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Abstract
Using Rauch’s comparison theorem, we prove several monotonicity inequalities for Rie-
mannian submanifolds. Our main result is a general Li–Yau inequality which is applicable
in any Riemannian manifold whose sectional curvature is bounded above (possibly posi-
tive). We show that the monotonicity inequalities can also be used to obtain Simon-type
diameter bounds, Sobolev inequalities and corresponding isoperimetric inequalities for Rie-
mannian submanifolds with small volume. Moreover, we infer lower diameter bounds for
closed minimal submanifolds as corollaries. All the statements are intrinsic in the sense that
no embedding of the ambient Riemannian manifold into Euclidean space is needed. Apart
from Rauch’s comparison theorem, the proofs mainly rely on the first variation formula and
thus are valid for general varifolds.

Keywords Varifolds on Riemannian manifolds · Lower diameter bounds for minimal
submanifolds · Li–Yau inequality · Sobolev inequality · sectional curvature

Mathematics Subject Classification 49Q15; 53C21

1 Introduction

Many inequalities that relate the mean curvature of submanifolds with other geometric quan-
tities such as the diameter can be obtained in some way from monotonicity identities, which
are formulas that can be used to deduce monotonicity of weighted density ratios. In the
Euclidean case, these identities are typically proven by testing the first variation formula
with certain vector fields. One of the main ingredients in the construction of these vector
fields is the inclusion map of the submanifold into the ambient Euclidean space. A key
observation in the computations is that its relative divergence equals the dimension of the
submanifold. In the Riemannian case, the inclusionmap of a submanifold is not a vector field;
however, one can perform analogous arguments by using the vector field r∇r , where r is
the distance function to a given point (see, for instance, Anderson [3]). Indeed, its relative
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divergence is not constant but can be bounded below on small geodesic balls by Rauch’s
comparison theorem (see Lemma 2.7). Such an idea revealed to be very fruitful; for instance,
it enabled Hoffman–Spruck [11] to derive a Sobolev inequality for Riemannian manifolds.
The idea of testing the first variation formula with the vector field r∇r in combination with
Hessian comparison theorems for the distance function that give a lower bound of the rela-
tive divergence was used again in the works of Karcher–Wood [14] and Xin [44]. Their
resulting monotonicity inequalities imply Liouville-type vanishing theorems for harmonic
vector bundle valued p-forms. Later, the same idea was used by several authors to prove
vanishing theorems in various settings, see, for instance, Dong–Wei [8]. The technique was
recently applied by Mondino–Spadaro [26] to derive an inequality that relates the radius
of balls with the volume and area of the boundary. See also Nardulli–Osorio Acevedo

[27] who used the technique to prove monotonicity inequalities for varifolds on Riemannian
manifolds. A weighted monotonicity inequality was obtained by Nguyen [28].

In the present paper, we apply the described technique to prove Riemannian counterparts
of the Euclidean monotonicity inequalities and their consequences from Simon [38,39] and
Allard [2]. Our main result is a general Li–Yau inequality (see Theorem 1.7). We start
with a brief introduction to intrinsic varifolds on Riemannian manifolds in Sect. 1.1. All our
monotonicity inequalities (see Sect. 3) as well as our main theorems (see Sect. 1.3) are valid
for general varifolds. In particular, all our results can be applied to isometrically immersed
Riemannian submanifolds (see Example 2.4). Indeed, the Li–Yau inequality for ambient
manifolds with positive upper bound on the sectional curvature is also new in the smooth
case.

1.1 Varifolds on Riemannianmanifolds

Let m, n be positive integers satisfying m ≤ n. Given any n-dimensional vector space V , we
define the Grassmann manifold G(V ,m) to be the set of all m-dimensional linear subspaces
of V . For V = Rn , we writeG(n,m) := G(Rn,m). One can show thatG(n,m) is a smooth
Euclidean submanifold, see for instance [9, 3.2.29(4)].

Let (N , g) be an n-dimensional Riemannian manifold. We denote with Gm(T N ) the
Grassmann m-plane bundle of the tangent bundle T N of N . That is, there exists a map
π : Gm(T N ) → N such that for each p ∈ N , the fibre π−1(p) is given by the Grassmannian
manifold G(TpN ,m). Given any open set U in N and a chart x : U → Rn of N , we note
that π−1[U ] is homeomorphically mapped onto an open subset of Rn × G(n,m) via

Gm(T N ) ⊃ π−1[U ] (x◦π,dxπ )−−−−−−→ Rn × G(n,m).

This turns Gm(T N ) into a differentiable manifold. We define

Gm(N ) := {(p, T ) ∈ N × Gm(T N ) : p = π(T )}
and note that Gm(N ) and Gm(T N ) are homeomorphic. In particular, Gm(N ) is a locally
compact and separable metric space.

With an m-dimensional varifold in N we mean a Radon measure V over Gm(N ). The
space of allm-dimensional varifolds on N is denoted withVm(N ). The weight measure ‖V ‖
of a varifold V is defined by

‖V ‖(A) = V {(p, T ) ∈ Gm(N ) : p ∈ A} whenever A ⊂ N .

It is the push forwardmeasure of the varifold under the projectionGm(N ) → N . In particular,
‖V ‖ is a Radon measure on N (see [22, Lemma 2.6]).
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The space of compactly supported vector fields on N is denoted with X (N ). Given any
X ∈ X (N ), p ∈ N , and T ∈ G(TpN ,m) with orthonormal basis {e1, . . . , em}, we let

divT X(p) =
m∑

i=1

gp
(∇ei X(p), ei

)
,

where ∇ denotes the Levi-Civita connection. Moreover, we denote with spt X the support of
X . The first variation of a varifold V is defined as the linear functional

δV : X (N ) → R, δV (X) =
∫

divT X(p) dV (p, T ).

The total variation ‖δV ‖ of δV is defined by

‖δV ‖(U ) = sup{δV (X) : X ∈ X (N ), spt X ⊂ U , g(X , X) ≤ 1}
whenever U is an open subset of N , and

‖δV ‖(A) = inf{‖δV ‖(U ) : U is open in N , A ⊂ U }
whenever A is any subset of N .

Finally, we say that H is the generalised mean curvature of V in (N , g), if and only if
H : N → T N is ‖V ‖ measurable, ‖δV ‖ is a Radon measure over N , there exists a ‖δV ‖
measurable map η taking values in T N such that ‖δV ‖ almost everywhere, g(η, η) ≤ 1, and

δV (X) = −
∫

g(X , H) d‖V ‖ +
∫

g(X , η) d‖δV ‖sing, (1.1)

where ‖δV ‖sing = ‖δV ‖−‖δV ‖‖V ‖, and ‖δV ‖‖V ‖ is the absolutely continuous part of ‖δV ‖
with respect to ‖V ‖, see [9, 2.9.1].

It remains to mention that each isometrically immersed Riemannian manifold M → N
can be considered as a varifold in N . For more details, see Example 2.4.

1.2 Notation and definitions

Suppose (X , d) is a metric space, μ is a Radon measure on X , and m is a positive integer.
Denote with α(m) the volume of the unit ball in Rm . Given any p ∈ X and r > 0, we define
the balls

Br (p) := {x ∈ X : d(p, x) < r}, B̄r (p) := {x ∈ X : d(p, x) ≤ r}.
The m-dimensional lower density �m∗ (μ, p) and upper density �∗m(μ, p) of μ at p ∈ X
are defined by

�m∗ (μ, p) = lim inf
r→0+

μ
(
B̄r (p)

)

α(m)rm
, �∗m(μ, p) = lim sup

r→0+
μ

(
B̄r (p)

)

α(m)rm
.

Moreover, if �m∗ (μ, p) = �∗m(μ, p), we let �m(μ, p) := �m∗ (μ, p). The support sptμ
of the measure μ is defined by

sptμ := X\
⋃

{U : U is open in X , μ(U ) = 0}.
1.1 Definition Suppose N is a Riemannian manifold and p ∈ N .

We say that U is an open geodesically star-shaped neighbourhood of p if and only if
there exists an open star-shaped neighbourhood D of 0 in TpN such that the exponential map
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expp : D → U is a diffeomorphism with expp[D] = U , and all geodesics emanating from
p are length-minimising in U .

Similarly, we say that the open ball Br (p) with radius r > 0 is a geodesic ball if it is a
geodesically star-shaped neighbourhood of p.

Given a complete Riemannian manifold N , p ∈ N , and writing r = d(p, ·), we denote with
Cut(p) the cut locus of p in N , and define the radial curvature Kr on N\Cut(p) to be the
restriction of the sectional curvature to all planes that contain the gradient∇r of r . Moreover,
given any subset A ⊂ N , we denote with i p(A) the injectivity radius at p in N restricted to
the subset A.

Typically, we denote with | · |g the norm induced by a Riemannian metric g.

1.3 Geometric inequalities

The following lower diameter bound for closed minimal submanifolds was proven and dis-
cussed by Xia [43] for the special case where the ambient manifold N is given by the
n-dimensional real projective space of curvature 1. To the author’s knowledge, little is known
in the general case. In particular, the study of sharp lower bounds for different model spaces
remains an open problem. The theorem is a direct consequence of Lemma 4.1 in combination
with (2.9) and Example 2.4.

1.2 Theorem (Lower diameter bounds for closed minimal Riemannian submanifolds) Sup-
pose N is a complete Riemannian manifold, M is a closed minimal submanifold of N with
extrinsic diameter dext(M) = supM×M d, b > 0, the sectional curvature K of N satisfies
supM K ≤ b, and p ∈ M.

Then, there holds

dext(M) ≥ min
{
i p(N ),

π

2
√
b

}
. (1.2)

1.3 Remark Notice that if the sectional curvature K of N satisfies K ≤ 0, then (1.2) becomes

dext(M) ≥ i p(N ). (1.3)

If instead, the sectional curvatures of N are pinched between 1
4b and b, and N is simply

connected, then, by a result of Klingenberg [16], (1.2) becomes

dext(M) ≥ π

2
√
b
. (1.4)

In the special case where N = RPn is the n-dimensional real projective space of curvature 1,
the lower bound in (1.4) is attained if and only if M is totally geodesic, see [43]. However,
the same does not hold for the unit sphere N = S7. Indeed, the complex projective space

CP2( 43 ) of complex dimension 2 and complex sectional curvature 4
3 has diameter

√
3π
2 and

can be isometrically and minimally imbedded into S7, see [34,43]. It remains an interesting
open problem to study sharp lower diameter bounds for closed minimal submanifolds in
different ambient manifolds, in particular in Sn .

We have the following generalisation of (1.3) to asymptotically non-positively curved
ambient manifolds as a consequence of Lemma 4.3 in combination with (2.9), and Exam-
ple 2.4.
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1.4 Theorem Suppose m, n are positive integers, m ≤ n, N is a complete n-dimensional
Riemannian manifold, p ∈ N, r = d(p, ·), D(p) := N\(Cut(p) ∪ {p}), 0 < b ≤ 1/4, the
radial curvature Kr satisfies Kr ≤ b

r2
on D(p), and M is a closed minimal submanifold of

N with p ∈ M.
Then, the extrinsic diameter dext(M) of M in N can be bounded below by the cut locus

distance:

dext(N ) ≥ i p(N ).

In [39, Lemma 1.1], Simon showed a diameter pinching theorem for closed surfaces in
the Euclidean space in terms of their Willmore energy and their area. The upper diameter
bound was improved and generalised to Euclidean submanifolds by Topping [40] using
the Michael–Simon Sobolev inequality [24]. It was further generalised to Euclidean sub-
manifolds with boundary by Menne–Scharrer [22] leading to a priori diameter bounds
for solutions of Plateau’s problem. The Riemannian equivalent of Topping’s upper diameter
bound was proven by Wu–Zheng [42] using the Hoffman–Spruck Sobolev inequality [11].
The following theorem is the Riemannian version for varifolds of Simon’s diameter pinching.
It is proven in Sect. 4.1. In the smooth case, it follows from [42].

1.5 Theorem [Diameter pinching] Suppose n is an integer, n ≥ 2, N is a complete n-
dimensional Riemannian manifold with positive injectivity radius i > 0, b ≥ 0, the sectional
curvature satisfies K ≤ b, V ∈ V2(N ) has generalised mean curvature H, H is square
integrable with respect to ‖V ‖, ‖δV ‖ is absolutely continuous with respect to ‖V ‖, spt ‖V ‖
is compact and connected,

H(x)⊥T for V almost all (x, T ) ∈ G2(N ), (1.5)

and

�∗2(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x ∈ N . (1.6)

If ‖V ‖(N ) ≤ C(4.2)(i, b), then

π ≤
∫

|H |2g d‖V ‖ (1.7)

and the extrinsic diameter dext(spt ‖V ‖) of the support of ‖V ‖ is bounded above:

dext(spt ‖V ‖) ≤ 2
√‖V ‖(N )

(√∫
|H |2g d‖V ‖ + b‖V ‖(N )

)
. (1.8)

Moreover, if dext(spt ‖V ‖) < min{i, π

3
√
b
}, then

√

‖V ‖(N )/

∫
|H |2g d‖V ‖ ≤ dext(spt ‖V ‖). (1.9)

1.6 Remark Notice that if the injectivity radius is infinite and the sectional curvatures are
non-positive, then both the condition on the area for the upper bound and the condition on
the diameter for the lower bound disappear. Indeed, for i = ∞ and b = 0, there holds
C4.2(i, b) = ∞ = min{i, π

3
√
b
}. Notice also that if b = 0, then the diameter bounds are the

exact analogous of Simon’s Euclidean version [39, Lemma 1.1]. In fact, the only difference
is the restriction on the area through the injectivity radius in case it is not infinite.
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If N = Rn , then the condition on the generalised mean curvature to be normal (1.5) is
satisfied for all integral varifolds, see [4, Sect. 5.8]. Similarly, condition (1.6) is satisfied for
all integral varifolds. On the other hand, (1.6) implies rectifiability, see [2, Theorem 5.5(1)].

In the early 60s,Willmore [41] showed that the energy now bearing his name is bounded
below by 4π on the class of closed surfaces � ⊂ R3:

1

4

∫

�

H2 dμ ≥ 4π (1.10)

where H denotes the sum of the principal curvatures and μ is the canonical Radon measure
on � given by the immersion. The inequality is also referred to as Willmore inequality.
Equality holds only for round spheres. Willmore’s inequality was improved by Li–Yau [19,
Theorem 6] for smoothly immersed closed surfaces f : � → Rn : If there exists p ∈ Rn

with f −1(p) = {x1, . . . , xk} where the xi ’s are all distinct points in �, in other words f has
a point of multiplicity k, then

1

4

∫

�

|H |2 dμ ≥ 4πk.

In particular, if the Willmore energy 1
4

∫
�

|H |2 dμ lies strictly below 8π , then f is an
embedding. Because of this property, the Li–Yau inequality has become very useful for
the minimisation of the Willmore functional and, more generally, for the study of immersed
surfaces. Due to the conformal invariance of the Willmore functional observed by Chen [7],
Willmore’s inequality has an analogue for surfaces � in the three sphere S3:

1

4

∫

�

H2 dμ + |�| ≥ 4π (1.11)

and an analogue for surfaces � in the hyperbolic space H3:

1

4

∫

�

H2 dμ − |�| ≥ 4π, (1.12)

where |�| = ∫
1 dμ denotes the area of �. Kleiner [15] showed

1

4

∫

�0

H2 dμ + b|�0| ≥ 4π (1.13)

forminimisers�0 of the isoperimetric profile in a complete one-connected three-dimensional
Riemannian manifold without boundary and with sectional curvatures bounded above by
b ≤ 0. Then, Ritoré [30] showed that (1.12) remains valid for all C1,1 surfaces in a three-
dimensional Cartan–Hadamard manifold with sectional curvatures bounded above by −1.
Schulze showed that the classical Willmore inequality (1.10) holds true for integral 2-
varifolds in three-dimensional Cartan–Hadamard manifolds [36, Lemma 6.7]. Then, he
showed that (1.13) remains valid for integral 2-varifolds in n-dimensional Cartan–Hadamard
manifolds, see [37, Theorem 1.4]. Finally, Chai [5] upgraded (1.12) to a Li–Yau inequality.
That is, given a smoothly immersed surface f : � → Hn in the hyperbolic space Hn which
has a point of multiplicity k, then

1

4

∫

�

|H |2 dμ − |�| ≥ 4πk.

Notice also the recent generalisation of the Willmore inequality to higher-dimensional
submanifolds by Agostiniani–Fogagnolo–Mazzieri [1]. They showed that for closed
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codimension 1 submanifolds M in a non-compact n-dimensional Riemannian manifold
(N , g) with nonnegative Ricci curvature, there holds

∫

M

∣∣∣∣
H

n − 1

∣∣∣∣
n−1

dμ ≥ AVG(g)|Sn−1|

where AVG(g) denotes the asymptotic volume ratio of (N , g). See also Chen [6] for the
earlier Euclidean version.

In our following theorem, we upgrade the result of Schulze [37] about the inequal-
ity (1.13) to a Li–Yau inequality in any non-positively curved ambient manifold. More
importantly, we upgrade the spherical Willmore inequality (1.11) to a Li–Yau inequality
for varifolds on any Riemannian manifold with an upper bound (possibly positive) on the
sectional curvature. The proof is done in Sect. 3.1. For non-positively curved ambient man-
ifolds, it is analogous to Chai [5]; for ambient manifolds with positive upper bound on the
curvature it is inspired by Simon [39].

1.7 Theorem (Li–Yau inequality) Suppose n is an integer, n ≥ 2, (N , g) is an n-dimensional
Riemannian manifold, p ∈ N, U is a geodesically star-shaped open neighbourhood of p,
V ∈ V2(N ) has generalised mean curvature H, H is square integrable with respect to
‖V ‖, H(x)⊥T for V almost all (x, T ) ∈ G2(N ), p /∈ spt ‖δV ‖sing, spt ‖V ‖ is compact,
spt ‖V ‖ ⊂ U, b ∈ R, the sectional curvature of N satisfies supspt ‖V ‖ K ≤ b, and either

b > 0, sup
q∈spt ‖V ‖

d(p, q) <
π

2
√
b
, and C = 16

π2

or

b ≤ 0 and C = 1.

Then, there holds

4π�2(‖V ‖, p) ≤ 1

4

∫

N
|H |2g d‖V ‖ + bC‖V ‖(N ) +

∫

N
tb(r) d‖δV ‖sing

where tb(r) = 2/r if b ≥ 0, and tb(r) = 2
√|b| coth(√|b|r/2) if b < 0.

1.8 Remark Notice that the existence of the density �2(‖V ‖, p) is part of the statement.
Indeed, existence of the density as well as its upper semi-continuity are local statements
that do not require any global upper bounds on the curvature nor do they require positive
injectivity radius, see Theorem 3.6.

If the varifold is given by a smoothly immersed surface, then the theorem reads as follows
(see Example 2.4).

1.9 Corollary Suppose n is an integer, n ≥ 3, (N , g) is an n-dimensional Riemannian man-
ifold, b ∈ R, the sectional curvature K of N satisfies K ≤ b, � is a closed surface,
f : � → N is a smooth immersion, and f has a point of multiplicity k. Let H be the trace
of the second fundamental form of the immersion f , μ be the Radon measure on � induced
by the pull-back metric of g along f , and |�| := ∫

�
1 dμ be the area of � in N. Then, the

following two statements hold.

1. If b > 0, and the image of f is contained in a geodesic ball of radius at most π

2
√
b
, then

1

4

∫

�

|H |2g dμ + 16

π2 b|�| ≥ 4πk.
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2. If b ≤ 0 and the image of f is contained in a geodesically star-shaped open neighbour-
hood of the multiplicity point, then

1

4

∫

�

|H |2g dμ + b|�| ≥ 4πk.

In particular, if the left-hand side is strictly smaller than 8π , then f is an embedding.

1.10 Remark The upper bound on the radius of the geodesic ball containing the image of f
in (1) can be enlarged up to π√

b
at the cost of a constant larger than 16

π2 in front of the area.

Moreover, in view of Lemma 3.1 and (3.5), the constant 16
π2 cannot be expected to be sharp.

It is an interesting open question whether or not the constant 16
π2 can be replaced by 1. In

view of the spherical version (1.11), this seems possible.
If N is a Cartan–Hadamard manifold, then N itself is a geodesically star-shaped open

neighbourhood of any point. In particular, there is no condition on f in (2).

Isoperimetric inequalities play an important role in the theory of varifolds and its appli-
cations, see, for instance, [2,20,22]. They can be derived from Sobolev inequalities. Allard
[2, Theorem 7.1] proved a Sobolev inequality for general varifolds in Euclidean space with a
constant depending on the dimension of the varifold and the dimension of the ambient space.
Michael–Simon [24] proved a Sobolev inequality for generalised submanifolds inEuclidean
space where the constant depends only on the dimension of the submanifold. Its proof was
later adapted by Simon [38, Theorem 18.6] for varifolds whose first variation is absolutely
continuous with respect to the weight measure. These varifolds correspond to submanifolds
without boundary.Menne–Scharrer [23] proved a general Sobolev inequality accounting
for the unrectifiable part of the varifold as well. Finally,Hoyos [12,13] generalised Simon’s
version [38, Theorem 18.6] for varifolds on Riemannian manifolds. Our following theorem
generalises his inequality for arbitrary varifolds whose first variation doesn’t have to be abso-
lutely continuous with respect to the weight measure. In this way, our resulting isoperimetric
inequality indeed recovers the smooth version of Hoffman–Spruck [11, Theorem 2.2]. The
proof of the following theorem can be found in Sect. 5.1.

1.11 Theorem (Sobolev inequality) Suppose m, n are positive integers, m ≤ n, (N , g) is
a complete n-dimensional Riemannian manifold, V ∈ Vm(N ), ‖δV ‖ is a Radon measure,
i(spt ‖V ‖) denotes the injectivity radius of N restricted to spt ‖V ‖, b > 0, the sectional
curvature K of N satisfies supspt ‖V ‖ K ≤ b, dext(spt ‖V ‖) denotes the extrinsic diameter of
spt ‖V ‖ in N, and

min
{
dext(spt ‖V ‖), (α(m)−12m+1‖V ‖(N ))1/m

}
< min

{
i(spt ‖V ‖), π

2
√
b

}
.

Then, for all nonnegative compactly supported C1 functions h ≤ 1 on N, there holds
∫

{x∈N :h(x)�m (‖V ‖,x)≥1}
h d‖V ‖

≤ C(5.2)(m)

(∫
h d‖V ‖

)1/m (∫
h d‖δV ‖ + m

√
b

∫
h d‖V ‖ +

∫
|∇�h|g dV

)
.

where (∇�h)(x, T ) is the orthogonal projection of ∇h(x) onto T for (x, T ) ∈ Gm(N ).

One can absorb the curvature-dependent term in themiddle to obtain the following isoperi-
metric inequality. For its proof, see Sect. 5.2.
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1.12 Corollary (Isoperimetric inequality) If in addition

2C(5.2)(m)m
√
b‖V ‖(N )1/m ≤ 1 (1.14)

and �m(‖V ‖, x) ≥ 1 for ‖V ‖ almost all x ∈ spt ‖V ‖, then

‖V ‖(N )
m−1
m ≤ 2C(5.2)(m)‖δV ‖(N ).

1.13 Remark Notice that by Example 2.4, the inequality above indeed implies the isoperimet-
ric inequality [11, Theorem 2.2] for smoothly immersed Riemannian manifolds. Moreover,
if the sectional curvatures of N are non-positive (for instance, if N is Cartan–Hadamard),
then the condition on the volume (1.14) is satisfied for all V with compact support.

2 Preliminaries

In this section, we show how the first variation can be represented by integration, see Lem-
mas 2.1 and 2.2. These are basic facts that have been frequently used in the study of Euclidean
varifolds.We are going to need them in order to prove the Sobolev inequality (Theorem 1.11).
Moreover, we prove that any smoothly immersed manifold is a varifold, see Lemma 2.3 and
Example 2.4. Finally, we state the Hessian comparison theorems for the distance function
(see Lemmas 2.5 and 2.7) that are crucial to derive the monotonicity inequalities in Sect. 3.

2.1 Lemma (Compare [2, 4.3(2)]) Suppose m, n are positive integers, m ≤ n, (N , g) is an
n-dimensional Riemannian manifold, V ∈ Vm(N ), and ‖δV ‖ is a Radon measure.

Then, there exists a ‖δV ‖ measurable map η : N → T N such that ‖δV ‖ almost every-
where, g(η, η) ≤ 1, and

δV (X) =
∫

g(X , η) d‖δV ‖.

Remark Notice that by definition, ‖δV ‖ is a Borel regular measure on N . Hence, it is a Radon
measure if and only if ‖δV ‖(K ) < ∞ for all compact sets K ⊂ N .

Proof Let {(xα,Uα) : α ∈ I } be a countable differentiable atlas on N . For all α ∈ I define

Tα : C∞
c (Uα,Rn) → R, Tα(X) = δV

(
Xi ∂

∂xiα

)
,

where we’ve used the Einstein summation convention, and ∂
∂xiα

are the coordinate vector

fields corresponding to the chart xα . Then,

sup Tα[{X ∈ C∞
c (Uα,Rn) : Xi X j gαi j ≤ 1}]

= sup δV [{X ∈ X (N ) : spt X ⊂ Uα, g(X , X) ≤ 1}] < ∞.

Therefore, we can apply the representation theorem [9, 2.5.12] in combination with Lusin’s
theorem [9, 2.3.6] to obtain a Borel map kα on Uα taking values in the dual space (Rn)∗ of
Rn such that ‖δV ‖ almost everywhere, kαi kα j g

i j
α = 1, and

Tα(X) =
∫

Uα

Xikαi d‖δV ‖.
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For ηα := kαi g
i j
α

∂

∂x j
α

, this means that ‖δV ‖ almost everywhere, g(ηα, ηα) = 1, and

δV (X) = Tα(Xα) =
∫

Uα

Xi
αkαi d‖δV ‖ =

∫

Uα

g(X , ηα) d‖δV ‖

whenever X = Xi
α

∂
∂xiα

∈ X (Uα). This equation uniquely determines the Borel map ηα up

to a set of ‖δV ‖ measure zero. Hence, we can define a ‖δV ‖ measurable map η : N → T N
by requiring that

η(x) = ηα(x) whenever α ∈ I and x ∈ Uα.

Now, let X ∈ X (N ). Choose a finite covering {Uα : α ∈ I0} of the support of X together
with a subordinate partition of unity {ϕα : α ∈ I0}. Then,

δV (X) =
∑

α∈I0
δV (ϕαX) =

∑

α∈I0

∫

Uα

g(ϕαX , ηα) d‖δV ‖ =
∫

g(X , η) d‖δV ‖

which finishes the proof. ��
2.2 Lemma (Compare [2, 4.3(5)]) Suppose m, n are positive integers, m ≤ n, N is an n-
dimensional Riemannian manifold, V ∈ Vm(N ), and ‖δV ‖ is a Radon measure.

Then, V has a generalised mean curvature (see (1.1)).

Proof First, assume that spt ‖δV ‖ is compact. Then, by [9, 2.8.9] one can apply the usual
theory of symmetrical derivation (i.e. [9, 2.8.18, 2.9.7]) to the integral in Lemma 2.1. The
general case then follows by covering spt ‖δV ‖with countablymany open sets whose closure
is compact. ��

The following lemma is the Riemannian counterpart of [22, Lemma 2.8].

2.3 Lemma Suppose m, n are positive integers, m ≤ n, M is a compact m-dimensional
connected differentiable manifold with boundary, (N , g) is an n-dimensional Riemannian
manifold, and f : M → N is a smoothproper immersion.DenotewithHm

g them-dimensional
Hausdorff measure on N with respect to the distance induced by the metric g, and denote
with μ f ∗g the Riemannian measure on M corresponding to the pull-back metric f ∗g of g
along f .

Then, there holds
∫

M
k dμ f ∗g =

∫

N

∑

p∈ f −1(x)

k(p) dHm
g x (2.1)

for all compactly supported continuous functions k : M → R. In particular, the push forward
measure f#μ f ∗g of μ f ∗g under f is a Radon measure on N and satisfies

f#μ f ∗g(B) =
∫

B
H0( f −1{x}) dHm

g x for all Borel sets B ⊂ N , (2.2)

where H0 denotes the counting measure. Moreover, for all x ∈ f [M\∂M], there holds
�m( f#μ f ∗g, x) = H0( f −1{x}) (2.3)

and for f#μ f ∗g almost all x,

d f p[TpM] = d fq [TqM] whenever p, q ∈ f −1{x}. (2.4)
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Proof First, suppose that ∂M = ∅, M is a submanifold of N and f = i is the inclusion
map. Denote with dM and dN the distance functions on (M, i∗g) and (N , g), respectively.
Clearly, dM (a, b) ≥ dN (a, b) for all a, b ∈ M . By [9, 3.2.46], μi∗g coincides with the
m-dimensional Hausdorff measure Hm

i∗g on M corresponding to the distance dM . Thus,
i#μi∗g(S) = Hm

i∗g(M ∩ S) ≥ Hm
g (M ∩ S) for all S ⊂ N . To prove the reverse inequality, let

λ > 1 and p ∈ M . Choose an open neighbourhoodU of p in N together with a submanifold
chart x : U → Rn , i.e. x[M ∩ U ] = x[U ] ∩ (Rm × {0}). Composing x with a linear map
Rm × Rn−m → Rm × Rn−m , we may assume that dxp maps an orthonormal basis of TpN
onto an orthonormal basis of Rn . In particular, ‖dxp‖ = ‖dx−1

x(p)‖ = 1. Hence, there exists

ρ > 0 such that Bρ(p) := {q ∈ N : dN (p, q) < ρ} ⊂ U , as well as ‖dx |Bρ(p)‖ ≤ √
λ

and ‖d(x |Bρ(p))
−1‖ ≤ √

λ. Thus, x |Bρ(p) is Lipschitz continuous with Lipschitz constant

bounded above by
√

λ. Next, choose ρ0 > 0 such that ρ0 < ρ and the convex hull of
x[M ∩ Bρ0(p)] in Rm × {0} is contained in x[M ∩ Bρ(p)]. Given any a, b ∈ M ∩ Bρ0(p),
let

γ : [0, 1] → Rm × {0}, γ (t) = (1 − t)x(a) + t x(b).

Then, c := x−1 ◦ γ is a smooth curve in M ∩ Bρ(p), connecting a with b. Therefore,

dM (a, b) ≤
∫ 1

0

√
(i∗g)c(ċ, ċ) dt ≤ √

λ

∫ 1

0
|γ̇ | dt = √

λ|x(a) − x(b)| ≤ λdN (a, b).

This implies Hm
i∗g(M ∩ S) ≤ λmHm

g (M ∩ S) for all S ⊂ Bρ0(p). Thus,

lim
r→0+

μi∗g(M ∩ {q : dM (p, q) ≤ r})
rm

= lim
r→0+

Hm
g (M ∩ {q : dN (p, q) ≤ r})

rm
(2.5)

in the sense that the left-hand side exists if and only if the right-hand side exists in which
case both sides coincide. Moreover, it follows i#μi∗g(B) = Hm

i∗g(M ∩ B) = Hm
g (M ∩ B)

for all Borel sets B ⊂ N , which proves (2.2) for the special case.
Next, suppose that f is an embedding and ∂M = ∅. Then, f [M] is a submanifold of N .

Denote with i : f [M] → N the inclusion map. Then, f : (M, f ∗(i∗g)) → ( f [M], i∗g) is
an isometry. This means f#μ f ∗(i∗g) = μi∗g and, by the first case,

f#μ f ∗g(B) = i#μi∗g(B) = Hm
g ( f [M] ∩ B) for all Borel sets B ⊂ N .

Hence, (2.2) is valid if ∂M = ∅ and f is an embedding. Moreover, in this case, (2.3) follows
from [33, Chapter II, Corollary 5.5] in combination with Eq. (2.5).

Now, suppose that f is an immersion and ∂M = ∅. Let k : M → R be a continuous
function with compact support spt k and choose finitely many open sets U1, . . . ,U� whose
union contains spt k such that f |Uλ is an embedding for λ = 1, . . . , �. Pick a subordinate
partition of unity {ϕλ}�λ=1, i.e.

∑�
λ=1 ϕλ(p) = 1 for all p ∈ spt k, and spt ϕλ ⊂ Uλ for

λ = 1, . . . , �. Given any x ∈ f [M], then, by injectivity of f |Uλ for λ = 1, . . . , �, the
union

⋃

p∈ f −1{x}
{λ : p ∈ Uλ}

is disjoint. In particular, denoting with χA the characteristic function of any given set A,

�∑

λ=1

ϕλ

(
( f |Uλ )

−1(x)
)
k
(
( f |Uλ )

−1(x)
)
χ f [Uλ](x) =

∑

p∈ f −1{x}

�∑

λ=1

ϕλ(p)k(p) =
∑

p∈ f −1{x}
k(p).
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Hence, using (2.2) for the special case,

∫

M
k dμ f ∗g =

�∑

λ=1

∫

Uλ

ϕλ · k dμ f ∗g =
�∑

λ=1

∫

f [Uλ]
[ϕλ ◦ ( f |Uλ )

−1] · [k ◦ ( f |Uλ )
−1] d f#μ f ∗g

=
∫

N

∑

p∈ f −1{x}
k(p) dHm

g x .

This proves (2.1) which readily implies (2.2). It remains to mention that if ∂M �= ∅, then
we have that ∂(∂M) = ∅ and f |∂M is an immersion. By the first cases it follows that
Hm−1

g ( f [∂M] ∩ K ) < ∞ for all compact sets K ⊂ N . Thus, Hm
g ( f [∂M]) = 0.

To prove (2.3), we first assume that f is an embedding. Then, the statement follows
from [33, Chapter II, Corollary 5.5] in combination with Eq. (2.5). If f is an immersion,
let x ∈ f [M\∂M] and let p1, . . . , pk be distinct points such that f −1{x} = {p1, . . . , pk}.
Choose pairwise disjoint open setsU1, . . . ,Uk such that for i = 1, . . . , k there holds pi ∈ Ui .
Then, for small r > 0, there holds

f#μ f ∗g(Br (x)) =
k∑

i=1

( f |Ui )#μ( f |Ui )∗g(Br (x)).

Hence, (2.3) follows from the special case by linearity of the limit operator.
To prove (2.4), suppose x ∈ f [M\∂M], p1, p2 ∈ f −1{x}, and U1,U2 are disjoint open

neighbourhoods of p1, p2 in M , respectively, such that f |U1 , f |U2 are embeddings. Assume
that d f p1 [Tp1M] �= d f p2 [Tp2M]. Then, we can pick a unit vector v1 ∈ Tx N such that
v1 ∈ d f p1 [Tp1M]\d f p2 [Tp2M] and there exists 0 < ε < 1 such that the cone

C := {w ∈ Tx N : |rw − v1|g ≤ ε for some r ∈ R}
satisfies C ∩ d f p2 [Tp2M] = ∅. Next, we pick ε1 > 0 such that expp1 : Bε1 ⊂ Tp1M → M

is a diffeomorphism on Bε1 := {ξ ∈ Tp1M : ( f ∗g)p1(ξ, ξ) < ε21} and introduce polar
coordinates

� : (0, ε1) × Sm−1 → M, �(t, u) = expp1(tu),

where Sm−1 := {ξ ∈ Tp1M : ( f ∗g)p1(ξ, ξ) = 1}, as well as the density function

θ : (0, ε1) × Sm−1 → R, θ(t, u) = tm−1
√
det( f ∗g)i j (�(t, u)).

By [33,Chapter II, Lemma5.4], there holdsμ�∗( f ∗g) = θμg0 , where g0 is the canonical prod-
uct metric on (0, ε1) × Sm−1. Hence, for E := (� ◦ (d f p1)

−1)[C] and u1 := (d f p1)
−1(v1),

we have by Fubini’s theorem

μ f ∗g(E ∩ Bρ(p1)) =
∫

Sm−1∩Bε(u1)

∫ ρ

0
θ(t, u) dt dμSm−1u

for all 0 < ρ < ε1. Noting that θ(t, u) = tm−1 + O(tm+1) as t → 0+, it follows

�m(μ f ∗g�E, p1) = μSm−1(Bε(u1))

α(m)m
> 0,

whereμ f ∗g�E denotes the Radonmeasure on M given by (μ f ∗g�E)(B) = μ f ∗g(E∩B) for
all Borel sets B ⊂ M . Hence, by (2.2) applied to f |U1 , there holds �m∗ (Hm

g � f [E], x) > 0.
Notice that if γ is a curve in E ∪{p1}with γ (0) = p1, then ( f ◦γ )·(0) ∈ C ∪{0}. Moreover,
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we make the following observation. Choose ρ > 0 such that Bρ(x) is a geodesic ball around
x in N . Given any unit vector v ∈ Tx N and δ > 0, we denote with C(v, δ) the image of the
set

Bρ(0) ∩ {w ∈ Tx N : |rw − v|g < δ for some r ∈ R}
under the exponential map expx : Bρ(0) ∩ Tx N → N . Then, given any smooth curve γ in
N with

γ (0) = x and
γ̇ (0)

|γ̇ (0)|g = v,

one can use normal coordinates and differentiability of γ to show that for some t0 > 0, there
holds

γ (t) ∈ C(v, δ) ∪ {x} for all − t0 < t < t0.

This observation together with compactness of B̄ρ(x) can be used to show that for small
ρ > 0, f [E] ∩ f [U2] ∩ Bρ(x) = ∅. Thus, �m∗ (Hm

g � f [M], x) > 1. Now, the conclusion
follows from [9, 2.10.19(5)]. ��

The following example is theRiemannian counterpart to the Euclidean case [22,Definition
2.14]. Compare also with [17, Sect. 2.2], where smoothness of f is replaced with W 2,2-
regularity.

2.4 Example Let f , M, N be as in Lemma 2.3. Define V ∈ Vm(N ) by letting

V (k) =
∫

N

∑

p∈ f −1{x}
k(x, d f p[TpM]) dHm

g x

for all continuous functions k : Gm(N ) → R with compact support. In view of Lemma 2.3,
we have

‖V ‖ = f#μ f ∗g, spt ‖V ‖ = closure f [M].
In particular, spt ‖V ‖ = f [M] if M is closed. Moreover, for all x ∈ f [M\∂M],

�m(‖V ‖, x) = H0( f −1{x})

and

‖V ‖(N ) =
∫

M
1 dμ f ∗g = |M |.

Identify d f p[TpM] with TpM . Let NM be the normal bundle of the immersion f . That
is, there exists π : NM → M such that for each p ∈ M , the fibre π−1(p) is given by
the orthogonal complement of TpM in T f (p)N . Denote with H f : M → NM the mean
curvature vector field of f , i.e. the trace of the second fundamental form (see [11, Definition
3.1]). Define the ‖V ‖ measurable map H : N → T N by

H(x) =
{

1
�m (‖V ‖,x)

∑
p∈ f −1{x} H f (p) if �m(‖V ‖, x) > 0

0 if �m(‖V ‖, x) = 0.

Let X ∈ X (N ). By a simple computation (see [11, Lemma 3.2(i)]),

divTpM X(x) = −gx (X(x), H f (p)) + div(X ◦ f )t (p)

123



Annals of Global Analysis and Geometry

whenever p ∈ M and f (p) = x , where (X ◦ f )t denotes the orthogonal projection of (X ◦ f )
onto the tangent bundle T M . Integrating this equation and using Lemma 2.3 as well as the
usual Divergence Theorem on M (see [33, Chapter II, Theorem 5.11]), we infer

δV (X) =
∫

N

∑

p∈ f −1{x}
divTpM X(x) dHm

g x

= −
∫

N

∑

p∈ f −1{x}
gx (X(x), H f (p)) dHm

g x +
∫

N

∑

p∈ f −1{x}
div(X ◦ f )t (p) dHm

g x

= −
∫

N
g(X , H)�m(‖V ‖, ·) dHm

g +
∫

M
div(X ◦ f )t dμ f ∗g

= −
∫

N
g(X , H) d‖V ‖ +

∫

∂M
( f |∂M∗g)

(
(X ◦ f )t , ν

)
dμ f |∂M ∗g,

where ν is the outward unit normal vector field on ∂M . In particular, V has generalised mean
curvature H ,

‖δV ‖(B) ≤
∫

B
|H |g d‖V ‖ +

∫

B
H0(( f |∂M )−1{x}) dHm−1

g

for all Borel sets B ⊂ N , and by (2.4),

H(x)⊥T for V almost all (x, T ) ∈ Gm(N ).

By definition of H , we have trivially
∫

N
|H |g d‖V ‖ ≤

∫

N

∑

p∈ f −1{x}
|H f (p)|g dHm

g x =
∫

M
|H f |g dμ f ∗g

and
∫

N
|H |2g d‖V ‖ ≤

∫

N

1

H0( f −1{x})2
( ∑

p∈ f −1{x}
|H f (p)|g

)2

d‖V ‖x

≤
∫

N

1

H0( f −1{x})
∑

p∈ f −1{x}
|H f (p)|2g d‖V ‖x

=
∫

N

∑

p∈ f −1{x}
|H f (p)|2g dHm

g x =
∫

M
|H f |2g dμ f ∗g.

2.5 Lemma (See [29, Theorem 6.4.3]) Suppose (N , g) is a Riemannian manifold, p ∈ N, U
is a geodesically star-shaped open neighbourhood of p, the metric is represented in geodesic
polar coordinates g = dr ⊗ dr + gr on U, b ∈ R, the sectional curvature satisfies K ≤ b
on U, and either b ≤ 0 or U ⊂ B π√

b
(p).

Then, the Hessian ∇2r of r can be bounded below on U by

∇2r ≥
{√

b cot(
√
br)gr ifb > 0√−b coth(
√−br)gr ifb ≤ 0.

2.6 Remark Define the continuous function

a : [0, π) → R, a(x) = x cot(x)
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where a(0) = 1. Using the series expansion

cot(x) = 1

x
− x

3
− x3

45
− · · · for 0 < x < π (2.6)

where all higher-order terms are negative, we see that a is strictly decreasing. In particular,
since cot( π

3 ) = 1√
3
, we have

x cot x ≤ 1 for 0 ≤ x < π, (2.7)

x cot x ≥ 1

2
for 0 ≤ x ≤ π

3
, (2.8)

x cot x > 0 for 0 ≤ x <
π

2
. (2.9)

2.7 Lemma Suppose m, n are positive integers, m ≤ n, (N , g) is an n-dimensional Rieman-
nian manifold, p ∈ N, U is a geodesically star-shaped open neighbourhood of p, b > 0, the
sectional curvature satisfies K ≤ b on U, and U ⊂ B π√

b
(p).

Then, writing r = d(p, ·), there holds
divT (r∇r) ≥ m

√
br cot(

√
br)

for all T ∈ Gm(TU ).

Proof Writing the metric in polar coordinates g = dr ⊗ dr + gr and using Lemma 2.5 in
combination with (2.7), we compute for b > 0

∇(r∇r) = dr ⊗ dr + r∇2r ≥ dr ⊗ dr + √
br cot(

√
br)gr ≥ √

br cot(
√
br)g.

Given any T ∈ Gm(TU ) with orthonormal basis {e1, . . . , em}, it follows

divT (r∇r) =
m∑

i=1

∇(r∇r)(ei , ei ) ≥ √
br cot(

√
br)

m∑

i=1

g(ei , ei ) = m
√
br cot(

√
br)

which concludes the proof. ��

3 Monotonicity inequalities

In this section, we prove several monotonicity inequalities. The version for two-dimensional
varifolds on general Riemannian manifolds (Lemma 3.1) will be used to prove existence
and upper semi-continuity of the density (see Theorem 3.6 in this section), the diameter
pinching (see Theorem 1.5 and Sect. 4.1 for its proof), and part (1) of the Li–Yau inequality
(see Theorem 1.7 and Sect. 3.1 for its proof). The version for two-dimensional varifolds on
non-positively curved manifolds (Lemma 3.7) will be used to prove part (2) of the Li–Yau
inequality. The version for general m-dimensional varifolds (Lemma 3.3) is needed to prove
the Sobolev inequality (see Theorem 1.11 and Sect. 5.1 for its proof).

The proof of the following lemma is based on the ideas of the monotonicity formula in
Simon [39] in combination with a technique of Anderson [3]. See also [31, Lemma A.3]
for a proof in the presence of boundary, and [25] for higher-dimensional varifolds.

3.1 Lemma Suppose n is an integer, n ≥ 2, (N , g) is an n-dimensional Riemannianmanifold,
p ∈ N, V ∈ V2(N ) has generalisedmean curvature H, H is square integrablewith respect to
‖V ‖, H(x)⊥T for V almost all (x, T ) ∈ G2(N ), b > 0, 0 < ρ < π√

b
, the sectional curvature
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satisfies K ≤ b on spt ‖V ‖ ∩ Bρ(p), U is a geodesically star-shaped open neighbourhood
of p, and spt ‖V ‖ ∩ B̄ρ(p) ⊂ U.

Then, writing r = d(p, ·), there holds
‖V ‖Bσ (p)

σ 2 ≤ ‖V ‖Bρ(p)

ρ2 + 1

16

∫

Bρ(p)\Bσ (p)
|H |2g d‖V ‖ +

∫

Bρ(p)

1 − ab(r)

r2
d‖V ‖

+
∫

Bρ(p)

1

2r
d‖δV ‖sing +

∫

Bρ(p)

r

2ρ2 d‖δV ‖sing

+
∫

Bσ (p)

|H |g
2σ

d‖V ‖ +
∫

Bρ

|H |g
2ρ

d‖V ‖

for all 0 < σ < ρ, where ab(r) = √
br cot(

√
br).

Proof Given any σ < t < ρ and any nonnegative smooth function ϕ : R → R whose
support is contained in the interval (−∞, 1), we let X = ϕ( rt )r∇r and compute

divT X = ϕ
(r
t

)
divT (r∇r) + ϕ̇

(r
t

)r
t
|∇T r |2g

for all T ∈ G2(T N ), where ∇T r denotes the orthogonal projection of ∇r onto T . We write

∇⊥r : G2(N ) → T N , (∇⊥r)(x, T ) = (∇r)(x) − (∇T r)(x),

and notice that

1 = |∇r |2g = |∇T r |2g + |∇⊥r |2g.
Therefore, testing the first variation equation [see (1.1)] with X , we infer by Lemma 2.7

2
∫

N
ϕ
(r
t

)
ab(r) d‖V ‖ +

∫

G2(N )

ϕ̇
(r
t

)r
t

[
1 − |∇⊥r |2g

]
dV

≤ −
∫

N
ϕ
(r
t

)
g(r∇r , H) d‖V ‖ +

∫

N
ϕ
(r
t

)
g(r∇r , η) d‖δV ‖sing.

There holds

− d

dt

[ 1

t2
ϕ
(r
t

)]
= 1

t3

[
2ϕ

(r
t

)
+ ϕ̇

(r
t

)r
t

]
.

Hence, adding
∫
N 2ϕ( rt )(1 − ab(r)) d‖V ‖ on both sides of the inequality and multiplying

with 1
t3
, it follows

− d

dt

∫
1

t2
ϕ
(r
t

)
d‖V ‖ −

∫

G2(N )

ϕ̇
(r
t

) r

t4
|∇⊥r |2g dV

≤ 2
∫

N
ϕ
(r
t

)1 − ab(r)

t3
d‖V ‖ −

∫

N
ϕ
(r
t

)g(r∇r , H)

t3
d‖V ‖

+
∫

N
ϕ
(r
t

)g(r∇r , η)

t3
d‖δV ‖sing.

(3.1)

Given any 0 < λ < 1, choose ϕ such that ϕ̇ ≤ 0, ϕ(s) = 1 for all s ≤ λ, and ϕ(s) = 0 for all
s ≥ 1. In other words, ϕ approaches the characteristic function of the open interval (−∞, 1)
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from below as λ → 1. In particular, if ϕ̇( rt ) �= 0, then r
t ≥ λ. Hence,

∫

G2(N )

ϕ̇
(r
t

) r

t4
|∇⊥r |2g dV ≤

∫

G2(N )

ϕ̇
(r
t

) r

t2
λ2

r2
|∇⊥r |2g dV

= − d

dt

∫

G2(N )

ϕ
(r
t

) λ2

r2
|∇⊥r |2g dV .

(3.2)

Moreover, given any ‖V ‖ integrable real-valued function f , one computes using Fubini’s
theorem, writing rσ := max{σ, r}, and denoting with χA the characteristic function of any
set A,

∫ ρ

σ

∫

Bt (p)

f (x)

t3
d‖V ‖x dt =

∫

Bρ(p)

∫ ρ

σ

f (x)

t3
χ{r<t}(x) dt d‖V ‖x

=
∫

Bρ(p)
f (x)

∫ ρ

rσ (x)

1

t3
dtd‖V ‖x = 1

2

∫

Bρ(p)

(
1

r2σ
− 1

ρ2

)
f d‖V ‖

(3.3)

Therefore, putting (3.2) into (3.1), integrating with respect to t from σ to ρ, letting λ → 1,
and using (3.3), we infer

‖V ‖Bσ (p)

σ 2 ≤ ‖V ‖Bρ(p)

ρ2 −
∫

π−1[Bρ(p)\Bσ (p)]
|∇⊥r |2g
r2

dV

+
∫

Bρ(p)

(
1

r2σ
− 1

ρ2

)
(1 − ab(r)) d‖V ‖

− 1

2

∫

Bρ(p)

(
1

r2σ
− 1

ρ2

)
g(r∇r , H) d‖V ‖

+ 1

2

∫

Bρ(p)

(
1

r2σ
− 1

ρ2

)
g(r∇r , η) d‖δV ‖sing,

where π : G2(N ) → N denotes the canonical projection. Observe that

∣∣∣
1

4
H + ∇⊥r

r

∣∣∣
2

g
= 1

2r
g(∇r , H) + |∇⊥r |2g

r2
+ 1

16
|H |2g.

Thus, it follows

‖V ‖Bσ (p)

σ 2 ≤ ‖V ‖Bρ(p)

ρ2 −
∫

π−1[Bρ(p)\Bσ (p)]

∣∣∣∣
1

4
H + ∇⊥r

r

∣∣∣∣
2

g
dV

+ 1

16

∫

Bρ(p)\Bσ (p)
|H |2g d‖V ‖

+
∫

Bσ (p)

1 − ab(r)

σ 2 d‖V ‖ +
∫

Bρ(p)\Bσ (p)

1 − ab(r)

r2
d‖V ‖

−
∫

Bρ(p)

1 − ab(r)

ρ2 d‖V ‖

−
∫

Bσ (p)

g(r∇r , H)

2σ 2 d‖V ‖ +
∫

Bρ(p)

g(r∇r , H)

2ρ2 d‖V ‖

+
∫

Bσ (p)

r

2σ 2 ‖δV ‖sing +
∫

Bρ(p)\Bσ (p)

1

2r
d‖δV ‖sing
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+
∫

Bρ(p)

r

2ρ2 d‖δV ‖sing

which, in view of (2.7), implies the conclusion. ��
3.2 Remark In the above proof, we let ϕ approach the characteristic function of the interval
(−∞, 1) from below. If we instead let ϕ approach the characteristic function of the interval
(−∞, 1] from above, we obtain the following version for closed balls:

‖V ‖B̄σ (p)

σ 2 ≤ ‖V ‖B̄ρ(p)

ρ2 + 1

16

∫

B̄ρ(p)
|H |2g d‖V ‖ +

∫

B̄ρ(p)

1 − ab(r)

r2
d‖V ‖

+
∫

B̄ρ(p)

1

r
d‖δV ‖sing

+
∫

B̄σ (p)

|H |g
2σ

d‖V ‖ +
∫

B̄ρ

|H |g
2ρ

d‖V ‖

(3.4)

for all 0 < σ < ρ.
Define the function

c : [0, π) → R, c(x) = 1 − x cot x

x2
.

Then, using the series expansion of cot(x) [see (2.6)], we obtain the series expansion for c:

c(x) = 1

3
+ x2

45
+ · · ·

with all higher-order terms being positive. In particular, c(0) = 1
3 and c is strictly increasing.

Since c( π
2 ) = 4

π2 , the curvature depending term in Lemma 3.1 can be estimated by
∫

Bρ(p)

1 − ab(r)

r2
d‖V ‖ ≤ 4

π2 b‖V ‖(Bρ(p)) ≤ b‖V ‖(Bρ(p)) (3.5)

whenever 0 < ρ < π

2
√
b
. Analogously for closed balls:

∫

B̄ρ(p)

1 − ab(r)

r2
d‖V ‖ ≤ 4

π2 b‖V ‖(B̄ρ(p)) ≤ b‖V ‖(B̄ρ(p)) (3.6)

whenever 0 < ρ < π

2
√
b
.

The following lemma is the Riemannian analogue of Corollary 4.5 and Remark 4.6 in
[21].

3.3 Lemma Suppose m, n are positive integers, m ≤ n, N is an n-dimensional Riemannian
manifold, p ∈ N, r = d(p, ·), ρ0 > 0, a is a real-valued Borel function on Bρ0(p),

divT (r∇r) ≥ ma(r) for all T ∈ Gm(T Bρ0(p)),

V ∈ Vm(N ), and ‖δV ‖ is a Radon measure.
Then, there holds

‖V ‖(B̄σ (p))

σm
≤ ‖V ‖(B̄ρ(p))

ρm
+

∫ ρ

σ

1

tm

(
‖δV ‖(B̄t (p)) + m

∫

B̄t (p)

1 − a

r
d‖V ‖

)
dt

for all 0 < σ < ρ < ρ0.
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Proof We proceed similarly as in the proof of Lemma 3.1. Given any σ < t < ρ and any
nonnegative non-decreasing smooth functionϕ : R → R, we let X = ϕ( rt )r∇r and compute

divT X = ϕ
(r
t

)
divT (r∇r) + ϕ̇

(r
t

)r
t
|∇T r |2g

for all T ∈ G2(T N ), where ∇T r denotes the orthogonal projection of ∇r onto T . Writing

∇⊥r : G2(N ) → T N , (∇⊥r)(x, T ) = (∇r)(x) − (∇T r)(x),

there holds

δV (X) ≥ m
∫

N
a(r)ϕ

(r
t

)
d‖V ‖ +

∫

Gm (N )

ϕ̇
(r
t

)r
t

[
1 − |∇⊥r |2g

]
dV .

Adding the term m
∫
N (1 − a(r))ϕ( rt ) d‖V ‖ on both sides of the inequality, multiplying by

1
tm+1 , and neglecting positive terms on the right-hand side, we infer

δV (X)

tm+1 + m

tm

∫

N

1 − a(r)

t
ϕ
(r
t

)
d‖V ‖

≥ m

tm+1

∫

N
ϕ
(r
t

)
d‖V ‖ + 1

tm

∫

N
ϕ̇
(r
t

) r

t2
d‖V ‖ = − d

dt

(
1

tm

∫

N
ϕ
(r
t

)
d‖V ‖

)
.

Integrating the inequality with respect to t from σ to ρ, letting ϕ approach the characteristic
function of the interval (−∞, 1] from above and using Lemma 2.1, it follows

‖V ‖B̄σ (p)

σm
≤ ‖V ‖B̄ρ(p)

ρm
+

∫ ρ

σ

1

tm

(∫

B̄t (p)

g(r∇r , η)

t
d‖δV ‖ + m

∫

B̄t (p)

1 − a(r)

t
d‖V ‖

)
dt

which implies the conclusion. ��
3.4 Remark Suppose b > 0 and the function a is given by a(r) = √

br cot(
√
br) for 0 <

r < π

2
√
b
. Define the function

c : [0, π) → R, c(x) = 1 − x cot x

x

Then, using the series expansion of cot(x) [see (2.6)] we obtain the series expansion for c:

c(x) = x

3
+ x3

45
+ · · ·

with all higher-order terms being positive. In particular, c(0) = 0 and c is strictly increasing.
Since c( π

2 ) = 2
π
, the curvature depending term in Lemma 3.3 can be estimated by

m
∫

B̄t (p)

1 − a(r)

r
d‖V ‖ ≤ m

√
b‖V ‖B̄t (p) (3.7)

whenever 0 < t < π

2
√
b
.

The following lemma is a consequence of Lemma 3.3. It can also be derived directly from
the first variation formula, see [35, Theorem 5.5].

3.5 Lemma Suppose m, n are integers, 2 ≤ m ≤ n, N is an n-dimensional Riemannian
manifold, V ∈ Vm(N ), and ‖δV ‖ is a Radon measure.

Then, there holds ‖V ‖{p} = 0 for all p ∈ N.
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Proof Similarly as in (3.3), one can use Fubini’s theorem to compute
∫ ρ

σ

1

tm
‖δV ‖(B̄t (p)) dt = 1

m − 1

∫

B̄ρ(p)

1

rm−1
σ

− 1

ρm−1 d‖δV ‖ ≤
∫

B̄ρ(p)

1

rm−1
σ

d‖δV ‖,

where rσ = max{r , σ }, and r = d(p, ·). For small ρ > 0 we can apply Lemma 2.7 for some
b > 0 in combination with Lemma 2.1, Lemma 3.3, and (3.6) to infer

‖V ‖B̄σ (p)

σm
≤ ‖V ‖B̄ρ(p)

ρm
+

∫

B̄ρ(p)

1

rm−1
σ

d‖δV ‖ + m
∫ ρ

σ

1

tm−1 b‖V ‖(B̄t (p)) dt .

Multiplying with σm−1 implies

‖V ‖B̄σ (p)

σ
≤ ‖V ‖B̄ρ(p)

ρ
+ ‖δV ‖(B̄ρ(p)) + mρb‖V ‖(B̄ρ(p)) < ∞.

Now, only the left-hand side depends on σ . Hence, �∗1(‖V ‖, p) < ∞ which implies
‖V ‖{p} = 0. ��

The proof of the following theorem is based on the Euclidean version in the appendix of
[18]. See also [32, Corollary 5.8] for the existence of the density.

3.6 Theorem Suppose n is an integer, n ≥ 2, N is an n-dimensional Riemannian manifold,
V ∈ V2(N ) has generalised mean curvature H, H(x)⊥T for V almost all (x, T ) ∈ G2(N ),
and H is locally square integrable with respect to ‖V ‖.

Then, for all p ∈ N\ spt ‖δV ‖sing, there holds:
1. The density �2(‖V ‖, p) exists and is finite.
2. The function �2(‖V ‖, ·) is upper semi-continuous at p.
Proof By (3.6) in combination with Lemma 3.5, we have

∫

B̄ρ(p)

1 − ab(r)

r2
d‖V ‖ = o(1) as ρ → 0, (3.8)

where ab is defined as in Lemma 3.1. We abbreviate

W (t) :=
∫

B̄t (p)
|H |2g d‖V ‖ and A(t) := ‖V ‖B̄t (p)

t2

for t > 0. Using Hölder’s inequality, we deduce
∫

B̄t (p)

|H |g
2t

d‖V ‖ ≤ √
A(t)

√
W (t) ≤ (1 + A(t))

√
W (t). (3.9)

Moreover, since H is locally square integrable,

W (t) = o(1) as t → 0. (3.10)

Choose ρ0 > 0 small enough such that Bρ0(p)∩ spt ‖δV ‖sing = ∅ and such that Lemma 3.1
can be applied for some b > 0. Then, there holds

∫

B̄ρ(p)

1

2r
d‖δV ‖sing =

∫

B̄ρ(p)

r

2ρ2 d‖δV ‖sing = 0

for all 0 < ρ < ρ0. Hence, putting (3.8), (3.9), and (3.10) into (3.4), we infer

(1 − oσ (1))A(σ ) − oσ (1) ≤ (1 + oρ(1))A(ρ) + oρ(1)
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for all 0 < σ < ρ < ρ0. Applying lim supσ→0+ on the left and lim infρ→0+ on the right, it
follows

�∗2(‖V ‖, p) ≤ �2∗(‖V ‖, p)
which proves (1). Hence, letting σ → 0 in (3.4), and using 2

√
A(t)

√
W (t) ≤ A(t) + W (t),

we have

π�2(‖V ‖, p) ≤ ‖V ‖B̄ρ(p)

ρ2 + W (ρ) + b‖V ‖(B̄ρ(p)) + A(ρ) + W (ρ)

for small 0 < ρ < ρ0. It follows

lim sup
q→p

‖V ‖B̄ρ(q)

ρ2

≥ lim sup
q→p

π�2(‖V ‖, q) − W (2ρ) − b‖V ‖(B̄2ρ(p)) − A(2ρ) − W (2ρ)

= lim sup
q→p

π�2(‖V ‖, q) − oρ(1).

(3.11)

On the other hand,

lim sup
q→p

‖V ‖B̄ρ(q)

ρ2 ≤ lim
ε→0

‖V ‖B̄ρ+ε(p)

ρ2 = ‖V ‖B̄ρ(p)

ρ2 (3.12)

where we used the limit formula for the measure of decreasing sets (see [9, 2.1.3(5)]). Putting
(3.11) and (3.12) together and taking the limit ρ → 0 implies statement (2). ��

The following lemma is a generalisation of [5, Eq. (10)].

3.7 Lemma Suppose n is an integer, n ≥ 2, (N , g) is an n-dimensional Riemannianmanifold,
p ∈ N, V ∈ V2(N ) has generalised mean curvature H, H is square integrable with respect
to ‖V ‖, H(x)⊥T for V almost all (x, T ) ∈ G2(N ), b < 0, ρ0 > 0, the sectional curvature
satisfies K ≤ b on spt ‖V ‖ ∩ B̄ρ0(p), U is a geodesically star-shaped open neighbourhood
of p, and spt ‖V ‖ ∩ B̄ρ0(p) ⊂ U. Define the functions

sb : (0,∞) → R, sb(t) = sinh(
√|b|t)√|b| ,

cb := s′
b, and φ := |b|/(cb − 1).

Then, writing r = d(p, ·), there holds
2φ(σ)

∫

B̄σ (p)
cb(r) d‖V ‖ + |b|‖V ‖(B̄ρ(p)\B̄σ (p))

≤ 2φ(ρ)

∫

B̄ρ(p)
cb(r) d‖V ‖ + 1

4

∫

B̄ρ(p)\B̄σ (p)
|H |2g d‖V ‖

− φ(σ)

∫

B̄σ (p)
sb(r)g(∇r , H) d‖V ‖ + φ(ρ)

∫

B̄ρ(p)
sb(r)g(∇r , H) d‖V ‖

+ φ(σ)

∫

B̄σ (p)
sb(r)g(∇r , η) d‖δV ‖sing − φ(ρ)

∫

B̄ρ(p)
sb(r)g(∇r , η) d‖δV ‖sing

+
∫

B̄ρ(p)\B̄σ (p)
φ(r)sb(r)g(∇r , η) d‖δV ‖sing

for almost all 0 < σ < ρ < ρ0.
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Proof Given any nonnegative smooth function ϕ : R → R whose support is contained in
the open interval (−∞, ρ0), we define the vector field X := ϕ(r)sb(r)∇r . Write the metric
in polar coordinates g = dr ⊗ dr + gr on U and use Lemma 2.5 to estimate

∇(
sb(r)∇r

) = cb(r)dr ⊗ dr + sb(r)∇2r ≥ cb(r)dr ⊗ dr + sb(r)
cb(r)

sb(r)
gr ≥ cb(r)g.

Hence,

∇X ≥ ϕ′(r)sb(r)dr ⊗ dr + ϕ(r)cb(r)g

which implies

divT X ≥ ϕ′(r)sb(r)|∇T r |2g + 2ϕ(r)cb(r)

for all T ∈ G2(TU ), where ∇T r denotes the orthogonal projection of ∇r onto T . Writing

∇⊥r : G2(N ) → T N , (∇⊥r)(x, T ) = (∇r)(x) − (∇T r)(x),

and testing the first variation equation [see (1.1)] with X , we infer

2
∫

N
ϕ(r)cb(r) d‖V ‖ +

∫

G2(N )

ϕ′(r)sb(r)(1 − |∇⊥r |2g) dV

≤ −
∫

N
ϕ(r)sb(r)g(∇r , H) d‖V ‖ +

∫

N
ϕ(r)sb(r)g(∇r , η) d‖δV ‖sing.

(3.13)

Notice that the function t �→ ‖V ‖B̄t (p) is continuous at t0 if and only if ‖V ‖({r = t0}) = 0.
Since the function t �→ ‖V ‖B̄t (p) is non-decreasing, it can only have countably many
discontinuity points. Choose 0 < σ < ρ < ρ0 to be continuity points. Define the non-
increasing Lipschitz function

φσ : (0,∞) → R, φσ (t) = φ(max{t, σ })
and let ϕ approach (φσ (·) − φ(ρ))+, where (·)+ := max{·, 0}. Then, by the dominated
convergence theorem, (3.13) becomes

2φ(σ)

∫

B̄σ (p)
cb(r) d‖V ‖ + 2

∫

B̄ρ(p)\B̄σ (p)
φ(r)cb(r) d‖V ‖

≤ 2φ(ρ)

∫

B̄ρ(p)
cb(r) d‖V ‖ −

∫

π−1[B̄ρ(p)\B̄σ (p)]
φ′(r)sb(r)[1 − |∇⊥r |2g] dV

− φ(σ)

∫

B̄σ (p)
sb(r)g(∇r , H) d‖V ‖ −

∫

B̄ρ(p)\B̄σ (p)
φ(r)sb(r)g(∇r , H) d‖V ‖

+ φ(ρ)

∫

B̄ρ(p)
sb(r)g(∇r , H) d‖V ‖ + φ(σ)

∫

B̄σ (p)
sb(r)g(∇r , η) d‖δV ‖sing

+
∫

B̄ρ(p)\B̄σ (p)
φ(r)sb(r)g(∇r , η) d‖δV ‖sing − φ(ρ)

∫

B̄ρ(p)
sb(r)g(∇r , η) d‖δV ‖sing

(3.14)

where π : G2(N ) → N is the canonical projection. We compute

2φcb + φ′sb = |b|
(cb − 1)2

[
2c2b − 2cb − c′

bsb
] = |b| (3.15)

as well as φ′(r)sb(r) = −(φ(r)sb(r))2, and

φ′(r)sb(r)|∇⊥r |2g − φ(r)sb(r)g(∇r , H) = −
∣∣∣φ(r)sb(r)∇⊥r + 1

2
H

∣∣∣
2

g
+ 1

4
|H |2g. (3.16)
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Putting (3.15) and (3.16) into (3.14) and neglecting negative terms on the right-hand side
imply the conclusion. ��

3.1 Proof of Theorem 1.7

If b ≥ 0, the theorem is a consequence of Lemma 3.1 in combination with (3.5). Indeed, by
Theorem 3.6, we can multiply the inequality with 4, let σ → 0+ and let ρ → ∞ to conclude
the positive curvature case.

Now, suppose that b < 0. We are going to determine the limits in Lemma 3.7 as σ → 0+
and ρ → ∞. Using L’Hôspital’s rule twice, one readily verifies

σ 2

cosh(
√|b|σ) − 1

→ 2

|b| as σ → 0 + .

Therefore, by Theorem 3.6,

2φ(σ)

∫

B̄σ (p)
cb(r) d‖V ‖ = 2π |b| σ 2

cosh(
√|b|σ) − 1

1

πσ 2

∫

B̄σ (p)
cosh(

√|b|r) d‖V ‖

→ 4π�2(‖V ‖, p).
Similarly, by L’Hôspital’s rule,

√|b|π sinh(
√|b|σ)σ

cosh(
√|b|σ) − 1

→ 2
√

π as σ → 0 + .

Hence, by Hölder’s inequality and square integrability of the generalised mean curvature,

φ(σ)

∫

B̄σ (p)
sb(r)g(∇r , H) d‖V ‖

≤
√|b|π sinh(

√|b|σ)σ

cosh(
√|b|σ) − 1

(‖V ‖B̄σ (p)

πσ 2

)1/2 (∫

B̄σ (p)
|H |2g d‖V ‖

)1/2

→ (
4π�2(‖V ‖, p))1/2 lim sup

σ→0+

(∫

B̄σ (p)
|H |2g d‖V ‖

)1/2

= 0.

All the other limits can be easily determined using that spt ‖V ‖ is compact and using that
p /∈ spt ‖δV ‖sing. ��

4 Diameter bounds

In this Section, we provide the lower diameter bounds for varifolds (Lemmas 4.1 and 4.3)
that are needed to prove Theorems 1.2, 1.4 and 1.5. To prove Lemma 4.3, we will need
the Hessian comparison theorem of the distance function for asymptotically non-positively
curved manifolds (Lemma 4.2). At the end of this section, we will prove Theorem 1.5.

The following lemma is a direct combination of the representation formula for the first
variation, Lemma 2.1, with Rauch’s comparison theorem, Lemma 2.7.

4.1 Lemma Suppose m, n are positive integers, m ≤ n, N is a complete n-dimensional
Riemannian manifold, p ∈ N, b > 0, 0 < ρ < min{i p(N ), π

2
√
b
}, the sectional curvature

satisfies supBρ(p) K ≤ b, and V ∈ Vm(N ) satisfies spt ‖V ‖ ⊂ Bρ(p).
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Then, there holds

m
∫

N

√
br cot(

√
br) d‖V ‖ ≤ ρ‖δV ‖(N ).

4.2 Lemma (See [10]) Suppose (N , g) is a complete Riemannian manifold, p ∈ N, r =
d(p, ·), Cut(p) denotes the cut locus of p in N, D(p) = N\(Cut(p) ∪ {p}), 0 < b ≤ 1/4,
and the radial curvature Kr satisfies

Kr ≤ b

r2
on D(p).

Then, the Hessian ∇2r of r can be bounded below by

∇2r ≥ 1 + √
1 − 4b

2r

(
g − dr ⊗ dr

)
on D(p).

4.3 Lemma Suppose m, n are positive integers, m ≤ n, N is a complete n-dimensional
Riemannian manifold, p ∈ N, r = d(p, ·), Cut(p) denotes the cut locus of p in N, D(p) =
N\(Cut(p)∪{p}), 0 < b ≤ 1/4, the radial curvature Kr satisfies Kr ≤ b

r2
on D(p), ρ > 0,

V ∈ Vm(N ), spt ‖V ‖ ⊂ Bρ(p), and ‖V ‖(Cut(p)) = 0.
Then, there holds

‖V ‖(N ) ≤ 2ρ

m(1 + √
1 − 4b)

‖δV ‖(N ).

Proof Using Lemma 4.2, we compute

∇(r∇r) = dr ⊗ dr + r∇2r

≥ 1 + √
1 − 4b

2
dr ⊗ dr + 1 + √

1 − 4b

2
(g − dr ⊗ dr) = 1 + √

1 − 4b

2
g

and thus

divT (r∇r) ≥ m
1 + √

1 − 4b

2

for all T ∈ Gm(T D(p)). Now, we can test the first variation formula (1.1) with the vector
field r∇r and use Lemma 2.1 to conclude the proof. ��

4.1 Proof of Theorem 1.5

The following proof is based on Simon [39, Lemma 1.1].
Let 0 < ρ < ρ0 := min{i, π

2
√
b
}. Given any p ∈ N , we notice that ‖V ‖Bσ (p) =

‖V ‖B̄σ (p) for all but countablymanyσ > 0.Hence,we can combine (1.6)with Theorem3.6,
(3.5), and Lemma 3.1 to deduce

π ≤ ‖V ‖Bρ(p)

ρ2 + 1

16

∫

Bρ(p)
|H |2g d‖V ‖ + b‖V ‖Bρ(p)

+ 1

4

(
‖V ‖Bρ(p)

ρ2 +
∫

Bρ(p)
|H |2g d‖V ‖

)

and thus

π ≤ (2 + bρ2)
‖V ‖Bρ(p)

ρ2 + 1

2

∫

Bρ(p)
|H |2g d‖V ‖. (4.1)
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Define

C(4.2)(i, b) := min
{ ρ2

0

2 + bρ2
0

,
π3

9b

}
for ρ0 = min

{
i,

π

2
√
b

}
, (4.2)

where 1
0 is interpreted ∞ and 0 ·∞ is interpreted 0. For the rest of the proof, we assume that

‖V ‖(N ) ≤ C(4.2)(i, b). Then, it follows from (4.1) that

π ≤
∫

N
|H |2g d‖V ‖ (4.3)

which proves (1.7). Now, pick

ρ := 1

2

√

‖V ‖(N )/

∫
|H |2g d‖V ‖.

From (4.2) and (4.3), we deduce 2ρ ≤ min{i, π

3
√
b
}. In particular, ρ < ρ0. If also

dext(spt ‖V ‖) < min{i, π

3
√
b
}, then we can combine (2.8) with Lemma 4.1 and use Hölder’s

inequality to infer

‖V ‖(N ) ≤ dext(spt ‖V ‖)‖δV ‖ ≤ dext(spt ‖V ‖)
√

‖V ‖(N )

∫

N
|H |2g d‖V ‖

which implies 2ρ ≤ dext(spt ‖V ‖) and which proves (1.9). In any case, we are guaranteed
that 2ρ ≤ dext(spt ‖V ‖). Now, choose a point p ∈ spt ‖V ‖ such that dext(spt ‖V ‖) =
maxq∈spt ‖V ‖ d(p, q) and let ν be the integer with

dext(spt ‖V ‖)
ρ

− 1 < ν ≤ dext(spt ‖V ‖)
ρ

.

Let r := d(p, ·) and for each j = 1, . . . , ν choose p j ∈ spt ‖V ‖ ∩ {r = ρ j}. Then,
with p0 := p, the balls Bρ/2(p0), . . . , Bρ/2(pν) are pairwise disjoint. Thus, summing over
j = 0, . . . , ν in (4.1), we infer

(ν + 1)π ≤ 2

ρ2 ‖V ‖(N ) + 1

2

∫

N
|H |2g d‖V ‖ + b‖V ‖(N ).

Hence, using ν +1 ≥ dext(spt ‖V ‖)/ρ and using (4.3), we deduce (1.8) which concludes the
proof. ��

5 Sobolev and isoperimetric inequalities inequalities

In this section, wewill prove the Sobolev inequality (see Theorem 1.11) and the isoperimetric
inequality (see Corollary 1.12). First, we will need the following lemma.

5.1 Lemma (See [38, Lemma 18.7] or [35, Lemma 6.3]) Suppose m is a positive integer, f , g
are real-valued functions on the interval (0,∞), f is bounded and non-decreasing,

1 ≤ lim sup
t→0+

f (t)

tm
,

and
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f (σ )

σm
≤ f (ρ)

ρm
+

∫ ρ

σ

1

tm
g(t) dt

for all 0 < σ < ρ ≤ ρ0 := (2m+1 limt→∞ f (t))1/m.
Then, there exists 0 < ρ ≤ ρ0 such that

f (5ρ) <
5m

2
ρ0g(ρ).

5.1 Proof of Theorem 1.11

The following proof is an adaptation of [2, Theorem 7.1] and [35, Theorem 6.5].
Let h ≤ 1 be a nonnegative compactly supportedC1 function on N and define the varifold

Vh ∈ Vm(N ) by letting

Vh(k) =
∫

Gm (N )

k(x, T )h(x) dV (x, T )

for all compactly supported continuous functions k on Gm(N ). Given any X ∈ X (N ), we
compute for T ∈ Gm(T N ) (see [11, Lemma 3.2(ii)])

divT (hX) = h divT X + g(X ,∇T h)

and thus, by Lemma 2.1,

δVh(X) =
∫

N
hg(X , η) ‖δV ‖ −

∫

Gm (N )

g(X ,∇�h) dV .

Given any open set U ⊂ N , it follows

‖δVh‖(U ) ≤
∫

U
h d‖δV ‖ +

∫

π−1[U ]
|∇�h|g dV (5.1)

where π : Gm(N ) → N is the canonical projection. With the usual approximation from
above (see [9, 2.1.3 (5)]), one can see that the inequality remains valid for U replaced with
any closed set. In particular, ‖δVh‖ is a Radon measure. Hence, we can apply Lemma 3.3 in
combination with Lemmas 2.1 and 2.7, and (3.7) to deduce

‖Vh‖B̄σ (p)

σm
≤ ‖Vh‖B̄ρ(p)

ρm
+

∫ ρ

σ

1

tm

(
‖δVh‖B̄t (p) + m

√
b‖Vh‖B̄t (p)

)
dt

for all p ∈ N and 0 < σ < ρ < min{i(spt ‖V ‖), π

2
√
b
}. Define the constant

C(5.2)(m) := 5m21/m

α(m)1/m
. (5.2)

Given any p ∈ spt ‖V ‖ with �∗m(‖Vh‖, p) ≥ 1, Lemma 5.1 applied with f (t) =
α(m)−1‖Vh‖B̄t (p) and

g(t) = α(m)−1
(
‖δVh‖B̄t (p) + m

√
b‖Vh‖B̄t (p)

)

implies by (5.1)
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∫

B̄5ρ(p)
h d‖V ‖ ≤ C(5.2)(m)

(∫
h d‖V ‖

)1/m ∫

B̄ρ(p)
h d‖δV ‖

+ C(5.2)(m)

(∫
h d‖V ‖

)1/m
(
m

√
b

∫

B̄ρ(p)
h d‖V ‖ +

∫

π−1[B̄ρ(p)]
|∇�h|g dV

)
.

Now, Vitali’s covering theorem (see [9, 2.8.5, 6, 8]) implies the assertion. ��

5.2 Proof of Corollary 1.12

First, we apply Theorem 1.11 with h approaching the constant function 1 from below, to
deduce

‖V ‖(N ) ≤ C(5.2)‖V ‖(N )1/m
(
‖δV ‖(N ) + m

√
b‖V ‖(N )

)
.

Applying this inequality again on the right-hand side, we inductively infer for all positive
integers k ≥ 1,

‖V ‖(N ) ≤ C(5.2)‖V ‖(N )1/m‖δV ‖(N )

k−1∑

j=0

(
m

√
bC(5.2)‖V ‖(N )1/m

) j

+
(
m

√
bC(5.2)‖V ‖(N )1/m

)k ‖V ‖(N )

≤ C(5.2)‖V ‖(N )1/m‖δV ‖(N )

∞∑

j=0

(
m

√
bC(5.2)‖V ‖(N )1/m

) j

≤ 2C(5.2)‖V ‖(N )1/m‖δV ‖(N )

provided that m
√
bC(5.2)‖V ‖(N )1/m ≤ 1

2 .
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