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A method to establish regions of phase space through which pass no invariant tori transverse to a
given direction field is applied to the planar circular restricted three-body problem. Implications for
the location of stable orbits for planets around a binary star are deduced. It is expected that lessons
learnt from this problem will be useful for applications of the method to other contexts such as flux
surfaces for magnetic fields, guiding centre motion in magnetic fields, and classical models of chemical
reaction dynamics.
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1. Introduction

KAM theory provides sufficient conditions for existence of
nvariant tori in Hamiltonian systems. Although great advances
ave been made [1], it is still hard work to obtain a realistic
raction of the tori suggested to exist by numerical simulation.

On the other hand, Converse KAM theory [2,3], which provides
ufficient conditions for non-existence of invariant tori of given
lass through given regions, is much easier to implement, and in
xamples treated so far it produces a close to believed optimal
esult without much work. Furthermore, it is proved to obtain an
rbitrarily large fraction of the complement of the union of all
uch invariant tori under suitable conditions [4].
Converse KAM theory was developed initially for area-

reserving twist maps and restricted to non-existence of invari-
nt circles in the form of graphs: momentum p as a function
f position q [2] (following earlier uses by Mather, Herman and
azutkin). That was extended to symplectic twist maps, restricted
o non-existence of invariant tori in the form of Lagrangian
raphs: p =

∂S
∂q for some function S(q), in general multivalued [5].

Then it was extended to continuous-time Hamiltonians on T ∗Td

with possibly periodic time-dependence, positive-definite second
derivative in the momenta p and non-existence of invariant
Lagrangian graphs, and applied in particular to a Hamiltonian for
the 1D motion of a particle in the field of two waves [3].

In [6], however, the method was extended to systems with-
out any twist condition and for invariant tori transverse to an
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c-nd/4.0/).
arbitrary foliation, in the case of 1.5 degree of freedom (DoF)
Hamiltonian systems (including the restriction of an autonomous
2DoF system to energy levels). A test of the method has re-
cently been carried out on the two-wave Hamiltonian and a
quasiperiodic Hamiltonian, with encouraging results [7].

In this paper we apply the method of [6] to the more challeng-
ing problem of the planar circular restricted three-body problem
(PCR3BP). This venerable system is of intrinsic, practical and
pedagogical interest. Recall that it concerns the motion of a test
particle in the gravitational field produced by two bodies in
circular orbits around their centre of mass. We denote the masses
of the two bodies by 1− µ and µ (with µ ∈ [0, 1

2 ]), respectively,
relative to their total mass. We call them the primary and sec-
ondary, respectively. The test particle is assumed to start in the
plane of rotation of the two bodies with velocity in that plane
and therefore to remain in that plane. We view the motion of the
test particle in a frame which keeps the centre of mass at the
origin and rotates around it with the two bodies so as to keep
them at positions (−µ, 0) and (1 − µ, 0) respectively, relative to
heir separation. It conserves the Jacobi constant (to be recalled
n Section 3), so is a 1-parameter family of 1.5 DoF systems.

The questions we would like to address are:

1. What is the set of initial conditions for which the test
particle is constrained to an invariant torus lying outside
the orbit of the secondary (r > 1 − µ), circulating around
the origin?

2. What is the set of initial conditions for which the test
particle is constrained to an invariant torus lying inside the

orbit of the secondary, circulating around the primary?
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3. What is the set of initial conditions for which the test par-
ticle is constrained to an invariant torus circulating around
just the secondary?

We propose to tackle these questions by establishing the com-
plements of the specified sets of initial conditions. In this paper,
we address just the first question, but the method could be
adapted to address the other two. Note that one could also ask
about invariant tori which cross the orbit of the secondary, but
continuations of these from the unperturbed case cannot exist
because they would include collision with the secondary.

An answer to the first question is relevant to the question
of location of stable orbits for a planet round a binary star,
highly topical in this age of exoplanet discovery [8], given that
a significant fraction of stars are actually binary (estimated at
around 80% according to various websites). Our paper gives initial
insights into this question.

The second question is relevant to the issue of stable orbits of
a small planet like the earth in the Sun–Jupiter system.

Note that an answer to the third question would provide a rig-
orous notion of the ‘‘sphere of influence’’ of the secondary, which
has a range of definitions that scale like different powers of µ, so
are not compatible with each other. There are the Hill or Roche
sphere that has the line between the Lagrange points L1 and L2
s diameter (so scales like µ1/3), several variants of a sphere of
nfluence whose radius scales like µ2/5 [9], and Belbruno’s weak
tability radius that scales like µ1/3 again [10]. It would be good to
ddress this. The three questions really require extension to the
roblem of motion in 3D and to the case of elliptical motion of the
rimary and secondary, which a planned extension of the method
o higher DoF (restricting attention to Lagrangian invariant tori
ransverse to a Lagrangian foliation) will be able to tackle.

The plan of the paper is that first we give a simple illustration
f the method. Next we recall the Hamiltonian formulation of
he PCR3BP and its invariant tori for µ = 0. We state the non-
xistence criterion and explain how to use it in this problem. We
ropose reduction of the search space of initial conditions to a
urface of section or even a symmetry plane. We give examples
f initial conditions for which the method yields non-existence
nd then a scan of two symmetry planes to summarise results
ound up to a specified time-out. We interpret the results in terms
f crossing the orbit of the secondary and of resonance with the
otation of the two bodies. We close with a discussion of various
mprovements that it would be good to make.

. Simple illustration of the method

Consider the simple pendulum described by the vector field
= (q̇, ṗ) = (p, − sin q) with Hamiltonian H(q, p) =

1
2p

2
− cos q

n the cylinder. H is conserved. For H > 1 the solutions lie
n rotational invariant tori (‘‘rotational’’ means they encircle the
ylinder, and here the tori are 1D, so just circles, in fact periodic
rbits). They are all transverse1 to the foliation2 F given by the
ertical lines q = constant. Given a foliation F , we define a vector
ield ξ by a continuous choice of upward tangents to F . The orbit
of an upward tangent ξ to F at a point A with H > 1 under

he linearised dynamics cannot cross the tangent to the invariant
orus, therefore it cannot become a downward tangent to F , as
llustrated in Fig. 1. Thus, if an upward (or downward) tangent to
at some point flows to a downward (or upward) tangent, then

o rotational invariant tori pass through the given point (nor any
oint of its orbit).

1 Two submanifolds are said to be transverse if at any intersection the sum
f their tangent spaces is the whole tangent space.
2 A foliation of a manifold is a decomposition into subsets called leaves that
re locally submanifolds, diffeomorphic to the decomposition of Rn into the
et of leaves x = constant for some choice of 0 < m < n and coordinates
x, y) ∈ Rn−m

× Rm .
2

Fig. 1. Two vectors under the flow of the pendulum, starting at A and B tangent
to the vertical foliation F (blue lines).

For H < 1 therefore, we can tell that the solutions are not
on rotational invariant tori, by taking the orbit of an upward
tangent to F at any such point B and noticing that it crosses the
downward tangent after some time, as in Fig. 1.

Here, of course, the solutions for H < 1 lie on librational
invariant tori. In order to test nonexistence for this type of torus,
we could choose instead a radial foliation (e.g. p/q = constant,
though this does not extend to a global foliation of the cylin-
der), and one would find for this example that the test is never
satisfied.

One could rightly say that an even simpler condition, and one
that would be satisfied earlier, is that if a trajectory lies on a torus
of the given class then η never becomes parallel to the dynamical
vector field V . But the above formulation allows extension to
higher dimensions. In particular, we extend the above condition
slightly to encompass both of the above ideas. If a trajectory
is on an invariant torus of the given class then the trajectory
η of ξ from an initial point can never become of the form a
egative amount of ξ plus an arbitrary amount of V , because that

would imply that η becomes tangent to the torus at some point
in between, but the trajectory of a tangent to the torus remains
forever tangent to it.

3. PCR3BP

We choose units in which the total mass is 1, the distance be-
tween the primary and secondary is 1, and the angular frequency
of rotation is 1. We choose coordinates (x, y) for the test particle
in the rotating frame so that the primary mass 1−µ is at (−µ, 0)
and the secondary mass is at (1 − µ, 0).

Let p = (px, py), L, K be the vector momentum, angular mo-
entum and energy (per unit mass) of the test particle in the

nstantaneous inertial frame, and r = (x, y) be its position. So

= xpy − ypx (1)

=
1
2

(
p2x + p2y

)
−

1 − µ

r1
−

µ

r2
, (2)

where r1 and r2 are the distances to the primary and secondary,
espectively, r1 =

√
(x + µ)2 + y2 and r2 =

√
(x − 1 + µ)2 + y2.

Then the motion in the rotating frame is given by Hamilton’s
equations with respect to the canonical symplectic form ω =

dx ∧ dpx + dy ∧ dpy for

H = K − L. (3)
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Fig. 2. Contours of the effective potential U for µ = 0.1. The two massive bodies
re shown in blue, and the five Lagrange points are shown in red. U goes to
∞ at the two masses and has maxima at the equilateral Lagrange points.

e denote the resulting vector field by V (satisfying iVω = dH).
n particular, H is conserved and it is conventional to denote its
alue by −C/2, with C called the Jacobi constant.
The system can alternatively be written in terms of the ve-

ocity v = (vx, vy) in the rotating frame. The transformation is

vx = px + y,

y = py − x.
(4)

The Hamiltonian and the symplectic form become

H =
1
2

(
v2
x + v2

y

)
+ U(x, y), (5)

ω = dx ∧ dvx + dy ∧ dvy − 2dx ∧ dy (6)

with

U(x, y) = −
1
2

(
x2 + y2

)
−

1 − µ

r1
−

µ

r2
. (7)

Fig. 2 shows a contour plot of the effective potential U . Its critical
points express the equilibrium points of the system, its level sets
U = −C/2 are called ‘‘zero-velocity curves’’ and its sub-level sets
U ≤ −C/2 are the ‘‘Hill’s regions’’ for allowed motion at Jacobi
constant C .

For state space, we use S = {(x, y, vx, vy) ∈ R4
: (x, y) ̸=

−µ, 0), (1 − µ, 0)} and endow it with Euclidean metric (using v
rather than p), which we will use to construct the foliation vector
field ξ . It is possible to regularise the system to allow passage
through collisions in a modified time, but we leave that for the
future.

3.1. The unperturbed system

When µ = 0, the system is integrable, with first integrals K
and L. The joint level sets of (K , L) are invariant and connected.
They are non-empty, bounded and regular iff K < 0 and 0 <

L2 < (−2K )−1 (‘‘regular’’ means that the derivatives of K and L
are linearly independent everywhere on them). The non-empty
 s

3

Fig. 3. The region of invariant tori (grey) in the space of (L, C) for µ = 0.

bounded regular level sets of (K , L) are two-tori. In polar canoni-
cal coordinates (r, θ, pr , pθ ), where L = pθ , the joint level sets of
(K , L) can be equally described by

2
r +

L2

r2
− 2L −

2
r

= −C . (8)

The two-tori correspond to parameters 2L < C < 2L+L−2, shown
in Fig. 3. The region is bounded above by curves corresponding
to the circular orbits pr = 0, r = L2, and below by a line
corresponding to the parabolic orbits.

Each torus corresponds to a choice of semi-major axis a > 0,
eccentricity e ∈ (0, 1) and direction σ ∈ {±1} of rotation (direct
or retrograde). The relation is K = −(2a)−1, L = σ

√
a(1 − e2). The

points on a torus with given a, e, σ correspond to points on the
Kepler ellipses with these parameters; the remaining freedoms
are the angle g of pericentre in (x, y) (closest approach to the
origin) and the position of the particle on the ellipse. The latter
can be described by the polar angle θ or the angle f relative to
pericentre or the mean anomaly m (being 2π times the fraction of
the area swept out from pericentre) or by the eccentric anomaly
E (that we will not use) [9]. The dynamics on such a torus are
conjugate to a constant vector field:

ṁ = N−3, ġ = −1, (9)

where N = σ
√
a is the first Delaunay variable (so K = −(2N2)−1).

The equation ġ = −1 comes from the rotating frame. The winding
ratio of turns in g to turns in m is w = −N3.

The invariant surfaces are transverse to the foliation F defined
y g = constant and θ = constant. This is because (L,N, g, θ )
orms a local coordinate system (except at r = 0 where θ
s undefined, and on the circular orbits where g is undefined).
he foliation F has singularities corresponding to the coordinate
ingularities, so we should call it a singular foliation. Back to polar
oordinates, the 2D leaves of F are given by the level sets of
= prL(L2/r − 1)−1. This is because g is the angle of the Laplace
ector (often called Runge–Lenz) e = p × Lẑ − r̂ to the positive
-axis. The intersections of some of the invariant surfaces and
eaves of the foliation F with θ = constant and either L = 1
r K = −0.5 are shown in Fig. 4.

. Converse KAM method

By KAM theory, sufficiently irrational invariant tori persist
moothly and thus remain transverse to F for some range 0 ≤
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Fig. 4. Joint level sets of (K , L) (blue) and transverse foliation F (red) for θ = constant, in the unperturbed case. For fixed L = 1 (left), the tori range from K = −0.5
for circular orbits (black point) to K = 0 for parabolic ones (black curve). For fixed K = −0.5 (right), the allowed motion (grey area) is confined by the outermost
tori L = 0 and degenerates to the circular orbits for L = ±1.
a
h
β
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µ < µc(w, L, K ), where µc depends smoothly on L, K , but in a
fractal number-theoretic manner on w (for a heuristic description
of this in the context of the two-wave Hamiltonian, in terms of
what are now called Brjuno functions, see [11]). For question 1,
it may be more appropriate to consider µ as fixed and express
the conclusion of KAM theory as applying when the distance
rmin = a(1 − e) = N2(1 −

√
1 − L2/N2) to pericentre of the

osculating ellipse satisfies rmin > rc for some function rc(µ, w, L)
depending smoothly on µ and L, but number-theoretically on w.

The Converse KAM method of [6] eliminates regions for a 3D
system where invariant tori transverse to a given foliation do not
exist. So, to apply the method we first need to choose a foliation
for the energy levels of the PCR3BP.

4.1. Foliation

A natural candidate is based on the foliation F introduced at
the end of the previous section. Restricting to H = −C/2, F
becomes 1D. This turns out not to be a good choice of foliation
of the energy level for µ > 0, however, because the leaves
develop tangencies to the energy levels when the perturbation
µ is turned on, introducing extra singularities and making it
difficult to introduce a consistent orientation, a feature needed
by the non-existence method. The issue is that the effect of the
perturbation is not small near the primary and secondary. To
answer question 1, it might seem that we do not have to consider
trajectories that come close to the primary or secondary, but in
practice it turned out that we needed a way to handle them, so
we decided it is tidier to choose a foliation of the energy levels
that does not have this problem.

To specify a 1D oriented foliation for each energy level, it is
enough to specify a vector field ξ tangent to the energy levels.
Based on the idea that the invariant tori for µ = 0 in an energy
level are L = constant, we chose

ξ = ∇L − a∇H, (10)

with a = ∇L · ∇H/|∇H|
2, where ∇, ·, | | are with respect to the

standard Riemannian metric on (x, y, vx, vy) ∈ R4. The metric
mixes lengths and velocities, which might seem physically unsat-
isfactory, but we have already scaled lengths and times to make
the distance between the primary and secondary and the rotation
rate be one. The vector field ξ is undefined where ∇H = 0,
but that is only the five Lagrange points, where in any case the
 d

4

energy levels have singularities. By construction, ξ is tangent to
the energy levels (ξ · ∇H = 0), and it is transverse to the level
sets of L (ξ · ∇L > 0) except where ∇L and ∇H are parallel. In
the unperturbed case µ = 0, these are parallel only at r = 0
and on the circular orbits L2 = r , pr = 0. Thus ξ is transverse to
the invariant 2-tori of the unperturbed case (L = constant in the
domain of Fig. 3) in the given energy level.

The vector field ξ induces an oriented foliation of each energy
level by its integral curves. The foliation has singularities where
ξ = 0, i.e. where ∇L and ∇H are parallel. For µ = 0 this was
already discussed. For µ > 0 it consists of two curves in the full
phase space. They are most conveniently written using p rather
than v, and they can be expressed as pr = 0, ṗr = 0, ṗθ = 0
in polar coordinates. More specifically, the first one is given by
θ = 0, pr = 0, f (r, L; µ) = 0 and θ = π , pr = 0, f (r, L; 1−µ) = 0,
where

f (r, L; µ) =
1 − µ

(r + µ)2
±

µ

(r − 1 + µ)2
−

L2

r3
, ±(r − 1 + µ) > 0.

(11)

This is a deformation of the equation for the circular orbits,
restricted to y = 0; the deformation is small except near x = 1−µ
or −µ. It will be illustrated in Fig. 7. The second one is r1 = r2,
pr = 0, L2 = r4r−3

1 , which again is a deformation of the equation
for circular orbits, but restricted to the perpendicular bisector of
the massive bodies.

4.2. Nonexistence condition

Now we present from [6] a sufficient condition for non-
existence of invariant tori through a given point, transverse to
the vector field ξ , adapted here to the PCR3BP.

Take an initial point s0 in H−1(−C/2) and an initial tangent
vector ηs0 = ξs0 . For increasing t , simultaneously evolve both to
s = s(t) and ηs = ηs(t) using the dynamics ṡ = V (s) and the
linearised dynamics η̇s = DVs ηs. If there is an invariant torus T
passing through s0 that is transverse to ξ , then η, that is, ηs(t) for
ll t , must stay on the same side of T . In particular, we can never
ave (i) ηs, ξs, Vs linearly dependent, with (ii) ηs = αVs + βξs,
< 0.
To detect (i), we can use the symplectic form ω for the system,

ecause in a regular energy level, ηs, ξs, Vs are linearly indepen-
ent if and only if ω(η , ξ ) ̸= 0. To see this, take the triple product
s s
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n H−1(−C/2) using the Liouville volume-form Ω = |V |
−2V ♭

∧ω.
ere, V ♭ is the 1-form such that V ♭(X) = V ·X for all vectors X , and

Ω is the standard volume-form on an energy surface inherited
from Liouville volume on the whole state space S (such that
Ω ∧ dH =

1
2ω ∧ ω). So we look for a sign change of ω(ηs, ξs).

To decide (ii), we reformulate [6] by choosing a 1-form λ such
hat λ(V ) = 0 and λ(ξ ) > 0 (except at zeros of ξ ). So then any
ector ηs tangent to an energy level that satisfies λ(ηs) < 0 and is
ependent on (Vs, ξs), has β < 0 (in the above notation). We say
nformally that ηs points opposite to ξ , relative to the Hamiltonian
ector field V .
Thus, putting the two together we arrive at the converse KAM

ondition: If there is a point s = s(t) where ω(ηs, ξs) changes
ign and λ(ηs) < 0 then there is no invariant torus through s0
ransverse to ξ . We will refer to this as the general formulation.

The only thing that remains is to choose λ. For the choice (10)
or ξ , we take λ = dL−bV ♭ with b = ∇L ·V/|V |

2. By construction,
his satisfies λ(V ) = 0. Now, note that |ξ |

2
= ξ · ∇L and V · ξ =

· ∇L, because ξ and V are each perpendicular to ∇H . Thus, λ

nd ξ also satisfy λ(ξ ) = ∇L · ξ − b V · ξ = |ξ |
2
− (V · ξ )2/|V |

2
≥

by the Cauchy–Schwarz inequality. Therefore λ(ξ ) is positive
verywhere except where ξ is parallel to V .
For convenience, we allow the possibility that ξ is parallel to
in some places. Nonexistence of invariant tori transverse to
through such a point is automatic. The condition λ(ηs) < 0,
owever, is not satisfied there as λ(ηs) = 0 at these points. This
ight be unfortunate, but we did not come up with a choice of ξ

hat we could guarantee to be nowhere parallel to V .
We close this section with an alternative formulation of the

onverse KAM method, which although not used here, might be
elpful in the future. One way to choose λ is to choose a vector
ield u independent from ξ (except at its zeros) and tangent to
he energy levels, such that α(u) > 0, where α = iξω, and
hen let λ = −iuω. It follows that λ(V ) = dH(u) = 0 and
(ξ ) = α(u) > 0 are automatic. Moreover, we do not need to
ork with λ directly: instead of flowing a tangent vector ηs, one
an take an initial cotangent vector βs0 = αs0 and let it flow to
s = βs(t) under the adjoint linearised system β̇s = − βsDVs.
ince βs = iηsω, we arrive at the following condition. If there is a
oint s = s(t) where βs(ξs) changes sign and βs(u) < 0 then there
s no invariant torus through s0 transverse to ξ .

.3. Symmetric case

A refinement of the nonexistence condition, which goes back
o [3], involves systems that admit a time-reversal symmetry
t −→ − t, s −→ s̃ = R(s)) for some diffeomorphism R. The
CR3BP has indeed the time-reversal symmetry R : (r, θ, pr , pθ )
→ (r, −θ, −pr , pθ ).
For time-reversal symmetric systems and initial conditions on
symmetry plane (the set of fixed points of R), we can speed
p the computations by a factor of at least two by using the fact
hat the backward trajectory is the reflection by R of the forward
ne. Thus we get a segment of trajectory of twice the length
or the price of one. One should choose the vector field ξ to be
ymmetric with respect to R, i.e. ξ̃s̃ = ξs where ξ̃ = dR ξ . Instead
f starting with ηs0 = ξs0 , we choose any antisymmetric ηs0 on the

symmetry plane independent from Vs0 (which is automatically
antisymmetric), but tangent to the energy level sets.

Then the non-existence condition can be refined to ω(ηs, ξs) =

for some t > 0. This is because, if η is antisymmetric, it follows
hat if one starts from s̃ at − t with tangent vector − η̃s̃ then one
btains tangent vector ηs0 at t = 0 and hence ηs in s at time t . But
(ηs, ξs) = 0 with dH(ηs) = 0 implies ηs = c1ξs + c2Vs for some
1, c2 ∈ R, with c1 ̸= 0 (because the only way to get c1 = 0 is to

tart with ηs0 a multiple of Vs0 , but we took it independent). Then

5

Fig. 5. Example of a trajectory for which the nonexistence condition was
satisfied. The two bodies are shown in black, the grey area is the forbidden
region bounded by the zero-velocity curves (yellow), and µ = 0.3, C ≈ 3.7 with
nitial conditions (green point) on a symmetry plane. The symmetric formulation
f converse KAM detects here nonexistence (red point) much faster than the
eneral formulation (brown point).

e deduce that starting from η̃s̃ = − c1ξ̃s̃ + c2Ṽs̃ at s̃ produces
ηs = c1ξs + c2Vs at s, which is incompatible with having an
invariant torus through s0, transverse to ξ .

In conclusion, given now an R-symmetric ξ and an
R-antisymmetric ηs0 (both tangent to the energy levels), if there
is a point s = s(t) where ω(ηs, ξs) changes sign then there is no
invariant torus through s0 transverse to ξ . We will refer to this
as the symmetric formulation of converse KAM.

Note that the above condition is satisfied automatically where
ξ becomes parallel to V . Therefore this formulation does not rule
out invariant tori through such points, even though they cannot
be transverse to ξ and lie outside of the class in question, and will
correctly pick up nonexistence there.

Fig. 5 shows an example of a trajectory, which converse KAM
detected in both formulations, and the general formulation of the
nonexistence condition is compared to the refined one using the
time-reversal symmetry.

5. Reduction of dimension

5.1. Surface of section for bounded orbits

It is enough to test initial conditions on a codimension-1 set Σ

such that every bounded trajectory crosses it. Such a Σ is called a
surface of section if it is transverse to the vector field V , but this
is not necessary for present purposes.

Every bounded trajectory comes to a local maximum of r , so
take Σ = {s ∈ S : pr = 0, ṗr ≤ 0} (a trajectory could have
r increasing to a supremum as t → ∞, but that happens only
for trajectories approaching a Lagrange point). For µ = 0 this is
s ∈ S : pr = 0, L2 ≤ r}.

We can examine one value of C at a time. We denote ΣC =

∩ H−1(−C/2), which is 2D. For µ = 0 the allowed region on
is 2L ≤ C ≤ 2L + L−2, as was shown in Fig. 3, so ΣC consists

of one or two annuli according as C ≤ 3 or C > 3. Unfortunately,
for µ ̸= 0 the effect of the secondary is large near θ = 0 and
the effect of displacement of the primary is large near θ = π .
The result is that there are large deviations of the allowed region
from the case µ = 0 near these angles.
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Fig. 6. Some orbits of the return map to ΣC (left), projected to the (x, y)-plane, for µ = 0.1, C = 3.2, and zoomed in (right) around the two bodies. The grey area
s the forbidden region for ΣC .
Fig. 6 shows the successive returns to ΣC for µ = 0.1, C =

3.2, for some trajectories. Although for µ = 0, the restricted
surface of section ΣC has natural coordinates (r, L), for µ > 0
the 2D surface ΣC and therefore (the image of) the return map
to it cannot be one-to-one mapped to a plane in any of the
usual coordinates. Ideally, we would deform the surface of section
to a Birkhoff section, that is a codimension-1 surface which is
transverse to the flow except on its boundary which is invariant
under the flow. That requires finding the continuation of the
circular orbits to µ > 0, however, so is not a straightforward
prospect. An alternative would be to adopt the approach of [12],
but we decided to do neither, because we do not really require a
surface of section; it is just for illustration.

We note in passing that there is an additional sufficient con-
dition we could use for the PCR3BP, namely that if s(t) never
returns to Σ then it is not on an invariant torus (of any class).
This is because every trajectory on an invariant torus is bounded
and so must come to a local maximum of r (the possibility that
a trajectory has r increasing to a supremum as t → ∞ is
excluded on an invariant torus). We already used this condition
to exclude K ≥ 0 for µ = 0, but it would be good to use it
for µ > 0 because the non-existence condition of the previous
section does not distinguish between invariant tori and invariant
submanifolds that go to infinity. One ought to be able to find
an explicit condition that guarantees pr remains positive forever
after.

We can reduce the search by one more dimension if we choose
just a single leaf of the foliation in each energy level (i.e., an
integral curve of ξ ), because every 2-torus transverse to ξ has
to cut that leaf. If we choose the selected leaves smoothly with
respect to energy then they make a 2D surface P . Thus to exclude
an invariant torus transverse to ξ it suffices to exclude the corre-
sponding point on P . Two catches are that we do not know which
point on P corresponds to a given torus and there might be points
of P not on invariant tori for which the non-existence condition is
never satisfied. Nevertheless, if for example, we establish that no
points of P are on invariant tori transverse to ξ then we deduce
that there are no such invariant tori. This was used in [2] to prove
that the standard map has no rotational invariant circles for any
parameter value k ≥ 63/64.

5.2. Symmetry planes

A particularly natural choice for P is a symmetry plane with
respect to a time-reversal symmetry R. Recall that the PCR3BP has
6

the time-reversal symmetry R : (r, θ, pr , pθ ) −→ (r, −θ, −pr , pθ ).
The symmetry planes are the sets of fixed points of R, namely P0
and Pπ defined by pr = 0 and θ = 0, π respectively. We can use
coordinates (r, L) on them.

Note that in satisfying pr = 0 the symmetry planes have
some commonality with the surface of section. Specifically, if we
restricted attention on a symmetry plane to ṗr ≤ 0 then it would
be a 2D subset of the 3D surface of section. Indeed, on a symmetry
plane the part with r ≥ L2 for µ = 0 corresponds to ṗr ≤ 0.
Likewise, for µ > 0 the part with f ≥ 0 (see (11)) corresponds
to ṗr ≤ 0. This is because the boundary of Σ coincides with the
singularities for ξ on the symmetry planes.

Again, one could treat one value of C at a time. The intersection
of a symmetry plane with H−1(−C/2) is a curve or pair of curves,
as shown in Fig. 7. But as the symmetry planes are only 2D, this
decomposition into C = constant is hardly useful. Note, one can
restrict to ṗr ≤ 0 if desired too.

6. Results

In this section, we apply the converse KAM condition using
both the general and the symmetric formulations. We present
the results for initial conditions s0 in the symmetry planes P0,
Pπ , from which we exclude any singularities for ξ when imple-
menting the general formulation, and any singularities for η when
implementing the symmetric formulation. Following numerically
both the flow and the tangent flow of the system, we track which
orbits satisfy the converse KAM condition for nonexistence of
invariant tori transverse to the ξ -direction within a fixed timeout
tout. In the plots that follow, we indicate in red initial conditions
that correspond to nonexistence, and in blue that no result was
obtained before timeout. The excluded singularities in each case
are shown in black.

For comparison, we also include in green the resonances of
the unperturbed system. The formula for resonance with rational
ratio w is (w−2/3r − 1)2 = 1 − w−2/3L2, giving ellipses in (r, L).
Furthermore, we include in yellow the curve L2 = 2r/(r + 1),
which bounds the region (L2 < 2r/(r + 1), r > 1) in which the
orbit of the initial condition starts outside and crosses the orbit
r = 1 of the secondary for µ = 0 (to see this, use rmax = a(1+ e),
rmin = a(1 − e) and L2 = a(1 − e2) for Kepler ellipses). In grey,
we also indicate the curve L2 = 2r which is the boundary K = 0
of the set of initial conditions whose orbits remain bounded for
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Fig. 7. Level sets of H (blue) and the surface of section Σ (white) bounded by f = 0 (green) on the symmetry plane P0 for µ = 0 (left) and µ = 0.1 (right).
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Fig. 8. Converse KAM results from the general formulation for µ = 0.1 on
he symmetry plane P0 . Red = nonexistence, blue = undetermined, black =

eros of ξ . Superposed are the resonances in green with winding ratios n/4 for
= 9, 13, 17, 21.

= 0. Lastly, recall that the singularities for ξ in black serve also
s a boundary of Σ on the symmetry planes.
We start with the general formulation and the symmetry plane

0, for which the results are shown in Figs. 8 and 9 for µ = 0.1
nd µ = 0.01, respectively.
The code implementation is such that the numerical integra-

ion of each orbit stops if it detects the nonexistence condition or
f it reaches a selected maximum timeout. Running for a longer
ime results in identifying more initial conditions on which the
ethod succeeds, and ultimately all orbits satisfying the converse
AM condition would be identified. Fig. 10 shows how longer
7

Fig. 9. Converse KAM results for µ = 0.01 (the rest of the setup same
as in Fig. 8). Superposed are the resonances in green with winding ratios
12/11, 2, 12/5, 31/10, 4, 26/5.

ime-periods do indeed appear to demonstrate that the results
end to a limiting case.

From these results and, in particular, Fig. 8, which we will
se as a reference case, we see and comment accordingly the
ollowing:

1. The subset with r < 1, f > 0 and a significant fraction of
the area around it where the method gives non-existence
of tori (recall that f is the function defined in (11)). This is
not surprising for orbits that come within distance µ of the
primary because the foliation is based on Kepler ellipses
about the centre of mass, whereas more appropriate for
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Fig. 10. Converse KAM results of Fig. 8 zoomed in the region of interest and run
for progressively longer timeout periods (double (middle) and triple (bottom)
timeout). This does appear to reach a limiting case, though longer time periods
can also increase the opportunity for numerical inaccuracies to produce false
positives.

small or eccentric orbits would be about the primary. Sim-
ilar remarks go for orbits which approach the secondary. It
is more surprising for the rest of r < 1, f > 0, but perhaps
µ = 0.1 is large enough that all trajectories feel so much
influence from the primary and the secondary that the tori
are destroyed.

2. A strip around r = 1 where the method gives non-
existence of invariant tori of the given class. Initial condi-
tions with r near 1 in P0 are close to the secondary, so it is
not surprising that their dynamics lead to something very
different from an invariant torus of the given class.
 r

8

3. A large fraction of the subset with r > 1 and L2 < 2r
r+1 is

shown to have no invariant tori of the given class. When
µ = 0, all initial conditions in this subset produce Kepler
ellipses that cross the orbit r = 1 of the secondary. Indeed,
this is precisely the condition that rmin < 1 for given initial
r = rmax. It is not surprising that after some time depending
on their relative frequencies, the test particle should suffer
a near collision with the secondary and that this should
lead to a trajectory very different from an invariant torus of
the given class. Exceptions are initial conditions for which
a resonance maintains a positive minimum distance from
the secondary.

4. There are some points near f = 0, r > 1 for which the
method shows no invariant tori of the given class. The set
f = 0 corresponds to points where the foliation is singular,
and for µ = 0, in particular, to circular orbits. Although
these orbits are surrounded by invariant tori and many
of these are expected to persist as µ increases, they will
in general deform and the thinnest ones will fail to be
transverse to the foliation because of its singularity.

5. Low-order resonance for some rationals produces a signif-
icant zone where the method gives non-existence, but not
for all rationals. We would expect resonance for µ = 0,
where w is a low-order rational, would lead to zones of
non-existence of invariant tori of the given class for µ > 0
because of the formation of island chains. We were sur-
prised at first to see this for only some rationals. A glance
at Fig. 6, however, shows that on θ = 0 the principal island
chains all have hyperbolic points. A feature of the method
employed here is that if one starts on a hyperbolic periodic
orbit (with no nett rotations of its stable and unstable
manifolds) then ηs will never give ω(ηs, ξs) = 0 with
λ(ηs) < 0. In contrast, starting on an elliptic periodic orbit
the method should give non-existence fairly fast (look back
at the simple example of the pendulum). Thus it seems P0 is
an unfortunate choice of symmetry plane. From Fig. 6, θ =

π looks more hopeful, though even there not all the island
chains have elliptic points. Indeed, looking at the symmetry
plane Pπ for µ = 0.1 (actually, P0 for µ = 0.9, which is
equivalent and saved further code changes) in Fig. 11, we
still see blue regions around some of the resonances.

6. The method does not necessarily eliminate points with
unbounded orbits; for µ = 0, these lie in L2 > 2r .
This is because it addresses non-existence of any invariant
surface through the given orbit transverse to ξ , including
unbounded surfaces, not just tori.

Next we test the symmetric formulation exploiting the time-
reversal symmetry, for which the results are shown in Fig. 12.
Here the singularities for η are just the two Lagrange points
near the second body. Comparing with Fig. 8, we see that the
symmetric formulation gives more nonexistence results, and so
yields a clearer picture than the general one. This is especially
evident around the resonances. There seems to be a general
agreement, but the symmetric formulation revealed an extended
nonexistence region near r = 1 for large positive L as well as a
much smaller one towards large negative L, both lying outside the
boundary of Σ (black curves in Fig. 8). This difference could be
due to the possibility that ξ becomes parallel to V . As discussed in
Section 4.2–4.3, in those places the general formulation will not
detect nonexistence, staying consistent with the transversality
requirement of the tori class under investigation, whereas the
symmetric formulation is not restricted by this and justly will.

For the PCR3BP, better coordinates to plot the converse KAM
results on the symmetry planes might be L̄ = L/

√
r and r̄ =

/(r + m) for some m, because then the non-escape region for
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Fig. 11. Converse KAM results on the symmetry plane Pπ (the rest of the setup
same as in Fig. 8).

Fig. 12. Converse KAM results using the symmetric formulation (the rest of the
setup same as in Fig. 8).

µ = 0 is |L̄| <
√
2, the circular orbits are on |L̄| = 1 and r̄ turns

= (0, ∞) into the bounded interval r̄ = (0, 1). Fig. 13 shows
he same results as before replotted using coordinates (r̄, L̄) for

= 5 instead of (r, L).
Finally, Fig. 14 shows where the method works faster. Here we

se q = 1 − tr/tout as a measure, where tr is the remaining time
fter the converse KAM condition was satisfied up to timeout tout.
s before, blue indicates that nonexistence was not detected until
, but now the nonexistence region is coloured according to q,
out

9

Fig. 13. Fig. 8 replotted in (r̄, L̄)-coordinates, and resonances (green) with
winding ratios n/4 for n = 9, 13, 17, 21, 25, 29, 33, 39, 47, 51.

ith a darker red indicating shorter times and light blue longer
nes. As we see, nonexistence is detected faster near the two
odies and around the strip r = 1, and slower for larger distances.
As a comparison, we also computed the Lyapunov exponent
as a chaos indicator. Fig. 15 shows the simple estimate Λ =

1
tout

log
(
|ξtout |/|ξ0|

)
for the same initial conditions and parameters

as in Figs. 8 and 14. Initial conditions with red hues appear to
have significantly positive Lyapunov exponent. The majority of
the orbits though have rather small values (blue hues) and seem
to need further investigation (e.g., longer times, check conver-
gence, etc.) to decide if they are chaotic or not. Compared to
converse KAM, indeed we see some of them lying inside the
nonexistence region (perhaps indicating invariant tori of a differ-
ent class), but most of them lie in the blue inconclusive region of
Fig. 14. However, we do see some good agreement near r = 1
nd quite good agreement around the upper tongues near the
esonances.

We have recently developed a refinement of Lyapunov expo-
ent calculation in the Hamiltonian context, to distinguish more
learly between positive and zero. In particular, it is expected to
istinguish more clearly the zero exponent that arises for trajec-
ories on invariant tori with a smooth conjugacy to a constant
ector field. We will report on that elsewhere.

. Improvements to make

This was an implementation of the method of [6] on a signifi-
ant test problem with a non-trivial foliation. It has demonstrated
hat the method is useable and useful. Nevertheless, there are
any improvements we could make.
Firstly, other choices of foliations might be better. For exam-

le, to treat initial conditions inside the orbit of the secondary
question 2 of the Introduction), it would be better to base the
oliation on the primary instead of the centre of mass. Or, to in-
estigate invariant tori around the secondary requires a foliation
dapted to it (question 3 of the Introduction). In principle, one
ould choose a foliation (with singularities) that is simultaneously
dapted to all regions, cf. [7]. In general, however, choosing a
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Fig. 14. Converse KAM measurement. Fig. 8 replotted with hues ranging from
ast detection of nonexistence (deep red) to slowest one (light blue) and
ltimately to no detection at all (deep blue) within timeout.

Fig. 15. The Lyapunov exponent Λ for the same setup as in Fig. 14.

oliation (and a λ accordingly) that is suitable for the system
nder investigation and satisfies the method’s requirements can
e challenging. A systematic way of constructing the foliation or
he direction ξ would be desirable. Based on the ideas of [7],
he vector field ξ (10) and the corresponding λ used here offer
ne way out, but it would be good to improve and explore other
eans; this is currently under investigation.
Secondly, it would be best to regularise collisions with the

wo heavy bodies (in particular, to compute more accurately
ithout adaptive time-step the trajectories that pass close to
he secondary). This is relatively straightforward (e.g. the Thiele–
urrau regularisation [13]) and avoids the need to adapt timestep
or close approaches. To make a first test of the method, however,
e decided not to implement this.
Thirdly, we could do with a better surface of section. Theo-

etically, one can make a transverse section by finding the con-
inuation of the circular periodic orbits and deforming pr = 0
nd its boundary r = L2 to make the boundary be the continued
10
circular orbits. This is Birkhoff’s prescription, but it is not explicit.
An alternative is to adopt the procedure of [12]. We note also
that it seems insufficient to study initial conditions on symmetry
planes; unlike in simple problems like the standard map or the
Hénon map, there does not appear to be a dominant symmetry.
To take care of this, we should apply the ‘‘killends’’ extension of
the method, as outlined in [6].

Fourthly, it would probably be better to use a symplectic
integrator, to respect the symplectic structure of the problem. An
example is the Stormer–Verlet method, which works for mechan-
ical systems in a rotating frame [14]. However, the converse KAM
method works fairly fast, so that there is no need to go to longer
integration times where standard methods like the Runge–Kutta
scheme used here might fail in accuracy.

Fifthly, it would be good to devise an escape condition. This
would eliminate many initial conditions with K ≥ 0 from being
on invariant tori of any class, for example. A condition guarantee-
ing escape to infinity was derived in [15] and would be relatively
easy to implement.

Last but not least, it would be good to extend the method
to higher DoF so that we could treat the planar elliptic or the
spatial circular or the spatial elliptic restricted three-body prob-
lem, or even the general three-body problem. A paper on this
is in preparation. The idea is to restrict attention to Lagrangian
submanifolds transverse to a given Lagrangian foliation. All tori
constructed by usual KAM proofs are Lagrangian, so it is appro-
priate to restrict to Lagrangian submanifolds. They are also C1

graphs of actions as functions of angles, thus transverse to the
foliation by the surfaces of fixed angles, which are Lagrangian. The
tangent plane to a Lagrangian submanifold is Lagrangian. There
is a cyclic partial order on Lagrange planes at a given point and
the dynamics preserves this order. Thus if there is an invariant
Lagrangian submanifold transverse to the Lagrangian foliation,
the trajectory of the tangent plane to the foliation cannot cross
that of the tangent plane to the submanifold. This provides a
sufficient condition for non-existence of such a submanifold.

8. Conclusion

We have applied a method to establish regions of phase space
through which pass no invariant tori of given class, to the planar
circular restricted three-body problem. It finds large regions of
non-existence of tori, which mainly appear to correspond to
trajectories whose orbit crosses that of the secondary. We also
detect non-existence from some resonances, but not all, which
appears to be because in the plane where we chose initial condi-
tions they happen to have hyperbolic periodic points rather than
elliptic or inversion hyperbolic. Nonetheless, the method gives
significant restrictions on the regions where stable orbits for a
planet could orbit a binary star.

The study has indicated various issues with applying the
method and suggested improvements for the future.

We anticipate the method being useful in many applications.
Specifically, we plan to apply it to magnetic fieldline flow and
to guiding-centre motion in magnetic fields. The method could
also find applications to classical models of chemical reaction
dynamics.
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