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Abstract

Conventional assessment of Haematoxylin and Eosin (H&E) stained tissue

slides is performed via visual examination under the microscope by a pathologist

and often serves as the gold standard in cancer diagnosis. Standard diagnostic prac-

tice requires pathologists to follow a descriptive set of guidelines and is, therefore,

prone to suffer from inter-observer variability due to differences in interpretation

of histological patterns. Furthermore, each tissue slide may contain tens of thou-

sands of cells and, therefore, accurate quantification and morphological analysis of

the tissue in the entire slide is not feasible. Recently, there has been a growing

trend towards a digital pathology workflow, where tissue slides are digitised with

a high-resolution scanner to obtain Whole-Slide Images (WSIs). This enables the

development of automatic tools that can objectively analyse and quantify the vast

amount of pixel information contained in multi-gigapixel WSIs.

In this thesis, we initially introduce the challenge of analysing large-scale

WSIs for histology image analysis by presenting a preliminary WSI classification

framework. Here, we predict the diagnosis of a slide by: (i) dividing the WSI into

small image regions (patches), (ii) making predictions independently on each patch

and then (iii) predicting the overall slide diagnosis by aggregating patch-level results.

In the remainder of the thesis, we focus on developing automated methods

that localise objects and structures of interest in the tissue and that leverage the

presence of rotational symmetry in histology images. Localisation of nuclei and other

components, such as glands, allows further exploration of digital biomarkers and

serves as a fundamental pre-requisite for downstream analysis. On the other hand,
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exploitation of rotational symmetry for histology image analysis enables models to

be tailored to the specific geometry of microscopy images, where there exists no

underlying global orientation.

In this regard, we present the first single convolutional neural network (CNN)

for simultaneous segmentation and classification of nuclei. The CNN uses the con-

cept of horizontal and vertical maps to separate clustered nuclei and utilises a de-

voted upsampling branch to accurately perform nuclear classification. We then

propose a novel CNN for gland segmentation that counters the loss of information

caused by max-pooling by reintroducing the original image at multiple points within

the network. To enable localisation of glands with varying size, we additionally in-

corporate atrous spatial pyramid pooling.

To leverage the prior knowledge that histology images are symmetric under

rotation, it is desirable for CNNs to be rotation-equivariant. This guarantees that

features transform as expected with rotation of the input. In this thesis, we perform

the first thorough analysis of various rotation-equivariant models for histology image

analysis. We then develop a CNN for simultaneous segmentation of glands and

lumen that achieves rotation-equivariance by using group-convolutions with multiple

rotated copies of each filter. Finally, we propose a general CNN for histology image

analysis that employs the concept of group-convolution and defines filters as a linear

combination of steerable basis filters. This enables exact rotation and decreases the

number of trainable parameters compared to standard filters.
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Chapter 1

Introduction

1.1 Cancer

Cancer is the broad term for a group of diseases that describe the over-proliferation

of cells and is responsible for an estimated 10 million global deaths per year [6].

Cells are the fundamental buildings blocks of the body and constantly divide to

enable growth and repair. However, as a result of the interaction of multiple genetic

and environmental factors, this cell division may become uncontrolled, leading to

an abnormal mass of cells forming a tumour. Benign tumours describe an area of

abnormal cell growth, but are generally harmless unless it is pressing on nearby

tissues, nerves, or blood vessels [152]. On the other hand, cancerous (or malignant)

tumours invade the nearby tissue, breaking through the basal lamina that define

the tissue boundaries [102], and spread to other organs in the body. This spread of

tumour cells to secondary areas of growth is referred to as metastasis and its extent

is referred to as the stage of the cancer. The cancer grade is a description based on

the appearance of tumour cells, where a high grade implies that tumour cells have

lost their typical cellular characteristics.

In addition to the stage and grade of cancer, the complex interaction of var-

ious cells within the tumour microenvironment (TME) provide insight into cancer

development. For example, the spatial arrangement of tumour infiltrating lympho-

cytes (TILs) is associated with clinical outcome in several cancers [48] and tumour

associated macrophages (TAMs) influence multiple diverse processes in various tu-

mours [122]. Therefore, a thorough analysis of the tissue and the TME is essential

to determine the appropriate treatment for each patient.
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1.2 Histological Analysis

1.2.1 Slide Preparation

Typically, cancer diagnosis is performed via visual examination of histological tis-

sue sections under the microscope by a pathologist and involves analysing both

cell-level information and the tissue architecture. Before this examination can take

place, the tissue must be appropriately prepared. This preparation consists of the

following steps: (i) preserving the tissue using fixation; (ii) embedding the tissue

in a paraffin block; (iii) cutting the paraffin block into thin sections (3-5µm); (iv)

mounting the sections on glass slides and finally (v) staining mounted tissue sec-

tions to highlight important components. Haematoxylin and Eosin (H&E) are the

most commonly used stains for morphological analysis of the tissue. Haematoxylin

binds to the DNA and stains the nuclei dark blue/purple, whereas Eosin stains the

extracellular matrix and cytoplasm pink. Other staining techniques such as Im-

munohistochemistry (IHC) are often used to detect the presence of specific protein

markers. However, in this thesis, we limit our analysis to H&E slides.

As part of the preparation process, there can be large variation in the ap-

pearance between different stained tissue samples. For example, thicker specimens

tend to stain the tissue darker and differences in the temperature, stain concen-

tration and duration of staining can also lead to variation. As well as this, there

may exist artefacts in the prepared tissue, including: tissue folds and regions with

tissue scoring that result from cutting sections with a blunt blade. It is common for

such artefacts to appear, but must not impact the pathologist’s ability to diagnose

a slide. On the top row of Figure 1.1 we show an example two tissue regions stained

with Haematoxylin and Eosin, yet their visual appearance is strikingly different. On

the bottom row, we display an example of tissue scoring and tissue folds that may

be introduced as part of the standard preparation process.

1.2.2 Histological Types

Cancers are diagnosed according to the tissue type in which cancer originates from

(histological type) and the organ where the cancer first developed (primary site). In

terms of categorising cancer by its histology, there are hundreds of different types.

However, they can be broadly grouped into the following categories [5]:

• Carcinoma

• Sarcoma
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Figure 1.1: Image regions from H&E stained tissue, highlighting stain variability
and displaying artefacts from tissue preparation. On the bottom row, we display
an image with a tissue fold (left) indicated by the black arrow and an image with
tissue scoring (right).

• Leukemia

• Lymphoma

• Myeloma

• Mixed

Carcinoma is a cancer type that develops in the epithelial cells that line

the organs in the body and accounts for around 80 to 90% of all cancer cases [2].

The two most common sub-types of carcinoma are adenocarcinoma and squamous

cell carcinoma. Adenocarcinoma describes a cancer that forms in mucus-secreting

glands, whereas squamous cell carcinoma originates in the squamous cells that line

the tissue. Sarcoma is a cancer that starts in the connective tissues, including the
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bone, cartilage, muscle and blood vessels and often closely resembles the tissues in

which they grow. Leukemia originates in the blood forming tissue such as the bone

marrow and causes abnormal blood cells to be produced and go into the blood.

Lymphoma and myeloma are cancers that start in the immune cells. Specifically,

lymphoma starts in the glands or nodes of the lymphatic system, whereas myeloma

starts in the plasma cells of the bone marrow. Finally, mixed cancer types are a

combination of histological types that can be between categories or within a single

category. In this thesis, our analysis is focused on carcinomas, where they typically

originate in secretory organs such as the breast, colon, lungs, bladder or prostate.

As mentioned in Section 1.2.1, diagnosis of the cancer type is is done via histological

examination of the tissue under the microscope.

We study a range of cancers in this thesis, but two of the most extensively

studied types are colorectal cancer (CRC) and lung cancer. Below we give a general

overview of these cancer types and provide a description of some common histological

characteristics.

1.2.3 Colorectal Cancer

There are approximately 16,300 CRC deaths in the UK every year (2015-2017)

[1], making it the UK’s second leading cause of cancer death. CRC is the fourth

most commonly occurring cancer in the United Kingdom (UK), where in 2017 it

accounted for around 11% of all new cancer cases. CRC is the general term that

combines both colon and rectal cancers and is part of the final stages of digestive

system. The colon is responsible for processing indigestible food material after most

of the nutrients have been absorbed in the small intestine. This material is then

passed to the rectum and then leaves the body via the anus. In order to ease the

transportation of waste material through the digestive system, the colon and rectum

possess a network of mucus-secreting glands that project from the inner surface of

the colon to the underlying connective tissue, as seen in Figure 1.2. The appearance

of the glands is also determined by how the glands are cut. For example, in Figure

1.2 if the gland marked by 2 was to be cut in the direction of the black dashed line,

then it would appear like the gland marked by 3.

The most common form of CRC is CRA, where it accounts for around 95%

of all cases [46]. CRA starts in the cells lining the glands of the colon wall and

therefore the degree of glandular formation serves as the basis for histological tu-

mour grading. In well differentiated CRA, over 95% of tumours are gland forming,

whereas in moderately and poorly differentiated CRA there are significantly less

gland forming tumours. In practice, most CRAs are diagnosed as moderately dif-
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Figure 1.2: Image region from a colon H&E stained tissue section. 1) lumen, 2)
intestinal gland (crypt), 3) glands when cut in the direction of black line, 4) lamina
propria, 5) mucosa.

ferentiated (around 70%), whereas well and poorly differentiated CRAs account for

around 10% and 20%, respectively [46]. In Figure 1.3 we display a selection of image

regions extracted from a series of WSIs. Here, we can see that as the grade of CRA

increases, typical glandular appearance is less evident.

1.2.4 Lung Cancer

Lung cancer is the leading cause of cancer related death in the UK, where it ac-

counted for around 35,300 lung cancer deaths pe year during 2015-2017 [3]. The

lungs are a major component of the respiratory system, where they are responsible

for the process of gas exchange. Here, air enters the body via the trachea which then

splits into two bronchi. One bronchus enters each lung and then further separates
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Figure 1.3: Images taken from H&E tissue sections showing the loss of glandular
formation with increasing grade of cancer. Top row: normal glands, bottom row:
moderately and poorly differentiated glands.

into around 30,000 smaller tubes, named bronchioles. At the end of each bronchiole

exists a cluster of air sacs called alveoli that exchange oxygen and carbon dioxide

molecules to and from the bloodstream. In total, lungs contain around 600 million

alveoli. In Figure 1.4 we show an image region of a tissue section taken from the

lung, where we can see normal bronchioles and alveoli. Note, the alveoli have a thin

wall to enable efficient diffusion.

There are two main types of lung cancer: small cell lung cancer (SCLC)

and non-small cell lung cancer (NSCLC). NSCLC accounts for over 80% of cases,

where the two major histological types are lung adenocarcinoma (LUAD) and lung

squamous cell carcinoma (LUSC) [42]. LUAD accounts for about 40% of all lung

cancers and originates in the mucus-secreting glands within the lung. LUAD is

histologically heterogeneous, where there exists 5 distinct growth patterns [138, 124,

144] which characterise the architecture of the tumour. The 5 growth patterns that

exist in the lung are: acinar, papillary, micro-papillary, lepidic and solid. However,

over 80% of LUAD cases are diagnosed as a mixed sub-type, consisting of two or more

growth patterns. LUSC accounts for about 25-30% of all lung cancers and originates

in the tissue that lines the air passages within the lung. In well differentiated LUSC,

typical features include keratinisation, often in pearl formation, and inter-cellular

bridging. In Figure 1.5, we show some image regions from LUAD and LUSC WSIs

6



Figure 1.4: Image of H&E tissue sections from lung. 1) bronchiole, 2) alveoli.

that display typical histological characteristics. It is important for a pathologist to

be able to differentiate between these two cancer types because several therapies are

now available only for LUAD and certain specific LUAD mutations [141].

1.2.5 Challenges with Visual Examination

Visual examination of histology slides is a laborious and potentially time-consuming

task because pathologists need to thoroughly inspect each case to ensure an accurate

diagnosis. In the case of biopsy screening via histological examination, thousands

of cases in many hospitals need to be diagnosed per year and therefore a quick

turnaround time for the slides is essential. This poses a key challenge, especially

when most NHS histopathology departments don’t have enough staff to meet clinical

demand [4]. Furthermore, there is often significant variability in the diagnosis given

between different pathologists [127, 115, 54]. For example, certain cancer grading

guidelines, such as the Gleason grading system [45] for prostate and the Scarff-Bloom

Richardson grading system for breast [44], rely on the pathologist’s interpretation

of the tissue appearance. This interpretation is inherently subjective, which leads to

differences in diagnosis. For example, one component of the Scarff-Bloom Richard-
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Figure 1.5: Example image regions from lung adenocarcinoma and lung squamous
cell carcinoma tissue sections.

son grading system is counting the number of mitotic cells (cells undergoing division)

in 10 regions displaying high proliferative activity. The selection of these 10 regions

will differ between pathologists, which will inevitably lead to disagreement over the

final count. Also, this task is very labour-intensive and mitotic figures can be easily

missed when a pathologist has many slides to analyse. More generally, less experi-

enced pathologists usually display variability in the diagnosis [38, 84] and there is

often low agreement between pathologists when presented with a rare cancer type

[84]. As a result of the aforementioned challenges, it is clear that there is a need for

a more objective measure of histopathology slides that can also help to reduce the

workload of the pathologist.
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Figure 1.6: Example whole-slide image of colorectal tissue highlighting the multi-
resolution structure.

1.3 Digital and Computational Pathology

1.3.1 Whole-Slide Images

Since the advent of digital slide scanners, tissue slides can now be converted into

digital images that allow the reproduction of the original slide on a computer work-

station [137]. These digital sides are often referred to as whole-slide images (WSIs)

and are typically stored in a pyramid format, where each level of the pyramid rep-

resents a different magnification level (Figure 1.6). The highest magnification level

is commonly at 40× (∼0.25µm/pixel scan resolution), which approximately results

in a 56GB image containing around 20 billion pixels [35]. Due to this huge file size,

compression formats such as JPEG2000 and JPEG are often used to significantly

reduce the size. Even with compression, reading the WSIs is a challenge because
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standard image libraries are built in such a way that the entire image is uncom-

pressed and loaded into memory. Instead, image libraries such as OpenSlide [56] are

built for efficient data retrieval from WSIs of multiple different file formats.

1.3.2 Computational Pathology

One major advantage of acquiring WSIs is that it presents the opportunity for the

development of computational algorithms to automatically analyse the tissue charac-

teristics of each slide, which can help to overcome some of the challenges mentioned

in Section 1.2.5. The study of such tools for pre-processing and subsequent analysis

of WSIs is referred to as Computational Pathology (CPath). In general, application

of CPath can be categorised into the following groups: (i) pre-processing, (ii) detec-

tion and segmentation, (iii) cancer type and grade prediction and (iv) prediction of

prognosis. Below we provide some specific examples within each category.

Pre-processing: As mentioned in Section 1.2.1, there can be a significant

difference in the colour appearance between different WSIs, due to variation in tissue

preparation. Furthermore, the optics, image acquisition device and image acquisi-

tion algorithm used by different slide scanners can play a role in how the colour of

the images appear on the computer monitor [162]. Despite the fact that patholo-

gists can still diagnose tissue slides successfully in the presence of stain variation, the

performance of CPath algorithms may be negatively affected. Therefore, algorithms

can be developed to standardise the stain appearance between digital images before

subsequent analysis [145, 81, 108]. As well as this, there may be artefacts present

within each WSI such as tissue folds, ink markings and out-of-focus regions. Pre-

processing algorithms that detect these artefacts may help inform whether a glass

slide needs re-scanning or may be used to focus the analysis within artefact-free

areas.

Detection and segmentation: WSIs contain a huge amount of pixel in-

formation that a pathologist needs to decipher to reach a diagnosis. Computational

algorithms can assist with the detection, quantification and localisation of com-

ponents within the tissue and can therefore help increase diagnostic accuracy and

reduce the time a pathologist needs to spend on each slide. In particular, CPath

allows WSI nuclei quantification [134] that would otherwise be infeasible by visual

analysis because each slide can contain tens of thousands of cells. Automated de-

tection also holds great promise for identifying objects the can be easily missed

by visual examination, such as mitotic figures [149] or isolated tumour cells [19].

Segmentation of tissue structures, such as glands in colon tissue or ducts in breast

tissue, enables exploration of morphological features that may be linked to cancer
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grade and patient prognosis.

Cancer type and grade prediction: A routine task for the pathologist

is to diagnose the type and grade of cancer because they are both major determi-

nants of patient treatment [75, 44]. CPath can provide objective and reproducible

measures- therefore helping to reduce diagnostic variability, as discussed in Section

1.2.5. For example, CPath can be used to automatically grade cancer, such as

performing Gleason grading [14, 62], that may otherwise be subject to significant

variation in pathologist diagnosis. Also, given a tissue that has been extracted from

a specific organ, computational algorithms can automatically diagnose the cancer

type, which is important because different types can be subject to different treat-

ment regimens.

Prediction of prognosis: Diagnosing the cancer type and grade involves

following a fixed set of guidelines. However, tasks such as the prediction of survival

time, likelihood of recurrence and prediction of optimal treatment can be more

complicated. Another advantage of using CPath algorithms is that they can auto-

matically extract a representative set of features related to the task at hand. These

features may subsequently be used to educate pathologists on the most diagnos-

tic features for a given task. Furthermore, CPath algorithms can detect sub-visual

features that may potentially enable overall superior diagnostic performance.

Challenges of Computational Pathology: As described above, compu-

tational methods are potentially advantageous for the analysis of digital histology

slides, however there are various challenges that must be considered before develop-

ing such tools. First of all, as mentioned in Section 1.2.1, there can contain a large

degree of variability in the appearance between different tissue slides. Therefore, we

must ensure that algorithms are able to generalise well to new data, irrespective of

their visual appearance. This is especially important if we expect an algorithm de-

veloped on a single cohort to perform well on another cohort with a slightly different

tissue preparation procedure. Also, as mentioned in Section 1.3.1, WSIs are very

large in size and therefore standard algorithms will not be able to work with the en-

tire slide as input, due to computer memory constraints. As well as memory issues,

WSIs typically take a long time to process and therefore developing efficient algo-

rithms is a major challenge. This is an important consideration because it directly

impacts the amount of diagnoses that a computational tool is able to provide in a

given amount of time. Another challenge in CPath is for algorithms to accurately

diagnose each tissue sample, given the complexity of histological patterns that may

appear in any slide. For example, certain cells can be easily mistaken for others

due to similarity in appearance and different cancer types may become difficult to
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diagnose tumours become poorly differentiated. This challenge is highlighted by the

difficulty for expert pathologists to reach consensus diagnosis for certain tasks.

1.4 Learning from Data

1.4.1 Machine Learning

Within CPath, Machine Learning (ML) is regularly used to solve some of the exam-

ple tasks described in Section 1.3.2. ML is a branch of Artificial Intelligence (AI)

that describes the process of learning from data to perform a task, rather than using

a pre-determined equation. When using ML for image recognition, we define a set

of N training images {x(i)}Ni=1 and a function f(x), that maps the input image to

an output. Broadly speaking, if we provide target values {y(i)}Ni=1, then we refer

to the task as supervised learning; otherwise it is classed as unsupervised learning.

Reinforcement learning is another type of ML that involves the process of deter-

mining appropriate actions to maximise a reward, but is not widely used for image

recognition. In the supervised setting, we aim to learn a function such that for

each example i the error (or loss) between f(xi) and yi is small. Specifically, when

working with parametric ML models, we learn a set of parameters W to minimise:

argmin
W

1

N

N∑

i=1

`(f(x(i);W ),y(i)), (1.1)

where ` is a pre-defined task-dependent loss function, such as cross entropy for a

discrete target or mean squared error for a continuous target. After the learning

(or training) process, the goal of a supervised ML model is to generate accurate

predictions with a set of M unseen test images {x̃(i)}Mi=1. In the unsupervised

setting, we are not provided with target values and therefore the goal of an ML

model may be to discover groups of similar examples in the data, determine the

data distribution or reduce the data dimensionality [22].

1.4.2 Neural Networks

In this thesis, we mainly focus on the development of a subgroup of ML models,

namely neural networks, in a supervised learning setting. The first mathematical

model of an artificial neuron was developed back in 1943 by McCullough and Pitts.

This was an extremely simple representation of a neuron, where a set of binary in-

puts were aggregated to give a binary response. In 1958, Rosenblatt developed the

Perceptron to overcome some of the issues of the McCulloh and Pitts neuron. The
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Figure 1.7: Convolutional neural network for classification. For convolution, the
inner product is computed between the filter and input to get the pixel in the output
feature map. This is shown by the black window. For pooling, a single statistic (such
as the maximum or average) is computed in the red window to obtain the pixel in
the output feature map. These operations are repeated for feature extraction and
then fully connected layers are applied to give the final output.

Perceptron allowed a non-binary input and introduced the weight learning paradigm,

that is now a central concept in modern neural networks. In 1986 the backprop-

agation algorithm [123] was developed and enabled neural networks with multiple

layers to be effectively trained. As a result, neural networks could learn non-linear

functions and in fact, were capable of learning any function due to the universal

approximation theorem. These artificial neural networks (ANNs) are typically fully

connected, where each input neuron is connected to every neuron in the next layer.

As a result of this full connectivity, ANNs utilise a large number of parameters

especially for high-dimensional input data, such as images, and are therefore often

prone to overfitting.

1.4.3 Convolutional Neural Networks

The Neocognitron [49] was introduced in 1979 by Fukushima and employs a hierar-

chical, multi-layered design with the concept of local feature integration. This idea

of feature locality was the source of inspiration for Convolutional Neural Networks

(CNNs). In 1994, LeCun combined the idea of locality with backpropagation and

developed a network that has become the backbone for many of today’s AI algo-

rithms [95]. LeCun recognised that images have translation symmetry and therefore

chose to organise weights as 2D filters that are re-used over all spatial locations of

the image. Then a convolution operation is performed, where the inner product is

computed between the filter and image at each spatial position. This design results
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in translation-equivariance, which means that a shift in the input leads to a pro-

portional shift in the filter response, and significantly reduces the number of model

parameters compared to ANNs.

Most modern CNNs consist of a series of convolution, pooling and non-linear

operations that are applied sequentially to enable feature extraction. The output of a

convolution between an input image and a filter is a 2D feature map, where its output

spatial dimensions depend on whether padding was applied to the input image before

convolving. Typically, a non-linear function is applied after each convolution, which

enables complex functions to be learned by the network. The rectified linear unit

(ReLU) is one of the most widely used functions in modern architectures, partly

due to faster training times [86], that sets all negative outputs to 0. Pooling is often

used to reduce the spatial dimensions of feature maps, which consequently increases

a filter’s field of view. This field of view is more commonly referred to as the receptive

field. A pooling operation considers a small window of the input and computes a

single statistic from all corresponding pixels, such as the maximum or average. This

operation is then repeated over the input, where the stride of the window controls the

output dimensions of the feature map. We display a simple CNN for classification

in Figure 1.7 with a single convolution and pooling layer, which is repeated to

automatically extract representative features. Following feature extraction, fully

connected layers are used to obtain the final output, which is followed by a Softmax

function to convert the output to a probability. When localising regions in the input

image, a prediction is made per pixel, rather than for the entire image. This will be

described in detail in Chapters 3 and 4 of the thesis.

With the increase in computing power, CNNs have since been developed to

run on the GPU, helping overcome the issues of long processing times and has en-

abled the development of CNNs with many layers. For example, in 2012, Krizhevsky

proposed a deep CNN [86] that was capable of excellent image recognition perfor-

mance and has since inspired the development of a plethora of CNNs for computer

vision. Now, CNNs are capable of achieving super-human performance in certain

image recognition tasks [66, 71], motivating their usage in a wide range of modern

applications.

1.4.4 CNNs in Computational Pathology

One area where CNNs have demonstrated recent success is the field of computational

pathology. For example, they have shown their capability of reaching a greater diag-

nostic accuracy than the pathologist for breast cancer metastasis detection [19] and

have achieved the best performance in multiple CPath image recognition contests
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[149, 87, 135]. One contributing factor to the success of CNNs is their ability to

exploit translation symmetry by reusing the convolution filter at all spatial positions

of the input. However, image regions from WSIs are also symmetric under rotation

because they can appear at any orientation with equal probability. Therefore it is

desirable to extend the design of the CNN such that it is additionally equivariant

to rotation to enable better feature map interpretability and potentially improve

performance. In future, we believe that rotation-equivariant CNNs will become the

standard choice for histopathology image analysis where rotational symmetry exists

on a global scale.

CNNs take a single image as input, but as mentioned in Sections 1.3.1 and

1.3.2, WSIs are very large and therefore using the entire WSI at a high resolution

along with the network parameters is often infeasible. To overcome this challenge,

usually a divide and conquer strategy is employed in CPath. Specifically, the slides

are first split into small image regions (or patches) for training the CNN. After

training, unseen WSIs are then similarly divided into patches and a prediction is

made for each patch by the trained CNN. If performing localisation/segmentation,

then a prediction is made per pixel; otherwise a single prediction, such as the cancer

grade or cancer type, is made. Then, patch-level predictions are aggregated to

form a probability map, where a series of statistical measurements are typically

calculated to obtain the overall slide-level prediction. In CPath, aggregated patch-

level predictions can assist with the precise localisation of tissue components, such as

nuclei and glands, enabling morphological features to be extracted. These features

can be studied to better understand their link with patient outcome, which can help

find cost-effective biomarkers and improve patient treatment.

1.5 Aims and Objectives

This thesis aims to develop automatic tools for the analysis of large-scale whole-slide

images, that may help improve diagnostic pipelines in computational pathology.

We initially develop a patch aggregation pipeline for WSI cancer type prediction to

demonstrate the challenge of dealing with multi-gigapixel digitised tissue samples.

The remainder of the thesis focuses on the investigation of techniques for accurate

localisation of structures within the tissue, such as glands and nuclei, and the de-

velopment of methods that exploit rotational symmetry within histology images.

We mainly utilise algorithms in the area of machine learning and key concepts from

group representation theory.
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1.6 Main Contributions

• We introduce the challenge of working with multi-gigapixel WSIs and propose

a patch aggregation approach for classifying non-small cell lung cancer WSIs

into either lung adenocarcinoma or lung squamous cell carcinoma.

• We present the first network for simultaneous segmentation and classification

of nuclei in histology images, named HoVer-Net. The network uses the concept

of horizontal and vertical distance maps to separate clustered nuclei and uses

a devoted upsampling branch for classification.

• We propose MILD-Net, a network for gland instance segmentation that coun-

ters the loss of information caused by max-pooling. In addition, the network

uses atrous spatial pyramid pooling to segment glands with varying size and

uses an uncertainty mechanism to highlight areas of ambiguity.

• We propose Rota-Net, which is a CNN for simultaneous segmentation of glands

and lumen in colon histology images. Our proposed approach uses group

convolutions to ensure that the network is equivariant to rotations of multiples

of 90◦.

• We propose Dense Steerable Filter CNNs (DSF-CNNs) that use group con-

volutions with multiple rotated copies of each filter in a densely connected

framework. Each filter is defined as a linear combination of steerable basis

filters, enabling exact rotation by any angle and decreasing the number of

parameters compared to standard filters.

1.7 Thesis Organisation

Chapter 2: Patch Aggregation Computational Pathology. Cancer diagno-

sis is conventionally performed by visual examination of tissue sections under the

microscope by a pathologist. In this chapter, we conduct a preliminary study that

overcomes the difficulty of WSI cancer type classification by using a two-part patch

aggregation strategy. First, we implement a deep learning (DL) model to classify

input patches into different categories. Next, we extract a collection of statistical

and morphological measurements from the labelled WSI and use a random forest

regression model to classify the overall cancer type of each WSI. We apply our

framework to the task of non-small cell lung cancer (NSCLC) classification and

classify each WSI as either lung adenocarcinoma (LUAD) or lung squamous cell

carcinoma (LUSC), which account for around 40% and 25-30% of all lung cancers
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respectively. This task was part of the Computational Precision Medicine chal-

lenge at the MICCAI 2017 conference, where we achieved the highest classification

accuracy with a score of 0.81. Our framework is not limited to cancer type predic-

tion, but can also be used for other WSI classification tasks, such as cancer grading.

Chapter 3: HoVer-Net for Simultaneous Segmentation and Classificaion

of Nuclei. The development of automated methods for nuclear segmentation and

classification enables the quantitative analysis of tens of thousands of nuclei within

a whole-slide pathology image, opening up possibilities of further analysis of large-

scale nuclear morphometry. However, automated nuclear segmentation and clas-

sification is faced with a major challenge in that there are several different types

of nuclei, some of them exhibiting large intra-class variability such as the tumour

cells. Additionally, some of the nuclei are often clustered together. To address

these challenges, we present a novel convolutional neural network for simultaneous

nuclear segmentation and classification that leverages the instance-rich information

encoded within the vertical and horizontal distances of nuclear pixels to their centres

of mass. These distances are then utilised to separate clustered nuclei, resulting in

an accurate segmentation, particularly in areas with overlapping instances. Then

for each segmented instance, the network predicts the type of nucleus via a de-

voted upsampling branch. We demonstrate state-of-the-art performance compared

to other methods on multiple independent multi-tissue histology image datasets.

Chapter 4: MILD-Net for Gland Instance Segmentation. The analysis

of glandular morphology within colon histology images is an important step in

determining the grade of colon cancer. Automated gland segmentation enables

subsequent morphological analysis, yet remains a challenge due to variability in

glandular appearance. To address this, we propose a fully convolutional neural net-

work that counters the loss of information caused by max-pooling by re-introducing

the original image at multiple points within the network and use atrous spatial

pyramid pooling for multi-scale aggregation. To incorporate uncertainty, we in-

troduce random transformations during test time for an enhanced segmentation

result that simultaneously generates an uncertainty map, highlighting areas of am-

biguity. We show that this map can be used to define a metric for disregarding

predictions with high uncertainty. The proposed network achieves state-of-the-art

performance on the GlaS challenge dataset and on a second independent colorec-

tal adenocarcinoma dataset. In addition, we perform gland instance segmenta-

tion on whole-slide images from two further datasets to highlight the generalisabil-
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ity of our method. As an extension, we introduce MILD-Net+ for simultaneous

gland and lumen segmentation, to increase the diagnostic power of the network.

Chapter 5: Exploiting Rotational Symmetry in Histology Images. His-

tology images are inherently symmetric under rotation, where each orientation is

equally as likely to appear. However, this rotational symmetry is not widely utilised

as prior knowledge in modern Convolutional Neural Networks (CNNs), resulting in

data hungry models that learn independent features at each orientation. Allowing

CNNs to be rotation-equivariant removes the necessity to learn this set of transfor-

mations from the data and frees up model capacity, allowing more discriminative fea-

tures to be learned. In this chapter we explore the concept of rotation equivariance

in CNNs for histology image analysis. First, we propose Rota-Net for simultaneous

gland and lumen segmentation. This approach incorporates rotational symmetry

into an encoder-decoder based network by utilising group equivariant convolutions

with 90 degree filter rotations. Then, we propose Dense Steerable Filter CNNs

(DSF-CNNs) that use group convolutions in a densely connected network, where

each filter is defined as a linear combination of steerable basis filters. Utilising steer-

able filters enables rotation without artefacts and decreases the number of trainable

parameters compared to standard filters. We observe that incorporating rotational

symmetry leads to a boost in performance across multiple histology image datasets.

Chapter 6: Conclusions and Future Directions. This chapter summarises the

main findings of the thesis and discusses future directions on how this work may be

extended.
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Chapter 2

Patch Aggregation

Computational Pathology

Cancer diagnosis involves the visual examination of tissue morphology and cellular

appearance under the microscope. In recent years, there has been a growing trend

towards a digitised pathology workflow, where digital images are acquired from glass

histology slides using a high-resolution scanning device and are now used in routine

diagnosis [137]. The advent of digital pathology has led to a rise in computational

pathology (CPath), where in particular machine learning (ML) and deep learning

(DL) algorithms have shown great promise in assisting pathologists in diagnostic

decision making. Whole-slide images (WSIs) obtained from scanning the original

glass slides can be leveraged to develop algorithms for classification tasks, where a

single label is assigned to each slide. However, this analysis is non-trivial due to

the huge size of WSIs, where they can typically contain around 20 billion pixels.

Therefore, standard ML and DL methods are unable to use the entire WSI as input,

due to computer memory limitations. To overcome the difficulty of working with

WSIs, the following classification pipeline is often used: (i) divide the WSI into

smaller image patches, (ii) make predictions independently on each image patch

and then (iii) predict the overall WSI label based on the aggregation of patch-level

results. This divide and conquer strategy can be applied to many classification tasks

within CPath including cancer type prediction, cancer grading and even prediction

of genetic mutation [76].

In this chapter we present a framework for WSI classification to introduce

the concept of patch aggregation and to display its potential in achieving a good

performance for automated cancer diagnosis. Specifically, we propose a two-part

approach to classify non-small cell lung cancer (NSCLC) WSIs into either lung
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adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC). First, we classify

all input patches from an unseen WSI as either LUAD, LUSC or non-diagnostic (ND)

using a deep neural network and obtain the corresponding probability maps for each

class. Next, we extract a collection of statistical and morphological features from

the LUAD and LUSC probability maps for input into a random forest regression

model to classify each WSI. To the best of our knowledge, at the time of publication

this was the first 3-class network for NSCLC classification that aims to classify each

WSI into diagnostic and non-diagnostic areas. This task has been organised as part

of the Computational Precision Medicine challenge at the MICCAI 2017 conference,

where we achieved the greatest accuracy with a score of 0.81. Our pipeline is not

limited to the task of NSCLC classification, but can be used to diagnose between

other cancer types and for cancer grading.

2.1 Non-Small Cell Lung Cancer Classification

Distinguishing between LUAD and LUSC is an important task because it can help

determine patient treatment [141]. LUSC accounts for about 25-30% of all lung

cancers and originates in the tissue that lines the air passages within the lung. In

well differentiated LUSC, histological features that can be observed include inter-

cellular bridging and keratinisation in pearl formation. LUAD originates in the

mucus-secreting glandular cells within the lung and accounts for about 40% of all

lung cancers. LUAD displays large variability in its appearance, where a given tissue

section can be of the following major sub-types: acinar, papillary, micro-papillary,

lepidic and solid tumour growth patterns. It is interesting to note that over 80%

of LUAD cases today are diagnosed as a mixed sub-type, consisting of two or more

histological sub-types. Some typical examples from both LUSC and LUAD can be

seen in parts (a) and (b) of Figure 2.1. We also display some non-tumour regions

that contain alveoli, connective tissue, immune cells and fat. Despite the impor-

tance of distinguishing between NSCLC histological types, the task is non-trivial

for poorly differentiated cases where typical morphological features are infrequent.

Furthermore, manual inspection and analysis of whole-slide image (WSIs) to detect

these types of lung cancer is a labor-intensive, subjective and time-consuming task

particularly when the workload is high.

Similar to traditional examination, the automation of this task remains a

challenge because typical histological features are not as obvious in poorly differ-

entiated tumours and there is a high level of intra-class heterogeneity. Figure 2.1

highlights the difficulty in distinguishing between lung adenocarcinoma and lung
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squamous cell carcinoma when diagnostic features are uncommon. For example, the

top two LUAD image regions from part (a) of Figure 2.1 display distinct growth

patterns, whereas the bottom two regions could easily be confused with LUSC.

2.2 Related Work

WSIs can be up to 150,000×100,000 pixels in size at their highest magnification level,

which provides a key challenge for most ML and DL models because the entire slide

will typically not fit into memory. Therefore, usually a patch aggregation strategy

is utilised to yield the overall WSI prediction. This principle has been used in

a variety of tasks in CPath, including breast cancer metastasis detection [19, 98],

Gleason grading [14] and colorectal cancer grading [129].

There have been a number of recent methods for automated NSCLC clas-

sification. For example, Yu et al. [166] extracted a range of quantitative image

features from tissue regions and used a series of classical ML techniques to classify

each WSI. Although hand crafted approaches perform well, there is a growing trend

towards deep learning approaches, where networks are capable of learning a strong

feature representation. In particular, deep convolutional neural networks (CNNs)

[66, 140, 133, 71] exploit translation symmetry within images by using a weight-

sharing strategy in the model architecture, leading to remarkable performance in

image recognition tasks [41]. Coudray et al. [37] utilised the above mentioned

patch-based approach for NSCLC classification using deep learning, but in addition

predicted the ten most commonly mutated genes. For lung cancer classification, the

authors used an Inception v3 [140] network architecture to classify input patches

into LUAD, LUSC and normal. The authors assumed that all patches within each

WSI had the same label and therefore did not differentiate between diagnostic and

non-diagnostic regions. This method may result in a large amount false positives

in non-diagnostic regions and training may take a long time to converge. Hou et

al. [69] trained a patch-level classifier to classify glioma and NSCLC WSIs into

different cancer types. This was done by aggregating discriminative patch-level pre-

dictions from a deep network using either a multi-class logistic regression model

or support vector machine. The selection of discriminative patches was done in a

weakly supervised manner, where an expectation-maximisation approach was used

to iteratively select patches. These patches were then fed into a conventional two-

class CNN to classify input patches as LUAD or LUSC. The authors counter the

problem of differentiating between diagnostic and non-diagnostic regions by only

considering discriminative patches. Although successful, this technique would likely
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(a) (b) (c)

Figure 2.1: Examples of typical patches from each class. All patches are displayed
at 256×256 at 10× resolution. (a): LUAD patches; (b) LUSC patches; (c) ND
patches.

fail if presented with a small unrepresentative dataset.

2.3 Methods

In this section, we present our proposed patch aggregation approach that we apply to

the task of NSCLC classification. The section is broken down into three main parts:

(i) dataset description; (ii) deep learning framework for patch based classification;

(iii) random forest regression model for classifying a WSI as LUAD or LUSC. An

overview of the WSI classification framework can be viewed in Figure 2.2.

2.3.1 The Dataset

As part of the Computational Precision Medicine (CPM) challenge [151] at the

MICCAI 2017 conference, we used a total of 64 Hematoxylin and Eosin (H&E)

NSCLC WSIs that were split into 32 training and 32 test images. Ground truth was

supplied for the training images that gave the cancer type of each WSI, whereas this

ground truth was held back by the challenge organisers for the test images. We had

an even breakdown of NSCLC images in both the training and the test set, giving

a total of 32 LUAD slides and 32 LUSC slides. We divided our dataset so that

we had 24 WSIs for training and 8 for validation, with 4 validation images taken

from LUAD and LUSC respectively. We extracted a 3 class dataset consisting of

patches of size 256×256 at 20× magnification, from non-exhaustive labelled regions,

confirmed by an expert pathologist (AK). This 3 class dataset consisted of LUAD,

LUSC and non-diagnostic areas (ND). We considered regions containing tumour

and tumour associated stroma to be diagnostic. Here, we consider growth patterns
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Figure 2.2: Overview of the patch aggregation approach for NSCLC WSI classifica-
tion. (a) Training a patch-based classifier (b) Processing unseen WSIs. (c) Random
forest regression model for WSI classification. SN stands for stain normalisation via
method of Reinhard [120].

and keratin pearls to be tumour. Non-diagnostic regions included fat, lymphocytes,

blood vessels, alveoli, red blood cells, normal stroma, cartilage and necrosis. We

considered necrosis to be non-diagnostic because, despite LUSC generally having

more necrotic areas than LUAD, it is not indicative of lung squamous cell carcinoma

on a patch-by-patch basis. Overall, our network is optimised on 65,788 training

image patches.

Despite all slides being stained with H&E, there was a high level of stain

variability from image to image. Therefore, we applied Reinhard [120] stain nor-

malisation to all images to limit the reduce the variation in the stain appearance.

During training we performed random crop, flip and rotation data augmentation to

make the network invariant to these transformations. After performing a random

crop to all input patches, we were left with a patch size of 224×224.

23



2.3.2 Deep Neural Network for Patch-Based Classification

Convolutional Neural Network

An increase in the amount of labelled data coupled with a surge in computing power

has allowed deep CNNs to achieve state-of-the-art performance in computer vision

tasks. The hierarchical architecture of such networks allow them to have a strong

representational power, where the complexity of learned features increases with the

depth of the network. The proposed network f is a composition of a sequence of L

functions of layers (f1, ..., fL) that maps an input vector x to an output vector y,

i.e,

y = f(x;w1, ...wL) = fL(·;wL) ◦ fL−1(·;wL−1) ◦ ...f2(·;w2) ◦ f1(x;w1) (2.1)

where wl is the weight and bias vector for the lth layer fl. In practice, fl

most commonly performs one of the following operations: a) convolution with a set

of filters; b) spatial pooling; and c) non-linear activation.

Given a set of training data {(x(i),y(i))}Ni=1, we can estimate the vectors

w1, ..,wL by solving:

argmin
w1...wL

1

N

N∑

i=1

`(f(x(i);w1, ...wL),y(i)), (2.2)

where l is the defined loss function. We perform numerical optimisation of (2)

conventionally via the back-propagation algorithm and stochastic gradient descent

methods.

In addition to the above operations, residual networks (ResNets) [66] have

recently been proposed that enable networks to be trained deeper and as a result,

benefit from a greater accuracy. Current-state-of-the-art networks[66, 140, 133, 71]

indicate that network depth is of crucial importance, yet within conventional CNNs,

accuracy gets saturated and then degrades rapidly as the depth becomes significantly

large. The intuition behind a residual network is that it is easier to optimise the

residual mapping than to optimize the original unreferenced mapping. Residual

units are the core components ResNets and contain feed-forward skip connections

that perform identity mapping without adding any extra parameters. These con-

nections propagate the gradient throughout the model, which in turn enables the

network to be trained deeper, often achieving greater accuracy. An example of a

residual unit can be seen in part (b) of Figure 2.3.
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Figure 2.3: The proposed deep convolutional neural network. (a) Network architec-
ture, (b) residual block, (c) key. Within the residual block, ⊕ refers to a summation
operator.

Proposed network architecture

Inspired by the success of ResNet [66] in image-recognition tasks [41], we imple-

mented a deep neural network with residual blocks at its core to classify NSCLC

input patches. This network architecture is a variant of ResNet50, as described by

He et al. [66], but we use a 3×3 kernel as opposed to a 7×7 kernel during the first

convolution to reduce the number of parameters and then further reduce the number

of parameters in the remainder of the network. Reducing the amount of parameters

helps the network to generalise better to new data and reduces the risk of overfit-

ting. In order to reduce the amount of parameters, we modified ResNet50 [66] by

reducing the amount of residual blocks throughout the network so that we had 32

layers as opposed to 50. Due to the high variability between images, and therefore

between the training and validation set, consideration for preventing overfitting is

crucial. Figure 2.3 gives an overview of the network architecture.

Once training was complete, we selected the optimal epoch corresponding to

the greatest average validation accuracy and processed patches from each test WSI.

This resulted in three probability maps; one for each class.
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2.3.3 Extraction of Statistical and Morphological Features

For classifying each WSI as either LUAD or LUSC, we extracted features from both

respective probability maps. We explored two post processing techniques: max

voting and a random forest regression model. Max voting simply assigns the class of

the WSI to be class with the largest amount of positive patches in its corresponding

probability map. Therefore, max voting only requires the positive patch count for

both the LUAD and LUSC probability maps in order to make a classification. For

the random forest regression model, we extracted 50 statistical and morphological

features from both the LUAD and LUSC training probability maps and then selected

the top 25 features based on class separability. We gained the training probability

maps by processing each training WSI with a late epoch. This ensured that the

network had overfit to the training data and gave a good segmentation of LUAD

and LUSC diagnostic regions. In other words, using this method allowed us to

transition from a non-exhaustive to an exhaustive labelled probability map. Once

the model was trained with these features, they were then input as features into the

random forest regression model. Statistical features that were extracted included:

mean, median and variance of the probability maps. Morphological features that

were extracted included the size of the top five connected components at different

thresholds.

2.3.4 Random Forest Regression Model

An ensemble method is a collection of classifiers that are combined together to give

improved results. An example of such an ensemble method is a random forest,

where multiple decision trees are combined to yield a greater classification accuracy.

Decision trees continuously split the input data, according to a certain parameter

until a criterion is met. Specifically, a random forest regression model fits a number

of decision trees on various sub-samples of the data and then calculates the mean

output of all decision trees. We optimised our random forest model by selecting

an ensemble of 10 bagged trees, randomly selecting one third of variables for each

decision split and setting the minimum leaf size as 5. We finally selected a threshold

value to convert the output of the random forest regression model into a binary

value, indicating whether the WSI was LUAD or LUSC.
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Table 2.1: Patch-Level accuracy. LUAD refers to lung adenocarcinoma, LUSC refers
to lung squamous cell carcinoma, ND refers to non-diagnostic area.

Model LUAD LUSC ND Average

VGG-16 [133] 0.634 0.663 0.826 0.708

Inception-v3 [140] 0.623 0.733 0.924 0.760

ResNet50 [66] 0.601 0.597 0.889 0.695

ResNet32 0.702 0.849 0.742 0.764

2.4 Results

Table 2.1 summarises the experiments we carried out for classification of input

patches into LUAD, LUSC and ND. We chose to train with VGG16 [133], Inception-

v3 [140] and ResNet [66] because of their state-of-the-art performance in recent im-

age recognition tasks [41]. During training, we could see that our networks were

overfitting. This was because of two reasons: (i) The networks architectures that

were used have been optimised for large-scale computer vision tasks with millions

of images and thousands of classes and (ii) there is a large variability between the

training set and the validation set. With such a small and visually diverse dataset,

(ii) is hard to avoid and therefore we modify the network architecture to counter the

problem of overfitting. Modification of ResNet50 to give ResNet32 helped alleviate

the problem of overfitting and gave the best patch-level performance. Despite only

achieving 0.4% greater accuracy than Inception-v3, ResNet32 resulted in a signifi-

cantly greater average LUAD and LUSC patch-level accuracy. The average LUAD

and LUSC patch-level accuracy for Inception-v3 was 0.678, whereas the average

accuracy for ResNet32 was 0.776. As a result, we chose to use ResNet32 for pro-

cessing images in the test set. Figure 2.4 and Figure 2.5 show two example test

WSIs with their overlaid probability maps. Green regions show regions classified

as LUSC, blue/purple regions show regions classified as LUAD and yellow/orange

regions show regions classified as ND. Here, we observe that the predicted ND re-

gions in the Figure 2.4 consist of normal stromal, blood vessel and alveoli regions as

expected. Also, our algorithm recognises the growth patterns present and therefore

predicts the tumour area as LUAD. Figure 2.5 primarily consists of LUSC tumour

and therefore the prediction is relatively homogeneous.

Table 2.2 shows the overall accuracy for NSCLC WSI classification, as pro-

cessed by the challenge organisers. We observe that using the random forest re-
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Figure 2.4: Unseen LUAD WSI with overlaid probability map. Blue/purple in-
dicates predicted LUAD regions, green indicates predicted LSUC region and yel-
low/orange indicates a predicted ND region.

gression model with statistical and morphological features from the labelled WSI

increases the classification accuracy. Max voting is sufficient when either LUAD or

LUSC is a dominant class within the labelled WSI, but when there is no obvious

dominant class, the random forest regression model increases performance. This is

because the features used as input to the random forest model are tailored to the

task of NSCLC classification and can therefore better differentiate between each

cancer type. We may see a greater effect of the RF post-processing technique when

applying it to a more challenging task, such as differentiating between the different

histological sub-types in LUAD.

Table 2.2: Overall WSI classification accuracy using two different post-processing
techniques. MV and RF refer to majority voting and random forest regression model
respectively.

Method Accuracy

ResNet32-MV 0.78

ResNet32-RF 0.81
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Figure 2.5: Unseen LUAD WSI with overlaid probability map. Blue/purple in-
dicates predicted LUAD regions, green indicates predicted LSUC region and yel-
low/orange indicates a predicted ND region.

2.5 Discussion and Conclusions

This chapter presented a patch aggregation pipeline for large-scale WSI classifica-

tion, where in particular we automatically classified NSCLC images as either LUAD

or LUSC. In the first step of our classification framework, we implemented a deep

neural network to classify input patches as LUAD, lung squamous cell carcinoma

or non-diagnostic regions. In the second step, after processing each image, we ex-

tracted a collection of statistical and morphological features from the LUAD and

LUSC probability maps. These features were then used as input into a random for-

est regression model to classify each WSI as lung adenocarcinoma or lung squamous

cell carcinoma. Overall we achieved the greatest accuracy with a score of 0.81 as

part of the Computational Precision Medicine challenge at MICCAI 2017. Espe-

cially given the limitation of the dataset, classifying NSCLC WSIs into diagnostic
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and non-diagnostic regions seems to be of importance. Our proposed pipeline is not

limited to NSCLC classification and can be used to diagnose a range of different

cancer types and grades.

The consideration of contextual information can provide additional assistance

in classification tasks within computational pathology [20, 8]. For example, growth

patterns in LUAD cases and how the tumour grows with the stroma is of great

importance when classifying NSCLC cases. These patterns are often very hard to

visualize in a 224×224 patch at 20× resolution. In future work, developing our

proposed network to include more contextual information may improve patch-level

accuracy and therefore overall classification accuracy. Also, our network was trained

on a relatively small number of WSIs. Training on a much larger number of WSIs

will enable the deep learning model to better discriminate between challenging image

regions and will therefore give better performance.

Our framework relies on pathologist annotation of LUAD, LUSC and ND

regions. However, as we use more and more WSIs within our framework, the an-

notation burden will increase dramatically and will inevitably become impractical.

Therefore, one area of interest is weakly supervised learning that instead only re-

quires a weak annotation often in the form of a single slide-level label for CPath.

For example, only the NSCLC diagnosis is required and therefore a vast amount of

data can be used. This can be modelled as a multiple-instance learning problem,

where each WSI can be labelled as a bag containing its corresponding patches (or

instances for multiple-instance learning) and the goal is to predict the label for un-

seen bags. Previous work [23] has shown that multiple-instance learning algorithms

enable CPath to be done at scale and allows terabytes of data to be used without

the need for time-consuming pixel-level annotation.
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Chapter 3

HoVer-Network for Nuclear

Instance Segmentation

Current manual assessment of Haematoxylin and Eosin (H&E) stained histology

slides suffers from low throughput and is naturally prone to intra- and inter-observer

variability [43]. To overcome the difficulty in visual assessment of tissue slides, there

is a growing interest in digital pathology (DPath), where digitised whole-slide im-

ages (WSIs) are acquired from glass histology slides using a scanning device. This

permits efficient processing, analysis and management of the tissue specimens [109].

Each WSI contains tens of thousands of nuclei of various types, which can be further

analysed in a systematic manner and used for predicting clinical outcome. Here, the

type of nucleus refers to the cell type in which it is located. For example, nuclear

features can be used to predict survival [12] and also for diagnosing the grade and

type of disease [104]. Also, efficient and accurate detection and segmentation of

nuclei can facilitate good quality tissue segmentation [136, 74], which can in turn

not only facilitate the quantification of WSIs but may also serve as an important

step in understanding how each tissue component contributes to disease. In order

to use nuclear features for downstream analysis within computational pathology,

nuclear segmentation must be carried out as an initial step. However, this remains

a challenge because nuclei display a high level of heterogeneity and there is signif-

icant inter- and intra-instance variability in the shape, size and chromatin pattern

between and within different cell types, disease types or even from one region to an-

other within a single tissue sample. Tumour nuclei, in particular, tend to be present

in clusters, which gives rise to many overlapping instances, providing a further chal-

lenge for automated segmentation, due to the difficulty of separating neighbouring

instances. This separation is not just important for accurate feature extraction,
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but also for cell counting. For example, tumour budding (TB) is defined as dis-

crete clusters of up to four cancer cells [107] and without accurate nuclear instance

segmentation, automatic recognition of TB is difficult.

As well as extracting each individual nucleus, determining the type of each

nucleus can increase the diagnostic potential of current DPath pipelines. For exam-

ple, accurately classifying each nucleus to be from tumour or lymphocyte enables

downstream analysis of tumour infiltrating lymphocytes (TILs), which have been

shown to be predictive of cancer recurrence [36]. Yet, similar to nuclear segmen-

tation, classifying the type of each nucleus is difficult, due to the high variance of

nuclear appearance within each WSI. Typically, nuclei are classified using two dis-

joint models: one for detecting each nucleus and then another for performing nuclear

classification [130, 153]. However, it would be preferable to utilise a single unified

model for nuclear instance segmentation and classification.

In this chapter, we present a deep learning approach1 for simultaneous seg-

mentation and classification of nuclear instances in histology images. The network

is based on the prediction of horizontal and vertical distances (and hence the name

HoVer-Net) of nuclear pixels to their centres of mass, which are subsequently lever-

aged to separate clustered nuclei. For each segmented instance, the nuclear type

is subsequently determined via a dedicated upsampling branch. To the best of our

knowledge, this is the first approach that achieves instance segmentation and classifi-

cation within the same network. We present comparative results on six independent

multi-tissue histology image datasets and demonstrate state-of-the-art performance

compared to other recently proposed methods. The main contributions of this work

are listed as follows:

• A novel network, targeted at simultaneous segmentation and classification of

nuclei, where horizontal and vertical distance map predictions separate clus-

tered nuclei.

• We show that the proposed HoVer-Net achieves state-of-the-art performance

on multiple H&E histology image datasets, as compared to over a dozen re-

cently published methods.

• An interpretable and reliable evaluation framework that effectively quantifies

nuclear segmentation performance and overcomes the limitations of existing

performance measures.

1Model code available at: https://github.com/vqdang/hover\_net
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• A new dataset2 of 24,319 exhaustively annotated nuclei within 41 colorectal

adenocarcinoma image tiles.

3.1 Related Work

3.1.1 Nuclear Instance Segmentation

Within the current literature, energy-based methods, in particular the watershed

algorithm, have been widely utilised to segment nuclear instances. For example,

[164] used thresholding to obtain the markers and the energy landscape as input

for watershed to extract the nuclear instances. Nonetheless, thresholding relies on

a consistent difference in intensity between the nuclei and background, which does

not hold for more complex images and hence often produces unreliable results. Var-

ious approaches have tried to provide an improved marker for marker-controlled

watershed. [29] used active contours to obtain the markers. [148] used a series of

morphological operations to generate the energy landscape. However, these meth-

ods rely on the predefined geometry of the nuclei to generate the markers, which

determines the overall accuracy of each method. Notably, [11] avoided the trou-

ble of refining the markers for watershed by designing a method that relies solely

on the energy landscape. They combined an active contour approach with nuclear

shape modelling via a level-set method to obtain the nuclear instances. Despite its

widespread usage, obtaining sufficiently strong markers for watershed is a non-trivial

task. Some methods have departed from the energy-based approach by utilising the

geometry of the nuclei. For instance, [157], [93] and [89] computed the concavity

of nuclear clusters, while [97] used eclipse-fitting to separate the clusters. However,

this assumes a predefined shape, which does not encompass the natural diversity of

the nuclei. In addition, these methods tend to be sensitive to the choice of manually

selected parameters.

Recently, deep learning methods have received a surge of interest due to

their superior performance in many computer vision tasks [101, 131, 94]. These

approaches are capable of automatically extracting a representative set of features,

that strongly correlate with the task at hand. As a result, they are preferable to

hand-crafted approaches, that rely on a selection of pre-defined features. Inspired

by the Fully Convolutional Network (FCN) [103], U-Net [121] has been successfully

applied to numerous segmentation tasks in medical image analysis. The network

has an encoder-decoder design with skip connections to incorporate low-level in-

2The CoNSeP dataset for nuclear segmentation is available at https://warwick.ac.uk/fac/

sci/dcs/research/tia/data/.
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formation and uses a weighted loss function to assist separation of instances.

However, it often struggles to split neighbouring instances and is highly sensitive

to pre-defined parameters in the weighted loss function. A more recently proposed

method in Micro-Net [119] extends U-Net by utilising an enhanced network archi-

tecture with weighted loss. The network processes the input at multiple resolutions

and as a result, gains robustness against nuclei with varying size. In [59], the authors

developed a network that is robust to stain variations in H&E images by introducing

a weighted loss function that is sensitive to the Haematoxylin intensity within the

image.

Other methods exploit information about the nuclear contour (or bound-

ary) within the network, such as DCAN [27] that utilised a dual architecture that

outputs the nuclear cluster and the nuclear contour as two separate prediction maps.

Instance segmentation is then achieved by subtracting the contour from the nuclear

cluster prediction. [39] proposed a network to predict the inner nuclear instance, the

nuclear contour and the background. The network utilised a customised weighted

loss function based on the relative position of pixels within the image to improve

and stabilise the inner nuclei and contour prediction. Some other methods have

also utilised the nuclear contour to achieve instance segmentation. For example,

[88] employed a deep learning technique for labelling the nuclei and the contours,

followed by a region growing approach to extract the final instances. [82] used the

contour predictions as input into a further network for segmentation refinement.

[169] proposed CIA-Net, that utilises a multi-level information aggregation module

between two task-specific decoders, where each decoder segments either the nuclei

or the contours. A Deep Residual Aggregation Network (DRAN) was proposed by

[151] that uses a multi-scale strategy, incorporating both the nuclei and nuclear

contours to accurately segment nuclei.

There have been various other methods to achieve instance separation. In-

stead of considering the contour, [113] proposed a deep learning approach to detect

superior markers for watershed by regressing the nuclear distance map. Therefore,

the network avoids making a prediction for areas with indistinct contours.

In line with these developments, the field of instance segmentation within

natural images is also rapidly progressing and have had a significant influence on

nuclear instance segmentation methods. A notable example is Mask-RCNN [65],

where instance segmentation approach is achieved by first predicting candidate re-

gions likely to contain an object and then deep learning based segmentation within

those proposed regions.
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3.1.2 Nuclear Classification

As well as performing instance segmentation, it is desirable to determine the type of

each nucleus to facilitate and improve downstream analysis. It is possible for current

models to differentiate between certain nuclear types in H&E, however sub-typing

of lymphocytes is an extremely hard task due to the high levels of similarity in mor-

phological appearance between T and B lymphocytes. Typically, classifying each

nucleus is done via a two-stage approach, where the first step involves either nuclear

segmentation or nuclear detection. When segmentation is used as the initial step, a

series of morphological and textural features are extracted from each instance, which

are then used within a classifier to determine the nuclei classes. For example, [114]

classified nuclei within H&E stained breast cancer images as either tumour, lym-

phocyte or stromal based on their morphological features. [167] performed nuclear

segmentation and then classified each nucleus with AdaBoost classifier, utilising the

intensity, morphology and texture of nuclei as features. Otherwise, detection is per-

formed as an initial step and a patch centred at the point of detection is fed into a

classifier, to predict the type of nucleus. [134] proposed a spatially constrained CNN,

that initially detects all nuclei and then for each nucleus an ensemble of associated

patches are fed into a CNN to predict the type to be either epithelial, inflammatory,

fibroblast or miscellaneous.

3.2 Methods

Our overall framework for automatic nuclear instance segmentation and classifica-

tion can be observed in Fig. 3.1 and the proposed network in Fig. 3.2. Here, nuclear

pixels are first detected and then, a tailored post-processing pipeline is used to si-

multaneously segment nuclear instances and obtain the corresponding nuclear types.

The framework is based upon the horizontal and vertical distance maps, which can

be seen in Fig. 3.3. In the figure, each nuclear pixel denotes either the horizontal

or vertical distance of pixels to their centres of mass.

3.2.1 Network Architecture

In order to extract a strong and representative set of features, we employ a deep

neural network. The feature extraction component of the network is inspired by

the pre-activated residual network with 50 layers [67] (Preact-ResNet50), due to its

excellent performance in recent computer vision tasks [41] and robustness against in-

put perturbation [13]. Compared to the standard Preact-ResNet50 implementation,
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Figure 3.1: Overview of the proposed workflow for simultaneous nuclear instance
segmentation and classification.

we reduce the total downsampling factor from 32 to 8 by using a stride of 1 in the

first convolution and removing the subsequent max-pooling operation. This ensures

that there is no immediate loss of information that is important for performing an

accurate segmentation. Various residual units are applied throughout the network

at different downsampling levels. A series of consecutive residual units is denoted

as a residual block. The number of residual units within each residual block is 3,

4, 6 and 3 that are applied at downsampling levels 1, 2, 4 and 8 respectively. For

clarity, a downsampling level of 2 means that the input has a reduction in the spatial

resolution by a factor of 2.

Following Preact-ResNet50, we perform nearest neighbour upsampling via

three distinct branches to simultaneously obtain accurate nuclear instance segmen-

tation and classification. We name the corresponding branches: (i) nuclear pixel

(NP) branch; (ii) HoVer branch and (iii) nuclear classification (NC) branch. The

NP branch predicts whether or not a pixel belongs to the nuclei or background,

whereas the HoVer branch predicts the horizontal and vertical distances of nuclear

pixels to their centres of mass. Then, the NC branch predicts the type of nucleus

for each pixel. In particular, the NP and HoVer branches jointly achieve nuclear

instance segmentation by first separating nuclear pixels from the background (NP

branch) and then separating touching nuclei (HoVer branch). The NC branch deter-

mines the type of each nucleus by aggregating the pixel-level nuclear type predictions

within each instance.

All three upsampling branches utilise the same architectural design, which
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consists of a series of upsampling operations and densely connected units [71] (or

dense units). By stacking multiple and relatively cheap dense units, we build a

large receptive field with minimal parameters, compared to using a single convo-

lution with a larger kernel size and we ensure efficient gradient propagation. We

use skip connections [121] to incorporate features from the encoder, but utilise sum-

mation as opposed to concatenation. The consideration of low-level information is

particularly important in segmentation tasks, where we aim to precisely delineate

the object boundaries. We use dense units after the first and second upsampling

operations, where the number of units is 4 and 8 respectively. Valid convolution is

performed throughout the two upsampling branches to prevent poor predictions at

the boundary. This results in the size of the output being smaller than the size of

the input. As opposed to using a dedicated network for each task, a shared encoder

makes it possible to train the nuclear instance segmentation and classification model

end-to-end and therefore, reduce the total training time. Furthermore, a shared en-

coder can also take advantage of the shared information across multiple tasks and

thus, help to improve the model performance on all tasks.

Finally, if we do not have the classification labels of the nuclei, only the NP

and HoVer upsampling branches are considered. Otherwise, we consider all three

upsampling branches and perform simultaneous nuclear instance segmentation and

classification.

We display an overview of the network architecture in Fig. 3.2, where the

spatial dimension of the input is 270×270 and the output dimension of each branch

is 80×80. The dashed box within Fig. 3.2 highlights the branches for nuclear

instance segmentation. Additionally, we also show a residual unit and a dense unit

within Fig. 3.2a and Fig. 3.2b. We denote m as the number of feature maps within

each convolution of a given residual unit. At each down sampling level, from left

to right, m=256, 512, 1024, 2048 respectively. We keep a fixed amount of feature

maps within each dense unit throughout the two branches as shown in Fig. 3.2c.

Loss Function

The proposed network design has 4 different sets of weights: w0, w1, w2 and w3 which

refer to the weights of the Preact-ResNet50 encoder, the HoVer branch decoder,

the NP branch decoder and the NC branch decoder. These 4 sets of weights are

optimised jointly using the loss L defined as:

L = λaLa + λbLb︸ ︷︷ ︸
HoVer Branch

+λcLc + λdLd︸ ︷︷ ︸
NP Branch

+λeLe + λfLf︸ ︷︷ ︸
NC Branch

(3.1)
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Figure 3.3: Cropped image regions showing horizontal and vertical map predictions,
with corresponding ground truth.

where La and Lb represent the regression loss with respect to the output of the

HoVer branch, Lc and Ld represent the loss with respect to the output at the NP

branch and and finally, Le and Lf represent the loss with respect to the output at

the NC branch. We choose to use two different loss functions at the output of each

branch for an overall superior performance. λa...λf are scalars that give weight to

each associated loss function. Specifically, we set λb to 2 and the other scalars to 1,

based on empirical selection.

Given the input image x, at each pixel i we define pi(x, w0, w1) as the re-

gression output of the HoVer branch, whereas qi(x, w0, w2) and ri(x, w0, w3) denote

the pixel-based softmax predictions of the NP and NC branches respectively. We

also define Γi(x), Ψi(x) and Φi(x) as their corresponding ground truth (GT). Ψi(x)

is the GT of the nuclear binary map, where background pixels have the value of 0

and nuclear pixels have the value 1. On the other hand, Φi(x) is the nuclear type

GT where background pixels have the value 0 and any integer value larger than 0

indicates the type of nucleus. Meanwhile, Γi(x) denotes the GT of the horizontal

and vertical distances of nuclear pixels to their corresponding centres of mass. For

Γi(x), we assign values between -1 and 1 to nuclear pixels in both the horizontal
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and vertical directions. We assign the value of the background and the line crossing

the centre of mass within each nucleus to be 0. For clarity, we denote the horizontal

and vertical components of the GT HoVer map as horizontal map Γi,x and vertical

map Γi,y respectively. Visual examples of the horizontal and vertical maps can be

seen in Fig. 3.3.

At the output of the HoVer branch, we compute a multiple term regression

loss. We denote La as the mean squared error between the predicted horizontal

and vertical distances and the GT. We also propose a novel loss function Lb that

calculates the mean squared error between the horizontal and vertical gradients of

the horizontal and vertical maps respectively and the corresponding gradients of the

GT. We formally define La and Lb as:

La =
1

N

N∑

i=1

(pi(x;w0,w1)− Γi(x))2 (3.2)

Lb =
1

M

∑

i∈M̂

(∇x(pi,x(x;w0,w1))−∇x(Γi,x(x)))2

+
1

M

∑

i∈M̂

(∇y(pi,y(x;w0,w1))−∇y(Γi,y(x)))2
(3.3)

Within (3.3), ∇x and ∇y denote the gradient in the horizontal x and vertical y

directions respectively. M denotes total number of nuclear pixels within the image

and M̂ denotes the set containing all nuclear pixels.

At the output of NP and NC branches, we calculate the cross-entropy loss

(Lc and Le) and the dice loss (Ld and Lf ). These two losses are then added together

to give the overall loss of each branch. Concretely, we define the cross entropy and

dice losses as:

CE = − 1

N

N∑

i=1

K∑

k=1

Xi,k(x) log Yi,k(x) (3.4)

Dice = 1− 2×∑N
i=1(Yi(x)×Xi(x)) + ε

∑N
i=1 Yi(x) +

∑N
i=1Xi(x) + ε

(3.5)

where X is the ground truth, Y is the prediction, K is the number of classes and ε is

a smoothness constant which we set to 1.0e−3. When calculating Lc and Ld for NP

branch, for a given pixel i, we set Xi and Yi as Ψi(x) and qi(x, w0, w2) respectively.

For Lc, we set K to be 2 within (3.4) because the task of the branch is to perform

binary nuclear segmentation. Similarly, for Le and Lf at the NC branch, for a given

pixel i, we substitute Xi for Φi(x) and Yi for ri(x, w0, w3) in (3.4) and (3.5). K is

set as 5 within (3.4) when calculating Le, denoting the 4 types of nuclei that our
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model currently predicts and the background. Note, the value of K is chosen to

reflect the number of nuclear types represented in the training set.

It must be noted that the NC branch loss Le and Lf are only calculated

when the classification labels are available. In other words, as mentioned in Section

3.2.1, the network performs only instance segmentation if there are no classification

labels given.

3.2.2 Post Processing

Within each horizontal and vertical map, pixels between separate instances have a

significant difference. This can be seen in Fig. 3.3 and is highlighted by the arrows.

Therefore, calculating the gradient can inform where the nuclei should be separated

because the output will give high values between neighbouring nuclei, where there

is a significant difference in the pixel values. We define:

Sm = max(Hx(px), Hy(py)) (3.6)

where px and py refer to the horizontal and vertical predictions at the output of the

HoVer branch and Hx and Hy refer to the horizontal and vertical components of the

Sobel operator. Specifically, Hx and Hy compute the horizontal and vertical deriva-

tive approximations and are shown by the gradient maps in Fig. 3.1. Therefore, Sm
highlights areas where there is a significant difference in neighbouring pixels within

the horizontal and vertical maps. Therefore, areas such as the ones shown by the

arrows in Fig. 3.3 will result in high values within Sm. We compute markers M =

σ(τ(q, h) − τ(Sm, k)). Here, τ(a, b) is a threshold function that acts on a and sets

values above b to 1 or 0 otherwise. Specifically, h and k were chosen such that they

gave the optimal nuclear segmentation results. σ is a rectifier that sets all negative

values to 0 and q is the probability map output of the NP branch. We obtain the

energy landscape E = [1− τ(Sm, k)] ∗ τ(q, h). Finally, M is used as the marker dur-

ing marker-controlled watershed to determine how to split τ(q, h), given the energy

landscape E. This sequence of events can be seen in Fig. 3.1.

To perform simultaneous nuclear instance segmentation and classification, it

is necessary to convert the per-pixel nuclear type prediction at the output of the

NC branch to a prediction per nuclear instance. For each nuclear instance, we use

majority class of the predictions made by the NC branch, i.e., the nuclear type of

all pixels in an instance is assigned to be the class with the highest frequency count

for that nuclear instance.
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Figure 3.4: Examples highlighting the limitations of DICE2 and AJI with slightly
different predictions.

3.3 Evaluation Metrics

3.3.1 Nuclear Instance Segmentation Evaluation

Assessment and comparison of different methods is usually given by an overall score

that indicates which method is superior. However, to further investigate the method,

it is preferable to break the problem into sub-tasks and measure the performance of

the method on each sub-task. This enables an in depth analysis, thus facilitating a

comprehensive understanding of the approach, which can help drive forward model

development. For nuclear instance segmentation, the problem can be divided into

the following three sub-tasks:

• Separate the nuclei from the background

• Detect individual nuclear instances

• Segment each detected instance

In the current literature, two evaluation metrics have been mainly adopted to quan-

titatively measure the performance of nuclear instance segmentation: 1) Ensemble

Dice (DICE2) [151], and 2) Aggregated Jaccard Index (AJI) [88]. Given the ground

truthX and prediction Y , DICE2 computes and aggregates DICE per nucleus, where

Dice coefficient (DICE) is defined as 2×(X∩Y )/(|X|+|Y |) and AJI computes the

ratio of an aggregated intersection cardinality and an aggregated union cardinality

between X and Y .

These two evaluation metrics only provide an overall score for the instance

segmentation quality and therefore provides no further insight into the sub-tasks

at hand. In addition, these two metrics have a limitation, which we illustrate in

Fig. 3.4. From the figure, although prediction A only differs from prediction B

by a few pixels, the DICE2 and AJI scores for B are superior. These scores are
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Table 3.1: Comparison between Prediction A and Prediction B from Fig.3.4 for
various measurements.

DICE2 AJI PQ

Prediction A 0.6477 0.4790 0.6803
Prediction B 0.9007 0.6414 0.6863

shown in Table 3.1. This problem arises due to over-penalisation of the overlapping

regions. By overlaying the GT segment contours (red dashed line) upon the two

predictions, we observe that, although the cyan-coloured instance within prediction

A overlaps mostly with the cyan-coloured GT instance, it also slightly overlaps with

the blue-coloured GT instance. As a result, according to the DICE2 algorithm,

the predicted cyan instance will be penalised by pixels not only coming from the

dominant overlapping cyan-coloured GT instance, but also from the blue-coloured

GT instance. The AJI also suffers from the same phenomenon. However, because

AJI only uses the prediction and GT instance pair with the highest intersection

over union, over-penalisation is less likely compared to DICE2. Over-penalisation is

likely to occur when the model completely fails to detect the neighbouring instance,

such as in Fig. 3.4. Nonetheless, when evaluating methods across different datasets,

specifically on samples containing lots of hard to recognise nuclei such as fibroblasts

or nuclei with poor staining, the number of failed detections may increase and there-

fore may have a negative impact on the AJI measurement. Due to the limitations of

DICE2 and AJI, it is clear that there is a need for an improved reliable quantitative

measurement.

Panoptic Quality: We propose to use another metric for accurate quan-

tification and interpretability to assess the performance of nuclear instance seg-

mentation. Originally proposed by [83], panoptic quality (PQ) for nuclear instance

segmentation is defined as:

PQ =
|TP |

|TP |+ 1
2 |FP |+ 1

2 |FN |︸ ︷︷ ︸
Detection Quality(DQ)

×
∑

(x,y)∈TP IoU(x, y)

|TP |︸ ︷︷ ︸
Segmentation Quality(SQ)

(3.7)

where x denotes a GT segment, y denotes a prediction segment and IoU denotes

intersection over union. Each (x,y) pair is mathematically proven to be unique

[83] over the entire set of prediction and GT segments if their IoU(x,y)>0.5. The

unique matching splits all available segments into matched pairs (TP), unmatched

GT segments (FN) and unmatched prediction segments (FP). From this, PQ can

be intuitively analysed as follows: the detection quality (DQ) is the F1 Score that is

43



widely used to evaluate instance detection, while segmentation quality (SQ) can be

interpreted as how close each correctly detected instance is to their matched GT.

DQ and SQ, in a way, also provide a direct insight into the second and third sub-

tasks, defined above. We believe that PQ should set the standard for measuring the

performance of nuclear instance segmentation methods.

Overall, to fully characterise and understand the performance of each method,

we use the following three metrics: 1) DICE to measure the separation of all nuclei

from the background; 2) Panoptic Quality as a unified score for comparison and 3)

AJI for direct comparison with previous publications3. Panoptic quality is further

broken down into DQ and SQ components for interpretability. Note, SQ is calcu-

lated only within true positive segments and should therefore be observed together

with DQ. Throughout this study, these metrics are calculated for each image and

the average of all images are reported as final values for each dataset.

3.3.2 Nuclear Classification Evaluation

Classification of the type of each nucleus is performed within the nuclear instances

extracted from the instance segmentation or detection tasks. Therefore, the overall

measurement for nuclear type classification should also encompass these two tasks.

For all nuclear instances of a particular type t from both the ground truth and

the prediction, the detection task d splits the GT and predicted instances into the

following subsets: correctly detected instances (TPd), misdetected GT instances

(FNd) and overdetected predicted instances (FPd). Subsequently, the classification

task c further breaks TPd into correctly classified instances of type t (TPc), correctly

classified instances of types other than type t (TNc), incorrectly classified instances

of type t (FPc) and incorrectly classified instances of types other than type t (FNc).

We then define the Fc score of each type t for combined nuclear type classification

and detection as follows:

F tc =
2(TPc + TNc)

2(TPc + TNc) + α0FPc + α1FNc + α2FPd + α3FNd
(3.8)

where we use α0 = α1 = 2 and α2 = α3 = 1 to give more emphasis to nuclear

type classification. Moreover, using the same weighting, if we further extend t to

encompass all types of nuclei T (t ∈ T ), the classification within TPd is then divided

into a correctly classified set Ac and an incorrectly classified set Bc. We can therefore

3Evaluation code available at: https://github.com/vqdang/hover\_net/src/metrics
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Table 3.2: Summary of the datasets used in our experiments. Seg denotes segmen-
tation masks and Class denotes classification labels.

CoNSeP Kumar CPM-15 CPM-17 TNBC CRCHisto

Number of Nuclei 24,319 21,623 2,905 7,570 4,056 29,756
Labelled Nuclei 24,319 0 0 0 0 22,444

Number of Images 41 30 15 32 50 100
Origin UHCW TCGA TCGA TCGA Curie Institute UHCW

Magnification 40× 40× 40× & 20× 40× & 20× 40× 20×
Size of Images 1000×1000 1000×1000 400×400 to 1000×600 500×500 to 600×600 512×512 500×500

Seg/Class Both Seg Seg Seg Seg Class
Cancer Types 1 8 2 4 1 1

disassemble F tc into:

F Tc =
2Ac

2(Ac +Bc) + FPd + FNd
=

2(Ac +Bc)

2(Ac +Bc) + FPd + FNd
× Ac
Ac +Bc

= Fd × Classification Accuracy within Correctly Detected Instances

(3.9)

where Fd is simply the standard detection quality like DQ while the other term is

the accuracy of nuclear type classification within correctly detected instances. In

the case where the GT is not exhaustively annotated for nuclear type classification,

like in CRCHisto, an amount equal to the number of unlabelled GT instances in

each set is subtracted from Bc and FNc.

Finally, while IoU is utilised as the criteria in DQ for selecting the TP for

detection in instance segmentation, detection methods can not calculate the IoU.

Therefore, to facilitate comparison of both instance segmentation and detection

methods for the nuclear type classification tasks, for F tc , we utilise the notion of

distance to determine whether nuclei have been detected. To be precise, we define

the region within a predefined radius from the annotated centre of the nucleus as

the ground truth and if a prediction lies within this area, then it is considered to be

a true positive. Here, we are consistent with [134] and use a radius of 6 pixels at

20× or 12 pixels at 40×.

3.4 Experiments and Results

3.4.1 Datasets

As part of this work, we introduce a new dataset that we term as the colorectal

nuclear segmentation and phenotypes (CoNSeP) dataset4, consisting of 41 H&E

stained image tiles, each of size 1,000×1,000 pixels at 40× objective magnification.

4This dataset is available at https://warwick.ac.uk/fac/sci/dcs/research/tia/data/.
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Kumar CoNSeP CPM-15 CPM-17 TNBC

Figure 3.5: Sample cropped regions extracted from each of the five nuclear instance
segmentation datasets used in our experiments.

Malignant/dysplastic	
epithelium

Normal	epithelium Inflammatory

Muscle

Fibroblast

MiscellaneousEndothelial

Figure 3.6: Sample cropped regions extracted from the CoNSeP dataset, where the
colour of each nuclear boundary denotes the category.

Images were extracted from 16 colorectal adenocarcinoma (CRA) WSIs, each be-

longing to an individual patient, and scanned with an Omnyx VL120 scanner within
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the department of pathology at University Hospitals Coventry and Warwickshire,

UK. We chose to focus on a single cancer type, so that we are able to display the

true variation of tissue within colorectal adenocarcinoma WSIs, as opposed to other

datasets that instead focus on using a small number of visual fields from various

cancer types. Within this dataset, stroma, glandular, muscular, collagen, fat and

tumour regions can be observed. Beside incorporating different tissue components,

the 41 images were also chosen such that different nuclei types were present, in-

cluding: normal epithelial; tumour epithelial; inflammatory; necrotic; muscle and

fibroblast. Here, by type we are referring to the type of cell from which the nucleus

originates from. Within the dataset, there are many significantly overlapping nuclei

with indistinct boundaries and there exists various artefacts, such as ink. As a result

of the diversity of the dataset, it is likely that a model trained on CoNSeP will per-

form well for unseen CRA cases. For each image tile, every nucleus was annotated by

one of two expert pathologists (A.A, Y-W.T). After full annotation, each annotated

sample was reviewed by both of the pathologists; therefore refining their own and

each others’ annotations. By the end of the annotation process, each pathologist

had fully checked every sample and consensus had been reached. Annotating the

data in this way ensured that minimal nuclei were missed in the annotation process.

However, we can not avoid inevitable pixel-level differences between the annotation

and the true nuclear boundary in challenging cases. In addition to delineating the

nuclear boundaries, every nucleus was labelled as either: normal epithelial, malig-

nant/dysplastic epithelial, fibroblast, muscle, inflammatory, endothelial or miscella-

neous. Within the miscellaneous category, necrotic, mitotic and cells that couldn’t

be categorised were grouped. For our experiments, we grouped the normal and ma-

lignant/dysplastic epithelial nuclei into a single class and we grouped the fibroblast,

muscle and endothelial nuclei into a class named spindle-shaped nuclei.

Overall, six independent datasets are utilised for this study. A full summary

for each of them is provided in Table 3.2. Five of these datasets are used to evaluate

the instance segmentation performance which we refer to as: CoNSeP; Kumar [88];

CPM-15; CPM-17 [151] and TNBC [113]. Example images from each of the five

datasets can be seen in Fig. 3.7. Meanwhile, we utilise CoNSeP and a further

dataset, named CRCHisto, to quantify the performance of the nuclear classification

model. The CRCHisto dataset consists of the same nuclei types that are present

in CoNSeP. It is also worth noting that the CRCHisto dataset is not exhaustively

annotated for nuclear class labels.
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Table 3.3: Comparative experiments on the Kumar [88], CoNSeP and CPM-17 [151]
datasets. WS denotes watershed-based post processing.

Kumar CoNSeP CPM-17
Method DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ

Cell Profiler [24] 0.623 0.366 0.423 0.704 0.300 0.434 0.202 0.249 0.705 0.179 0.570 0.338 0.368 0.702 0.261
QuPath [18] 0.698 0.432 0.511 0.679 0.351 0.588 0.249 0.216 0.641 0.151 0.693 0.398 0.320 0.717 0.230
FCN8 [103] 0.797 0.281 0.434 0.714 0.312 0.756 0.123 0.239 0.682 0.163 0.840 0.397 0.575 0.750 0.435

FCN8 + WS [103] 0.797 0.429 0.590 0.719 0.425 0.758 0.226 0.320 0.676 0.217 0.840 0.397 0.575 0.750 0.435
SegNet [17] 0.811 0.377 0.545 0.742 0.407 0.796 0.194 0.371 0.727 0.270 0.857 0.491 0.679 0.778 0.531

SegNet + WS [17] 0.811 0.508 0.677 0.744 0.506 0.793 0.330 0.464 0.721 0.335 0.856 0.594 0.779 0.784 0.614
U-Net [121] 0.758 0.556 0.691 0.690 0.478 0.724 0.482 0.488 0.671 0.328 0.813 0.643 0.778 0.734 0.578

Mask-RCNN [65] 0.760 0.546 0.704 0.720 0.509 0.740 0.474 0.619 0.740 0.460 0.850 0.684 0.848 0.792 0.674
DCAN [27] 0.792 0.525 0.677 0.725 0.492 0.733 0.289 0.383 0.667 0.256 0.828 0.561 0.732 0.740 0.545

Micro-Net [119] 0.797 0.560 0.692 0.747 0.519 0.794 0.527 0.600 0.745 0.449 0.857 0.668 0.836 0.788 0.661
DIST [113] 0.789 0.559 0.601 0.732 0.443 0.804 0.502 0.544 0.728 0.398 0.826 0.616 0.663 0.754 0.504
CNN3 [88] 0.762 0.508 - - - - - - - - - - - - -

CIA-Net [169] 0.818 0.620 0.754 0.762 0.577 - - - - - - - - - -
DRAN [151] - - - - - - - - - - 0.862 0.683 0.811 0.804 0.657

HoVer-Net 0.826 0.618 0.770 0.773 0.597 0.853 0.571 0.702 0.778 0.547 0.869 0.705 0.854 0.814 0.697

3.4.2 Implementation and Training Details

We implemented our framework with the open source software library TensorFlow

version 1.8.0 [7] on a workstation equipped with two NVIDIA GeForce 1080 Ti

GPUs. During training, data augmentation including flip, rotation, Gaussian blur

and median blur was applied to all methods. All networks received an input patch

with a size ranging from 252×252 to 270×270. This size difference is due to the use

of valid convolutions in some architectures, such as HoVer-Net and U-Net. Regard-

ing HoVer-Net, we initialised the model with pre-trained weights on the ImageNet

dataset [41], trained only the decoders for the first 50 epochs, and then fine-tuned

all layers for another 50 epochs. We train stage one for around 120 minutes and

stage two for around 260 minutes. Therefore, the overall training time is around

380 minutes. Stage two takes longer to train because unfreezing the encoder utilises

more memory and therefore a smaller batch size needs to be used. Specifically, we

used a batch size of 8 and 4 on each GPU for stage one and two respectively. We

used Adam optimisation with an initial learning rate of 10−4 and then reduced it

to a rate of 10−5 after 25 epochs. This strategy was repeated for fine-tuning. On

the whole, training of the network is stable, where the usage of fully independent

decoders helps the network to converge each time. The network was trained with

an RGB input, normalised between 0 and 1.

3.4.3 Comparative Analysis of Segmentation Methods

Experimental Setting: We evaluated our approach by employing a full inde-

pendent comparison across the three largest known exhaustively labelled nuclear
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Figure 3.7: Example visual results on the CPM-17, Kumar and CoNSeP datasets.
For each dataset, we display the 4 models that achieve the highest PQ score.

segmentation datasets: Kumar; CoNSeP and CPM-17 and utilised the metrics as

described in Section 3.3.1. For this experiment, because we do not have the classifica-

tion labels for all datasets, we perform instance segmentation without classification.
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This enables us to fully leverage all data and allows us to rigorously evaluate the

segmentation capability of our model. In the same way as [88], we split the Ku-

mar dataset into two different sub-datasets: (i) Kumar-Train, a training set with

16 image tiles (4 breast, 4 liver, 4 kidney and 4 prostate) and (ii) Kumar-Test, a

test set with 14 image tiles (2 breast, 2 liver, 2 kidney and 2 prostate, 2 bladder, 2

colon, 2 stomach). Note, we utilise the exact same image split used by other recent

approaches [88, 113, 169], but we do not separate the test set into two subsets. We

do this to ensure that the test set is large enough, ensuring a reliable evaluation.

For CoNSeP, we devise a suitable train and test set that contains 26 and 14 images

respectively. The images within the test set were selected to ensure the true diver-

sity of nuclei types within colorectal tissue are represented. For CPM-17, we utilise

the same split that had been employed for the challenge, with 32 images in both the

training and test datasets.

We compared our proposed model to recent segmentation approaches used

in computer vision [103, 17, 65], medical imaging [121] and also to methods specif-

ically tuned for the task of nuclear segmentation [27, 119, 113, 169, 151]. We also

compared the performance of our model to two open source software applications:

Cell Profiler [24] and QuPath [18]. Cell Profiler is a software for cell-based analysis,

with several suggested pipelines for computational pathology. The pipeline that we

adopted applies a threshold to the greyscale image and then uses a series of post

processing operations. QuPath is an open source software for digital pathology and

whole-slide image analysis. To achieve nuclear segmentation, we used the default

parameters within the application. FCN, SegNet, U-Net, DCAN, Mask-RCNN and

DIST have been implemented by the authors of the paper (S.G, Q.D.V). For Mask-

RCNN, we slightly modified the original implementation by using smaller anchor

boxes. The default configuration is fine-tuned for natural images and therefore, this

modification was necessary to perform a successful nuclear segmentation. DIST was

implemented with the assistance of the first author of the corresponding approach

in order to ensure reliability during evaluation. This also enabled us to utilise DIST

for further comparison in our experiments. For Micro-Net, we used the same im-

plementation that was described by [119] and was implemented by the first author

of the corresponding paper (S.E.A.R). For CNN3 and CIA-Net, we report the re-

sults on the Kumar dataset that are given in their respective original papers. The

authors of CIA-Net and DRAN provided their segmentation output, which meant

that we were able to obtain all metrics on the datasets that the models were applied

to. Therefore, we report results of CIA-Net on the Kumar dataset and results of

DRAN on the CPM-17 dataset. Note, for all self-implemented approaches we are
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consistent with our pre-processing strategy. However, DRAN, CNN3 and CIA-Net

results are directly taken from their respective papers and therefore we can’t guaran-

tee the same pre-processing steps. CNN3 and CIA-Net also use stain normalisation,

whereas other methods described in this chapter do not.

Comparative Results: Table 3.3 and the box plots in Fig. 3.8a and 3.8b

show detailed results of this experiment. Within the box plots, we choose not to

show AJI, due to its limitations as discussed in Section 3.3.1. A large variation

in performance between methods within each dataset is observed. This variation

is particularly evident in the Kumar and CoNSeP datasets, where there exists a

large number of overlapping nuclei. Both Cell Profiler [24] and QuPath [18] achieve

sub-optimal performance for all datasets. In particular, both software applications

consistently achieve a low DICE score, suggesting that their inability to distin-

guish nuclear pixels from the background is a major limiting factor. FCN-based

approaches improve the capability of models to detect nuclear pixels, yet often fail

due to their inability to separate clustered instances. For example, despite a higher

DICE score than Cell Profiler and QuPath, networks built only for semantic segmen-

tation like FCN8 and SegNet suffer from low PQ values. Therefore, methods that

incorporate strong instance-aware techniques are favourable. Within CPM-17, there

are less overlapping nuclei which explains why methods that are not instance-aware

are still able to achieve a satisfactory performance. We observe that the weighted

cross entropy loss that is used in both U-Net and Micro-Net can help to separate

joined nuclei, but its success also depends on the capacity of the network. This is

reflected by the improved performance of Micro-Net over U-Net.

DCAN is able to better distinguish between separate instances than FCN8,

which uses a very similar encoder based on the VGG16 network. Therefore, in-

corporating additional information at the output of the network can improve the

segmentation performance. This is also exemplified by the fairly strong perfor-

mances of CNN3, DIST, DRAN and CIA-Net. In a different way, Mask-RCNN is

able to successfully separate clustered nuclei by utilising a region proposal based

approach. However, Mask-RCNN is less effective than other methods at detecting

nuclear pixels, which is reflected by a lower DICE score.

Due to the reasoning given in Section 3.3, we place a larger emphasis on PQ

to determine the success of different models. In particular, we consistently obtain an

improved performance over DIST, which justifies the use of our proposed horizontal

and vertical maps as a regression target. We also report a better performance

than the winners of the Computational Precision Medicine and MoNuSeg challenges

[151, 169], that utlised the CPM-17 and Kumar datasets respectively. Therefore,

51



(a) Kumar

(b) CoNSeP

Figure 3.8: Box plots highlighting the performance of competing methods on the
Kumar and CoNSeP datasets.

HoVer-Net achieves state-of-the art performance for nuclear instance segmentation

compared to all competing methods on multiple datasets that consist of a variety of
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different tissue types. Our approach also outperforms methods that were fine-tuned

for the task of nuclear segmentation.

3.4.4 Generalisation Study

Experimental Setting: The goal of any automated method is to perform well

on unseen data, with high accuracy. Therefore, we conducted a large scale study

to assess how all methods generalise to new H&E stained images. To analyse the

generalisation capability, we assessed the ability to segment nuclei from: i) new

organs (variation in nuclei shapes) and ii) different centres (variation in staining).

The five instance segmentation datasets used within our experiments can

be grouped into three groups according to their origin: TCGA (Kumar, CPM-15,

CPM-17), TNBC and CoNSeP. We used Kumar as the training and validation set,

due to its size and diversity, whilst the combined CPM (CPM-15 and CPM-17),

TNBC and CoNSeP datsets were used as three independent test sets. We split the

test sets in this way in accordance with their origin. Note, for this experiment we

use both the training and test sets of CPM-17 and CoNSeP to form the indepen-

dent test sets. Kumar was split into three subsets, as explained in Section 5.4.1, and

Kumar-Train was used to train all models, i.e. trained with samples originating from

the following organs: breast; prostate; kidney and liver. Despite all samples being

extracted from TCGA, CPM samples come from the brain, head & neck and lungs

regions. Therefore, testing with CPM reflects the ability for the model to generalise

to new organs, as mentioned above by the first generalisation criterion. TNBC con-

tains samples from an already seen organ (breast), but the data is extracted from

an independent source with different specimen preservation and staining practice.

Therefore, this reflects the second generalisation criterion. CoNSeP contains sam-

ples taken from colorectal tissue, which is not represented in Kumar-Train, and is

also extracted from a source independent to TCGA. Therefore, this reflects both the

first and second generalisation criteria. Also, as mentioned in Section 5.4.1, CoN-

SeP contains challenging samples, where there exists various artefacts and there is

variation in the quality of slide preparation. Therefore, the performance on this

dataset also reflects the ability of a model to generalise to difficult samples.

Comparative Results: The results are reported in Table 3.4, where we only

display the results of methods that employ an instance-based technique. We observe

that our proposed model is able to successfully generalise to unseen data in all three

cases. However, some methods prove to perform poorly with unseen data, where

in particular, U-Net and DIST perform worse than other competing methods on all

three datasets. Both SegNet with watershed and Mask-RCNN achieve a competitive
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Table 3.4: Generalisation capability of different models for nuclear segmentation.
All models are initially trained on Kumar and then the Combined CPM [151], TNBC
[113] and CoNSeP datasets are processed.

Combined CPM TNBC All CoNSeP
Method DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ

FCN8 + WS [103] 0.762 0.531 0.669 0.722 0.487 0.726 0.506 0.662 0.723 0.480 0.609 0.247 0.345 0.688 0.240
SegNet + WS [17] 0.791 0.583 0.738 0.755 0.561 0.758 0.559 0.734 0.750 0.554 0.681 0.315 0.449 0.733 0.332

U-Net [121] 0.720 0.541 0.652 0.672 0.446 0.681 0.514 0.635 0.676 0.442 0.585 0.363 0.442 0.670 0.297
Mask-RCNN [65] 0.764 0.575 0.760 0.719 0.549 0.705 0.529 0.726 0.742 0.543 0.606 0.348 0.492 0.720 0.357

DCAN [27] 0.770 0.582 0.716 0.730 0.528 0.725 0.537 0.683 0.720 0.495 0.609 0.306 0.403 0.685 0.278
Micro-Net [119] 0.792 0.615 0.716 0.751 0.542 0.701 0.531 0.656 0.753 0.497 0.644 0.394 0.489 0.722 0.356

DIST [113] 0.775 0.563 0.593 0.720 0.432 0.719 0.523 0.549 0.714 0.404 0.621 0.369 0.379 0.701 0.268
HoVer-Net 0.801 0.626 0.774 0.778 0.606 0.749 0.590 0.743 0.759 0.578 0.664 0.404 0.529 0.764 0.408

performance across all three generalisation tests. However, similar to the results

reported in Table 3.3, Mask-RCNN is not able to distinguish nuclear pixels from the

background as well as other competing methods, which has an adverse effect on the

overall segmentation performance shown by PQ. On the other hand, SegNet proves

to successfully detect nuclear pixels, reporting a greater DICE score than HoVer-Net

on both the TNBC and CoNSeP datasets. However, the overall segmentation result

for HoVer-Net is superior because it is better able to separate nuclear instances by

incorporating the horizontal and vertical maps at the output of the network.

3.4.5 Comparative Analysis of Classification Methods

Experimental Setting: We converted the top four performing nuclear instance

segmentation algorithms, based on their panoptic quality on the CoNSeP dataset,

such that they were able to perform simultaneous instance segmentation and clas-

sification. As mentioned in Section 5.4.1, the nuclear categories that we use in

our experiments are: miscellaneous, inflammatory, epithelial and spindle-shaped.

Specifically, we compared HoVer-Net with Micro-Net, Mask-RCNN and DIST. For

Micro-Net, we used an output depth of 5 rather than 2, where each channel gave

the probability of a pixel being either background, miscellaneous, inflammatory, ep-

ithelial or spindle-shaped. For Mask-RCNN, there is a devoted classification branch

that predicts the class of each instance and therefore is well suited to a multi-class

setting. DIST performs regression at the output of the network and therefore con-

verting the model such that it is able to classify nuclei into multiple categories is

non-trivial. Instead, we add an extra 1×1 convolution at the output of the network

that performs nuclear classification. As well as comparing to the aforementioned

methods, we compared our approach to a spatially constrained CNN (SC-CNN),

that achieves detection and classification. Note, because SC-CNN does not produce

a segmentation mask, we do not report the PQ for this method.
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Comparative Results: We trained our models on the training set of the

CoNSeP dataset and then we evaluated the model on both the test set of CoNSeP

and also the entire CRCHisto dataset. Table 3.5 displays the results of the multi-

class models on the CoNSeP and the CRCHisto datasets respectively, where the

given metrics are described in Section 3.3.2. For CoNSeP, along with the classifica-

tion metrics, we provide PQ as an indication of the quality of instance segmentation.

However, in CRCHisto, only the nuclear centroids are given and therefore, we ex-

clude PQ from the CRCHisto evaluation because it can’t be calculated without the

instance segmentation masks. We observe that HoVer-Net achieves a good qual-

ity simultaneous instance segmentation and classification, compared to competing

methods. It must be noted, that we should expect a lower F1 score for the miscel-

laneous class because there are significantly less nuclei represented. Also, there is

a high diversity of nuclei types that have been grouped within this class, belonging

to: mitotic; necrotic and cells that are uncategorisable. Despite this, HoVer-Net

is able to achieve a satisfactory performance on this class, where other methods

fail. Furthermore, compared to other methods, our approach achieves the best F1

score for epithelial, inflammatory and spindle classes. Therefore, due to HoVer-Net

obtaining a strong performance for both nuclear segmentation and classification, we

suggest that our model may be used for sophisticated subsequent cell-level down-

stream analysis in computational pathology.

Table 3.5: Comparative results for nuclear classification on the CoNSeP and
CRCHisto datasets. Fd denotes the F1 score for nuclear detection, whereas Fec,
Fic, Fsc and Fmc denote the F1 classification score for the epithelial, inflammatory,
spindle-shaped and miscellaneous classes.

CoNSeP CRCHisto
Method PQ Fd Fe

c Fi
c Fs

c Fm
c Fd Fe

c Fi
c Fs

c Fm
c

SC-CNN [134] - 0.608 0.306 0.193 0.175 0.000 0.664 0.246 0.111 0.126 0.000
DIST [113] 0.372 0.712 0.617 0.534 0.505 0.000 0.616 0.464 0.514 0.275 0.000

Micro-Net [119] 0.430 0.743 0.615 0.592 0.532 0.117 0.638 0.422 0.518 0.249 0.059
Mask-RCNN [65] 0.450 0.692 0.595 0.590 0.520 0.098 0.639 0.503 0.537 0.294 0.077

HoVer-Net 0.516 0.748 0.635 0.631 0.566 0.426 0.688 0.486 0.573 0.302 0.178

3.4.6 Ablation Study

To gain a full understanding of the contribution of our method, we investigated

several of its components. Specifically, we performed the following ablation experi-

ments: (i) contribution of the proposed loss strategy; (ii) Sobel-based post process-

ing technique compared to other strategies and (iii) contribution of the dedicated
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classification branch. Here, we utilised the Kumar and CoNSeP datasets for (i) and

(ii) due to the large number of nuclei present, whereas for (iii) we use CoNSeP and

CRCHisto because we do not have the classification labels for Kumar.

Loss Terms: We conducted an experiment to understand the contribution

of our proposed loss strategy. First, we used mean squared error (MSE) of the

horizontal and vertical distances La as the loss function of the HoVer branch and

binary cross entropy (BCE) loss Lc as the loss function for the NP branch. We

refer to this combination as the standard strategy because MSE and BCE are the

two most commonly used loss functions for regression and binary classification tasks

respectively. Next, we introduced the MSE of the horizontal and vertical gradients

Lb to the HoVer branch and the dice loss Ld to the NP branch. The intuition behind

our novel Lb is that it enforces the correct structure of the horizontal and vertical

map predictions and therefore helps to correctly separate neighbouring instances.

The dice loss was introduced because it can help the network to better distinguish

between background and nuclear pixels and is particularly useful when there is a

class-imbalance. We present the results in Table 3.6, where we observe an increase in

all performance measures for our proposed multi-term loss strategy. Therefore, the

additional loss terms boost the network’s ability to differentiate between nuclear

and background pixels (DICE) and separate individual nuclei (DQ and PQ). In

particular, there is a significant boost in the SQ for both Kumar and CoNSeP, which

suggests that our proposed loss function Lb is necessary to precisely determine where

nuclei should be split.

Post Processing: Usually, markers obtained from applying a threshold to

an energy landscape (such as the distance map) is enough to provide a competitive

input for watershed, as seen by DIST in Table 3.3. Although HoVer-Net is not

directly built upon an energy landscape, we devised a Sobel-based method to de-

rive both the energy landscape and the markers. To compare with other methods,

we implemented two further techniques for obtaining the energy landscape and the

markers. We then exhaustively compared all energy landscape and marker combi-

nations to assess which post processing strategy is the best. We start by linking

HoVer to the distance map by calculating the square sum χ2 + ϕ2, which can be

seen as the distance from a pixel to its nearest nuclear centroid. In other words,

this is a pseudo distance map. Additionally, χ and ϕ values can be interpreted as

Cartesian coordinates with each nuclear centroid as the origin. By thresholding the

values between a certain range, we can obtain the markers. The results of all combi-

nations are shown in Table 3.7. Note, our gradient-based post processing technique

is specifically designed for the HoVer branch output.

56



Table 3.6: Ablation study highlighting the contribution of the proposed loss strategy.

Kumar CoNSeP
Strategy DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ

Standard Loss 0.823 0.750 0.771 0.581 0.608 0.846 0.685 0.774 0.532 0.557
Proposed Loss 0.826 0.770 0.773 0.597 0.618 0.853 0.702 0.778 0.547 0.571

Table 3.7: Ablation study for post processing techniques: Sobel-based versus thresh-
olding to get markers and Sobel-based versus naive conversion to get energy land-
scape.

Kumar CoNSeP
Energy Markers DICE AJI DQ SQ PQ DICE AJI DQ SQ PQ

χ2 + ϕ2 Threshold 0.825 0.597 0.705 0.764 0.541 0.850 0.543 0.602 0.761 0.459
χ2 + ϕ2 Sobel 0.826 0.613 0.766 0.768 0.591 0.853 0.561 0.694 0.770 0.535
Sobel Threshold 0.825 0.614 0.715 0.772 0.554 0.850 0.566 0.617 0.775 0.479
Sobel Sobel 0.826 0.618 0.770 0.773 0.597 0.853 0.571 0.702 0.778 0.547

Classification Branch: In order to assess the importance of a devoted

branch for concurrent nuclear segmentation and classification, we compared the

proposed three branch setup of HoVer-Net to a two branch setup. Here, the two

branch setup extends the NP branch to a multi-class setting, by predicting each nu-

clear type at the output. Then, to obtain the binary mask, the positive channels are

combined together after nuclear type prediction. Utilising three branches decouples

the tasks of nuclear classification and nuclear detection, where a separate branch is

devoted to each task. For this ablation study, we train on the CoNSeP training set

and then process both the CoNSeP test set and the entire CRCHisto dataset.

We report results in Table 3.8, where we observe that utilising a separate

branch devoted to the task of nuclear classification leads to an improved overall

performance of simultaneous nuclear instance segmentation and classification in both

the CoNSeP and CRCHisto datasets. We can see that if the classification takes place

at the output of NP branch, then the network’s ability to determine the nuclear type

is compromised. This is because the task of nuclear classification is challenging and

therefore the network benefits from the introduction of a branch dedicated to the

task of classification.

3.5 Discussion and Conclusions

Analysis of nuclei in large-scale histopathology images is an important step towards

automated downstream analysis for diagnosis and prognosis of cancer. Nuclear fea-
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Table 3.8: Ablation study showing the contribution of the HoVer-Net classification
branch on the CoNSeP dataset. Fd denotes the F1 score for nuclear detection,
whereas Fec, Fic, Fsc and Fmc denote the F1 classification score for the epithelial,
inflammatory, spindle-shaped and miscellaneous classes.

CoNSeP CRCHisto
Branches PQ Fd Fe

c Fi
c Fs

c Fm
c Fd Fe

c Fi
c Fs

c Fm
c

NP & HoVer 0.499 0.736 0.636 0.545 0.528 0.333 0.666 0.458 0.523 0.271 0.132
NP & HoVer & NC 0.516 0.748 0.635 0.631 0.566 0.426 0.688 0.486 0.573 0.302 0.178

tures have been often used to assess the degree of malignancy [63]. However, visual

analysis of nuclei is a very time consuming task because there are often tens of thou-

sands of nuclei within a given whole-slide image (WSI). Performing simultaneous

nuclear instance segmentation and classification enables subsequent exploration of

the role that nuclear features play in predicting clinical outcome. For example, [104]

utilised nuclear features from histology TMA cores to predict survival in early-stage

estrogen receptor-positive breast cancer. Restricting the analysis to some specific

nuclear types only may be advantageous for accurate analysis in computational

pathology.

In this chapter, we have proposed HoVer-Net for simultaneous segmentation

and classification of nuclei within multi-tissue histology images that not only de-

tects nuclei with high accuracy, but also effectively separates clustered nuclei. Our

approach has three upsampling branches: 1) the nuclear pixel branch that separates

nuclear pixels from the background; 2) the HoVer branch that regresses the horizon-

tal and vertical distances of nuclear pixels to their centres of mass and 3) the nuclear

classification branch that determines the type of each nucleus. We have shown that

the proposed approach achieves the state-of-the-art instance segmentation perfor-

mance compared to a large number of recently published deep learning models across

multiple datasets, including tissues that have been prepared and stained under dif-

ferent conditions. This makes the proposed approach likely to translate well to a

practical setting due its strong generalisation capacity, which can therefore be effec-

tively used as a prerequisite step before nuclear-based feature extraction. We have

shown that utilising the horizontal and vertical distances of nuclear pixels to their

centres of mass provides powerful instance-rich information, leading to state-of-the-

art performance in histological nuclear segmentation. When the classification labels

are available, we show that our model is able to successfully segment and classify

nuclei with high accuracy.

Despite us extensively validating the superior performance of our model,
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there are various shortcomings that may be addressed in future work. For example,

the concept of horizontal and vertical maps are better suited to convex objects, such

as most nuclei, and therefore may not necessarily translate well to other tasks such

as gland segmentation. Future work may involve the development of our horizontal

and vertical targets so that they are better suited to general object segmentation in

computational pathology. Another disadvantage of our approach is that it assumes

that clustered nuclei are generally positioned above/below and side by side, due

to the configuration of our HoVer maps and therefore may not perform well when

nuclei are positioned at other angles to each other. A natural extension would be to

develop the idea of horizontal and vertical maps and include additional directions

to those utilised in our approach.

Region proposal (RP) methods, such as Mask-RCNN, show great potential

in dealing with overlapping instances because there is no notion of separating in-

stances; instead nuclei are segmented independently. However, a major limitation

of the RP methods is the difficulty in merging instance predictions between neigh-

bouring tiles during processing. For example, if a sub-segment of a nucleus at the

boundary is assigned a label, one must ensure that the remainder of the nucleus

in the neighbouring tile is also assigned the same label. To overcome this diffi-

culty, for Mask-RCNN, we utilised an overlapping tile mechanism such that we only

considered non-boundary nuclei.

Regarding the processing time, the average time to process a 1,000×1,000

image tile over 10 runs using Mask-RCNN for segmentation and classification was

106.98 seconds. Meanwhile, HoVer-Net only took an average of 11.04 seconds to

complete the same operation; approximately 9.7× faster. On the other hand, the

average processing time for DIST and Micro-Net was 0.600 and 0.832 seconds re-

spectively. Mask-RCNN inherently stores a single instance per channel, which leads

to very large arrays in memory when there are many nuclei in a single image patch,

which also contributes to the much longer processing time as seen above. Overall,

FCN methods seem to better translate to WSI processing compared to Mask-RCNN

or RPN methods in general. It must be stressed that the timing is not exact and is

dependent on hardware specifications and software implementation. With optimised

code and sophisticated hardware, we expect these timings to be considerably dif-

ferent. Additionally, the inference time is also dependent on the size of the output.

In particular, with a smaller output size, a smaller stride is also required during

processing. For instance, if we used padded convolution in the upsampling branches

of HoVer-Net, then we observe 5.6× speed up and the average processing time is

1.97 seconds per 1000×1000 image tile. For fair comparison, all models were pro-
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cessed on a single GPU with 12GB RAM and we fixed the batch size to a size of

one. Future work will explore the trade-off between the efficiency of HoVer-Net and

its potential to accurately perform instance segmentation and classification.

A major bottleneck for the development of successful nuclear segmentation

algorithms is the limitation of data; particularly with additional associated class

labels. In this work, we introduce the colorectal adenocarcinoma nuclear segmen-

tation and phenotypes (CoNSeP) dataset, containing over 24K labelled nuclei from

challenging samples to reflect the true difficulty of segmenting nuclei in whole-slide

images. Due to the abundance of nuclei with an associated nuclear category, CoN-

SeP aims to help accelerate the development of further simultaneous nuclear in-

stance segmentation and classification models to further increase the sophistication

of cell-level analysis within computational pathology.

We analysed the common measurements used to assess the true performance

of nuclear segmentation models and discussed their limitations. Due to the fact that

these measurements did not always reflect the instance segmentation performance,

we proposed a set of reliable and informative statistical measures. We encourage

researchers to utilise the proposed measures to not only maximise the interpretability

of their results, but also to perform a fair comparison with other methods.

Finally, methods have surfaced recently that explore the relationship of var-

ious nuclear types within histology images [74, 136], yet these methods are limited

to spatial analysis because the segmentation masks are not available. Utilising our

model for nuclear segmentation and classification enables the exploration of the spa-

tial relationship between various nuclear types combined with nuclear morphological

features and therefore may provide additional diagnostic and prognostic value. Cur-

rently, our model is trained on a single tissue type, yet due to the strong performance

of our instance segmentation model across multiple tissues, we are confident that

our model will perform well if we were to incorporate additional tissue types. We

observe a low F1 classification score for the miscellaneous category in the classifi-

cation model because there are significantly less samples within this category and

there exists high intra-class variability. Future work will involve obtaining more

samples within this category, including necrotic and mitotic nuclei, to improve the

class balance of the data.
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Chapter 4

MILD-Net for Gland Instance

Segmentation

Colorectal cancer is the third most commonly occurring cancer in men and the sec-

ond most commonly occurring cancer in women, where approximately 95% of all

colorectal cancers are adenocarcinomas [46]. Colorectal adenocarcinoma develops

in the lining of the colon or rectum, which makes up the large intestine and is

characterised by glandular formation. Histological examination of the glands, most

frequently with the Hematoxylin & Eosin (H&E) stain, is routine practice for assess-

ing the differentiation of the cancer within colorectal adenocarcinoma. Pathologists

use the degree of glandular formation as an important factor in deciding the grade

or degree of differentiation of the tumour. Within well differentiated cases, above

95% of the tumour is gland forming [46], whereas in poorly differentiated cases,

typical glandular appearance is lost. Within the top row of Figure 4.1, (a) shows a

healthy case, (b) shows a moderately differentiated tumour and (c) shows a poorly

differentiated tumour. We observe the loss of glandular formation as the grade of

cancer increases.

There is a growing trend towards a digitised pathology workflow, where dig-

ital images are acquired from glass histology slides using a scanning device. The

advent of digital pathology has led to a rise in computational pathology, where al-

gorithms are implemented to assist pathologists in diagnostic decision making. In

routine pathological practice, accurate segmentation of structures such as glands and

nuclei are of crucial importance because their morphological properties can assist

a pathologist in assessing the degree of malignancy [34, 64, 154]. With the advent

of computational pathology, digitised histology slides are being leveraged such that

pathological segmentation tasks can be completed in an objective manner. In par-
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Figure 1: (a-c) Example images from the GlaS dataset (Sirinukunwattana et al., 2017). (d-f)

Example images from the CRAG dataset. All images displayed have overlaid boundary ground

truth as annotated by an expert pathologist and are at 20⇥ magnification. (a) and (d) show

healthy glands, whereas the other images contain malignant glands. Black boxes highlight

clustered glands.

In routine pathological practice, accurate segmentation of structures such as

glands and nuclei are of crucial importance because their morphological properties

can assist a pathologist in assessing the degree of malignancy (Compton, 2000;

Hamilton et al., 2000; Washington et al., 2009). With the advent of computational

pathology, digitised histology slides are being leveraged such that pathological25

segmentation tasks can be completed in an objective manner. In particular,

automated gland segmentation within H&E images can enable pathologists to

extract vital morphological features from large scale histopathology images, that

would otherwise be impractical.

Computerized techniques play a significant role in automated digitalized30

histology image analysis, with applications to various tasks including but lim-

ited to nuclei detection and segmentation (Graham and Rajpoot, 2018b; Chen

et al., 2017; Sirinukunwattana et al., 2016), mitosis detection (Cireşan et al.,

3

Figure 4.1: (a-c) Example images from the GlaS dataset [135]. (d-f) Example images
from the CRAG dataset.

ticular, automated gland segmentation within H&E images can enable pathologists

to extract vital morphological features from large scale histopathology images, that

would otherwise be impractical.

However, automated gland segmentation remains a challenging task due to

several important factors. First, a high resolution level is needed for precise de-

lineation of glandular boundaries, that is important when extracting morphological

measurements. Next, glands vary in their size and shape, especially as the grade of

cancer increases. Furthermore, the output of solely the gland object gives limited

information when making a diagnosis. Extra information, such as the uncertainty

of a prediction and the simultaneous segmentation of additional histological com-

ponents, may give additional diagnostic power. For example, the pathologist may

choose to ignore areas with high uncertainty, such as areas with dense nuclei and ar-

eas containing artefacts. An additional histological component of particular interest

is the lumen, which is ultimately the defining structure of a gland. This structure

can help empower diagnostic decision making, because its presence and morphology

can be indicative of the grade of cancer.

In this chapter we propose a minimal information loss dilated network that

aims to solve the key challenges posed by automated gland segmentation. During

feature extraction, we introduce minimal information loss (MIL) units, where we in-

corporate the original downsampled image into the residual unit after max-pooling.
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This, alongside dilated convolution, helps retain maximal information that is es-

sential for segmentation, particularly at the glandular boundaries. We use atrous

spatial pyramid pooling for multi-scale aggregation that is essential when segmenting

glands of varying shapes and sizes. After feature extraction, our network upsamples

the feature maps to localise the regions of interest. For uncertainty quantification,

we apply random transformations to the input images as a method of generating the

predictive distribution. This leads to a superior segmentation result and allows us

to observe areas of uncertainty that may be clinically informative. Furthermore, we

use this measure of uncertainty to devise a scheme for ranking images to prioritise

for pathologist annotation. As an extension, we demonstrate how our method can

be modified to simultaneously segment the gland lumen. The additional segmenta-

tion of the gland lumen can empower current automated methods to achieve a more

accurate diagnosis.

Experimental results show that the proposed framework achieves state-of-

the-art performance on the 2015 MICCAI GlaS Challenge dataset and on a second

independent colorectal adenocarcinoma dataset.

4.1 Related Work

Computerised techniques play a significant role in automated digitalised histology

image analysis, with applications to various tasks including but limited to nuclei

detection and segmentation [59, 26, 134], mitosis detection [31, 25, 150, 10], tumour

segmentation [117], image retrieval [126, 132], cancer type classification [60, 85, 19,

98, 116], etc. Most of the previous literature focused on the hand-crated features for

histopathological image analysis [63]. Recently, deep learning achieved great suc-

cess on image recognition tasks with powerful feature representation [101, 131, 94].

For example, U-Net achieved excellent performance on the gland segmentation

task [121]. To further improve the gland instance segmentation performance, Chen

et al. presented a deep contour-aware network by formulating an explicit contour loss

function in the training process and achieved the best performance during the 2015

MICCAI Gland Segmentation (GlaS) on-site challenge [27, 26, 135]. In addition, a

framework was proposed by Xu et al. [160] by fusing complex multichannel regional

and boundary patterns with side supervision for gland instance segmentation. This

work was extended in [161] to incorporate additional bounding box information for

an enhanced performance. A Multi-Input-Multi-Output network (MIMO-Net) was

presented for gland segmentation in [118] and achieved the state-of-the-art perfor-

mance. Furthermore, several methods have investigated the segmentation of glands
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from histology images using limited expert annotation effort. For example, a deep

active learning framework was presented in [163] for gland segmentation using sug-

gestive annotation. Unannotated images were utilised in [168] with the design of

deep adversarial networks and consistently good segmentation performance was at-

tained.

4.2 Methods

4.2.1 Minimal Information Loss Dilated Network

Gland instance segmentation is a complex task that requires a significantly deep

network for meaningful feature extraction. Therefore, we use residual units to allow

efficient gradient propagation through our deep network architecture. Traditional

convolutional neural networks use a combination of max-pooling and convolution in

a hierarchical fashion to increase the size of the receptive field [94]. The inclusion of

max-pooling results in the loss of information with relatively low activations [125],

that is important for pixel-level prediction in segmentation. A significant amount

of downsampling via max-pooling leads to a sub-optimal segmentation, particularly

at thin object boundaries and for small objects. To counter this loss of information,

in addition to using traditional residual units, we include two additional types of

residual units during feature extraction: MIL units and dilated residual units. The

MIL unit incorporates the original image into each residual unit directly after the

max-pooling layer. First, the original image is downsampled to the same size as the

output of the pooling operation by bicubic interpolation. Then, a 3×3 convolution

is applied before concatenating to the output of the pooling layer. Next, a 3×3

convolution is applied to the concatenated block and this output is subsequently used

in the residual summation operation, as opposed to the input tensor in traditional

methods. Three MIL units are added during feature extraction immediately after

max-pooling. These MIL units can be seen in more detail within part (a) of Figure

4.2. A traditional residual unit, which is defined as:

y = F(x,W ) + x (4.1)

where x and y denote the input and output vectors respectively and W denotes the

weights within the residual unit. Specifically F represents the functionW 2(σ(W 1x)),

where σ denotes ReLU, W 1 denotes the weights of the first convolution and W 2

denotes the weights of the second convolution. The addition of the the input vector

x to F is shown by the summation operator ⊕ in the residual unit of part (d) in Fig-
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Figure 2: The overall framework of the proposed method. (a) Task specific component of the

network. We show in section 2.3 how this component can be modified. (b-d) lllustration of the

varying residual units. (e) Key showing important components of the framework.

2. Methods

2.1. Minimal Information Loss Dilated Network95

Gland instance segmentation is a complex task that requires a significantly

deep network for meaningful feature extraction. Therefore, we use residual units

to allow efficient gradient propagation through our deep network architecture.

Traditional convolutional neural networks use a combination of max-pooling

and convolution in a hierarchical fashion to increase the size of the receptive100

field (LeCun et al., 2015). The inclusion of max-pooling results in the loss of

information with low activations, that is important for pixel-level prediction in

segmentation. A significant amount of downsampling via max-pooling leads to a

6

Figure 4.2: Overview of the proposed network architecture for gland instance seg-
mentation.

ure 4.2. When we use a downsampled version of the original image (downsampled

with bicubic interpolation) without max-pooling, it indirectly captures the varia-

tion in pixel intensities in the local neighbourhood of each pixel without completely

discarding the activations, as is the case with max-pooling. It is this principle that

allows the MIL unit to ensure that the missing details are preserved. Equation 4.1

is modified to generate the MIL unit. The MIL unit can be defined as:

y = F(x,W ) + G(x,v,M) (4.2)

where F is defined in the same way as Equation 4.1. The vector v denotes the

original downsampled image and is incorporated into the function G to minimise

the loss of information. G represents the function M2(σ(M1v)‖x), where ‖ denotes

the concatenation operation. Similar to the traditional residual unit, M1 and M2

within function G represent the weights of the convolution applied to the downsam-

pled image and the convolution of the concatenated feature maps respectively. The
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Figure 4.3: Illustration of dilated convolution with varying dilation rates. The green
squares denote the position of a 3×3 filter acting on an image/feature map. Using
a dilation rate of 1 is the same as a regular convolution. Increasing the dilation rate
introduces sparsity in the kernel and increases the size of the receptive field.

summation of F and G is shown by the ⊕ symbol in the MIL unit within Figure

4.2.

Instead of downsampling the size of the input to increase the size of the

receptive field, an alternate solution is to increase the size of the kernel during

convolution. However, this practice is not feasible due to the huge amount of pa-

rameters required. Instead, dilated convolution uses sparse kernels [165], such that

the resolution of the feature maps is preserved, without significantly increasing the

number of parameters. In Figure 4.3 we display an illustration of dilated convolu-

tion with a 3×3 kernel and different dilation rates. We can see that using a dilation

rate of 1 is the same as a regular convolution, whereas using a dilation rate greater

than 1 introduces sparsity within the kernel and consequently increases the size of

the receptive field. We incorporate dilated convolution into residual units simply

by replacing each 3×3 convolution with a 3×3 dilated convolution. We initially

downsample using max-pooling and MIL units and then use dilated convolution

when the image has been downsampled by a factor of 8. We do not use dilated

convolution throughout the entire network since otherwise the model does not fit

into GPU memory. This is because convolving over the size of the original image

is more computationally expensive compared to when this image is downsampled.

Dilated residual units can be seen in part (b) of Figure 4.2. Minimising the loss of

information allows us to perform a successful gland instance segmentation, without

the need to incorporate additional information that is used in other methods [26].

Retaining the information throughout the model allows the network to successfully

segment small glandular objects and thin glandular contours. It must be noted that

we output the contours for uncertainty map refinement; not for separating gland
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instances.

In addition, for effective multi-scale aggregation, we apply atrous spatial

pyramid pooling (ASPP) [28] to the output of the deep network. Within our frame-

work, the goal of ASPP is to combat the challenge of detecting glands of different

cancer grades that display a high level of morphological heterogeneity. To achieve

this, we merge together multiple dilated convolution layers, allowing us to explicitly

control the size of the receptive field. Specifically, we use three dilated convolution

operations, with rates 6, 12 and 18. When the dilation rate is large, the dilated con-

volution reduces to a 1×1 convolution. This is because the dilated kernel becomes

larger than the size of the input feature map. Instead, to incorporate global level

context, we also use global average pooling. All operations are followed by an initial

1×1 convolution, a dropout layer with a rate of 0.5 and then a second 1×1 con-

volution for reducing the depth of the output. The concatenation of these feature

maps gives a powerful representation of the features extracted from the minimal

information loss dilated network.

Although high-level contextual information can be generated within the deep

neural network, it is crucial to incorporate low-level information for precisely delin-

eating the glandular boundaries. Directly upsampling by a factor of 8 to produce

the output does not consider low-level information. Instead, similar to U-Net [121],

we choose to upsample by a factor of 2 each time and concatenate low-level features

to the start of each upsampling block. Before the concatenation, we apply a 1×1

convolution to increase the depth of lower levels; ensuring that we have an equal

contribution of both components during the concatenation. We concatenate the

feature maps from the second convolution layer and the first two standard residual

units. We find that this method of upsampling is especially important for precisely

locating the boundaries where low-level features are particularly important. When

the features have been upsampled to the resolution of the original image, the net-

work splits into two separate branches: one for the gland object and one for the

contour. We denote this part of the network the task specific component of the

network and is shown by the dashed red box in Figure 4.2(a). We show an example

of how the task specific component can be modified in Section 2.3 of this chapter.

We add deep supervision to our network by calculating the auxiliary loss at the

second dilated residual unit during feature extraction. This helps the network to

learn more discriminative features and encourages a faster convergence. We also

add dropout layers immediately before the final 1×1 convolution, near the output

of the network, with a rate of 0.5. The overall flow of the network can be seen in

Figure 4.2.
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4.2.2 MILD-Net Loss Function

During training, we calculate the cross-entropy loss with respect to all outputs of the

proposed network. Concretely, we define Lg, Lc, Lag , Lac to be the gland, contour,

gland auxiliary and contour auxiliary cross-entropy loss functions respectively. We

define each loss function as:

Lg = − 1

N

N∑

i=1

K∑

k=1

Ψi,k(x) log pi(x, wg)

Lc = − 1

N

N∑

i=1

K∑

k=1

Φi,k(x) log qi(x, wc)

Lag = − 1

N

N∑

i=1

K∑

k=1

Ψi,k(x) log ri(x, wag)

Lac = − 1

N

N∑

i=1

K∑

k=1

Φi,k(x) log si(x, wac)

(4.3)

where pi(x, wg), qi(x, wg), ri(x, wag) and si(x, wac) represent the softmax output

at pixel i for the gland, contour, auxiliary gland and auxiliary contour outputs.

Then, Ψ is the gland ground truth, Φ is the contour ground truth and K is the

number of classes which we set to 2 because we perform binary segmentation at

each output. To calculate the overall loss at the output of each branch, we average

the cross-entropy over all N pixels. Then, the final loss function to be minimised

during training is defined as:

L = Lg + Lc + λLag + λLac + γ||w||22 (4.4)

where discount weight λ decays the contribution of each auxiliary loss Lag and Lac
during training. We initially set λ as 1, and divide the value by 10 after every eight

training epochs. The selection of the initial λ and the decay strategy was motivated

by DCAN [26], where they used a similar strategy. ||w||22 denotes the regularisation

term on weights w = {wg,wc,wag ,wac}, with regularisation parameter γ. We

emperically set gamma to be 10−5.
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4.2.3 Random Transformation Sampling for Uncertainty Quantifi-

cation

Current deep learning models have an ability to learn powerful feature representa-

tions and are capable of successfully mapping high dimensional input data to an

output. However, this mapping is assumed to be accurate in such models and there

is no quantification of how certain the model is of the prediction. Bayesian ap-

proaches to modeling, naturally involve uncertainty quantification by obtaining a

posterior distribution over the parameters of the model, which therefore allows us to

induce a predictive distribution for the unseen data. However, the tractability and

scalability of Bayesian methods applied to shallow neural networks and their recent

deeper counterparts have been a subject of research for the past several decades.

Although significant progress has been made, inference of the posterior distribution

over the model parameters remains computationally expensive. Recent work [51]

demonstrated that using a standard regularisation tool such as dropout is equiva-

lent to variational approximation using Bernoulli distributions [22] in deep learning.

Therefore, this can be used to approximate the uncertainty over the model predic-

tions [50]. Standard variational dropout captures the uncertainty over the model

weights, given the observed data. It is important to distinguish that there may be

noise inherent to each observation, that we might not be able to reduce by obtaining

more data. This would be crucial to estimate within clinical applications. Generally,

this uncertainty is estimated through a data dependent noise model [80], however

it would require us to modify the existing architecture. Therefore, to capture ob-

servation dependent noise, we perform random transformations to the input images

during test time. To obtain the predictive distribution, we apply a random transfor-

mation Φ(x) on a sample of n images, where Φ performs a flip, rotation, Gaussian

blur, median blur or adds Gaussian noise on input image x to obtain {Φ1, Φ2, ..., Φn}.
Each image within the sample is then processed, where the mean of this processed

sample gives the refined prediction and the variance gives the uncertainty. Due to

the aggregation of the predictions of multiple transformed images, our model will

naturally perform well, particularly for areas that are generally difficult to classify.

Similarly, recent work leveraged transformed images, but instead are utilised to ob-

tain informative priors [112], that help a model become more invariant to these

specific transformations. However, the primary aim for utilising RTS is to obtain a

measure of uncertainty that may be informative within clinical practice, as opposed

to making our model more invariant. We can define the prediction and uncertainty

as:
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µ =
1

N

N∑

i=1

f(Φi(x);w); σ =
1

N

N∑

i=1

(f(Φi(x);w)− µ)2 (4.5)

where µ defines the segmentation prediction, σ defines the uncertainty and N defines

the number of transformations. The function f denotes the deep neural network with

input x and output taken after the softmax layer. w denotes the weights and Φi

defines a random transformation i to input image x. Note, that the output of σ is

a two-dimensional image, where high values denote pixels with high uncertainty.

We propose a metric to give individual glands a score of uncertainty, based

on the uncertainty map generated via random transformation sampling (RTS). This

measure highlights glands that are generally hard to classify, irrespective of the num-

ber training examples that the model has seen. We suggest that it is reasonable to

disregard segmented glands that have an uncertainty score above a given threshold,

because in practice features would not be extracted from areas of general ambigu-

ity. We first remove the boundaries by subtracting the predicted contours that have

been output by the network and then calculate the object-level uncertainty score for

each predicted instance k as: τk = 1
N

∑N
i=1 σ̂ρk,i, where σ̂ is the boundary removed

uncertainty map and ρk,i is the predicted binary output of pixel i within instance

k. We define n as the number of pixels within predicted instance k. We remove

the boundaries because these areas show the transition between the two classes and

therefore the uncertainty here can’t be avoided. Given a selected global threshold

for our uncertainty score τ , we may only consider segmented glands with a score

below this threshold.

4.2.4 MILD-Net+ for Simultaneous Gland and Lumen Segmenta-

tion

We extend MILD-Net such that it simultaneously segments the lumen and the gland,

in order to increase the diagnostic power of the network. For example, when the

grade of cancer increases, tumours tend to become solid and lose their lumenal

properties. Therefore, the additional segmentation of the lumen can empower cur-

rent automated colorectal cancer classification methods, due to the introduction of

additional important diagnostic features. In order to achieve this simultaneous seg-

mentation, the network requires only a subtle modification. MILD-Net+ takes an

image as input and, identically to MILD-Net, extracts features via the minimal in-

formation loss encoder. After upsampling to the original resolution, the task-specific

component of the network is modified such that it has four branches. The only dif-

ference between MILD-Net and MILD-Net+ is the number of branches after the
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Figure 3: MILD-Net+. The red dashed box denotes the modified component of MILD-Net+.

We observe that the network segments the gland, gland contour, lumen and lumen contour,

whilst only applying a small modification to the original network.

the number of branches after the network is upsampled back to the size of the270

original image. Specifically, the part of the architecture shown by the red dashed

box displayed in Figure 2(a) is replaced with the one in Figure 3. We observe

that the majority of the network is unchanged apart from the addition of two

branches at the end of the up-sampling path. As a result, MILD-Net+ does not

require many additional parameters to achieve an accurate and simultaneous275

gland and lumen segmentation. This highlights the ability of MILD-Net+ to

extract a rich set of features. Similar to what we have done before, we apply

RTS to both the gland and the lumen and use the gland and lumen contours to

refine the output of each uncertainty map. Consequently, MILD-Net+ segments

diagnostically important features, whilst quantifying the uncertainty for each280

segmented component.

During training, the overall loss function of MILD-Net+ is defined as:

Ltotal =
2X

a=1

�La + Lg + Lgc + Ll + Llc + ||✓||22 (6)

where La represents the auxiliary loss with corresponding discount weight � that

decays the contribution of the auxiliary loss during training. Auxiliary loss L1

13

Figure 4.4: Modification of network output for simultaneous gland and lumen seg-
mentation.

network is upsampled back to the size of the original image. Specifically, the part of

the architecture shown by the red dashed box displayed in Figure 4.2(a) is replaced

with the one in Figure 4.4. We observe that the majority of the network is un-

changed apart from the addition of two branches at the end of the upsampling path.

As a result, MILD-Net+ does not require many additional parameters to achieve

an accurate and simultaneous gland and lumen segmentation. This highlights the

ability of MILD-Net+ to extract a rich set of features. Similar to what we have done

before, we apply RTS to both the gland and the lumen and use the gland and lumen

contours to refine the output of each uncertainty map. Consequently, MILD-Net+

segments diagnostically important features, whilst quantifying the uncertainty for

each segmented component.

4.2.5 MILD-Net+ Loss Function

In the same fashion as Section 2.2, we calculate the cross-entropy loss with respect

to the output of each component of MILD-Net+. Specifically, we calculate the cross

entropy loss with respect to the gland, gland contour, lumen and lumen contour

denoted by Lg, Lgc, Ll and Llc respectively. We aso calculate the auxiliary losses

Lag and Lal with respect to the gland and the lumen. Then, during training, the

overall loss function of MILD-Net+ is defined as:

L = Lg + Lgc + Ll + Llc + λLag + λLal + γ||θ||22 (4.6)
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where ||θ||22 denotes the regularisation term on weights θ = {θg,θgc,θl,θlc,θag ,θal},
with regularisation parameter γ. We use the same γ as MILD-Net, with a value of

10−5. Also, we use the same λ that was utilised within MILD-Net that decays the

contribution of the auxiliary loss during training. In a similar vein, we also divide

the value by 10 after every eight training epochs. Note, that we choose not to

use auxiliary loss with respect to the contours in order to reduce the number of

parameters in MILD-Net+.

4.3 Experiments and Results

4.3.1 The Datasets and Pre-processing

For our experiments, we used two datasets: (i) the Gland Segmentation (GlaS) chal-

lenge dataset [135], used as part of MICCAI 2015, and (ii) a second independent

colon adenocarcinoma dataset, which for simplicity we refer to as the colorectal ade-

nocarcinoma gland (CRAG) dataset1, that was originally used in [15]. Both datasets

were obtained from the University Hospitals Coventry and Warwickshire (UHCW)

NHS Trust in Coventry, United Kingdom. Within (i), data was extracted from 16

H&E stained histological WSIs, scanned with a Zeiss MIRAX MIDI Slide Scanner

with a pixel resolution of 0.465µm/pixel. After scanning, the WSIs were rescaled to

0.620µm/pixel (equivalent to 20× objective magnification) and then a total of 165

image tiles were extracted. These 165 images consist of 85 training (37 benign and

48 malignant) and 80 test images (37 benign and 43 malignant). Furthermore, the

test images are split into two test sets: Test A and Test B. Test A was released to

the participants of the GlaS challenge one month before the submission deadline,

whereas Test B was released on the final day of the challenge. Further information

on the dataset can be found within the published challenge paper[135]. Images are

mostly of size 775×522 pixels and all training images have associated instance-level

segmentation ground truth that precisely highlight the gland boundaries. In ad-

dition, two expert pathologists (D.S, Y.W.T) provide accurate lumen annotations

for all glands within the GlaS dataset. Within (ii), we have a total of 213 H&E

CRA images taken from 38 WSIs scanned with an Omnyx VL120 scanner with a

pixel resolution of 0.55µm/pixel (20× objective magnification). All 38 WSIs are

from different patients and are mostly of size 1512×1516 pixels, with corresponding

instance-level ground truth. The CRAG dataset is split into 173 training images

and 40 test images with different cancer grades. For both datasets, we set 20% of

1The CRAG dataset for gland segmentation is available at https://warwick.ac.uk/fac/sci/

dcs/research/tia/data/mildnet
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the training set aside for evaluating the performance of our model during training.

Examples of images from each of the two datasets can be seen in Figure 4.1.

We extracted patches of size 500×500 and augmented patches with elastic

distortion, random flip, random rotation, Gaussian blur, median blur and colour

distortion. Finally, we randomly cropped a patch of size 464×464, before input into

the proposed network.

4.3.2 Whole-Slide Image Processing

In addition to processing the image tiles as described in Section 3.1 of this chapter,

we further investigated the ability of our method by processing a set of colorectal

adenocarcinoma WSIs. This dataset consists of 16 high resolution WSIs, taken from

the COMET dataset, which was originally used in [134]. Within this dataset, the

WSIs are obtained from two different centres and therefore we split the images into

two further datasets. We name the dataset corresponding to WSIs from the first

centre as COMET-1 and the dataset containing WSIs from the second centre as

COMET-2. COMET-1 is from the same centre as the image tiles that the algo-

rithm was trained on, whereas COMET-2 is from a different centre completely. We

introduce the second centre to test how our method generalises to new data. The

data is divided equally, such that 8 WSIs are taken from each centre. Because it is

quite laborious to obtain pixel-based glandular annotations for each WSI, we select

two high-power fields (HPFs) from each WSI of size 2500×2500 pixels at 20×. As

a result, even though we process the whole-slide to see how our algorithm performs

visually, we use these selected HPFs to perform quantitative comparison. HPFs

were extracted such that we had an even representation of benign and malignant

regions, annotated by two expert pathologists (D.S, Y.W.T). In order to satisfy this

criteria, we mainly processed WSIs that contained a combination of malignant and

benign glands.

4.3.3 Implementation and Training Details

We implemented our framework with the open-source software library TensorFlow

version 1.3.0 [7]. We used Xavier initialisation [55] for the weights of the model,

where they were drawn from a Gaussian distribution. Concretely, weight wi is

initialised with mean 0 and variance 1
nwi

, where, nwi refers to the number of input

neurons to weight i. We trained our model on a workstation equipped with one

NVIDIA GeForce Titan X GPU for 30 epochs (60,000 steps) on the GlaS dataset

and 75 epochs (200,000 steps) on the CRAG dataset. The difference in the number
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of steps until convergence reflects the greater variability of the CRAG dataset. We

used Adam optimisation with an initial learning rate of 10−4 and a batch size of 2.

4.3.4 Evaluation and Comparison

We assessed the performance of our method by using the same evaluation criteria

used in the MICCAI GlaS challenge, consisting of F1 score, object-level dice and

object-level Hausdorff distance [135]. The F1 score is employed to measure the

detection accuracy of individual glandular objects, the Dice index is a measure of

similarity between two sets of samples and the Hausdorff distance measures the

boundary-based segmentation accuracy. We implemented several state-of-the-art

segmentation methods including SegNet [17], FCN-8 [103] and a DeepLab-v3 [28]

model for extensive comparative analysis. For gland segmentation, we also report

the results obtained by two recent methods including MIMO-Net [118], that uses a

multi-input-multi-output convolutional neural network and two methods that utilise

deep multichannel side supervision [160, 161].

For all methods, including MILD-Net, the final binary maps are obtained by

applying a threshold of 0.5 to all predicted probability maps. A morphological open-

ing operation is then used with a disk filter radius 5 to obtain the final result. This

disk size was empirically selected because it gave the best visual and quantitative

results.

In this section, we first show results for MILD-Net on the GlaS dataset and

the CRAG dataset. Next, we display results of MILD-Net for whole-slide image

(WSI) processing. Finally, we report results of MILD-Net+ on the GlaS dataset.

Results on GlaS and CRAG Datasets Using MILD-Net

We can see from Table 4.1 that our proposed network achieves state-of-the-art per-

formance compared to all methods on the 2015 MICCAI GlaS Challenge dataset.

We also validated the efficacy of our method on the CRAG dataset, demonstrating

overall better performance in comparison with other methods and highlighting the

good generalisation capability of our method on different datasets. Results on the

CRAG dataset can be seen in Table 4.2. We can see from Table 4.3 that utilis-

ing test time random transformations leads to an improved performance, due to a

refined prediction within areas of high uncertainty. Additionally, we compared our

method of RTS to Monte Carlo dropout sampling. However, because we don’t apply

many dropout layers within our network, there is not sufficient variation in the sam-

ples to have a profound effect. We also experimented by adding additional dropout
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Figure 4: Visual gland segmentation results on the GlaS dataset. We compare our method

to state-of-the-art methods including FCN-8, U-Net, SegNet, DCAN and DeepLab-v3. Note,

visual results for U-Net and DCAN are the results as submitted to the GlaS challenge.
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Figure 4.5: Visual gland segmentation results on the GlaS dataset.

layers with Monte Carlo dropout, but this had a detrimental effect during the train-

ing of the network. Because RTS utilises an averaging technique, the number of

false positives in areas of high uncertainty is reduced. This explains the increase

in performance with RTS. It must be noted that it is significantly more difficult to

segment glands within the CRAG dataset than when using the GlaS dataset. This

is because there are many malignant cases where the glandular boundaries are very

ambiguous. Examples of results from different methods are shown in Figure 4.5

and 4.6. We can see that our method can generate more accurate gland instance
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Figure 5: Visual gland segmentation results on the CRAG dataset. We compare our method

to state-of-the-art methods including FCN-8, U-Net, SegNet, DCAN and DeepLab-v3.

Carlo dropout, but this had a detrimental effect during the training of the

network. Because RTS utilises an averaging technique, the number of false380

positives in areas of high uncertainty is reduced. This explains the increase in

performance with RTS. It must be noted that it is significantly more difficult to

segment glands within the CRAG dataset than when using the GlaS dataset.
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Figure 5: Visual gland segmentation results on the CRAG dataset. We compare our method

to state-of-the-art methods including FCN-8, U-Net, SegNet, DCAN and DeepLab-v3.

Carlo dropout, but this had a detrimental effect during the training of the

network. Because RTS utilises an averaging technique, the number of false380

positives in areas of high uncertainty is reduced. This explains the increase in

performance with RTS. It must be noted that it is significantly more difficult to

segment glands within the CRAG dataset than when using the GlaS dataset.
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performance with RTS. It must be noted that it is significantly more difficult to

segment glands within the CRAG dataset than when using the GlaS dataset.
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Figure 4.6: Visual gland segmentation results on the CRAG dataset.

76



Table 4.1: Comparative analysis of models on the GlaS challenge dataset. CUMed-
Vision submissions use the method reported in [27] and Freidburg submissions use
the method reported in [121].

F1 Score Obj. Dice Obj. Hausdorff Rank
Method Test A Test B Test A Test B Test A Test B Sum

MILD-Net 0.914 0.844 0.913 0.836 41.54 105.89 6
Multichannel B [161] 0.893 0.843 0.908 0.833 44.13 116.82 15

MIMO-Net [118] 0.913 0.724 0.906 0.785 49.15 133.98 31
Multichannel A [160] 0.858 0.771 0.888 0.815 54.20 129.93 33

DeepLab [28] 0.862 0.764 0.859 0.804 65.72 124.97 46
SegNet [17] 0.858 0.753 0.864 0.807 62.62 118.51 46
FCN-8 [103] 0.783 0.692 0.795 0.767 105.04 147.28 71

CUMedVision2 [27] 0.912 0.716 0.897 0.781 45.42 160.35 43
ExB1 0.891 0.703 0.882 0.786 57.41 145.58 49
ExB3 0.896 0.719 0.886 0.765 57.36 159.87 52

Freidburg2 [121] 0.87 0.695 0.876 0.786 57.09 148.47 52
CUMedVision1 [27] 0.868 0.769 0.867 0.8 74.6 153.65 54

ExB2 0.892 0.686 0.884 0.754 54.79 187.44 61
Freidburg1 [121] 0.834 0.605 0.875 0.783 57.19 146.61 63

CVML 0.652 0.541 0.644 0.654 155.43 176.24 94
LIB 0.777 0.306 0.781 0.617 112.71 190.45 95

vision4GlaS 0.635 0.527 0.737 0.61 107.49 210.1 98

Table 4.2: Comparative analysis of models on the CRAG dataset. S and R denote
score and rank respectively.

Method F1 Score Obj. Dice Obj. Hausdorff Rank Sum
MILD-Net 0.825 0.875 160.14 3
DCAN [27] 0.736 0.794 218.76 6

DeepLab [28] 0.648 0.745 281.45 10
SegNet [17] 0.622 0.739 247.84 11
U-Net [121] 0.600 0.654 354.09 15
FCN-8 [103] 0.558 0.640 436.43 18

Table 4.3: MILD-Net performance with random transformation sampling (RTS) on
the CRAG and GlaS datasets.

Dataset Method F1 Score Obj. Dice Obj. Hausdorff
GlaS A MILD-Net 0.914 0.908 42.32

MILD-Net-RTS 0.914 0.913 41.54
GlaS B MILD-Net 0.809 0.822 117.91

MILD-Net-RTS 0.844 0.836 105.89
CRAG MILD-Net 0.806 0.867 162.35

MILD-Net-RTS 0.825 0.875 160.14
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(c)

(b)(a)

Figure 6: Object-level uncertainty quantification. (a) shows the F1 score as we disregard

predictions with an uncertainty score ⌧k greater than a given threshold ⌧ . (b) The percentage

of total instances considered, given a threshold ⌧ . For the red dashed line, we use the boundary

removed uncertainty map, whereas for the blue dashed line we use the standard uncertainty

map. The black horizontal line shows the F1 score when no glands with a high uncertainty are

removed. (a) and (b) relate to results on the combined set of test A and test B. (c) from left

to right: original image; uncertainty map �; boundary removed uncertainty map �̂. For each

instance k within �̂, an object-level uncertainty score ⌧ is calculated.

In Figure 6, we show the relationship between the performance and the

uncertainty score ⌧ . This score is used as a threshold, where we only consider

predictions k with an uncertainty score ⌧k lower than ⌧ . We observe from

Figure 6 that it seems sensible to only consider segmented predictions with an

uncertainty score ⌧k below 1. This preserves a large proportion of the dataset,395

whilst significantly increasing the performance. We also display the effect of

using the boundary removed uncertainty map. We observe that removing the

boundary allows us to preserve a larger proportion of the dataset when we are

using lower thresholds for the removal of predictions with high uncertainty. This

suggests that using the boundary removed uncertainty map allows us to correctly400

21

Figure 4.7: Object-level uncertainty quantification. (a) F1 score as we disregard
predictions with an uncertainty score τk greater than a given threshold τ . (b)
Percentage of total instances considered, given a threshold τ . (c) From left to right:
original image; uncertainty map σ; boundary removed uncertainty map σ̂.

segmentation with precisely delineated boundaries and well segmented instances. It

is interesting to see that within the dashed boxes in the last column of Figure 4.6,

our proposed algorithm was able to detect tumorous areas that were not picked up

by the pathologist.

In Figure 4.7, we show the relationship between the performance and the

uncertainty score τ . This score is used as a threshold, where we only consider pre-

dictions k with an uncertainty score τk lower than τ . We observe from Figure 4.7

that it seems sensible to only consider segmented predictions with an uncertainty

score τk below 1. This preserves a large proportion of the dataset, whilst signifi-

cantly increasing the performance. We also display the effect of using the boundary

removed uncertainty map. We observe that removing the boundary allows us to pre-

serve a larger proportion of the dataset when we are using lower thresholds for the

removal of predictions with high uncertainty. This suggests that using the bound-

ary removed uncertainty map allows us to correctly remove the uncertain cases that

contribute most negatively to the performance. Therefore, utilising the boundary

removed uncertainty map is more robust and can be effectively be used to select

predictions with low uncertainty. It is interesting to note that we are still able to

preserve around 75% of instances by selecting predictions with τk below 0.25. As a
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result, F1 score, object dice and object Hausdorff can be increased to 0.930, 0.9359

and 28.658 for test set A and increased to 0.913, 0.9567 and 22.70 for test set B. It

must be noted that the intuition of disregarding glands with high uncertainty means

that we should not extract any statistical measures from these disregarded glands.

Therefore, when removing predicted instances with high uncertainty, we also remove

the corresponding ground truth instance to obtain the above measures.

Results on Whole-Slide Images Using MILD-Net

Within part (a-d) of Figure 4.8, the inner-most image is the original WSI with over-

laid glandular boundaries, the central column shows the two HPFs for statistical

analysis at 20× and the outer-most column shows a selected region of each HPF at

40×. We observe that our proposed method is able to accurately segment glands

within colon whole-slide histology images with a precise delineation of glandular

boundaries. Therefore, as a result of training on both the GlaS and the CRAG

dataset, our method is capable of extracting a strong set of features that enables

a successful transition to WSI processing. We also note from part (c) and (d) of

Figure 4.8, that MILD-Net generalises well to completely unseen data from different

centres. A particularly interesting aspect of COMET-2 is that most images contain

pathologist pen markings. However, as a result of the strong set of features that

MILD-Net is able to extract no pre-processing was needed to avoid these regions,

where other methods may have failed. For a thorough analysis, we obtain quanti-

tative results for all HPFs extracted from the 16 WSIs. In total, we have 32 HPFs:

16 from COMET-1 and 16 from COMET-2. In order to test the performance of

our algorithm on both benign and malignant cases, we ensured an equal represen-

tation of both benign and malignant glands. We can see from Table 4.4 that the

proposed method has a similar performance between the two datasets, highlighting

the generalisability of our method. Despite a good detection performance, we can

see that the Hausdorff distance within malignant cases is significantly higher than

those results reported on the GlaS and the CRAG dataset. The Hausdorff distance

measure indicates how closely the shape of two objects match with each other. As

a result, disagreement at the boundary will lead to deterioration in performance.

Therefore, this suggests that the algorithm finds it challenging to precisely locate

the glandular boundaries within malignant cases. This however reflects the true

difficulty in segmenting glands within whole-slide histology images, where there are

often many ambiguous regions. After careful observation, we state that the lower

performance for Hausdorff distance is not due to a limitation of the algorithm, but

because a number of malignant cases are generally difficult to segment.
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Figure 7: Visual results of gland segmentation in WSIs using the proposed framework. (a)

and (b) show processed images using COMET-1, whilst (c) and (d) show processed images

using COMET-2. Red regions show malignant areas of interest, whereas green regions show

benign areas of interest. The central column of images within (a), (b), (c) and (d) shows the

two HPFs extracted from each WSI for statistical analysis.

physically can’t touch within histology images. The only exception for this would

be if there was an artefact within the image. From Figure 8, we observe that our

algorithm is able to precisely segment both the gland object and the gland lumen.

We can see in Table 6, that MILD-Net+ achieves superior performance in all455

statistical measures for lumen segmentation, compared to all competing methods.

This is particularly interesting because all other competing methods were trained

for the single task of lumen segmentation. Therefore, this reiterates the strong

feature extraction capabilities of the minimal information loss network. Despite
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Figure 4.8: Visual results of gland segmentation on WSIs using the proposed frame-
work.

Table 4.4: MILD-Net gland segmentation performance on HPFs from WSIs. B
stands for average benign score and M stands for average malignant score.

F1 Score Obj. Dice Obj. Hausdorff
B M B M B M

COMET-1 0.811 0.817 0.822 0.867 158.40 389.89
COMET-2 0.948 0.716 0.886 0.751 76.15 474.12

Average COMET-1 0.814 0.845 274.15
Average COMET-2 0.832 0.819 275.14

Results on GlaS Dataset Using MILD-Net+

To demonstrate the performance of MILD-Net+, we compare our algorithm to four

recent segmentation methods trained solely for the task of lumen segmentation.

Namely, these methods are FCN-8 [103], U-Net [121], SegNet [17] and DeepLab-

v3 [28]. We chose not to compare with DCAN [27] because this network was specifi-
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Figure 8: Visual results of gland and lumen segmentation. The top row displays the output of

the proposed method. The bottom row displays the pathologist annotation. Yellow contours

show the outline the glandular boundaries and green contours show the outline of the lumenal

boundaries.

achieving state-of-the-art performance at the output of the lumen branch, it460

is necessary to ensure that we still achieve a good accuracy at the output of

the gland object branch. We observe that, MILD-Net+ out-performs MILD-Net

on most of the statistical measures, suggesting that segmenting the lumen may

provide additional cues to stengthen the segmentation of the gland object.

Table 6: MILD-Net+ lumen segmentation performance on the GlaS challenge dataset

F1 Score Obj. Dice Obj. Hausdorff

A B A B A B

L
u
m

en

MILD-Net+ 0.825 0.711 0.875 0.816 26.81 94.09

DeepLab 0.757 0.521 0.816 0.722 46.49 136.81

SegNet 0.698 0.661 0.791 0.781 56.22 110.32

U-Net 0.623 0.425 0.724 0.643 73.51 152.52

FCN-8 0.744 0.556 0.778 0.723 60.51 133.09

G
la

n
d MILD-Net+ 0.920 0.820 0.918 0.836 39.39 103.07

MILD-Net 0.914 0.844 0.913 0.836 41.54 105.89

CUMedVision2 0.912 0.716 0.897 0.781 45.42 160.35
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Figure 4.9: Visual results for simultaneous gland and lumen segmentation.

cally tuned to achieve instance segmentation. Instance segmentation is not an issue

for lumen segmentation, because neighbouring lumen physically can’t touch within

histology images. The only exception for this would be if there was an artefact

within the image. From Figure 4.9, we observe that our algorithm is able to pre-

cisely segment both the gland object and the gland lumen. We can see in Table 4.5,

that MILD-Net+ achieves superior performance in all statistical measures for lumen

segmentation, compared to all competing methods. This is particularly interesting

because all other competing methods were trained for the single task of lumen seg-

mentation. Therefore, this reiterates the strong feature extraction capabilities of the

minimal information loss network. Despite achieving state-of-the-art performance

at the output of the lumen branch, it is necessary to ensure that we still achieve a

good accuracy at the output of the gland object branch. We observe that, MILD-

Net+ out-performs MILD-Net on most of the statistical measures, suggesting that

segmenting the lumen may provide additional cues to strengthen the segmentation

of the gland object.

Table 4.5: MILD-Net+ gland and lumen segmentation performance on the GlaS
challenge dataset.

F1 Score Obj. Dice Obj. Hausdorff
Test A Test B Test A Test B Test A Test B

L
u

m
e
n

MILD-Net+ 0.825 0.711 0.875 0.816 26.81 94.09
DeepLab [28] 0.757 0.521 0.816 0.722 46.49 136.81
SegNet [17] 0.698 0.661 0.791 0.781 56.22 110.32
U-Net [121] 0.623 0.425 0.724 0.643 73.51 152.52
FCN-8 [103] 0.744 0.556 0.778 0.723 60.51 133.09

G
la

n
d MILD-Net+ 0.920 0.820 0.918 0.836 39.39 103.07

MILD-Net 0.914 0.844 0.913 0.836 41.54 105.89
CUMedVision2 [27] 0.912 0.716 0.897 0.781 45.42 160.35
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4.4 Discussion and Conclusions

Analysis of Hematoxylin and Eosin stained histology slides is considered as the

gold standard in histology based diagnosis. However, visual analysis is very time

consuming and laborious because pathologists are required to thoroughly examine

each case to ensure an accurate diagnosis. Furthermore, due to the complex nature

of the task, histopathological diagnosis often suffers from inter- and intra-observer

variability. Computational techniques aim to counter the challenges posed within

routine pathology by providing an objective and potentially more accurate diagnosis.

In order to improve the diagnostic capabilities of automated methods, we present

a minimal information loss dilated network for the accurate segmentation of glands

within colon histology images. Subsequently, gland based features can be used to

empower the diagnostic decision made by the pathologist.

Extensive experimentation on multiple datasets demonstrates the superior

performance of our approach compared to other competing methods. Furthermore,

our method performs well when applied to the WSI, highlighting the network’s

strong feature extraction capabilities. As a result, the network may be used in a

clinical setting to segment glandular structures within the WSI with a high level

of accuracy. We also show that the method generalises well to new data and can

therefore be expected to work well within other centres.

It is worth noting, that the minimal information loss network helps retain

the spatial information within the network and therefore leads to a successful seg-

mentation at the glandular boundaries. Therefore, additional cues are not needed

to separate the majority of touching instances. However, it must be noted that this

method is able to separate glands when they are very close together, but may fail

when the glands are physically touching with no pixels in between. We do not see

this as a cause for concern because the majority of instances can be separated by our

method due to the reduction of information loss throughout the network. We also

observe from our results that our network was able to successfully segment glands of

various sizes. This in part was because of the addition of the atrous spatial pyramid

pooling module that enlarged the size of the receptive field with varying dilation

rates.

The addition of RTS increased the performance of the algorithm, whilst

simultaneously generating an uncertainty map. We have shown that this uncertainty

map can be used as additional information about where the algorithm is uncertain.

Also, we have shown that if we choose not to extract features from predictions with

high uncertainty, we can significantly increase the performance whilst maintaining
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a large proportion of the dataset. We can ensure that we retain a larger proportion

of this dataset if we use a boundary removed uncertainty map. The removal of

predictions with high uncertainty is particularly important for gland-based feature

extraction (e.g glandular aberrance [15]) because features should not be extracted

from glands where the algorithm is not confident. This workflow mimics clinical

practice because the pathologist would not make a diagnosis from areas of ambiguity.

Therefore, this uncertainty map can be used to extract relatively strong features for

subsequent grading.

The proposed network may fail to distinguish between the lumen of the gas-

trointestinal tract and the glandular lumen. However, this is to be expected because

of a very similar appearance between these histological components. As well as this,

we only used small image tiles for developing our algorithm and therefore contextual

information to empower the segmentation is limited. In future work, we may incor-

porate a larger input size to provide additional context to the algorithm. A potential

downside of our algorithm is that the model is quite large and therefore can’t typi-

cally use large batch sizes. This can have negative implications on processing times

and can lead to poor estimation of moving averages during batch normalisation.

With a small modification, the network is able to precisely segment the lumen

of the gland. We also observed that the segmentation is very accurate within benign

glands. This is positive because we presumed that there may have been confusion

between lumenal areas and areas containing goblet cells. After performing this

segmentation, lumenal features can be used to empower current automated classifi-

cation methods, that are limited to features extracted from solely the gland object.

We also observe that the additional segmentation of the lumen leads to an overall

superior gland segmentation. This suggests that the lumen can provide additional

cues to help increase the overall performance of gland instance segmentation.

In future work we will develop our proposed method for successful and fast

whole-slide image processing. Therefore, we aim to adapt our method such that it

can process a WSI in a short amount of time, whilst maintaining a similar level of ac-

curacy. Our current method utilises RTS for uncertainty map generation. Although

this uncertainty map is very informative, we must develop an approach that doesn’t

require ensembling if we plan to efficiently process the WSI in a short amount of

time. As well as this, we will develop an effective pre-processing pipeline to ensure

non-informative regions are not processed. On another note, it must be made clear

that this algorithm is currently limited to colon cancer because of the data that it

was trained on. The work could be extended such that we are able to segment the

glands within other tissue, given that we have sufficient data.
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In this chapter, we presented a minimal information loss dilated network

for gland instance segmentation in colon histology images. The proposed network

retains maximal information during feature extraction that is very important for

successful gland instance segmentation. Furthermore, in order to segment glands

of various sizes, we use atrous spatial pyramid pooling for effective multi-scale ag-

gregation. To incorporate uncertainty within our framework, we apply random

transformations to images during test time. Taking the average of this sample leads

to a superior segmentation, whilst simultaneously allowing us to visualise areas of

ambiguity. Furthermore, we propose an object-level uncertainty score that can be

used for assessing whether to discard predictions with high uncertainty. We also

highlight the generalisability of our method by processing whole-slide images from

a different centre with high accuracy. As an extension, we show how our proposed

method can be adapted such that it simultaneously segments the gland lumen and

the gland object. We observe that our method obtains state-of-the-art performance

in the MICCAI 2015 gland segmentation challenge and on a second independent

colorectal adenocarcinoma dataset.
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Chapter 5

Exploiting Rotational

Symmetry in Histology Images

The recent advances in the analysis of Haematoxylin & Eosin (H&E) stained whole-

slide images (WSIs) can largely be attributed to the rise of digital slide scanning

[137]. In particular, Convolutional Neural Networks (CNNs) leverage the prior

knowledge that images have translational symmetry and utilise a weight sharing

strategy, which guarantees that a translation of the input will result in a propor-

tional translation of the features. This property, known as translation equivariance,

is an inherent property of the CNN and removes the need to learn features at all

spatial locations, significantly reducing the number of learnable parameters. In cer-

tain image analysis applications, where there is no global orientation, it is desirable

to extend this property of equivariance beyond translation to also rotation. One

such example is the field of computational pathology (CPath) where important im-

age features can appear at any orientation (Fig. 5.1). Therefore, we should be able

to learn those features, regardless of their orientation. In the absence of rotation-

equivariance, data augmentation is typically used, where multiple rotated copies of

the WSI patches are usually introduced to the network during the training process.

However, the augmentation strategy requires many more parameters in order to

learn weights of different orientations. Instead, encoding rotational symmetry as

a prior knowledge into current deep learning architectures by enforcing rotation-

equivariance requires fewer parameters and leads to an overall superior discrimina-

tive ability. Also, rotation-equivariant CNNs typically converge quicker because the

network does not need to spend time learning different filter orientations.

CPath is ripe ground for the utilisation of rotation-equivariant models, yet

most models fail to incorporate this prior knowledge into the CNN architectures.
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Original 45° rotation 90° rotation

180° rotation 225° rotation 270° rotation

All image regions are equally as likely to appear

Figure 5.1: Cropped circular regions from a whole-slide image. Each orientation is
equally as likely to appear.

Inspired by recent developments in the study of rotation-equivariant CNNs [32, 156,

110, 90], we propose two models in this chapter. First, we propose Rota-Net which

is a dual-branch rotation-equivariant fully convolutional neural network (FCN) for

simultaneous gland and lumen segmentation in colon histology images. Rota-Net

uses the concept of group-convolutions which rotate the filters by multiples of 90◦

in addition to translation to enable the network to be equivariant to this group

of symmetries. This approach can only perform exact rotation of standard filters

if 90◦ rotations are used. Therefore, to overcome this challenge we then propose

Dense Steerable Filter based CNNs (DSF-CNNs) that integrate steerable filters [47]

with the group-convolution [32] and a densely connected framework [71] for superior

performance. Each filter is defined as a linear combination of circular harmonic basis

filters, enabling exact rotation and significantly reducing the number of parameters

compared to standard filters. The main contributions of this chapter are listed as

follows:

• A fully convolutional neural network for simultaneous gland and lumen seg-

mentation that is equivariant to translations and 90◦ rotations.

• A Dense Steerable Filter CNN that is equivariant to translations and rotations
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with a finer resolution than 90◦ by integrating steerable filter group convolu-

tions within a densely connected network.

• The first thorough comparison of multiple rotation-equivariant for CPath.

• We demonstrate state-of-the art performance across multiple histology image

datasets.

5.1 Related Work

5.1.1 CNNs for Translation Equivariance

Images can contain numerous symmetries and therefore patterns may appear at

various spatial positions and orientations. Recent methods [79] have shown that

these symmetries can be detected, yet in this work we focus on how symmetries can

be leveraged as a prior knowledge to increase the performance of image recognition

algorithms. Pioneered by LeCun et al. in 1994 [95], CNNs inherently incorporate

translation symmetry in images and achieve translation equivariance by re-using

filters at all spatial locations. Therefore, a shift of the input leads to a proportional

shift of the filter responses. This design drastically reduces the number of required

parameters because features do not need to be learned independently at each lo-

cation. Since the increase in computing power and the development of algorithms

that assist network optimisation [72] CNNs have become deeper [66, 70], leading to

current state-of-the-art performance in numerous image recognition tasks [41, 99].

As a result of the success of deep learning, CNNs have since been widely used in

CPath for various tasks including: gland segmentation [57, 27]; nucleus segmen-

tation [61, 113, 88]; mitosis detection [9]; cancer type prediction [60] and cancer

grading [14, 128]. Yet, unlike translation, CNNs do not behave well with respect to

rotation because this symmetry is not built into the network architecture.

5.1.2 Exploiting Rotational Symmetry

Rotating the data: It is well known that histology images have no global ori-

entation and therefore standard practice is to apply rotation augmentation to the

training data [143]. This improves performance, but requires many parameters and

is therefore prone to overfitting. Also, there is no guarantee that CNNs trained

with rotation augmentation will learn an equivariant representation and generalise

to data with small rotations [16]. To reduce the variance of predictions of multiple

orientations, test-time augmentation (TTA) can be used [111]. However, with TTA
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inference time scales linearly with the number of augmented copies. TI-Pooling [91]

utilises multiple rotated copies of the input in a twin network architecture, where

a pooling operation over orientations is performed to find the optimal canonical

instance of the input images for training. However, like TTA, TI-Pooling is compu-

tationally expensive.

Rotating the filters: Cohen & Welling [32] pioneered group equivariant

CNNs (G-CNNs), where the convolution was generalised to share weights over addi-

tional symmetry groups beyond translation. However, they limited the filter trans-

formation to 90◦ rotations and horizontal/vertical flips to ensure exact transforma-

tions on the 2D pixel grid. Veeling et al. [146] showed that these G-CNNs can be

used to improve the performance of metastasis detection in breast histology images.

Furthermore, Linmans et al. [100] and Graham et al. [58] extended the applica-

tion of the G-CNNs proposed by Cohen & Welling to pixel-based segmentation in

histology images, highlighting an improved performance over conventional CNNs.

The symmetries of a square grid are limited to integer translations extended by the

dihedral group of order 8 (4 reflections and 4 rotations). To counter the limitation

of working wih square grids in the G-CNN, Hoogeboom et al. [68] used hexagonal

filters. However, this strategy requires images to be resampled on a hexagonal lat-

tice, which is an additional overhead. Instead of using exact filter rotations, Bekkers

et al. [21] and Lafarge et al. [90] applied G-CNNs to several medical imaging tasks

by rotating filters with bilinear interpolation. Therefore, this method was not re-

stricted to rotations by multiples of 90◦, but may introduce interpolation artefacts.

Oriented response networks [170] use active rotating filters during the convolution

that explicitly encodes location and orientation information within the feature maps.

The aforementioned methods carry forward the feature maps for each orien-

tation throughout the network. Instead, Marcos et al. [110] converted the output

of multiple convolutions with rotated filter copies to a vector field by considering

the magnitude and angle of the highest scoring orientation at every spatial loca-

tion, leading to more compact models. To help overcome the issue of inexact filter

rotation, the method only considered parameters at the centre of each filter and

therefore required larger filters and consequently more parameters.

Rotating the feature maps: Dieleman et al. proposed a method similar

to the G-CNN, but instead of rotating the filters, the feature maps were rotated.

This design choice has no effect on the equivariance, yet any rotation that is not a

multiple of 90◦ may suffer from interpolation artefacts.

Steerable filters: CNNs that encode rotation-equivariance are typically

only equivariant to discrete rotations. Cohen & Welling [33] first proposed steerable
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CNNs and described a general mathematical theory that applies to both continuous

and discrete groups. To achieve full 360◦ equivariance, Worrall et al. [159] used the

concept of steerable filters [47] and constrained the weights to be complex circular

harmonics. Cheng et al. [30] propose a rotation-equivariant CNN, named RotDCF,

that decomposes filters over joint steerable bases across the space and the group

geometry simultaneously. Weiler et al. [156] learned steerable filters as a linear

combination of atomic basis filters, which enabled exact filter rotation within G-

CNNs. Then, these steerable filters were used within the group convolution to enable

the network to be equivariant to rotation. Weiler & Cesa [155] then performed an

extensive comparison of rotation equivariant models using steerable filters.

5.2 Mathematical Framework

In this chapter we present the key mathematical concepts used in our framework.

We first describe images, filters and feature maps as functions. We introduce steer-

able filters and describe the group-convolution (G-convolution) operation, which

is performed with either standard or steerable filters. This operation leads to G-

equivariance. Below, we deal with a single filter at a time, although the method

actually needs a whole filter bank to be used. We follow the method described by

Weiler et al. [156], but we use a slightly different formulation.

5.2.1 Images and feature maps as functions

We model an image as a map f : C ∼= R2 → R with compact support1. Let F be

the vector space over R of all f : C→ R, with compact support, and let FC be the

vector space over C of all functions f : C→ C with compact support.

We denote by SE(2) the group of isometries of the plane, omitting reflections.

Each element of SE(2) can be written in the form z 7→ eiθz + b, where z, b ∈ C and

θ ∈ R. If g ∈ SE(2) and f ∈ F , we define g.f ∈ F by:

(g.f)(z) = f(g−1(z)) for z ∈ C. (5.1)

The same definition is used for g.f : C→ C when f ∈ FC.

1The support of f is the smallest closed subset of C containing {z ∈ C | f(z) 6= 0}.
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5.2.2 Steerable functions and filters:

The additive group of real numbers R acts on C by rotations keeping 0 fixed. By

(5.1), it acts linearly on F (and on FC):

fθ(z) = f(e−iθz) for f ∈ F , θ ∈ R.

We define V (f) ⊂ FC to be the complex vector subspace spanned by the

orbit
{
fθ | θ ∈ R

}
. If V (f) is a finite dimensional vector space, we say that f is

steerable.

Theorem: A necessary and sufficient condition for ψ ∈ FC to be steerable is

that there should exist an integer A ≥ 0, and radial profile functions Rk : [0,∞)→ C
for k ∈ Z and −A ≤ k ≤ A, such that, in polar coordinates:

ψ(r, ϕ) =
A∑

k=−A
Rk(r)e

ikϕ, (5.2)

where some or all of the radial profile functions Rk may be identically zero. To

ensure that ψ has compact support, each Rk is assumed to have compact support.

If ψ satisfies (5.2), then V (ψ) is clearly finite dimensional. The reverse

implication takes a bit longer to argue, but easily follows from standard theorems

in Group Representation Theory2.

Fig. 5.2 is a graphical representation of basis harmonic filters that appear in

(5.2).

Real Version: In practice we will work with steerable real-valued filters.

Since a real-valued steerable filter ψ is also a complex-valued steerable filter, we can

apply (5.2) to obtain, in the same notation:

ψ(r, ϕ) = Re

(
A∑

k=−A
Rk(r)e

ikϕ

)
.

Now Re(z) = (z+ z̄)/2. It follows that we can write instead (but the radial profiles

change):

ψ(r, ϕ) = Re

(
A∑

k=0

Rk(r)e
ikϕ

)
(5.3)

where R0 : [0,∞)→ R and, for k > 0, Rk : [0,∞)→ C.

2For full mathematical rigour, the theorem requires the additional hypothesis that, for each r,
ψ is a continuous function of ϕ. See also [139] for more technical details.
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Figure 5.2: Example circular harmonic basis filters sampled on the 11×11 square
grid. Red and blue borders denote the real and imaginary parts respectively. Each
pair of images comes from a single term Rk(r)e

ikθ in (5.2). In this Fig., the particular
radial profile functions Rk are all Gaussians, as they are in our proposed model.
These Gaussians have mean/mode/max at j. The integer k specifies the frequency.

5.2.3 Feature maps modelled on a group:

Following the pioneering work of Cohen and Welling [32] and of Weiler et al. [156],

we explain the changes to the architecture of CNNs, required to express rotation-

equivariance.

We fix an integer n > 0. We use the symbol ρu,θ to denote the euclidean

transformation given by

ρu,θ(z) = eiθz + u, (5.4)

where u ∈ C and θ = 2πs/n, for some integer s with 0 ≤ s < n. Let G ⊂ E(2) be

the subgroup of all such transformations.

Let U be a group, with two subgroups U1 and U2. U is said to be a semidirect

product of U1 with U2, denoted by U1oU2, if there are projections p1 : U → U1 and

U → U2—this means that p1|U1 and p2|U2 are both identity maps—such that p2 is

a homomorphism with kernel U1, and p1 × p2 : U → U1 × U2 is an bijection, but,

in general, not an isomorphism of groups. The importance of this concept in the

study of equivariant CNNs was first pointed out in [32], and there is a systematic

study [155].

91



G has two important subgroups, namely

Cn = {ρ0,θ | θ = 2πs/n, 0 ≤ s < n}, (5.5)

a cyclic subgroup of order n consisting of all rotations in G keeping 0 ∈ C fixed and

T = {ρu,0 | u ∈ C} ∼= C,

consisting of all translations of C. We define the group

C ′n = {θ | θ = 2πs/n, 0 ≤ s < n}, (5.6)

with group law addition mod 2π. Clearly, Cn ∼= C ′n. We also use {e} ∼= C1 to denote

the trivial group with one element.

The bijection

Π : G→ C× C ′n defined by Π(ρu,θ) = (u, θ) (5.7)

gives G the semidirect product structure G = T o Cn. We impose on C × C ′n a

product metric that is the same as the usual Euclidean metric on C, and is any

convenient fixed metric on the finite discrete space C ′n. The bijection Π is then

used to impose a metric on G, so that Π becomes an isometry. Π does not preserve

the group structure, unless n = 1..

As a metric space G is the disjoint union of the n right cosets

Cθ = Tρ0,θ = {ρu,θ | u ∈ C} ⊂ G for θ ∈ C ′n, (5.8)

such that each coset is isometric to C.

A G-feature map is defined to be a function f : G → R, with compact

support.

5.2.4 G-convolutions:

We generalize the concept of a convolution to a G-convolution, that maps one G-

feature map to another.

We give the definition of G-convolution, where G3 is a group with a mea-

sure µG—this means that, given f : G → R, we can form the integral denoted by∫
g∈G f(g) dµG or

∫
g∈G f(g) dg. We will stick to the unimodular case, which is gen-

3We use G instead of G because we have reserved the name G for the particular group defined
in Subsection 5.2.3 and G denotes an arbitrary group.
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eral enough for all cases of interest in this paper. The word unimodular means that

we can change the dummy variable g in the integral to g−1, or gh or hg (h ∈ G
constant), without changing the value of the integral.

Given maps f : G → R and ψ : G → R, we define their G-convolution

(f ∗G ψ) : G → R by

(f ∗G ψ)(g) =

∫

h∈G
f(gh−1)ψ(h) dh (5.9)

=

∫

h∈G
f(h)ψ(h−1g) dh for g ∈ G.

The first equality is a definition, whereas the second follows by a change of variable.

G-convolution is automatically G-equivariant. To see this, note that, for any

α ∈ G,

(ρα(f) ∗G ψ)(g) =

∫
f(α−1gh−1)ψ(h) dh

= (f ∗G ψ)(α−1g) = (ρα(f ∗G ψ))(g).

It follows that

ρα(f) ∗G ψ = ρα(f ∗G ψ). (5.10)

5.2.5 Hidden layer G-convolutions and G-filters

By a G-filter, we mean a function G→ R. Formally this is the same as a G-feature

map. However, in an implementation of these ideas, a G-feature map will turn

out to be a discrete object, specified by a collection of matrices, whereas a G-filter

retains its identity as a function. This is what enables exact rotation of a G-filter

by an arbitrary angle.

In order to define G-convolutions, we need a measure on the space G, as

described for G in Subsection 5.2.4. The measure µG on G is given by using the

usual euclidean (area) measure on each Cθ ∼= C. Note that (G,µG) is unimodular

(term defined in Subsection 5.2.4) because rotation is measure preserving on the

plane. Integration of a function f : G → R, with respect to µG, is carried out by

first integrating each of the n functions f |Cθ ∼= C → R and adding the n resulting

terms.

We now define an “atomic steerable planar filter”, which is not learned, but

defined and does not change during training (see (5.13)). Instead our network learns

the complex coefficients used in a complex linear combination of the atomic steerable

planar filters.
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For each non-negative integer j, we define τj : [0,∞)→ R to be a Gaussian,

with mode at j, as

τj(r) = exp(−|r − j|2/2σ2) for j ≥ 0, r ≥ 0. (5.11)

Let j and k be non-negative integers. By a atomic steerable planar filter, we

mean a map ψjk : C→ C defined by

ψjk(u) = τj(|u|)eik arg(u). (5.12)

If, in addition, λ ∈ C ′n, we define the atomic steerable G-filter ψjkλ : G→ R by

ψjkλ(ρu,θ) =





0 if λ 6= θ

τj(|u|)eik(arg(u)−θ) if λ = θ.
(5.13)

From (5.12)

ψjkλ(ρu,θ) = e−ikθψjk(u) if θ = λ, (5.14)

which is ψjk rotated by angle θ.

Any finite complex linear combination of atomic steerableG-filters,
∑

j,k,λwjkλψjkλ,

is again a steerable G-filter. In our framework, we plan to convolve each G-feature

map with the real part of such a sum. By (5.9) the result of such a convolution

is another G-feature map. The complex numbers wjkλ are weights in the network,

determined by the network during training and each wjkλ gives rise to two real

weights. We will initially restrict to a single term in the finite sum, in order to keep

the formulas uncluttered, and then add them together.

Let f : G→ R be a G-feature map. From (5.9), we have the formula

(f ∗G Re(wjkλψjkλ)) (ρz,θ) =
∫

ρu,ϕ∈G
f(ρu,ϕ) · Re(wjkλψjkλ(ρv,β)) dµG,

(5.15)

where ρv,β = ρ−1u,ϕρz,θ, so that v = e−iϕ(z − u) and β = θ − ϕ. From (5.12) and

(5.13),

ψjkλ(ρv,β) =





0 if λ 6= β = θ − ϕ
e−ikϕ · ψjk(z − u) if λ = β = θ − ϕ.

(5.16)
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Writing fϕ(u) = f(ρu,ϕ), we obtain from (5.15) and (5.16)

(f ∗G Re(wjkλψjkλ)) (ρz,θ)

= Re
(
wjkλ · e−ik(θ−λ) · (fθ−λ ∗ ψjk)

)
(z)

=
(
fθ−λ ∗ Re(wjkλ · e−ik(θ−λ)ψjk)

)
(z).

(5.17)

If we add over λ ∈ C ′n, then we can substitute ϕ = θ−λ and add over ϕ ∈ C ′n, since

θ is fixed in (5.17). Adding over j, k and ϕ, we obtain


f ∗G Re(

∑

jkλ

wjkλψjkλ)


 (ρz,θ)

=
∑

jkϕ

(
fϕ ∗ Re

(
wjk(θ−ϕ) · e−ikϕψjk

))
(z)

(5.18)

which recovers the same result as (10) in [156]. We have ignored the fact that there

are normally many channels (G-feature maps) in the domain and many channels in

the range. Each pair (channel in domain, channel in base) needs its own G-filter, so

each such pair gives rise to different weights.

5.2.6 The input layer G-convolution

The input to network is an image that can be thought of as a map f : C→ R, which

we compose with P : G → C given by P (ρu,θ) = u, to obtain f ◦ P : G → R. By

(5.17), we have

((f ◦ P ) ∗G Re(wψjkλ)) (ρz,θ) =

Re((wjkλ · eikλ) · e−ikθ · (f ∗ ψjk)(z)

Since wjkλ is a complex scalar that the network has to estimate, λ adds no new

information and we dispense with it. We then sum over all terms, obtaining a

simplified version of (5.18).


(f ◦ P ) ∗G Re


∑

jk

wjkψjk




 (ρz,θ)

=


f ∗ Re


∑

jk

wjk · e−ikθ · ψjk




 (z).

(5.19)
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This gives a principled derivation of Equation (8) in [156]. In particular, our

proof of G-equivariance (see (5.10)) works equally well for input layer and hidden

layer G-convolutions. See Fig. 5.4 for a graphical illustration of the method.

5.2.7 Sampling and the discrete case

The above formulas assume that the functions involved are continuous. But a com-

puter is a finite machine, so we need to work with discrete data, and this involves

sampling.

Sampling planar steerable filters: In the computer, a planar feature map is

represented by a matrix, not by a continuous function. According to (5.18) and

(5.19), we need to convolve this matrix with the real part of a complex linear com-

bination of atomic planar filters, ψjk. Now ψjk is a function, not a matrix—this is

exactly what allows rotation of the filter through an arbitrary angle. On the other

hand, convolution with a matrix requires a matrix, not a function. We therefore

have to sample the atomic filters ψjk, and their rotations through angles 2πs/n for

0 ≤ s < n, at the integer points a+ ib, where a and b are integers. We then perform

a weighted linear combination of the sampled filters and apply (5.18) or (5.19). As

the Nyquist Sampling Theorem suggests, for a fixed size of steerable filter, aliasing

may occur unless one bounds the frequencies used from above. In line with Weiler &

Cesa [155], we use frequencies up to k = 0, 2, 3, 2 for j = 0, 1, 2, 3 in all 7×7 steerable

basis filters. Using larger filters enables higher frequencies before aliasing, yet leads

to an increase in computation time and may lead to overfitting.

Sampling G-filters: As in the case of planar convolution just discussed, our for-

mulas need to be reinterpreted when the various component pieces of a hidden layer

G-convolution are formulated as arrays of dimension 3 or higher, rather than as

functions. For example a G-feature map has been defined as a function G→ R, and

we need to explain how a function on the continuous group G is represented in the

computer by n matrices.

As shown in (5.8), G as a metric space is the disjoint union
⋃
θ∈C′

n
Cθ of n

copies of C, with its usual euclidean metric. For each θ ∈ C ′n (see (5.8)) we define

Zθ = {ρa+ib,θ | a, b ∈ Z} ⊂ Cθ. (5.20)

Each point of Cθ is within a distance 1/
√

2 of some point in the lattice Zθ. It is

therefore reasonable to use, as a G-feature map,

f :
⋃

θ∈C′
n

Zθ → R. (5.21)
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Analogously to the notation just before (5.17), we write fθ = f |Zθ. The domain is

infinite, but since f is assumed to have compact support, we need only record the

values of f at a finite number of elements of G. In this way, a G-feature map is

replaced by n real matrices all of the same size.

We have also defined a G-filter as a function G→ R. This is also sampled on⋃
θ∈C′

n
Zθ. When learning the complex coefficients wjkλ that appear in (5.15), the

values of j and k are limited for the reasons just explained for the planar situation,

namely to avoid aliasing and overfitting.

5.3 Methods

In this section we present two methods: Rota-Net and Dense Steerable Filter (DSF)

CNNs, which both incorporate rotational symmetries into their architecture. Rota-

Net is developed as an initial experiment to assess whether the incorporation of ro-

tational symmetry into the convolution leads to an improved performance in CPath.

For Rota-Net, we applied it to the specific task of gland and lumen segmentation as

a proof of concept. Then, after analysis of Rota-Net, we developed DSF-CNNs that

enabled rotation with a finer resolution by learning steerable filters. We applied

our DSF-CNN to the tasks of gland segmentation, nuclear segmentation and breast

tumour classification. Below, we provide a description of each of the models.

5.3.1 Rota-Net

Network Architecture

The overall network architecture, as shown in Figure 5.3, is based on the fully con-

volutional network [103] architecture, with residual blocks [66] for efficient gradient

propagation. The network first downsamples features with max-pooling by a fac-

tor of 16, which increases the size of the receptive field, before upsampling with

bilinear interpolation to increase the spatial resolution. The main components of

Rota-Net can be summarised as: input G-convolution layer, G-residual blocks, up-

sampling and a G-mean-pooling layer. Below we provide a description of each of

the components of the network.

Input layer G-convolution: Throughout Rota-Net, we utiliseG-convolutions

with standard filters that are translated across the input and rotated by 90◦. In the

first layer, each filter is a conventional 3×3 filter that is translated over the input.

However, the convolution process is repeated for each orientation of the filter to give

4 orientation dependent outputs. Therefore, the input is a function on the plane
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Figure 5.3: Rota-Net architecture. The yellow box within the input denotes the part
of the image considered at the output. The number at the top of each operation
denotes the number of feature maps produced per filter orientation. Note, for group
operations, this is the number per orientation of the kernel (4 orientations in the p4
group). σ is the softmax operation.

Z2, but the output feature maps are a function on the group G. We then observe

that if the input is rotated, the feature maps also rotate but undergo an additional

channel permutation. Therefore, this is the action of the group G.

Input G-residual-blocks: Because the sum of two rotation-equivariant

feature maps is also rotation-equivariant, residual blocks are well suited within this

network design. Within our framework, a G-residual-block consists of multiple G-

residual-units, where each unit consists of two 3×3 G-convolutions and a shortcut

connection. All G-convolutions within each G-residual-block has an input and an

output both on the group G. Therefore, filters are also on the group G and thus

perform a channel permutation with rotation to mimic the group action. All G-

convolutions within the network are followed by rotation-equivariant batch normal-

isation, where moments are aggregated per group, and a ReLU.

Upsampling: After downsampling the features, we use bilinear interpola-

tion to upsample feature maps. Each time, we upsample by a factor of 2 followed

by a G-residual-block. We use valid convolution in the upsampling branch which

leads to the output being smaller than the input, thus reducing boundary artefacts

when processing neighbouring image patches. Similar to U-Net [121], we utilise

skip connections with addition to incorporate low level features at the output of the

network. In the same vein as the residual unit, this addition is rotation equivari-

ant. The network splits after the final upsampling operation, where each branch is
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subsequently devoted to either gland or lumen segmentation.

G-mean-pooling: Because feature maps within the network are functions

on the group G, features need to be projected back to a function on the plane at the

output of the network. We achieve this by defining the projection layer that takes

the average over the 4 orientations. This operation is followed by two consecutive

planar 1x1 convolution operations to obtain the final output.

5.3.2 Dense Steerable Filter CNN

Network Architecture

The main building blocks of our proposed rotation-equivariant DSF-CNN4 are: in-

put layer G-convolution layer; steerable filter G-dense-blocks, upsampling and a

G-max-pooling layer. Below, we build on the theoretical explanation in Section 5.2

to describe the separate components of our proposed approach.

Input Layer G-convolution: Up to the G-pooling operation, all convo-

lutions within our network are steerable G-convolutions, as described in Section

5.2.5. Therefore, we pre-define a set of circular harmonic basis filters using (5.2)

and sample the filters on the square grid, as can be seen in Fig. 5.2. Then, we

learn how to linearly combine these atomic basis filters to generate steerable filters

and consider only the real part for our convolution filter, as shown in (5.3). The

input layer steerable G-convolution maps an image f : C → R to some G-feature

map h : G → R. Each G-feature map is determined by its restriction hθ to each

coset Cθ ∼= C. Specifically, we create n rotated copies of each steerable filter and

independently convolve the filters with the input to produce n feature maps (or a

single G-feature map). Planar rotation of each filter is performed using (5.14) and

can observed in Fig. 5.6. The input layer G-convolution is demonstrated in Fig.

5.4, where the convolution between the input and the steerable filter bordered in

red produces the output also bordered in red. Now, when the input is rotated by an

angle 2πs
n , with integers 0 ≤ s < n, and the input layer G-convolution is performed,

the feature maps undergo a planar rotation by angle 2πs
n , but in addition shift s

positions.

G-dense-blocks: To enable efficient gradient propagation, encourage fea-

ture re-use and to improve overall performance, we use dense connectivity [70] be-

tween G-convolutions in hidden layers of the network. Each hidden layer steerable

G-convolution maps a G-feature map f : G→ R to some G-feature map h : G→ R.

We can explain this mapping in terms of the restrictions of f and h to cosets. Be-

4Model code: https://github.com/simongraham/dsf-cnn

99



Function on ℤ2

Function on "

Output

Rotate by #

Planar 
rotation and 

position 
shift

=

=

Planar 
rotation

∗

Learn " steerable filters 

to form a single G-filter

Hi
dd

en
 La

ye
r #

-C
on

vo
lu

tio
n Input

Input

Output

Rotate by #

In
pu

t L
ay

er
 #

-C
on

vo
lu

tio
n

Function on " Function on "

"

∗"

Learn steerable filter

Figure 5.4: Illustration of the input layer G-convolution, mapping an image f :
C → R to a G-feature map h : G → R. A single steerable planar filter, learned by
the network, is rotated n times and each rotated filter is convolved with the planar
input f . This gives n planar feature maps, which combine to give a single G-feature
map h. The image f is convolved with the red bordered planar filter to give the red
bordered planar feature map in the stack on the right.

Function on ℤ2

Function on "

Output

Rotate by #

Planar 
rotation and 

position 
shift

=

=

Planar 
rotation

∗

Learn " steerable filters 

to form a single G-filter

Hi
dd

en
 La

ye
r #

-C
on

vo
lu

tio
n Input

Input

Output

Rotate by #

In
pu

t L
ay

er
 #

-C
on

vo
lu

tio
n

Function on " Function on "

"

∗"

Learn steerable filter

Figure 5.5: Illustration of the hidden layer G-convolution, mapping a G-feature
map f : G → R to a G-feature map h : G → R. The network learns a single
steerable G-filter, which consists of n planar filters, displayed by placing them all in
the same circle. Then, a single G-filter is rotated n times and each rotated G-filter
is convolved with the input G-feature map f to generate a total of n planar feature
maps or a single G-feature map. The convolution between the input f and the red
circled G-filter gives the red bordered planar feature map on the right.

100



Planar rotation Position shift

"-Filter

#-
Fi

lte
r R

ot
at

io
n

Pl
an

ar
 F

ilt
er

 R
ot

at
io

n

Planar Filter Planar rotation

Function on ℤ2

Rotate by #

Rotate by #

Function on "

Figure 5.6: Planar filter and G-filter rotation. Planar filters are rotated in the
conventional manner, whereas G-filters undergo and additional position shift after
planar rotation. In the displayed example, both filters rotate by an angle θ = π

4

cause the input to the hidden layer G-convolution is now a function on G, we must

similarly ensure that our filters give a function on G. We rotate each G-filter to

give n rotated copies and perform a convolution between the input G-feature map

f and each filter orientation to produce n feature maps (or a single G-feature map

h). When rotating these G-filters, an additional position shift must be performed,

in line with the associated group action. In Fig. 5.5, n = 8 steerable planar filters

are generated as shown by the red circle, forming a single G-filter. This G-filter is

convolved with the input G-feature map to generate the output with the red border.

We can see that each G-filter, consists of 8 planar filters that individually rotate

and shift position as the entire G-filter is rotated. This rotation can be seen in Fig.

5.6, where the arrows show the orientation of each planar filter and the coloured

borders are used to help visualise the position of each planar filter in the G-filter.

For each G-dense-block, the feature-maps of all preceding layers are concate-

nated to the input before performing the G-convolution. This increases the number

of connections between layers, strengthening feature propagation. Specifically, each

G-dense-block consists of k units. Each unit contains a 7×7 G-convolution followed

by a 5×5 G-convolution that produce 14 and 6 orientation dependent feature maps

respectively. After k units, the G-dense-block concludes by applying a final 5×5
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G-convolution. All G-convolutions are followed by rotation-equivariant batch nor-

malisation, where moments are aggregated per group rather than spatial feature

map.

Upsampling: Similar to Rota-Net, we upsample feature maps with bilinear

interpolation after feature extraction. For this, feature maps are upsampled sequen-

tially by a factor of 2 and upsampling operations are followed by G-dense-blocks.

Also, features from the encoder are added to the decoder with each upsampling

operation to achieve a better performance [121].

G-max-pooling: At the output of the network, we transform each G-feature

map f to a planar feature map, by taking the pointwise maximum of the n planar

feature maps fθ that constitute f. This operation ensures that the output of G-

pooling is invariant to rotation of the input.

Classification: For our classification DSF-CNN, we initially perform the

input layer steerable G-convolution followed by a hidden layer G-convolution. We

then use 4 G-dense-blocks, where each block consists of 3,4,5 and 6 dense units.

After every G-convolution layer we use a group-equivariant batch normalisation

that aggregates moments per group rather than spatial feature map and ReLU non-

linearity. Before every G-dense-block, we perform spatial max-pooling to decrease

the dimensions of the feature maps. After the final G-dense-block, we perform

G-pooling and then apply 3 1×1 classical convolution operations to get the final

output.

Segmentation: We extend our DSF-CNN to the task of segmentation by

up-sampling feature maps after the final G-dense-block in the aforementioned classi-

fication CNN. Specifically, we up-sample by a factor of 2 with bilinear interpolation

and then utilise a G-dense-block. This is repeated until the spatial dimensions of

the original image are regained. From the deepest layer of the up-sampling branch,

each dense-block contain 4, 3 and 2 units. In line with U-Net [121], we also use

skip connections to propagate information from the encoder to the decoder. After

the feature maps have been up-sampled, we use a single hidden layer G-convolution,

which is followed by G-pooling such that the resulting feature map is a function

on C. Finally we use 2 1×1 classical convolutions to obtain the output, where we

segment both the object and the contour to help separate touching instances. For

nuclear segmentation, we additionally predict the eroded nuclei masks which are

used as markers in marker-controlled watershed.
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Nuclear Segmentation
Kumar Dataset 

Gland Segmentation
CRAG Dataset

Tumour Classification
PCam Dataset

Gland and Lumen Segmentation
GlaS Dataset

Figure 5.7: Image regions from the four datasets: GlaS [135], Kumar [88], CRAG
[57] and PCam [146]. Yellow and green boundaries show the pathologist annotation
of nuclei/glands and lumen respectively. Blue and red borders denote non-tumour
and tumour image patches.

5.4 Experiments and Results

5.4.1 The Four Datasets

We use the following four publicly available histology image datasets:

Breast tumour classification: PCam [146] is a dataset of 327K image patches

of size 96×96 pixels at 10× extracted from the Camelyon16 dataset [19], containing

400 H&E stained breast WSIs. Each image patch was labelled as tumour if the

central region (32×32) contained at least one tumour pixel as given by the original

annotation [19].

Multi-tissue nucleus segmentation: The Kumar dataset [88] contains 30 image

tiles of size 1,000×1,000 from seven organs (6 breast, 6 liver, 6 kidney, 6 prostate,

2 bladder, 2 colon and 2 stomach) of The Cancer Genome Atlas (TCGA) database

acquired at 40× magnification. Within each image, the boundary of each nucleus is

fully annotated.

Colorectal gland segmentation: The CRAG dataset [57] consists of 213 H&E

images mostly of size 1,512×1,516 pixels taken from 38 WSIs acquired at 20× of

colorectal adenocarcinoma (CRA) patients. It is split into 173 training images and

40 test images with different cancer grades with pixel-based gland annotation.
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Colorectal gland and lumen segmentation: The GlaS dataset [135] consists

of 85 training (37 benign and 48 malignant) and 80 test images (37 benign and

43 malignant) regions extracted from 16 H&E stained WSIs at 20×. The test

images are split into test sets A and B, where A was released one month before the

challenge deadline and B was released on the final day of the challenge. Images are

mostly of size 775×522 pixels and all training images have associated instance-level

segmentation ground truth that precisely highlight the gland and lumen boundaries.

5.4.2 Evaluation Metrics

For tumour classification, we calculated the area under the receiver operating charac-

teristic curve (AUC) to assess the binary classification performance. For gland/lumen

segmentation, we employed the same quantitative measures that were used in the

GlaS challenge [135]. These metrics consist of F1, DICE and Hausdorff distance at

the object level and assess the quality of instance segmentation. For nuclear seg-

mentation, we report the binary DICE and panoptic quality (PQ). Here, the binary

DICE assesses the ability of the method to distinguish nuclei from the background,

whereas PQ provides insight into the quality of instance segmentation.

5.4.3 Experimental Overview

Recently, there has been a growing number of proposed CNNs that achieve rotation-

equivariance [32, 156, 110, 21, 159], yet there is lack of comprehensive evaluation

of the various methods for the analysis of histopathology images. We perform a

thorough comparison of various rotation-equivariant CNNs and demonstrate the ef-

fectiveness of the proposed model. Specifically, we compare a baseline CNN with

H-Nets [159], VF-CNNs [110], G-CNNs with standard filters [32, 21] and G-CNNs

with steerable filters [156] and assess the impact of increasing the number of filter

rotations in each model. After gaining an insight into the performance of the dif-

ferent rotation-equivariant models, we then quantify the performance of Rota-Net

on the task of gland and lumen segmentation and DSF-CNN on the tasks of breast

tumour classification, nuclear segmentation and gland segmentation. The rest of

this section is split into three parts:

• Comparative analysis of rotation equivariant models

• Quantitative and visual evaluation of Rota-Net

• Quantitative and visual evaluation of DSF-CNN
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5.4.4 Comparative Analysis of Rotation-Equivariant Models

Comparative Model Description

Baseline models: For the task of breast tumour classification, we implement a

baseline CNN for comparison with the aforementioned rotation-equivariant models.

The model consists of a series of convolution, batch normalisation, non-linear and

spatial pooling operations, which are then followed by three 1×1 convolutions to

obtain the final output, denoting the probability of an input patch being tumour.

For the tasks of gland and nuclear segmentation we leverage the fully con-

volutional neural network architecture, which allows us to use the same model ar-

chitecture, irrespective of the input size. The encoder of the baseline segmentation

model uses the same architecture as the baseline classification CNN. Then a series

of up-sampling and convolution operations are used to regain the spatial dimensions

of the original image. In line with U-Net, we use skip connections to incorporate

features from the encoder, but utilise summation as opposed to concatenation. At

the output of the network we perform segmentation of the object and the contour

and additionally predict the eroded masks for nuclear segmentation.

Rotation-equivariant models: To assess the performance of various rotation-

equivariant approaches, we modify the baseline models, but keep the fundamental

architecture the same. The main difference between different models is how the fil-

ters are rotated, how many filter orientations are considered and how the convolution

operation is performed.

Aside from H-Nets, each rotation-equivariant model considers 4, 8 and 12

filter orientations. H-Nets encode full 360◦ equivariance within the model and there-

fore filters do not need to be explicitly rotated. When applying rotation to a filter

with an angle that is a multiple of π
2 , the rotation is exact because the output

can still be represented on the square grid. However, any other rotation may give

interpolation artefacts and therefore may have negative implications for rotation-

equivariance. Therefore, in line with Marcos et al. [110] and Lafarge et al. [90], for

both the VF-CNN and standard G-CNN, we apply circular masking to the filters

when using the groups C8 and C12. However, this masking still leads to inevitable

interpolation artefacts in the centre of the filter. Steerable filters as defined by (5.2)

do not suffer from interpolation artefacts and, therefore, circular masking is not

needed.

In all comparative experiments for rotation-equivariance, we fix each filter

to be of size 7×7. We used a larger filter than typically used in modern CNNs

because this size ensures that we can construct a good basis set for steerable filter
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generation, with reasonable frequency content and reduced aliasing.

For fair comparison, we ensure that the number of parameters is similar

between different models. For both standard and steerable G-CNNs, the number

of parameters increases with the size of the group, if we fix the number of filters in

each layer. This is because one feature map is produced per orientation of the filter,

which increases the number of required filters in the subsequent layer. To maintain

the same number of parameters as the baseline CNN, we divide the number of filters

in each layer of the standard G-CNN by
√
n, where n is the number of orientations

in the group. Steerable G-CNNs learn k parameters (or k/2 complex parameters)

for each filter, where typically k < K2. Therefore, the number of filters in each layer

of a steerable G-CNN should be divided by k
√
n

K2 . Instead of carrying forward all

orientations throughout the network, VF-CNNs collapse the orientation dependent

feature maps to two feature maps, representing magnitude and angle. Therefore,

the VF-CNN requires more filters in the next layer, but the number of parameters

stays constant irrespective of the size of the group. To ensure the same number of

parameters as the baseline CNN, for all group sizes we divide the number of filters

in each layer of VF-CNNs by 4
3 . Each H-Net filter is constrained to be a complex

circular harmonic, parameterised by N radial terms and a single phase offset term.

Also, the number of parameters is dependent on the maximum frequency m of

the filters. Specifically, in H-Nets frequencies in the range [−m,m] are considered,

equating to a total of M = 2m+ 1 frequency terms. Therefore, to ensure a similar

number of parameters as the standard CNN, we multiply the number of filters in

each layer of a H-Net by K2

M ·(N+1) .

In all models, we down-sample with max-pooling, but for VF-CNNs and H-

Nets we use a modified pooling strategy, based on the magnitude of the feature maps.

Similarly, when using both VF-CNNs amd H-Nets, we do not incorporate the angle

information when using batch normalisation (BN) and non-linear activation func-

tions; otherwise the angles may change important information about relative and

global orientations. For G-CNNs, we use a modified BN that aggregates moments

per group rather than spatial feature map.

To verify our implementations of the various rotation-equivariant networks,

we cross-checked the performance of each model against reported benchmarks on the

rotated MNIST dataset [92] before applying them to the histology datasets. These

results are summarised in Table B.2.
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Table 5.1: Tumour classification results on the PCam dataset [146]. All models
have a similar parameter budget. The superscript associated with H-Net denotes
the maximum frequency used.

Method Group Parameters AUC

CNN {e} 564K 0.947
H-Net1 [159] SO(2) 553K 0.934
H-Net2 [159] SO(2) 542K 0.939

VF-CNN [110] C4 556K 0.949
VF-CNN [110] C8 556K 0.951
VF-CNN [110] C12 556K 0.953
G-CNN [32] C4 561K 0.964

G-CNN [21, 90] C8 557K 0.968
G-CNN [21, 90] C12 557K 0.962

Steerable G-CNN [156] {e} 553K 0.963
Steerable G-CNN [156] C4 546K 0.969
Steerable G-CNN [156] C8 565K 0.971
Steerable G-CNN [156] C12 545K 0.969

Quantitative Results of Rotation-Equivariant Models

Tumour classification: We report comparative results of different rotation-equivariant

models on the PCam dataset at the top of Table 5.1. We observe that H-Nets do not

perform as well as the baseline CNN for the task of tumour classification. Despite

this, we observe that we are able to increase the performance when incorporating

higher frequency filters in the network, but the performance is still not compara-

ble to conventional CNNs. This may suggest that constraining the filters in this

way may not be optimal for detecting complex features in histology. VF-CNNs

marginally outperform the conventional CNN, where we observe that increasing the

number of filter rotations leads to a slight improvement in performance. When we

utilise the group convolution, with filter rotation as performed by Bekkers et al. [21]

and Lafarge et al. [90], we see an improved performance when using up to 8 filter

orientations. This gain in performance can be attributed to incorporating our prior

knowledge of rotational symmetry into the network. To ensure that we maintain

a similar number of parameters, we need to reduce the number of feature maps at

each layer when the size of the group is increased. This may explain the drop in per-

formance when using 12 filter orientations. When using steerable filters, but with

no filter rotation, we observe an improved performance over conventional CNNs,

highlighting the benefit of learning a linear combination of basis filters, rather than

standard filters. Then, as we increase the size of the group to 4 and 8 orientations
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Table 5.2: Gland segmentation results on the CRAG [57] dataset, where all models
have a similar parameter budget.

Method Group Params Obj F1 Obj Dice Obj Haus ↓
CNN {e} 984K 0.793 0.809 246.0

G-CNN [32] C4 982K 0.833 0.856 170.4
G-CNN [21, 90] C8 988K 0.837 0.866 157.4
G-CNN [21, 90] C12 979K 0.818 0.834 192.2

Steerable G-CNN [156] {e} 981K 0.811 0.848 175.9
Steerable G-CNN [156] C4 984K 0.837 0.869 164.8
Steerable G-CNN [156] C8 989K 0.861 0.888 139.5
Steerable G-CNN [156] C12 976K 0.855 0.870 156.2

Table 5.3: Nuclear segmentation results on the Kumar [88], where all models have
a similar parameter budget.

Method Group Params B-Dice PQ

CNN {e} 984K 0.767 0.447
G-CNN [32] C4 982K 0.793 0.490

G-CNN [21, 90] C8 988K 0.811 0.519
G-CNN [21, 90] C12 979K 0.814 0.534

Steerable G-CNN [156] {e} 981K 0.791 0.510
Steerable G-CNN [156] C4 984K 0.809 0.542
Steerable G-CNN [156] C8 989K 0.818 0.543
Steerable G-CNN [156] C12 976K 0.820 0.558

we see an improvement in the performance. We also observe that using steerable

filters rather than standard filters within the G-convolution gives a better result.

Gland segmentation: We compare the performance of the different rotation-

equivariant models for gland segmentation on the CRAG dataset in the top part of

Table 5.2. For this experiment, when comparing different rotation-equivariant ap-

proaches, we choose to only assess the performance of conventional CNNs, standard

G-CNNs and steerable G-CNNs. This is because our previous experiment on breast

tumour classification indicates that G-CNNs are capable of achieving a superior re-

sult over competing rotation-equivariant approaches. Similar to our observations

for breast tumour classification, we see that increasing the group size within the

group convolution leads to an increase in performance, but the best performance is

achieved when using 8 filter orientations. For this task, using steerable filters in the

group convolution led to the best performance.

Nuclear segmentation: We report the comparative results of different
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rotation-equivariance methods for nuclear segmentation on the Kumar dataset in

the top part of Table 5.3. Similar to above, we compare conventional CNNs with

both standard and steerable G-CNNs. Here, we see that all rotation-equivariant

approaches show a significant improvement over standard CNNs and we see an

improvement when increasing the number of filter orientations to 12 in all models.

Once again, we observe that the steerable G-CNNs for segmentation of nuclei are

superior to standard G-CNNs that use bilinear interpolation during filter rotation.

We evaluate the performance of our proposed method with several state-

of-the-art approaches in the bottom part of Table 5.3. In particular, HoVer-Net

[61], CIA-Net [169], Micro-Net [119] and DIST [113] have been purpose-built for the

task of nuclear segmentation and, therefore, provide a competitive benchmark. The

proposed DSF-CNN once again achieves the best performance compared to other

methods for both binary DICE and panoptic quality, on par with the state-of-the-art

HoVer-Net method, while requiring a fraction of the parameter count.

5.4.5 Visualisation of Features and Output

In Figs. 5.8 and 5.8 we visualise the features and the corresponding outputs as

we rotate the input with angle increments of π
4 (8 in total) for both the baseline

CNN and C8-steerable G-CNN. Specifically, we analyse the properties of both CNNs

trained for the tasks of gland and nuclear segmentation. To observe the feature map

transformation with rotation of the input, we analyse two sets of feature maps in

both CNNs: Feature Map A at the output of the 2nd convolution and Feature Map

B at the output of the convolution after the final up-sampling operation. Similarly,

we observe how the output probability map transforms when the input is rotated.

To analyse this, we feed each image orientation into the network to obtain

a set of feature maps and output probability maps. Then, after rotating features

and probability maps back to their original orientation, we compute the pixel-wise

variance map of the features and the output to see how they change with rotation

of the input. G-CNN feature maps are a function on G and therefore we visualise a

single planar feature map within the group. For the rotation-equivariant model, we

observe that there is a near-negligible variance between the features of each input

orientation. On the other hand, there is much higher variance between the features

of standard CNNs after input rotation. This implies that the rotation-equivariant

CNN successfully learns an equivariant feature representation. Also, there is a lower

variance between the predictions of multiple input orientations for the rotation-

equivariant CNN as compared to the standard CNN. Thus, the rotation-equivariant

CNN behaves as expected with rotation of the input, which is a particularly desirable
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Figure 5.8: Variance between the predictions and features of a standard CNN for
multiple orientations of the input. The original image is rotated with steps of π

4 to
give 8 orientations and each copy is passed through the network to enable variance
calculation. Features A and B are located at the beginning and end of the network
respectively.

property when training CNNs with histology image data. It must be noted that

features learned by conventional CNNs are highly complex and it is very difficult

to infer the relationship between learned features and input rotation. Nonetheless,

we demonstrate that rotation-equivariant CNNs have a predictable transformation

with input rotation, making them more stable than conventional CNNs.

5.4.6 Evaluation of Rota-Net

Quantitative Results of Rota-Net

To quantify the performance of Rota-Net, we first perform an ablation study to as-

sess the contribution of the G-convolution that incorporates rotation-equivariance.
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Figure 5.9: Variance between the predictions and features of a rotation-equivariant
CNN for multiple orientations of the input. The original image is rotated with steps
of π

4 to give 8 orientations and each copy is passed through the network to enable
variance calculation. Features A and B are located at the beginning and end of the
network respectively.

Then, we compare the performance of our proposed method to recent top-performing

models. Table 5.4 highlights the contributions of the various network components

in Rota-Net. It is evident that using the rotation-equivariant approach with group

convolutions improved the performance. This therefore reflects the findings from

Section 5.4.4 that rotation-equivariant methods lead to better performance in his-

tology image analysis. This performance is further improved when the contours are

considered for effective gland separation. Compared to the baseline network, we

reduce the number of kernels in each layer of the rotation-equivariant network by a

factor of two to maintain a similar number of parameters. This is in line with the

explanation given in Section 5.4.4 .

Table 5.5 shows comparative results for simultaneous gland and lumen seg-
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Table 5.4: Ablation study. RE denotes rotation equivariant network. RE+ denotes
rotation equivariant network, utilising a multi-class strategy at the gland output.

F1 Score Obj. Dice Obj. Hausdorff
Method Gland Lumen Gland Lumen Gland Lumen Params

Baseline 0.905 0.715 0.899 0.739 50.29 73.36 70.6M
RE 0.916 0.789 0.913 0.807 46.00 57.49 71.3M

RE+ 0.920 0.831 0.919 0.824 40.99 49.17 71.3M

Table 5.5: Comparative results for simultaneous gland and lumen segmentation. All
networks are converted to a dual-branch architecture, where the network splits after
the final upsampling operation. Note, for conciseness we only evaluate on test set
A.

F1 Score Object Dice Object Hausdorff
Method Gland Lumen Gland Lumen Gland Lumen

Rota-Net 0.920 0.831 0.919 0.824 40.99 49.17
U-Net [121] 0.857 0.643 0.846 0.725 86.63 70.59
FCN-8 [103] 0.800 0.735 0.820 0.762 99.98 68.80

Table 5.6: Comparative results for gland segmentation using Rota-Net.

F1 Score Object Dice Object Hausdorff
Method Test A Test B Test A Test B Test A Test B

Rota-Net 0.920 0.824 0.919 0.849 40.99 95.72
MILD-Net [57] 0.914 0.844 0.913 0.836 41.54 105.89

Multichannel B [161] 0.893 0.843 0.908 0.833 44.13 116.82
Micro-Net [119] 0.913 0.724 0.906 0.785 49.15 133.98

CUMedVision2 [26] 0.912 0.716 0.897 0.781 45.418 160.347
Freidburg2 [121] 0.870 0.695 0.876 0.786 57.09 148.47

mentation. For effective evaluation, we compare with a modified U-Net [121] and

FCN-8 [103] where, in a similar fashion to Rota-Net, the branches split after the

final upsampling operation. We observe that our proposed approach performs sig-

nificantly better than both competing approaches and is able to simultaneously

segment both glands and lumen with high accuracy.

In Table 5.6 we compare the gland segmentation performance of our proposed

approach with recent top performing methods. I particular, the current state-of-

the-art approach is MILD-Net that was presented in Chapter 4. We observe that

our proposed Rota-Net achieves the best performance in five out of six metric and

therefore exceeds the previous top performing approach for gland segmentation on

the GlaS dataset.
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Visual Results of Rota-Net

Figure 5.10 displays some visual results of the proposed method compared to the

ground truth. We also display some areas of interest, shown by the black boxes

in Figure 5.10(b) and (c), where the algorithm successfully segments lumen, but is

missed by the pathologist. It is important to note that the proposed approach makes

one prediction per pixel and no patch overlap is used during processing, whereas

other approaches may make multiple predictions per pixel. For example, MILD-Net

merges overlapping predictions and also uses a test-time augmentation strategy.
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Figure 5.10: Visual results of gland and lumen segmentation using Rota-Net. Yellow
and green boundaries denote gland and lumen boundaries respectively. Black boxes
show areas of interest.

5.4.7 Evaluation of DSF-CNN

Quantitative Results of DSF-CNN

Tumour classification: In Table 5.7 we compare the performance of our proposed

DSF-CNN with the p4m-DenseNet [146], which is the top performing method that

was proposed with the introduction of the PCam dataset. This approach integrates

the use of G-convolutions on, as proposed by Cohen & Welling [32], into a densely

connected CNN [71]. Here, the network uses filter rotations by multiples of 90◦ and

also uses reflections. This is denoted by D4, which is the dihedral group containing

4 rotation and 4 reflection symmetries. In addition, we compare results to the com-

monly used ResNet-34 [66], ResNet-50 [66], DenseNet-121 [71] and DenseNet-169

[71]. Despite the small amount of parameters, we observe that our method achieves
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the best performance with an AUC of 0.975, which is a promising improvement over

the previous state-of-the-art.

Table 5.7: Comparison of DSF-CNN with state-of-the-art on the PCam dataset
[146].

Method Group Parameters AUC

ResNet-34 [66] {e} 21.3M 0.942
ResNet-50 [66] {e} 23.5M 0.948

DenseNet-121 [71] {e} 7.8M 0.921
DenseNet-169 [71] {e} 13.3M 0.920

p4m-DenseNet∗ [146] D4 119K 0.963
DSF-CNN (Ours) C8 2.2M 0.975

Table 5.8: Comparison of DSF-CNN with state-of-the-art on the CRAG dataset
[57].

Method Group Params Obj F1 Obj Dice Obj Haus ↓
FCN8 [121] {e} 134.3M 0.796 0.835 199.5
U-Net [121] {e} 37.0M 0.827 0.844 196.9

MILD-Net [57] {e} 83.3M 0.869 0.883 146.2
Rota-Net [58] {e} 71.3M 0.869 0.887 144.2

DSF-CNN (Ours) C8 3.7M 0.874 0.891 139.5

Table 5.9: Comparison of DSF-CNN with state-of-the-art on the Kumar dataset [88].

Method Group Params B-Dice PQ

FCN8 [103] {e} 134.3M 0.797 0.312
SegNet [17] {e} 29.4M 0.811 0.407
U-Net [121] {e} 37.0M 0.758 0.478

Mask-RCNN [65] {e} 40.1K 0.760 0.509
DIST [113] {e} 9.2M 0.789 0.443

Micro-Net [119] {e} 192.6M 0.797 0.519
CIA-Net [169] {e} 22.0M 0.818 0.577
HoVer-Net [61] {e} 54.7M 0.826 0.597

DSF-CNN (Ours) C8 3.7M 0.826 0.600

Gland segmentation: In Table 5.8, we compare our proposed approach

with MILD-Net [57] and Rota-Net [58], which are top-performing gland segmenta-

tion methods and therefore can be appropriately used for performance benchmark-

ing. As mentioned in the above section, like the p4m-DesneNet, Rota-Net makes
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Figure 5.11: Visual results of nuclear segmentation using DSF-CNN. Yellow bound-
aries show either the pathologist annotation or predicted nuclei.

use of the standard G-convolution, but is limited to only 90◦ filter rotations. In

addition, we compare with FCN8 and U-Net as they are two widely used CNNs for

segmentation. We observe that our DSF-CNN achieves the best performance with

a fraction of the parameter budget. Notably, our model has around 20 times fewer

parameters than Rota-Net and MILD-Net.

Nuclear segmentation: We evaluate the performance of our proposed

method with several state-of-the-art approaches in Table 5.9. In particular, HoVer-

Net [61], CIA-Net [169], Micro-Net [119] and DIST [113] have been purpose-built for

the task of nuclear segmentation and, therefore, provide a competitive benchmark.

The proposed DSF-CNN once again achieves the best performance compared to

other methods for both binary DICE and panoptic quality, on par with the state-

of-the-art HoVer-Net method, while requiring a fraction of the parameter count.

Visual Results of DSF-CNN

In Figures 5.11 and 5.12 we show some visual results for nuclei and gland segmen-

tation, where the yellow boundaries show either the pathologist annotation or the

nuclei/gland predictions. We see that our algorithm is able to perform a good qual-
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Figure 5.12: Visual results of gland segmentation using DSF-CNN. Yellow bound-
aries show either the pathologist annotation or predicted glands.

ity segmentation of the nuclei and glands, where the prediction closely resembles

the GT. In particular, we see that our algorithm is able to successfully differenti-

ate between touching nuclei and glands and hence can be appropriately used for

subsequent object-based feature extraction in downstream analysis.

5.4.8 Implementation and Training Details

We implemented our framework with the open source software library TensorFlow

version 1.12.0 [7] on a workstation equipped with two NVIDIA GeForce 1080 Ti

GPUs. During training, data augmentation including flip, rotation, Gaussian blur

and median blur was applied. For breast tumour classification, we fed the original

patches of size 96×96 into the network. For gland, lumen and nuclear segmentation,

we used patches of size 448×448 and 256×256 respectively. For tumour classification,

we trained our model using a batch size of 32 and then used a batch size of 8

for segmentation models. We used cross-entropy loss for all tumour classification

and gland/lumen segmentation models, whereas we used a combination of weighted

cross-entropy and dice loss for nuclear segmentation. For all models, we trained

using Adam optimisation with an initial learning rate of 10−3, that was reduced
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as training progressed. The network was trained with an RGB input, normalised

between 0 and 1.

5.5 Discussion and Conclusions

Conventional CNNs do not behave as expected with rotation of the input, which is

a particularly undesirable property in the field of computational pathology, where

important features in histology images can appear at any orientation. Instead,

rotation-equivariant CNNs build this prior knowledge of rotational symmetry within

the network, such that features rotate in accordance with the input without explicitly

learning features at various orientations. In this chapter, we propose two networks:

Rota-Net and DSF-CNN. Rota-Net introduces the concept of rotation-equivariance

and motivates its use within computational pathology by displaying improved re-

sults over conventional CNNs. Then, we enhance Rota-Net by proposing a densely

connected steerable filter CNN that achieves state-of-the-art performance on the

tasks of tumour classification, gland segmentation and nuclear segmentation with a

fraction of the parameter budget of recent top-performing models. We conducted a

thorough comparative analysis of various rotation-equivariant CNNs on the 3 tasks

mentioned above. We showed that steerable filter group convolutions gave the best

quantitative results on all three tasks, where 8 filter orientations consistently gave

a strong performance. We visualised features within a rotation-equivariant model

to demonstrate that they rotate with the input and therefore have a higher de-

gree of feature map interpretability. Finally, we showed that rotation-equivariant

models give more stable predictions with input rotation than regular CNNs do. In

future work, we will consider incorporating additional symmetries into the group

convolution, such as mirror and scale symmetries. This will further increase the

interpretability of feature maps and may lead to an improvement in performance.

Also, the exploration of further symmetries in histology images may help direct

future research in computational pathology
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Chapter 6

Conclusions and Future

Directions

In this thesis, we presented a range of computational tools to facilitate the auto-

matic analysis of cancerous tissue in H&E WSIs. We first addressed the challenge

of dealing with large-scale WSIs in CPath and developed a pipeline for automatic

NSCLC WSI classification. Then, we developed an algorithm for simultaneous nu-

clear segmentation and classification, followed by an algorithm for gland segmenta-

tion. Finally, we investigated rotation-equivariant CNNs for CPath and developed

several models applied to the tasks of simultaneous gland and lumen segmentation,

gland segmentation, nuclear segmentation and tumour classification. All of the ma-

chine learning methods described are supervised learning approaches, fundamentally

based on convolutional neural networks.

Apart from our WSI classification pipeline, the majority of this thesis fo-

cused on the localisation of nuclei or other components, such as glands, within the

tissue. It must be noted that localisation is typically not the end goal in CPath and

further work is needed to integrate these algorithms into a structured pipeline. For

example, the simultaneous segmentation and classification of nuclei enables subse-

quent downstream analysis of the nuclei within a WSI, opening up possibilities of

further analysis of large-scale nuclear morphometry. Features can be directly ex-

tracted from segmented nuclei and used in an ML model to predict clinical outcome.

First localising areas of interest and then utilising a set of known features is often

referred to as a bottom-up approach and can provide greater explainability of WSI-

level predictions. Of course, this approach is not limited to nuclei but can be applied

to any localised structure within the tissue. For instance, gland segmentation can

similarly be used as a prerequisite step before morphological feature extraction and
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patient outcome prediction from the WSI. In particular, extracted features that

reflect glandular aberrance [15] can provide an objective and explainable measure

that can help overcome the challenge of subjectivity in visual assessment of gland

formation.

Below we provide recommendations for how some of the work presented in

this thesis may be extended and we discuss potential future directions.

6.1 Opportunities for Future Research

6.1.1 Simultaneous Segmentation and Classification of Nuclei

In Chapter 3 we proposed a method for simultaneous segmentation and classifica-

tion of nuclei. Because we remove padding during the convolution in the upsampling

branch (also known as valid convolution), the output is smaller than the size of the

input. The size of the output also determines the maximum stride that can be used

when processing patches in WSIs. Therefore, the smaller the output size of the net-

work, the smaller the maximum stride will be, which consequently has an adverse

effect on the total time to process each WSI. In our case, there is a significant differ-

ence in the input and output size (270×270 vs 80×80) and therefore WSI processing

time will suffer. Segmenting nuclei within WSIs is typically done as an initial step

before downstream analysis. Therefore, it is important to optimise this step to pre-

vent unreasonably long processing times for the overall CPath pipeline. In future

work we may increase the efficiency of our nuclear segmentation and classification

algorithm to make it suitable for WSI processing. The first obvious adjustment

would be to increase the size of the output to enable larger strides. Further work

can also be spent on increasing the efficiency of the network. For instance, we may

prune the filters of the CNN [96] identified as having a small effect on the output

accuracy to effectively reduce the number of convolution operations in the model.

The concept of knowledge distillation via teacher-student networks can also be used

to decrease the size of the model. Here, the teacher would be our proposed network

and the student would be a more compact version with fewer parameters. Then, the

knowledge distillation scheme encourages the student network to make predictions

that closely resemble the predictions made by the teacher network.

As mentioned in Section 3.5, horizontal and vertical maps are better suited

to convex objects, which is why they perform particularly well for the task of nuclear

segmentation. In future work, we may extend our concept of horizontal and vertical

distance maps so that they can also be used for segmenting non-convex shaped

structures.
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As mentioned above, performing the segmentation is not the final step and

an additional step is required to make a WSI-level prediction. One powerful group

of methods that can leverage segmented nuclei to make slide-level predictions are

Graph Convolutional Networks (GCNs). GCNs have the ability to integrate both

morphological features and graph-level features that reflect the spatial relationship

between instances. Not only does this area hold great promise in providing an inter-

pretable and powerful predictor, but may additionally help overcome the challenge

of fitting the entire WSI into the memory of the GPU to train DL models. In fu-

ture work, we plan to use the output of our nuclear segmentation and classification

network as input to a GCN to predict cancer diagnosis.

6.1.2 Gland Segmentation

In Chapter 4 we introduced a method for accurate gland instance segmentation.

A major component of this approach is the use of dilated convolution that intro-

duces sparsity in the kernel and thus increases the size of the receptive field during

convolution. One area of further exploration would be the use of deformable convo-

lution [40], where the rate of dilation is learned as opposed to being explicitly set.

Within our model for gland segmentation, we use the concept of MIL units to help

counter the loss of information caused by max-pooling. In future work it is impor-

tant to perform a full quantitative analysis to thoroughly quantify the effect that

information loss from downsampling has on the performance of CNNs. Uncertainty

quantification can be helpful in highlighting where a model has difficulties in making

a prediction. There will inevitably be areas in the tissue that are naturally hard to

diagnose and we should not force our model to make a prediction in these areas.

However, to obtain an output of uncertainty, our method requires multiple copies

of the image to be fed through the network. It would be beneficial to develop an

approach that instead can output an uncertainty map, whilst only using one input

image.

In future work, we aim to leverage the performance of our gland segmenta-

tion approach and study the relationship between glandular morphology and patient

outcome. It has already been shown that the level of glandular aberrance, as mea-

sured by the best-alignment metric [15], can be used to directly predict the grade

of colorectal cancer. However, this analysis was performed on small image regions

extracted from the WSI. Instead, we aim to perform a large-scale WSI-level investi-

gation of glandular morphology and explore its relationship with a range of clinical

parameters, such as grade, recurrence and survival.
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6.1.3 Exploiting Symmetries in CNNs

Chapter 5 exploited the inherent rotational symmetry present in histology images

by making conventional CNNs rotation-equivariant. However, there are additional

symmetries that histology images possess that have not been explored in this thesis.

For example, histology images also have reflection symmetry. In other words, flip-

ping a histological image does not change its image content and will appear with the

same probability as the original image. Therefore, a natural development would be

to additionally incorporate reflection symmetries into the G-convolution; therefore

making it equivariant to the Euclidean group E(2). Similar to rotations by multiples

of 90◦, flipping the kernel along its horizontal or vertical axis is exact and therefore

we do not need to worry about interpolation artefacts. This is the case for both

standard and steerable filters. When using flips in addition to rotation, 2n feature

maps will be produced per filter. Therefore, if using a fixed parameter budget, it

is important to balance the trade-off between the number of symmetries utilised in

the network and the number of independent filters in each layer.

Another symmetry group that would be interesting to incorporate into our

framework is scale symmetry. This is because components within the tissue may

appear at different scales due to differences in pixel resolution between scanner

manufacturers. A possible direction to achieve scale-equivariance would be to use

the concept of dilated convolution, as has been done by Worrall and Welling [158].

In recent work [146], it has been shown that rotation-equivariant CNNs

are more sample efficient than standard counterparts. This is because a rotation-

equivariant method will be able to recognise features regardless of their orientation.

This is an important characteristic, especially in the medical domain, where labelled

data is hard to obtain. It would be interesting to further explore this claim and

demonstrate the performance of our proposed DSF-CNN with different proportions

of the input data.

6.1.4 Immunohistochemistry Analysis

In this thesis, we focused primarily on the analysis of H&E stained histology images.

However, a pathologist is also required to analyse immunohistochemistry (IHC)

slides that enable visualisation of antigen expression in the tissue. To quantify the

level of expression, pathologists often assign a score to the slide that is usually done

by visual assessment. This is naturally subjective, due to the difficulty in counting

a huge amount of positively stained cells, and therefore computational algorithms

show great potential in enabling a more accurate and reproducible quantification.

121



In future work, our proposed HoVer-Net can be used to segment positively stained

nuclei in IHC WSIs, enabling accurate counting, morphological assessment and de-

termination of expression levels of individual cells. This automatic analysis can also

enable further analysis of regions with high expressions levels and can help clinicians

associate the level of expression with tissue morphology.

Obtaining ground truth for the development of algorithms in computational

pathology is difficult because it needs to be validated by domain experts. Also this

task can even be challenging for experts, due to the difficulty in determining 3D

structures in a single 2D cross-sectional view. IHC data can be leveraged to ac-

curately classify individual cells, which can otherwise be difficult in H&E stained

slides. Most available datasets are typically curated by examination of H&E tis-

sue and consequently may be prone to inter-observer variation. Therefore, the field

of computational pathology would largely benefit from the development of a large

nuclear instance segmentation dataset, where the cells are categorised by IHC. Fol-

lowing this approach would also enable the categorisation of millions of cells within

a slide. This strategy has been used for mitotic cell recognition [142], but extension

to all cells within a series of WSIs would be advantageous for cell-based approaches

in CPath.

6.1.5 Open Problems in Computational Pathology

Throughout this thesis, we described a selection of methods that aim to tackle some

key tasks in computational pathology. Of course, there are numerous other applica-

tions not described in this thesis where CPath can be advantageous. For example,

an exciting application within this domain is the prediction of genetic alterations

from tissue stained with H&E [77, 78, 37], where usually additional genetic or im-

munohistochemical tests are needed. Therefore, computational tools developed for

mutation prediction can help potentially reduce turnaround time and cost. However,

especially for the prediction of certain genetic mutations, performance is still quite

low and therefore more work needs to be done before we can consider integrating it

within diagnostic pipelines.

Similar to this, there are various other applications that can benefit from the

the rich feature representations that CPath algorithms are capable of extracting.

For example, computational tools may not only be used to help improve the ob-

jectivity, reproducibility and accuracy of diagnosis of tissue samples, but may also

help with the advancement towards precision oncology. Tissue samples contain an

abundance of complex information that can be leveraged to more optimally predict

appropriate patient treatment. It is an open problem on how to best use compu-
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tational pathology to help inform oncologists’ decisions, yet is an area that in the

near future may receive a lot of attention, due to the positive impact it may have on

patient outcome. However, as we move towards developing algorithms that can have

a dramatic impact on patients’ lives, we must also strive for model explainability

that can help inform the final decision made by the oncologist.

All of the algorithms developed in this thesis relied on accurately labelled

datasets, where in the case of segmentation tasks, pixel-level annotation was needed.

With the rise of digital pathology, there is a growing amount of available data, yet

it is not feasible to expect pixel-level annotation for all available slides. Instead, for

certain tasks it can be preferable to leverage a single slide-level label that is usually

readily available. For instance, this slide label can correspond to the grade or type

of cancer. Weakly supervised approaches for WSI classification, that utilise only the

slide label as ground truth, have shown recent success in computational pathology

[23, 105, 106]. An open challenge within CPath is the development of weakly super-

vised approaches that may help to explain why certain predictions have been made

by the accurate localisation of discriminative regions. This is particularly interest-

ing for tasks, where the association between tissue morphology and the label is not

completely clear. For example, such approaches may help pathologists understand

which morphological features are responsible for certain genetic alterations. These

morphological features can be explored by utilisation of some of the segmentation

algorithms mentioned in this thesis.

6.2 Closing Remarks

In this thesis we proposed a range of algorithms that automatically analyse cancerous

tissue in H&E histology images. Many of the algorithms that we developed focus on

the accurate localisation of nuclei and glands within the tissue and therefore may

serve as a strong prerequisite before subsequent downstream analysis in CPath.

We also provided motivation for the use of rotation-equivariant CNNs for histology

image analysis, where rotational symmetry exists on a global scale.

To leverage the strong performance of the models presented in this thesis,

full integration into diagnostic CPath pipelines is necessary before deployment into

clinical practice. However, before this can be done, various other important factors

need to be considered. First of all, it is imperative to conduct a large-scale validation

of the developed algorithms across multicentric cohorts to assess generalisability to

unseen data. This data should also include WSIs acquired with scanners from a

variety of different manufacturers and tissue prepared with varying protocol. Also,
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it is inevitable that slides will often contain artefacts that may lead to incorrect

diagnoses. For example, if dirt exists on the glass slide before scanning, then it may

result in the entire WSI being out-of-focus. Another example of artefacts present in

WSIs are pen markings that pathologists sometimes draw to circle regions of interest.

Therefore, due to the above regions, it is essential to integrate a pre-processing step

for quality-control before application of CPath algorithms. Another vital criterion

for successful deployment of CPath algorithms is the development of an easy to

navigate user interface that pathologists can seamlessly integrate into their routine

workflow.

In the future, we believe that CPath will be a fundamental component of

the digital pathology workflow and will be prove pivotal in the quest towards repro-

ducible diagnosis and personalised medicine.
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Appendix A

Applications of HoVer-Net

In addition to the experiments that we performed in Chapter 3, we also applied our

proposed network for simultaneous segmentation and classification of nuclei to two

additional datasets:

• PanNuke dataset [52, 53]

• Multi-Organ Nuclei Segmentation and Classification (MoNuSAC) challenge

dataset [147]

PanNuke is now the largest known dataset for nuclear segmentation and

classification that ranges across many tissue types and hence is an appropriate ad-

ditional benchmark of our proposed algorithm. A dataset trained on PanNuke will

likely generalise well to new data and therefore can be effectively used for nuclei-

based downstream analysis. The MoNuSAC dataset was supplied as part of an

international medical imaging contest and therefore the performance of our algo-

rithm compared to other participants’ results provides further indication of the

ability for our model to segment and classify nuclei. The MoNuSAC dataset1 was

curated to help better understand the tumour microenvironment (TME) and its role

in cancer development. For instance, the spatial arrangement of tumour infiltrat-

ing lymphocytes (TILs) is associated with clinical outcome in several cancers and

tumour associated macrophages (TAMs) influence multiple processes such as blood

vessel formation, cell proliferation and antigen presentation in various tumours.

1https://monusac-2020.grand-challenge.org
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A.1 The Datasets

A.1.1 PanNuke 2019

The PanNuke dataset consists of a total of 481 visual fields of H&E stained tissue

containing 205,343 annotated nuclei, that have been semi-automatically annotated

and quality-controlled by clinical pathologists. The dataset contains nuclei from

19 different tissue types, where image regions were selected with minimal selection

bias to better reflect the true data distribution of histology images. Overall, the

classes labelled were: neoplastic, inflammatory, connective, epithelial and dead. To

generate the dataset, the nuclei were annotated in a two stage process. First a semi-

automatic nuclear detection and classification algorithm was used to label nuclei.

Then, after several rounds of verification, masks were generated from the detected

points [73]. This semi-automatic labeling strategy enabled the creation of a huge

dataset, while barely compromising on annotation accuracy. The dataset includes

pre-extracted patches of size 256×256 that are split into 3 training, validation and

testing folds for a fair model comparison. These folds are selected randomly, but

special attention is given to ensure that all tissue types are similarly represented

between folds. This is particularly important for minority classes. Example image

patches from the PanNuke dataset can be viewed in Figure A.1

A.1.2 MoNuSAC 2020

The MoNuSAC training dataset consists of 31,411 hand-annotated nuclei containing

14,539 epithelial cells, 15,654 lymphocytes, 587 macrophages and 631 neutrophils.

Other nuclei, such as fibroblasts and endothelial cells were considered as background

and therefore all nuclei weren’t labelled. It is evident that there is a significant

class imbalance in the dataset, which reflects how often the nuclei occur in the

tissue. These nuclei were extracted from lung, prostate, breast and kidney H&E

tissue sections from 45 patients, which were scanned at 31 hospitals and downloaded

from the TCGA database. This enables the subsequent automatic morphological

and spatial analysis of the TME, which may help us better understand the role

of immune cells in cancer progression. The test set was provided to the challenge

participants, but the GT was held back by the organisers. Figure B.1 displays

some example image regions from the MoNuSAC dataset, where the colour of the

boundary denotes the class of the nuclei.
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Figure A.1: Example image patches from the PanNuke dataset. The boundary
colour denotes the category of each nucleus. Images are taken from [53].

A.2 Experiments and Results

A.2.1 Evaluation Metrics

In Section 3.3.1, we introduced the Panoptic Quality (PQ) as a strong measure to

quantify the instance segmentation performance. Then, we proposed a new classifi-

cation measure in Section 3.3.2 that enabled cross-comparison with detection meth-

ods and also on datasets where only the detection point is provided (e.g CRCHisto).

However, when only comparing segmentation approaches on a dataset where the

segmentation masks for each class are available, it makes sense to extend PQ to a

multi-class setting. The multi-class PQ is calculated independently for each class

and then the results for each class are averaged to yield the overall result. Due

to averaging over the classes, this measure is also insensitive to class imbalance.

When calculating mPQ, we skip the PQ calculation for a given class in an image if
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Epithelial Lymphocytes Macrophages Neutrophils

Figure A.2: Example image patches from the MoNuSAC dataset. The boundary
colour denotes the category of each nucleus.

its corresponding ground truth mask is empty. We denote binary PQ as bPQ and

multi-class PQ as mPQ.

A.2.2 PanNuke Results

We trained HoVer-Net on the 3 folds in PanNuke and report the mPQ and bPQ

scores. We are most interested in mPQ as it determines the overall ability for each

model to simultaneously segment and classify nuclei into the 5 classes. Similar to our

comparative analysis reported in Table 3.5, we include the results of Mask-RCNN

[65], DIST [113] and Micro-Net [119] to effectively quantify the performance of our

model compared to recent state-of-the-art approaches. In Table A.1, we observe

that HoVer-Net achieves the best bPQ and mPQ score across the 19 different tissue
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Table A.1: Average mPQ and bPQ across three dataset splits. We also provide the
standard deviation (SD) across these splits in the final row.
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types present in the dataset and therefore can effectively be used to successfully

segment and differentiate between different types of nuclei. Also, our model has the

smallest standard deviation across the 3 folds, indicating that it consistently gave

a strong performance. In Table A.2 we show the PQ for each class in the dataset,

where we can see that our proposed algorithm obtains the best PQ score for each
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class. Notably, dead nuclei obtain a low PQ for all models because these nuclei are

typically very small and therefore achieving an IoU>0.5 (PQ criterion for a true

positive) is difficult. Also, dead nuclei are under-represented in PanNuke, where

they make up around 1.5% of the total nuclei in the dataset. Therefore, this class

imbalance adds to the difficulty in successful dead nuclei segmentation. Despite

this, it is evident that the HoVer-Net score for PQd is significantly better than other

models because the addition of the dice loss term at the output of the NC branch

enables it to perform well when faced with unbalanced classes.

Table A.2: Average PQ for each type of nucleus on the PanNuke dataset. PQn, PQe,
PQi, PQc and PQd denote the panoptic quality for the neoplastic, non-neoplastic
epithelial, inflammatory, connective tissue and dead cell classes respectively.

PQn PQe PQi PQc PQd

HoVer-Net 0.551 0.491 0.417 0.388 0.139
Micro-Net 0.504 0.442 0.333 0.334 0.051

Mask-RCNN 0.472 0.403 0.290 0.300 0.069
DIST 0.439 0.290 0.343 0.275 0.000

A.2.3 MoNuSAC Results

We trained our proposed model for nuclear segmentation and classification on each

of the 5 folds and report the performance on each fold in Table A.3. We observe

that our model performs best for neutrophils and finds it challenging to segment

macrophages. Neutrophils have a clear multi-lobed structure, which allows them to

be fairly easily distinguished from other nuclei types. However, macrophages often

have an indistinct cell boundary and can significantly vary in their appearance.

Therefore, the lower performance for this cell type is expected. In Table A.4 we

display the comparative results with other competitors of the MoNuSAC contest.

We observe that HoVer-Net achieves the best multi-class PQ score2, where it obtains

a score that is 5.6% higher than second place and 20.4% higher than third place.

We show some example results on the MoNuSAC test set in Figure A.3, where

we observe that on the whole, our algorithm is able to successfully segment and

classify the different nuclei. This further signifies that HoVer-Net is the current

state-of-the-art approach for nuclear segmentation and classification.

2https://monusac-2020.grand-challenge.org/Results
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Table A.3: Result on the MoNuSAC dataset for each fold using HoVer-Net. PQe,
PQl, PQm and PQn denote the PQ panoptic quality for the epithelial, lymphocyte,
macrophage and neutrophil classes respectively.

bPQ mPQ PQe PQl PQm PQn

Fold One 0.653 0.460 0.455 0.449 0.406 0.528
Fold Two 0.657 0.534 0.449 0.410 0.577 0.706

Fold Three 0.618 0.466 0.446 0.467 0.467 0.482
Fold Four 0.641 0.471 0.507 0.414 0.464 0.580
Fold Five 0.576 0.462 0.395 0.424 0.413 0.510

Average 0.629 0.478 0.450 0.433 0.465 0.561

Table A.4: Final results of the MoNuSAC contest. ∗Our submission using HoVer-
Net.

Team Name mPQ

TIA-Lab∗ 0.6119
SJTU 426 0.5793

IVG 0.5084
LSL000UD 0.4969

Sharif HooshPardaz 0.4808
xperience.ai 0.4490
TeamTiger 0.4264

Amirreza Mahbod 0.3890
DeepBlueAI 0.3365
Debut Kele 0.2630

the great backpropagator 0.1838
StevenSmiley 0.1659
NUKMLMA 0.1494

A.2.4 Implementation and Training Details

For both above experiments we implemented our framework with the open source

software library TensorFlow version 1.8.0 [7] on a workstation equipped with two

NVIDIA GeForce 1080 Ti GPUs. PanNuke contains pre-extracted patches of size

256×256 and therefore the input size to our network is slightly smaller than what

we originally used in Section 3. When experimenting with PanNuke, we initialised

the model with pre-trained weights on the ImageNet dataset [41], trained only the

decoders for the first 50 epochs, and then fine-tuned all layers for another 50 epochs.

Specifically, we used a batch size of 8 and 4 on each GPU for stage one and two

respectively. For MoNuSAC we initialised our model with weights trained on the
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Figure A.3: Visual results on the MoNuSAC dataset.

PanNuke dataset and similarly used an input size of 256×256. Then, we trained only

the 1×1 convolutions at the end of each decoder for 12 epochs and then fine-tuned

all layers for a further 50 epochs. For both experiments, we used Adam optimisation

with an initial learning rate of 10−4, which we then decreased during training. The

network was trained with an RGB input, normalised between 0 and 1.

A.3 Discussion and Conclusion

This appendix presented two further applications of our proposed network for simul-

taneous segmentation and classification of nuclei in histology images. We first ap-

plied our algorithm to the PanNuke dataset, which is the largest known multi-tissue

dataset for nuclear segmentation and classification and demonstrate that our algo-

rithm is the best performing model compared to recent state-of-the-art approaches.

We then applied our model to the MoNuSAC challenge dataset, where we achieved

the best performance out of 13 teams. This appendix provided further evidence that

HoVer-Net is the current state-of-the-art algorithm for the segmentation and clas-

sification of nuclei and enables accurate downstream exploration of nuclear features

in the TME.
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Appendix B

Exploiting Rotational

Symmetry: Additional

Experiments and Notation

B.1 Verification of Rotation-Equivariant Approaches

In order to verify our self implemented approaches in Chapter 5, we report the

performance of each rotation-equivariant model on the rotated MNIST dataset [92]

in Table B.2, which is typically used for performance benchmarking in this domain.

The rotated MNIST dataset is a dataset of 70,000 greyscale handwritten digits from

0-9 of size 28×28 pixels, which have been randomly rotated by an angle between 0

and 359◦. Therefore, this task requires the model to recognise digits regardless of

their orientation. In particular, we report the performance of a conventional CNN,

H-Nets [159], standard G-CNNs [32, 21, 90], VF-CNNs [110] and steerable G-CNNs

[156]. This was primarily to ensure that we were able to achieve a comparable

performance with the reported results in the original papers. In our experiments all

CNNs have the same base-level architecture, where we ensured that the models had

the same number of layers, the same filter size and a similar number of parameters.

Therefore our experiments are not only used for verification, but also to perform

a fair head-to-head comparison between models. To maintain a similar number of

parameters, we followed the same strategy as described in Section 5.4.4. In line with

our experiments in the paper, for H-Net we apply spatial max-pooling based on the

magnitudes, as opposed to average-pooling, which is used in the original paper.

We observe that all rotation-equivariant CNNs achieve a greater performance

than the conventional CNN, where the best performance is achieved by the C12 steer-
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Figure B.1: Example images from the MNIST dataset. These images are then
rotated by an angle between 0 and 359◦ to obtain the rotated MNIST dataset.

Table B.1: Verification of baseline models on the rotated MNIST dataset [92]. The
superscript associated with H-Net denotes the maximum frequency used.

Method Group Parameters Error

CNN {e} 416K 2.001
H-Net1 [159] SO(2) 418K 1.371
H-Net2 [159] SO(2) 414K 1.352
G-CNN [32] C4 413K 0.976

G-CNN [21, 90] C8 407K 0.962
G-CNN [21, 90] C12 411K 0.940
VF-CNN [110] C8 418K 1.202
VF-CNN [110] C12 418K 1.172

Steerable G-CNN [156] C8 416K 0.820
Steerable G-CNN [156] C12 424K 0.809

able G-CNN. Interestingly, we observe a significant boost in performance for our C4

G-CNN and H-Net implementations, compared to the originally published results.

These models have the same number of layers as the original implementations, but

are wider to ensure a similar number of parameters between competing models.

Note, we also add 2 1×1 convolutions after obtaining the invariant map (after G-

pooling or computing the magnitude of the complex feature maps), which may have

also contributed to the increase in performance. If we use the same architecture

used by Weiler et al. for the C12 steerable G-CNN, then we obtain an error of 0.709,

which is very close to the original result. However, this implementation uses around

3.3M parameters, which is nearly 8× the amount that we use in our comparative

experiments in Table B.2.
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B.2 Summary of Mathematical Notation in Chapter 5

Table B.2: Description of mathematical symbols.

Symbol Description

R Set of real numbers
C Set of complex numbers
Z Set of integers
F Real vector space of functions C→ R
FC Complex vector space of functions C→ C
Re Real part of complex number
E(2) Euclidean group
SE(2) Special euclidean group (no reflections)
SO(2) Special orthogonal group (no reflections)
{e} Trivial group containing only the identity on page 92
n A positive integer, fixed throughout this paper
Dn Dihedral group of n rotations of C, fixing 0 and flips
Cn Cyclic group of n rotations of C, fixing 0
C ′n {2πs/n | 0 ≤ s < n} group law is addition mod 2π
G An arbitrary group
G Group as defined in Subsection 5.2.3
r radius in polar coordinates
ψ a filter

λ, β, θ usually elements of C ′n, sometimes arbitrary angles
Rk Radial profile of atomic steerable filters
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[95] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[96] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.

Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[97] Miao Liao, Yu qian Zhao, Xiang hua Li, Pei shan Dai, Xiao wen Xu, Jun

kai Zhang, and Bei ji Zou. Automatic segmentation for cell images based on

bottleneck detection and ellipse fitting. Neurocomputing, 173:615 – 622, 2016.

[98] Huangjing Lin, Hao Chen, Qi Dou, Liansheng Wang, Jing Qin, and Pheng-Ann

Heng. Scannet: A fast and dense scanning framework for metastastic breast

cancer detection from whole-slide image. In 2018 IEEE Winter Conference

on Applications of Computer Vision (WACV), pages 539–546. IEEE, 2018.

[99] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,

Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Com-

mon objects in context. In European conference on computer vision, pages

740–755. Springer, 2014.

[100] Jasper Linmans, Jim Winkens, Bastiaan S Veeling, Taco S Cohen, and Max

Welling. Sample efficient semantic segmentation using rotation equivariant

convolutional networks. arXiv preprint arXiv:1807.00583, 2018.

146



[101] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud

Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen AWM

van der Laak, Bram Van Ginneken, and Clara I Sánchez. A survey on deep

learning in medical image analysis. Medical image analysis, 42:60–88, 2017.

[102] Harvey Lodish, Arnold Berk, S Lawrence Zipursky, Paul Matsudaira, David

Baltimore, and James Darnell. Molecular cell biology 4th edition. National

Center for Biotechnology Information, Bookshelf, 2000.

[103] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 3431–3440, 2015.

[104] Cheng Lu, David Romo-Bucheli, Xiangxue Wang, Andrew Janowczyk, Shri-

dar Ganesan, Hannah Gilmore, David Rimm, and Anant Madabhushi. Nu-

clear shape and orientation features from h&e images predict survival in

early-stage estrogen receptor-positive breast cancers. Laboratory Investiga-

tion, 98(11):1438, 2018.

[105] Ming Y Lu, Drew FK Williamson, Tiffany Y Chen, Richard J Chen, Matteo

Barbieri, and Faisal Mahmood. Data efficient and weakly supervised compu-

tational pathology on whole slide images. arXiv preprint arXiv:2004.09666,

2020.

[106] Ming Y Lu, Melissa Zhao, Maha Shady, Jana Lipkova, Tiffany Y Chen,

Drew FK Williamson, and Faisal Mahmood. Deep learning-based compu-

tational pathology predicts origins for cancers of unknown primary. arXiv

preprint arXiv:2006.13932, 2020.

[107] Alessandro Lugli, Richard Kirsch, Yoichi Ajioka, Fred Bosman, Gieri Cath-

omas, Heather Dawson, Hala El Zimaity, Jean-François Fléjou, Tine Plato
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[113] Peter Naylor, Marick Laé, Fabien Reyal, and Thomas Walter. Segmentation

of nuclei in histopathology images by deep regression of the distance map.

IEEE Transactions on Medical Imaging, 2018.

[114] Kien Nguyen, Anil K Jain, and Bikash Sabata. Prostate cancer detection:

Fusion of cytological and textural features. Journal of pathology informatics,

2, 2011.
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Tallam, Tomi Pitkäaho, Taina Lehtimäki, Thomas Naughton, Matt Berseth,
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