that is used might vary depending on the scale-up is pre-operational or opera-
tional phase, the core of the method remains the same. Since the DDSM provides
a framework for supporting interoperability of heterogeneous software, there is no
limitation on how many different software can be added to the methodology. It
is possible to link the methodology with software that specialise in analysing er-
gonomics, AGV fleet manager, robot path planning and modelling software, human
resource analysis software, etc., to improve the accuracy and applicability to vari-
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ous situations. Moreover, the primary idea is to have an open source solution that
considers the interoperability of various key software used for scale-up transition.

Criteria 6: Traceability and quality

Traceability and quality play an important role in the case of certain hazardous prod-
ucts and materials that can have implications on health and safety. This is indeed
true for any assembly related to the electric vehicle powertrain. In such situations,
the use of a common repository like the database along with unique identifiers for
workpiece, equipment, processes and configurations, makes it possible to trace each
and every step of the product and associated resources from the start to finish of the
assembly. Therefore, it is possible to ensure that the quality guidelines are met be-
fore progressing to the next step. Also, safety critical products can be referenced
to the machine or operator who performed the assembly process, in addition to the
monitoring of operator skill level and certifications. The use of a common database
ensures that all the relevant data are available in a single space and this can benefit
the whole supply chain. There is possibility to extend the research in this area and
this will be discussed in Chapter five.

Criteria 7: Applicability

The methodology is built upon the use of digital tools and extends the capabilities
of digital manufacturing. In this era of digital transformation where a number of
companies are just venturing into the new field, an approach that supports the digital
transformation by enabling the communication between heterogeneous software is
considered applicable. It is important to note that this would not have been the case
few years ago. The methodology is generic enough to be applied to any stage of
the life-cycle where scale-up might be necessary. It can also be applied to any type
of assembly system that can be decomposed as component, workstation, pilot line,
production line and factory as mentioned in section 1.3.

4.4.2 Evaluation with related works

The DDSM approach is closely related to the work done by Ghani [Ghani, 2013].
The research work done on the integration between Kinematic modelling software
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and DES proposed by Ghani et al. [Ghani, 2013] is adopted for the DDSM ap-
proach to support scale-up decision making. However, in DDSM, the kinematic
modelling software is enriched with knowledge representation using the ontology
editor. Moreover, the DES model is coupled with an optimisation algorithm to sup-
port the scale-up decision making. The other related works include the research
done by Michalos et al. [Michalos et al., 2015] and [Manzini et al., 2018]. Both
these works focus on the system configuration and design problem. While Michalos
et al. [Michalos et al., 2015] support the robotic workstations using a two-stage ap-
proach combining analytical method and virtual modelling, Manzini et al. [Manzini
et al., 2018] support the modular assembly systems using a knowledge-based tool.
In DDSM, however, both station and assembly line configuration and design selec-
tion are supported with the help of virtual modelling tools. A comparison of the
related works is provided in Table 4.7.

4.4.3 Limitations

The evaluation of the methodology helps understanding the shortcomings that need
to be addressed. They are discussed as follows:

Kinematic model building and ontology editor capabilities

Specific to the Workstation Configuration Selector, the use of ontology editor is in-
tended to retrieve the equipment that perform a specific operation. This information
is used to generate the workstation configurations that are validated in a kinematic
modelling software. This process might be time consuming if the kinematic mod-
els have to be built from scratch. To reduce the time taken for modelling in the
kinematic software, it might be possible to use the ontology model to calculate the
workstation process time for the various configurations. In this way, the configura-
tions that do not meet the required process time can be eliminated and do not need
to be modelled within kinematic modelling software. However, the creation of such
an ontology model is a complex one.
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Ontology editor and query language

In this research, the ontology editor that is used is Protégé and the query language
is SQWRL. Accordingly, the query design is specific to the SQWRL language.
Therefore, if another ontology editor or query language is used, the execution will
remain same but the structure of the query might look different. More work needs
to be done on this to ensure that the methodology is not limited to Protégé software.

Applicability to different task types

For the equipment selection, only five task types were considered. In reality, there
are more tasks such as testing that were not considered in the research. Moreover,
the case study only considered the move and hold/release tasks. The application of
the methodology for the welding, joining and transportation tasks are not discussed
in detail.

Approach to simulation optimisation

Regarding the SCS, the use of simulation optimisation with approximately around
15 - 20 decision variables adversely impacts the computer’s memory. This limits
the maximum number of generations that can be run. If the considered system is
very complex, then there is the risk that the optimisation will not converge within
the defined number of generations. This is further aggravated by the use of OPC
UA server for real-time data communication since the creation of item objects in
MATLAB adversely affects the memory consumption.

Another issue was the quality of throughput data obtained from FlexSim. The
throughput value could not be read in some situations due to connectivity issues
and subsequently resulted in erroneous values. For this purpose, the fitness evalua-
tion code was modified to read the throughput value from the server multiple times
until the data quality was ensured. In some iterations, several loops of this code
were run until the actual throughput value was obtained which took an additional
30 seconds to a minute per iteration of the optimisation. Moreover, the triggering
of FlexSim from within MATLAB was done for every single iteration. This activity
took more time than the simulation run itself. The mentioned issues are software-
specific and the situation might be different with the use of other software for DES,
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optimisation and connectivity.

Incorporating warehouse and logistics

DDSM methodology has been tested for battery module case study, but its appli-
cability to other assembly lines along with the consideration of warehouse and lo-
gistics is not done. The optimisation procedure is limited in its application; there
is possibility of increasing its capabilities by incorporating layout optimisation and
operational policy analyses. The author believes that it will be worthwhile to pur-
sue research in this direction and the relevant discussions are provided in the next
chapter.

Data collection

Since the methodology uses virtual modelling, the input data plays a very important
role. This underscores the importance of data acquisition systems. However, the
methodology has not considered this in much detail.

4.5 Chapter summary

The main aim of this chapter was to demonstrate the DDSM methodology with a
case study. The methodology is divided into the workstation configuration selection
stage and the system configuration selection stage. A step-by-step implementation
was provided considering the battery module assembly test case. The results of the
analysis were presented in the form of radar chart and the comparison of alternate
designs was facilitated using the scale-up KPIs. The benefits of adopting this ap-
proach in an industrial setting was discussed and evaluated using a diverse set of
criteria. The chapter concludes by listing the shortcomings of the DDSM method-
ology. The next chapter discusses the future activities that could stem from the
DDSM research work and reviews the original hypothesis, research question and
objectives that were proposed in Chapter one.
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Chapter 5

Future work and Conclusion

This concluding chapter of the thesis starts with the assessment of whether the three
main research objectives proposed in Chapter one are fulfilled. This is followed by
a review of the research question and research hypothesis. The key contributions
of the research are discussed along with the proposals for future research activities
that could complement the DDSM methodology.

5.1 Revisiting the research objectives

5.1.1 Objective one

Identify the data from the physical system/shop floor that are required by digital
simulation tools, namely kinematic modelling tool and DES, which are used for
modelling workstations and production lines, respectively.

In order to fulfill this objective, literature on input data for virtual models and data
acquisition was reviewed. From the study, the data utilised in the kinematic mod-
elling software and DES were categorised and tabulated. The data sources, data
format and the importance of the data were investigated. This played a vital role
in determining the type of data integration for the DDSM methodology and under-
standing the dataset from the kinematic modelling tool that could enrich the DES
models.
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5.1.2 Objective two

To propose a robust framework for multi-domain data integration of software at
two different levels of granularity, namely the workstation and system level, to
identify potential workstation and system configurations that can accommodate
the increased capacity following scale-up.

This objective plays a vital role in answering the research question and identifies a
way to leverage the data integration between the kinematic model and DES model
to provide a decision support framework for scale-up planning. This objective was
achieved by proposing the Data-Driven Scale-up Model (DDSM) that is capable of
utilising the data from different software at different granularity levels. The Stage
one of the methodology, known as Workstation Configuration Selector (WCS), em-
ploys the ontology editor and the kinematic modelling software to identify potential
workstation configurations. The Stage two, known as the System Configuration Se-
lector (SCS), employs DES and optimisation modules to identify potential system
configurations while having access to the workstation level data.

5.1.3 Objective three

To demonstrate the application of the proposed methodology to support the tran-
sition from low to high volume production in a pilot line case study.

The framework was demonstrated in a battery module assembly line for a scale-up
scenario with the new demand being approximately three times the current demand.
The DDSM methodology was evaluated and found beneficial for industries to pro-
vide a systematic method to move through the scale-up phase. Owing to the budget
constraints, the validation of the new assembly line design and configuration by
building a real production system is difficult. For this reason, i) a virtual model of
the solution in FlexSim along with the kinematic model in vueOne, and ii) a radar
chart comparing the solutions were presented to industrial experts.
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5.1.4 Review of research question and hypothesis

‘How can the data integration and interoperability between kinematic and DES

models for decision-making regarding the assembly system design during scale-up

planning phase be achieved in a seamless way?’.

The completion of the three research objectives sheds light on the answer to the
research question. The decision-support framework, namely DDSM, built upon in-
tegration of heterogeneous software models is proposed in Chapter three. Through
the framework, the data integration of kinematic and DES models was explored
and the benefits of enriching the DES models with workstation data were high-
lighted. The benefits on assembly system design selection was also demonstrated.
The common database serves as a repository for system lifecycle data and ensures
data integrity. In this way, the proposed framework answers the research question.

The hypothesis that was introduced in Chapter one states that employing the DDSM
framework reduces time to volume and supports decision making for selecting good
assembly system design. To check this, a focus group with field experts was estab-
lished and were presented with the case study and potential system designs. They
agreed that using the data-driven approach enables selection of optimum solutions
from the design space and reduces the chances of project failure. Additionally, they
concluded that the time taken to reach the desired volume is also shortened due to
data organisation using common repository and using virtual models for concept
planning. A more detailed evaluation of the methodology was provided in Chapter
4.

5.2 Contributions

The thesis presents four key contributions that are highlighted below.

1. This framework addresses the current issues faced due to experience-based
scale-up in industries that results in extended scale-up duration, project fail-
ure and expensive design solutions. There is lack of a robust framework
to support up-scaling of assembly lines. To overcome this, a holistic data-
driven decision support framework that reduces i) development and changeover
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time, ii) scale-up cost, and iii) effort involved, is presented in section 3.1 and
evaluated in section 4.4.

2. The DDSM methodology employs simulation optimisation for system con-
figuration selection and kinematic model enhanced by knowledge mapping
for workstation configuration selection. This supports scale-up decision
making and is a novel contribution to literature. Through the approach,
it is possible to screen the design space at varying levels of granularity for
potential solutions.

3. The issue of modelling infeasible design solutions in DES is one that is not
explored in detail. This is tackled using a hybrid approach where the inte-
gration of knowledge mapping and kinematic modelling software improves
the accuracy of DES models, subsequently providing better design solu-
tions. The novelty is highlighted by comparing with relevant works in sec-
tion 4.4.2. The encapsulation of data at the lower-level models improves
accuracy of DES models.

4. There are a number of different ontology models that exist in literature. How-
ever, an ontology model for scale-up equipment selection is lacking. For this
purpose, a novel Product, Process, Resource and Resource attribute on-
tology model for assembly system configuration selection is proposed in
section 3.3.2. The ontology structure and query design are tailored for the
scale-up equipment selection problem.

5.3 Future research directions

5.3.1 Product variant analysis

The DDSM methodology mainly focuses on production volume increase, however,
in industries, the volume increase might be accompanied by new product introduc-
tion. In such situations, it is important to understand if the new assembly line con-
figuration can accommodate not only the increased demand but also the new product
variant. Using the ontology editor and kinematic models, it is possible to do product
variant analysis. [Chinnathai, Günther, Ahmad, Stocker, Richter, Schreiner, Vera,
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Reinhart and Harrison, 2017] provides a detailed approach for product variant anal-
ysis within kinematic modelling software with the help of the mappings between
the product dimensions and resource features. A future research direction could be
to incorporate the approach provided in into the DDSM methodology to increase its
capabilities.

5.3.2 CAD annotations

In a number of cases, the CAD models of the workpiece, resource and equipment
are not easily transferable to the other software in the system lifecycle. Even if it
was possible to transfer the model, it would be associated with loss of data when the
native CAD is converted to a another format. However, it is possible to ensure that
the important data such as the dimensions of the product, properties of an equip-
ment, etc., are made transferable by annotating them. This allows for data reuse and
reduces the time taken for the modelling and creating component library within the
kinematic modelling software.

At the moment, the creation of component kinematic models is time consuming due
to the manual input of product and equipment data. However, more research work
needs to be done in automatically updating the kinematic model with the relevant
process and resource parameters. This can reduce human errors and save a lot of
time.

5.3.3 Multi-criteria decision making

Decision making plays a very important role in the methodology, therefore, more
emphasis should be given to this activity. In the current version of decision mak-
ing, the scale-up KPIs are used to score and compare the alternate scenarios on a
radar chart. However, there are more systematic approaches for decision making
and hence, the results of the pareto front could be coupled with a Multi-Criteria
Decision Making (MCDM) techniques such as Analytical Hierarchy Process(AHP)
or Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to
get better results. Additionally, a more comprehensive list of scale-up KPIs should
also be created.
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5.3.4 Improving the DES and optimisation module

The use of DES and optimisation module in the methodology allows the analysis
of data to arrive at various conclusions. Although in this methodology, GA is the
only algorithm employed, there are several other algorithms and methods that need
to be explored and applied in the methodology. In this regard, the optimisation
could be extended to perform layout and operational analysis as well. It is also
possible to monitor the assembly line KPIs in DES and connect it to dashboards
and visualisation platforms for better representation of the results and performance
measures.

5.3.5 Decision support UI

In the DDSM, the core areas of interaction between the system engineers and the
methodology is when decisions need to be made. There is potential to improve the
proposed decision support using an intelligent user interface that would get user
inputs such as process parameters, preferences, etc., that will be used in DDSM
framework to propose assembly system design configurations such that the work-
load on the system engineer is reduced. For this purpose, the areas of the method-
ology that need human interaction can be improved with better Graphical User In-
terface.

5.3.6 Impact of software change

In the current version of the DDSM, the following software are employed: FlexSim,
MATLAB, Protégé and vueOne. These software can be replaced with several other
software which have the same functionality. Moreover, industries might develop
their own domestic software as well. Therefore, further work needs to be done
to identify the impact of changing a particular software with alternate ones in the
DDSM methodology.

5.3.7 Use case for operational phase scale-up

In this research, the DDSM was demonstrated with a battery module case study
in the early implementation phase known as pre-operational scale-up. However,
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a demonstration of the methodology for the operational phase scenario was not
provided. Further work needs to be done in this direction.

5.4 Conclusion

The primary aim of this research work was to propose a methodology that provides
scale-up decision support using heterogeneous software packages. To achieve this,
firstly, an in-depth review of existing literature was done to investigate the rele-
vant works and understand the research gaps. The current industrial practices for
scale-up and input data for virtual models were also explored. Following the in-
vestigation, an approach for selecting workstation and system configurations for
scale-up was proposed. The approach, named as DDSM, is a two-stage framework
that screens the design space at two different levels of granularity.

The first stage of the methodology, known as Workstation Configuration Selector
(WCS), utilises the knowledge representation and kinematic modelling modules to
select workstation designs that meet the process requirements. The second stage of
the methodology, known as the System Configuration Selector (SCS), utilises the
DES and optimisation modules to select the system designs that meet the required
production volume. Additionally, stage one enriches the selection process in stage
two by providing necessary workstation data to the DES module. This is achieved
using a common database. The results of the selection process were represented
using a radar chart and the methodology was evaluated using certain criteria such
as the time, cost, effort, reusability, traceability and applicability. Finally, the future
research directions emanating from the DDSM methodology were discussed.
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A Novel Data-driven Approach to Support Decision-Making during Production Scale-up
of Assembly Systems

Malarvizhi Kaniappan Chinnathaia,∗, Bugra Alkanb, Robert Harrisona

aWarwick Manufacturing Group, University of Warwick, Coventry, CV4 7AL, UK
bSchool of Engineering, London South Bank University, London, SE1 0AA, UK

Abstract

In today’s manufacturing settings, a sudden increase in the customer demand may enforce manufacturers to alter their manufac-
turing systems either by adding new resources or changing the layout within a restricted time frame. Without an appropriate strategy
to handle this transition to higher volume, manufacturers risk losing their market competitiveness. The subjective experience-based
ad-hoc procedures existing in the industrial domain are insufficient to support the transition to a higher volume, thereby necessitat-
ing a new approach where the scale-up can be realised in a timely, systematic manner. This research study aims to fulfill this gap by
proposing a novel Data-Driven Scale-up Model, known as DDSM, that builds upon kinematic and Discrete-Event Simulation (DES)
models. These models are further enhanced by historical production data and knowledge representation techniques. The DDSM
approach identifies the near-optimal production system configurations that meet the new customer demand using an iterative design
process across two distinct levels, namely the workstation and system levels. At the workstation level, a set of potential workstation
configurations are identified by utilising the knowledge mapping between product, process, resource and resource attribute domains.
Workstation design data of selected configurations are streamlined into a common data model that is accessed at the system level
where DES software and a multi-objective Genetic Algorithm (GA) are used to support decision-making activities by identifying
potential system configurations that provide optimum scale-up Key Performance Indicators (KPIs). For the optimisation study, two
conflicting objectives: scale-up cost and production throughput are considered. The approach is employed in a battery module
assembly pilot line that requires structural modifications to meet the surge in the demand of electric vehicle powertrains. The pilot
line is located at the Warwick Manufacturing Group, University of Warwick, where the production data is captured to initiate and
validate the workstation models. Conclusively, it is ascertained by experts that the approach is found useful to support the selection
of suitable system configuration and design with significant savings in time, cost and effort.

Keywords: Manufacturing systems, production planning, scale-up, demand amplification, demand uncertainty, data-driven
method, discrete-event simulation, DES, multi-objective optimisation, evolutionary optimisation algorithm, genetic algorithm,
GA, kinematic modelling.
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Abstract 

The recent advancements in technology and the high volatility in automotive market compel industries to design their production systems to offer 
the required product variety. Although, paradigms such as reconfigurable modular designs, changeable manufacturing, holonic and agent based 
systems are widely discussed to satisfy the need for product variety management, it is essential to practically assess the initial design at a finer 
level of granularity, so that those designs deemed to lack necessary features can be flagged and optimised. In this research, convertibility expresses 
the ability of a system to change to accommodate product variety. The objective of this research is to evaluate the system design and quantify its 
responsiveness to change for product variety. To achieve this, automated assembly systems are decomposed into their constituent components 
followed by an evaluation of their contribution to the system’s ability to change. In a similar manner, the system layout is analysed and the 
measures are expressed as a function of the layout and equipment convertibility. The results emphasize the issues with the considered layout 
configuration and system equipment. The proposed approach is demonstrated through the conceptual design of battery module assembly system, 
and the benefits of the model are elucidated.  
 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 27th CIRP Design Conference. 

 Keywords: Assembly systems; product variety; convertibility; design evaluation. 

 
1. Introduction 

Due to the increasing importance to satisfy customer needs, 
there has been a shift from mass production to mass 
customisation in the automotive market [1]. In order to survive 
in this competitive, turbulent and highly volatile market, 
enterprises have to employ new practices and strategies that can 
effectively accommodate high variety production to realise the 
advantage of mass customisation [2]. Thus, the concept of 
product variety management has gained significant importance 
within the last two decades. A key enabler for this is considered 
to be convertibility which is defined by [3] as “the ability to 
easily transform the functionality of existing systems and 
machines to suit new production requirements”. To realise this, 
several approaches have been proposed for designing systems 
with the ability to handle the increasing product variety and 
fluctuating volume. However, unless an evaluation of the 
systems designed based on these approaches is performed, it is 
difficult to ascertain their capability to manage product variety. 

Hence, it is important to assess the system’s responsiveness and 
ability to adapt to change, especially in the early design stages, 
since poor initial design increases the effort and time spent 
during redesign later in the design and engineering process[4]. 
Hence, this paper proposes a novel design support mechanism 
which can assess the concept designs of automated assembly 
systems, in an industrial-friendly way, for their readiness to 
change to a new configuration.  

2. Literature review 

Over the past few years, the domain of product variety 
management and flexible systems have received lot of 
attention. As a result, a number of models and methods to 
evaluate the flexibility of system have been researched in 
literature [5], [6]. However, there is limited research in the field 
of convertibility, which is considered as one of the 
characteristics of reconfigurability. Although convertibility is 
associated with product variety management, it is difficult to 

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 27th CIRP Design Conference
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hypothesize a convertibility measurement using existing 
flexibility assessment models. Additionally, they need 
significant amount of data which is unavailable at the 
conceptual phase. Therefore, the literature study is limited to 
research on reconfigurability and convertibility evaluation.  

 
Nomenclature 

CS         System convertibility  
CE         Equipment convertibility 
CC         Component convertibility 
wE            Weight for equipment convertibility 
wL         Weight for layout convertibility 
CL         Layout convertibility 
CSS,k   Convertibility of sub-system k (equipment level) 
N  Number of sub-systems 

Mk  Number of components in sub-system k 
fh,i              Hardware convertibility factor  
fs,j               Software convertibility factor 
n  Number of hardware convertibility factors 
m  Number of software convertibility factors 
x   is 2 for controlled and 1 for uncontrolled components 
Nk   Number of sub-systems, excluding sub-system k,   
             shut down when sub-system k is under conversion 
NF  Total number of part flow connections, excluding  
             input and output 
NAWS  Number of assembly workstations 
NR         Minimum number of replicated stations  
LA  Autonomy index 
LC  Connectivity index 
LR  Replication index 

 
In the domain of reconfigurability, an approach for 

assessing the re-configurability of distributed manufacturing 
systems was proposed in [7]. In a similar study, Hasan et al. [8] 
investigated the re-configurability of machines through Multi-
Attribute Utility Theory and Power function approximation. In 
the study, the re-configurability of machine configurations was 
evaluated based on machine attributes such as possible number 
of configurations, operational capability, effort required to 
reconfigure and production capacity of the machine. Farid [9] 
synthesised a re-configuration measure based on axiomatic 
design theory and design structure matrix  to derive composite 
reconfiguration evaluation. A measure of the system’s 
convertibility was formulated by the summation of the 
transportation and transformation convertibility in the work. 
Convertibility was measured in three different domains by [10], 
namely: configuration, machine, and material handling. The 
configuration convertibility was quantitatively evaluated with 
variables such as routing connections, replicated machines, and 
increment of change. Machine and material handling 
convertibility were intuitively scored. The combined score of 
the three domains provides a multi-dimensional convertibility 
value which is a representative of the system. This evaluation 
model was further improved by an adaptation to mixed-model 
assembly lines by [11], wherein a novel product family 
convertibility analysis was introduced.  

An approach to measure the machine reconfigurability and 
operational capability was proposed by [12] and the possible 

number of possible machine configurations and the effort 
involved in changing them were identified. A metric called 
‘reconfiguration smoothness’ was measured based on the cost, 
effort and time spent in system reconfiguration by [13]. 
Various aspects of change involved at machine level, system 
level and market level were considered. Each was expressed as 
a function of either the capabilities, or the machines added, 
removed or adjusted in the system. Ahmad et al. [14] describe 
an approach to evaluate the reconfigurability of an hydrogen 
fuel cell assembly system and analyse its suitability to the 
product. The approach intuitively measures a Reconfigurable 
Assembly System (RAS) for its conformity to the various 
aspects of reconfigurability including convertibility. 

From the above-mentioned studies, it is observed that there 
is lack of sufficient research on the evaluation of convertibility 
of assembly systems in the concept phase that can assist in 
system redesign to achieve an optimum level of flexibility. To 
fulfil this gap, a novel evaluation model to assess the assembly 
system, for product variety at the concept stage, is proposed. 
The model can flag the system components at various levels of 
hierarchy that will later help formulate a multi-criteria redesign 
policy that can guide the designer to achieve a system capable 
of managing variety.  

3. Methodology 

The scope of this research is defined around the analysis of 
automated assembly system design convertibility based on its 
equipment structures and layout (Fig. 1). In this approach, an 
industrial assembly system is defined as a hierarchical network 
consisting of assembly workstations (AWS), connected 
through material handling units (MHU). System convertibility 
CS is defined as an average of equipment convertibility CE, and 
layout convertibility CL and calculated by Eq. 1., where in order 
to provide decision-making flexibility in system assessment, 
wE and wL represent the weights for CE and CL respectively 

 (1)

 

Fig. 1 The proposed methodology. 
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3.1. Equipment convertibility  

Equipment convertibility CE is the ability of equipment in a 
system to be changed or adjusted, by the addition, removal or 
adjustment of its constituent components. In this context, CE is 
defined as a function of the convertibility of each assembly sub-
system, N represents the number of sub-systems, CSS, 
representing either workstations or material handling units, and 
is calculated as follows (Eq. 2).  

 (2)

In this study, a sub-system is assumed to be composed of a 
set of re-usable automation components (e.g. rotary table, 
clamp, gripper, etc.). Mk is defined as the number of 
components in sub-system k, CSS is defined as the average 
component convertibility within the sub-system and it is 
calculated by Eq. 3. 

 (3) 

A component is defined as the basic unit of a sub-system 
which at a finer level is composed of elements [15], and is 
capable of functioning either autonomously and/or integrated 
with other components to perform its desired function [16]. In 
this context, two types of classifications of component have 
been made; i.e. control and function. The classification based 
on control requirements categories components into two 

groups, i.e. controlled or non-controlled. Components that do 
not have control logic, and can be assessed only from the 
hardware perspective are denoted as non-controlled 
components (e.g. passive fixtures). On the other hand, 
controlled components can be actuated and hence are 
associated with control logic (e.g. active fixtures). Therefore, 
they must be assessed on both hardware and software domains. 
In function-based classification, the components are classified 
into five types i.e. motion, holding, joining, transport, and 
feeding components. By adapting the coding approach 
proposed in [17], the component convertibility, CC, is 
calculated using the following equation, where ‘n’ and ‘m’ 
represent the number of hardware and software convertibility 
factors respectively. 

 

 (4)

In this context, the hardware convertibility factors are 
calculated for all components regardless of their control 
behaviour, however the factors vary depending on their 
functions. Irrespective of the function of the component, the 
software convertibility factors are generic and calculated only 
for controlled components. Adapted from Table 1 and Table 2 
represent hardware and software component convertibility 
factors respectively, and it is assumed in this study that these 
factors impact the system convertibility. However, components 
in an assembly system which are used for measurement or 
inspection, e.g. sensors, test gauge etc. and components which 

Table 1. Hardware convertibility scores. 
 Function i Criteria 0 0.333 0.667 1 

1 Motion 1 Structure - Fixed - Modular 
  2 Interface Static/irremovable Complex/non-standard - Simple/standard 
  3 Path motion Fixed - - Variable 
  4 Workspace - Tight Appropriate  Large  
  5 Axis of motion - 1-2 3-4 5-6+ 
        
2 Holding 1 Structure - Fixed Modular Reconfigurable  
  2 Interface Static/irremovable Complex/non-standard - Simple/standard 
  3 DOF - 0 1-2 3+ 
        
3 Transport 1 Structure - Fixed - Modular/extendable 
  2 Interface Static/irremovable Complex/non-standard - Simple/standard 
  3 Direction - Unidirectional Bi-directional Multi-directional 
  4 Type - Synchronised - Asynchronised 
  5 Routing - Fixed - Free 
        
4 Joining 1 Structure - Fixed Changeable - manual Changeable – auto 
  2 Interface Static/irremovable Complex/non-standard - Simple/standard 
  3 Tool magazine - None/fixed - Changeable 
        
5 Feeding 1 Structure - Fixed - Modular 
  2 Interface Static/irremovable Complex/non-standard - Simple/standard 
  3 Part orientation None Passive - Active 
 
Table 2. Software convertibility scores. 

i Criteria 0 0.333 0.667 1 

1 Openness Closed - Limited Open 
2 Configuration - Fixed - Modular 
3 Auto-adjustment - None - Available 
4 Control type - Open-loop - Closed-loop 
5 Programming Online Online – assistive  Offline – vendor specific Offline – generic  
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do not fall under any of the described categories are not 
considered in the model.   

Figure 2 illustrates an example of convertibility for a 6 axis 
robot. The robot consists of elements such as actuators, sensors 
which are integrated to form the component. Unless the robot 
is modular, its elements, namely the actuators and sensors 
cannot be assessed at the hardware and software level. 
Therefore, the robot is considered as a standalone component 
and further decomposition is not beneficial for the considered 
model. It is assumed that the robot is mounted to a station and 
has a workspace appropriate for application. Since the robot is 
a motion component, the hardware convertibility factors for 
motion are considered. The robot structural configuration is 
fixed and has a non-standard interface with the station. It has 
variable motion path due to the vast workspace and ability to 
move to any point in that space. In this example, the robot 
software is limited in its openness as only certain parameters of 
the software can be modified. The robot movement is guided 
by a vision system that enables the robot to adjust according to 
changes in surroundings. This is captured by the criterion 
‘auto-adjustment’. In cases of fixed automation which lack 
flexibility, the score will be 0.333 from the Table 2. The robot, 
inherently has closed-loop control because of the use of servo 
motors and the programming is done through offline vendor 
specific software. Accordingly, the component convertibility 
of the robot is calculated as 0.656. 

3.2. Layout convertibility 

Layout convertibility is defined as the ability to change the 
configuration and/or the part routing to accommodate new 
product variants. In this study, the system layout is represented 
as a network, with the nodes representing AWSs and the edges 
representing part flows. The layout convertibility is defined as 
the average of the indices describing various aspects of the 
system layout. Accordingly, it is calculated by Eq. 5. 

 

 (5)

3.2.1. Autonomy index, LA  
The layout autonomy index is used to express the system’s 

capability to be autonomous and not be affected or shutdown 
when conversion in a sub-system takes place. Accordingly, the 
layout autonomy is high if the system configuration is parallel 
since there is possibility of re-routing when a sub-system is shut 
down for conversion. LA is calculated as Eq. 6. 

 (6)

3.2.2. Connectivity index, LC 
According to [10], the degree of convertibility can be 

understood by evaluating the routing connections. This 
approach has been adapted in this research to assess the impact 
of the routing connections on the layout convertibility. The 
connectivity index is defined as a function of the existing 
number of material flow connections and the theoretical 
maximum and minimum number of flow connections (Eq. 7).  

 (7)

It is important to note, since it is impractical to achieve 
theoretical maximum in real industrial scenarios, a logarithmic 
function is used to avoid unrealistic scoring for relatively low 
number of flow paths. 

3.2.3. Replication index, LR 
Replication index is adapted from the study proposed by 

[10]. It is defined as the minimum number of AWSs that have 
the same operational capability, thereby enabling production of 
same product. It indicates the number of new product variants 
that can be introduced to the layout without stopping current 
production and it is calculated as (Eq. 8), where NR represents 
the minimum number of replicated stations. 

 (8)

3.2.4. Illustrative example  
An example of three types of layout configurations, each 

consisting of ten AWSs is depicted to explain the calculation 
of layout complexity (Fig. 3). Case A represents the stations are 
arranged in a parallel configuration with an index table 
transporting the product to all the stations. In case B, two 
gantries and three index tables are used for material handling. 
The layout configuration is hybrid with few stations in parallel 
and few in serial. Case C shows the stations arranged in a serial 
configuration with product being processed in each station 
before they can enter the next. Material transport between 
stations is with a modular conveyor system. Accordingly, the 
three cases are subjected to the layout convertibility indices and 
the results are shown in Table 3. It is assumed in this example, 
that all the part flow directions are unidirectional. From the 
table, the serial line has poor score for all three indices of layout 
convertibility. This is because all stations are dependent on one 
another, significantly reducing its convertibility. This indicates 

 

Fig. 2 Convertibility analysis of 6 axis robot manipulator. 
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that when a station in serial line is shut down for reconfiguring 
it, the whole line shuts down. 

In comparison, the hybrid configuration scores represent 
more convertibility than the serial configuration. This is due to 
the parallel stations that exist in the configuration. The parallel 
configuration has good scores for all three indices owing to the 
stations capability of behaving independent of the other 
stations during operation. Although this indicates the 
possibility of producing multiple variants in the same system, 
making it suitable for managing product variety, it is often 
impractical to be implemented due to the cost involved. 

 

4. Use case 

The test case demonstrated comprises of nine AWSs and 
two MHUs, representing eleven subsystems in total for battery 
module assembly, as shown in Figure 4. Material handling sub-
system 1 helps transportation of batteries, busbars, module 
covers and accessories from the warehouse to the assembly 
area and vice versa. Material handling sub-system 2 comprises 
of the modular conveyor unit, that transports the products 
between the stations. AWSs 1 and 2, perform the same 
operations of handling batteries and inserting them into the 
battery trays. AWSs 3 to 9 perform unique operations with each 
station having a defined operational capability. Stations 3, 4, 
and 5 locate the top battery tray, insert and tighten nuts, and 
join sub-modules respectively. Stations 6, 7 and 8 perform 
busbar locating, pulse arc welding and thermal pad assembly 
respectively. However, the need to perform busbar assembly 
and welding on the other side of the module, demands a 
reorientation operation. Therefore, the module is re-routed to 
station 5 where the module rotation is performed, after which 
it passes through the same sequence of assembly operations 
after which the module cover is assembled in station 9. The 
case study establishes the convertibility measurement for the 

conceptualized system and identifies aspects of system that 
should be considered for re-design. The component 
convertibility (Eq. 4) is calculated, according to the example 
shown in Fig 3, for each component present in a subsystem. 
From Fig. 4, ASW 1 is a subsystem consisting of 4 components 
and each of them have a convertibility score. This value is later 
input to Eq. 3 to obtain the convertibility score for each 
subsystem. Equation 2 is then utilized to find the overall 
equipment convertibility. In a similar manner, the layout 
convertibility assessment is performed using Eq. 5, 6 and 7 and 
can be visualized in Fig. 4. Finally, the system convertibility is 
evaluated using Eq. 1. It is important to bear in mind that the 
components should be classified as per section 3.1, and those 
components that are designed for a specific product, (e.g. work 
holders, pallet) are to be ignored. 

4.1.  Results and discussions 

The results of the equipment and layout convertibility for 
the test case is shown in Fig. 4, from which the following can 
be inferred. MHU 2 and AWS 8 have low convertibility values 
and MHU1, AWSs 5, 7, and 9 have relatively high 
convertibility values. The low score of MHU2 is attributed to 
the conveyor and pallet locator, as can be seen from the 
component convertibility assessment. On the other hand, the 
high scores of MHU1 can be attributed to use of an AGV and 
a 6 axis robot in the system. The autonomy index value is 
calculated considering the possibility of interchanging AWS 1 
and 2, and the connectivity index is calculated bearing in mind 
that the product can be routed to station 5 from station 8. The 
layout convertibility measure points out the inability for 
conveyor direction reversal and high level of station 
dependency.  From Fig. 4, the equipment convertibility score 
is a bit higher than the layout convertibility score. This is due 
to the use of 6 axis robots in most of the sub-systems, however 
the absence of parallel stations and bi-directional product flow 
reduces the layout convertibility.  

5. Conclusion and future work 

In this paper, an approach based on heuristics is 
demonstrated with a battery module assembly test case and it 
is believed to have the following advantages i) ability to 
quickly assess designs that are detailed, as well as those that 
lack detail ii) reduced effort and cost involved to do the 
assessment iii) the practicality due to the component-based 
evaluation making it highly suitable for validating initial 
designs iv) quantification of a single design or comparison of 
multiple designs v) supporting optimisation of large assembly 
systems, where it is tedious to keep track of components used.  

The research is an ongoing work, and the subjectivity of 
evaluating the different hardware and system will be reduced 
by optimizing the model and calibrating the scoring system for 
numerous test cases. Although currently, all components are 
assumed to be equal, empirical study will be done in the future 
to identify optimum weights for the different components. 
Additionally, the impact of convertibility at system level on the 
reconfiguration at the higher level of supervision control for 
scheduling, production execution etc. form part of future work.  

Table 3.  Example layout convertibility calculations. 

Case LA LC LR CL 

A 1 0.481 0.9 0.794 
B 0.82 0.374 0 0.398 
C 0.1 0 0 0.033 

 

Fig. 3 Sample layout configurations of ten AWSs. 
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Abstract 

Batteries are a strategic technology to decarbonize conventional automotive powertrains and enable energy policy turnaround from fossil fuels 
to renewable energy. The demand for battery packs is rising, but they remain unable to compete with conventional technologies, primarily due 
to higher costs. Major sources of cost remain in manufacturing and assembly. These costs can be attributed to a need for high product quality, 
material handling complexity, uncertain and fluctuating production volumes, and an unpredictable breadth of product variants. This research 
paper applies the paradigms of flexibility from a mechanical engineering perspective, and reconfigurability from a software perspective to form 
a holistic, integrated manufacturing solution to better realize product variants. This allows manufacturers to de-risk investment as there is 
increased confidence that a facility can meet new requirements with reduced effort, and also shows how part of the vision of Industry 4.0 
associated with the integration and exploitation of data can be fulfilled. A functional decomposition of battery packs is used to develop a 
foundational understanding of how changes in customer requirements can result in physical product changes. A Product, Process, and Resource 
(PPR) methodology is employed to link physical product characteristics to physical and logical characteristics of resources. This mapping is 
leveraged to enable the design of a gripper with focused flexibility by the Institute for Machine Tools and Industrial Management (iwb) at the 
Technical University of Munich, as it is acknowledged that mechanical changes are challenging to realize within industrial manufacturing 
facilities. Reconfigurability is realised through exploitation of data integration across the PPR domains, through the extension of the capabilities 
of a non-commercial virtual engineering toolset developed by the Automation Systems Group at the University of Warwick. The work shows an 
“end-to-end” approach that practically demonstrates the application of the flexibility and reconfigurability paradigms within an industrial 
engineering context.  
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1. Introduction 

Efforts are being made to transition society towards 
renewable energy technologies, driven by policy and 
legislation, due to the threat posed by increases in greenhouse 
gas emissions and combustion pollutants [1]. It is estimated 
that currently 25% of CO2 emissions can be attributed to the 
transport sector; this is projected to rise to 50% by 2030 if 
current trends continue [2]. Electric vehicles are a potential 
solution as sufficient deployment will reduce pollutants, 
greenhouse gases, and offer significant well-to-wheel 
efficiency improvements [3]. There are a range of automotive 

propulsion system configurations ranging from mild-hybrids to 
purely electric systems. Irrespective of architecture however, 
batteries remain a common key enabler of electrification for 
energy storage within and external to the automotive sector [4]. 
A breadth of applications for battery technologies is anticipated 
within the coming years which bring with them a broad range 
of potential variants and product types that may need to be 
produced by a single production system. The degree of variety 
is difficult to predict and so engineers are compelled to design 
manufacturing systems to be able to accommodate change. 
This need aligns with the vision of Industry 4.0, where 
connectivity across all levels of the business and through the 

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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product and system lifecycles facilitates manufacturing agility 
and proactivity [5].  

Two major phases of a system lifecycle are design and re-
engineering/reconfiguration. At the initial design phase, a 
number of considerations need to be made, one of which is to 
try and anticipate the breadth of capability the system needs 
with respect to product requirements. Reconfiguration phases 
are often driven by changes to the product or new product 
introduction. In order to reduce the time and accompanying 
costs associated with this phase, it is beneficial to know i) the 
nature of the system changes, and ii) a mechanism for 
executing the change with minimal human intervention. Some 
common existing paradigms associated with change within 
manufacturing systems are flexibility and reconfigurability. 
However, formal implementation of these concepts within the 
engineering workflow during the system design and 
reconfiguration phases is limited. In line with the vision of 
Industry 4.0, this study proposes that the integration of product 
realisation domains (Product, Process and Resource (PPR)) 
through lifecycles within engineering tools is fundamental in 
managing change. The approach is demonstrated on the 
introduction of a new variant in a battery module assembly 
system. 

2. Literature Review 

2.1. Digital Manufacturing  

Digital Manufacturing is one of the disciplines within 
Product Lifecycle Management (PLM) [6], where Computer 
Aided Design (CAD) and Computer Aided Engineering data 
plays a vital role in managing products and systems through 
their respective lifecycles. The concept of Digital Planning 
Validation is discussed in [7], where the validation of a 
product’s produce-ability is done parallel to the production 
planning phase in a digital environment. Having validated the 
plans virtually, training materials for operators can be 
generated and used. Digital Mock-Ups discussed in [8] are used 
to simulate a production system to verify and validate system 
configurations, layouts, and process plans. Integration of 
digital models with the physical system is done during the 
commissioning phase, often to validate programmable logic 
controller (PLC) software. This has been demonstrated in [9] 
through the use of Logic Control Modeling connected to 
DELMIA Automation V5, and Tecnomatix eM-PLC from 
Siemens. Beyond this point, however, digital models see 
limited use as they are not maintained post the build and 
commissioning phases. Thus, during reconfiguration there is 
limited support from digital manufacturing or PLM tools. For 
example, translation of changes in product features through to 
machine control parameters within PLC programs remains an 
entirely manual process, supported through ad-hoc methods 
[10,11]. As a result, despite the benefits of the digital 
manufacturing paradigm at the design phase, its value with 
respect to supporting and executing flexibility and 
reconfigurability on the shop floor is limited.  

2.2. Flexibility and Reconfigurability 

There are many definitions for flexibility, reconfigurability, 
and related terms within the literature. Following ElMaraghy, 
for example, the ability of production systems to be adaptable 

to continuous changes is described as changeability [12]. 
Forming a subcategory of changeability, flexibility is related to 
the assembly system, while reconfigurability refers to the entire 
production area including logistics [12]. The authors have 
chosen the definiton put forward by Koren ([13,14]): 
“flexibility is the general ability to respond to changes in 
production volume or product variants in a fast and global cost 
efficient way without changing elements of the production 
line” [13], as it aligns with the approach presented in this paper. 
A design framework for flexible systems is proposed in [24]. It 
consists of four stages supported by process management. The 
baseline design assists designers in the early design process 
using known configurations. This is followed by the 
uncertainty recognition which is to help identify the range of 
flexibility. In the concept generation phase, concepts are 
generated to handle the identified range of flexibility. Finally, 
designers analyse and evaluate the generated concepts. The 
proposed taxonomy and further literature [25] focus on the 
system level. A detailed methodology for the design of flexible 
system components for a production system is absent in the 
literature. 

Design methodologies for flexible production system are 
needed to achieve reconfigurability. Reconfigurability is 
considered a subset of flexibility [15]. It is the ability to change 
the capability of production equipment by adding or removing 
functional elements in a short time and with low effort to meet 
new requirements within a part family [13]. Reconfigurability 
within the software domain is addressed by [16] who discusses 
issues faced with automatic software reconfiguration such as: 
the absence of a formal procedure for implementation, limited 
application of the available methods, and the need to 
reconfigure all processes simultaneously. According to [17], 
within the context of manufacturing, software reconfiguration 
for control systems is considered a key enabler for 
reconfigurable manufacturing systems (RMS). Self-adapting 
control software is created through integration with a 
mechatronic model, reducing post reconfiguration system ramp 
up time [17]. A reconfigurable control architecture that can 
adapt to changes has been proposed by [18], in which 
component based development has been combined with 
holonic manufacturing system to provide an architecture for a 
decentralized manufacturing system. In [19], a framework is 
proposed to translate the assembly sequence change 
necessitated as a consequence of product variant introduction 
to the control system logic through virtual engineering tools. In 
[20], a PPR ontology knowledge-driven approach, enables 
increased reactivity to change. Despite the advancements in 
software reconfiguration, according to [21], the inability of the 
current PLCs to help realise RMS, is an inhibitor to the 
implementation of control software reconfiguration. One 
reason for this is the current use of the IEC 61131-3 standard 
as it does not favour dynamic reconfiguration. However, the 
IEC 61499 standard is sought to address this issue as it more 
suitable for reconfiguration [22], however gaining industrial 
acceptance for this standard has proved to be a challenge [23]. 
Despite these advances, reconfiguration at the field device level 
still needs to be supported by the wider engineering lifecycle, 
which at present lacks suitable engineering tools and methods 
[17].  
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2.3. Summary 

The importance of flexibility and reconfigurability is 
recognized, but due to limited formal, structured engineering 
processes and links across domains, true realisation of these 
paradigms remain hamstrung by inefficient workflows. 
Therefore, this paper proposes a PPR framework that 
demonstrates i) how manufacturing system components should 
be designed to have sufficient flexibility for the anticipated 
product variety i.e. focused  flexibility, and ii) an engineering 
workflow that supports reconfiguration through the use of 
component-based virtual engineering tools.  

3. Approach 

3.1. PPR framework 

A PPR framework is used in this work as described in Fig. 
1. At the highest level, the product drives the process, which in 
turn drives the resource. At the point of resource existence in 
the physical (or digital) world, it begins to constrain the process 
which in turn constrains product design. This set of 
assumptions is used to drive the component design process 
with sufficient flexibility to accommodate a range of product 
variants and consequently, a range of process parameters 
through a requirements list (Section 3.2). The design 
information is instantiated into a set of virtual engineering 
tools which support the system through its lifecycle. As such, 
common data models can be used both in the design phase and 
later in the operation phase to support reconfiguration, 
exploiting the flexibility designed into the system (Section 3.3). 

 

Fig. 1. PPR framework with flexible manufacturing system component 
design, and reconfigurability through virtual engineering. 

3.2. Product/Process parameter selection for machine 
component design 

A requirements list based on product/process parameters is 
created and developed iteratively. Firstly, general requirements 
e.g. safety, environment, interfaces etc., are identified; this is a 
system level view. Next, a deep-dive on product requirements 
is carried out, analysing all members of a focused product 
family. At this point, key product features are extracted from 
the overall parameter set e.g. width, height, depth (Fig. 1), to 
extract basic product designs in the form of topologies. These 
topologies build the basis for a heuristic solution search. 

Next, the process parameters are investigated which 
include: reachability, freedom of damage, and positional 
accuracy (Fig. 1). After a general preselection, the derivation 
of the requirements is classified into demand and request by the 
comparison of couples (comparison, Fig. 1). A Pareto analysis 
is conducted to split mandatory from optional requirements to 
reduce complexity. Once all appropriate requirements have 
been captured, Resource domain parameters are defined. The 
physical description of necessary skills is derived from range 
definitions. The necessary skills identified define the functional 
structure of the Resource component. Through functional 
decomposition into subfunctions, operating principle selection 
is enabled using a morphological analysis. Based on the set of 
operating principles, potential concepts are generated. Any 
concept to be further detailed is selected through a utility 
analysis which uses the evaluation criteria from the initial 
requirements list. During the selection process, those solutions 
that offer the ability to rapidly reconfigure through software i.e. 
mechatronics, are most favourable, despite not having lowest 
initial investment cost. System reconfiguration offered through 
software modifications provides compatibility with the 
Industry 4.0 vision. The following section describes how 
engineering tools can use design data to support 
reconfiguration to exploit the flexibility designed into the 
system. 

3.3. vueOne toolset for supporting reconfiguration 

vueOne is an engineering toolset that supports the lifecycle 
of a production system. It was developed by the Automation 
Systems Group at the University of Warwick. Within the tools, 
extensible component-based data models support process 
planning, system configuration, code generation and 
deployment, commissioning, maintenance, operational 
analytics, and system reconfiguration [26]. Geometries for 
system components are converted from native CAD formats to 
VRML/X3D and form a part of a software component within 
the tool, uniquely identified through an ID. This assists the 
identification and management of the components in later 
stages of the product lifecycle. During the process planning 
phase, system behaviour is modelled through the combination 
of kinematics and state transition diagrams (STDs) that are IEC 
61131 compliant. Using a mapper module within the tools, 
these behavioural models are mapped to function blocks for 
the automatic generation of programmable logic controller 
(PLC) code and virtual commissioning through OPC-UA client 
connectivity. A specific type of software component within the 
tools created for this work is the “Product Component” which 
contains the product geometry and the key product feature 
information described in 3.2 (Fig. 1). Although product 
geometry could previously be imported in the tools, there was 
no mechanism for enriching the information i.e. key product 
features/characteristics identified by the design phase. These 
key product features are mapped to parameters of machine 
component states, i.e. actuators, by the user. This link is 
preserved within the database of the engineering tools (vueOne 
DB, Fig. 1). Once this link exists, it is maintained as each 
respective component has a constant ID through its lifecycle. 
Thus, if a given product design changes, the machine behaviour 
is also modified due to the explicit link between data models at 
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a fine level of granularity. Of course, it is necessary for the 
native product CAD format to originally have this feature 
“tagged” in a way that prevents loss during conversion (Fig. 
1). At present, this issue has not been fully resolved but it is 
expected that the Product and Manufacturing Information 
(PMI) which is supported by several CAD formats would be 
key. The formal, explicit link between the respective PPR 
domains through virtual engineering tools presents the ability 
to i) identify whether the product features of a new variant fit 
into the system range through rules, ii) identify the impact of 
product attribute change on the resource domain through 
visualisation and system behaviour simulation, and iii) 
modification of PLC software with the confidence that it will 
meet requirements from the product – resource coupling. In this 
research, items ii) and iii) are tested in the case study.  

4. Case Study 

4.1. Experimental setup 

The framework and approach described in Chapter 3 is 
applied to the battery module assembly station at the Technical 
University of Munich (TUM), pictured in Fig. 2. The battery 
cells are handled by a collaborative robot (1) mounted on a 
linear axis (2) in order to increase the robot range. The feeding 
line (3) houses battery module components. The battery 
modules are assembled on a central mounting station (4). The 
robot is equipped with a flexible cell gripper designed using the 
method described in Section 3.2. The application of the 
methodology is explained in Section 4.2. 

Fig. 2. Flexible and modular assembly station for battery modules. 

The global requirement for the assembly station is to 
accommodate the assembly of battery modules for stationary 
energy storage and automotive applications. The different 
module use cases have different sets of design requirements. 
All components in the cell have been developed to suit a broad 
range of possible battery modules. In this case study, two 
different modules are to be assembled successively. The 
stationary energy storage module, product 1, consists of six 
cylindrical lithium-ion cells type 26650, which are arranged in 
a triangular configuration on a cell holder. For heat 
management purposes, there is a gap between the cells for air-
cooling. The battery modules for the automotive industry, 
product 2, consist of six prismatic lithium-ion cells type 
PHEV1 which were developed at the TUM in the project 
ProLIZ. Liquid cooling of cells necessitates direct contact 
between the prismatic cells. The following case study 

demonstrates the application of the flexible component design 
methodology and how the introduction of product 2 is 
accommodated by the gripper from a mechanical flexibility and 
software reconfigurability perspective.  

4.2. Application of component design method to the gripper  

Grippers can be categorized into three flexibility domains 
by [27]: i) adaption to geometry and/or mass of work pieces, ii) 
change of functional elements, and iii) self-adaption to object-
specific characteristics. Flexibility can be achieved with 
universal grippers that can adapt to every gripping operation 
and special grippers. The complexity of a gripper increases 
with the rise of mechanical flexibility [28], therefore its 
physical implementation has to be reduced and enhanced 
otherwise. The design methodology for flexible manufacturing 
system components is applied to the gripper for the system 
described in 4.1. 

First, the general requirements list is created which focuses 
on avoiding cell damage and applying constant force. The 
product family within the context of battery modules is 
examined through a review of all possible cell types present in 
the market. Multiple criteria are researched, e.g. characteristic 
width of 120-173 mm for prismatic cells, 70-150 mm for pouch 
cells and 18-26 mm diameter for cylindrical cells. Having 
determined the ranges, specific process requirements are 
extracted, primarily oriented towards the mounting direction 
depending on the cell type. Cylindrical cells require uniaxial 
vertical mounting, while prismatic and pouch cells demand 
multiaxial mounting techniques. The requirements are divided 
into mandatory and optional criteria. Based on the requirements 
list, the functional decomposition is executed leading to the 
identification of functions such as gripper adaption to different 
cell geometries. Operating principles for each function were 
collected, for this use case, multipoint jaws and adjustable 
vacuum cups are selected. Two concepts were designed based 
on the aforementioned operating principles.  

Both concepts were evaluated using a utility analysis based 
on the requirements list. The gripper equipped with multipoint 
jaws was excluded from the mechanical construction because 
of its inability to grip pouch cells in the sealed area, which is 
needed for specific handling situations. Applying the Product-
Process mapping on the mechanical design of the gripper, three 
vacuum cups were selected enabling the handling of three 
round cells simultaneously, enhancing process efficiency. 
Moreover, the handling of pouch and prismatic hard case cells 
was ensured due to the extended gripping surface.  

Fig. 3.(a) Gripper behaviour for product 1 and (b) new gripper behaviour 
achieved through software reconfiguration via engineering tool integration. 
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The final design consists of a fixed vacuum cup, a vacuum 
cup on a pneumatically driven linear axis, and a vacuum cup 
on a programmable electrically driven linear axis. The 
electrical axis contains a JUNG QuickPos® linear motor, 
actuated by a FAULHABER motion controller. A serial 
RS232-interface is used to communicate the target value to the 
linear motor. To ensure the handling of cells within the 
identified dimension range, the distance between the cups can 
be varied between 21.5 mm and 71.5 mm. 

4.3. Mechanical flexibility 

Due to the three replaceable vacuum cups, the gripper 
possesses adequate mechanical flexibility for the product 
family. Handling of cylindrical batteries is achieved through 
gripping centrally at the top with a distance of 29.5 mm 
between the cups, whereby three cells can be processed 
simultaneously (Fig. 3a). Cells for product 1 are picked and 
placed with a vertical motion. The prismatic cells of product 2 
are gripped at the face with the largest surface area. The three 
vacuum suckers are reoriented at equal distances from the 
center of mass of the cell, resulting in a distance of 61.5 mm 
between the cups. Due to the different cooling principle of 
product 2, the production process also has to be changed: the 
vertical joining is transferred to a bi-directional joining, 
composed of a vertical movement, followed by horizontally 
joining the cells to achieve contact between them (Fig. 3b). 
Note that the bi-directional nature of the process is largely 
handled by the robot, the handling process itself is enabled by 
the gripper’s flexible design. The design method has 
synthesized a broad spectrum of product and process 
features/characteristics into a single efficient design. The 
software reconfiguration necessary for the introduction of the 
new product is described in the following section. 

4.4. Software reconfiguration 

The initial conditions of the virtual model in the engineering 
tools are aligned to those sets of behaviours matching the 
requirements of product 1, e.g. the spacing between the vacuum 
cups of the gripper. When the production is now changed from 
a battery module of type 1 to type 2, new code needs to be 
uploaded to the PLC . Therefore a reconfiguration of the 
software is required due to the different requirements of 
product 2 compared to product 1: the vaccum cups need to 
change their positions. Figure 4 illustrates how data is taken 
from the source CAD file, pulled into state behaviour of 
system components and control code for the PLC is generated 
and deployed for product 2. 

It is envisioned that the product designer would be informed 
which features to annotate or tag based on a set of rules created 
as an output of the system component design phase decribed in 
4.2. The source CAD file is converted to VRML/X3D through 
a convertor in the engineering tools. The annotation is then 
present in the file (typically VRML/X3D does not have support 
for annotations, but within the toolset this is overcome through 
explicit insertion). When the user creates the Product 
Component within the vueOne toolset, the tool parses the 
VRML/X3D file for “tagged” features which then formally 
form part of the Product Component data model. Once the 
product feature information is within the Product Component 

data model, it is accessible by the STD of any controllable 
component i.e. actuator, in the engineering tool (vueOne DB, 
Fig. 4). 

Fig. 4 Workflow for capturing product feature information and mapping to 
gripper behaviour. Red dashed lines indicate new workflow developed through 
this work, while black lines correspond to existing tool capability. 

When the user imports the Product Component data model 
for product 2 into the virtual system, the mappings between 
product 1 and the STD are replaced. The user must then 
navigate to the gripper state associated with gripping and 
access product features of product 2. “PartFeature_Grip” is 
selected which has a value of 61.5mm. Now, an explicit link 
has been formed between the state of the gripper and the 
product feature. If the feature is changed in the VRML/X3D, 
the machine behaviour changes as well. This explicit mapping 
facilitates more rapid product and process validation, as well as 
system reconfiguration. 

4.5. Evaluation 

The case study has demonstrated how the integration 
between the PPR domains supports the design and 
reconfiguration phases of an assembly system. The approach in 
this study has successfully demonstrated that the gripper has 
sufficient flexibility to handle both cylindrical and prismatic 
cells with small modifications to the software. Using the 
methodology, the complexity of the gripper’s design has been 
limited while still providing the necessary degree of flexibility. 
However, the analysis was focused on gripper design, and 
therefore a predefined perspective was imposed. Alternative 
processes may require a different set of product/process 
parameters to be considered. This could result in an extensive 
approach to system design to ensure sufficient flexibility. 

Classically, modifying the behaviour of drives in an 
industrial application would be done on the human machine 
interface or through a new program on the PLC, and there 
would be either a very limited or no link to product data. The 
vision of Industry 4.0 is, in part, one of data integration. In this 
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work, this has been achieved through the use of virtual 
engineering tools which integrate i) the physical world with the 
associated digital model, and ii) key product characteristics 
with machine component behaviour. The former further 
demonstrates the importance of virtual engineering, while the 
latter forms a key contribution of this work. However, some 
manual steps still remain. Although many CAD formats 
support PMI i.e. ISO 10303 STEP, ISO 14306:2012 JT, 
standards associated with how such information should be 
described do not extend into the domain of product assembly. 
For example, ASME Y14.41 focuses on the presentation of 
geometrical dimensioning and tolerancing data. Standards 
associated with defining assembly processes i.e. VDI 2860, are 
typically not present within CAD software. This results in 
inconsistent descriptions of tagged features and thus 
conventional conversion software would be unable to identify 
key information. This problem could potentially be overcome 
through the use of Semantic Web Technologies, where 
meaning concerning the nature of a tagged feature is preserved. 
Alternatively, integration between CAD tools and vueOne 
could be achieved through a software interface that writes PMI 
data directly to the database. 

5. Conclusion and Further Work 

The aim of this work was to demonstrate how challenges 
associated with reduced product lifecycles and increasing 
product variety, particularly within the context of batteries, 
could be overcome. The authors proposed a PPR framework 
which considered potential product variants to instill 
mechanical flexibility into manufacturing system components. 
On creation of the physical system, future product design 
environments would have rules which supported the tagging of 
appropriate product data. Virtual engineering tools then 
integrate digital product data to digital representations of the 
physical system. This facilitates pre-validated software 
reconfiguration realising increased manufacturing 
responsiveness with reduced risk. The framework has been 
expanded to an approach that has successfully demonstrated 
new product introduction on an assembly system. This work 
demonstrates a mechanism to achieve this through the design 
and (re)engineering lifecycles of products and systems. Future 
work includes improved integration between source CAD and 
virtual engineering tools for manufacturing systems, and 
further validation of the method associated with design of 
flexible system components.  
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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

Electric vehicles are currently on the rise due to environmental and legal concerns. Furthermore, improvements made in battery assembly steadily
boosts the efficiency of electric vehicles. A well-prevalent method to overcome the uncertainties that emerge from the ever-changing battery
technology, is to assemble products using pilot production lines. However, literature pertaining to the scale-up of pilot production lines for full
scale production is scarce. Therefore, in this paper, potential scale-up scenarios for battery module assembly line are proposed in a discrete event
simulation software and results are compared. Furthermore, the benefits of the proposed method are discussed with a test case.
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1. Introduction

An important strategy adopted to ameliorate the undesirable
effects of greenhouse gases and CO2 emissions is power train
electrification [1]. It is therefore predicted that the demand
for electric mobility will slowly rise [2]. Consequently, it is
essential for automobile industries to develop competencies in
battery technology to remain competitive in the market. A well-
prevalent strategy to fulfill this vision, is to build pilot lines
to capture knowledge to be transferred for full-scale battery
assembly [3]. A key aspect of battery manufacturing and
assembly is that, it is currently facing multi-faceted problems
arising from high manufacturing cost, unpredictable market,
rapid changes in technology, increased number of variants and
missing standardization of battery design [4].

Therefore, to overcome these challenges, various studies
are being performed at WMG, as part of a suite of on-going
research projects to capture knowledge from pilot production
lines to support the early validation and verification capabilities
for full-scale production, such that process optimisation and
best-practice procedures for battery assembly can be quickly
established.

With the advent of Industry 4.0, computer simulation is
now an established way of improving the lifecycle management
of the products by supporting decision-making, scheduling
and cost analysis. Discrete-Event Simulation (DES), in
particular, has been adopted to perform layout design, analyse
operational performance [5] and has established its presence in
the manufacturing domain [6]. In the context of battery module
assembly, it is essential to simulate the product variants and its

effect on material flow; discrete-event simulation can be used
for this purpose [7]. Owing to the lack of implementation of
such models in battery production, this paper discusses a case of
battery module assembly, with the possible scenarios of scale-
up for a mixed model assembly line. In this regard, the scale-
up policies are integrated with two standard dispatching rules
and the resulting scenarios are modelled using a DES software.
Relevant statistical methods are used for comparison of the
scenarios and the methodology is validated using a test case of
two battery module variants. The impact of the product variety
and system configuration on the pilot line and its potential
scale-up scenarios and the support provided by Cyber-Physical
Systems (CPS) in decision making are discussed.

2. Literature Review

In this section the research gap is highlighted by reviewing
the available literature in three major areas namely: scale-
up principles, battery module assembly and DES modelling.
The research trend across these streams are discussed and
summarized.

Manufacturing industries face several challenges during
the transition of ideas and design from concept development
to full-scale production. During this shift, unfavourable
disturbances and challenges, such as the i) the inability to
increase functionality of stations due to certain constraints ii)
lack of knowledge regarding potential material flow issues iii)
effect of scale-up on the labour and material feeding etc., can
impact the performance of the system. Therefore, it is desirable
to detect and prevent these disturbances as early as possible;
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electrification [1]. It is therefore predicted that the demand
for electric mobility will slowly rise [2]. Consequently, it is
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assembly [3]. A key aspect of battery manufacturing and
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arising from high manufacturing cost, unpredictable market,
rapid changes in technology, increased number of variants and
missing standardization of battery design [4].

Therefore, to overcome these challenges, various studies
are being performed at WMG, as part of a suite of on-going
research projects to capture knowledge from pilot production
lines to support the early validation and verification capabilities
for full-scale production, such that process optimisation and
best-practice procedures for battery assembly can be quickly
established.

With the advent of Industry 4.0, computer simulation is
now an established way of improving the lifecycle management
of the products by supporting decision-making, scheduling
and cost analysis. Discrete-Event Simulation (DES), in
particular, has been adopted to perform layout design, analyse
operational performance [5] and has established its presence in
the manufacturing domain [6]. In the context of battery module
assembly, it is essential to simulate the product variants and its

effect on material flow; discrete-event simulation can be used
for this purpose [7]. Owing to the lack of implementation of
such models in battery production, this paper discusses a case of
battery module assembly, with the possible scenarios of scale-
up for a mixed model assembly line. In this regard, the scale-
up policies are integrated with two standard dispatching rules
and the resulting scenarios are modelled using a DES software.
Relevant statistical methods are used for comparison of the
scenarios and the methodology is validated using a test case of
two battery module variants. The impact of the product variety
and system configuration on the pilot line and its potential
scale-up scenarios and the support provided by Cyber-Physical
Systems (CPS) in decision making are discussed.

2. Literature Review

In this section the research gap is highlighted by reviewing
the available literature in three major areas namely: scale-
up principles, battery module assembly and DES modelling.
The research trend across these streams are discussed and
summarized.

Manufacturing industries face several challenges during
the transition of ideas and design from concept development
to full-scale production. During this shift, unfavourable
disturbances and challenges, such as the i) the inability to
increase functionality of stations due to certain constraints ii)
lack of knowledge regarding potential material flow issues iii)
effect of scale-up on the labour and material feeding etc., can
impact the performance of the system. Therefore, it is desirable
to detect and prevent these disturbances as early as possible;
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Fig. 1. The proposed methodology.

pilot production lines, which are considered as a training bed
for full-scale production can be used for this purpose and,
[8] in their research, highlight this issue. The transition from
pilot to full-scale production, is not without challenges, hence,
it is necessary to adopt strategies to enable and realise this
transition. In this regard, [9] discuss two main principles for
the implementation of scale-up in a manufacturing system.
Moreover, [10], in their research, present a detailed account
of the significant aspects and challenges faced in the scale-
up of processes in the pharmaceutical industry. Scalability
is considered as an important characteristic of Reconfigurable
Manufacturing System (RMS); [11] consider an approach
for the capacity scaling of RMS supported by optimization
techniques to predict the time and extent of scaling necessary.
The type of demand scenario that is considered can impact the
strategy adopted for capacity scaling and this is discussed by
[12]. [13] introduce a methodology to scale system capacity
by reconfiguration of the system. Conclusively, studies and
research works pertaining to provision of methodology or
systematic approach to guide the process of scaling a pilot line
are limited.

In the domain of battery assembly, notable research include
modelling fault-tolerant control of the system [14], framework
for automating the design process in the absence of standards
for the battery components [15] and supporting decisions
on assembly system design, equipment selection and task
allocation [16].

Discrete-event simulation has seen its application in
expediting the decision-making process in early production
phase by utilizing pre-defined modules in power train
electrification scenario [17]. [7] applies the concept of multi-
scale simulation in task allocation, buffer size analysis and
other operational elements in a battery module assembly case.
According to [7], the concepts of simulation have been applied
to battery electrode, cell and system modelling, however the
realization of simulation in the domain of battery production
process has not been well established.

2.1. Summary

Several studies have been conducted regarding the
scalability of production lines under different demand
scenarios. However, the concept of scaling up a pilot
production line has not been widely researched in the context
of manufacturing systems. Moreover, there is lack of a
formal methodology for realizing a smooth transition from the
pilot line to full-scale production. Simulation and modelling
have established digitization of design data and hence provide
basis for Industry 4.0 solution development. One such
simulation approach, DES has been applied in several cases
to optimize, decide and improve the operational performance
of numerous production lines. However, limited models are
available in literature to support battery production lines and
therefore, in this paper, discrete event simulation is utilized
to model a battery module assembly, with the intention to
i) understand the best practice for scale-up of pilot line to
full scale production, ii) comprehend the challenges imposed
by the system configuration during scale-up, iii) integrate the
principles of scale-up with scheduling policies and iv) compare
potential scale-up strategies.

3. Methodology

The research focus is on the pilot line battery module
assembly and their subsequent scale-up policies. Pilot
production lines serve as a transition phase from concept
development to full-scale production, wherein the validation of
product and process is carried by pilot runs [8]. The plethora
of data available from these production lines can serve as input
for efficient identification of potential disturbances, comparison
of scale-up strategies, fine tuning of process parameters and
predictive maintenance of bespoke machines. Figure 1 shows
the proposed methodology which is explained in detail further.

3.1. Overview

From Figure 1, the operational performance of an initial
virtual representation of the system is analysed in a DES
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software. Data obtained from the pilot production line, such
as the process and setup time, available space, material feeding
etc., is used in this stage to develop the model. This initial
model is subjected to two scale-up strategies. Strategy 1, which
will henceforth be referred to as INC referring to the increase
in functionality, involves decreasing the process time by
increasing the efficiency and performance of various machines
such that the required demand can be met. Strategy 2, which
will henceforth be referred to as REP referring to replication,
involves addition of stations with similar functionality in
parallel, thereby increasing resources to meet the demand. Two
dispatching rules are assigned to INC and REP. One of the rules
is First In First Out (FIFO) and the other is Shortest Processing
Time (SPT). This combination generates four scenarios as
follows

• S1 INC with SPT
• S2 INC with FIFO
• S3 REP with FIFO
• S4 REP with SPT

The criteria for comparison of the scenarios depends upon
the throughput. The threshold is set as x products of type A and
y products of type B; scenarios or replications of scenarios that
result in throughput less than this number are not considered for
comparison. From literature, two statistical techniques that are
used to compare the scenarios generated in DES are Ranking
and Selection and Multiple Comparison techniques [18]. In
this study, Multiple Comparison Procedures are identified as
the most suitable approach as they provide information about
the differences between the different scenarios in comparison.
Therefore, the selected scenarios are subjected to statistical
analysis as seen from Figure 1; MANOVA and ANOVA are
explained in sections 5.1 and 5.3 respectively following which
the results are discussed.

It is to be noted that, although the same methodology
might be applicable to different production systems, the
results and behaviour obtained and discussed in this study
are a consequence of the initial system configuration in
consideration. The following sections explain the reasoning
behind selection of the policies and rules for scale-up and
scheduling.

3.2. Scale-up

The concept of pilot production line has been briefly
discussed earlier. Pilot production phase is usually followed by
a ramp-up and/or full-scale production. Therefore, it is essential
that the most suitable strategy for full-scale production to be
identified well in advance to reduce the time to market. Virtual
engineering toolsets, in particular, discrete-event simulation
models are capable of providing support in this decision
making. Based on the two principles provided by [9], station
replicating and increasing functionality have been chosen.
In REP, the stations that are over-utilized are identified by
running experiments in the software and additional stations that
serve the same functionality are added to the system. This,
however, results in an increase in the number of operators
if the added stations are manual. Additional floor space is
required for this expansion as well. Therefore, more operators
are assigned to the stations inside the cyber model. Although

there is cost associated with this, it has not been quantified
in this research. The comparisons have been made from an
operational behaviour point of view. On the other hand, in
INC, the identified stations are assessed for potential functional
improvements and by increasing the functional characteristics,
the new demand is met without any addition of stations. The
process and setup times of the stations in the software model
are reduced to represent this increased functionality. However,
this is not discussed in detail in this study since this required
immense amount of data regarding the details of the proposed
improvement which is hard to establish in the concept stage.
It is to be noted that the number of stations remains the
same as the initial model, hence there is no necessity to add
more operators to the system. The next section explains the
scheduling policies adopted.

3.3. Scheduling and dispatching rules

In a production environment, scheduling and sequencing
of jobs can be done at various phases. Static schedules
are generated at the start of the production run and are not
changed, whereas, dynamic schedules are generated whenever
a disturbance occurs during production that demands a change
in the existing schedule. Several dispatching rules are applied
during production scheduling to select products according to
certain established priorities. For the purpose of this study, two
dispatching rules, namely First In First Out (FIFO) and Shortest
Processing Time (SPT) are selected and their combination with
the above-mentioned scale-up principles generates the four
scenarios which will be discussed in the following sections.

4. Case study initial model

Battery module assembly is performed prior to the pack
assembly, wherein cylindrical batteries are arranged in a
pre-determined pattern to obtain the required energy and
power. During this process, various components for module
framework, cooling system, electrical connections etc. are
fitted. A schematic diagram of the initial system configuration
is shown in Figure 2. The key features of the system in
discussion are as follows. The cylindrical 18650 Li-ion cells
that are assembled, have to be accessed from both directions,
the top and the bottom, to achieve the joining process.
Therefore, there is need for a reorientation operation after
which the joining process has to be repeated. In order to realise
this, the conveyor system is provided with a loop as shown in
Figure 2. The two sources A and B generate the two variants
respectively.

Fig. 2. Initial model representation.

Table 1 shows the process sequence for the two product
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variants that are assembled on the line. It can be seen that,
when a product variant does not need processing at a station, it
can bypass the station with the help of RFID (Radio Frequency
IDentification) tags. For instance, product B does not need to
be plastic welded and hence it bypasses station 5. Similarly,
product A does not require ultrasonic welding and hence it
does not need to be operated at station 6. The aspect of the
case study which needs to be highlighted is the presence of the
loop/shuttle from station 9 to station 6 which provides some
routing flexibility. Product B does not have the need to travel
the loop, however, product A is subjected to pulse arc welding
on both cell terminals and hence travels through the loop and
gets processed in station 8 twice. The production system has a
throughput of 55 products per day with automated stations of 2,
6 and 8. Six operators work on 7 manual stations and travel to
a station on a requirement basis.

Table 1. Process sequence for the two product variants.

Station number Product A Product B

1 Assemble carrier tray Assemble carrier tray
2 Cell loading and testing Cell loading and testing
3 Install cooling system Inspection
4 Assemble top tray Install busbar
5 Plastic weld housing -
6 - Ultrasonic wire bonding
7 Install busbar Install busbar
8 Pulse arc welding Pulse arc welding
9 Assemble insulation cover (top) Weld inspection
10 Assemble insulation cover (bottom) Assemble cover plate

4.1. DES model parameters

The scale-up model creation process exacts various
parameters to be defined. The new demand is assumed to
be twice that of the initial one and this is reflected by an
increase in the inter-arrival time for products A and B. The
product mix ratio is 70% product A and 30% product B and
batching is not considered. Each station has a setup time
which will be considered when product type changes. A warm-
up time of 10000 seconds is considered to allow the system
to reach steady state for performing statistical analysis. The
simulation is run based on a shift time of 28800 seconds
and stochasticity is introduced into the model using statistical
distributions. For instance, mean time to failure values are
modelled using the exponential distribution. 100 replications
are performed for each of the scenarios. The presence of the
loop/shuttle in the model can result in unprecedented behavior
of the system with respect to product flow time. However,
no buffer stations are considered in the model. A schematic
representation of the REP scenarios (S3 and S4) is shown
in Figure 3. Since the INC scenarios (S1 and S2) do not
have a change in their configuration they look identical to the
initial model shown in Figure 2. Although, there are several
performance measures that arise from quality and operational
domain, the key performance indicator that is considered for
this study is the mean flow time of products A and B.

5. Results and discussion

A comparison of the operational performance of the
four scenarios is performed by Multivariate ANalysis Of

Fig. 3. Schematic representation of scenarios 3 and 4.

VAriance (MANOVA) and ANalysis Of VAriance (ANOVA)
to statistically identify the existence of significant difference
between the scenarios. For both tests, the four scenarios
represent the independent variable.

Fig. 4. Mean flowtime for the two product variants.

5.1. MANOVA testing

The two dependent variables required for MANOVA are
the mean flow time for products A and B respectively. There
are several assumptions that need to be satisfied to run the
tests and this was performed in SPSS. Few assumptions
were violated, however, it is expected that the effect of this
violation will be negligible due to the sample size considered.
Subsequently, Pillai’s trace values in the multivariate test results
were considered for analysis. P-value less than the significance
level of 0.001 is obtained.

5.2. MANOVA results

The null hypothesis H0 in MANOVA states that all the
scenario means are equal

H0 : µ1 = µ2 = µ3 = µ4 (1)

Where µ1, µ2, µ3 and µ4 are the means of the respective
scenarios. Since the p value is less than the significance level,
null hypothesis is rejected and at least one set of means is
significantly different from another. To understand more about
this difference, a multiple comparison procedure called Tukey’s
Honest Significant Difference (HSD) test is considered. A



800 Malarvizhi Kaniappan Chinnathai et al. / Procedia CIRP 72 (2018) 796–801
Kaniappan Chinnathai et al. / Procedia CIRP 00 (2018) 000–000 5

comparison of mean flowtime for products A and B for four
scenarios is shown in Figure 4. Figures 5 and 6 show the results
obtained from Tukey’s HSD test. From Tables 2 and 3, the
values in the subset column represent the mean flowtime for the
scenarios and it can be seen from both tables, that none of the
scenarios share a subset; the mean flowtime of all the scenarios
are significantly different from each other for both products.

Table 2. Homogenous subset output for MANOVA testing of product A

Scenario No. Subset 1 Subset 2 Subset 3 Subset 4

2 7842.24
3 9053.77
1 10096.25
4 10708.55

Fig. 5. Mean difference between scenarios for product A flowtime.

Table 3. Homogenous subset output for MANOVA testing of product B

Scenario No. Subset 1 Subset 2 Subset 3 Subset 4

1 2453.68
4 5639.33
2 7473.13
3 8646.28

Fig. 6. Mean difference between scenarios for product B flowtime.

5.3. ANOVA testing

The MANOVA test was conducted considering the two
product flow times as different dependent variables. Although,
the results provide valuable data, the effect of combining
flowtime of both products is not perceivable from the obtained
results. Hence ANOVA was performed by considering the
flowtime as one dependent variable by adding the mean
flowtime of products A and B for each replication of each
scenario. Assumption tests were conducted identical to the
previous case. P-value of less than 0.001 was obtained and

hence the null hypothesis that the scenario means are equal can
be rejected.

5.4. ANOVA results

The rejection of null hypothesis implies that at least one
set of means is significantly different from another. The total
flowtime (mean flowtime A + mean flowtime B) for the 100
replications in each scenario is shown in Figure 7 and the
mean difference between the scenarios is shown in Figure 8.
From Table 4, the total mean flowtime for the scenarios are in
different subsets; the mean flowtime for all four scenarios are
significantly different from each other.

Fig. 7. Total mean flowtime for different scenarios.

Table 4. Homogenous subset output for ANOVA test

Scenario No. Subset 1 Subset 2 Subset 3 Subset 4

1 12549.94
2 15315.38
4 16347.88
3 17700.06

Fig. 8. Mean difference between scenarios for total mean flowtime.

5.5. Discussion

Comparisons of the mean flowtime of products A and B as
seen from Figure 4, reveals that the flowtime of product B is
influenced heavily by the type of dispatching rule considered.
From Tukey’s test (Figure 5), the mean difference between S2
and S4 is approximately 3000 seconds. Therefore, INC with
FIFO dispatching rule allows product A to be assembled much
faster than other scenarios. It is to be noted that REP with
SPT dispatching rule increases the overall processing time of
product A. On the other hand, INC with SPT dispatching rule
reduces the mean flow time of product B considerably, whereas
REP with FIFO increases the mean flowtime of product B. The
comparisons performed so far, have considered the flowtime
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of the product variants separately. However, considering the
total flow time of products A and B, from Figure 7, it is evident
that INC with SPT dispatching rule reduces the total assembly
time. Another trend that can be identified is the relative increase
in flowtime for scenarios adopting the REP scale-up strategy
when compared to INC scale-up strategy. Therefore, it is safe
to assume that for the considered performance measure, initial
system configuration, product variants and processing times,
a scale-up strategy which involves improving performance of
machines/stations by increasing their functionality integrated
with the SPT dispatching rule provides good results. The
proposed approach can be useful for decision making with the
caveat being the inability to compare the prediction results from
a cyber model with actual results from a physical model.

6. Conclusion and future work

In this study, two distinct scenarios for scale-up have been
proposed. However, a hybrid strategy that combines the INC
and REP could possibly be considered for future purposes.
The data regarding processing time has been obtained from
the pilot line for creating the DES models. However, quality
data that can be inferred from the setup time change has not
been considered for analysis. Moreover, there is possibility
to feed data to machine learning algorithms to better predict
scale-up strategies. In this research, only two of the many
available dispatching rules have been compared. There is
also potential of considering scheduling at different phases of
production. For instance, when a disturbance such as machine
breakdown occurs, a change in dispatching rule to reduce
the effect of disturbance could be considered. Throughout
the study, a particular initial system configuration has been
considered, however, many such experiments can be conducted
using different initial system configurations of battery module
assembly and the obtained data could help predict best practice
scale-up strategy for full-scale production.

This research highlights the importance of battery
manufacturing and assembly in current industrial scenarios.
Consequently, best practice for development and assembly of
battery modules and packs is the need of the hour. Therefore,
it is essential to validate products and processes in pilot
production lines, which ultimately must be scaled-up for full
scale production. The profuse quantity of data generated
in such lines can support the creation of virtual models to
understand scale-up strategies. Data regarding the operational
performance and routing of the stations is fed into DES model
and integrated with scale-up policies and dispatching rules
to generate four different scenarios. The performance of the
scenarios is compared statistically to support decision making.
Although the proposed methodology is implemented in a
system that assembles battery modules, it is possible to extend
this approach to other manufacturing systems. It is, however,
necessary to check the availability of sufficient space for
adding new processing units, the possibility of increasing the
functionality of a machine, etc. prior to the implementation.
Additionally, the potential benefits of this implementation to a
specific application or scenario, could be ascertained with the
help of experiments.The authors believe that this research study
proposes a methodology to i) guide good practice scale-up
from pilot production line, and ii) develop cyber-physical
architecture at the pilot line level, by using DES as a tool for

decision making and guiding the smooth transition from pilot
line to full-scale production.
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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Pilot lines are essential test-beds for process and product validation before the establishment of production lines. However, there 
is a lack of well-defined methodology for pilot line scale-up. To better support this transition, Virtual Models can be integrated 
with Discrete-Event Simulation (DES) models for potential production-line configurations. However, the validation of the 
developed models is hardly possible due to the absence of a physical counterpart. Therefore, this paper proposes a framework to 
increase the accuracy of the DES scale-up models with Virtual Modelling tools and Ontology. Subsequently, a test-case is used to 
explain the concept. 
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1. Introduction 

The challenges faced by today’s manufacturing industries 
are fueled by the increased product variety, rapid changes in 
technology, reduced time-to-market and shortened product life-
cycle [1]. To cope up with the reduced time-to-market, firstly, 
it is important to achieve reduced time-to-volume i.e. to 
advance from the conceptual phase to full-volume production 
with increased thrust. During the conceptual phase, it is not 
uncommon for manufacturing industries to produce prototypes 
for purposes such as testing and validation of product, process 
and resource design. As it is crucial to achieve a successful 
transition from design phase to time-to-volume, it is essential 
to use pilot lines to identify potential disturbances prior to 
commissioning of the line [2]. A myriad of issues actually arise 
in early design phases and are not detected until 
commissioning; anticipating these issues before 
commissioning of production lines can ensure successful 
upscaling that can provide a competitive market advantage 

[3,4,5]. A successful scale-up project significantly reduces the 
time-to-market which consequently enables the industry to 
secure more revenue by dominating the market [5]. Although a 
plethora of articles have been published pertaining to the 
identification and management of disturbances and issues that 
could be faced during the up-scaling procedure [2,6,7], there is 
still lack of a robust methodology to enable the scale-up process 
in a smooth way. To support the transition from planning phase 
to full-volume, however, simulation and modelling is identified 
as one of the enabling technologies [8,4,6].  

The concept of digital manufacturing has previously been 
found to support the manufacturing system and detect potential 
disturbances and issues affecting the line [3]. For this purpose, 
there are several commercial tools available, however, the 
underlying principles and techniques on which they function 
varies widely. In this paper, two simulation methods i.e. Virtual 
Modelling and Discrete-Event Simulation (DES) are identified 
and integrated with pilot line data to support the scale-up 
process. For several years, DES has been widely used for 
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commissioning of production lines can ensure successful 
upscaling that can provide a competitive market advantage 

[3,4,5]. A successful scale-up project significantly reduces the 
time-to-market which consequently enables the industry to 
secure more revenue by dominating the market [5]. Although a 
plethora of articles have been published pertaining to the 
identification and management of disturbances and issues that 
could be faced during the up-scaling procedure [2,6,7], there is 
still lack of a robust methodology to enable the scale-up process 
in a smooth way. To support the transition from planning phase 
to full-volume, however, simulation and modelling is identified 
as one of the enabling technologies [8,4,6].  

The concept of digital manufacturing has previously been 
found to support the manufacturing system and detect potential 
disturbances and issues affecting the line [3]. For this purpose, 
there are several commercial tools available, however, the 
underlying principles and techniques on which they function 
varies widely. In this paper, two simulation methods i.e. Virtual 
Modelling and Discrete-Event Simulation (DES) are identified 
and integrated with pilot line data to support the scale-up 
process. For several years, DES has been widely used for 
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supporting manufacturing industries [9]. DES finds use in 
identifying and analysing potential scale-up scenarios with 
input data from the pilot line [8]. However, as a standalone tool, 
DES does not have the capability to analyse the feasibility of 
the modelled scenarios of the future manufacturing line; this 
could potentially result in a situation where the solution offered 
through simulation might not actually be possible to realise. In 
specific, the assumption of station processing time values of 
potential production line models due to the absence of real 
system could lead to misleading results.  To overcome this 
drawback, DES software module can be integrated with a 
Virtual Modelling software that models the kinematics, 
geometry and the logical behavior of the workstation resources. 
Commercially available PLM suites offer this capability to 
integrate multi-level software modules, but their 
implementation, training and license cost is exacting [10]. 
Moreover, there is requirement for the integration of 
heterogenous software tools within the overarching concept of 
digital factory [11]. 

1.1. Summary 

From the above-mentioned discussion, the key points can be 
summarized as follows: i) the use of digital software modules 
can support the upscaling phase ii) DES software, if used as a 
standalone module, is not smart enough to identify whether the 
assumed station process times for future scenarios is feasible or 
not and iii) the integration of heterogenous digital software 
modules is aligned with the concept of digital factory.  

1.2. Key contribution 

Therefore, the core benefits of this paper are twofold i) 
proposal of an approach for integration of data from Virtual 
Modelling tools with an ontology software to calculate station 
process time such that the accuracy of the DES models are 
improved and ii) supporting the transition from pilot line to 
full-scale, subsequently shortening the time-to-market. 

2. Literature review  

2.1. Digital manufacturing 

The notion of using simulation tools for manufacturing is 
not a new one. The software tools differ in their method and 
level of detail with which they model the system. This review 
briefly touches on production line modelling, namely Discrete-
Event Simulation and workstation modelling referred to as 
Virtual Modelling. 

 
2.1.1 Difference between DES and Virtual Model 
 

Amongst the available tools for modelling the production 
line for operational research, Discrete-event Simulation is 
identified to be the most popular one [12,13] . Conventionally, 
DES is used for operational phase analysis, but its benefits can 
be exploited during the early stages of production as well [14]. 
The benefits of employing DES during early design stage 

include layout planning, material handling design, etc. and 
during the operational phase for scheduling and operational 
policies, and real-time control. However, in DES, analyses are 
performed by modelling the system with higher level of 
abstraction with the process and workstation level detail not 
included in the model; the focus is on detailing the production 
line and product flow. On the other hand, Virtual Modelling 
tools are used to model and analyse the system at the 
workstation or machine-level. They encompass information 
about the kinematic model (geometry and joint), behavior 
model (transition and states) and the reference coordinate 
system [3]. Moreover, they can be used to analyse ergonomics, 
collision detection, validation of PLC codes and design 
planning [11].  
 
2.1.2 Benefits of integrating DES and Virtual Model 
 

The primary benefit of integrating the Virtual Modelling 
tool with DES is to support the production-line level model in 
DES with the workstation-level details such as station 
processing times, breakdown information, robot motion time, 
human performance modelling, energy consumption and layout 
modifications [15,11].  

Several commercial PLM suites have software modules that 
perform Virtual Modelling and DES. Additionally, these 
modules are present on an integrated platform that supposedly 
allows the sharing of data in a seamless way and thereby 
realizing the integration of Virtual Models and DES models. 
Although PLM tools have this capability, the tools are not 
affordable for SMEs due to i) cost of training and license ii) 
cost of changing infrastructure to adapt to the PLM 
environment iii) replacing any existing specialized software 
with the PLM toolset and the cost of implementation of PLM 
[16,17]. Moreover, from the view of digital factory, it is 
difficult to integrate PLM tools with heterogenous software and 
databases [18].  

2.2. Summary 

An analysis of articles about digital manufacturing indicates 
the following: i) quantification of the benefit of integrating 
heterogenous digital tools and ii) the lack of knowledge on the 
benefits and the procedure for integration of Virtual Modelling 
with DES to successfully support smooth transition from 
planning to full-volume. Therefore, in this research study, the 
authors propose an approach to support the transition from pilot 
phase to full-scale production by leveraging the integration of 
Virtual Modelling tool and DES. 

3. Methodology 

The research presented in this paper is primarily aimed at 
upscaling of assembly systems. The core idea of this research 
article is to share relevant workstation data from Virtual 
Modelling tool and the existing pilot line with an ontology tool 
to generate a list of station process times. The station process 
time data is necessary for ensuring that results of DES are 
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realistic. The assumption of the process times could lead to 
situations where the models have workstation process times 
that might be too high or too low for the considered workstation 
configuration which could adversely affect the simulation 
results. The information sharing between the different tools is 
achieved using common database. From Fig 1, the common 
database model is a centralized database model which has been 
created in a way to support the integration of different software 
modules. In this paper, a common database scheme was 
designed to store the Virtual Model information in 3 tables: 
Product, Process and Resource. Each table has columns to 
represent the considered parameters and their respective IDs. A 
relational mapping between the Virtual Model and ontology 
classes facilitates provision of data for query and inserts the 
calculated results back into the tables. The common database 
model allows automating the integration between the virtual 
modelling software, ontology software and DES. The key 
concepts of the methodology can be explained as i) integration 
of Virtual Model with Ontology and ii) station process time 
calculator.  

3.1 Integration of Virtual Model with Ontology 

Virtual Modelling tools have capability to store 
information about product, process and resource at the 
workstation level; this information can also be shared with 
other tools. Within the context of this paper, a manufacturing 
resource comprises of system, station and component with 
increasing level of detail. A component is defined as the basic 
unit of a system that can be sub-divided into elements [19]. As 
an example, a robot can be considered as a component and the 
drives and motors of this component are the elements. The data 
from the existing pilot line serves as the crucial input for 
creating the Virtual Model. Table 1 shows the data intended to 
be used by the ontology model. 

It is important to note that a significant proportion of this 
data is obtained from the existing pilot line. The task types are 

decomposed as shown in Table 1, however, the inspection and 
testing operations are not included within the scope of this 
research [20]. The axis of motion of the system resources in the 
existing line essentially enables removing components that 
have less axis of motion from future workstation 
configurations. This helps eliminating options that have less 
productivity than the existing components in pilot line, with the 
underlying assumption that an increase in the axis of motion, 
i.e. from a 3D gantry to six-axis robot, increases the 
productivity.  

Ontology is defined an explicit specification of a 
conceptualization and the development of ontology enables the 
sharing of common understanding of a domain between people 
and application systems [21]. The idea behind the use of the 
ontology model is that the process parameters, task type, 

 

Fig. 1. Methodology. 

Table 1: Input data for ontology 

Data type Description 

Workpiece 
attributes 

Product features that are necessary to filter system 
resources that can perform the assembly. 

Task type Five types of tasks are considered: move, hold, transport, 
feed and join.  

No. of tasks The number of tasks that are performed in a workstation. 

No. of 
cycles 

The total number of cycles to perform an operation at the 
workstation. 

Sub-tasks The sub-task corresponds to the specific actions that are 
executed to achieve a task  

Process 
parameters 

Process parameters represent the accuracy, repeatability, 
force requirement, torque etc, for carrying out an 
operation. 

Station 
footprint 

The dimensions of the workstation that helps determine 
the available space to configure the workstation. 

Axis of 
motion 

The degree of freedom of the ‘current resources’ that are 
used in the pilot line/virtual model 
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number of tasks, axis of motion and station footprint data can 
be used to filter an available catalogue of assembly equipment 
to find those that meet the requirements. In this paper, the 
software protégé [22] is used to define the ontologies and three 
classes, namely product, process and resource as shown in Fig. 
2. Three types of assembly components are considered within 
the scope of this paper: actuator, manikin and robot. Although, 
the proposed approach is suitable for all the assembly 
components and task type considered, this research article will 
focus on the ‘move components’ and ‘hold components’. A 
catalogue of components can be created, either in the database 
or protégé, which consists of potential assembly equipment that 
are at the disposal of the industry.   

Following the definition of ontology, a query operation 
using SPARQL on the generated equipment list will enable 
identifying the components that can i) perform the required 
number and type of tasks ii) fit within the available workspace 
iii) able to satisfy the process parameters and iv) have the 
required axis of motion. From the resulting list of components, 
the next step is to calculate processing time of the workstation 
when the selected components are used. Essentially, the station 
process time is expected to vary with component and the 
method of calculation is explained in the next section.  

3.2 Station process time calculator 

The station process time calculator (Fig 3) considers the type 
of task, either ‘move’ or ‘hold’, and the selected components 
for each are listed as [M1, M2 . . . Mn] and [H1, H2 . . . Hk], where 
‘n’ is the total number of selected components for ‘move’ task 
and ‘k’ is the total number of selected components for ‘hold’ 
task. From Fig 3, the ‘sub-task level’ shows the sub-tasks 
performed for a pick and place operation, wherein two tasks 
‘move’ and ‘hold’ are involved. The information in the sub-
task level are acquired from the virtual model. The motion 
times for the sub-tasks of each of components [M1, M2 . . . Mn] 
and [H1, H2 . . . Hk] are calculated with data from different 
sources: physics-based model of the component that can 
calculate the motion time, experience-based motion time, 
machine-learning from previous projects, motion time from 
component datasheet or from virtual modelling software. 
Additionally, it is important to understand the distance that 
actuators are displaced by during the ‘move’ and ‘hold’ tasks 

to calculate the motion time. Essentially, the product 
dimensions, design and constraint details can be translated to 
dimensional values in the Virtual Model that provides the 
necessary data for actuator displacement distance.  The letters  

 
‘j’ and ‘m’ represent the total number of sub-tasks for the 
‘move’ task and ‘hold’ task respectively. The motion times of 
the sub-tasks for component M1 is represented as [t1motion,M1, 
t2motion,M1. . . tjmotion,M1] and the motion times of sub-tasks for 
component H1 is represented as [t1motion,H1 , t2motion,H1 . . . 
tmmotion,H1].  Similarly, the motion time of the sub-tasks for each 
of ‘n’ components for ‘move’ task and ‘k’ components for 
‘hold’ task can be calculated. Following the calculation of 
motion time, the cycle time for the components performing 
‘move’ task and ‘hold’ task can be calculated using Equations 
1 and 2 respectively. To find the total cycle time, tcycle, the cycle 
time for the ‘move’ task and ‘hold’ task should be added 
together. Therefore, each of the component performing ‘move’ 
task will be added with each of the component performing 
‘hold’ task that will result in n*k cycle time values. This is then 
multiplied with the total number of cycles per operation, Nr

cycle, 
to obtain the station processing time, tr

station. It is assumed that 

𝑡𝑡�����
�� = � 𝑡𝑡������, ��

�

�

���

 (1) 

𝑡𝑡�����
�� = � 𝑡𝑡������, ��

�
�

���

 (2) 

 

Fig. 2. Ontology definition in protégé. 

 

Fig. 3. Station process time calculation. 
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each station performs one operation and the total number of 
stations is represented as Nstation and ‘r’ is an index that 
represents the station number. This list of station processing 
times for each operation performed in the production line is 
stored in the common database and readily available for 
performing analyses in DES. Typically, in DES software, the 
station process time is a parameter that does not have any rules 
to determine whether the time is a feasible one or not. 
Integration with the database allows only the verified time 
values to be used in DES and subsequently improves the 
accuracy of the model. There is a choice of different station 
process time values stored in the database for each workstation 
and it provides the user the flexibility to choose process time 
according to certain criteria. 

4. Case study 

The proposed methodology is applied to a battery module 
assembly case. The station that is considered is the ‘cell loading 
station’, where ‘18650 battery cells’ are picked up by a three- 
axis gantry with vacuum gripper and placed in a battery 
module. The station model is created in a virtual modelling 
toolset called ‘VueOne’ developed in the Automation Systems 
Group, University of Warwick. The software has two platforms 
that enable creation and definition of the component and 
station. The components such as gripper and gantry unit are the 
actuators that are associated with logical behavior. On the other 
hand, the station frame is considered as non-control component 
due to the absence of a logical behavior. 

The model that is created in VueOne and the process 
sequence of the sub-tasks are shown in Fig. 4. The coloured 
boxes represent the ‘move’ sub-tasks and the white boxes 
represent the ‘hold’ sub-tasks. In this example, the number of 
‘move’ sub-tasks ‘j’ equals 8 and the number of ‘hold’ sub-
tasks ‘m’ equals 2. The data from Virtual Model are 
represented in Table 2.  

To demonstrate the methodology, potential components 
were queried from the VueOne component library to identify 
those components that meet the requirements in Table 2. For 

the ‘move’ task, a total of nine gantries were queried and four 
were found suitable. For the ‘hold’ task, a total of 53 grippers 
were queried and nine were found suitable. 

4.1 Cycle time calculation 

The motion time for the ‘move’ task is calculated for the 
four selected gantries. The gantries should perform ‘eight’ sub-
tasks, the motion time of which is obtained from the gantry 
datasheets. A summation of the motion time results in four 
cycle time values. Similarly, the ‘hold’ task comprises of ‘two’ 

sub-tasks, the motion times are calculated from the gripper 
datasheet and summed up to obtain nine cycle time values. This 
results in ‘four’ cycle time values for the gantries and ‘nine’ 
cycle time values for the grippers. The total cycle time is 
calculated by adding the ‘move’ and ‘hold’ cycle time values 
for identified components which results in a total of ‘36’ cycle 
time values which are illustrated in the plot in Fig. 5. This 
provides decision support for choosing the best combination of 
components depending on the cycle time requirements. For 

example, from Fig. 5, the combinations 21, 22 and 27 have very 
less cycle time values and could be considered as candidates 
for the new workstation configuration. Since for considered 
case, the operation has 100 cycles, the cycle time values are 
multiplied by 100 to obtain the station processing time values. 

 

Fig. 4. Model in VueOne with process sequence. 

 

Fig. 5. Case study results. 

Table 2: Data from Virtual Model 

Data type Values 

Working range required (in mm) X Y Z 

750 450 300 

Workspace availability required (in mm) 2000 1500 1000 

Positioning accuracy required (in mm) 0.5 0.5 1 

Number of cycles 100 

Axis of motion 3 

Drive type Electric 

Payload (in gram) 45 
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4.2 Integration with DES 

The resulting station process time values are stored in the 
common database. The line level model of the pilot line is 
created in DES using the commercially available tool provided 
by Lanner group called ‘Witness’. The pilot line consists of 
eight workstations and the process time for seven workstations 
are assumed, whereas for workstation 1 which is the test case 
of cell loading station, the process time values are retrieved 
from the common data base using ‘in-built’ functions available 
in ‘Witness’. Thereby, the cell loading station has more 
realistic process-time values that are obtained by the 
integration between VueOne and protégé. The station process 
time data can be linked with other decision supporting criteria 
such as cost, machine breakdown information etc. for multi-
criteria decision making. 

5. Future work and discussion 

The proposed methodology is demonstrated for a pick and 
place operation, but it can be extended to other types of 
operations as well. Although the primary focus in this research 
was calculation of the cycle time of ‘actuators’ like gantry and 
grippers, the methodology is applicable for robots and digital 
human models. Additional work will be done to apply the 
proposed methodology to robotic stations and manual 
workstations. The methodology primarily targets improving 
the functionality of the existing stations by replacing the 
components. However, the changes in layout configuration of 
the workstations are not considered. The authors plan to 
perform further analysis in DES by incrementing the station 
quantity and performing layout modifications and integrating it 
with the workstation level analysis achieved in this paper. This 
will provide a holistic view of the scale-up from workstation as 
well as production line level. One major limitation of the 
approach is that the motion time values from data sources in 
Fig. 3, may not be accurate. Moreover, for simple processes the 
calculations for cycle and process time performed in this paper 
can be approximated to be close to the real, however, for 
complex processes this may not be the case. More work needs 
to be done in this area to enrich the data sources in Fig. 3 with 
better and realistic component motion time values by 
employing machine learning techniques.  

6. Conclusion 

     This article presents an approach to demonstrate the 
integration of a virtual modelling tool with an ontology model 
to calculate the station process time. Additionally, the common 
database stores the station process time which can be accessed 
by the DES software as and when necessary. This essentially 
improves the accuracy of the DES model with more realistic 
time values that are significant to perform meaningful 
production line analysis. Therefore, the integration of 
workstation level model using Virtual Modelling software with 
a line-level model using DES software is proposed to support 
the upscaling process. It is envisioned that the decision-support 

provided by the methodology can significantly reduce the time-
to-volume and ultimately result in cost and time savings. 
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