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Abstract—Accurate monitoring of the internal statuses 
are highly valuable for the management of lithium-ion 
battery (LIB). This paper proposes a thermal model-based 
method for multi-state joint observation, enabled by a novel 
smart battery design with embedded and distributed 
temperature sensor. In particular, a novel smart battery is 
designed by implanting the distributed fiber optical sensor 
(DFOS) internally and externally. This promises a real-time 
distributed measurement of LIB internal and surface 
temperature with a high space resolution. Following this 
endeavor, a low-order joint observer is proposed to co-
estimate the thermal parameters, heat generation rate, state 
of charge, and maximum capacity. Experimental results 
disclose that the smart battery has space-resolved self-
monitoring capability with high reproducibility. With the 
new sensing data, the heat generation rate, state of charge, 
and maximum capacity of LIB can be observed precisely in 
real time. The proposed method validates to outperform the 
commonly-used electrical model-based method regarding 
the accuracy and the robustness to battery aging. 

Keywords— Embedded sensor, distributed temperature 
measurement, smart battery, optical fiber sensor, heat 
generation rate. 
 

I. INTRODUCTION 

 

ithium-ion batteries (LIBs) are widely used for renewable 

energy storage and electrified transportation due to the high 

gravimetric/volumetric densities. Associated with the fast 

growth and foreseeable rising trend, the LIB management has 

been extensively studied over years [1-3]. Amongst others, the 

high-fidelity monitoring of internal statues of LIB underlies the 

implementation of other management algorithms.  

Thermal states like the internal temperature and heat 

generation rate are critical to the thermal management and fault 

diagnostic of LIB. A variety of estimation methods have been 

discussed for LIB in recent review works [4]. The experimental 

approaches intend to measure the heat generation rate directly 

via approaches like accelerating rate calorimetry and isothermal 

heat conduction calorimetry [5, 6]. In spite of the accurate 
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characterization, experimental protocols depend on expensive 

instruments and well-controlled environment, which are hardly 

met in practical in-situ applications. 

Modeling methods calculate the heat generation rate based 

on the available measurements of LIB current, voltage. The heat 

generation models cover the electrochemical-thermal [7, 8] and 

the electrical-thermal types [9, 10], both of which have been 

applied to capture the thermal dynamics of LIB. An 

electrochemical-thermal model for a pouch LIB was proposed 

in [7] to calculate the heat generation considering the effects of 

C-rates and temperature. A three-dimensional electrochemical-

thermal coupled model is developed in [8] to analyze the fault 

feature for internal short circuit detection. However, the 

computational burden for an electrochemical-thermal model 

composed by partial differential equations is too high to be 

applicable in practice. In contrast, electro-thermal models are 

more suitable for on-board applications. The thermal dynamics 

of LIB was analyzed in [11], where a lumped electro-thermal 

model is identified to calculate the battery temperature variation. 

By regarding a cylindrical LIB as an assembly of small cell 

sandwiches, a three-dimensional mesoscale thermal model was 

built in [10], where each of the cell sandwiches is modeled as 

an individual heat generation source.  

In the aforementioned works, the heat generation rate was 

calculated with a heat generation model, and the temperature 

was calculated via a heat transfer model. In contrast, the heat 

generation rate was online estimated using dual-temperature 

measurements based on an inversed two-state heat transfer 

model in [12]. However, the modeling accuracy and online 

tractability can be hardly compromised to meet the requirement 

of practical application. Moreover, the determination of model 

parameters like the entropy coefficient is challenging [13]. 

Alternatively, the heat generation rate can be estimated directly 

by heat transfer analysis with alleviated computational effort, 

provided that the internal temperature of LIB and its dependent 

thermal parameters are known accurately. However, this is not 

necessarily in accordance with reality considering the limited 

access into the inner of commercial LIB configurations. 
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This barrier calls for an emergent need of in-operando LIB 

internal temperature sensing. This endeavor also benefits other 

management duties like the thermal fault diagnostic [14], 

thermal runaway pre-warning [15], and the thermal-conscious 

fast charging [16], etc.  

Model-based observation is promising for the estimation of 

LIB internal temperature. The internal temperature and other 

states can be observed in a model-based filtering framework, 

provided that the electro-thermal [17, 18] or electrochemical-

thermal models [19, 20] are available. In particular, the heat 

dynamics are modeled frequently by the lumped thermal 

network model [21, 22], before the temperature estimation is 

adopted. Illustratively, a sliding mode observer is designed to 

estimate the core temperature and SOC hierarchically in [18] 

using the measured current, voltage, and surface temperature. 

Although highly compatible to commercial LIB systems, the 

uncertainties rooted in disturbances, model mismatch, and 

remarkable computing cost can compromise their performance 

in real-time application.  

Impedance-based methods have also been explored for LIB 

internal temperature estimation. Leveraging the temperature-

dependent spectral responses, the battery temperature can be 

reversed easily from the measured impedances [23]. The 

impedance measurement is also easily extended. Illustratively, 

Kalman filter was used to estimate the core temperature with 

impedance measurement in [24]. The LIB core temperature was 

estimated combining the impedance and surface temperature in 

[25]. Impedance-based methods are computationally efficient 

and non-destructive. However, they need costly equipment or 

special circuit design to generate the exciting signals. Moreover, 

the spatial information is unclear as the measurement reflects a 

cumulative effect. The disturbance from state of charge (SOC) 

and state of health (SOH) to the spectral behavior are also 

difficult to be discriminated. 

Such challenges solicit emerging interests to implant sensors 

inside the LIB for temperature sensing. Thermocouples were 

inserted inside LIB for temperature monitoring, but the large 

sensor size induces the risk of composite leakage at the sealing 

position [26]. Compared to wire-based sensors, the thin-film 

sensors can be embedded into the LIB more compactly [12, 27, 

28]. Illustratively, a nickel foil is embedded into a cell for 

heating and temperature sensing in [12, 29]. However, the thin-

film sensors can cover the active site of electrode and cause 

non-ignorable capacity losses. Concerning the dimension and 

mechanical strength, their compatibility with winding cells is 

also questionable.  

Most recently, optical Fiber Bragg Grating (FBG) sensors 

have been reported for LIB monitoring, enjoying the benefits of 

quick response, high sensitivity, and multiplexed configuration 

[30]. An optical FBG sensor was inserted between the spacer 

and current collector of the cathode, and a temperature gradient 

of ~10 °C was found between inside and the ambient [31]. 

Novais et al. [32] embedded the optical FBG sensor between 

two separators to measure the LIB internal temperature of a coin 

cell. Authors from the same group [33-35] devised the optical 

FBG sensor into the core void of an 18650 cell. It was found the 

core temperature was 5 ℃ higher than the surface at 1 C 

discharge. Huang et al. [36] intruded a specially-designed 

single-mode optical fiber sensor into the jelly roll of a 18650 

cell for internal temperature and pressure decoding. A 

mechanical structure-modified FBG sensor was designed in [37] 

to monitor the electrode temperature of a 60 Ahr LIB with a 

validated high sensitivity. However, pronounced temperature 

inhomogeneities exist inside the cells, especially for the fast-

emerging large-format cells. In this regard, existing FBG 

sensing techniques lack sufficient space resolution for the local 

overheat or thermal fault detection. Moreover, the impact of 

FBG sensor embedment to the battery performance has not been 

sufficiently evaluated. 

To date, embedded temperature sensing is still at a nascent 

stage requiring more exploration. Space-resolved, degradation-

free, and in-operando internal temperature sensing will enable 

probing the thermal evolution and interface of LIB in practical 

utilizations. Moreover, the acquisition of distributive internal 

sensing data foreseeably extends the performance limitation of 

present battery management system. However, this has not been 

sufficiently studied before.  

This paper aims to bridge aforementioned gaps and proposes 

a low-order multi-state joint observer enabled by a novel smart 

battery configuration with embedded distributed temperature 

sensing. The primary contributions are summarized as follows: 

(1) A novel smart battery configuration is proposed, for the 

first time, by implanting the distributed optical fiber sensor 

(DFOS) internally and externally to the cylindrical cell. This 

innovation promises a real-time distributed sensing of the 

temperature matrix over both the core and surface of LIB, with 

a high space resolution of 2.6 mm. 

(2) With the newly-obtained core temperature, a thermal 

model-based low-order joint observer, entirely different from 

the reported electrical model-based ones, is proposed to monitor 

the heat generation rate, SOC, and maximum capacity of battery 

simultaneously in a real-time fashion.  

(3) The proposed joint observer depends on material-relevant 

thermal parameters which are stable over certain life span of 

LIB, instead of the commonly-used environmental-sensitive 

electrical parameters. This remarkably mitigates the need of 

frequent algorithm re-calibration. 

This work is the first one we are aware of that develops the 

embedded DFOS-based cylindrical smart battery. Moreover, 

the associated low-order multi-state estimation enabled by 

embedded sensing has also never been disclosed before. 

The remainder of this paper is organized as follows. The 

DFOS embedment and smart battery design are presented in 

Section II. Section III formulates the thermal model-based 

multi-state joint observer. Results are discussed in Section IV, 

while the major conclusions are drawn in Section V. 
 

II. EMBEDDED DISTRIBUTED TEMPERATURE SENSING 

 

A. Sensor Integration  

A smart battery implanting DFOS is designed to realize the 

space-resolved measurement of LIB internal and surface 
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temperature in real time. Before the integration, the 

computerized tomography (CT) scanning and cell 

disassembling are performed to understand the cell internal 

structure. The detailed procedures of sensor embedment and 

smart battery integration are elaborate as follows. 

First, the cell is fixed to a holder and a 0.9 mm hole is drilled 

into the center of negative terminal using the drilling machine, 

as shown Fig. 1 (a). The 0.9 mm hole in the negative terminal 

is sealed with Kapton tap to protect the internals of the cell. 

Second, the positive terminal is opened with a pipe cutter as 

illustrated in Fig. 1 (b). Specifically, the positive terminal needs 

to be isolated using the Kapton tape to prevent the occurrence 

of short circuit. Third, the DFOS is inserted from the negative 

terminal through the isolation layer, as shown in Fig. 1 (c, d). 

The DFOS is routed and mounted externally near to the positive 

current tab (D2) and negative current tab (D3) using Kapton 

tape, as shown in Fig. 1 (g). At this stage, the positive terminal 

needs to be resealed using adhesives and protected using 

Kapton tape after the adhesive is allowed to dry.  

After the DFOS embedment and re-sealing, the instrumented 

smart cell is placed in the test rig and connected to a battery 

testing system via copper bus bars as shown in Fig. 1 (f). An 

overall illustration of the smart cell is shown in Fig. 1 (g), where 

D1 measures the internal temperature from the bottom (0 mm) 

to the top (63 mm) of the jellyroll with length of 63 mm. 

Meanwhile, D2 and D3 measure the external temperature near 

the positive tab and negative tab respectively with the same 

length of 63 mm.  
 

 
Fig. 1.  Smart cell instrumentation process. a) hole drilling from negative 
terminal; b) positive terminal opening; c) hole drilled from the negative 
terminal; d) DFOS embedment and re-sealing; e) negative tab view of 
CT scanning after instrumentation; f) gluing the DFOS externally and 
connecting the cell into test rig; g) smart cell with DFOS for real-time 
internal (D1) and external (D2 and D3) temperature monitoring. 
 

B. Rayleigh Scattering-Based DFOS 

The DFOS for distributive temperature measurement is 

based on Rayleigh scattering. When an electromagnetic wave is 

launched into an optical fiber, the light is redistributed by 

Rayleigh scattering [31], [32]. If the local temperature change 

is relayed to the optical fiber, the scattered signal in the fiber is 

modulated. More details about this can be found in [33], [34]. 

The desired features of Rayleigh scattering-based fiber sensing 

allow distributed measurements with millimeter-scale spatial 

resolution and high measurement accuracy, making it a suitable 

solution for LIB operando and in-situ applications. In 

particular, Coherent Optical Frequency Domain Reflectometry 

(C-OFDR) is performed to monitor the distributed temperature. 

C-OFDR was selected for the high spatial resolution (approx. 

2.6 mm).  
Referring to the interference signal from the major 

interferometer, the beat frequency (fB) is found to be mapped to 

a certain location (l) along the fiber. To this end, the generated 

spatial resolution is expressed by: 

 2 gl c n F =   (1) 

where ng is the group refractive index, c is the light speed, ΔF 

is the frequency tuning range.  

A unique fingerprint Rayleigh backscattered spectrum (RBS) 

can be obtained under a given working condition. The local 

RBS shifts in frequency once the environmental conditions like 

temperature and strain change. The cross-correlation between 

the fingerprint and the measured RBS defines the local spectral 

shift (Δv), which can be used to calculate the temperature along 

the whole fiber [36]. In particular, the changes in the local time-

period of Rayleigh scattering causes spectral and temporal 

shifts in the locally-reflected spectrum, which can be calibrated 

to support the distributed sensing.  

The shift in the spectrum of light scattered in the DFOS in 

response to strain and temperature is analogous to a shift in the 

spectral shift, ΔvDFOS: 

 DFOS

T measured measured

v
K T K

v
 

−
=  +  (2) 

where  𝜈  is the mean optical frequency, 𝐾𝑇  and 𝐾𝜀  are the 

calibration coefficients regarding the temperature and strain, 

ΔTmeasured and εmeasured are the measured temperature change and 

strain.  

This thermal effect is the coupling of the fiber thermal 

expansion and the temperature dependence of refractive index. 

Excluding the effect of strain, the frequency shift (ΔvT-DFOS) 

caused by the temperature variation is given by:  

 T DFOS

T measured

v
K T

v

−−
=    (3) 

The coefficients are defined as common values for the 

germanosilicate core fibers, i.e., 𝐾𝑇= 6.45 × 10-6 °C-1 [31], [37]. 

Hence, ruling out the strain effect, the temperature change can 

be determined by: 

 
1

measured T DFOS T T DFOS

T

T v C v
K v

− − = −  =   (4) 
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Assuming a scan center wavelength of 1550 nm [31], [37], 

the coefficients can be substituted in to yield the following 

temperature conversion factors: 

 0.801T zC C GH= −    (5) 

To sum up, by measuring the frequency shift along the fiber 

and multiplying the temperature coefficient, the distributed 

temperature along the whole fiber can be obtained. It is worth 

noting that the DFOS is placed within a PTFE tube to fully 

eliminate the interference of strain effect, so that the resultant 

measurement is solely relevant to the temperature change. The 

diameter of the optical fiber is 125 μm and the diameter of the 

PTFE tube is 500 μm. 

C. Impact to Battery Life Performance 

In spite of the unique advantage of distributed internal 

temperature monitoring, it is imperative to evaluate the impact 

of DFOS embedment to the battery performance. To this end, 

characterization and repeatability tests are carried out on the 

modified smart cell and the original cell. The comparative 

results shown in Fig. 2 are critical to highlight that the DFOSs 

do not adversely affect the cell electrochemical properties.  
 

 
Fig. 2. Comparation of cell performance: (a) capacity retention up to 60 
cycles, (b) voltage and current during cycling, and (c) maximum internal 
temperature change captured by DFOS during cycling. 
 

In particular, Fig. 2 (a) compares the capacity retention up to 

60 cycles (under 1 C) of the pristine (without DFOS) and smart 

cells (with DFOS). Results show that the capacity of the pristine 

cell after 60 cycles is 4.54 Ahr, while the capacity of the 

modified smart cells are 4.48 Ahr and 4.49 Ahr, respectively. 

This indicates that the embedded DFOSs do not negatively 

impact the cell’s electrochemical properties. The current and 

voltage during cycling for two smart cells are shown in Fig. 2 

(b), in response to Fig. 2 (c), where the maximum internal 

temperature changes collected by the DFOS are plotted. Results 

suggest that the maximum internal temperature changes of the 

two smart cells agree closely with each other. This well 

validates the high reproducibility of the sensor-embedment 

approach as well as the high reliability of the sensing data.  

III. MULTI-STATE JOINT OBSERVATION 

By embedding the micro DFOS, the designed smart battery 

manifests itself with the internal and surface temperature self-

sensing in a real-time, synchronous, and space-resolved 

fashion. With the newly-obtained sensing data, this section goes 

further to propose a low-order observer for the joint estimation 

of heat generation rate, SOC, and maximum capacity of LIB. 
 

A. Thermal Characterization and Parameterization 

By assuming a homogeneous temperature distribution along 

the longitudinal axis, a simplified one-state thermal model of 

cylindrical battery is given by 

 
( ) ( ) ( )

( )c s c

c

c

dT t T t T t
C Q t

dt R

−
= +  (6) 

where Tc and Ts respectively represent the longitudinal average 

of core temperature and surface temperature of the battery, Cc 

and Rc respectively represent the thermal capacity and thermal 

resistance of the core, while Q denotes the heat generation rate 

which is calculated by: 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )L oc t L aQ t I t V z t V t I t T t= − −  (7) 

where IL is the load current (positive for discharge), Voc the open 

circuit voltage (OCV), z the SOC, Vt the terminal voltage, Ta the 

average of core and surface temperature. The first term includes 

the joule heating and energy associated with the electrode over-

potentials which is always positive. The second term is the 

reversible entropic heat, in which λ is the entropic coefficient. 

The parameters in the one-state thermal model that need to 

be identified include Cc, Rc, and λ. By substituting (7) into (6), 

the one-state thermal model is expressed as: 

 

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )                  

c s c

c L oc t

c

L a

dT t T t T t
C I t V t V t

dt R

I t T t

−
= + −

−

 (8) 

Transforming (8) into the Laplace domain gives 

 ( )
( ) ( )

( )
( ) ( ) ( )s c oc t a

c L

c c c

T s T s V s V s T s
sT s I s

R C C

− − −
= +  (9) 

where s is the Laplace operator. 

The regression model of (9) is given by  

( ) ( )

( ) ( )  = =

Z s s

Z s sT s   

= T 

    
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
T

s c L oc t L as T s T s I s V s V s I s T s = − − −   

where Z(s) is the output, Φ(s) the input, θ the parametric vector, 

α = 1 / RcCc, β = 1/Cc, γ = λ / Cc. The commonly-used least 

squares algorithm is employed to identify the parametric vector 

θ. The estimates of the model parameters can be subsequently 

obtained by: 
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ˆ ˆ1

,   ,   
ˆ ˆˆ

c cC R
 


 

= = =  (10) 

where the superscript ^ denotes the estimate.  

It is worth noting that all the input and output of the 

regression model are measurable except for the Voc, which is 

indispensable for the parameter identification. To surmount this 

problem, the relationship between the SOC and OCV is 

identified by polynomial fitting the experiment data of SOC-

OCV test. The experimental and the fitted SOC-OCV map are 

plotted in Fig. 3 comparatively. In this way, Voc can be obtained 

by the corresponding SOC determined by coulomb counting 

provided a precisely-known initial SOC. Hence, the model 

parameters are identified offline under 1C constant discharging 

mode. Specifically, λ is identified at each SOC point in the 

range from 0% to 100% to build the relationship between λ and 

SOC, as it is highly dependent on SOC [13].  
 

 
Fig. 3.  Polynomial-fitted and experimental data of SOC-OCV 
correlation. 
 

B．Multi-State Observer 

The discrete-time form of the one-state thermal model is 

given by: 

 ( ) ( )( )
( ) ( )

( )1
s c

c c c

c

T k T k
C T k T k Q k

R

−
+ − = +  (11) 

As a unique merit of the developed smart battery, Tc is 

measurable by the embeded DFOS so that the heat generation 

rate can be calculated straitforwardly by: 

 ( ) ( ) ( )( )
( ) ( )

1
s c

m c c c

c

T k T k
Q k C T k T k

R

−
= + − −  (12) 

where Qm denotes the heat generation calculated by core and 

surface temperature. Hence, by substituting the Qm into (7), Voc 

can be calculated directly, and the SOC can be inferred easily 

from the Voc referring to the calibrated SOC-OCV relationship. 

However, the Voc estimated via this approach is volunerable to 

be contaminated by the measurement noises and modeling 

uncertainties. The perturbations in the Voc estimate can impair 

the accuracy of SOC estimate, especially for the flat region of 

the SOC-OCV curve, where a small Voc error will result in a 

large SOC error. To surmount this problem, an EKF-based state 

estimator applying Qm as the noisy system measurement is 

formulated to estimate the SOC and capacity jointly. 

The dynamic equation of the SOC in the discrete-time 

domain is given by: 

 ( ) ( ) ( ) ( )1 L nz k z k I k t C k+ = −   (13) 

where Cn denotes the battery capacity with the unit of ampere-

seconds, Δt the sampling interval. 

By defining the state vector as x = [z 1/Cn]T, the noisy 

measurement as y = Qm, and heat generation model (7) as the 

observation equation, the discrete-time state-space function can 

be established as the following general form: 

 
( ) ( ) ( ) ( )

( ) ( )( ) ( )

1k k k k

y k G k v k

+ = +

= +

x A x w

x
 (14) 

where  

 
( )

( )

( )( ) ( ) ( )( ) ( ) ( )

1

0 1

L

L t a

I k t
k

G k I k f z k V k T k

−  
=  

 

 = − − 

A

x

 (15) 

where w(k) is the process noise, v(k) is the measurement noise 

which represent the estimation error of the heat generation rate 

by (12). w(k) and v(k) are assumed to be Gaussian white noise 

with variances of δw and δv, respectively. 

Herein, f (·) is the polynomial-fitted SOC-OCV function, 

which is expressed by: 

 ( )( )
0

n i

ii
f z k c z

=
=   (16) 

where n is the maximum fitting order, ci (i = 0, 1, …, n) are the 

polynomial coefficients. Based on the state-space function (16), 

the state vector is estimated by EKF algorithm in this paper. 

Targeting at the specific problem, the algorithmic procedures 

are summarized in Table I. The relevant matrix C(k) is updated 

at each iteration as: 

 ( )
( )( )

( ) ( ) ( )
( )( )

( ) ( )
ˆ 0Lk z k

G k df z k
k I k

k dz k

 
= =  

   
x

x
C

x
 (17) 

 
Table I.  Algorithm procedure of EKF for state joint estimation 

Initialize ( ) ( )ˆ0 , 0 , ,anˆ d vP wx  ; For k = 1, 2, … 

Priori state update: ( ) ( ) ( )ˆ 1k k k −= A xx  

Prior error covariance update: ( ) ( ) ( ) ( )ˆ 1 +Tk kP k P k − wA A=   

Kalman gain update: ( ) ( ) ( ) ( ) ( ) ( )
1

ˆ ˆ ˆ +
T T

vL kk kk P k P k 
−

 
 

= C C C  

Posterior state update: ( ) ( ) ( ) ( ) ( )( )ˆ ˆ 1 mk L k Q k G kk  + − −x = xx  

Posterior error covariance update: ( ) ( ) ( )( ) ( )ˆP̂ k I L k k P k−= C  

 

C．Overall Algorithmic Framework 

The overall algorithmic framework is illustrated in Fig. 4. 

Leveraging the measured voltage, current, surface and internal 

temperature, the parameters of the one-state thermal model is 

determined via the principle of temperature mismatch 

minimization. Depending on the parameterized thermal model, 

the heat generation rate, SOC, and maximum capacity can be 

estimated jointly by simple mathematical manipulations 

described in (12) and a low-order EKF-based observer. 

Remark: The state joint estimation with electrical model is a 

vast area of intensive studies, while the thermal model-based 

estimation has never been explored before, possibly due to the 
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barrier of measuring the battery internal temperature. 

Compared to the conventional electrical model-based method, 

the proposed method promises a two-fold benefit:  

(1) The parameterization of the one-state thermal model is 

much easier than that of the electrical model. Due to the high 

sensitivity to SOC, health state and temperature, parameters of 

the electrical model need to be identified online to maintain a 

high modeling accuracy [38-40]. In contrast, the thermal 

parameters are affected by the material properties and the craft 

of electrode assembly and casing, which are relatively stable. 

Hence, the one-state thermal model only needs to be offline 

parameterized once or periodically in practice.  

(2) The heat generation rate can be also calculated directly 

by the proposed method. The internal distributive temperature 

sensing and heat generation rate estimation open new paradigm 

for the diagnosis and pre-warning of the catastrophic internal 

short circuit and thermal runaway. 
 

 
Fig. 4.  Overall algorithmic framework of the proposed method. 

 

IV. RESULTS AND DISCUSSION 

 

A. Distributed Temperature Sensing 

After demonstrating the repeatability of the measurements 

and that the cells are fundamentally unchanged, the cells were 

cycled using 0.3 C and 1 C for CC discharge and CC-CV charge 

with a 30 minutes rest interval to represent standard cycling for 

the 21700 cylindrical cells. The temperature measurement 

results during the cycling tests are shown in Fig. 5.The internal 

temperature distribution D1, external temperature distribution 

near the positive tab D2, and that near the negative tab D3 are 

illustrated in Fig. 5 (b), (c), and (d), respectively. The schematic 

of the smart battery with dimension and direction is illustrated 

in Fig. 5 (e), where the full measurement length of the DFOS 

for D1, D2 and D3 are 6.7 cm in the direction from the negative 

terminal to the positive terminal. A spatial measurement 

resolution of 2.6 mm is achieved along the y-axis (fiber length) 

in Fig. 5 (b, c and d).  

It is observed from Fig. 5 (b-d) that the temperature for D1, 

D2 and D3 are not uniformly distributed. The measured 

temperature of D2 indicates that the surface area near the 

positive tab was hotter as it gets closer to the positive terminal. 

This is due to the heat generated by the positive tab during 

discharge. Conversely, the surface area near the negative tab 

(D3) shows a higher temperature in the bottom area of the 

cylindrical cell due to the half-length of the negative tab from 

the bottom of the can. The measured internal temperature is 

found to be higher than the external temperature. Moreover, it 

is found that the temperature difference (between internal and 

external temperature along the perpendicular radial axis) is 

location dependent due to the asymmetrical structure of 

cylindrical cell.  
 

 
Fig. 5. Temperature measurement at 0.3 C cycling: (a) current/voltage, 

(b) core temperature distribution (D1), external temperature distribution 

along (c) D2, (d) D3, and (e) schematic of the smart battery. 

 

 
Fig. 6. Temperature measurement at 1 C cycling: (a) current/voltage, (b) 

core temperature distribution (D1), external temperature distribution 

along (c) D2, (d) D3, and (e) schematic of the smart battery. 

 

Fig. 6 shows the evolution of the internal (D1) and surface 

(D2 and D3) temperature distribution synchronized with current 

and voltage (Fig. 6 (a)) during 1 C discharge and 1 C CC-CV 

charge. As observed in Fig. 6 (b), the internal temperature 

shows a more uniform format compared with the scenario of 

0.3 C cycling. During this test, the middle of the cell is 

obviously hotter than the positive and negative terminals, due 

to the substantial heat accumulation and slow dissipation under 
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high-rate conditions. The internal temperature exhibits a more 

uniform distribution compared with the surface measurements 

(D2 and D3). Comparing Fig. 5 (c) with Fig. 6 (c), another 

temperature peak occurs under the high C-rate, which are 

positioned approximately 2 cm from the negative terminal. This 

is in addition to the temperature peak close to the positive tab 

at low C-rate. With respect to the surface temperature (D3) 

distribution at 1 C, it shows a similar profile compared to that 

at 0.3 C, where the local high temperature is around the center 

of cell near the negative terminal. However, the temperature 

gradient is much more pronounced in this case. These 

observations further reinforce the conclusion that the 

temperature gradient between cell core and surface is location 

dependent along the length of the cell’s aluminum can. 
 

B. Validation of Thermal Modeling 

The fidelity of thermal modeling is essential to the model-

based state joint observation method. The results of cycling 

experiments are hence employed to validate the developed one-

state thermal model herein.  

The modeled battery core temperatures are plotted against 

their embedded DFOS-based measurements in Fig. 7 under 

different cycling C-rates. It is shown that the modeled core 

temperatures resemble the benchmarks closely for the entire 

experiment in both cases. The build-up of core temperature is 

observably more obvious under the 1 C-discharge scenario, 

contributed by the elevated heat generation. Interestingly, the 

core temperature of LIB does not build up monotonously for the 

0.3 C-discharge case, witnessed by the temperature shrink at the 

middle SOC range. This can be attributed to the slight heat 

generation rate at low-rate condition as opposed to the intensity 

of heat transfer and convection. This however does not skew 

the modeling results. As shown in Fig. 7 (c) and (d), the 

modeling errors under 0.3 C and 1 C discharging cases are both 

well confined within the ± 0.1 ℃ error bound. In particular, the 

rooted mean squared error (RMSE) of temperature modeling 

for the two scenarios are as low as 0.0475 ℃ and 0.0305 ℃, 

respectively. The results suggest that the embedded DFOS-

enabled parameterization and the resultant thermal model are 

highly authentic to simulate the practical thermal responses.  
 

 

Fig. 7.  Modeled and benchmarked core temperature under (a) 0.3 C 

and (b) 1 C CC discharging, and (c-d) the corresponding modeling error. 

 

C. Validation of Heat Generation Rate Estimation 

The ground truth of heat generation rate should be known to 

evaluate the estimation performance. Herein, the reference heat 

generation rate is determined by (7), where Voc is inferred from 

the SOC-OCV function with the pre-calibrated SOC. It is worth 

noting that this reference value cannot be obtained in practical 

applications due to the lack of calibrating environment. The 

heat generation rates estimated by the proposed method and the 

commonly-used electrical model-based method are plotted 

against the benchmarks in Fig. 8. The statistical comparisons 

are shown in Table. II. In the electrical model-based method, 

the estimated SOC is used to calculate the heat generation via 

(7). It is observed in Fig. 8 (a, b) that the heat generation rates 

estimated by the proposed method are in close agreement with 

the reference trajectory, justifying the high estimation accuracy. 

Affected by the measurement noises, the estimates are 

contaminated by non-ignorable stochastic errors, which are 

visually severer under 0.3 C condition considering the much 

smaller heat generation rates. This testifies about the necessity 

of EKF-based observation, i.e., the pre-estimation error of Qm, 

if directly reversed to the Voc estimate, can be transferred and 

hence impair the entire close loop of multi-state estimation. 

However, as shown in Fig. 8 (c, d) and Table. II, the stochastic 

errors in the two cases exhibit similar and acceptable amplitude, 

which is well confined within the 0.1 W error bound. By 

comparison, the electrical model-based estimates deviate from 

the ground truth with larger errors due to the limited accuracy 

of SOC estimation, which will be elaborated in the next section. 

The comparative results suggest that the embedded DFOS-

enabled heat generation rate estimation has high precision and 

favorable online tractability, considering the slight computing 

effort with several simple mathematical manipulations. 
 

 
Fig. 8. Estimated and reference heat generation rate under (a) 0.3 C and 

(b) 1 C discharging, and (c-d) the corresponding estimation error. 

 

Table. II MAE and RMSE of heat generation rate estimation 

 Proposed method Electrical model-based method 
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0.3 C 1 C 0.3 C 1 C 

MAE 0.023 W 0.024 W 0.030 W 0.038 W 
RMSE 0.030 W 0.035 W 0.034 W 0.069 W 

 

D. Validation of SOC and Capacity Estimation 

This section goes further to validate the effectiveness of the 

proposed method for SOC and maximum capacity estimation. 

The states are initialized substantially away from the true values 

for both methods as they are not known in practical scenarios. 

CC-CV charging is applied to fully charge the cell, and then CC 

discharge is applied to preset the cell at a known SOC. Being 

aware of the initial SOC, the benchmarked SOC during the 

subsequent experiment can be obtained leveraging the coulomb 

counting method. It is worth noting that all the parameters of 

the electrical model and the thermal model are identified offline. 

The estimation results under both 0.3 C and 1 C discharging 

conditions are plotted comparatively in Fig. 9, while the 

estimation errors after convergence are tabulated in Table. III. 

It is observed that the proposed method converges slower than 

the electrical model-based one, due to the low accuracy of heat 

generation estimation at the initial stage, as shown in Fig. 8. 

However, the estimation accuracy of the proposed method is 

obviously higher than that of the electrical model-based EKF. 

This is because the offline identified electrical model cannot 

guarantee the accuracy under different working conditions. The 

electrical parameters are dependent on many factors such as the 

charge/discharge rate, temperature and SOC. In contrast, the 

thermal parameters of the battery are much more stable during 

normal operations, and thereby the offline-identified thermal 

model can promise a more accurate estimation.  

Another finding is that the estimation accuracy at 0.3 C is 

lower than that at 1C for the proposed method. This can be 

explained by the observations in Fig. 8, where the signal-noise 

ratio of the heat generation rate estimation is much lower under 

0.3 C condition. Since the heat generation rate serves as the 

system output of state-space model, the heavier disturbance on 

it deteriorates the SOC estimation inevitably. This fact also 

indicates that the proposed observation method is theoretically 

more accurate in high-rate applications. In spite of this, the 

accuracy of the proposed method in 0.3 C discharging mode is 

still higher than the electrical model-based EKF.  

The estimation results of battery maximum capacity are 

plotted comparatively in Fig. 9 (e) and (f). As observed, it takes 

some time for the two methods to converge to the ground truth 

from the initial offset. However, this is not a critical problem as 

the maximum capacity is slow varying and only diagnosed in a 

long timescale in practical applications. The maximum capacity 

estimated by the electrical model-based method deviates 

substantially from the reference value in the SOC range of 40% 

~ 15%, which is consistent with the large deviation of SOC 

estimation within this region. By comparison, the proposed 

method gives rise to a visibly much more stable and accurate 

estimation, which coincides with the improved SOC estimation 

accuracy. Quantitatively, the MAE of maximum capacity 

estimation is only 0.12 Ahr by using the proposed method. It is 

also observed that the capacity estimation error at 1 C is lower 

than that at 0.3 C. This is within expectation as the estimation 

of maximum capacity and SOC are cross-linked intrinsically 

and closely.  

The observed encouraging results suggest that associated 

with the DFOS-based temperature matrix sensing, the proposed 

method can realize the high-fidelity joint estimation of the heat 

generation rate, SOC, and maximum capacity in a real-time 

fashion. The accuracy improvement opposed to the commonly-

used electrical model-based method is prominent, attributed to 

the better stability of thermal parameters once determined. Last 

but essentially, the proposed method appeals more to the high-

rate application scenarios where the heat generation rate plays 

a more pronounced role. 

 
Fig. 9. Results of SOC and capacity estimation: SOC estimation under 

(a, c) 0.3 C and (b, d) 1 C discharging mode, capacity estimation under 

(e) 0.3 C and (f) 1 C discharging mode. 

 

Table. III MAE and RMSE of SOC estimation 

 Proposed method Electrical model-based method 

0.3 C 1 C 0.3 C 1 C 

MAE 2.07% 0.79% 3.17% 2.43% 
RMSE 2.65% 1.02% 3.27% 2.52% 

 

E. Robustness to Battery Aging 

Both the electrical and thermal parameters are subjected to 

variations accompanied with the aging of LIB. Therefore, it is 

highly practical to evaluate the robustness of methods against 

the battery aging. The estimation results of SOC and maximum 

capacity are plotted comparatively in Fig. 10. The errors of 

SOC estimation are tabulated in Table. IV correspondingly. It 

can be seen in Fig. 10 (a-d) that the performance of electrical 

model-based method is deteriorated remarkably after aging 

occurs. Comparing Table. III and Table. IV reveals the same 

conclusion, especially for the 1C discharging condition. The 
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capacity estimation also exhibits large fluctuations at low-SOC 

regions. These observations can be explained by the large 

biases of impedance parameters, which affect heavily the 

model-based estimation framework.  

Instead, it is observed that the proposed method is much less 

affected by the aging of battery. The error of SOC estimation 

builds up mildly after aging, especially for the 1C condition. 

The capacity estimation is also maintained at a similar accuracy 

compared to the cases before aging. This is supposed to be 

attributed to the relatively stable thermal properties of batteries 

within certain aging statuses. The comparative results suggest 

that the proposed method outperforms the electrical model-

based benchmark in terms of the robustness to the aging. To 

ensure a reasonable accuracy, the commonly-used electrical 

model-based observer needs more frequent re-calibration, while 

the proposed method promises high-fidelity estimation within a 

long aging scope. 

 

 
Fig. 10. Results of SOC and capacity estimation with an aged battery: 

SOC estimation under (a, c) 0.3 C and (b, d) 1 C discharging mode, 

capacity estimation under (e) 0.3 C and (f) 1 C discharging mode. 

 

Table. IV MAE and RMSE of SOC estimation with an aged battery 

 Proposed method Electrical model-based method 

0.3 C 1 C 0.3 C 1 C 

MAE 3.12% 1.39% 4.58% 6.9% 
RMSE 4.43% 2.15% 4.71% 7% 

 

V. CONCLUSIONS AND FUTURE WORK 

 

A novel smart battery structure with embedded DFOS is 

proposed in this paper for space-resolved temperature matrix 

sensing. Supported by the new sensing data, a thermal model-

based approach is further proposed for the low-order multi-state 

joint observation of the smart battery. Experiments have been 

performed to validate the proposed configuration and observer. 

The primary conclusions are summarized as follows: 

(1) The temperature gradient between the core and surface of 

cylindrical cell is location dependent along the length of 

aluminum can. The configured smart cell embedding DFOS can 

realize a real-time distributed sensing of the temperature matrix 

with a high space resolution of 2.6 mm, thus presents much 

scope for the temperature inhomogeneity detection of LIB. 

(2) Enabled by the embedded DFOS, the thermal parameters 

of LIB can be identified easily, and the resultant thermal model 

are highly accurate to simulate the battery thermal responses, 

with the errors confined to ± 0.1 ℃ error bound. 

(3) With the thermal model-based multi-state observer, the 

heat generation rate, SOC, and maximum capacity are online 

estimated precisely, where the MAEs of estimation are 0.035 

W, 0.79% and 0.12 Ahr, respectively. The proposed method 

validates to outperform the commonly-used electrical model-

based method substantially regarding the estimation accuracy 

and the robustness to battery aging. 

Only the means of surface/core temperature are utilized for 

the multi-state estimation in this work. Improvement towards 

distributed thermal modeling and the associated observer 

design can be an important topic for future work, in which the 

distributed temperature measurements are indispensable for the 

parameter identification and model validation. Moreover, the 

distributed temperature measurements have great potential to be 

deployed in battery thermal fault diagnosis, especially for the 

localization of battery thermal fault. This endeavor will be 

focused in our future work. 
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