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Abstract
We present MARMOT, a hybrid Python/FORTRAN implementation of the disordered local
moment picture within multiple scattering density-functional theory. MARMOT takes
atom-centred, scalar-relativistic potentials and constructs an effective medium (within the
coherent potential approximation) to describe the disordered magnetic moment orientations at
finite temperature. By solving the single-site scattering problem fully relativistically, spin–orbit
effects are included, allowing the magnetocrystalline anisotropy to be calculated. Magnetic
transition temperatures, spin and orbital moments, the density-of-states, and analytical
parameterizations of the magnetic potential energy surface can also be calculated. Here, we
describe the theory and practical implementation of MARMOT, and demonstrate its use by
calculating Curie temperatures, magnetizations and anisotropies of bcc Fe, GdFe2 and YCo5.

1. Introduction

Magnetism and magnetic materials lie at the heart of numerous areas of scientific research. In addition to
fundamental studies of exotic phenomena [1–3], the possibilities for applied magnetism research are wide-
ranging, tackling topical questions regarding data storage, energy generation, mobility, refrigeration, spin-
tronics and quantum computing [4–6]. Computational research makes an important contribution to this
field, whether by exploring and predicting the properties of new materials, or by interpreting experimental
observations [7, 8].

One of the interesting features of magnetism is that its characteristic energy scale is comparable to that
associated with thermal excitations. As a result, a material’s magnetic properties change dramatically with the
temperature T of its environment. The most well-known example of this is the Curie temperature, where a
ferromagnet loses its intrinsic magnetism above a critical temperature TC. More generally, changing the tem-
perature can trigger transitions between different magnetic phases, possibly accompanied by structural changes
[9]. Other examples of temperature-dependent magnetic phenomena include the loss of coercivity with
heating [10], zero thermal-expansion (invar) behaviour [11], and magnetization switching in compensated
ferrimagnets [12].

From a computational perspective, accounting for the effects of temperature creates an additional layer of
complexity on top of the other challenges already associated with describing magnetism. For real-time sim-
ulations, thermal effects can be accounted for by coupling to a thermostat, which may or may not take into
account the quantum nature of the magnetic excitations [13]. Alternatively, statistical mechanics provides a
framework to calculate the properties of a material at thermal equilibrium. In the case that the magnetism can
be understood in terms of a specific part of the material interacting with its environment, (e.g. a magnetic frag-
ment surrounded by a host), the methods of dynamical mean-field theory can be used to obtain the excitation
spectrum and partition function of that fragment, and therefore its temperature-dependent properties [14].
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However, for a large collection of magnetic moments the phase space spanned by the possible excitations is
prohibitively large.

One viable option is to map the complicated magnetic interactions onto a simpler model (e.g. the Heisen-
berg model), whose finite temperature behaviour is known or can be obtained computationally. Such models
require input parameters to describe the strength of the interactions, which might be taken from first-principles
calculations based on density-functional theory (DFT) or extracted from experimental data [15–17]. How-
ever, it is important to realise that the first-principles calculations are themselves being performed at a specific
temperature; usually at absolute zero (perfect magnetic order), or possibly in the paramagnetic state (full dis-
order) [18]. Obtaining the electronic and magnetic structure of a material for 0 < T < TC from first principles
requires simulating a partially-ordered magnetic material, and this is a challenging problem [19, 20].

The disordered local moment (DLM) picture provides a theoretical and conceptual framework to under-
stand the electronic structure of magnetic materials in this temperature regime. In particular, Györffy et al
formulated DLM in terms of DFT to make a quantitative theory [21]. The theory describes the magnetic order
within a mean-field approach, whereby the local magnetic moments at each atomic site influence, and are
influenced by, the global magnetic order. The mechanism by which the order is established is not through
pre-supposed (e.g. pairwise) magnetic interactions, but rather through the entire electronic structure of the
material, as calculated through DFT. This means the calculations automatically include ‘beyond-Heisenberg’
exchange, e.g. higher-order and multi-site interactions [22]. Furthermore, the framework incorporates rela-
tivistic effects, so that magnetocrystalline anisotropy (MCA) and orbital moments can be calculated [23]. More
generally, the theory provides a self-contained framework to calculate finite temperature magnetic properties
at a similar cost, and at a consistent theoretical level, to DFT.

The Györffy formulation of DLM theory has found a number of applications over the years, and continues
to be the subject of active research [24–31]. However, it has a small user base, especially within the context of
the rapid growth of first-principles DFT calculations in other areas of materials science. There are two obvious
ways of increasing the accessibility of these DLM calculations. The first is to note that up to now, software
implementing the DLM equations has tended to remain in the developmental phase, so that a high level of
expertise is required to run calculations. Packaging the software as a stable release, complete with examples,
documentation, and benchmarks, would address this issue. The second way notes that DLM theory is imple-
mented as an additional, post-processing step on top of a previous DFT calculation. There is huge potential
to widen the DLM user base by putting in place a framework to interface DLM with the many high-quality,
user-friendly DFT software packages which are now available [32].

With these aspects in mind, we have developed a software package which implements the DLM theory of
reference [21] and its subsequent modifications. The package calculates Magnetism, Anisotropy, and more,
using the Relativistic disordered local MOment picture at finite Temperature (MARMOT). The guiding princi-
ple has been to keep the user interface simple and intuitive whilst maintaining good underlying performance
for the most computationally-intensive part of the calculation. We achieve this by coding the high inten-
sity routines in FORTRAN and placing them within a Python wrapper. The resulting software achieves the
desired improvements both in performance and usability, and is now available as a new research tool for the
computational magnetism community.

This manuscript has been written to accompany the newly-developed software. Section 2 describes the
theory implemented in MARMOT. Section 3 explains the technical aspects involved in performing a calculation,
and section 4 gives examples of the code in use. Section 5 concludes by outlining some directions for future
development.

2. Theoretical background

2.1. Introduction
In this section we describe the DLM theory implemented inMARMOT, providing sufficient detail that the reader
can understand the key steps, inputs and outputs of a typical calculation. We refer to published literature
for discussion of the underlying theory and derivations. A careful and clear description of the fundamen-
tals of DLM is given in reference [21]. The solution of the relativistic single-site scattering problem and the
subsequent calculation of MCA is described in references [33–35], and the modification of the single-site
equations to include the local self-interaction correction (LSIC) [36] and the orbital polarization correction
(OPC) [37, 38] is described in reference [39]. More general discussion of multiple scattering theory and the
Korringa–Kohn–Rostocker (KKR) formalism may be found e.g. in references [40–42].

2.2. Local moments
The primary quantities in DLM theory are the local (magnetic) moments. A local moment at site i corresponds
to a region of spin polarization to which we can assign a magnetic moment of magnitude μi and direction �̂ei.
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Figure 1. An illustration of the DLM concept for a ferrimagnet with two magnetic sublattices. At zero temperature (a) the local
moments form an ordered array, with a periodic unit cell shown as the dashed box. At finite temperature (b) the local moment
orientations fluctuate, such that a particular snapshot shows disorder and the spatial periodicity is lost. DLM theory (c) restores
this periodicity by focusing on the time-averaged orientation of these moments, quantified by the beta-h quantities {�λi}.

Local moments can originate both from localized and delocalized (itinerant) electrons. In the latter case, it is
the scattering of the itinerant electrons at atomic sites which polarizes the environment, setting up regions of
magnetization which we identify as the local moments [21].

For most magnetic materials, at zero temperature the local moments form an ordered array (e.g. ferro-
magnetic, antiferromagnetic, ferrimagnetic) corresponding to their lowest energy state, as shown in figure 1(a).
Figure 1(b) illustrates how raising the temperature introduces fluctuations in the magnetic order, such that the
material can access higher-energy microstates with DLM orientations. In the theory implemented inMARMOT,
we consider only fluctuations in the local moment directions �̂ei and not the longitudinal fluctuations in their
magnitudes μi. As such, we must limit the application of our theory to ‘good’ local moment systems, where
the value of μi is independent of the global magnetic order of the material. As an approximate rule-of-thumb,
local moments with the size of a Bohr magneton or greater (> ∼ 1 μB) at zero temperature tend to retain their
magnitude as the temperature is increased, and therefore can be considered ‘good’.

2.3. The statistical mechanics of the local moments
DLM theory treats the fluctuations of the local moments classically, with the orientation vectors �̂ei able to
take any direction on the unit sphere. A particular DLM microstate is described through a set of unit vectors
{�̂ei}, and the energy of the microstate is given by the grand potential, Ω({�̂ei}). According to classical statistical
mechanics, the probability of finding the material in this microstate is P({�̂ei}) = exp[−βΩ({�̂ei})]/Z, with
the partition function Z =

∫
d�̂e1d�̂e2 . . . exp[−βΩ({�̂ei})], and β = 1/(kBT) where T is the temperature and kB

is Boltzmann’s constant. Further thermodynamic quantities are derived from the partition function, e.g. the
Helmholtz energy F = −kBT ln Z.

DLM theory assumes that the grand potential Ω({�̂ei}) can be calculated through constrained spin-density-
functional theory [21]. In practice such a calculation would be very difficult, since {�̂ei} represents the orien-
tations of all the local moments in the crystal (a huge number) compared to just in the crystallographic or
magnetic unit cell. Accordingly, integrating over the entire phase space to obtain Z is intractable.

To proceed, we replace the ‘true’ statistical mechanics with an approximate version. An auxiliary grand
potential Ω0 is introduced with a prescribed analytical dependence on the local moments,

Ω0({�̂ei}) = −
∑

i

�hi · �̂ei. (1)

The vector quantities {�hi} are referred to as Weiss fields (although strictly, they have dimensions of energy).
They describe the magnetic field felt by each local moment, with large Weiss fields corresponding to a high
degree of magnetic order. It is convenient to introduce the lambda or ‘beta-h’ quantities �λi = β�hi, and also
the direction unit vector �̂ni, i.e. �λi = λi

�̂ni. The statistical mechanics of the auxiliary system can be solved
analytically, with the probability factorising into single-site functions: P0({�̂ei}) =

∏
iP0i(�̂ei), where

P0i(�̂ei) =
exp[�λi · �ei]

(4π/λi) sinh λi
. (2)

The order parameter for each local moment �mi is obtained as 〈�̂ei〉0,T , where 〈〉0,T denotes a thermal average
with respect to the auxiliary system:

�mi =

∫
d�̂eiP0i(�̂ei)�̂ei

∏
j�=i

∫
d�̂ejP0j(�̂ej)

= L(λi)�̂ni, (3)
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where L(λi) is the Langevin function, L(λi) = 1/tanhλi − 1/λi. Equation (3) shows how the magnitudes and
directions of the order parameters are fixed by the Weiss fields, and also how small ‘beta-h’ values correspond
to a low degree of magnetic order, i.e. high temperature.

The true and the auxiliary systems are linked by the thermodynamic inequality satisfied by the Helmholtz
energy [43]: F(T) � F(T ), where

F(T) = F0(T) − 〈Ω0〉0,T + 〈Ω〉0,T . (4)

F0(T) is the Helmholtz energy of the auxiliary system. The inequality allows us to define the ‘best’ Weiss fields
as those which minimize F(T ), the upper bound to the true free energy F(T). Setting ∇�hi

F = 0 yields two
equivalent expressions satisfied by these Weiss fields:

�hi = −∇ �mi〈Ω〉0,T = − 3

4π

∫
d�̂ei〈Ω〉

�̂ei
0,T

�̂ei (5)

where the notation 〈〉�̂ei
0,T describes a thermal average over all local moment orientations except the ith moment,

which is held at the orientation �̂ei.
Equation (5) provides the critical relationship between the tendency of the local moments to order (fixed by

the Weiss field, through equation (3)), the temperature T, and the magnetic grand potentialΩ. For example, for
a ferromagnet we expect nonzero solutions of equation (5) only for T < TC. We note that equation (5) involves
an implicit self-consistency, because the thermal average on the right-hand side depends on the probability,
which is fixed by the Weiss fields. This aspect is discussed further in section 3.6.

2.4. Scattering theory treatment of disorder
The key quantity in equation (5) is 〈Ω〉0,T: the average energy of a system, where the probability of finding a
local moment pointing along �̂ei is independent of the orientations of all other moments, and is proportional
to exp[�λi · �ei]. Figure 1(c) provides a physical picture of this situation. The faint arrows can be thought of
representing either the averaged local moment orientation �mi, the Weiss field �hi or the beta-h value �λi; all
are related through equation (3). Unlike the snapshot of the microstate [figure 1(b)], this representation is
expected to exhibit translational symmetry.

DLM theory exploits the analogy between the magnetically-disordered system of figure 1(c) and a
compositionally-disordered random alloy of different elements. A natural framework to calculate the elec-
tronic structure of such an alloy is the multiple-scattering, KKR formalism combined with the coherent poten-
tial approximation (CPA) [40–42]. In the multiple-scattering picture, electrons travel freely through the crystal
until they reach an atomic site, where they are scattered and sent off in a new direction. There are two parts to
the problem. The first is the single site scattering, which considers how an electron interacts with the isolated
atomic site. The key quantity obtained from solving this part of the problem is the t-matrix, which is a matrix
in spin and orbital angular momentum quantum numbers L = (lmσ). In MARMOTwe calculate ti(�̂z, E), which
describes the scattering of an electron of energy E off the atom at site i whose local moment (i.e. spin quan-
tization axis) is pointing along the z axis. It is straightforward to transform this matrix to an arbitrary local
moment orientation ti (�̂ei) = R(�̂ei)ti(�̂z)R†(�̂ei) where R is a suitable rotation matrix. As discussed in section 2.8,
MARMOT can solve the scattering problem fully-relativistically so that spin–orbit effects are naturally included,
or in scalar- or non-relativistic approximations.

The second part of the problem incorporates the electron’s entire path through the crystal. The structure
constant matrix G0 (E) describes free electron propagation, projected onto spin and angular functions located

at different sites. As emphasised by the double underline it is a supermatrix, with G0
ij

describing propagation

between sites i and j projected onto the L basis. The free propagation and single-site scattering combine to
form the scattering path operator τ (E),

τ (E) =
[

t −1(E) − G0 (E)
]−1

, (6)

where the t-supermatrix is formed as t
ij
= δijti . The energies where the scattering path operator is singular

correspond to the energy eigenstates of the material [40].
The key idea of the CPA is to construct an effective medium whose site-diagonal elements of the scattering

path operator reproduce those of the true τ , on average. This is achieved in practice by assigning an effective t
matrix to each site in the magnetic unit cell, tc,i . The translational symmetry of the effective medium modifies
the matrix inversion in equation (6), to

τc (E) =
Vc

(2π)3

∫
BZ

d�k
[

tc
−1(E) − G0 (E,�k)

]−1
, (7)

4
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where ‘BZ’ refers to the first Brillouin zone, and Vc is the volume of the real-space unit cell which contains the
sites i. The CPA places the following condition on the site-diagonal elements of this matrix (τc,ii = τc

ii
) which

must hold for every site [35]:

τc,ii =

∫
d�̂eiP0i(�̂ei)τc,ii Di (�̂ei) (8)

where (dropping the energy dependence for clarity)

Di (�̂ei) =
[

1 +
(

ti
−1(�̂ei) − t−1

i,c

)
τc,ii

]−1
. (9)

An alternative statement of the CPA condition makes use of the excess scattering matrices X, and states that
Xci = 0, where

Xci =

∫
d�̂eiP0i(�̂ei)Xi(�̂ei) (10)

and

Xi (�̂ei) =

[(
t−1
i,c − ti

−1(�̂ei)
)−1

− τc,ii

]−1

. (11)

These matrices form the basis of an iterative scheme to determine ti,c . Starting from an initial guess of the
ti,c matrices, equation (7) is used to calculate τc . The excess scattering matrices are then calculated using

equation (11). If Xci does not equal zero as required by the CPA, the single-site ti,c matrices are updated
according to

ti,c
New =

[
ti,c

−1 − (1 + Xciτc,ii )
−1Xci

]−1
. (12)

The convergence of the CPA is checked by comparing the traces of the ti,c matrices between iterations. The

initial guess of ti,c is found from the average t-matrix approximation (ATA), ti,c
first =

∫
d�̂eiP0i(�̂ei)ti(�̂ei). In the

course of the calculation, ti,c and τc,ii are updated, but the single-site matrices ti do not change: MARMOT
does not follow the self-consistent scheme demonstrated in reference [44], where the electron (spin) density
calculated for the CPA medium is used to update ti .

Using the CPA to model disorder significantly reduces the computational effort compared to explicitly
sampling many magnetic configurations in a supercell. The angular momentum expansions are performed up
to a maximum orbital quantum number lmax. Taking spin into account, this means matrices like ti,c have a size
of nL = 2(lmax + 1)2. For the typical case of lmax = 3, this amounts to only a 32 × 32 matrix. Furthermore, the
number of operations scales linearly with the number of sites in the unit cell, and as a result, the manipulations
required to update the CPA medium do not carry a significant overhead. The most time-consuming part of
the calculation is associated with equation (7). Assuming nsub sites in the unit cell, the supermatrices have
sizes of nsub × nL, which in itself is not prohibitive for 1–100 sites. However, significant computational
cost comes from evaluating the structure constants, and performing the matrix inversion at every�k-vector, the
number of which can be large.

2.5. Compositional disorder
The above discussion assumed a single type of atom at each site, but the CPA framework naturally allows
treatment of compositional disorder. Taking the concentration of atom type α at site i to be ciα, the CPA
equations are modified as follows:

ti,c
first =

∑
α

ciα

∫
d�̂eiP0iα(�̂ei)tiα(�̂ei)

Xiα (�̂ei) =

[(
t−1
i,c − tiα

−1(�̂ei)
)−1

− τc,ii

]−1

Xci =
∑
α

ciα

∫
d�̂eiP0iα(�̂ei)Xiα (�̂ei) (13)

Equations (7), (12) and (13) constitute the full set which must be solved in the general case of compositional
and magnetic disorder. We note that the single-site probability P0 carries an α subscript, because each atom
type on each site feels a unique Weiss field �hiα, and therefore has its own beta-h value �λiα.

2.6. Calculating the Weiss fields
Once the ti,c matrices describing the CPA effective medium have been obtained, the calculation of magnetic
properties proceeds via the Lloyd formula for the integrated density-of-states N(E) [42]. For instance, writing
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the grand potential as an integral involving N(E), and using equation (5), gives the expression for the Weiss
fields [21]

�hiα = − 1

π
Im

∫
dEfFD(E, Tel)

(
3

4π

∫
d�̂ei

�̂ei ln det Diα
−1(�̂ei, E)

)
(14)

where it is now necessary to write explicitly the energy dependence of Diα from equation (9). fFD is the
Fermi–Dirac distribution and we have distinguished the electronic temperature Tel from the ‘magnetic’
temperature T, discussed more in section 3.2.

2.7. Calculating the magnetocrystalline anisotropy
The MCA quantifies the change in (free) energy as a result of rotating the magnetization. In MARMOTwe takeF
as our best estimate of the free energy, and focus on calculating the torque-like quantities ∂F/∂Θ and ∂F/∂ϕ.
Here Θ and ϕ are the angles representing the global magnetization direction. The DLM formalism allows the
resolution of the total torque into contributions from different sites and atom types, for instance

∂F/∂Θ =
∑

iα

ciα∂F/∂Θiα (15)

where now Θiα refers to the magnetization of that particular atom type; explicitly, �λiα = λiα
�̂niα = λiα

(sin Θiα cos ϕiα, sin Θiα sin ϕiα, cos Θiα). It is convenient to consider the auxiliary quantity ∂F/∂�̂niα, given
by [35]:

∂F
∂�̂niα

= − 1

π
Im

∫
dEfFD(E, Tel)

(∫
d�̂eiα

∂P0iα(�̂eiα)

∂�̂niα

[− ln det Di
−1(�̂ei, E)]

)
. (16)

The quantity ∂P0iα(�̂eiα)/∂�̂niα straightforwardly evaluates to λiαP0iα(�̂eiα)[�̂eiα − 〈�̂eiα〉], so ∂F/∂�̂niα can be
evaluated at the same cost as the Weiss fields. The angular derivatives are then obtained through the chain rule:

∂F
∂Θiα

=
∂F
∂niαx

cos Θiα cos ϕiα +
∂F
∂niαy

cos Θiα sin ϕiα − ∂F
∂niαz

sin Θiα

∂F
∂ϕiα

= − ∂F
∂niαx

sin Θiα sin ϕiα +
∂F
∂niαy

sin Θiα cos ϕiα (17)

The MCA constants can be inferred by calculating these angular derivatives for different magnetization
angles. Taking the example of a uniaxial ferromagnet with anisotropy constant K1, the angular dependence of
F is K1 sin2Θ. Therefore, ∂F/∂Θ = K1 sin 2Θ, so evaluating the derivative at Θ = 45◦ yields K1. Performing
calculations for a number of different angles allows higher-order constants to be extracted.

2.8. Solving the single-site problem
The fundamental input to a MARMOT calculation is a set of spherically-symmetric, atom-centred potentials
{Vσ

iα(r)}, where σ labels the spin. {Vσ
iα(r)} will have been calculated within scalar-relativistic DFT, possi-

bly using the CPA for compositional disorder, for a relatively simple spin reference state; either ordered
ferro/antiferro/ferri-magnetic, or the fully disordered paramagnetic state. The spherical symmetry is enforced
either by the muffin tin (MT) or atomic sphere (ASA) approximations. MARMOT takes these potentials and
feeds them into a Schrödinger or four-component Dirac radial equation, depending on whether a non-, scalar-
or fully-relativistic solution is required.

For the non- or scalar-relativistic case, the equations are constructed for each (l,σ) pair and solved to
find Zlσ

iα(r, E) and Jlσ
iα(r, E), which are regular or irregular at the origin, respectively. The equations are solved

using a four-point predictor-corrector method using Calogero’s approach, which expresses the solutions as
superpositions of Riccati–Bessel functions [45]. The t-matrix elements tiαL(�̂z, E) are extracted from the value
of the regular solution at the radius of the potential. The t-matrix is diagonal and degenerate in m for a
given (l,σ).

As well as t-matrices, MARMOT calculates ‘p-matrices’ defined as follows:

pzz
iαL(�̂z, E) =

∫
dr r2Zlσ

iα(r, E)Zlσ
iα(r, E)

ps,zz
iαL(�̂z, E) = ±μB

∫
dr r2Zlσ

iα(r, E)Zlσ
iα(r, E)

po,zz
iαL (�̂z, E) = m μB

∫
dr r2Zlσ

iα(r, E)Zlσ
iα(r, E). (18)

6
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μB is the Bohr magneton, and the ± applies to spin up or down. There are also pzj matrices, which are obtained
by replacing the second Z in the integral with J, e.g. pzj

iαL(�̂z, E) =
∫

dr r2Zlσ
iα(r, E)Jlσ

iα(r, E). These matrices cor-
respond to the different contributions to the Green’s function in multiple-scattering theory [41], and are used
to construct densities and magnetic moments integrated over space.

For the relativistic case, it is necessary to consider the combined spin-angular momentum quantum num-
bers (κ, mj) instead of L. Each (κ, mj) channel will have at least one regular and one irregular solution,
Ψ

κmj

iα (�r, E) and Λ
κmj

iα (�r, E), respectively, which are four-component functions. Furthermore, the majority of

channels are coupled to a second pair of solutions Ψ
κ′mj
iα (�r, E) and Λ

κ′mj
iα (�r, E), where κ′ = −κ− 1. We find

these solutions and the corresponding t-matrix elements t
mj

iακκ′(
�̂z, E) using the same predictor-corrector and

Calogero approach within the framework of reference [33], if necessary including the self-interaction correc-
tion or OPC as described in reference [39]. The Clebsch–Gordan coefficients are used to transform the t-matrix
back into the L representation, to give tiαLL′(�̂z, E), which in general is non-diagonal and m-dependent [34].

The p-matrices are also formed in the (κ, mj) representation and rotated. Focusing on the pzz matrices,
we have

p
zz,mj

iακκ′(
�̂z, E) =

∫
d�r Ψ

κmj
iα (�r, E)Ψ

κ′mj×
iα (�r, E)

p
s,zz,mj

iακκ′ (�̂z, E) = μB

∫
d�r Ψ

κmj
iα (�r, E)β̃σ̃zΨ

κ′mj×
iα (�r, E)

p
o,zz,mj

iακκ′ (�̂z, E) = μB

∫
d�r Ψ

κmj

iα (�r, E)β̃ l̃ zΨ
κ′mj×
iα (�r, E) (19)

where × refers to a left-hand solution [46], and β̃σ̃z and β̃ l̃ z are the relativistic spin and orbital momentum
operators. The pzj matrices are formed by replacing Ψ× with Λ×.

Once the t and p matrices have been calculated, MARMOT makes no further distinction between rela-
tivistic and non-relativistic calculations. For instance, the structure constants are always calculated using a
non-relativistic expression. Relativistic effects, like anisotropy or nonzero orbital moments, arise solely from
the nondiagonal elements and broken orbital degeneracy of the t and p-matrices.

2.9. Calculating the integrated density, spin and orbital moments
The scattering path operator gives access to the electron Green’s function and its associated properties. Tak-
ing traces over the relevant matrices gives an individual atom’s contribution to the density, spin and orbital
moments. The expressions for the three quantities have the same form, taking the density as an example:

ρiα = − 1

π
Im

∫
dEfFD(E, Tel) Tr

∫
d�̂eiαP0iα(�̂eiα)

[
pzz

iα (�̂eiα, E) τc,ii (E) Diα (�̂eiα, E) − pzj
iα (�̂eiα, E)

]
. (20)

The expressions for the spin μs
iα and orbital μo

iα moments replace (pzz
iα , pzj

iα ) with (ps,zz
iα , ps,zj

iα ) or (po,zz
iα , po,zj

iα ),

respectively. The temperature-dependent magnetization �M(T) is formed as

�M(T) =
∑

iα

ciα�miα

(
μs

iα + μo
iα

)
(21)

which can straightforwardly be partitioned into spin and orbital contributions. The integrated density N is
given by N =

∑
iα ciαρiα.

The formulae for the Weiss fields and torques are derived from Lloyd’s formula for the integrated density-
of-states, which shows faster angular momentum convergence than expressions like equation (20) which are
based on the Green’s function. Therefore, the Weiss fields and torques are in general expected to be more
numerically robust than the density, spin and orbital moments.

MARMOT can also calculate a spin-density-of-states, using the expression

ρS
iα(E) = Tr

{
(�niα ·�S)

(
− 1

π

)
Im

∫
d�̂eiαP0iα(�̂eiα)

[
pzz

iα (�̂eiα, E) τc,ii (E) Diα(�̂eiα, E) − pzj
iα (�̂eiα, E)

]}
(22)

Here, �S is the spin operator. The value of this quantity at the Fermi level (E = EF) is of particular interest
when investigating magnetoresistive devices [30].
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Figure 2. Schematic representation of a DLM calculation with MARMOT. The blue shading corresponds to the external potential
calculation. The MARMOT calculation has been split into Python and FORTRAN parts for illustration, although the user is only
required to interact with the Python-based pymarmot frontend.

Figure 3. Representation of the energy contour used by MARMOT. The red circles show the complex energies at which the CPA
equations are solved. The grey crosses are Matsubara frequencies. Note that the contribution to the integral from C′–C is obtained
by extrapolation. The density-of-states of core and valence electrons is represented in green.

3. Technical details

3.1. Hybrid Python/FORTRANworkflow
Figure 2 demonstrates the steps of a typical calculation. The single-site potentials {Vσ

iα(r)} are obtained exter-
nally, usually with the HUTSEPOTDFT-KKR code [47], although as discussed in section 4.4 we have also used
the projector-augmented wave DFT code GPAW [48]. The single-site scattering problem is then solved, to the
relativistic level (full/scalar/non) specified by the user. The resulting single-site matrices are taken as input to
solve the CPA problem at different energies. Finally, the energy integrals are performed to obtain the Weiss
fields, and other quantities of interest.

Apart from the single-site potentials and the crystal structure, the user is required to specify the beta-h
magnitude λiα and direction �̂niα for each magnetic atom. If there is more than one magnetic sublattice, and
self-consistency in the Weiss fields is desired (section 3.6), multiple CPA runs may be required (shown as the
red arrow in figure 2).

Figure 2 also demonstrates how the calculation is partitioned between Python and FORTRAN code,
referred to as pymarmot and fortmarmot. pymarmot is the frontend where the user sets up and anal-
yses the calculation, with tools to solve the single-site problem and perform the post-CPA analysis including
the energy integrations. fortmarmot is driven by pymarmot and concentrates solely on solving the CPA
problem for a given set of t-matrices, crystal structure, energies and beta-h values. This hybrid approach
allows us to exploit the speed and efficiency of FORTRAN for the most computationally-expensive parts of
the calculation, whilst keeping the intuitive features of Python for the user interface and post-processing.

3.2. Energy integration
To calculate quantities like the Weiss fields (equation (14)), it is necessary to perform an energy integral of
the form −1/π Im

∫
dEfFD(E, Tel)F(E). This integral is evaluated as a contour, as shown in figure 3, which also

sketches the density-of-states. The desired integral (A–B) is replaced with the integral along the two remaining
nonzero legs of the contour (A–D–C) plus a sum over the Matsubara frequencies contained in the contour.
MARMOT samples energies logarithmically along A–D and C

′
–EF, and linearly along D–C′, then uses spline

interpolation between these points. The closest approach to the real axis is set by the first Matsubara frequency,
iπkBTel, and the Fermi energy is chosen so that the integrated density (section 2.9) is equal to the expected
number of electrons. The user controls how finely the energy is sampled (npdec, detop), the position of the
top leg of the contour (eimax) and also must specify the energy of point A (ebot), which lies between the
core and valence states as indicated in figure 3.
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Figure 4. (a) A plan view of the reciprocal space unit cell, with�k-vectors used in the evaluation of τ shown as dots. Darker
regions correspond to denser�k-point sampling. The structure in different ab planes appears as a projection. (b) The sampling
scheme used to evaluate angular integrals. The grey arrow corresponds to the direction of �̂n, and each point corresponds to a
(θ,φ) sample of the integral.

We made the distinction above between the electronic temperature Tel, which enters the Fermi–Dirac
function, and the ‘magnetic’ temperature T, which appears in the probability distribution as β = 1/(kBT).
In principle, this difference is artificial, and the same temperature should be used for both. However, the Weiss
fields and torques are much less sensitive to Tel than T. Reducing the electronic temperature brings the Matsub-
ara frequencies closer to the real axis, which increases the structure of the integrand and makes the Brillouin
zone (BZ) integral more difficult to converge. The pragmatic solution is to fix Tel (e.g. 300 K), and only vary
T. However, lower values of Tel should be investigated if very high precision is desired.

3.3. Brillouin zone integration
Calculating the scattering path operator with equation (7) requires integrating over the first BZ. To perform this
integral, we use the adaptive sampling algorithm described in reference [49], which is designed to concentrate
the BZ sampling in regions where the integrand has the most structure. The accuracy of the algorithm is
controlled through a single parameter tolint, which is used to compare the evaluation of the trace of τ by
Simpson’s rule and the trapezoidal rule [49]. Since we generally investigate magnetic configurations with a low
symmetry, the integral is performed across the full BZ.

Figure 4(a) demonstrates the algorithm in practice, by representing the k-vectors used to calculate τ at a
hexagonal site (the Y atom in YCo5) as points. An increased density of�k-points appears as a darker region in
the picture. We see certain regions (which reflect the six-fold symmetry) where the�k-point density is very high.
However, these regions correspond to a rather small fraction of the BZ overall. It would be very inefficient to
achieve the same level of precision by sampling the entire BZ at this high�k-point density.

The methods of reference [49] are also used in the calculation of the structure constants. Specifically,
MARMOT determines the two energy-dependent parameters η and x which give the optimum partitioning
of real and reciprocal space for the Ewald evaluation of G0 (E,�k). The efficiency of the structure constants

calculation is increased by pre-computing the parts of the sum which are independent of�k.

3.4. Angular integration
The equations used in the CPA, Weiss fields and torques all involve integrals over the unit sphere,

∫
d�̂eiF(�̂ei).

These are carried out by sampling the directions linearly in sin θi and φi. For the θi integral, we rotate the unit
sphere so that the poles (θi = 0,π) are perpendicular to �̂ni. This rotation is shown in figure 4(b) and ensures
that the angular integral has the highest sampling in the region where P(�̂ei) is largest and has the most structure.
The user controls the density of the angular grids through the parameters ntheta and nphi.

3.5. Parallelism
At present, MARMOT exploits the trivial parallelism over energy for the CPA problem. pymarmot also par-
allelizes the single-site scattering over the sites and atomic types, making use of the multiprocessing
package. Although parallelizing over energy is theoretically highly efficient, there is a problem of load bal-
ance: the integrand becomes progressively more structured along the A–B–C′–EF path of figure 3. As a result,
processors working on the final energy points require much more time than others due to the increased num-
ber of�k-vectors required to converge the integral. In future, we intend to implement additional levels of CPA
parallelization, e.g. over the BZ volume and/or sublattice sites.
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3.6. Self-consistency in Weiss fields and parameterizing the grand potential
In the discussion surrounding equation (5), we noted that there should be a self-consistency between the Weiss
fields and the probability distribution used to calculate them. Considering an input beta-h valueλX and output
Weiss field hX

out, and recalling β = 1/(kBT), the self-consistent solution at a temperature T must satisfy

λX

hX
out

=
λY

hY
out

=
λZ

hZ
out

= . . . =
1

kBT
, (23)

where X, Y, Z, . . . refer to different magnetic sublattices. This condition is equivalently expressed by defin-
ing magnetic sublattice temperatures TX = hX

out/(kBλ
X) and demanding that all sublattices have the same

temperature T. Iterative strategies to determine the set of self-consistent beta-h values are discussed in
section 4.3.

As an alternative to finding the self-consistent probability distribution, MARMOT can be used to parameter-
ize the grand potential in terms of magnetic order parameters. In this approach, we replace the thermally-
averaged grand potential 〈Ω〉0,T with a model expression which is a differentiable function of the order
parameters [28]. The differential form of equation (5) then yields parameterizations of the Weiss fields which
can be fitted to the output from MARMOT. For instance, for a simple magnetic system with a single order
parameter m we might consider a Landau-type expression:

〈Ω〉0,T = −1

2
J0m2 − 1

4
J1m4 + · · · , (24)

where J0 and J1 are coefficients to be determined. Differentiating equation (24) gives h = (J0m + J1m3 + · · ·).
Performing a set of MARMOT calculations for different input beta-h values (corresponding to different m,
through equation (3)) allows J0 and J1 to be determined through a least-squares fitting. Such an approach
provides insight into the fundamental nature of the magnetic interactions (quadratic, biquadratic etc) and
allows the magnetic phase diagram to be mapped out, possibly discovering new minima of the magnetic free
energy [9, 22, 25, 26, 28].

4. Examples

4.1. Computational details
In this section we show some practical calculations performed with MARMOT. All angular momentum expan-
sions were performed up to and including the f angular momentum channel, i.e. lmax = 3. Exchange and
correlation was modelled within the local-spin-density approximation (LSDA) as parameterized by Vosko
et al [50]. The angular sampling of the CPA integral and the tolerance for the BZ integration were set at their
MARMOT default values of 240 × 40 and 10−5, respectively, and the electronic temperature in the Fermi–Dirac
function was set to 300 K. Other details specific to the different calculations are given as appropriate.

4.2. bcc Fe
We first demonstrate MARMOT’s application to the canonical example of a ferromagnet, bcc Fe. We use the
LSDA-optimized lattice constant of 5.20a0 (where a0 is the Bohr radius) and perform the initial self-consistent,
scalar-relativistic calculation using the HUTSEPOT code [47]. This initial calculation is performed for para-
magnetic state, using the MT approximation for the potential. In the CPA, this state (λ= 0) can be modelled
equivalently as a 50:50 mix of collinear spin up and down atoms at each site [21]. This HUTSEPOT calculation
yields local moments of 1.75 μB for the Fe atoms.

We then take the generated potentials and perform a set of finite temperature calculations with MARMOT,
remaining in the scalar-relativistic approximation. For a set of λ values between 0.05–30, we calculated the
Weiss field h experienced by the Fe atoms. The results are shown in the left panel of figure 5, where we use
equation (3) to relate λ to the order parameter m. In the right panel of figure 5, we plot the magnetization
(equation (21)) against the temperature, obtained from h as T = h/(kBλ).

It can be seen that for m < 0.4 the Weiss field is linear in order parameter, i.e. h = J0m, while an additional
m3 term is required to fit the data across the full range of m. Using the expansion of equation (24) up to m4, we
find values of 332 and −78 meV for J0 and J1, which can be related to the Curie temperature TC as follows: in
the small m limit, equation (3) reduces to m → λ/3, with the temperature at which m vanishes corresponding
to TC. Since λ = βh, we have m = h

J0
= h

3kBTC
, or

TC =
J0

3kB
. (25)

Accordingly, we calculate a Curie temperature of 1283 K, to be compared to the experimental value of
1040 K [51].
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Figure 5. MARMOT calculations for bcc Fe, shown as red circles, of the Weiss field as a function of order parameter (left) and
magnetization as a function of temperature (right).

The procedure above may be applied exactly to any system comprising a single magnetic sublattice. Specific
to bcc Fe, we point out three important facts: first, the range of order parameters where a quadratic expan-
sion of the energy is valid, m < 0.4, corresponds to rather high temperatures, T > 1000 K. To explain the
behaviour of the Weiss fields at lower temperatures, including room temperature, the quartic contribution
J1 must also be included. Second, our initial scf calculation was performed for the paramagnetic (PM) refer-
ence state. Using the ferromagnetic reference state instead gives a much larger TC, 1785 K, which shows that the
material is deviating from local moment behaviour. Finally, the value of TC is also sensitive to the lattice param-
eter; recomputing TC using the PM reference state at a lattice constant of 5.47a0 (measured experimentally at
the Curie temperature [52]) gives a value of 1951 K.

4.3. Laves phase GdFe2

Next we consider a ferrimagnet, GdFe2. The RFe2 family of magnets (R = rare earth) crystallized in the cubic
Laves phase are remarkable for their giant magnetostriction, particularly the Tb–Dy alloy Terfenol-D [53]. As
is usually the case with such magnets [54], there is an antiferromagnetic coupling between the spin moments of
the rare earth and the transition metal atoms, so that resultant magnetization is the difference of the moments
associated with the Gd and Fe sublattices. Taking approximate moments of 7 and 2 μB for Gd and Fe respec-
tively, we therefore expect the total magnetization of ∼3 μB to point in the same direction as the Gd spins.
This behaviour is different to other famous magnets in this class, e.g. Gd2Fe14B, Gd2Co17 or GdCo5, where the
higher transition metal content leads to the total magnetization pointing in the opposite direction to the Gd
spins [39].

To generate the atom-centred potentials, we perform scalar-relativistic calculations with HUTSEPOT at a
fixed lattice constant of 7.405 Å, corresponding to the experimentally-measured room temperature value [55].
Since the Gd-4f electrons are not well described within the LSDA, we apply the LSIC to this spin subshell [36].
The potential is described in the ASA with Wigner–Seitz radii of 3.15 and 2.94a0 for Gd and Fe, respectively.
We use the zero temperature, ferrimagnetic configuration as our reference state, and calculate moments of 7.67
and 2.11 μB for the Gd and Fe atoms, giving a total magnetization of 3.45 μB/FU.

We next use MARMOT to perform finite temperature, fully-relativistic calculations. We take the magnetiza-
tion to be aligned along the [001] direction, which results in there being two distinct λ values, one for Gd and
one for Fe. The self-consistency condition (equation (23)) takes the form

λGd

hGd
out

=
λFe

hFe
out

=
1

kBT
(26)

We generally choose between two iteration schemes to determine the self-consistent λ values: ‘fixed-T’ and
‘fixed-λ’ [56]. In the first case, λ values are updated as

λX
next =

hX
out

kBT
. (27)

This scheme is useful where one is interested in particular temperatures well below TC. Close to TC, however,
the ‘fixed-T’ scheme takes many steps to reach convergence and it is more efficient to fix λ on one sublattice Y
to a small value, and update the other λ values as
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Figure 6. MARMOT calculations for GdFe2, showing the temperature-dependent total and sublattice-resolved magnetization (left)
and the finite-temperature, spin-resolved density-of-states (right), which shows clearly the Gd-4f electrons.

λX
next = λY hX

out

hY
out

. (28)

MARMOT has built-in functions to automate the self-consistency procedure.
In figure 6, we show the magnetization vs temperature curve calculated for GdFe2 using the (fixed-T) iter-

ative method, up to a temperature of 400 K. The figure also shows the decomposition of the magnetization
into the contributions from the Gd and Fe sublattices. The magnetization includes the orbital contribution
to the moments, but it is relatively small; at T = 0 K, the orbital moment calculated for each Fe atom is
0.04 μB, while for Gd it is an order of magnitude smaller. The magnetization at 300 K is 2.88 μB/FU, a reduc-
tion of 0.42 μB/FU from its zero temperature value of 3.30 μB/FU. These values compare quite well to the
experimental measurements of 3.35 and 2.71 μB/FU at 4 and 300 K, reported in reference [57], although we
note the calculated magnetization decays more slowly with temperature. To investigate this decay further and
obtain TC, we generalize the small-m expansion of the grand potential (equation (24)) to multiple magnetic
sublattices, keeping only quadratic terms:

〈Ω〉0,T ≈ −1

2

∑
X,Y

JXYmXmY (29)

Here, X and Y label magnetic sublattices, and in general have multiple atoms within the unit cell associated
with them, quantified by the multiplicity NX; for Laves-phase GdFe2 magnetized along [001], NGd = 2 and
NFe = 4. Furthermore, JXY = JYX. The Weiss field on a particular atom i, which forms part of sublattice X, is
given by

hi =
1

NX

∑
Y

JXYmY (30)

where the sum is over all sublattices (including X), and the multiplicity factor arises because
hi = −∂〈Ω〉0,T/∂mi = (∂〈Ω〉0,T/∂mX) × (∂mX/∂mi). It is convenient to use equation (30) to introduce a
matrix with elements MXY = JXY/NX; for GdFe2 M is a 2 × 2 matrix. Introducing �H = (hGd, hFe) and taking
the small m limit yields the eigenvalue equation

1

3kBTC
M �H = �H (31)

which shows how TC is given by the largest eigenvalue of the matrix formed as M/(3kB).
The JXY coefficients can be obtained from least squares fitting of Weiss fields calculated for various com-

binations of small λ values. For GdFe2 we perform six calculations, using combinations of λGd and λFe with
values of 0.00, 0.05 or 0.10. These small values of λ ensure we remain in the regime where the Weiss fields are
linear in m and above numerical noise. The extracted values of the JXY parameters are JGd–Gd = 99.2, JGd–Fe =
417.6 and JFe–Fe = 1042.6 meV, which combine to give a TC of 1302 K. This is an overestimate compared to
the experimentally measured Curie temperature of 790 K [57]. Referring to the previous calculations on bcc
Fe we note that we are using a FM reference state and experimental lattice constants, which both resulted in
an increased TC compared to experiment.

In addition to the magnetization, in figure 6 we show the spin-resolved density-of-states (DoS) calculated at
T = 300 K, which corresponds to (λGd,λFe) = (8.17, 7.65). The DoS around the Fermi energy EF is composed
predominantly of Fe-3d states, with a notable contribution from the Gd-5d state in the majority spin channel.
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Figure 7. The difference in atom-centred, spherically-symmetric potentials for the spin-up and down channels for the three
distinct atomic sites in the YCo5 unit cell. The potentials were calculated for the zero-temperature, ferrimagnetic state using the
GPAW and HUTSEPOT codes.

The LSIC places the Gd-4f states 15 eV below the Fermi level, and the Gd-5p semicore states are also evident
at lower energy. The unoccupied Gd-4f states are visible in the minority spin channel, 1.5 eV above EF. We
note that the spin–orbit interaction mixes spin up and down states so that the Gd-4f peak at −15 eV has a
contribution in the minority spin channel, as shown previously for the RCo5 compounds [39].

4.4. YCo5

For our final example we consider the hexagonal magnet YCo5, and demonstrate the use of the GPAW code
[48] to generate the initial potentials, as an alternative to HUTSEPOT. YCo5 adopts the CaCu5 structure (space
group 191), and we use the values a = 4.950 and c = 3.986 Å for the lattice constants, as measured experi-
mentally at 300 K [55]. For the GPAW calculation, we use a plane-wave expansion of the wavefunctions up to a
maximum cutoff energy of 1200 eV, and sample the BZ on a 20 × 20 × 20 grid, with a Fermi–Dirac smearing
of 0.01 eV. We use the standard PAW datasets (v0.9.2) to account for the core-valence interaction. The cal-
culated zero temperature, ferromagnetic state has a magnetization of 7.03 μB/FU. The magnetization can be
decomposed into local moments of 1.50, 1.53 and −0.16 μB for Co2c, Co3g and Y , where 2c and 3g label the
two crystallographically distinct Co sites.

For comparison, we consider the same system using HUTSEPOT, within the ASA. Here, the calculated mag-
netization is 7.19 μB/FU, with local moments of 1.53, 1.47 and −0.31 μB. Although both calculations solve the
equations of DFT in the LSDA, there are a number of technical differences. HUTSEPOT employs a spherical
approximation for the potential, while GPAW does not. But, HUTSEPOT treats the core electrons and their
interactions with the valence explicitly, while GPAW freezes the core electrons and treats the valence interac-
tion through a finite basis of projector functions [58]. Even the definition of local moments varies between
implementations, with HUTSEPOT using the integrated magnetization in the WS spheres, compared to GPAW
which projects onto local orbitals.

MARMOT requires the Kohn–Sham (KS) potential in a spherically-symmetric, atom-centred form on a
radial grid, which is exactly the form used by HUTSEPOT. However, in GPAW, the KS potential consists of a
smooth part (here represented in Fourier space) and atom-centred corrections. The post-processing procedure
of reconstructing the ‘all-electron’ KS potential in atom-centred form, has been discussed previously in the
context of calculating crystal field (CF) coefficients [59]. In CF theory, one is interested in the full angular
expansion of the potential, but only the spherically-symmetric l = m = 0 components are required for the
MARMOT calculation.

In figure 7 we show a comparison of the potentials obtained in GPAW and HUTSEPOT. Specifically, we
consider the difference between the spin up and down components of the potential, which is proportional
to the effective exchange–correlation magnetic field, for each crystallographically-distinct atom. The curves
clearly follow the same shape and overlap in certain regions of space, but there are also observable differences.
The differences have a quantitative effect on the calculated properties, as discussed below.

In addition to constructing the potentials as spherical averages, to perform a MARMOT calculation we also
need to decide on the radii of the WS spheres. Within the ASA, the total volume of the spheres must equal the
volume of the unit cell, but if there are multiple atoms in the cell then the ratios of the WS radii remain a free
parameter. Here, we fix the radii to be 1.39, 1.42 and 1.84 Å for Co2c, Co3g and Y , which are values which have
been used previously [60]. We discuss possible alternatives below.

Using these potentials, we perform a set of fully-relativistic MARMOT calculations for temperatures between
0–300 K. The magnetization at zero temperature is calculated to be 8.05 μB/FU. This consists of a spin con-
tribution of 7.46 μB/FU, (which is larger by 0.4 μB/FU than the original scalar-relativistic GPAW calculation),
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Figure 8. MARMOT calculations of the magnetocrystalline anisotropy constant K1 as a function of temperature (left) or at zero
temperature, as a function of electron number (right). The calculations were performed using potentials generated either with the
GPAW or HUTSEPOT codes.

and an orbital contribution of 0.58 μB/FU, due to orbital moments of ∼ 0.1μB on each Co atom. As well as
obtaining the self-consistent λ values, we also calculate the MCA energy from the torque when the material is
magnetized along the [101] direction [61]. This is plotted in figure 8, and reduces from a value of 0.46 meV/FU
(0.88 MJ m−3) at T = 0 K to 0.18 meV/FU (0.34 MJm−3) at T = 300 K. Also, following the same procedure as
for GdFe2, we parameterize a small-m expansion to obtain TC, and find a value of 864 K.

Now we repeat the MARMOT calculations starting from the HUTSEPOT potentials. The anisotropy energy
is shown in figure 8, with values of 0.31 and 0.13 meV/FU at T = 0 and 300 K, respectively. The zero-T mag-
netization is 7.84 μB/FU (7.23 and 0.61 μB/FU spin and orbital contributions, respectively), and the calculated
TC is 874 K.

Experimentally, values between 7.9–8.4 μB/FU have been reported for the magnetization at 4 K [55, 62],
and the anisotropy energy has been measured to be approximately 4 meV/FU [63, 64]. The underestimation
of the anisotropy by the LSDA has been observed previously, and including an OPC both strengthens the
anisotropy and increases the magnitudes of the orbital moments [65]. Applying the OPC here gives zero-T
anisotropies of 6.4 meV/FU and 4.5 meV/FU, starting from the GPAW and HUTSEPOT calculations, respec-
tively. Experimentally-measured values of TC range from 940–1000 K [55, 64], i.e. larger than the current
calculations by 100 K. Taking account of thermal expansion by using higher-temperature lattice parameters
was found to increase TC by 42 K in GdCo5 [60].

These calculations on YCo5 serve as a proof-of-concept demonstration of using GPAW’s plane-wave imple-
mentation of collinear spin-DFT to generate potentials for a MARMOT calculation, which show qualitatively
the same behaviour as potentials generated with the KKR in HUTSEPOT. The attraction of this approach is
that it widens the accessibility of MARMOT, since GPAW and other similar codes have a large community of
users and developers. However, more testing and development is required in order to understand better the
limitations of the approach. Probably the most important factor is that MARMOT approximates the potential
as spherically symmetric, either within the MT picture or the ASA. The fact that HUTSEPOT makes the same
approximation means that this code is the sensible choice to calculate the self-consistent charge and potential:
it allows us to start the MARMOT calculation from a variational minimum within the spherical approximation.
By contrast, in the GPAW case we are starting from a spherically-symmetrized version of the self-consistent full
potential, which is not a variational minimum.

An additional question is the choice of WS radii. The values used here were in fact originally derived from a
GPAW calculation [60], which chose the set of radii which minimized the sum of the deviation of the potentials
from their spherical average, subject to the single constraint that the sum of the WS sphere volumes equals the
unit cell volume. A modification to this approach would be to include the additional constraint that the charge
contained within the WS spheres integrates to the expected number of electrons in the unit cell. Having an
accurate value for this number is expected to be particularly important when calculating the anisotropy, since
this quantity is extremely sensitive to the Fermi level position [65], as shown in figure 8.

5. Conclusions and outlook

The DLM approach allows the inclusion of finite-temperature magnetic disorder within first-principles DFT
calculations. The fundamentals of the DLM were set down in the 1980s [21], but continued developments
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have allowed progressively more ambitious problems to be tackled [24–31]. MARMOT assimilates many of
these developments into a single code base, retaining the fundamental speed and efficiency of FORTRAN for
the most computationally-intensive part of the problem whilst providing a Python-based frontend to handle
the user interface and post-processing of data.

The code structure implemented here will form the base for the next round of progress. Apart from a tech-
nical aspect (improved parallelization), we have already indicated one avenue for development, which is to
interface MARMOT with a wider range of DFT packages for the initial generation of potentials. We have used
GPAW as a proof-of-concept, and highlighted the question of how best to sphericize (‘muffin-tinnize’) the
potentials. This question applies to any full-potential-type calculations, such as those using plane-waves and
pseudopotentials like CASTEP or Quantum ESPRESSO [66, 67]. For codes capable of performing spheri-
cized self-consistent calculations, such as QUESTAAL, sprKKR and juKKR [41, 68, 69], the task is more
straightforward, requiring Python-based parsers to read in the different potential formats.

The Python frontend presents other opportunities for development. Interfacing with the atomic simu-
lation environment (ASE) [70] would simplify the generation of crystal structures. Python also facilitates
increased automation across the whole calculation, opening the prospect of high-throughput calculations as
part of a larger workflow. For instance, for simple materials it is possible to determine an analytical form of the
magnetic potential energy 〈Ω〉0,T by hand, writing down and fitting expressions like equation (29). However,
for materials with multiple magnetic sublattices and/or complicated exchange terms, an automated method of
determining 〈Ω〉0,T becomes essential.

We also note the important contribution that first-principles calculations can play in providing the input
parameters for larger length- and timescale simulations, based on atomistic spin dynamics or micromagnetics
[13, 71]. By finding the ‘best’ analytical expression for 〈Ω〉0,T in MARMOT, we can specify the most appropri-
ate form of the magnetic interactions which should enter the larger-scale models. Using MARMOT to obtain
numerical values of the parameters required to describe these interactions will facilitate predictive modelling
of magnetic materials across different length-scales.

Data availability statement

TheMARMOT software package is available to the computational magnetism community to be used as a research
tool. The software can be obtained by contacting the authors, or by visiting the website [72].
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