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Abstract

Unmanned aerial vehicles (UAVs) are mostly considered by the military for surveillance

and reconnaissance operations, and by hobbyists for aerial photography. However, in re-

cent years, the UAV operations have been extended for civilian and commercial purposes

due to their agile and cost-effective deployment. UAVs appear to be more prolific plat-

forms to enable wireless communication due to their better line-of-sight (LOS) channel

conditions as compared with the fixed base stations (BSs) in terrestrial communication

which suffer from severe path loss, shadowing, and multipath fading in more challeng-

ing propagation environments. In UAV-enabled wireless communications, the UAV can

either act as a complementary aerial BS to provide on-demand communication or as an

aerial user equipment (UE) which is operated by the existing cellular network. Several

challenges exist in the design of UAV communications which include but not limited to

channel modeling, optimal deployment, interference generation, performance analysis,

limited on-board battery lifetime, trajectory optimization, and unavailability of regula-

tions and standards which are specific for UAV communication and networking.

This thesis particularly investigates some important design challenges for safe

and reliable functionalities of UAV for wireless communication and networking. UAV

communication has its own distinctive channel characteristics compared to the widely

used cellular or satellite systems. However, several challenges exist in UAV channel mod-

eling. For example, the propagation characteristics of UAV channels are under explored

for spatial and temporal variations in non-stationary channels. Therefore, first and fore-

most, this thesis provides an extensive review of the measurement methods proposed

for UAV channel modeling and discusses channel modeling efforts for air-to-ground and

ix



air-to-air channels. Furthermore, knowledge-gaps are identified to realize accurate UAV

channel models.

The efficient deployment strategy is imperative to compensate the adverse im-

pact of interference on the coverage area performance of multiple UAVs. As a result,

this thesis proposes an optimal deployment strategy for multiple UAVs in presence of

downlink co-channel interference in the worst-case scenario. In particular, this work

presents coordinated multi-UAV strategy in two schemes. In the first scheme, symmet-

ric placement of UAVs is assumed at a common optimal altitude and transmit power. In

the second scheme, asymmetric deployment of UAVs with different altitudes and trans-

mit powers is assumed. The impact of various system parameters, such as signal-to-

interference-plus-noise ratio (SINR) threshold, separation distance between UAVs, and

the number of UAVs and their formations are carefully studied to achieve the maximum

coverage area inside and to reduce the unnecessary coverage expansion outside the tar-

get area.

Fundamental analysis is required to obtain the optimal trade-off between the

design parameters and performance metrics of any communication systems. This the-

sis particularly considers two emerging scenarios for evaluating performance of UAV

communication systems. In the first scenario, the uplink UAV communication system

is considered where the ground user follows the random waypoint (RWP) model for user

mobility, the small-scale channel fading follows the Nakagami-m model, and the uplink

interference is modeled by Gamma approximation. Specifically, the closed-form expres-

sions for the probability density function (PDF), the cumulative distribution function

(CDF), the outage probability, and the average bit error rate (BER) of the considered UAV

system are derived as performance metrics. In the second scenario, the downlink hy-

brid caching system is considered where UAVs and ground small-cell BSs (SBSs) are dis-

tributed according to two independent homogeneous Poisson point processes (PPPs),

and downlink interference is modeled by the Laplace transforms. Specifically, the ana-

lytical expressions of the successful content delivery probability and energy efficiency of

the considered network are derived as performance metrics. In both scenarios, results

are presented to demonstrate the interplay between the communication performance

x



and the design parameters.
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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicles (UAVs)

Unmanned aerial vehicles (UAVs) colloquially referred to as ‘drones’ are continuously

shaping the future of smart city applications and revolutionizing commercial operations.

For example, DJI’s Agras T20 hexacopter can be used for agriculture and crop protection.

Traditionally, UAVs are used by military for surveillance and security operations. How-

ever, the UAV-based applications ranging from entertainment to telecommunication led

to a paradigm shift in realization of UAVs in the civilian domain. Particularly, in the field

of telecommunication, the operation of the UAV mounted with wireless equipment is

considered as an ingenious solution by both academia and industry to meet the ever

increasing communication demand of end users in a variety of scenarios.

Compatibility of the UAV to operate in different applications and environments

warrants the selection of an appropriate type of UAV which must take in to account the

requirements compelled by the application, environment, and civil aviation regulations.

In fact, the efficacy of the UAV-based applications depends on the suitable flying altitude

or aerial platform of the UAV. In general, UAVs can be categorized according to their alti-

tudes as the low altitude platform (LAP) and the high altitude platform (HAP). LAPs have

the capability to move quickly, and have flexible deployment up to few km. On the other
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hand, HAPs are typically quasi-stationary and can attain altitude above 17 km. In com-

parison with HAPs, LAPs can be more desirable for time-critical applications due to their

rapid deployment, for example, the need of communication services in the emergency

situations or natural disasters. However, HAPs can be preferable for long-term opera-

tions due to their longer endurance, such as Facebook Aquila project and Google Loon

flight system, which provides ubiquitous connectivity in the unserved regions.

UAVs can also be classified based on their design, into rotary-wing and fixed-

wing UAVs. In rotary-wing UAVs, multiple horizontally-spinning rotors are used to sup-

ply the vertical lift and thrust. This allow the rotary-wing UAVs to take off and land, to fly

in forward, backward and lateral direction, and to hover. These attributes allow the UAV

to be used in congested urban areas which cannot be reached by the fixed-wing UAV.

In contrast, the fixed-wing UAVs have outstretched wings to remain aloft in the forward

direction. Examples of different UAV types are illustrated in Fig. 1.1 and their attributes

are listed in Table 1.1

1.2 Basic Communication Requirements

UAV communications requirement for different applications can be classified into pay-

load communication, and control and non-payload communication (CNPC).

1.2.1 Payload Communication

This type of communication refers to the transmission of the actual intended data or

information between the UAV and ground user, such as back-hauling, relaying trans-

mission, sensor data, images, and real-time videos. For example, in aerial photography

applications, the captured images need to be transmit to the end user in a timely manner

using payload communication. The UAV payload communication mostly occur at much

higher data rate with relaxed latency of the order of hundreds of ms. For instance, a data

rate of several Mbps is required to assist the transmission of high-definition video, while

2
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Figure 1.1: Illustrative examples of different UAV types, (a) DJI-Spreading Wings S1000
[1], (b) Yuneec-H520E/520 [2], (c) Parrot Disco [3], (d) MQ-9 Reaper (Predator B). [4]

higher than 30 Mbps is desired for 4K resolution video, and even higher rates i.e. up to

tens of Gbps for wireless back-hauling in UAV-enabled communication.

1.2.2 Control and Non-Payload Communication (CNPC)

This type of communication refers to the bi-directional transmission of critical and safety

messages between the UAV and ground control station to ensure reliable and effective

flight operations. In this regard, the International Telecommunication Union (ITU) has

outlined the essential CNPC guidelines to accomplish safe UAV operations as [5]:

• CNPC for UAV Command and Control: This consists of navigation database, teleme-

try report (velocity and flight altitude), real-time UAV control for piloting, identity

and flight authorization, and flying course updates for autonomous UAVs.

• CNPC for Air Traffic Control (ATC) Relay: It is important to ensure that UAV mis-
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sions and applications do not cause any disruption or safety concerns to the oper-

ation of the manned aircraft, especially near airports. To this end, the connectivity

between the ATC and the ground controller via the UAV, known as ATC relay, is

needed.

• CNPC Supporting ‘Sense and Avoid’: The potential of CNPC to assist ’Sense and

Avoid’ enables the UAV to maintain safe distance with nearby UAVs, obstacles, and

terrain.

Communication and spectrum requirements for CNPC differ from the payload

communication. Specifically, the data rate requirement to establish CNPC link is usually

low i.e. up to hundreds of kbps, but rather require stringent check on high security, ultra-

reliability, and low latency. According to the technical report (release 15) published by

3rd generation partnership project (3GPP) in 2018 [6], the data rate requirement for the

command and control of aerial vehicles to support enhanced Long Term Evolution (LTE)

is between 60-100 kbps in both uplink and downlink directions, reliability of less than

10−3 packet error rate, and a latency of less than 50 ms.

1.3 UAV-Enabled Wireless Networks

The recent advancement in microelectronic technology shrinks the size and thus re-

duces the weight of wireless network equipment, allowing new ways to employ wireless

network infrastructure. From a networking perspective, UAV-mounted wireless modules

can provide more flexibility in terms of easy deployment and offer cost-effectiveness. In

general, the aerial communication platform can be categorized, based on the function-

ality of the UAV, into aerial base station (BS) and aerial user equipment (UE). In the for-

mer case, an aerial BS can be used in the UAV-assisted networks to support the future

wireless technologies and also provide on-demand wireless communication services.

In the latter case, an aerial UE can be used in the cellular-connected UAV networks to

communicate with the ground UEs by using the cellular core networks, where the inter-
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connectivity is performed by the licensed spectrum of the existing mobile networks.

Future wireless networks need to satisfy the demands of the ubiquitous cover-

age and reliable high-speed communication. Despite these benefits, the establishment

of new wireless networks confronts many challenges, such as spectrum scarcity, limited

space to setup new infrastructure, and high deployment cost. Another problem arises

when the communication resources are overwhelmed or existing ground networks fails

to satisfy the demand of wireless connectivity. To this end, the use of the UAV as an al-

ternative aerial communication platform can complement the future wireless network

that can provide seamless connectivity to the ground users. Moreover, the agility of UAV

deployment make it possible to effectively address the objectives of future wireless net-

works. The benefits of UAV-assisted networks and cellular-connected UAV networks are

further discussed next.

1.3.1 UAV-Assisted Communication Networks

During unexpected events or temporary situations, it is infeasible to invest in installa-

tion of the terrestrial infrastructure that will generate revenue for a very short duration.

A plausible solution to this problem is using LAP-UAV as an aerial BS that provide com-

munication services to the end users in the form of ‘UAV-cells’ as shown in Fig. 1.2. Fur-

thermore, UAVs are used as aerial relays to overcome the hurdles of deploying terrestrial

relays. The benefits of using aerial BSs in UAV-assisted networks includes but not limited

to:

• Ubiquitous Coverage: Aerial BS featured with robust deployment, flexible config-

uration, and line-of-sight (LOS) links, have capability to facilitate the ubiquitous

wireless coverage in presence of the existing communication infrastructure. Two

example scenarios are the traffic offloading from the ground BSs in the extremely

crowded events and rapid formation of ad hoc networks due to partial or complete

damage of infrastructure in case of natural calamity.
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Figure 1.2: Illustration of the deployment of an aerial BS in the UAV-assisted network to
serve the multiple ground users.

• Supporting Future Wireless Technologies: The new wireless technologies, such as

milli-meter wave (mmWave) communications, massive multiple-input multiple-

output (MIMO), and ultra-dense small-cell networks have emerged to enhance

capacity in high-mobility environment. In this case, aerial BSs can be used as an

integral component of the future wireless network if they are properly operated

and deployed. Furthermore, the communication performance can be further im-

proved by jointly designing the adaptive communication with the UAV mobility

control. For instance, when UAV encounters better air-to-ground channel condi-

tions, it can lower its altitude to attain higher transmission rate and sustain good

wireless connectivity with the ground user to transmit more data.

• Aerial Relaying: In absence of the reliable point-to-point communication link,

UAVs are deployed to establish long-haul wireless connectivity between two or

more remotely located ground terminals. For instance, this could be distant ter-

7



restrial BSs.

These evident benefits may not be possible with a fixed infrastructure. Conse-

quently, Ericsson and China Mobile have initiated field measurements to develop a fifth

generation (5G) prototype enabled by drone UAVs [7]. In another example, Qualcomm

is interested to deploy the 5G networks by using LAP-UAVs [8].In addition, AT&T roll-out

temporary LTE cell site with the help of helicopter in Puerto Rico, where the infrastruc-

ture was completely destroyed by hurricane Maria in 2017. Thus, an aerial BS can serve

as an independent communication platform in UAV-assisted networks to incorporate

the needs of future wireless networks and complement the existing ground infrastruc-

ture to provide on-demand communications.

1.3.2 Cellular-Connected UAV Networks

UAVs have been envisioned as an innovative way of deploying new aerial UEs that utilizes

cellular networks for their operations, as depicted in Fig. 1.3, where UAVs are used for

aerial wireless relaying, parcel delivery, and photography. Wireless cellular network is

intrinsic technology to serve the UAV because of its ability to provide wider coverage,

continuous connectivity, high throughput, and low latency. Some appealing advantages

of the cellular-connected UAV networks are discussed as follows :

• Ubiquitous Accessibility: Aerial UEs are controlled remotely by the ground pilot

due to the worldwide availability of the cellular networks, which enable the UAV

to collect and transmit data from virtually unlimited operational range. Also, it

effectively maintains the wireless connectivity between the UAV and end user, re-

gardless of its location. For instance, live videos can be sent directly from the UAV

to the worldwide audience.

• Enhanced Privacy and Security: Advance authentication mechanism in cellular

technologies make it possible to protect un-authorized access control of aerial UEs

in the cellular-connected networks.

8



Figure 1.3: A Schematic of three use cases of cellular-connected UAV network: aerial
wireless relaying, drone delivery, and drone camera.

• Cost-Effectiveness: Aerial UEs in the cellular-connected networks can utilize the

licensed mobile spectrum for payload communication. Consequently, the well

placed mobile spectrum can support widespread, high quality, and affordable UAV

connectivity with sufficient capacity to allow competitive services. Trials have

been conducted to exhibit that the existing mobile network can support the UAV

connectivity up to the altitude of 122 m [8]. This means that the rapid growth of

the UAV market can be supported by the mobile spectrum and no new network or

technology investment is needed.

• Facilitate Monitoring and Management: Dense air traffic monitoring and man-

agement can be effectively achieved through aerial UEs of the cellular-connected

networks. For example, with proper legislation and regulation, whenever manda-

tory, the ATC could legally take control of the UAV to avoid any foreseen safety

threat in timely manner.

• Robust Navigation: Cellular-connected aerial UE enables robust navigation. Usu-
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ally, UAV navigation depends on the satellite-based global positioning system (GPS).

However, it is susceptible to disruption due to the atmospheric conditions or block-

age from the high-rise buildings. One promising solution to get rid of this problem

is to consider differential GPS in cellular-connected aerial UE, where the UAV nav-

igation is achieved through the cellular networks.

Despite the above-mentioned advantages of the cellular-connected aerial UEs,

the propagation conditions for air-to-ground channels are completely different from the

terrestrial channels. The down-tilted terrestrial BSs are intended to provide communica-

tion services to the ground UEs and may not to the aerial UEs. Moreover, the ground UEs

are less dynamic than the aerial UEs. Another issue is that the cumulative co-channel

interference increases as the UAV altitude increases due to the better aerial connectivity

and thus aggravate the uplink performance. Therefore, a new three-dimensional (3D)

paradigm has to be adopted for the services and techniques to access the classical wire-

less networks via aerial UEs.

1.4 Design Challenges

Beside many advantages of UAVs, several key challenges must need to be addressed for

the effective utilization of aerial BSs and UEs for communication and networking. The

key challenges discussed in this section are channel characteristics, optimal deployment

of UAVs, performance evaluation, interference generation, and the limited on-board

UAV energy. Other challenges pertinent to UAV communications include but not limited

to the airframe shadowing, trajectory optimization, security in case of cyber-physical

attacks, back-haul connectivity, and standardizations and regulations.

1.4.1 Unique Channel Characteristics

The propagation channel in any wireless communication network is the air interface

between the transmitter and the receiver for the transmission of the electromagnetic
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waves, such as radio waves. The design of UAV-enabled networks is impractical without

the proper understanding of the wireless channel. Therefore, radio characterization and

channel modeling in the UAV network architecture becomes of the utmost importance.

The vast majority of the work related to channel modeling has been carried out

for terrestrial radio channels. However, these models may not be applicable for the UAV-

enabled wireless communication. UAV communications consist of air-to-ground prop-

agation to provide services to the ground users and air-to-air propagation to connect

multiple airborne UAVs. A distinctive feature of the air-to-ground channel implies an

altitude-dependent probability for the LOS propagation. As a result, at higher altitudes,

the communication performance improves with the higher link reliability and requires

lower transmission power. Even with non-LOS (NLOS) propagation, received power vari-

ations are comparatively less severe in UAV communications because only the ground-

base side of the air-to-ground link is mostly surrounded by the obstacles that affect the

propagation. On the other hand, air-to-air channels are mostly experiencing strong LOS

propagation similar to the high-altitude air-to-ground channels. Fig. 1.2 depicts the

air-to-ground and air-to-air propagation scenarios using aerial BS in the UAV-assisted

network.

The choice of an appropriate channel model depends on the application require-

ments and expected outcomes. When an estimated result is required for the large set of

area, it is more practical to consider a simple channel model to recapture general prop-

agation trends. For example, the log-distance with a constant path loss exponent (PLE)

is an appropriate choice. However, a complex channel model is needed in case of more

specific environments. The most complete air-to-ground channel model must consider:

• Path loss effects, and large-scale and small-scale fading mechanisms

• air-to-ground propagation segment (high-altitude air-to-ground, obstructed air-

to-ground, only ground)

• Different types of environment (rural, suburban, urban, dense urban)
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• Separate parameters for LOS and NLOS propagation

• UAV dynamics (Doppler shift)

1.4.2 Optimal Deployment

One of the key design challenges in the practicability of UAV-enabled wireless networks

is the proper deployment of the UAV in the 3D space to cater for the instantaneous traf-

fic demand. In fact, the potential of UAV mobility offers extra degrees of freedom for

effective deployment. For a single qausi-stationary LAP-UAV acting as an aerial BS, op-

timal deployment aims to achieve a maximum ground coverage while meeting a spe-

cific threshold and to fulfil certain quality-of-service (QoS) requirements. In this regard,

UAV altitude is one of the most important design parameters to control the propaga-

tion distance and consequently, the average path loss. To find the optimal altitude, it is

necessary to simultaneously consider the impact of both the LOS probability and prop-

agation distance. However, it is possible that the radio frequency (RF) section of the UAV

consists of the tilted directional antenna. In this case, antenna tilt angle and antenna

beam-width should be taken in to account to formulate the optimization problem for

the UAV deployment.

Multiple UAVs provide more flexibility in terms of performing different tasks at

the same time and if necessary, re-position themselves. However, the placement opti-

mization problem of multiple UAVs becomes even more challenging due to the received

co-channel interference from different UAVs during downlink transmission. Thus, the

effect of co-channel interference must be taken in to account to analyze the coverage

performance. To this end, beyond the optimal altitude, the optimal separation distance

between UAVs should also be determined to mitigate the impact of co-channel inter-

ference. The propagation environment can also influence the strategy to optimally de-

ploy UAV in order to cover maximum ground users. In general, the propagation envi-

ronment is classified on the basis of terrain features namely, flat, mountainous or hilly,

and over water body. A specific terrain can have covering in the form of tree canopy,
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forest, and buildings. The ITU has further categorized urban terrain as rural, suburban,

urban, dense urban, and high-rise buildings [9]. In this case, UAVs can adjust their alti-

tude based on the urban scenario. For instance, in suburban environment the UAV may

fly at the lower to attain the higher LOS probability and the lower path loss. In contrast,

UAVs may fly above the rooftop level in the urban environment to maintain higher LOS

connectivity.

1.4.3 Performance Analysis

In any communication network, it is important to provide fundamental analysis to eval-

uate the effect of resource constraints on performance limits. However, the salient fea-

tures of the UAV-enabled networks are the UAV mobility in 3D space and the altitude-

dependant channels, which complicates the overall system modeling and consequently,

its performance analysis. In both UAV-enabled and terrestrial communications, per-

formance analysis depends on the QoS requirements and similar performance metrics

can be used, such as signal-to-interference-plus-noise ratio (SINR), coverage probabil-

ity, throughput, latency, spectral efficiency, and energy efficiency. Furthermore, in UAV-

enabled networks, new performance metrics, such as energy consumption and mission

completion time, are of practical interest. Such performance evaluations can shed new

light on the inherent trade-offs between the different system parameters and the ex-

pected performance while designing the UAV-enabled networks for a particular mission

or application.

1.4.4 Interference Generation

One major design consideration of the UAV-enabled networks is the severe interference

during downlink and uplink communications, which is illustrated in Fig. 1.4 and Fig.

1.5 for the UAV-assisted network and cellular-connected UAV network, respectively. In

comparison with conventional terrestrial networks, the interference in UAV-enabled net-

works is more aggravated due to the dominant LOS channel between the ground user
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and the UAV at higher altitude. For the downlink communications in UAV-assisted net-

works, the intended ground user may receive severe interference from a number of the

neighbouring aerial BSs that are not linked with it. Moreover, downlink communica-

tions in the cellular-connected UAV networks, aerial UE receive extreme levels of in-

terference from the large number of ground BSs due to the strong LOS channel. As a

result, it is expected that the ground UE would have superior performance to an aerial

UE. On the other hand, for the uplink communications in the UAV-assisted networks,

the desired UAV receives strong interference from non-associated ground users. In the

cellular-connected networks, the aerial UE could also pose strong interference to many

adjacent but non-associated BSs and result in a new ‘exposed BS’ interference issue.

Thus, the unique air-to-ground and air-to-air channels constitute distinct interference

characteristics, which requires effective interference mitigation techniques to design the

UAV-assisted and cellular-connected UAV networks.

1.4.5 Energy Limitations

Commercial UAVs are usually battery operated and thus have a finite amount of on-

board energy to power circuits for communication purposes, such as transmission and

data processing, and also propulsion energy to support mobility and maintain UAV’s air-

borne. Propulsion energy (mostly of the order of a kilowatt) is generally several orders of

magnitude higher than the communication energy (mostly of the order of watts).

In conventional wireless communication, the trade-off between the throughput

and energy is basically rooted in the Shannon’s capacity theorem, which explicitly deter-

mine that the channel capacity or achievable throughput increases monotonically with

the transmission power. One useful performance metrics emerge from the throughput-

energy trade-off is the energy efficiency that defines the number of bits transmission

by using a Joule of RF circuit energy. In UAV-enabled communication, the impact of

propulsion energy on the UAV trajectory determines the throughput-energy trade-off.

For example, to increase the throughput, and considering that the UAV transmits at its
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(a) Downlink interference

(b) Uplink interference

Figure 1.4: Illustration of interference generation in the UAV-assisted network.

maximum power, each UAV needs to fly at a faster speed in order to reach sufficiently

close to the serving ground users and stay their as long as possible (given a limited flight

time) to establish dominant LOS channels with them. In addition, each UAV may require

to abruptly change its altitude and make sharp turns to avoid blockage. All these will

contribute to the consumption of the substantial amount of propulsion energy. There-
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Figure 1.5: Illustration of interference in the cellular-connected UAV network.

fore, energy efficiency for UAV communications is the measure of information bit trans-

mission per Joule of propulsion energy. This new measure has a critical significance to

design the UAV-enabled networks because it will determine the duration of the mission,

where maximum number of information bits need to be transmitted by consuming finite

amount of on-board energy. The UAV energy consumption also depends on the weather

conditions, for instance, UAVs may requires more propulsion energy in case of air turbu-

lence to keep them hovering.

1.5 Scope of the Thesis

1.5.1 Research Motivation

Although UAV-based technologies have been extensively studied as a promising candi-

date for the future wireless networks and to provide on-demand communication, there

are still some design challenges listed in Section 1.4 that require further investigation.
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The first and foremost challenge of the UAV-enabled communication network is

channel modeling due to the UAV dynamics. Specifically, any variations in the position

of the UAV can affect the channel characteristics. In addition, the air-to-ground propa-

gation channel is overly dependent on the altitude of the UAV and the type of the prop-

agation environment. There are number of studies that organize and summarize recent

research efforts related to UAV communications. For instance, the survey in [10] dis-

cussed the utilization of HAPs for wireless broadband communication. Furthermore, it

presented the major benefits of HAPs compared to satellite and terrestrial networks. Ref-

erences [11] and [12] reported some of the outstanding issues to deploy UAVs as flying

ad hoc networks (FANETs). From a communication and networking viewpoint, [13] sur-

veyed the requirements and characteristics of UAV networks. Reference [14] presented

a survey on the challenges related to the UAV-based IoT services. In [15], the authors

presented the research efforts related to the space-air-ground integrated networks for

5G and beyond 5G technologies. Key challenges and the open research problems re-

garding networking and security, collision avoidance, and UAV charging were outlined

and identified in [16]. The work in [17] provided important issues of UAV-enabled cellu-

lar networks, such as UAV types, standardization efforts by 3GPP, vendor prototypes of

aerial BSs, regulations, and cyber-security. In [18], the authors provided a comprehen-

sive overview of the UAV networks from the cyber-physical system view-point. These

surveys address the important problems of UAV communications. However, they mostly

limit their discussion on the issues and use cases of UAV-enabled wireless networking

and overlooked channel models for UAVs. Therefore, there is a need to gather largely

fragmented and sparse studies related to the channel modeling of UAV communications,

which will provide comprehensive overview of the potential opportunities and major

challenges in deploying UAVs as aerial BSs and aerial UEs in UAV-assisted and cellular-

connected UAV networks, respectively.

Another challenging task is the optimal deployment of UAVs, which depends on

many factors, such as the objective of deployment (e.g. to achieve maximum coverage
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and thus accommodate many ground users), position of ground users, and altitude-

dependent channel characteristics. As a result, significant attention has been devoted

to the optimal deployment of UAVs. In [19], the authors found the optimal altitude to

achieve a maximum coverage with a single UAV. In this work, the average path loss was

compared with a specified threshold to determine the deterministic coverage range. As

shown in [19], the LOS probability between UAV and ground user decreases at very low

altitudes due to the shadowing. On the other hand, high LOS probability exists at very

high altitudes. However, due to the large propagation distance, the path loss increases

and consequently, degrades the coverage performance. Thus, the effect of both propa-

gation distance and LOS probability should be considered together to obtain the opti-

mal altitude. The deployment of multiple UAVs is even more challenging due to the co-

channel interference. Reference [20] extended the results of [19] while considering two

interfering UAVs and derived optimal separation distance between them to mitigate the

impact of interference. The work in [21] determined the efficient 3D deployment of mul-

tiple aerial BSs while minimizing the number of UAVs required to serve all the ground

users within a target area. In [22], the authors analyzed the 3D placement of UAVs with

a objective to accommodate maximum number of ground users by the UAV. The work in

[23] studied the impact of the UAV altitude on the maximization of sum-rate in the UAV-

assisted ground network. For the disaster relief scenario in [24], the authors proposed

evolutionary algorithms to find the optimal deployment of LAPs and portable BSs. As

found in [24], the required number of portable BSs significantly reduces as the number

of LAPs increases. However, high interference induces due to the large number of LAPs,

which degrade the overall coverage performance. Despite the notable number of studies

on the deployment of UAVs as aerial BSs, they mostly ignore the problem of coverage

maximization in presence of the co-channel interference while utilizing the minimum

transmit power. In case of multiple UAVs, the separation distance between them is an

important design parameter which should be optimized to mitigate the interference ef-

fect and consequently provide the maximum ground coverage within a specific target
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area.

In any wireless communication technology, fundamental evaluation needs to be

done to determine its intrinsic trade-off and thus devise effective methods to improve

the overall performance. However, different from the conventional terrestrial networks,

performance analysis in the UAV-enabled system mostly depends upon the UAV mobility

and distinct air-to-ground channel characteristics. The work in [25], considered the use

of a stand-alone UAV as an aerial BS. Specifically, the authors provided a tractable analyt-

ical framework for the average coverage probability and sum-rate of the UAV that coex-

ists with the under-laid device-to-device (D2D) communication network. As observed in

[25], the optimal UAV altitude exists to maximize the coverage and the system sum-rate.

The authors in [25], derived the closed-form expressions for the coverage probability

for the downlink transmission between multiple UAVs and ground users. In particular,

the work in [25] used the tools from stochastic geometry to analyze the coverage perfor-

mance of a finite UAV network that considered a Nakagami-m fading channel for air-to-

ground communications. In [26], the analytical expressions for the outage probability

were derived for air-to-ground cooperative communication networks that consist of a

single UAV and the randomly distributed relays on the ground. Moreover, [26] consid-

ered the Rician distribution to characterize the small-scale fading between the UAV and

any ground node. In [27], the authors investigated the coverage performance of multi-

ple mobile UAVs moving randomly in a 3D cylindrical region while serving a reference

ground UE in a finite network. In particular, the work in [27] used the mixed mobility

model for mobile UAVs, free-space path loss model for capturing large-scale effects, and

a Nakagami-m distribution for representing small-scale fading. In [28], the authors eval-

uated the coverage performance of the UAV-assisted cellular networks while considering

the limited on-board battery of UAVs. The works in [25–28] mostly considered the static

ground users and ignored the impact of ground user mobility on the performance eval-

uation. It is evident from the literature [29, 30] that the ground user mobility effects the

performance of different communication systems, for instance, a visible light commu-
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nication (VLC) system in [31] and indoor Light-fidelity (LiFi) system in [32]. Therefore,

there is a need to study the impact of ground user mobility on the performance of UAV-

enabled communication systems.

The combination of UAV communications and edge-caching is a promising so-

lution for off-loading telecommunication traffic in the hot-spot areas and dissemination

of information in the wireless networks. In this case, the end user can directly receive the

requested content from the UAV acting as an aerial caching node. As a result, the traffic

load from the back-haul connectivity will be reduced. However, the aspects of caching

and UAV are often studied sparsely in the literature. Moreover, the recent studies [33, 34]

on caching in the UAV-enabled networks, largely ignored the performance analysis and

energy efficiency of such networks in presence of the cache-enabled small-cell ground

networks. Therefore, it is important to formulate the design guidelines for the practica-

bility of the UAV-enabled network that coexists with the samll-cell network in the form

of cache-enabled hybrid network.

1.5.2 Chapter Outlines

Motivated by the above observations, this thesis aims to present a comprehensive overview

of the channel modeling efforts for UAV communications. Furthermore, the impact of

multiple UAVs and their co-channel interference on the coverage area performance is

studied for optimal multi-UAV deployment. Performance of the UAV-enabled networks

is analytically evaluated in this thesis for two compelling scenarios. First, when the mo-

bile ground users access a stand-alone aerial BS in uplink transmission and uplink inter-

ference is generated by them. Second, when multiple UAVs are acting as cache-enabled

aerial nodes. Each chapter consists of the introduction and conclusion sections in order

to get better insight of the research problem and to understand the overall summary of

the chapters. The rest of this thesis is organized as follows:

Chapter 2 presents a comprehensive overview of the channel characterization ef-

forts for UAV communications. Specifically, the empirical channel models obtained from

20



measurement campaigns are presented and consequently reported with their large-scale

and small-scale fading statistics for both the air-to ground and air-to-air channels. More-

over, this chapter reviews the analytical channel models for air-to-ground propagation

and categorizes them into deterministic, stochastic, and geometry–based stochastic mod-

els. Finally, the key issues related to the advancement of the UAV channel modeling are

discussed.

Chapter 3 proposes the optimal deployment strategy for the multiple UAVs acting

as an aerial BSs in the presence of downlink interference. In particular, two deployment

scenarios are considered. In the first scenario, symmetric placement of UAVs is assumed

at a common optimal altitude and transmit power. In the second scenario, asymmet-

ric deployment of UAVs with different altitudes and transmit powers is assumed. Then,

the coverage area performance is investigated as a function of the separation distance

between UAVs that are deployed in a certain geographical area to satisfy a target SINR

threshold. In this case, the ground user is located at the cell boundary to represent the

worst-case scenario.

Chapter 4 analytically characterizes the impact of ground user mobility, propa-

gation environment and fading channel on the outage and error performances of UAV

communications for the system model that consists of a single aerial BS. Specifically,

the statistics of the signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR) are

derived. Moreover, the closed-form expressions for the outage probability and bit error

rate (BER) are obtained in the noise-only scenario by using the random waypoint (RWP)

model for ground user mobility, air-to-ground channel models for different propagation

environments and the Nakagami-m model for small-scale fading. Furthermore, the out-

age analysis considered the effect of the co-channel interference in uplink transmission

by both the stationary and mobile ground users.

Chapter 5 models a hybrid caching network which comprises of the cache-enabled

multiple UAVs and ground small-cell BSs. This chapter uses the tools from the stochastic

geometry to define the random deployment of cache-enabled UAVs and ground small-
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cell BSs. First, the association probability for the ground user affiliated with a UAV and

ground small-cell BS is derived. Then, the performance of the hybrid network is evalu-

ated with the help of the successful content delivery probability while considering the

impact of both the inter-cell and intra-cell interference during downlink transmission.

Furthermore, the energy efficiency of the hybrid network is computed and compared

with the stand-alone UAV and ground networks. Finally, a caching scheme is proposed

to improve the successful content delivery performance by managing the content popu-

larity. In the proposed scheme the part of the caching capacity in each UAV and ground

small-cell BS is reserved to store the most popular content, while the remaining stores

less popular contents.

Finally, Chapter 6 summarizes the main body of this thesis, and discusses future

work on UAV communications and on some UAV-enabled applications.
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Chapter 2

Channel Modeling for UAV

Communications

2.1 Introduction

UAV communications have seen dramatic development in a variety of applications. Most

of these deploy UAVs as LAPs. In order to ensure safety and high reliability of UAVs for

wireless communication applications, it is of utmost importance to thoroughly char-

acterize communication channels. Many research organizations and standardization

bodies have worked together to establish pragmatic UAV frameworks. For example, in

2013, the special committee (SC-228) was formed by the Radio Technical Commission

for Aeronautics (RTCA) to frame minimum performance standards for UAV operations

[35]. In 2016, RTCA has also established the drone advisory committee to ensure the safe

introduction of UAVs into the United States (US) national airspace system [36]. In Jan-

uary 2020, the Aeronautics Research Mission Directorate of the National Aeronautics and

Space Administration (NASA) partnered with the Federal Aviation Administration (FAA)

to launch the UAS Traffic Management (UTM) project with an aim to conduct research

on enabling small size drones to safely access the LAP for beyond visual LOS operations

[37].
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The unique features that distinguish UAV communication and its channel char-

acteristics from the conventional communication include:

1. terrestrial radio channels mostly experience severe path loss, shadowing, and mul-

tipath fading, whereas air-to-air and air-to-ground channels generally encounter

dominant LOS between UAVs and ground users;

2. highly dynamic communication channel characteristics for air-to-air and air-to-

ground propagation due to the UAV velocity;

3. excessive spatial and temporal variations induced in the non-stationary channels

due to the mobility of both the UAV and the ground devices;

4. airframe shadowing caused by the structural design and rotation of the UAV.

In the diverse propagation environment where UAVs operate, these features become

more challenging. The main difference between UAV communications with UAVs de-

ployed in 3D space and conventional cellular communications with fixed BSs in a two-

dimensional (2D) plane is that the movement of UAVs can worsen problems with cover-

age and connectivity by inducing severe non-stationarity. On the other hand, UAVs can

be a viable solution to provide on-demand communications and form an emergency

wireless network in cases of terrestrial disruption. Also, compared with satellite commu-

nication, UAV is cost-effective, having lower latency, and mostly performs better under

SNR and SINR constraints. Propagation characteristics for terrestrial cellular systems

are often corroborated using well-established empirical and analytical models. Satellite

links for land mobile systems have also been thoroughly investigated in the literature [38,

39]. However, for different network formations and operations, these models are often

not well suited for characterizing UAV channels. To this end, UAV communication is still

in its infancy and no well-established standard has been proposed.

Reliable analytical models are necessary to evaluate the performances of differ-

ent wireless techniques. Generally, for air-to-ground channels in UAV communications,
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modeling approaches can be classified into three categories. The first approach is to de-

velop deterministic models using environmental parameters. Such models are useful for

studying large-scale fading effects in the channel [40, 41]. Hence, the propagation condi-

tions can provide coverage analysis and indicate the optimal UAV position [19],[42–45].

The second approach is to develop a tapped delay line (TDL) model to characterize the

direct path as well as the multipath components. Then wideband frequency-selective

parameters can be derived from the channel impulse response [46–48]. This approach

is particularly important if non-stationarity exists in the air-to-ground channel. Finally,

geometric-based stochastic models are desirable for evaluating spatial-temporal char-

acteristics in a geometric simulation environment. This approach is preferable for char-

acterizing the air-to-ground channel in a 3D plane with less environmental parameters

[49–54].

However, empirical studies are essential to authenticate or disprove theoretical

models. Practically the choice of aerial platform in terms of its altitude has presented

some opportunities and challenges. High altitude UAVs are capable of operating in the

upper layer of the stratosphere [55] where the coverage performance is completely de-

pendent on LOS propagation, and marginally relies on the elevation angle. Atmospheric

effects and propagation delay are bottlenecks in their modeling, but multi-tier HAPs

can expand the UAV coverage and provide a generic communication framework of next-

generation aerial heterogeneous networks. In contrast, for LAPs, the deployment of com-

mercial UAVs are limited by civil aviation regulations [56]. For instance, a maximum limit

of 120 meters is permitted by the FAA in USA [57] and the Civil Aviation Safety Author-

ity (CASA) in Australia [58]. In United Kingdom, according to the regulations set by the

Civil Aviation Authority, the maximum allowable altitude for recreational drones that

weight less than 25 kg is 120 meters above the surface [59]. This altitude range is feasible

for power-limited UAVs to meet the QoS requirements of end users confined within the

small-cells. In this case, optimum placement of the UAV and the characteristics of the

environment determine the major channel parameters. However, the power consump-
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tion and endurance time of UAVs are the performance limitation factors for both cases.

Most of the work reported in the literature [60–74] is pertinent to air-to-ground chan-

nel characterization based on measurements with manned aircrafts at HAP. However,

these findings cannot be directly applied to single-hop UAV networks deployed at lower

altitudes due to the demand for a high data rate, low latency and continuous connectiv-

ity. It is evident from the studies in [75–111] that the impact of the UAV placement and

the surrounding environments is significant for the propagation characteristics of UAV

communications due to time and frequency selectivity in the dynamic UAV channels

and can lead to fading. However, less research efforts have been made to tackle shadow-

ing induced in air-to-air and air-to-ground channels by the UAV’s structural design and

maneuvering. In addition, the wide-sense stationary uncorrelated scattering (WSSUS)

assumption may be violated in some UAV-aided applications. Thus, in order to avoid

over exaggerated performance evaluation from analytical and empirical channel mod-

els, it is important to estimate the fading statistics within stationary intervals. Unlike

the air-to-ground channel, the air-to-air propagation channel is predominantly impor-

tant in multi-hop UAV networks for sensing and coordination applications, and for back-

haul wireless connectivity to complement existing communication systems. Moreover,

the propagation characteristics of air-to-air channels are similar to that in free space and

largely dependent on strong LOS conditions and ground reflection effects. In the liter-

ature, the air-to-air propagation channel has been empirically characterized using low

power radios based on the IEEE 802.15.4 [89–91] and IEEE 802.11 standards [92, 94]. But

these studies only reported large-scale fading statistics, while the impact of antenna ori-

entation and the Doppler spectrum of the air-to-ground channel are largely unstudied.

Despite the importance of channel modeling in UAV communications, very few

survey studies are available in the literature. For instance, reference [11] identified key

issues related to the formation of multi-UAV network, but that survey focuses more on

the communications and especially the control of the UAV. Aerial networking character-

istics and requirements were reviewed in [13] for civil applications, however, that survey
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mainly discussed the communications aspects of UAVs, in particularly network layer de-

signs. Both [11] and [13] barely touch on channel modeling. On the other hand, the

physical layer characterization of the air-to-ground channel in the L and C bands was

comprehensively reviewed in [112]. However, practical measurements reported in this

paper were mainly for aeronautical communications and land mobile satellite systems

in the L and C bands. Motivated by these observations, this chapter reviews the current

advances in UAV channel characterization.

The main contributions of this chapter are summarized as follows:

• Measurement campaigns have been reported for small size UAVs at lower altitudes

and these campaigns are categorized based on the channel sounding methods.

• The empirical channel models obtained from the measurement campaigns are

tabulated and the large-scale and small-scale statistical parameters of air-to-ground

and air-to-air channels are reported.

• The analytical channel models used for UAV communications are categorized as

deterministic, stochastic, and geometry-based stochastic models.

• Some of the important issues are highlighted that are pertinent to UAV channel

modeling which include, airframe shadowing, stationary interval, and multi-antenna

diversity gain.

• Finally, open research challenges are thoroughly investigated for conducting UAV

measurement campaigns and developing propagation channel models.

The rest of the chapter is organized as follows. Section 2.2 reviews the measure-

ment campaigns conducted by using UAVs at LAPs. The characterization of air-to-air

and air-to-ground propagation using empirical channel models is discussed in Section

2.3. Section 2.4 categorizes the analytical UAV channel models as deterministic, stochas-

tic, and geometry-based. Section 2.5 highlights some important issues pertinent to air-

frame shadowing, non-stationary channels, and applicability of diversity techniques in
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UAV communications. Section 2.6 discusses some open research challenges for UAV

measurements and channel modeling. Section 2.7 summarizes the main conclusions

of this chapter.

2.2 Measurement Campaigns

The actual behavior of the propagation channel can be better understood via field mea-

surements. UAV channel characterization mainly depends on the operational environ-

ment, propagation scenario (air-to-air or air-to-ground), channel sounding process, an-

tenna orientation, UAV deployment in 3D space, and flight dynamics.

In the literature, most of the measurement campaigns have been conducted us-

ing two types of aerial vehicles. The first type are small and medium sized manned air-

craft. For instance, in [46–48], a S-3B Viking aircraft was used to comprehend the air-

to-ground channel characteristics in the L and C bands in different environments. In

[65], a Cessna-172S aircraft was used to evaluate the performance of a 4×4 MIMO en-

abled orthogonal frequency-division multiplexing (OFDM) system for the air-to-ground

channel. In [66] and [67], a UH-1H military helicopter was used to study the air-to-

ground channel in a 4×2 MIMO configuration to achieve diversity gain and to mitigate

inter-symbol interference in frequency-selective channels. In [68], a news-reporting he-

licopter was used to attain spatial multiplexing gain and throughput for airborne com-

munication in 2× 2 MIMO settings. The logistics involved in the measurement cam-

paigns using manned aircraft are expensive and daunting. Therefore, the second type of

aerial vehicles i.e., UAVs are preferable to reduce the cost. In this case, the UAV payload

is often integrated with an on-board processor to control flight dynamics and wireless

equipment to collect data. In addition, the experimental setup also contains antennas

to radiate and receive RF signals, a GPS system to record telemetry data, and an inertial

measurement unit (IMU) to measure flight dynamics, such as pitch, yaw, and roll angles.

The rest of the chapter mainly focus on measurement campaigns using UAVs.
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2.2.1 Narrowband Measurement Systems

These systems evaluate the Doppler frequency shift and the channel gain experienced by

narrowband continuous wave (CW) signals using a channel sounder that generates pilot

tones at a single carrier frequency. Examples of narrowband measurement campaigns

for characterizing the air-to-ground propagation channels in aeronautical communica-

tions for the very high frequency (VHF) band are given in [69, 70], for L band in [71] and

for the high frequency (HF) band in [72].

In [75], the measurement campaign was performed in an urban area of Prague,

Czech Republic, using a 2 GHz CW transmitter with a bandwidth of 12.5 kHz. The air-

ship UAV flew between 100 to 170 meters above the ground level at a low elevation angle

between 1◦ to 6◦. The authors have statistically characterized the air-to-ground channel

which fits between a purely terrestrial link and a land mobile satellite system. They have

also presented a narrowband channel estimator capable of replicating the signal dynam-

ics. Some related measurement campaigns were conducted with similar equipment in

Prague for a path loss model in an urban area [76] with a flight altitude between 150 to

300 meters. Further, measurements in [77] and [78] were obtained in urban and wooded

areas, respectively, to study space diversity techniques.

In [79], field experiments were performed in suburban Madrid, Spain, at fre-

quency band of 5.76 GHz for narrowband measurements. The UAV flew at an altitude

between 0 to 50 meters for the vertical flight test in ascending and descending directions

and covered a distance of 210 meters for a horizontal test at altitudes of 20 meters and 30

meters in two different zones. The authors have investigated large-scale fading effects

in the UAV propagation channel and computed PLE for both vertical and horizontal di-

rections using the dual slope and the log-distance path loss models, respectively. They

found that, during the vertical flight, the attenuation decreased below the break-point

distance and then increased with UAV altitude. Whereas, the attenuation increased ex-

ponentially with the horizontal flight direction.
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These works have studied air-to-ground propagation for variations in channel

gain with respect to the elevation angle using the Loo model in [75] and the impact of

the UAV during the course of vertical and horizontal flight routes on fast fading of Rician

distribution in [79]. However, channel features were not addressed with regard to the ge-

ographical environment, such as the density and shape of surrounding scatterers. Also,

the Doppler behavior of the air-to-ground channel was not investigated, which is the key

parameter that may differentiate UAV channels from the conventional wireless channel.

Therefore, more measurements are required for characterizing the air-to-ground prop-

agation with the environmental effects and the maneuvering of UAVs. Moreover, these

campaigns were conducted with narrowband measurement systems which are only ap-

propriate for computing frequency non-selective fading parameters, as they lack the

temporal resolution needed to distinguish closely arriving paths and hence, may not be

suitable in a rich multipath environment.

2.2.2 Wideband Measurement Systems

These systems determine the channel impulse response (or transfer function) and frequency-

selective parameters, such as delay spread. In addition, the power delay profile is ac-

quired from the collection of channel impulse responses to determine the fading statis-

tics for an in-depth insight into the average power carried by the multipath components

with a certain delay and the available frequency diversity. As a result, different trans-

mission schemes can be tested to combat small-scale fading in UAV channels. Wide-

band channel measurements for characterizing the aeronautical propagation channels

are mostly conducted with a spread spectrum channel sounder. One such type is the

correlative channel sounder, where a pseudonoise (PN) sequence is transmitted as the

channel sounding signal, and the received signal is then correlated at the receiver with

the same PN sequence. As a result, fading statistics for the time-invariant channel can be

captured from the output of the receiver correlator by performing a convolution between

the PN sequence and the channel impulse response. This process is usually performed
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off-line using computational resources. From the perspective of aeronautical communi-

cation, a correlative channel sounder was used in [73] and [74] for measuring multipath

effects. In the context of characterizing the UAV propagation channel, the wideband

frequency-selective parameters are often measured using the universal software radio

peripheral (USRP) hardware platform, for instance, as in [79, 80, 83]. This platform pro-

vides more flexibility in terms of low-power consumption and multiple frequency bands.

In [79], the wideband measurement campaign was performed with the chan-

nel sounding signal generated by a LTE BS at a frequency of 1.817 GHz. In this work,

the small-scale variations in the UAV propagation channel were characterized with the

measured channel impulse response, the estimated delay spread and power delay pro-

file. The authors have analyzed the fading statistics, and consequently qualitative per-

formance of the air-to-ground propagation using the empirical cumulative distribution

function (CDF). They found a random behavior of the multipath components at different

UAV altitudes. However, comparison analysis of empirical CDF with the fading channel

distributions was not performed. Therefore, this work was extended in [80] to propose

a channel modeling approach based on a machine learning and estimated channel pa-

rameters with regard to the environment. The Rician K factor (see section 2.3.3) was

evaluated as a piece-wise function of altitude. However, the Doppler spread was not

estimated due to the low airspeed of the UAV.

In [81], the measurement campaign was conducted for open and suburban spaces

on the campus of Florida International University using an ultra-wideband (UWB) chan-

nel sounding radio. In the first scenario, the receiver was placed under the tree canopy

at 1.5 meters above the ground. In the second scenario, the receiver was placed at the

same height with clear LOS to the transmitter. In the third scenario, the receiver was

lowered to 7 centimeters from the ground in a LOS condition. For all these three receiver

settings, the UAV transmitter was raised from 4 meters to 16 meters above ground with

a step size of 4 meters. In this work, the authors have characterized the air-to-ground

propagation channel. They proposed the empirical path loss model for both static and
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mobile UAVs. They found the worst path loss attenuation for the mobile UAV in the first

scenario, whereas, the best for the static UAV in the second scenario. They character-

ized the fading channel as Nakagami-m distributed (see section 2.3.3) and presented a

multipath propagation model.

In [83], the measurement campaign was performed in both a residential area and

a mountainous desert landscape in Arizona, USA. The software defined radio (SDR) plat-

form was tuned to 5.8 GHz. The authors have characterized the frequency-selectivity of

the air-to-ground propagation by the average and RMS delay spread of the channel. Also,

the time-selectivity in terms of the Doppler power spectrum was calculated by summing

the entire range of the scattering function delay. They analyzed the channel statistics

with the CDF and found that the desert terrain caused substantial delay spread in the

air-to-ground propagation compared to the residential area. Moreover, CDF analysis

followed a log-normal trend for the RMS Doppler spread. However, this work studied

the variations in the channel due to time and frequency selectivity effects, and did not

provide an empirical model for fading channel distributions.

These studies have characterized the air-to-ground channel for small-scale varia-

tions in hovering and mobility of the UAV in space, but did not take into account ground

reflected multipath components during the landing and take-off phases. In addition,

these works ignored the non-stationarity of the air-to-ground channel while estimating

the fading statistics. Therefore, future wideband measurements should address these

challenges for the accurate characterization of the UAV propagation channel. Due to

their better multipath resolution, wideband measurements are more desirable for ac-

quiring both time and frequency-selective fading parameters. However, additional com-

putational capabilities are required to process the raw data collected from the measure-

ments. Therefore, this type of measurement system may not be suitable for real-time

characterization of the fading channel parameters. Also, the cost and physical dimen-

sions of wideband channel sounding equipment are constraints that need to be consid-

ered.
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2.2.3 IEEE 802.11-based UAV Measurements

UAV channel characterization using commercial off-the-shelf 802.11 radios is desirable

due to their low power consumption, cost effectiveness and flexibility to be integrated

with small size UAVs. Furthermore, these radios are mostly utilized to form single-hop

and multi-hop UAV networks. For these reasons, single-hop UAV networks are usu-

ally desirable for characterizing the propagation channel between a single UAV and the

ground station or between two UAVs. On the other hand, multi-hop UAV networks are

preferable for studying inter-UAV communication either in mesh or star topologies con-

trolled by the ground station. However, the performance of such radios is prone to inter-

ference and background noise. Fixed narrowband frequency and limited communica-

tion range are other constraints affecting the evaluation of fading channel parameters.

Channel characterization efforts reported in the literature for multi-hop UAV networks

were based on IEEE 802.11 in [85–88] and also IEEE 802.15.4 ZigBee devices in [89–91].

This section mainly reviews the measurement campaigns relevant to 802.11 radios for

single-hop UAV networks. Section 2.3 will highlight the empirical relevance of multi-

hop UAV networks from the perspective of both the air-to-air and air-to-ground channel

modeling.

In [92], the measurement campaign was performed in the laboratory and out-

door environments to study, in particular, the altitude-dependent multipath propaga-

tion for air-to-air channel. The measurements were collected with 802.11 a/b/g/n wire-

less local area network (WLAN) devices from two different vendors and deployed in three

outdoor scenarios using a hexacopter UAV. In the first scenario, the impact of flight dis-

tance followed a free space path loss model. In the second scenario, yaw angle was con-

sidered with a good signal reception attained between 170◦-230◦ and the worst signal

for an angle of 240◦-260◦. Finally, the effect of the ground reflected multipath compo-

nents on UAV altitude was examined for a flight altitude between 10 to 40 meters and the

height-dependent Rician model (see section 2.3.3) was proposed with a K factor reliant
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on the UAV altitude.

In [93], the measurement campaign was performed for both an open area and a

campus environment using a quadcopter UAV and an access point (AP) connected with

a 802.11a WLAN interface at a frequency of 5.240 GHz, where the UAV flight altitude

varied between 20 and 120 meters. Two vertically polarized omni-directional antennas

were mounted on both UAV and AP. This study analyzed the impact of flight dynamics

and antenna orientation on the air-to-ground propagation channel and found that the

optimal antenna orientation can alleviate the impact of UAV hovering and mobility on

received signal strength and throughput. On the one hand, horizontally aligned anten-

nas reduced the effect of UAV yaw difference due to improved antenna alignment gain.

On the other, a vertically aligned antenna handled the impact of UAV acceleration and

deceleration against the tilting. Furthermore, they also found that the propagation con-

dition followed that of free space for an open field. This work was extended in [94] using

the 802.11a (5.240 GHz) standard to study the network performance and fading channel

statistics for air-to-air and air-to-ground propagations. Measurements were collected

with three horizontally aligned dipole antennas at flight altitudes between 15 and 110

meters. The authors observed that for both air-to-ground and air-to-air channels, the

PLE computed by the log-distance model matched roughly with that of free space prop-

agation. The Nakagami-m distribution (see section 2.3.3) was found to be a good fit for

a multipath fading channel in air-to-ground propagation. Furthermore, the quality of

UAV channels in terms of throughput variations over distance intervals was analyzed

using the inter-arrival time of packet and re-transmission attempts. As a result, inter-

arrival time was under 1 ms for all distances. The number of re-transmissions required

for distances between 300 to 400 meters was not more than 85 % for most of the time.

In [95], the measurement campaign was conducted at a private airfield in Con-

necticut, USA, using a 802.11a radio mounted on a fixed-wing UAV. The UAV flew at ap-

proximately 64 kph and maintained an altitude of roughly 46 meters over the ground re-

ceiver nodes. The authors evaluated the throughput and reported the highest rates were
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with a horizontal dipole, orthogonal to flight direction and parallel to the ground. In

addition, they also estimated that the path loss roughly followed that of free space prop-

agation. A related measurement campaign was performed in [96] using 2.4 GHz 802.11g

and 5.8 GHz 802.11a devices. In this case, the authors computed the maximum range

attained with a 802.11a radio and compared this with 802.11g. They found that a 802.11g

node can provide robust communication at an altitude of approximately 183 meters.

In this work, another experimental trial was conducted with a 900 MHz 802.11 radio

to determine the communication range performances in comparison to 802.11a/b/g.

They found a significant communication range of up to 2000 meters with throughput in

Mbps by analyzing the slope of a linear regression applied to the received signal strength.

In [110], the measurement campaign was performed in a farmland area surrounded by

woods. In this work, air-to-ground channel characterization was determined in terms of

network level diversity gain, and they found a significant enhancement in packet trans-

mission rate by using multiple receivers.

These studies have mostly focused on measuring the attenuation of the received

signal strength and throughput of the air-to-ground propagation using omni-directional

antennas. It is evident from these campaigns that IEEE 802.11 low-power radios can pro-

vide opportunities for characterizing UAV propagation channels that have novel designs.

Different types, orientations and placements of antenna on UAVs can be studied. More-

over, these radios are preferable for estimating the BER performance and latency in UAV

networking. However, analysis of spatial and temporal variations was not comprehen-

sively studied in these works due to a lack of frequency resolution. Also, in a complex

communications environment where a UAV operates, interference from other 802.11

equipment can be challenging. In this case, one possible solution is to optimize alti-

tude and inter-UAV distance to attain high SINR in the physical layer for a short period

of time. Otherwise, interference management techniques may be needed.
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2.2.4 Cellular-Connected UAV Measurements

Cellular networks can be considered as a prospective candidate to facilitate UAV applica-

tions in civil and commercial domains. The widely deployed cellular infrastructure can

be utilized to provide reliable air-to-ground channels, and hence cut the cost of invest-

ing additional ground infrastructure and spectrum allocation. However, since cellular-

connected UAVs depend on the cellular network and cellular infrastructure, which can

collapse due to a natural disaster, a viable fail-safe mechanism is needed. Other chal-

lenges, such as down-tilted BS antennas, neighboring cell interference, handover perfor-

mance, multiple access, UAV mobility and link security, also need to be addressed thor-

oughly before the widespread implementation of a UAV network connected to the cellu-

lar networks. This has motivated several mobile operators, telecommunication vendors

and research organizations to further scrutinize the propagation channel characteristics

between a cellular BS and UAV. For example, Ericsson and China Mobile have conducted

measurement trials in China’s Jiangsu province to develop a 5G prototype enabled by

drone UAVs [7]. In another example, Qualcomm Technologies has launched field mea-

surements in San Diego, California, to assess the LTE network performance at lower alti-

tudes by using a quadcopter UAV [8]. However, these studies mainly focused on network

planning and did not present any findings on the channel modeling.

In [97], a measurement campaign was launched in urban and rural scenarios in

Germany to characterize the propagation channel between UAV and a cellular BS, using

900 MHz Global System for Mobile (GSM) network and 1.9-2.2 GHz Universal Mobile

Telecommunications Service (UMTS) services. Field measurements were carried out

with a fixed-wing UAV and a captive balloon at altitudes up to 500 meters. This work

evaluated the overall RF coverage in terms of received signal strength for aerial users

from the various ground BSs during the handover with regards to UAV altitude. To this

end, the authors proposed an altitude-dependent channel model with the assumption

that the attenuation was independent of frequency and distance. It was found that the
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handover rate decreases due to signal degradation at UAV altitudes above 500 meters

and consequently, the availability of BSs decreases. To conclude, good RF coverage was

achieved for UAV altitudes upto 500 meters in a rural environment. It was less due to

ground obstacles than in an urban terrain.

In [98] and [113], measurement campaigns were launched under the SAAS project

(remote piloted semi-autonomous aerial surveillance system using terrestrial wireless

networks) in an urban environment of Lisbon, Portugal to investigate the applicability

of terrestrial cellular networks in UAV communication. In [98], the field trials were per-

formed at GSM, UMTS and LTE cellular bands using a spectrum analyzer and an antenna

on a meteorological balloon, deployed as the UAV platform. In this work, an empirical

model was obtained for path loss attenuation in an outdoor urban scenario. The worst

case scenario was reported due to the radiation pattern of the down-tilted BS antenna

for a UAV altitude between 5 to 7 meters. Also, the distance in 3D space and the cellular

frequency were the other performance degrading factors. However, handover analysis

was not studied in this scenario. Additionally, reference [113] presented a multi-UAV

network architecture based on cellular and internet protocol (IP) networks. They have

assessed the network level performance with QoS measurements in terms of latency and

jitter. In this case, the LTE network provides the best performance without relaying, and

enhanced data rates for GSM evolution (EDGE) performs worst due to the relay between

the UAVs and different BSs within the proposed architecture.

In [99], the measurements campaign was performed in a rural environment with

800 MHz LTE networks and two different cellular service providers in Denmark. The

authors found considerable reduction in path loss component and shadowing varia-

tion as the UAV altitude increased. Therefore, their findings show that the UAV prop-

agation channel requires altitude-dependent parameters for channel modeling. In con-

trast, [100] proposed an angle-dependent channel model to characterize propagation

between the cellular BS and the UAV airborne platform. However, these studies have ig-

nored connectivity disruption issues occuring in the UAV-cellular systems due to diffrac-
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tion losses and nulls in the radiation pattern of the BS’s antenna. Therefore, in [101], the

measurement campaign was conducted for an open area and a mock village in Califor-

nia, USA, with a 909 MHz cellular band. In this work, the authors proposed a composi-

tional path loss model to account for two-ray ground reflection propagation and diffrac-

tion losses. They also identified low coverage zones in cellular-connected UAV networks

for beyond LOS operations, and named this phenomenon “holes in the sky”. These holes

produce unexpected coverage in the connectivity-reliant UAVs and could span from 10

meters to 100 meters in the coverage radius. They pointed out that the primary causes

were interference caused by two-ray ground reflection, diffraction losses incurred by

the Fresnel zone of the propagation path, and nulls in the antenna radiation pattern.

Therefore, this study concluded that for the en-route UAV, the real-time estimation of

the propagation conditions based on the geometrical information of the environment

could mitigate glitches in the coverage zones of the cellular-connected UAV networks.

These measurement campaigns have mainly studied the performance of the cellular-

enabled UAV network with regard to path loss attenuation. However, they did not con-

sider the consequence of co-channel interference and did not provide in-depth han-

dover analysis. Furthermore, the characterization of air-to-ground propagation with re-

spect to small-scale variations and fading channel distributions were mostly overlooked.

Cellular networks are not designed to provide air-to-ground propagation above the BS

height due to the down-tilted sector antennas which can hinder wireless connectivity

and cause significant reduction in reliability and capacity for aerial users. Therefore, op-

timum placement of the UAV in space and 3D features of the BS’s antenna radiation pat-

terns should be taken into consideration for channel modeling and network planning of

UAV-enabled cellular systems. Also, UAV applications such as search and rescue services

and disaster management may suffer from infrastructure failure. In this case, aerial het-

erogeneous networks can be a promising fail-safe framework for enabling coexistence

between terrestrial communication networks and satellite systems. In addition, multi-

tier UAV-cellular networks as suggested in [114], can be a viable solution for avoiding
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traffic congestion and to restore communication services in disaster areas.

This section reviewed the measurement campaigns using UAVs as LAPs. How-

ever, in these cases, channel characteristics are mostly studied with hovering or mobile

UAVs and static ground users. As a result, channel dynamics may change slowly with

approximately constant statistics. Also, measurement scenarios are limited to urban,

suburban and rural environment with better propagation conditions. Therefore, more

measurement campaigns are required in more diverse scenarios, such as metropolitan

areas with skyscrapers and over water bodies. Table 2.1 summarizes the aforementioned

measurement campaigns, where acronyms used to represent channel statistics of mea-

surement campaigns are given in Table 2.2.

2.3 Empirical Channel Models from Measurement Campaigns

Channel parameters can change frequently with time and space due to the cruising ca-

pability of UAVs. Many measurement campaigns have been performed to corroborate

connections between channel parameters and experimental setups. Despite of all these

efforts, there are no unified answers, and conclusions still need to be established using

reliable channel models. This section reviews the empirical models that characterize

air-to-air and air-to-ground propagation channels.

2.3.1 Air-to-Air Channel Characterization

The air-to-air propagation channel is an important aspect of inter-UAV communications

and can be exploited in applications, such as multi-UAV networks or UAV swarms [11],

flying ad hoc networks [12], aerial wireless sensor networks [91], and wireless back-haul

connections using emerging technologies [115], [116]. In all these applications, charac-

teristics of the air-to-air propagation depend mostly on the environmental conditions,

UAV flight direction, LOS alignment, relative velocities and ground reflections. Very few

empirical studies have been conducted to characterize air-to-air channels. For instance,
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in [89–91], the air-to-air channel was shown to be better than the air-to-ground chan-

nel in terms of PLE. In [89], the authors found that the ground-to-ground channel per-

formed poorly with a PLE of 3.57, while PLE for air-to-air and air-to-ground channels

were estimated to be 1.92 and 2.13, respectively. Similarly, in [90], the PLE was esti-

mated from the log-distance propagation model as 0.93 and 1.50 for air-to-air and air-to-

ground propagation, respectively. On the other hand, the authors of [91] have observed

that the received signal strength for air-to-ground, air-to-air and ground-to-air propa-

gation improves with extended UAV altitude and deteriorates as UAV distance increases.

They observed that the air-to-air channel followed two-ray propagation with a PLE of

2.05. Whereas, the presence of communication gray zones leads to asymmetry in air-to-

ground and ground-to-air channels and PLEs of 2.32 and 2.51, respectively.

Aerial link characterization has been conducted in [92] and [94] using a IEEE

802.11 radio. In [92], the impact of the UAV altitude on air-to-air propagation was in-

vestigated for large-scale variations and small-scale fading distribution. In this study,

path loss was determined by the Friis equation with a PLE of 2.6 and a fading channel

distribution that fits with the height-dependent Rician factor K . In [94], a log-distance

model was used to analyze the path loss for vertical and horizontal distances. In this

work, the minimum mean squared error (MMSE) method was utilized to compute PLEs

of 2.03 and 2.01 for the air-to-air and air-to-ground channels, respectively.

Although UAVs are placed in a 3D environment for real multi-UAV applications,

the existing studies only considered the behavior of the air-to-air propagation in a 2D

plane. Moreover, these campaigns were conducted for short-range communication in an

interference-limited environment. The impact of the frequency variance due to Doppler

shift on the capacity and reliability of air-to-air propagation is still unexplored. The

air-to-air channel characterization highlights that the propagation conditions are highly

time-varying due to variations in the communication distance, altitude and UAV mobil-

ity. Also, significant attenuation occurs outside the LOS condition and under this sce-

nario it may be difficult to maintain continuous connectivity for long range communi-
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cation. Therefore, these open research issues need to be addressed to improve scalability

and adaptability of the air-to-air propagation channel in multi-UAV systems. Large-scale

fading statistics of the air-to-air channel are summarized in Table 2.3.

Table 2.3: Large-scale fading statistics for air-to-air channel.

Ref. PL model

[89]-[91] PL(dB) = 10α log10(d), α=1.922 [89], α=0.93 [90], α=2.05 [91]

[92]
RSS(dB) = Pt +GUAV1 +GUAV2 +10log10( λ

4πd )α,

Pt =20 dBm, GUAV1 =GUAV2 = 5 dBi, α= 2.6, fc =2.4 GHz

[94]

PL(dB) = PL(d0)+10α log10( d
d0

), d =
√

d 2
h +d 2

v ,

PL(d0) = 46.4 dB, α=2.03, dh ∈ {0, · · · ,100 meters}, dv = 50 meters,

d0 = 1 meter

α: PLE, d : separation distance, d0: reference distance, dh : horizontal distance,

dv : vertical distance, GUAV: UAV antenna gain

2.3.2 Large-Scale Fading Statistics for Air-to-Ground Channel

Most of the air-to-ground channel measurements focus on large-scale statistics, such as

path loss and shadowing. For instance, in [8], the analytical path loss model was used

to evaluate the performance of LTE network with UAV platform, where most of the path

loss samples computed by measurements were lumped between the reference PLE of 2.0

and 4.0. For the urban environment in [76], the measured results showed that the path

loss follows a distance-independent trend and is significantly affected by a low elevation

angle. For the suburban environment in [79], the impact of UAV altitude and distance on

the path loss was analyzed. For a vertical UAV en-route, a simplified dual slope path loss

model was considered and it was found that the PLE is negative below a break-point al-

titude because of a partially cleared first Fresnel zone. When the UAV altitude increased
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above the break-point level the path loss was similar to free space propagation because

the first Fresnel zone was cleared. In [81], the effect of UAV altitude and the optimal

placement of the ground receiver for path loss was stochastically modeled for both static

and mobile UAVs in both open field and suburban scenarios. Foliage losses and Doppler

frequency shift were taken into account. In addition, shadow fading was modeled with

a zero-mean Gaussian distribution and analyzed using a PDF. A further empirical study

was conducted in [85], to evaluate the influence of distance on path loss attenuation,

and found degraded performance of the air-to-ground channel due to detrimental effect

of interference from the 802.11 devices operating in the surrounding test area. Moreover,

in [86], received signal strength declined with the distance and followed the Friis chan-

nel model. In [87], the air-to-ground propagation channel in the single-hop UAV system

followed the log-distance model, where higher throughput was attained over longer dis-

tance.

For an open field and a campus environment in [93], path loss was evaluated with

the free space model. In [95] and [96], PLE was estimated using linear regression. In [97],

distance and frequency independent empirical path loss model was proposed for urban

and rural terrains, where the altitude of aerial mobile station was accounted as the key

parameter. In contrast, the empirical propagation model in [98] suggested that the path

loss model is dependent on the distance in 3D plane and the operating frequency. In this

case, other modeling parameters, such as the UAV altitude and the tilt angle of BS sector

antenna, were also considered. The altitude-dependent path loss model was proposed

in [99], where path loss and shadow fading decreased as the UAV altitude increased from

15 to 120 meters and at about 100 meters the propagation condition matched with that of

free space. Conversely, in [100], the angle-dependent air-to-ground propagation chan-

nel model was presented, which encompasses excess path loss attenuation and shadow

fading model. In this work, the model parameters are dependent on the angle between

cellular BS and airborne UAV. In [101], the combinational model was developed to deter-

mine the low coverage zones in the cellular-connected UAV network. This model iden-
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tified causes, such as two-ray ground reflections, diffraction losses and nulls in antenna

radiation pattern as the predominant factors for path loss.

Path loss and shadowing statistics for the air-to-ground propagation channel

presented in this section demonstrated that the UAV flight dynamics, such as the al-

titude, distance and elevation angle, are the dominant contributors for the large-scale

fading. Therefore, the development of realistic UAV propagation model requires these

parameters be considered in 3D coordinates. Also, considerable attention is needed for

characterizing antenna design and orientations, as this will further improve UAV com-

munications. Table 2.4 summarizes the large-scale fading statistics for the air-to-ground

channel.

Table 2.4: Large-scale fading statistics for air-to-ground channel.

Ref. PL model

[8] PL(dB) = Pt x −10log10(12.BW)−RSRP+GUAV +GBS

Pt x : maximum transmit power, BW: transmission bandwidth, RSRP:

measured reference signal received power, GUAV: gain of UAV an-

tenna, GBS: gain of BS antenna

[76] PL(dB) =−10log10[ 0.05λ
2h2 (d2d + r 2

b d2r )]−20log10(1−exp%)2,

% = −0.6038×0.109v , v ≈ h
√

2
λd2

, h: obstruction height, d2: distance

between receiver and obstruction, d2d : direct-ray distance between

receiver and obstruction, d2r : reflected-ray distance between receiver

and obstruction, rb : reflection coefficient

[79] Vertical:

PL(dB) =


PL(d0)+10α1

(
log10

d
d0

)
if d < db ,

PL(d0)+10α1
(

log10
d
d0

)+10α2

(
log10

( d

db

))
if d ≥ db ,

(α1,σ1) = (0.74, 1.23 dB), (α2,σ2) = (2.29, 2.15 dB), db = 9 meters
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Continuation of Table 2.4

Horizontal: PL(dB) = PL(d0)+10α
(

log10
d
d0

)
,

for horizontal distance of 20 meters:
(
α,σ,PL(d0)

)= (0.93, 5.5 dB, 77.9

dB), for horizontal distance of 30 meters:
(
α,σ,PL(d0)

)= (1.01, 3.9 dB,

74.6 dB)

[81] Static UAV: PL(dB) = PL(d0)+10α
(

log10
d
d0

)− log10
4h
hopt

+Cp +ζ,

4h = |hg −hopt|, 4 f = (4v
c

)· fc , ζ ∼ N (0,σ2), Cp = 0 dB, d = 5.6 me-

ters to 16.5 meters, hg = (1.5 meters, 7 centimeters),
(
α,σ,PL(d0)

) =
(2.6471, 3.37 dB, 34.905 dB) for open environment,

(
α,σ,PL(d0)

) =
(2.7601, 4.8739 dB, 30.4459 dB) for suburban environment,

Mobile UAV: PL(dB) = PL(d0) + 10α
(

log10
d
d0

) − log10
4h
hopt

+ Cp +
10x log10

( fc+4 f
fc

)+ζ,(
α,σ,PL(d0)

) = (2.6533, 4.02 dB, 34.906 dB for open environment at

UAV speed of 32 kph),
(
α,σ,PL(d0)

) = (2.8350, 5.3 dB, 30.446 dB) for

suburban environment at UAV speed of 32 kph, and x: frequency de-

pendent path loss factor and negligible at small velocities

[85] RSS(dBm) =−95+10log10

(
K0 .d−α)

,

α= 2.34, K0 = 3.6×10−1

[86] RSS(dB) = Pt +G +10log10

(
λ

4πd

)α,

Pt = 20 dBm, G = 1dB, fc = 2.4 GHz, α= 2.3

[87] PL(dB) = 10α log10(d), α ≈2 for beyond 100 meters distance

[89–91] PL(dB) = 10α log10(d),

α = 2.132 (air-to-ground), 3.57 (ground-to-ground) [89], 1.50 (air-to-

ground) [90], 2.32 (air-to-ground), 2.51 (ground-to-air), 3.1 (ground-

to-ground) [91]
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Continuation of Table 2.4

[94] PL(dB) = PL(d0)+10α log10

( d
d0

)
,

d =
√

d 2
h +d 2

v , PL(d0) = 46.4 dB, α = 2.01 (air-to-ground), dh ∈
{0, · · · ,100 meters}, dv = 50 meters, d0 = 1 meter

[93] RSS(dBm) = Pr x (d0)−10α log10

( d
d0

)
,

α= 2.2 (open), 2.5–2.6 (campus), Pr x : received power at d0

[95, 96] RSS(dBm) = A−10αlog10(d),

(α, A) = (1.80, -37.5) [95], (α, A) = (1.04, -55.12) [96]

[97] Urban: PL(dBm) = 89.5357+ (
h3

U
10000 +0.0108h2

U +0.8588hU)

Rural: PL(dBm) = 78.2186−0.0013h2
U −0.0052hU,

hU ∈ {0, · · · ,500 meters}

[98] PL(dB) = 20log( 4πd0
λ )+Xdis +Xfreq +Xhei +Xang,

Xdis, Xfreq, Xhei, Xang: 3D distance, frequency, altitude and tilt angle-

dependent parameters

[99] PL(dB) =α(hU)10log10(d)+β(hU)+ζ,

ζ∼ N (0,σ(hU)), for hU = 15 - 100 meters: α(hU) = 2.9 – 2.0, β(hU) -1.3

– 35.3 dB, σ(hU) = 7.7 – 3.4 dB

[100] PL(dB) =α10log10(d)+ A(φ−φ0)exp
(− φ−φ0

B

)+η0 +ζ
ζ∼ N (0, aφ+σ0),α= 3.04, A = -23.29, B = 4.14,φ0 = -3.61, η0 = 20.70,

a = -0.41, σ0 = 5.86

[101] PL(dB) =−20log10 |ν|+40log10(d)−10log10

(
h2

BSh2
U

)
,

ν: Kirchoff diffraction parameter

d : separation distance, d0: reference distance, db : break-point distance, CP : foliage loss,

σ, standard deviation, hg : height from ground level, hopt= optimal height from ground

level, fc : carrier frequency, hU: UAV altitude, hBS: BS altitude, 4 f : Doppler shift, K0:

transmission gain, G : antenna gain, A: y-intercept, λ: wavelength

47



2.3.3 Small-Scale Fading Statistics for Air-to-Ground Channel

Fading amplitude statistics are important for the analysis of the small-scale variations in

multipath propagation using the first order statistics, such as CDF and PDF, to study the

random behavior of fading channels. Also, second order statistics, such as level cross-

ing rate (LCR), average fade duration (AFD) and fade depth (FD), are useful to analyze

the severity of fading due to the spatial-temporal variations. In this subsection, sev-

eral commonly used models for UAV communication small-scale fading distributions

are discussed.

The Loo Model is a composite channel model which accounts for Rician and Log-

normal distributions. To this end, LOS component is modeled by the log-normal distri-

bution and multipath components usually tends to follow the Rician model. In [75], the

fading statistics were studied for the narrowband air-to-ground propagation channel in

urban areas using the Loo model. In this case, the statistical analysis of CDF found that

the empirical data fits with the simulated time series. The PDF for Loo model is

f (y) = y

σ2
√

2πΣ2
A

∫ ∞

a=0

1

a
exp

−(
20log a −MA

)2

2Σ2
A

exp
−(

y2 +a2
)

2σ2 I0

( y a

σ2

)
d a, (2.1)

where MA and Σ are respectively, the mean and standard deviation of the Gaussian dis-

tribution for the magnitude of the LOS signal, a and σ, respectively, denote the magni-

tude of the LOS and the diffuse multipath components of Rician distribution and I0(.) is

the zeroth-order modified Bessel function.

The Rayleigh Model is well known in scattering environment. The study in [73]

found that the CDF of the air-to-ground propagation fading channel follows Rayleigh

distribution for the field measurements with large elevation angles in a mixed-urban

environment. Furthermore, the scattering environment was theoretically tested for co-

operative relay based UAV systems in [117]. Also, an analytical study in [118] suggested

that the multiple-access ground-to-air channel can be modeled with the Rayleigh distri-
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bution for the UAV heading. The PDF for the Rayleigh fading distribution is

f (a) = a

σ2
exp

−a2

2σ2 , (2.2)

The Rician Model is used to approximate the fluctuations in the fading channel

with LOS. In the literature, this case is appropriate for the HAP in [46–48], [60, 63, 73]

and for the scattered multipath environments in the LAP in [79, 80, 92]. For the Rician

channel, the Rician K factor is a quantitative parameter to measure the severity of the

multipath fading. In [79], the variations in the received signal amplitude for the air-to-

ground propagation was found as K =5.29 dB for ascending and descending directions of

the UAV altitude and K up to 19.14 dB for horizontal flight trials in two different zones at

the altitudes of 20 meters and 30 meters. On one hand, for the air-to-ground propaga-

tion, [80] proposed Rician K as a piece-wise function of the altitude with a break-point

of 16 meters. On the other hand, the air-to-air channel characterization in [92], studied

the influence of the altitude-dependent Rician K due to scattered ground reflections and

found that, as UAV elevated from 10 meters to 40 meters, the value of K increases from

3.533 dB to 10.048 dB. This work indicated that the impact of the ground reflected mul-

tipath fading reduces with increasing UAV altitude. Theoretical implications of Rician

fading channels were found in [50] to improve MIMO gain for air-to-ground propaga-

tion in a hilly rural scenario and in [119], when combined with two-state Markov model

to capture channel non-stationarity. The PDF of the Rician distribution is given by

f (y |a,σ) = a

σ2
exp

−(
a2 + y2

)
2σ2 I0

( ay

σ2

)
, (2.3)

where y ≥ 0, a and σ denotes the magnitude of the LOS and the diffuse multipath com-

ponents, respectively. Also, the Rician parameter K is defined as:

K = a2

2σ2 . (2.4)
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The Nakagami-m and Weibull fading models are appropriate for characteriz-

ing the UAV fading channels intended for high altitude applications [117]. The Rayleigh

channel distribution is a special case of Nakagami-m. In [81], magnitudes of individual

multipath components were collected for different time delay bins and modeled by the

Nakagami-m distribution. In this case, mean and standard deviation of the m param-

eter were empirically estimated. As a result, the mean was found to be small for both

open and suburban areas under the influence of vegetation, and large variance was ob-

served due to thick suburban scattering. Furthermore, in [94], the CDF analysis found

that the Nakagami-m distribution fits the empirical data better compared with Rayleigh

distribution. Both Nakagami-m and Weibull fading distributions can offer substantial

flexibility to study the UAV fading channel characteristics in diverse environment. How-

ever, empirical studies have not yet been initiated for development of statistical channel

model based on Weibull distribution, as for vehicle-to-vehicle channel modeling [120].

The PDF of Nakagami-m fading distribution is given by

f (y ;m,Ω) = 2mm

Γ(m)Ωm (y2m−1)exp(
−my2

Ω
), (2.5)

where Γ(.) is the Gamma function, m andΩ are the Nakagami shape and spread control-

ling parameters, respectively, and given by

m = E2[X 2]

Var[X 2]
(2.6)

Ω= E[X 2]. (2.7)

The PDF of the Weibull distribution is given by

f (y) = β

aβ
y (β−1) exp−(

y

a
)β, (2.8)

where β is a shape parameter defining the severity of the fading, a =
√

E(y2)/Γ[(2/β)+1]

and Γ(.) is the Gamma function. The Rayleigh distribution is a special case of the Weibull
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distribution for a value of β= 2.

Doppler spread and delay dispersion, UAV channels tend to possess higher Doppler

spread than the conventional radio channel because the relative velocities of UAVs are

higher. In [79] and [80], delay spread resolution was in micro-seconds for a suburban

environment. In [81], excess delay and RMS delay spread were of the order of nano-

seconds for a foliage environment. In this case, channel impulse response was obtained

by Clean algorithm1. However, frequency variance due to Doppler shift is not significant

in [80, 81] due to the low velocity of UAVs. In [83], for the mountainous desert scenario,

the median RMS delay spread and the Doppler frequency spread were roughly 0.06 µs

and 28.96 Hz, respectively. For the residential area, the measured median RMS delay

spread and the Doppler frequency spread were approximately 0.03 µs and 28.06 Hz, re-

spectively. The RMS delay spread attained in the desert terrain was larger due to the

rough mountainous scatters along the flight path than those in the residential area. In

this case, RMS delay spread was modeled as a log-normal distribution. However, these

works lack the second order statistics, such as AFD, LCR and FD, for the spatial-temporal

variations in the air-to-ground propagation channel.

Fading channel statistics for most low altitude air-to-ground propagation cases

reported in the literature are analyzed with the Nakagami-m and Rician distributions.

The Weibull distribution is still unexplored. Also, estimation of the fading channel char-

acteristics for the air-to-air propagation with regards to altitude and surface scattering is

an open research issue. Table 2.5 provides the empirical fading distributions for small-

scale variations with both manned aircrafts and UAVs.

1Clean algorithm is a de-convolution algorithm which was first used in radio astronomy to enhance im-
ages of the sky and in microwave communication [121]. In [81], this algorithm was used in UWB propaga-
tion to eliminate noise in the air-to-ground channel.
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Table 2.5: Small-scale fading distributions.

Ref. Scenario
Frequency

band
UAV

channel
Fading distribution

[46]-
[48]

Over water [46],
hilly [47] and
suburban [48]

Wideband air-to-
ground

Rician

[60] Urban Wideband air-to-
ground

Rician

[63] hilly Wideband air-to-
ground

Rician

[73] Mixed urban Wideband air-to-
ground

Rician (for small elevation
angles), angle-dependent
Rayleigh (for large elevation
angles)

[75] Urban Narrowband air-to-
ground

Loo model (Rician & Log-
normal)

[79] Suburban Narrowband air-to-
ground

Rician

[80] Suburban Narrowband air-to-
ground

Rician

[81] Open field and
suburban

Ultra-
Wideband

air-to-
ground

Nakagami-m

[92] Outdoor IEEE 802.11 air-to-air Rician

[94] Open field IEEE 802.11 air-to-
ground

Nakagami-m

2.4 Analytical Channel Models

Analytical channel models are useful for characterizing the propagation behavior under

certain assumptions and parameters. They can predict the performance of communi-

cation systems. For example, the channel behavior of land mobile satellite systems can

be analyzed using the multi-state Markov chain model [38, 39]. Generally there are three

major modeling approaches: deterministic, stochastic and geometry-based stochastic.
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2.4.1 Deterministic Channel Model

In deterministic models, environmental clutter is placed in certain layouts. This ap-

proach assumes large dimensions of the environmental objects in comparison with the

wavelength, it does not compensate for diffuse scattering. The accuracy of these channel

models depends on the environment-specific database which consists of the informa-

tion related to the terrain topography, the electrical parameters of buildings and other

obstruction materials. Deterministic models can be realized by ray-tracing software,

which can depict the realistic behavior of the electromagnetic wave propagation and

simulate path loss and shadowing effects.

In [40], 3D ray-tracing was performed to characterize the altitude-dependent at-

tenuation in the air-to-ground propagation for the suburban environment. In [41] and

[42], analytical propagation models have been studied for the air-to-ground channel

characterization in an urban environment for frequencies ranging from 200 MHz to 5

GHz and altitudes from 100 to 2000 meters. In [41], the path loss and shadowing statistics

were examined as a function of elevation angle and the aerial altitude through 3D ray-

tracing. The authors have provided analytical path loss expressions. Also, the shadowing

was fitted using the log-normal distribution with the standard deviation dependent on

the elevation angle. The work in [42] utilized knife-edge diffraction theory to model the

LOS probability, which considered the statistical parameters to account for height, size

and coverage area of buildings in the simulation.

In [19, 43, 44], environmental topography was realized with the statistical pa-

rameters recommended by the ITU. In [19], a closed-form expression was formulated

for determining the coverage performance in terms of the maximum cell radius and the

optimal altitude. In that study, the free space path loss model was extended using the

excessive attenuation factor for different LOS and NLOS propagation conditions. In [43],

a generic path loss model for a low altitude platform was proposed, where the channel

model parameters were estimated by 3D ray-tracing at 700 MHz, 2000 MHz and 5800
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MHz. In that work, the air-to-ground channel conditions favoring LOS and NLOS prop-

agations were grouped distinctly and analyzed with the group occurrence probability as

the conditional PDF. Simulation results demonstrated that the impact of elevation an-

gle was significant on the excess path loss. This work was extended in [44] to provide

the analytical framework for optimization of the average radio coverage probability and

the maximum transmission rate to achieve the required QoS. However, in these works,

propagation conditions depend upon the altitude and coverage radius of the UAV. As

the altitude increases with respect to radius, the LOS probability tends to increase for

all ground positions. Therefore, such channel models can only be appropriate for the

high-rise urban environment with an average building height of 60 meters. In contrast,

the channel model in [122] was recommended for the modern metropolitan areas with

densely located skyscrapers. However, this model requires more environmental data,

such as shape of buildings with surrounding geometry.

The path loss model in [19] addressed the technical challenges in UAV commu-

nication, such as optimum deployment of the UAV in [44, 45], outage and BER analysis

in [123], energy efficiency of UAV networks in [124–126], interference management in a

multi-UAV scenario in [127], latency in UAV-enabled cellular networks in [128] and UAV

flight endurance time in [129]. Furthermore, this model complements the optimum de-

ployment of UAVs to ensure maximum reliability in terms of the outage capacity and

the BER using static and mobile aerial relays in [130]. It increases the number of users

in a cellular-assisted UAV network in [131] and UAV for data caching purposes in [132].

In these applications, the UAV channel model incorporates both LOS and NLOS propa-

gation conditions for a certain set of environmental parameters. Also, the appropriate

placement of the UAV is of paramount importance.

These studies have suggested that deterministic UAV channel models account

for the reciprocity ascertained in the propagation channel to the UAV placement and the

propagation conditions in different environments. However, in [40–42], channel models

were confined to the urban and the suburban environments and did not capture gener-
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ality for other environments. Channel models in [19, 43] are applicable for environmen-

tal statistics based on ITU recommendations. These studies have characterized prop-

agation channels for a static UAV and ignored the fading effects due to the small-scale

variations. In contrast, studies in [79, 81, 92, 94] have empirically analyzed the varia-

tions in the received signal strength and provided large-scale and small-scale statistical

properties of UAV channels. However, these works have largely overlooked the impact of

environment on the propagation conditions and consequently the UAV coverage analy-

sis. Furthermore, experimental work has not yet been conducted for UAV channel mod-

eling in metropolitan areas with skyscrapers. In contrast, reference [122] provided the

analytical approach and ray-tracing simulations for the air-to-ground propagation char-

acteristics in a metropolitan scenario emulated by the Manhattan grid. Therefore, more

empirical and analytical studies are required to provide ubiquitous coverage using UAV

networks in versatile environments and specifically for metropolitan areas, considering

that UAVs have been envisaged as a potential candidate to support 5G mobile commu-

nication systems [133]. Some of the deterministic UAV channel models are reported in

Table 2.6.

2.4.2 Stochastic Channel Model

For UAV communication, stochastic channel models can be designed using the TDL sys-

tem with different numbers of taps, each of which can accommodate fading statistics

of the multipath components derived from the channel impulse response. In this case,

fading statistics of individual taps can be analyzed empirically from measurements and

numerically by computer simulation. However, the accuracy of these model depends on

the estimation of stationary intervals in the non-stationary UAV channel.

In [46–48], wideband stochastic channel models were proposed from the data

collected in different environments, using the estimated stationary interval of 15 meters

in the C band. For over water settings in [46], the air-to-ground channel employed the

TDL model to characterize the two-ray propagation with an additional multipath com-
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ponent as the intermittent ray. In this work, the authors have argued that the statistics

for LOS and reflected components can be analyzed either as the curved earth two-ray

(CE2R) model or the flat earth two-ray (FE2R) model [134]. The probability of the exis-

tence of the intermittent multipath component was estimated by the exponential distri-

bution as a function of link distance. The TDL model with nine taps has been proposed

for mountainous terrain [47] and for the suburban environment [48].

In [135] and [136], a stochastic model was developed with the narrowband as-

sumption to characterize the aeronautical air-to-ground channel. In [135], the stochas-

tic model was designed for characterizing the air-to-ground propagation in terms of

transmission coefficients assuming that the quadrature components reflected from the

ground surface can be modeled as a zero-mean Gaussian process. Also, Doppler spec-

trum analysis was performed for the diffuse multipath components. In [136], the pro-

posed model was developed with the TDL system having both LOS and NLOS taps, where

the amplitude attenuation and the multipath delay of NLOS components were assumed

to be Rayleigh distributed and Gaussian random processes, respectively, while the phase

shift was uniformly distributed. In addition, the Doppler frequency shift was character-

ized as a random process. However, the channel stationarity interval was not computed

and fading statistics were assumed to be constant for the random time duration.

Stochastic models provide useful analysis of the time-varying characteristics of

the UAV channel. For instance, reference [137] proposed the TDL model to capture

the small-scale characteristics of multipath components. Furthermore, the stochastic

model accommodates multi-antenna systems to boost the reliability of MIMO chan-

nel in terms of BER in [138] and capacity in [139]. In these works, the stochastic model

only provides numerical analysis and lacks validation by measurement results. On the

one hand, empirical data have been collected from the measurement campaigns in [79,

81, 83] to study the impact of UAV flight dynamics and environment on the small-scale

fading. However, these studies did not consolidate the fading statistics using the TDL

model. Also, estimation of the stationary interval in the UAV channel was ignored in
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these works. On the other hand, [46–48] did estimate the stationary interval in stochas-

tic TDL models for different operating environments. However, these campaigns were

conducted using manned aircraft at high altitude. Therefore, the effective stochastic

framework has to be developed for UAV channels in low altitude which also accommo-

dates channel non-stationarity. Table 2.7 summerizes the channel response from the

TDL models reported in this chapter.

Table 2.7: TDL models.

Ref. TDL model
[46] h(τ, t ) = h2−r ay (τ, t )+w3(t )A3(t )exp(− jϕ3(t ))δ(τ−τ3(t )),

h2−r ay denotes FE2R or CE2R model, w3(t ) ∈ {1,0} represents
presence/absence of the intermittent ray and modeled as p(d) =
a exp(bd), A3 is the amplitude of the intermittent ray and modeled
by the Gaussian distribution, ϕ3 ∈ {0,2π} is the uniformly distributed
phase of the intermittent ray, τ3 is the excess delay of the intermittent
ray and modeled as p(τ3) = 1

µ exp−(τ3 −100/µ), (a,b) = (0.17,-0.25)
over sea water and (0.03,-0.15) over freshwater, µ= 17 ns, 6 ns ≤ τ3 ≤ 7
ns, d : link distance

[47],
[48]

h(τ, t ) = A1(t )δ(τ − τ1(t )) + A2(t )exp(− jϕ2(t ))δ(τ − τ2(t )) +
9∑

L=3
wL(t )AL(t )exp(− jϕL(t ))δ(τ−τL(t )),

A, ϕ and τ denotes amplitude, phase and excess delay, respectively,
subscripts 1, 2 and L represents LOS, reflected and Lth intermit-
tent multipath components, respectively, variations of wL and τL

are modeled as a linear function of link range, ϕL ∈ {0,2π} is the

uniformly distributed phase, 10log
(

A2
L

A2
1

)
represents relative power of

intermittent components and follows a Gaussian distribution

[136] y(t ) = A1(t )cos[2π{ fc +4 f }(t −τ1(t ))]+
N∑

L=2
AL(t )cos[2π{ fc +4 f }(t −

τL(t ))+ϕL(t )]+n(t ),
A1 is the amplitude of LOS path, AL represents amplitude of NLOS
paths and assumed as Rayleigh random process, ϕL ∈ {−π,π} is the
phase shift of NLOS paths and modeled as the uniform random pro-
cess, 4 f denotes Doppler frequency shift and modeled as time-
variant random process, τ1 = 25 µs, τL is excess delay of NLOS com-
ponents and modeled as the Gaussian random process with mean
and standard deviation of 30 µs and 5 µs, respectively, n(t ) is white
Gaussian noise
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2.4.3 Geometry-based Stochastic Channel Model

Geometry-based stochastic modeling approach obtains the spatial-temporal channel

characteristics with the stochastic output in a 3D geometric simulated environment. The

accuracy of this model is dependent on the simulation of the virtual environment con-

fined in some geometrical shapes, such as cylindrical or elliptical where communication

nodes within scattering region follow a certain probability distribution. The geometric

based channel model for the analysis and simulation of the air-to-ground radio commu-

nication was proposed in [49]. It characterized the multipath propagation in a cluttered

environment around the ground station confined within a virtual 3D ellipsoidal geom-

etry to analytically evaluate delay, gain, phase and angle of arrival (AOA) of individual

multipath components. In addition, the path loss model may be determined using the

log-distance model between the airborne platform and the clutters. Therefore, the pro-

posed model is equally applicable to determine both narrowband and wideband chan-

nel statistics and well suited for designing antenna diversity system and antenna arrays.

This work was extended in [50] for theoretical estimation of the MIMO performance for

the low altitude air-to-ground propagation and also characterized the propagation loss

for LOS and multipath components using the log-distance path loss model with log-

normal shadowing. In this model, the small-scale fading due to spatial variations was

modeled by the Rician distribution to analyze the severity of the fading due to the scat-

tering phenomenon. Furthermore, the probability of error was simulated for a single-

input single-output (SISO) system and compared with a 2×2 space-time block coding

and a 2×2 spatial multiplexing gain using maximum likelihood detection. In [51], a 3D

air-to-ground propagation model was proposed for the dense scattering environment

considering LAP. The model was derived for a direction of arrival and the delay depen-

dent Doppler spectrum with the approximation of linear distribution of the scattering

point. In this work, the analytical results were compared with the simulation results by

using the terrain based digital elevation model and found that the terrain morphology
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affects the Doppler-delay spread spectrum.

In [52], a realistic 3D geometric-based stochastic model has been developed for

the air-to-ground communication between an airborne platform and the BS as an ele-

vated plane. The proposed model considered scattering points as uniformly distributed

around the BS. In this study, the spatial characteristics were analyzed with the closed-

form analytical expressions. In [53], the geometric-based stochastic approach has been

utilized for UAV channel modeling to analytically characterize a 2×2 MIMO enabled air-

to-ground propagation in a 3D plane. In this case, the model was developed with the as-

sumption that the ground scatters were distributed on the cylindrical surface and scatter

free airborne environment. Based on the proposed model, analytical expressions were

used to study the impact of the elevation angle and the direction of the UAV movement

on the space-time correlation function in a non-isotropic environment.

While deterministic and stochastic models can provide useful understanding of

the propagation characteristics in the UAV communication, these models are usually not

feasible with a large number of simulation parameters. The Geometry-based stochastic

channel model emerged as a preferable method to derive analytical expressions for the

predominant performance metrics. The practicability of such model is to predict cover-

age and capacity performance. For instance, downlink coverage analysis has been per-

formed in [54] for the multiple UAVs modeled as a uniform binomial point process at the

fixed altitude and a single ground user. Also, in [140], the network planning approach

has been developed based on the stochastic geometry. In these studies, ground users

were spatially positioned with a uniform distribution. Furthermore, in [141], extended

coverage and enhanced capacity has been achieved by concurrency between a single

UAV and device-to-device users distributed as a Poisson point process (PPP). However,

a more realistic UAV channel model based on the stochastic geometry framework can

accommodate non-uniform distribution for both UAVs and ground users and therefore,

can be considered as the future research direction in this domain. The Implication of

the geometric-based stochastic approach is to model the channel non-stationarity, to
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get insights of the angular information for multipath components in scattering regions

[49, 52, 53], and for joint Doppler-delay spectrum [51]. However, these studies are largely

simulation based. Therefore, the empirical framework has to be developed to charac-

terize propagation with regard to spatial-temporal variations in the non-stationary UAV

channels. Some analytical expressions to determine AOA using geometry-based model

are given in Table 2.8. Finally, the pros and cons of different UAV channel modeling ap-

proaches are listed in Table 2.9.
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Table 2.8: Geometry-based stochastic model.

Ref. Geometry-based stochastic model

[49] The PDF of AOA as a function of elevation angle (φ) around the ground

receiver: f (φ) =
x2

a
x2

a−x2
b
−1

2πγ

(
xap

x2
a−x2

b

−cosφ

)2 ,

where xa and xb are subsequently the major and minor axis of the planar

elliptical scattering surface, γ= xa√
x2

a−x2
b

(
x2

a

x2
a−x2

b
−1

) 1
2

[52] The PDF of AOA with respect to airborne platform: f (Ψap ,φap ) =(
l 3

ap,max−l 3
ap,mi n

)
cosφap

3V ,

where Ψap and φap are, respectively, the azimuth and the elevation an-

gle observed from the airborne platform, lap,max and lap,mi n are the dis-

tance between the UAV and, respectively, the farthest and the nearest

scatter point

The PDF of AOA with respect to the elevated ground plane: f (Ψbs ,φbs) =(
l 3

bs,max−l 3
bs,mi n

)
cosφbs

3V ,

whereΨbs and φbs are, respectively, the azimuth and the elevation angle

observed from the BS, lbs,max and lbs,mi n are the distance between the

BS and, respectively, the farthest and the nearest scatterer point, and V

is the volume of the scattering region

[53] The von Mises PDF of AOA as a function of azimuth angle: f (Ψ) =
expk cos(Ψ−Ψµ)

2πI0(k) ,−π<Ψ≤π,

where k is a spreading control parameter, Ψµ ∈ [−π,π] is the mean an-

gle of the distribution of scatterers in a 2D plane, I0(.) is the zeroth-order

modified Bessel function, k=3,Ψµ=π,

The cosine PDF of AOA as the function of elevation angle: f (φ) =
π

4φm
cos(π2

φ−φµ
φm

), with mean angle φµ= π
6 and variance φm=π

4
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Table 2.9: Pros and cons of channel modeling approaches.

Pros Cons

Empirical Channel Model

• Large-scale fading can be analyzed

by linear regression technique [95, 96]

and curve fitting [97] applied on the

received signal strength

• Tedious and expensive measure-

ment campaigns

• Path loss model presented as

closed-form expressions with correc-

tion factors based on environment

conditions [81], UAV altitude [97, 99]

and elevation angle [100]

• Channel characterization depends

upon the multipath resolution of the

channel sounder, antenna design and

propagation environment

• Small-scale fading can be character-

ized by the superposition of all multi-

path components in the form of chan-

nel impulse response [79–83]

• Size and payload constraints of dif-

ferent UAV types

• Channel characterization is possible

for the air-to-air propagation [89–92,

94] with different UAV flight dynamics

and velocities

• Restrictions on UAV flight altitude

by national civil aviation regulatory

authorities [56–58]

Deterministic Channel Model

• Reliable characterization of the air-

to-ground propagation for large-scale

fading statistics [19, 40–44]

• Environment specific modeling ap-

proach
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Continuation of Table 2.9

Pros Cons

• Effective optimization for coverage

[44, 45], reliability [123, 130] and ca-

pacity performance in UAV commu-

nications

• Require large databases of environ-

ment geometries such as shape, size

and position of all obstacles [40]

• Often presented as closed-form ex-

pressions [19, 40–44]

Stochastic Channel Model

• Low computational complexity to

emulate complete UAV propagation

characteristics in versatile environ-

ment [136]

• Estimation of fading statistics are

dependent on the stationary interval

of the dynamic UAV channel

• Characterization of multipath com-

ponents can be done with both em-

pirical analysis [46–48] and numerical

analysis [135, 136]

Geometry–based Stochastic Channel Model

• 3D channel characterization is pos-

sible with less environmental param-

eters to study the channel state in-

formation in UAV propagation for e.g.

angular information due to spatial-

temporal variations without consid-

ering non-stationarity in the UAV

channel [49, 51]

• Accuracy is dependent on the distri-

bution of scatters confined in a target

area of specific shapes
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Continuation of Table 2.9

Pros Cons

• Suitable for the analytical realiza-

tion of UAV-MIMO channel in LAP

[50, 53]

• High computational complexity

2.5 Important Issues for Channel Modeling

2.5.1 Airframe Shadowing

In UAV communication, the radio path between aircraft and ground control station may

be blocked by aircraft structure, such as wings, fuselage or engine. Also, during flight

maneuvering or banking turns, the direct LOS path may be severed and thus induce

shadowing. In the case of small size UAVs, airframe shadowing may occur due to dif-

ferent types of UAVs, such as multi-rotors, sharp transitions in flight dynamics, aerody-

namics due to structural design, type and placement of on-board antenna and material.

In the context of UAV channel characterization, airframe shadowing is still unexplored,

as most of the measurement campaigns pertinent to this phenomena are initiated with

manned aircrafts in high altitude. Therefore, the characterization of airframe shadowing

with multi-rotor UAVs in low altitude is an interesting topic. For manned aircraft, in [60],

channel measurements were extracted for the communication link between aircraft and

satellite. Characterization of the air-to-ground channel in the C band was performed in

[61]. Reference [62] analyzed the CDF of the received signal power during the circular

flight track. In [63], airframe shadowing was reported due to wings and engine of the

commercial A320 aircraft. Empirical airframe shadowing model was proposed in [64].
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2.5.2 Stationary Intervals

One of the most important characteristics that distinguish UAV communication from

conventional communication is the non-stationarity in UAV channels, where the WSSUS

assumption is violated. Therefore, wideband frequency-dispersive channel statistics are

important within the stationary interval of the non-stationary UAV channel. No com-

prehensive study is available in the literature that addresses non-stationarity for the UAV

propagation channel in LAP. Therefore, estimation of the stationary interval is a contem-

porary research topic. Efforts to characterize the air-to-ground channel with stationar-

ity interval were made in [112]. In this study, the stationary interval was computed for

wideband measurements using temporal PDP correlation coefficient method, whereas,

spatial correlation collinearity was considered for narrowband measurements. The es-

timated stationary interval from both of these methods was approximately 15 meters or

250λ in the C band with the bandwidth of 50 MHz, where λ is the wavelength.

2.5.3 Diversity Gain

Diversity is beneficial to enhance the reliability of communication systems, particularly

when deep fades dominate. Terrestrial MIMO has been widely recognized to offer supe-

rior diversity gain and high spectral efficiency in rich multipath environments. However,

its applicability in UAV communication is still restrained by several factors. First, the

spatial multiplexing gain in the airborne MIMO is often hindered by the lack of scat-

tering environment near UAVs, which could only provide minimal throughput improve-

ment in comparison with single antenna UAV systems. Second, it might be difficult for

small size UAVs to accommodate multiple antennas or antenna arrays with large inter-

element distance to improve spatial multiplexing gain. However, smaller carrier wave-

lengths can make it feasible to mount a small antenna array, but at the expense of higher

path loss. Furthermore, power consumption by the multiple antenna system places a

major constraint on battery operated UAVs. Moreover, UAV-MIMO gain can be further
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curtailed due to difficulty in acquiring accurate channel state information for a highly

time-variant air-to-ground channel. Despite these challenges, some studies have ex-

ploited MIMO technology in the airborne environment. For example, in [65], a 4 × 4

MIMO-enabled OFDM system was used to increase the average throughput by 2 times

and the range extension by 1.6 times in comparison to a SISO system. In [66], multiple

helicopter mounted antennas were utilized to achieve the SNR gain of approximately

13 dB. In [68], the spatial multiplexing gain was achieved with a 2×2 MIMO configura-

tion and consequently enhanced the throughput gain up to 8 times for most of the flight

route. However, these studies were conducted with manned aircrafts in the HAP. For

UAV communications, there are very few measurement campaigns on the effect of mul-

tiple antenna systems. In [77] and [78], the air-to-ground channel characterization was

initiated with a 1× 4 antenna configuration. In this work, carrier-to-noise ratio (CNR)

gain was compared for the common combining strategies such as selection, equal-gain

and maximal ratio combining (MRC). In [110], the performance of multiple receiver and

transmitter nodes was evaluated by the correlation coefficient. In this case, the packet

delivery rate was boosted by 25 % on average due to the poor correlation at the multi-

ple receiver nodes in a 1×4 configuration and by 37 % with the selection diversity using

three transmitters in a 3×4 setup. Measurement of a 4×4 MIMO channel in [111] revealed

that despite of the sparse multipath environment, poor spatial correlation provides sig-

nificant capacity gain due to the planar wavefronts generated by near-field reflections at

the ground receiver side.

In these studies, multiple antenna systems were used to combat fading in multi-

path propagation and to attain higher throughput. To achieve these objectives, the value

of correlation coefficient due to fading at antenna elements provides insights about the

achievable MIMO gain. In this case, large performance improvement can be achieved

with low correlation coefficient. However, available literature is scarce for empirical

evaluation of the correlation coefficient. Therefore, more measurement campaigns are

required to study UAV-MIMO systems from the channel characterization viewpoint.
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2.6 Open Research Problems

UAV propagation channels have significant importance in optimizing the coverage, reli-

ability and capacity performance of UAV communication. Despite of all these advance-

ments, many research issues remain open. This section will discuss some research chal-

lenges and potential opportunities for characterizing UAV channels for future measure-

ment campaigns and the development of realistic UAV channel model.

2.6.1 UAV Measurement Campaigns

Measurement campaigns are beneficial for the formulation of effective UAV channel

models, evaluating the performance of UAV communication systems and network plan-

ning. However, propagation aspects of UAV communication change regionally due to

UAV environment. In the literature, most of the UAV campaigns are launched in urban,

suburban and open fields with mostly clear LOS conditions, whereas, measurement ef-

forts are still missing for the dense urban scenario, metropolitan areas with skyscrapers

and over water bodies. Therefore, more extensive measurement campaigns are required.

Moreover, the use of channel sounding equipment is important with regard to on-board

space limitations, payload weight, bandwidth requirements and multipath resolution.

To this end, channel characterization with USRP hardware, such as N-210 [79, 80, 108],

B-210 [83], X-310 [142, 143] and B-200 mini can provide flexible platforms due to lighter

weight, low power consumption, wideband frequencies and capable of testing different

wireless communication protocols, such as multi-carrier and MIMO system in a UAV

communication framework. Other possible choices for channel measurement hardware

used by different researchers are the P410 UWB radio [81], autonomous mobile network

scanner by Rohde & Schwarz [99] and third generation (3G), and fourth generation (4G)

enabled smart-phones [100, 113]. In addition, the effects of antenna placement on UAVs

and the gain from UAV-MIMO systems for both the air-to-air and air-to-ground propa-

gation are not well studied. Furthermore, the choice of aerial altitude platforms and dif-
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ferent types of UAVs are also important aspects for both the UAV applications and chan-

nel characterization. In this case, multi-rotor and fixed-wing UAVs may be preferred for

static and mobile UAV applications, respectively. However, for both types, the impact

of UAV space and take-off weight (UAV weight with payload) can put constraints on the

flight endurance time. Therefore, heavy-duty UAVs are more desirable to carry enough

wireless equipment, for instance, DJI S-1000 and Agras MG-1 can accommodate a pay-

load of around 7 kg and 10 kg, respectively. Also, UAVs should generate enough thrust

to combat the atmospheric turbulence which may be detrimental in some UAV applica-

tions demanding stability for critical and continuous connectivity.

2.6.2 UAV Propagation Channel Models

Communication in UAV networks takes place over air-to-air and air-to-ground channels.

In this case, the air-to-air channel is intended for inter-UAV communication for coordi-

nation and collaboration in UAV swarms, while the air-to-ground channel is used for re-

laying data between UAVs and ground stations. Most of the UAV propagation models are

proposed with the approximation of time-invariant channels when non-stationarity is

ignored in the estimation of the small-scale statistics, this may lead to erroneous con-

clusions. Therefore, it would be interesting to analyze the UAV propagation channel

with the estimation of the stationary interval using temporal PDP correlation coefficient

[112], correlation matrix distance [112], spectral divergence [144] and evolutionary spec-

trum [145] methods. Furthermore, the channel non-stationarity can be modeled by the

flexibility of the geometric-based stochastic approach by considering time-variant pa-

rameters. The research on multidimensional UAV channel modeling is still in its pre-

liminary stages as most of the empirical models reported large-scale statistical prop-

erties of the UAV channel with regard to flight dynamics, altitude and communication

distance. Furthermore, airframe shadowing by small size rotary UAVs has not received

commensurate level of attention and more empirical studies are required to study this

phenomenon for both the air-to-ground channel in single-hop networks and air-to-air
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propagation in multi-hop networks. In addition, ray-tracing can be used to probe the

airframe shadowing, as computer-aided design (CAD) tools are capable of incorporating

UAV shape, metallic properties and different maneuvering positions.

In this chapter, various channel models have been reported from the existing lit-

erature on UAV communications. However, free space and probabilistic LOS channel

models were predominantly used for theoretical analysis of air-to-ground propagation

in UAV communications. The probabilistic LOS channel model is used in chapter 3, 4,

and 5 of this thesis due to two main reasons. First, to imitate application scenarios of

different urban environments in different system models considered in these chapters.

Second, to evaluate the impact of environmental parameters on the overall performance

of the considered UAV systems. However, in some cases the average path loss expres-

sion of the probabilistic LOS model [19] in Table 2.6 may not provide enough degree of

freedom for analytical tractability. Therefore, in chapter 4, the probabilistic LOS model

is curve-fitted with a three-variable power function to derive closed-form expressions.

Moreover, distance-dependent LOS model with PLE of 2 (propagation in free space) and

4 (propagation in urban environment) is used for comparison with the approximation

of the probabilistic LOS model under the same system model settings. Furthermore, in

chapter 3 and 5, the probabilistic LOS model is useful to evaluate the impact of the opti-

mal UAV altitude on the overall network performance.

2.7 Conclusion

This chapter has provided a comprehensive review of the UAV channel characterization

with measurement campaigns and statistical channel models. It has categorized the UAV

channel measurement campaigns in LAP based on the narrowband or wideband chan-

nel sounder, low-cost and low-power channel sounding solution, and widely deployed

ground infrastructure. This chapter also reviewed empirical models for air-to-ground

and air-to-air propagation channels. Then the UAV channel modeling approaches were
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classified as deterministic, stochastic and geometric-stochastic models. Furthermore,

challenging issues were discussed in the practicability of UAV communications related

to airframe shadowing, channel non-stationarity, and diversity techniques. Finally, the

future research challenges were presented which will be helpful to provide further in-

sight of the UAV channel characterization for launching future measurement campaigns

and proposing a pragmatic framework for effective UAV channel models.
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Chapter 3

Optimum Deployment Strategy of

Multiple UAVs

3.1 Introduction

UAVs equipped with radio transceivers can satisfy the requirements for an aerial com-

munication platform by serving either as a mobile BS or as an airborne relay. Due to

their flexible deployment, UAVs can be used in multi-tier UAV-assisted cellular networks

to provide on-demand communication services in disaster areas and to enhance cover-

age, capacity and reliability performances of existing terrestrial cellular networks [133].

However, several challenges, such as optimal 3D placement, flight endurance time, en-

ergy constraints and interference management, may impede the widespread applicabil-

ity of UAV communications.

In UAV communications, aerial BSs are mostly used as LAPs to provide ground

coverage as UAV-based small cells (USCs). The size of USCs varies according to the alti-

tude, position, transmit power, and type of UAVs and characteristics of the environment.

In this regard, the optimum placement of UAVs to analyze the coverage performance of

USCs has attracted great research interest. For instance, in [19] and [100], the UAV de-

ployment issue has been considered for the coverage enhancement of a single USC. In
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[124], the authors presented the UAV placement method in a 3D space to enlarge the

coverage area. References [130] and [146] analyzed the optimal UAV altitude to max-

imize the coverage area with minimum outage probability for a given SNR threshold.

In [147], the authors analyzed the optimization problem for UAV placement to increase

the number of covered users with various QoS demands. However, these works were

conducted for networks with a single UAV. When multiple UAVs are available, references

[114] and [148] exploited the deployment of multiple UAVs to expand coverage for the

ground users with the minimum number of aerial BSs. Furthermore, most of the works

either optimize the horizontal coordinates of UAVs for a constant UAV altitude above

the ground [149] or optimize the UAV altitude while keeping a constant horizontal posi-

tion [150, 151]. These studies analyzed the UAV placement problem using optimization

framework in an interference-free environment. However, in the multi-UAV scenario, in-

terference may be inevitable, as spectrum scarcity may necessitate frequency reuse over

the spatial domain [152], causing interference in UAV-assisted cellular networks. There-

fore, effective interference mitigation framework is required to maximize the coverage

performance and guarantee reliable communications.

From the perspective of UAV communications, several works have been carried

out to characterize the interference generated by UAVs and the impact of interference

from terrestrial BSs on the UAV connectivity. For example, reference [45] proposed a de-

ployment method for multiple UAVs using circle packing theory to maximize the cover-

age performance and to compensate interference with the adjustment in UAV’s altitude

and the gain of directional antenna. In [129], the authors analyzed the coverage perfor-

mance of USCs with and without interference for two UAVs. References [142] and [153]

used empirical measurements to characterize the impact of UAV altitude on interference

incurred by terrestrial LTE networks. The authors in [154] presented an interference-

aware placement strategy for UAV relays to overcome traffic congestion and to compen-

sate outage in LTE networks. In [155], simulation was carried out using commercial soft-

ware to study the effect of UAV altitude on coverage area and inter-cell interference. In
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[156], the interference alignment principle was exploited to manage the interference in

small-cell networks. In [157], a circle placement problem was formulated without con-

sidering coverage overlapping to avoid interference and to achieve maximum user cov-

erage and power efficiency. Most of these studies have relaxed the overlapping coverage

constraints to avoid the co-channel interference. Also, the separation distance between

UAVs is an important parameter that determines the trade-off between coverage and

interference generated by UAVs, but no comprehensive results are available in the liter-

ature to study this parameter in the multi-UAV network.

In UAV communications, co-channel interference primarily occurs when multi-

ple UAVs share the same frequency resources at the same time in spatially separated lo-

cations. Therefore, some research efforts have been devoted to consider the effect of co-

channel interference in the performance analysis of UAV communications. For example,

reference [118] took into account the effect of co-channel interference between different

data user streams in ground-to-air uplink transmission. Reference [158] considered the

impact of co-channel interference in the problem formulation of the UAV trajectory opti-

mization. In [159], the authors derived a closed-form expression of the ground user cov-

erage probability to characterize the influence of co-channel interference while captur-

ing the effect of density of UAV deployment, UAV antenna beam-width and the optimum

altitude. On the other hand, interference management techniques have been proposed

in the existing literature. For example, in [160], the multi-antenna UAV scheme was pro-

posed as the co-channel interference cancellation technique. Furthermore, references

[161] and [162] demonstrated that caching can be used for interference management in

UAV communications. In reference [163], the coordinated multipoint (CoMP)1 architec-

ture was exploited for multi-UAV system to mitigate interference and offer high UAV mo-

bility. In [165], a path-planning algorithm was proposed to achieve a trade-off between

the maximization of energy efficiency and minimization of both the interference and la-

tency. In [166], cooperative non-orthogonal multiple access (NOMA) was proposed to

1Coordinated multipoint (CoMP) architecture support cooperative communications over multiple trans-
mission and reception points [164].
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mitigate the uplink interference in cellular-connected UAV communication. However,

these techniques may require excessive power for signal processing which can increase

the power expenditure of battery-operated UAVs.

Motivated by the above observations, this chapter studies the effect of co-channel

interference generated by multiple UAVs on the coverage area performance, which is de-

fined as the ratio of the sum of effective coverage area of USCs to the target area as a

function of the separation distance between UAVs. The multi-UAV network consists of

a primary UAV surrounded by secondary UAVs operating in a coordinated framework in

two scenarios. First, this work assumes the symmetric deployment of UAVs that have

the same optimal altitude and transmit power. Second, in the asymmetric deployment

of UAVs, a primary UAV is placed at an optimal altitude and secondary UAVs are located

above and below the optimal altitude with different transmit power. In both cases, the

worst-case scenario of the co-channel interference generated by UAVs is considered. The

optimal separation distance for a given target area with predefined SINR is studied. Nu-

merical results show that the coverage area performance depends on the SINR threshold,

the separation distance between UAVs, and the number of UAVs and their formations.

The main contributions of this chapter are summarized as follows:

• Different from [114] and [148], which not include the effects of co-channel interfer-

ence between multiple UAVs in the placement optimization problem, this chapter

proposes a coordinated multi-UAV framework to study the coverage area perfor-

mance in the presence of co-channel interference. Specifically, multiple UAVs are

deployed at predefined coordinates in a 2D Cartesian plane by exploiting a hexag-

onal layout. These coordinates are specified for a minimum UAV separation dis-

tance to avoid collision in a given target area and utilize SNR measures to find the

optimal altitude of UAVs.

• After the initial deployment of UAVs at the specific coordinates and the optimal al-

titude, this chapter characterizes the impact of the UAV separation distance on the
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coverage area optimization in the presence of co-channel interference with the

help of SINR metrics to meet the threshold requirement for the worst-case sce-

nario. Compared with [129], this work studies the coverage area performance for

multiple UAVs that can be deployed in one-dimensional (1D) or 2D formations in a

single snapshot, while [129] only considered two UAVs deployed in 1D formations.

Also, compared with the circle packing approach in [127] and the circle placement

approach in [157], this work considers the realistic overlapping scenario of USCs

which results in the reduction of the effective coverage area due to the interfer-

ence and consequently the shape of USCs varies according to the separation dis-

tance between UAVs. The results then provides the useful insights for enabling an

harmonious integration of multiple USCs in UAV communications.

• Using the proposed UAV deployment framework, this chapter analyzes the system-

level performance in terms of the coverage probability of the ground user located

at the boundary of the USC with the maximum coverage distance. The results are

then used to determine the minimum number of UAVs needed to achieve a target

coverage probability at different UAV separation distances.

The rest of this chapter is organized as follows. The system model is introduced

in Section 3.2, including the use of the practical channel model. Section 3.3 presents the

framework for the deployment of multi-UAV network and assesses the coverage area per-

formance and the coverage probability in presence of interference. Section 3.4 presents

numerical results. Section 3.5 summarizes the main conclusions of this chapter.

3.2 System Model

Coordinated multi-UAV networks can be used to alleviate the co-channel interference

in UAV communications. As a general multiple UAV model for M aerial BSs, this work

assumes that the primary UAV is static and fixed on top of the center of a specified target

area to serve as a reference node to adjust the separation distance, while secondary UAVs
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are placed at predefined deployment coordinates. The secondary UAVs in this work are

static after optimization so that the coverage is also static on the ground. The static cov-

erage assumption is made to ensure that the coverage performance is satisfactory inside

the USCs while meeting the stringent SINR requirement and also considering that UAVs

and ground users are static. Fig. 3.1 depicts a downlink UAV transmission system that

consists of the primary UAV and secondary UAVs positioned at an altitude of hp and

hs meters, respectively. Without loss of generality, a 2D Cartesian system is considered

in which seven UAVs are used in the Euclidean plane of the square target area with a

side length of l meters and assume hexagonal layout for UAV deployment. It should be

noted that the use of seven UAVs in Fig. 3.1 is only for illustration purpose. The model

is applicable to any number of UAVs but in practice, large numbers are highly unlikely

due to the exponentially increasing complexity for UAV control, such as collision avoid-

ance and ground coordination. In this case, P0 is the projection center of the primary

UAV and S1,··· ,M−1 are the coordinates of secondary UAVs located at the vertices, where

M = 7 in Fig. 3.1. As a result, spatial isolation between interfering UAVs is possible with

the same separation distance D . Moreover, coordinated multi-UAV networks can be de-

ployed based on the layout of regular convex polygons to meet the coverage requirement

inside the specific target area with the required number of UAVs. The advantage of such

coordinated scheme is that it can react to failure of any UAVs quickly by reformation of

the deployment strategy to the nearest regular polygon layout. The considered multi-

UAV network offers resilience in case of malfunctioning BSs and providing coverage in

post-disaster areas.

In the absence of interference, ra is the maximum coverage distance at the bound-

ary points A1 and A2 in the primary and secondary USC, respectively. In the presence of

interference, rp and rs are coverage distances that attain a minimum performance, re-

spectively, for boundary points A3 and A4 in the primary and secondary USC. ri∈{1,··· ,M−1}

are distances to represent the worst-case scenario of the co-channel interference gener-

ated at the boundary of the primary USC from the projection of M −1 secondary UAVs.
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Figure 3.1: Diagram of the multiple interfering UAVs scenario.

Also, r̃i∈{1,··· ,M−1} denote the interference distances from the boundary point of the serv-

ing secondary USC to the coordinates of all remaining UAVs in the network. The cover-

age performances of both the primary and secondary UAVs are dependent on rp and rs

as a function of D for a specific range of coverage angles, respectively,Φp andΦs .

3.2.1 Channel Model

In this chapter, a realistic channel model is used in which air-to-ground path loss is mod-

eled with both LOS and NLOS components. To this end, one of the most suitable channel

models was proposed in [19], which is predominantly utilized in the literature to facili-

tate the optimization of UAV placement in [44, 114, 124, 127, 129, 130, 147, 157, 167]. This

model considers the effect of the environment with parameters a and b to characterize
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the air-to-ground propagation with the probability of LOS as

Px = 1

1+a ×exp
(
ab −bφx

) , (3.1)

where x ∈ {1,2,3,4,5} represents elevation anglesφ1,φ2,φ3,φ4, andφ5 at boundary points

in five scenarios shown in Fig. 3.1. In the case of non-interfering link, the elevation angle

for the primary UAV at point A1 is φ1 = 180
π arctan

(hp

ra

)
and the mean path loss is given as

[167]

PLp (dB) = A×P1 +10log10(h2
p + r 2

a )+B. (3.2)

The elevation angle for secondary UAV at point A2 is φ2 = 180
π arctan

(hs
ra

)
and the

mean path loss is given as

PLs(dB) = A×P2 +10log10(h2
s + r 2

a )+B. (3.3)

For the interference received in the primary USC at the boundary point A3 from

secondary UAVs, φ3 = 180
π arctan

(hs
ri

)
for i = {1,2, · · · , M − 1} and the mean path loss is

given as

PLi (dB) = A×P3 +10log10(h2
s + r 2

i )+B. (3.4)

For the interference incurred in the serving secondary USC at point A4 by the

primary UAV, the interference distance between projection coordinate P0 and boundary

point A4 is r̃i=1. Therefore, φ4 = 180
π arctan

( hp

r̃i=1

)
and the mean path loss is given as

P̃Li=1(dB) = A×P4 +10log10(h2
p + r̃ 2

i=1)+B. (3.5)

For the interference received in the same secondary USC at point A4 from the

remaining secondary UAVs, φ5 = 180
π arctan

(hs
r̃i

)
for i = {2, · · · , M −1} and the mean path
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loss is given as

P̃Li (dB) = A×P5 +10log10(h2
s + r̃ 2

i )+B. (3.6)

where A = εLOS−εNLOS, B = 20log( 4π f
c )+εNLOS, εLOS and εNLOS denote the excessive path

loss factors which rely on the propagation environment as well as on the LOS and NLOS

conditions, respectively. Also, f is the carrier frequency and c is the speed of light.

The above channel model is considered due to its predominant usage in the for-

mulation of the optimization problem for UAV placement. With such a model, a trade-

off of the UAV altitude can be exploited for the UAV deployment at the optimal altitude

where the minimum path loss will be attained by a single UAV while transmitting at the

minimum power and covering the maximum coverage area on the ground under the SNR

threshold requirement. In addition, the system parameters and channel characteristics

are the same for all UAVs. Next, PLs and PLp will be used to present SNR measures. Also,

PLi , P̃Li=1, and P̃Li will be used for SINR metrics.

3.3 Coverage area performance of coordinated multi-UAV net-

work

Interference control is one of the major challenges in radio resource management of UAV

communications. Intuitively, it is evident from the considered system model that in the

absence of coordination between UAVs, a large value of D would deteriorate the cover-

age performance by moving the coverage areas of multiple UAVs outside the boundary of

the target area but leave a big gap between them for protection. Conversely, a small value

of D leads to the overlap of USC areas to provide more coverage but cause strong co-

channel interference when all participating UAVs use the same frequency resources at

the same time. Therefore, an optimal separation distance between UAVs exists and pro-

vides a trade-off between interference avoidance and maximum coverage. This section
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defines the deployment strategy for the considered multi-UAV system and then employs

it to present the coverage area performance and the coverage probability as a function

of the UAV separation distance.

3.3.1 Optimal UAV Altitude

Fig. 3.2 illustrates the cases of symmetric and asymmetric deployments based on UAV al-

titude. In the symmetric case, the altitudes and transmit powers of all UAVs are identical.

However, for the asymmetric case, the primary UAV is placed at an optimal altitude and

secondary UAVs can be located above or below this altitude. Therefore, the first goal of

this work is to place the primary UAV at the optimal altitude hP to achieve the maximum

ground coverage in a specific target area for a given ra . In this regard, the boundary

point A1 on the ground is covered when its SNR is above a certain threshold Ψth for a

minimum transmit power, Pt ,p , i.e.

SNR(ra ,hp ) = Pr,p

N0
≥Ψth , (3.7)

where Pr,p = Pt ,p × 10
−PLp

10 is the received power in the absence of interference, PLp is

given in (3.2), and N0 is the noise power.

The SNR for the secondary UAV is given as

SNR(ra ,hs) = Pr,s

N0
≥Ψth , (3.8)

where Pr,s = Pt ,s ×10
−PLs

10 is the received power in the absence of interference, Pt ,s is the

corresponding transmit power of secondary UAVs at altitude hs , and PLs is given in (3.3).
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(a) hp = hs

(b) hp < hs

(c) hp > hs

Figure 3.2: Illustration of symmetric and asymmetric UAV deployment scenarios.
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3.3.2 UAV Projection Coordinates

This chapter focuses on the use of quasi-stationary UAVs, where their positions remain

unchanged for a specific duration of time. For such setup, it is important to determine

the placement coordinates of UAVs to avoid collision between them and to provide spa-

tial isolation between UAVs to control the interference. Therefore, the deployment strat-

egy assumes that the primary UAV is fixed at P0 = {0,0}. When M = 7, the coordinates of

secondary UAVs in the hexagonal layout are given as

S1,··· ,M−1 =



S1
(
Dmi n +D,0

)
S2

(− (Dmi n +D),0
)

S3
(1

2 (Dmi n +D),−
p

3
2 (Dmi n +D)

)
S4

(− 1
2 (Dmi n +D),−

p
3

2 (Dmi n +D)
)

S5
(1

2 (Dmi n +D),
p

3
2 (Dmi n +D)

)
S6

(− 1
2 (Dmi n +D),

p
3

2 (Dmi n +D)
)
,

(3.9)

where Dmi n = PLs
4 − ra is the minimum separation distance to avoid collision between

UAVs and to ensure minimum coverage performance for all participating UAVs in the

presence of interference. In this case, D is the only variable which controls the coverage

area performance within a target area.

3.3.3 Signal-to-Interference-plus-Noise Ratio (SINR) Analysis

SINR is a commonly used metric for wireless communication systems to characterize

the impact of interference generated by adjacent BSs. This affects the received signal

strength at a ground user and consequently defines the coverage area of the cell. This

chapter assumes that the participating UAVs in the considered system interfere with

each other during the downlink transmission. In this case, a boundary user at point

A3 is served by the primary UAV in the presence of interfering secondary UAVs when its
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SINR satisfies the threshold requirementΨth . As a result, SINR can be defined as

SINR
(
rp (D),Φp

)= Pr,p

I +N0
≥Ψth , (3.10)

where rp is related to the interference distance ri as

ri =
√

r 2
p +D2 +2rp D cos(π−Φp ), (3.11)

and I = Pt ,s
∑M−1

i=1 10
−PLi

10 is the co-channel interference generated by secondary UAVs,

and PLi is given in (3.4).

For the boundary point A4 in the secondary USC, the SINR is given as

SINR
(
rs(D),Φs

)= Pr,s

Ĩ +N0
≥Ψth , (3.12)

where rs is dependent on the interference distance r̃i as

r̃i =
√

r 2
s +D2 +2rsD cos(π−Φs), (3.13)

and

Ĩ = Pt ,p ×10
−P̃Li=1

10 +Pt ,s

M−1∑
i=2

10
−P̃Li

10 , (3.14)

P̃Li=1 is given in (3.5), and P̃Li is given in (3.6).

3.3.4 Coverage Area Performance as a Function of Optimal Separation Dis-

tance

The coverage area ratio determines the overall coverage area performance of the consid-

ered multi-UAV system. Particularly, it is defined as the ratio of the total effective area
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covered by both the primary and secondary USCs to the target area as

Ac (D) = 2

l 2

[ rp (D)∫
0

Φp=π∫
Φp=0

R dR dΦ+(M −1)×
rs (D)∫
0

Φs=Φmax∫
Φs=0

R dR dΦ
]

,Φmax ≤π, (3.15)

where l 2 is the area of the square target area considered in the system model. Note that

this work considers SINR measure which is dependent on the position of the ground

user. Therefore, an analytical expression for the coverage area ratio is too complicated

to be derived. Following (3.15), the minimum coverage area ratio can be obtained at

D = Dmi n . Also, Φmax limits the coverage of secondary UAVs that might project outside

the target area and is given as

Φmax =π−arccos
{Dmi n +D

rs

}
. (3.16)

Finally, the optimal separation distance can be computed by searching (3.15) nu-

merically as

Dopt = argmax
D

Ac (D). (3.17)

Analytical expressions for Dopt is difficult to obtain, if not impossible. Therefore,

this work will use simulation to study the effect of D on Ac (D) and to determine Dopt for

maximum coverage area ratio.

3.3.5 Coverage Probability of the Worst-Case Scenario

The coverage probability is defined as

Pc =P [SINR ≥Ψth], (3.18)

which can be written as Pc = P [SINR(D) ≥ Ψth] as the SINR depends on the separa-

tion distance between UAVs and the threshold Ψth determined by the requirement of
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the ground user. This performance metric quantifies the reliability of the air-to-ground

channel in presence of co-channel interference by satisfying the threshold requirement.

In addition, this metric is useful to evaluate the performance of the air-to-ground chan-

nel for command and control (CnC) in multi-UAV network [168]. A reliable CnC is crucial

for safe UAV deployment and better traffic management in UAV communications.

For the proposed coordinated multi-UAV network, the shape of the coverage re-

gions of the primary and secondary UAVs may not be completely circular in the presence

of the co-channel interference. As a result, the coverage distances rp and rs varies non-

uniformly for the primary and secondary USCs, respectively, as the value of D changes.

In this case, severe interference can be observed at the boundary points of USCs. The

coverage probability for a boundary user located at the maximum distance rp from the

projection of the primary UAV by considering the aggregate interference from all sec-

ondary UAVs is given as

Pc =P
[ Pr,p

I +N0
≥Ψth

]
=P

[
Pr,p (dB) ≥ Pmi n

]
. (3.19)

where P [.] denotes probability, Pr,p is the received power in the absence of in-

terference, Pmi n = 10log10(Ψth I +Ψth N0) is the minimum received power (in dB) for

successful detection in presence of interference, and I can be extracted from (3.10). Sim-

ilarly, the coverage probability can be determined for a ground user located at the maxi-

mum coverage distance rs from the projection of the serving secondary UAV by consid-

ering aggregate interference from remaining UAVs by using (3.12).

3.4 Numerical Results and Discussion

In this section, numerical results are presented. Simulation parameters for suburban

and urban environments are listed in Table 3.1.

Fig. 3.3 shows the optimal altitude for the primary UAV using (3.7) to have the

minimum transmit power in order to attain the coverage at the maximum radial dis-
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Table 3.1: Simulation parameters.

Parameter Value
l 2000 meters
f 2 GHz

N0 -120 dBm
Ψth 10 dB

suburban (εLOS, εNLOS, a, b) 0.1 dB, 21 dB, 4.88, 0.43
urban (εLOS, εNLOS, a, b) 1 dB, 20 dB, 9.6, 0.28
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Figure 3.3: UAV altitude versus transmit power for urban and suburban environment
with ra=350 meters.

tance of 350 meters and satisfy the threshold requirement of Ψth=10 dB. Actually, the

optimal altitude is the minimum possible altitude which offers the lowest path loss be-

tween the UAV and the ground user with the minimum transmit power. This leads to

the best communication performance in the absence of interference. Fig. 3.3 also shows

that the optimal altitude and minimum transmit power depends on the propagation en-

vironment. For instance, the optimal altitude is 131 meters and 314 meters in suburban

and urban scenarios, respectively. This result is important for the power minimization
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in planning multi-UAV networks.

Fig. 3.4 and Fig. 3.5 shows the ground coverage pattern in a specific target area

with different numbers of UAVs for the minimum and the maximum coverage, respec-

tively, in suburban environment with the threshold of Ψth = 10 dB and the optimal alti-

tude of 131 meters for all UAVs. The projection coordinates of UAVs are marked by black

‘×’. Particularly, Fig. 3.4a and Fig. 3.5a present the coverage of three UAVs placed along

a single axis in 1D formation with the separation distance of 247 meters and 747 meters,

respectively. Fig. 3.4b and Fig. 3.5b depicts the coverage region of five UAVs deployed

in 2D formation with the separation distance of 247 meters and 847 meters, respectively.

Fig. 3.4c and Fig. 3.5c shows the coverage area of seven UAVs deployed in 2D formation

with the separation distance of 247 meters and 847 meters, respectively. Expressions

(3.10) and (3.12) are used to achieve the SINR requirements at the ground points for the

coverage of different UAVs deployed at coordinates specified by (3.9). These results, use

103 sample points for individual UAVs to test ground coverage requirement and the green

patches represent the coverage area of USCs that achieve the threshold requirement in

the presence of interference. In this case, the separation distance of 747 meters in 1D

formation and 847 meters in 2D formation compensates the strong co-channel inter-

ference because the maximum coverage area of the primary UAV is optimally confined

within the target area, while a small portion of the coverage region of secondary UAVs

falls outside the target area. Furthermore, as the gap between USCs increases beyond

these separation distance, the coverage area of secondary UAVs further moves outside

the target area which results in undesirable coverage leakage. On the other hand, the

separation distance of 247 meters in both 1D and 2D formations can cause detrimental

interference effect on the coverage performance as the effective coverage area shrinks

because of overlapping. However, one of the major limitation of the proposed multi-

UAV system is that for the given SINR threshold it may not be possible to cover the entire

target area and thus there are coverage holes in the network where the ground users may

not receive the communication services directly from the UAV system. To this end, two
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(a) Three interfering UAVs.

(b) Five interfering UAVs.
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(c) Seven interfering UAVs.

Figure 3.4: Coverage map for coordinated multi-UAV deployment for different numbers
of UAVs in suburban environments to attain minimum coverage.

possible solutions exists to overcome this limitation. First, to deploy the proposed multi-

UAV communication system as a component of the heterogeneous network where the

coverage holes will be filled either by the legacy systems (GSM or UMTS) or by the mod-

ern radio access technologies of 4G and 5G. Second, to reuse the frequency spectrum

in the form of multi-layer multi-UAV system where multiple UAVs will utilize different

transmission frequencies at different altitudes.

Fig. 3.6 shows the coverage performance as the ratio of the effective coverage

area of USCs to the target area. In the simulation, ‘fsolve’ in MATLAB was used to find

coverage distances rp in (3.11) and rs in (3.13) for the considered multi-UAV network and

then apply them in (3.15)-(3.17) to observe the effect of the UAV separation distance on

the coverage area performance in suburban and urban environments. Clearly, to miti-

gate the interference and to improve the coverage performance with a higher number of
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(a) Three interfering UAVs

(b) Five interfering UAVs
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(c) Seven interfering UAVs

Figure 3.5: Coverage map for coordinated multi-UAV deployment for different numbers
of UAVs in suburban environments to attain maximum coverage.

UAVs, the coverage regions of UAVs must be isolated with proper adjustment in the sep-

aration distance. One notices that the coverage ratio changes with the number of UAVs

and the environmental conditions.

In Fig. 3.6a, when using the optimal altitude i.e. hp = hs , better coverage per-

formance is observed with three UAVs for D < 350 meters in comparison with five and

seven UAVs due to lessen co-channel interference. In contrast, for the case of hp < hs

in Fig. 3.6b, the coverage performance degrades as the altitude of secondary UAVs in-

creased from the optimal value because of higher path loss. For the case of hp > hs in Fig.

3.6c, best coverage area ratio is observed for D < 500 meters. However, as the separation

distance increases from 500 meters the coverage performance becomes sub-optimal in

urban environment. In these results, the minimum coverage area ratio is consistent with

D = 1250 meters and D = 1500 meters for 1D and 2D formations, respectively, when the
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maximum coverage of primary USC is attained and secondary UAVs moved out of the

target area. Furthermore, it is observed that to achieve the maximum coverage area ra-

tio, the optimal separation distance is dependent on the deployment formation of the

UAVs rather on the number of UAVs or the environment. For instance, with three UAVs

deployed in the 1D formation, the optimal separation distance is 747 meters. Whereas,

for five and seven UAVs deployed in 2D formation, the optimal separation distance is 847

meters.
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Figure 3.6: Coverage area ratio versus separation distance for different numbers of UAVs
in suburban and urban environments.
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urban environment with different SINR threshold.
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Fig. 3.7 illustrate the impact of the SINR threshold on the coverage ratio and

the optimal UAV separation distance in the urban environment for seven interfering

UAVs. According to Fig. 3.7, the optimal UAV separation distance increases with the SINR

threshold. For example Dopt = 780 meters forΨth = 5 dB, Dopt = 847 meters forΨth = 10

dB, and Dopt = 897 meters for Ψth = 15 dB. On the other hand, the maximum coverage

area ratio decreases as the SINR threshold increases. For example, the maximum cover-

age area ratio is 0.54 forΨth = 5 dB, 0.49 forΨth = 10 dB, and 0.45 forΨth = 15 dB.

Fig. 3.8 shows that the coverage probability of the boundary user in the primary

UAV cell in (3.19) with the threshold of Ψth = 10 dB. Fig. 3.8. depicts that the user cov-

erage probability improves as the separation distance increases. In this case, the better

user performance is possible in the worst-case scenario of the co-channel interference

with the minimum required number of UAVs.

These results show that the aerial BSs can work similarly as the ground BSs with

defined coverage patterns following principles of CoMP systems for interference man-

agement [169]. This is important for the development of UAV BSs as a supplementary

but flexible infrastructure to be compatible with existing fixed infrastructure.

3.5 Conclusion

The optimal separation distance between UAVs to mitigate co-channel interference and

maximize the overall coverage performance has been studied in suburban and urban en-

vironments. For this, the coordinated multi-UAV network was designed that allowed to

provide the useful insights on the integration of multiple USCs in UAV communications.

Results in this chapter showed that the coverage area performance is dependent on the

number of UAVs, operational environment, deployment coordinates or network forma-

tion, and separation distance between UAVs. In fact, a proper adjustment of the UAV

separation distance can balance the co-channel interference to avoid coverage leakage

outside the target area. This work could be extended for UAVs with different mobility
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laws and a multiple-tier UAV deployment to study the consequences of cross-tier inter-

ference in UAV communications. In this case, coverage performance by multiple UAVs

can be determined by multi-dimensional search for the optimal UAV altitudes and the

separation distances.
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Chapter 4

Effect of User Mobility and Channel

Fading on UAV Communications

4.1 Introduction

UAVs can be used as aerial access points to extend the coverage of wireless networks

[133]. Such networks can provide practical significance in a mobile environment due

to the maneuverability of UAVs. On the other hand, in mobile networks, the presence

of mobility can induce time-varying characteristics into the received signal [170]. The

variation caused by the user mobility together with the fluctuation in the channel gain

generated by multipath fading can degrade the performance [29].

Most existing works on the performance analysis of UAV communication systems

consider fixed ground users. For example, reference [117] analyzed the performance of

the individual air-to-ground links in a cooperative UAV network with a fixed ground user

in various fading scenarios. Reference [130] derived the performance measures for the

air-to-ground communication link in a relaying system with a UAV, a remote BS, and a

user at the edge of the coverage cell. The system-level performance for multiple spatially

distributed ground users has also been analyzed. For example, reference [26] derived

the altitude-dependent outage probability to maximize the coverage performance where

98



ground nodes follow a PPP. In all these works, the placement strategies of UAVs have been

studied but the effect of ground user mobility on the communication performance has

been ignored.

To capture the essential performance of UAV communications, it is necessary to

consider the effect of ground user mobility. Various models have been reported in the

literature for user mobility in mobile and ad hoc networks [171]. One such model is the

random waypoint (RWP) model [172] that has been predominantly adopted in various

communication systems. For example, reference [31] studied the impact of the receiver

mobility on the SNR in an indoor scenario using a VLC system. For physical layer se-

curity, reference [173] provided general expressions for the outage and capacity perfor-

mance for a ground user that moves according to the RWP model. This result was com-

pared with the random distance model and the border mobility model. Another study in

[174] analyzed the secrecy outage performance in the presence of moving interferers in

a RWP network. For UAV communications, the authors in [27] and [175] derived statis-

tics for the SIR, in which multiple UAVs move according to the RWP model in the vertical

direction. However, none of these works has provided a comprehensive analysis on the

effect of ground user mobility in the UAV communications.

Motivated by the above observations, this chapter presents an analytical frame-

work to investigate how ground user mobility and the fading channel affect UAV commu-

nications. Specifically, this work derives closed-form expressions for the PDF, the CDF,

the outage probability, and the average BER of the UAV system where the ground user

follows the RWP model for user mobility and the small-scale channel fading follows the

Nakagami-m model. Numerical results are presented for the ground-to-air LOS chan-

nel and the elevation angle-dependent probabilistic channel [19] to show how different

performance metrics change with the system parameters as design guidelines.

The main contributions of this chapter are summarized as follows:

• Compared to [27] and [175] that derived statistics for mobile UAVs for the fixed

ground user at the center of the UAV cell, this work provides mathematical frame-
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work that studies the impact of UAV channel models, ground user mobility us-

ing the RWP model, and small-scale fading channel on the outage performance in

noise-only and interference-limited scenarios.

• Performance analysis is provided for the uplink UAV communication system, where

the closed-form expressions are derived for the statistics of SNR i.e PDF and CDF,

and accordingly outage probability can be determined.

• Closed-form expressions for the average BER are derived for the noise-only sce-

nario.

• Statistics of SIR are derived in the form of tractable analytical expressions where

multiple interfering users moves according to the RWP mobility model and outage

performance is compared with the case of static interfering users.

The rest of this chapter is organized as follows. The system model is introduced

in Section 4.2, including the use of channel models and mobility model. Section 4.3

presents the statistics of SNR. Section 4.4 presents the analytical framework to derive

performance metrics, including outage probability and average BER in noise-only sce-

nario. Section 4.5 derives the expressions for PDF and CDF to study the impact of uplink

interference generated from the mobile interfering users. Section 4.6 presents numerical

results and simulation parameters. Section 4.7 summarizes the main conclusions of this

chapter.

4.2 System Model

Fig. 4.1a depicts the uplink of a UAV communication system that initially consists of

an aerial BS positioned at an altitude of h meters communicating with a single mobile

ground user in the noise-only scenario. Later, the intrusion of multiple interfering mo-

bile users in Fig. 4.1b generates the strong jamming signal at the UAV that can be detri-

mental for uplink UAV communications. Thus, in absence of an appropriate multiple
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access technique, the system model in Fig. 4.1b is undesirable for practical applications

and considered here for analyzing the combined effect of user mobility, propagation en-

vironment, and fading channel in the interference-limited environment. In order to save

battery and to simplify the system, this work considers the use of a static multi-rotor

UAV1. For a 2D Cartesian coordinate system, Oc is assumed as the projection coordinate

of the UAV at the center of the circular area. During the communication in Fig. 4.1b,

the desired and interfering ground users are randomly moving inside the circular region,

such that their spatial positions are determined by the distance rU and r I from the cen-

ter within a range of 0 ≤ rU ≤ DU and 0 ≤ r I ≤ D I , respectively. In this case, rU and r I are

random variables and DU and D I are the maximum radial distances. Next, this section

will specify the channel models and the mobility model for the considered system.

4.2.1 Channel Model

This chapter takes into account both the LOS and the probabilistic LOS channel mod-

els to extend the analysis for variety of propagation environments. First, this work as-

sume that the air-to-ground channel is dominated mainly by LOS conditions and that

the power loss depends on the propagation distance. Therefore, the received power at

the UAV can be given as

P A
U = Ptδ|g |2

dα
U

= Ptδ|g |2
(r 2

U +h2)
α
2

, (4.1)

where dU denotes the air-to-ground propagation distance between UAV and the desired

user, δ represents the channel power at the reference distance of 1 meter, |g |2 is the fad-

ing power, Pt is the transmission power of the desired ground user, and α is the PLE

which usually satisfies 2 ≤ α ≤ 4 between free space and obstructed propagation envi-

ronments [177]. Thus, α = 2 and α = 4 can be considered as upper and lower limits of

the performance, respectively. This model is useful in certain scenarios, where it is non-

1In some cases, UAVs consume less energy in mobility than in hovering [176].
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(a) Noise-only scenario.

(b) Interference-limited scenario.

Figure 4.1: System model.

trivial to classify the environment (urban, dense urban, etc.), and the parameters of the

probabilistic model may not be available, For instance, in post-disaster and mountain-

ous areas.

Second, this work uses the probabilistic LOS model where the air-to-ground prop-

agation is dependent on the environmental parameters and the elevation angle between
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the UAV and the ground user. In this case, the received power at the UAV can be ex-

pressed as

P B
U = Pt |g |2

QU
, (4.2)

where QU = 10
PLU

10 is the absolute power loss and PLU is the air-to-ground propagation

path loss given by

PLU (dB) =
(
εLOS −εNLOS

)
1+a ×exp

(
−b

(
φ−a

)) +20log10

(4π f

c

)
+20log10

(√
r 2

U +h2
)+εNLOS, (4.3)

and φ= arctan
( h

rU

)
is the elevation angle, a, b, εLOS, and εNLOS are the constants related

to the propagation environments, f is the carrier frequency, and c is the speed of light.

However, (4.3) is too complicated to analytically characterize the effect of the ground

user mobility because this expression is in implicit form, such that neither rU nor h can

be written explicitly. Thus, the curve fitting approach is used to fit the probabilistic LOS

channel for simplification. To this end, the curve fitting method yields a three-variable

power function for QU as

QU = a2r b2
U + c2, (4.4)

where a2, b2, and c2 are the curve fitting parameters dependent on the environment and

the elevation angle between UAV and the ground user.

To model the fading channel, the Nakagami-m model is considered due to its an-

alytical tractability. This model is also reported in several measurement campaigns re-

ported in Table 2.5. The analysis of this work consider normalized average fading power.

Therefore, the PDF of the channel power follows a Gamma distribution as

f|g |2 (x) = mm xm−1

Γ(m)
exp(−mx), x ≥ 0, (4.5)
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where m is the Nakagami-m parameter that defines the severity of the fading channel

and assumed an integer in this work for simplicity and Γ(.) is the Gamma function.

4.2.2 Mobility Model

According to reference [171], the classification of the mobility models is illustrated in Fig.

4.2. In this work, the RWP model is adopted because it presents the statistical properties

of randomness in the form of well defined analytical expressions. Also, it gives non-

uniform spatial distribution of the ground user distance. On the other hand, the random

distance model may not be suitable for the considered system model because it gives the

uniform spatial distribution of the ground user distance. Other practical models such

as, the Manhattan mobility model simulates the mobility pattern of the ground user at

the street level and the Freeway mobility model emulates the movement pattern of the

highly mobile ground users on highways. However, these models and other models listed

above do not have well defined analytical expressions to derive the statistics for SNR

and SIR. Mostly the adaptability of such models in ad hoc networks is possible with the

commercial simulation software which may not lead to any closed-form expressions of

performance metrics

This work assumes that the user mobility follows the RWP model. In this model,

as shown in Fig. 4.1, the ground user (marked with green colour) initially starts from

point Q0. Then, a destination point (know as waypoint) Q1 is chosen from a uniform

distribution inside the circular area and the ground user moves along a straight path

from Q0 to Q1 at a constant speed. After reaching waypoint Q1, a new destination point

Q2 is selected and this process continues. Following the RWP model, the PDF of the

desired user and interfering user distance is given in a polynomial form in [170, Table 1]

and is summarized in [29] in an equivalent form of

frU (rU ) =
n∑

i=1
βi

rαi
U

Dαi+1
U

, 0 ≤ rU ≤ DU , (4.6)
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Figure 4.2: The classification of the mobility models.

and

fr I (r I ) =
n∑

i=1
βi

rαi
I

Dαi+1
I

, 0 ≤ r I ≤ D I , (4.7)

respectively, where n is determined by the dimension of space (1D, 2D, and 3D) con-

sidered, βi and αi are constants determined by the user mobility in specific dimension.

Moreover, all ground users are assumed to be placed on a 2D surface, as shown in Fig.

4.1. In this work, n = 3 for the 2D case, βi =
[

324
73 , −420

73 , 96
73

]
, and αi = [1,3,5] [170, Table

1]. It can be verified that integrals of (4.6) and (4.7) give 1.
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4.3 Statistics of Signal-to-Noise Ratio (SNR)

This section presents the statistics of the received SNR at the UAV for LOS model us-

ing (4.1) and for probabilistic LOS model using (4.2) and (4.4) as λA
r = E A

U |g |2√
1+ r 2

U
h2

α and λB
r =

E B
U |g |2(

1+ a2
c2

r
b2
U

) , respectively, where E A
U = Ptδ

N0
h−α, E B

U = Pt
N0c2

, and N0 is the noise power.

4.3.1 Probability Density Function (PDF)

For the LOS model, denote X = E A
U |g |2 and Y = (

1+ r 2
U

h2

) α
2 . Let Z = X

Y , where X and Y are

independent random variables. Hence, the general expression for the PDF of Z is given

by

fZ (z) =
∫ √

1+
(

DU /h
)2

α

1
y fX (z y) fY (y)d y. (4.8)

Substituting α = 2 in (4.8), the PDF of Z can be derived using binomial expan-

sion (1 + q)m [178, eq.(1.110)] and the lower incomplete Gamma function γ(., .) [178,

eq.(3.381.1)], as

fZ (z) =
zm−1 exp

(
− z

E A
U /m

)
2Γ(m)

(
E A

U /m
)m

n∑
i=1

m∑
j=0

βi(
D2

U /h2
)αi+1

(
j

m

)
γ
(
αi+1

2 + j , (DU /h)2

E A
U /m

z
)

(
z

E A
U /m

) αi +1
2 + j

. (4.9)

For α= 4, the PDF can be derived from (4.8) as

fZ (z) = zm−1

4Γ(m)
(
E A

U /m
)m

3∑
i=1

βi(
DU /h

)αi+1 Ui , (4.10)

where

G(µ,ρ,ψ) =
γ
(
m +µ, χρ

E A
U /m

z
)
−γ

(
m +µ, χψ

E A
U /m

z
)

(
z

E A
U /m

)m+µ , (4.11)
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and U1 = G( 1
2 ,2,0), U2 = G(1,0,2), U3 = G( 3

2 ,2,0), and χ = D2+h2

h2 . This work is not able

to derive the results for an arbitrary value of α, but α = 2 and α = 4 can provide useful

performance benchmarks.

Similarly, for the probabilistic LOS model, let X = E B
U |g |2, Y = 1+ a2

c2
r b2

U , and Z =
X
Y . Thus, the PDF of Z can be derived as

fZ (z) =
zm−1 exp

(
− z

E B
U /m

)
b2Γ(m)

(
E B

U /m
)m

n∑
i=1

m∑
j=0

βi (a2/c2)−
αi +1

b2

Dαi+1
U

(
j

m

)
γ
(
αi+1

b2
+ j ,

(a2/c2)D
b2
U

E B
U /m

z
)

(
z

E B
U /m

) αi +1
b2

+ j
. (4.12)

4.3.2 Cumulative Distribution Function (CDF)

For LOS model, the CDF for the received SNR at the UAV can be given as

FZ (z) =
∫ √

1+
(

DU /h
)2

α

1

∫ z y

0
fX (x) fY (y)d xd y. (4.13)

Substituting α= 2 in (4.13), the CDF can be derived as

FZ (z) =
n∑

i=1

βi

αi +1
−

exp
(
− z

E A
U /m

)
2

n∑
i=1

m−1∑
j=0

j∑
k=0

βi

(DU /h)αi+1

(k
j

)
j !

γ
(
αi+1

2 +k, (DU /h)2

E A
U /m

z
)

(
z

E A
U /m

)k+ αi +1
2 − j

. (4.14)

Substituting α= 4 in (4.13), the CDF can be derived as

FZ (z) =
n∑

i=1

βi

αi +1
−

n∑
i=1

4∑
s=1

(
z

E A
U /m

)m−1

4
(
DU /h

)αi+1 Ss , (4.15)

where S1 =G(−1
2 ,2,0), S2 = 2 ·G(1,0,2), S3 =G( 1

2 ,2,0), and S4 =G(0,0,2).
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For the probabilistic LOS model, the CDF can be derived as

FZ (z) =
n∑

i=1

βi

αi +1
−

exp
(
− z

E B
U /m

)
b2

n∑
i=1

m−1∑
j=0

j∑
k=0

βi (a2/c2)−
αi +1

b2

Dαi+1
U

(k
j

)
j !

γ
(
αi+1

b2
+k,

(a2/c2)D
b2
U

E B
U /m

z
)

(
z

E A
U /m

)k+ αi +1
b2

− j
.

(4.16)

4.4 Performance Analysis

This section provides expressions for the outage probability and the average BER of UAV

communication system.

4.4.1 Outage Probability

Outage probability is defined as the probability when the received SNR or SIR falls below

a predefined threshold λ as

Pout = Pr (Z <λ) = FZ (λ). (4.17)

where the CDF of FZ (z) is given in Section 4.3.

4.4.2 Average Bit Error Rate (BER)

The average BER for the digital binary modulation scheme in terms of the upper incom-

plete Gamma function Γ(., .) [178, eq.(8.350.2)], is given as [179]

Pe = 1

2Γ(θ)

∫ ∞

0
Γ(θ, zΦ) fZ (z)d z = Φθ

2Γ(θ)

∫ ∞

0
zθ−1 exp(−zΦ)FZ (z)d z, (4.18)

where parameters Φ and θ depend on the type of modulation. For example, Φ= {1,1/2}

for binary phase-shift keying (BPSK) and binary frequency-shift keying (BFSK), respec-

tively, and θ = {1,1/2} for differential BPSK/non-coherent BFSK and coherent BPSK/BFSK,

respectively.
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For α = 2, substituting (4.14) in (4.18), the average BER in terms of the Gauss

hypergeometric function 2F1(·, ·; ·; ·) using [178, eq.(6.455.2)] and [178, eq.(6.381.4)] is de-

rived as

Pe = 1

2

[ n∑
i=1

βi

αi +1
− Φθ

Γ(θ)

n∑
i=1

m−1∑
j=0

j∑
k=0

βi
(k

j

)
j !

(E A
U /m)θ(DU /h)2kΓ(θ+ j )

(αi +1+2k)
[
1+ (DU /h)2 + (E A

U /m)Φ
]θ+ j

×

2F1

(
1,θ+ j ;

αi +1

2
+k +1;

(DU /h)2

1+ (DU /h)2 + (E A
U /m)Φ

)]
.

(4.19)

For α= 4, substituting (4.15) in (4.18), the average BER is derived as

Pe = 1

2

[ n∑
i=1

βi

αi +1
−

n∑
i=1

4∑
s=1

(
1

E A
U /m

)m−1

4
(
DU /h

)αi+1 Is

]
, (4.20)

where H(τ,υ) = 1
m+τ

[
χυ

R ×2F1(1,m +b −1;m +τ+1;T )− 1
U ×2F1(1,m+b−1;m+τ+1;W )

]
,

I1 = H(−1
2 ,2m−1), I2 =−2×H(1,2m+2), I3 = H( 1

2 ,2m+1), I4 =−H(0,2m), R =
(

χ2

E A
U /m

+

Φ
)θ+m−1

, T = χ2

χ2+(E A
U /m)Φ

, U =
(

1
E A

U /m
+Φ

)θ+m−1
and V = 1

1+(E A
U /m)Φ

.

For probabilistic LOS model, substituting (4.16) in (4.18), the average BER is de-

rived as

Pe = 1

2

[ n∑
i=1

βi

αi +1
− Φθ

Γ(θ)

n∑
i=1

m−1∑
j=0

j∑
k=0

βi
(k

j

)
j !

(
E B

U /m
)θ( a2D

b2
U

c2

)k
Γ(θ+ j )

(αi +1+kb2)
[

1+ a2D
b2
U

c2
+ (

E B
U /m

)
Φ

]θ+ j
×

2F1

(
1,θ+ j ;

αi +1

b2
+k +1;

a2D
b2
U

c2

1+ a2D
b2
U

c2
+ (E B

U /m)Φ

)]
.

(4.21)

4.5 Impact of Interference on Outage Performance

This section consider the scenario when the desired ground user is surrounded by L

Nakagami-m interfering users (marked with red colour) in two cases. The first case as-
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sume independent and identically distributed static interfering users at approximately

the same distance from the desired user. The second case consider the randomly moving

interfering users according to the RWP model. In both cases, the co-channel interference

is incurred when the interfering users send signals to degrade the received signal at the

UAV in the uplink transmission.

4.5.1 Statistics of Signal-to-Interference Ratio (SIR)

The aggregate interference2 at the UAV for LOS and probabilistic LOS channels is given

as V A = ∑L
l=1

E A
I |gl |2√
1+

r 2
Il

h2

α and V B = ∑L
l=1

E B
I |gl |2(

1+ a2
c2

r
b2
Il

) , respectively, where E A
I = Ptδh−α and

E B
I = Pt

c2
. This work assumes that the aggregate interference can be approximated by

a Gamma-distributed random variable, which is a reasonable assumption as validated

by findings of the numerical test in Fig. 4.3. Therefore, the PDF of a Gamma distribution

can be expressed as

fV (v) = vκ−1

Γ(κ)γκ
exp

(−v

γ

)
, v ≥ 0 (4.22)

where κ and γ are the shape and scale parameters, respectively. For static interfering

users, these parameters are defined in Table 4.1. On the other hand, for mobile interfer-

ing users, these parameters are determined by the method of moment-matching. Using

(4.7) and [178, eq. (3.194.1)],

MA = E{
1√

1+ (r I /h)2α
} =

n∑
i=1

βi

αi +1
2F1

(α
2

,
αi +1

α
;
αi +1

α
+1;

(
D I /h

)2
)
, (4.23)

MB = E{
1

1+ (a2/c2)r b2
I

} =
n∑

i=1

βi

αi +1
2F1

(
1,
αi +1

b2
;
αi +1

b2
+1;−(a2/c2)Db2

I

)
. (4.24)

2For a tractable analysis, this work assumes that the interference power is dominant as compared to the
noise power [54].
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Figure 4.3: Comparison of simulated CDF and Gamma-distributed CDF.

Similarly,

NA = E{
1(√

1+ (r I /h)2α
)2 } =

n∑
i=1

βi

αi +1
2F1

(
α,
αi +1

α
;
αi +1

α
+1;−(

D I /h
)2

)
, (4.25)

NB = E{
1(

1+ (a2/c2)r b2
I

)2 } =
n∑

i=1

βi

αi +1
2F1

(
2,
αi +1

b2
;
αi +1

b2
+1;−(a2/c2)Db2

I

)
. (4.26)

E {|g |2} = 1, and using [178, eq.(3.381.4)], E {|g |4} = 1+ 1
m . Thus, for a LOS channel,

one has E {V } = LE A
I MA and E {V 2} = L(E A

I )2(L −1)M 2
A +L(E A

I )2(1+ 1
m )NA . Finally, since

E {V } = κγ and E {V 2} = κγ2 −κ2γ2 from moment-matching, the κ and γ parameters for

the LOS and probabilistic LOS models are given in Table 4.2.

Next, for the LOS model, denote ZI = P A
U

V A as the received SIR. For α= 2, the CDF

of P A
U i.e., FP A

U
(zI ) can be determined by replacing E A

U with E A
I in (4.14). Also, the PDF of
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Table 4.1: κ and γ parameters for static interfering users.

Channel model κ γ

LOS mL Ptδ

m
√

D2
I +h2

α

Probabilistic LOS mL Pt

m(a2D
b2
I +c2)

Table 4.2: κ and γ parameters for mobile interfering users.

Channel model κ γ

LOS
LM 2

A

(1+ 1
m )NA−M 2

A
E A

I

[ NA
MA

(1+ 1
m )−MA

]
Probabilistic LOS

LM 2
B

(1+ 1
m )NB−M 2

B
E B

I

[ NB
MB

(1+ 1
m )−MB

]
VA can be obtained from (4.22). Since P A

U and VA are independent, the CDF of ZI is

FZI (zI ) =
∫ ∞

0
FP A

U
(v zI ) fV (v)d v (4.27)

Thus, using [178, eq.(6.381.4)] and [178, eq.(6.455.2)], the CDF of ZI can be de-

rived as

FZI (zI ) =
n∑

i=1

βi

αi +1
− 1

Γ(ϑ)γϑ

n∑
i=1

m−1∑
j=0

j∑
k=0

βi
(k

j

)
j !

(
E A

I /m
)ϑz j

I

(
DU /h

)2k
Γ(ϑ+ j )

(αi +1+2k)
[(

1+ (DU /h)2
)
zI + E A

I
mγ

]ϑ+ j
×

2F1

(
1,ϑ+ j ;

αi +1

2
+k +1;

zI
(
DU /h

)2(
1+ (DU /h)2

)
zI + E A

I
mγ

)
. (4.28)

Similarly, for probabilistic LOS model, denote ZI = P B
U

V B as the received SIR, the

CDF of P B
U i.e., FP B

U
(zI ) can be determined by replacing E B

U with E B
I in (4.16). Thus, the
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CDF of ZI can be derived as

FZI (zI ) =
n∑

i=1

βi

αi +1
− 1

Γ(ϑ)γϑ

n∑
i=1

m−1∑
j=0

j∑
k=0

βi
(k

j

)
j !

(E B
I /m)ϑz j

I

(
(a2/c2)Db2

U

)k
Γ(ϑ+ j )

(αi +1+kb2)
[(

1+ (a2/c2)Db2
U

)
zI + E B

I
mγ

]ϑ+ j
×

2F1

(
1,ϑ+ j ;

αi +1

b2
+k +1;

zI (a2/c2)Db2
U(

1+ (a2/c2)Db2
U

)
zI + E B

I
mγ

)
. (4.29)

Thus, the outage performance in presence of uplink co-channel interference can

be computed as

Pout = Pr (ZI <λ) = FZI (λ). (4.30)

where the CDF of FZI (zI ) are given in (4.28) and (4.29).

The derived analytical expressions (4.14)-(4.16) for the CDF of SNR, (4.19)-(4.21)

for average BER, and (4.28)-(4.29) for the CDF of SIR are complex and unwieldy in their

current form due to the use of nonlinear and special functions, such as Gauss hypergeo-

metric function. This is preliminary work to study the impact of ground user mobility on

UAV communications and the more manageable expressions are desired in the future.

In this regard, one must focus on approximating the nonlinear functions with linear ex-

pressions or providing an asymptotic analysis. However, they are beyond the scope of

this chapter.

4.6 Numerical Results and Discussion

This section analyzes the performance for different channel conditions and mobility. As

an illustrative example, let h = 100 meters, Pt = 30 dBm, and N0 = −57 dBm. Also, for

f = 2 GHz, c = 3× 108 m/s, and 0 < ru < 100 m, the curve fitting parameters for 45◦ ≤
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θU ≤ 90◦ are (a2,b2,c2) = (7180,2,7.182×107) in a suburban environment, (a2,b2,c2) =
(8584,2,8.838×107) in an urban environment, and (a2,b2,c2) = (4.73,4.033,1.125×108)

in a dense urban environment, respectively. The accuracy of the approximated proba-

bilistic LOS function obtained via (4.4) is verified through adjusted R-square, which is

the statistical value between 0 and 1 to determine the goodness-of-fit. Hence, for the

parameters used in this section, the adjusted R-square values are 1, 1, and 0.9981, for

suburban, urban, and dense urban environments, respectively. In the simulation, the

RWP model is adopted by directly generating random distances in (4.6) and (4.7), and

not the random waypoints. Then, these were used in (4.1)-(4.3) for the simulation of

the received power. The solid lines represent the analytical results using (4.14)-(4.17) for

outage performance in the absence of interference in Fig. 4.4, (4.19)-(4.21) for average

BER in noise-only case in Fig. 4.5, and (4.28)-(4.30) for outage performance in presence

of co-channel in Fig. 4.6, while the markers represent the simulation results. This work

averaged simulation results using 105 runs.

Fig. 4.4 and Fig. 4.5 depicts the impact of PLE and different propagation envi-

ronments on the outage and error performances in a noise-only case where a mobility

scenario with a maximum distance of DU = 100 meters and DU = 50 meters are con-

sidered, compared with a static system where the ground user is deployed at half of the

maximum distance. In the RWP model, the waypoints are uniformly chosen around the

center but its probability density decreases towards the boundary of the circle [172, Fig.

5]. Consequently, the mobile user most likely locates near the mean distance r̄ which can

be approximated as r̄ = DU
2 in the steady-state. This property is confirmed by results, as

shown in Fig. 4.4. The outage performances of a mobile user randomly moving within

DU = 100 meters are approximately the same as those of a static user fixed at 50 meters

for the same PLE. In addition, this work observes better outage performance for α = 2

because the received power in (4.1) is higher compared with α = 4. Also, for the prob-

abilistic LOS model, the outage performance deteriorates as the power loss increases

accordingly with dense urban, urban and suburban environments. It is also interesting
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Figure 4.4: The outage probability versus threshold (λ) for α= {2,4} and different propa-
gation environments for m = 2 in noise-only scenario.

to note that the outage performance of the probabilistic channel model is between those

of the model in (4.1) withα= 2 andα= 4. This shows the usefulness of the LOS model as

bounds. This is due to the fact that the probabilistic model combines the free space path

loss with the excessive loss incurred by shadowing. In Fig. 4.5, better BER performance

is observed forα=2 because the average received power is higher at DU = 50 meters than

at DU = 100 meters. Also, the RWP mobility property holds for the average BER results to

approximate the performance of a ground user randomly moving between Oc and DU .

Fig. 4.6 examines the effect of Nakagami-m fading parameters and the amount

of interference generated by both the stationary and the mobile interfering users on the

outage performance. For the same D I , the outage performance improves with the static

interfering users because the separation distance between desired and interfering user

increases. Also, as m increases, the fading severity decreases for the interfering user links

and in turn, the outage probability increases due to the dominance of the interference in
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Figure 4.5: Average BER for BPSK versus transmit power (Pt ) with m=2,α={2,4}, and with
different propagation environments.

the system. These results provide the useful insights to the system designer to quantify

the effects of the number of mobile interfering users, performance threshold, PLE, prop-

agation environments, and Nakagami-m fading parameter on the outage performance

of the considered UAV communication system.

4.7 Conclusion

This chapter has derived closed-form expressions for the CDF and analyzed the outage

and BER performances for the uplink of UAV communication systems by using the RWP

mobility model and the Nakagami-m channel fading model. This work has been ex-

tended for the outage analysis to the interference-limited scenario by using the Gamma

approximation. Thus, this chapter provides useful design guidelines to quantify the ef-

fect of the user mobility, propagation environment, channel fading, and co-channel in-
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terference on the UAV communications performance. Future extension includes the un-

packing of parameters to simplify analytical expressions.
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Chapter 5

Performance Analysis of Hybrid UAV

Networks for Wireless Caching

5.1 Introduction

To meet the ever-increasing demand for high data rate and support the diversified traffic

demand for future mobile networks, there have been rapid increases in the deployment

of small-cell base stations (SBSs) that coexist with macro-cell cellular networks. How-

ever, the major challenge to accomplish these tasks is the congestion in the back-haul

link due to the transmission of a large amount of data, resulting in high latency and

low data rate [180]. On the other hand, the recent advances and the decreasing costs

in the data storage technology make it more convenient to store a large amount of data

at the edges of the wireless network at low cost. Furthermore, it has been observed that

the majority of the data traffic comprises of the streaming and downloading of popular

contents, such as high-definition videos on YouTube, podcasts, weather forecast, news

bulletins, and maps. To this end, wireless edge caching is one of the most promising

solutions. In the wireless local caching, the popular contents are stored in caches at

the network edges, such as small cells and hand-held devices during off-peak time [181,

182]. Consequently, contents can be directly requested and accessed locally by users
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during peak times to reduce the burden on back-haul networks as well as the transmis-

sion latency. Besides meeting the issues of overwhelming traffic demands by the dense

deployment of BSs in the form of cache-enabled multi-tier hybrid networks, the energy

efficiency of such networks is imperative from the network planning viewpoint [183].

Thus, the characterization of the energy efficiency performance will be compelling for

understanding the impact of the design parameters of the network such as, BSs den-

sity, power consumption, and the QoS requirement. This chapter evaluates the energy

efficiency performance of a hybrid caching network to successfully deliver the cached

contents to the ground user for a given transmission requirement and then compare its

efficacy with the separate UAV and ground networks. Furthermore, this work employs

network-level performance metrics for the analysis of the successful content delivery.

UAVs can provide flexible access due to their maneuverability and hence, can

be exploited as an aerial BS to facilitate high-speed transmission[133]. In UAV-enabled

small cell networks, UAVs can be used as SBSs to support existing macro-cell BSs by

off-loading the traffic congestion from the back-haul networks, particularly during big

public events such as the Olympics games and music festivals, where the demand on

the communication services increases. In contrast to the network caching with a fixed

ground infrastructure, UAV-enabled caching can increase the likelihood of successful

content transmission because the mobility of UAV can take caching content closer to the

typical user. However, the deployment of UAVs can encounter many challenges, such

as limited flying duration, energy consumption, and interference management. In the

literature of UAV communications, the deployment of multiple UAVs is based either on

the deterministic approach, such as the circle packing method in [45] and hexagonal

placement in [184], or on the random distribution using tools of stochastic geometry.

Recently, research on the coexistence of the UAV-enabled network with the ter-

restrial network was presented in [168] and [185–187]. For these works, the spatial dis-

tribution of BSs is defined by a PPP. For instance, in [168] and [185–187], UAVs were dis-

tributed according to a 3D PPP and the terrestrial network was modeled by a 2D PPP.
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However, most of these studies ignore the caching aspect in UAVs. In [188], the au-

thors provided an analytical framework using independent PPPs for UAV and ground

BSs to evaluate the performance of UAV assisted cellular networks in terms of SINR cov-

erage probability. In [189], the authors modeled a multi-layer aerial network with PPP

using air-to-ground and air-to-air channel models to evaluate the transmission proba-

bility and area spectral efficiency. In [190], probabilistic caching placement was inves-

tigated in a heterogeneous UAV network modeled with an independent homogeneous

PPP without considering co-channel interference and in the absence of a terrestrial net-

work. In [191], the authors presented a framework for the uplink transmission of cached

contents from the ground SBSs distributed according to a homogeneous PPP to a single

aerial UE over the ground-to-air channel. In [156], the UAV-assisted secure transmis-

sion was studied via caching, where UAVs offload the video traffic and deliver to mobile

users in small cells. On the other hand, the authors in [33] presented the architecture of

caching in a UAV-enabled small-cell network. However, an analytical framework for the

performance analysis has not been provided for an aerial network that coexists with the

ground network consisting of cache-enabled SBSs. The works in [132, 192, 193] utilized

cache-enabled UAVs in a radio access network. However, these works does not model

their system as a multi-tier caching network that consists of ground SBSs to supplement

UAVs.

Content placement is the key challenge due to the limited caching capacity in

SBSs, because spontaneous caching in nearby SBSs will incur more interference. Ex-

tensive research has been conducted to analyze the joint content placement and trans-

mission performance as well as designing relevant caching strategies. For instance, [194]

studied the optimal content placement of the cache-enabled heterogeneous cellular net-

work. [195] proposed a caching strategy for the cluster-centric small-cell network that

combines the most popular content and the large content diversity. This strategy was

extended in [196] to a distributed relay network for improvements in outage perfor-

mance. In [197], a heuristic solution was proposed to significantly improve the video
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delivery performance in the cache-enabled wireless heterogeneous networks. In [198],

the authors proposed a heuristic algorithm to maximize the transmission performance

of cache-enabled multi-antenna and mmWave small-cell networks. Reference [199] ana-

lyzed and optimized the performance of content placement in terrestrial BSs and in mo-

bile users that coexist in a heterogeneous wireless network. In [200], the cache-enabled

nodes were grouped in disjoint clusters by the Matern hard core point process1. In [203],

spatial caching strategy was proposed to improve content delivery probability and to

avoid caching redundancy in a heterogeneous network. In [204], the authors studied the

techniques to enhance the caching capacity in the mobile ad hoc networks. However,

these works did not consider the content placement scheme in UAV-enabled networks

using the realistic air-to-ground channel features in urban environments.

Small-cell networks are expected to provide significant improvement in the con-

tent delivery for higher transmission rates and to reduce the back-haul congestion of a

network. In the previous works [194–200, 203, 204], cache-enabled networks were de-

signed mostly for the ground BSs and therefore, the content caching and transmission

schemes were developed mainly to maximize the performance of a small-cell network.

On the other hand, UAV small-cell networks are very suitable to deploy aerial BSs as

back-haul entities to connect users to the core network. However, the coexistence of the

UAVs and the ground SBSs in a multi-tier caching network has been widely ignored.

The existing studies mentioned above have neither considered the modeling of a

hybrid caching network which consists of the UAVs and ground SBSs that are randomly

located according to the PPP in [205], nor analyze its content delivery and energy effi-

ciency performances. Therefore, motivated by these observations, this chapter presents

the guidelines to model the hybrid caching network and analyze the performance of the

proposed content caching scheme which exploit the content diversity based on its pop-

ularity measures. The main contributions of this chapter are summarized as follows:

1Matern point process can be used to model positions of the simultaneous transmitting nodes since it
conditions on having a minimum distance separating the points of the process [201, 202].
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1. User association probability for the UAVs and the ground SBSs are derived using

the tool of the stochastic geometry. Both UAVs and ground SBSs coexist in a net-

work which adopts the density sharing scheme for the adequate deployment of

UAVs and ground SBSs. Their locations are determined by the homogeneous PPPs.

The typical user request for a particular file is highly likely to be associated with the

cache-enabled UAV and ground SBS in a hybrid network based on the maximum

received power criteria.

2. Successful content delivery probability is used to analyze the network performance,

which represents the probability that a particular file requested by a typical user is

not only cached at the UAV and SBS but also successfully delivered over the wire-

less channel. Furthermore, inter-tier and intra-tier interferences are taken into

account and modeled by the Laplace transforms. The results reveal that the suc-

cessful content delivery performance is dependent on the network parameters,

such as the UAV and SBS density to control the interference and the UAV altitude,

and also on the content-related parameters, such as the size of the content in the

database, caching capacity of UAVs and SBSs, skewness in content popularity, and

the target data rate.

3. Energy efficiency is a performance metric which is defined as the ratio of the area

spectral efficiency for the successful content delivery to the average power con-

sumption of the UAV for a given QoS threshold. The energy efficiency of the cache-

enabled hybrid network is then compared with the separate UAV and ground net-

works to assess the effectiveness of the hybrid approach.

4. A wireless content caching scheme is proposed in which a portion of the caching

capacity in each UAV and SBS is designated to cache the most popular content

with the higher popularity probability. Thereafter, the contents with the moderate

popularity are stored in the remaining portion of the caching capacity. Further-

more, the content delivery performance of the proposed caching scheme is com-
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pared with the widely used popular content placement method in [194–198] as a

baseline scheme which only cache most popular content.

The rest of the chapter is organized as follows. Section 5.2 presents the system

model. The SINR analysis is given in Section 5.3. Section 5.4 defines the criteria for user

association with the UAVs and ground SBSs, and hence, derive user association probabil-

ity. The successful content delivery performance is analyzed in Section 5.5. The energy

efficiency of the network design is formulated in Section 5.6. Then the proposed con-

tent caching scheme is given in Section 5.7. The numerical and simulations results are

discussed in Section 5.8, and conclusions are drawn in Section 5.9.

5.2 System Model

This section describes the network topology, the channel model, and the content place-

ment scheme for the cache-enabled hybrid network illustrated in Fig. 5.1. The com-

monly used symbols in this chapter and their meanings are listed in Table 5.1.

Table 5.1: Summary of symbols.

Symbols Meaning
ΦU,ΦG Location of UAVs in tier U, SBSs in tier G
λU,λG Density of UAVs in tier U, SBSs in tier G

h UAV altitude
η Density control factor
K Size of database
J Caching capacity of each UAV and SBS
z State of UAV being in LOS (z = L) and NLOS (z = N) conditions
fk The k-th file
bk Placement probability of file fk in UAV and SBS cache
mk Popularity measure for the requested file fk

go Rayleigh fading gain with unit mean for desired link
gi , g j , gl Rayleigh fading gain with unit mean for interference link
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Figure 5.1: System model for cache-enabled hybrid network with UAVs and ground SBSs
deployed according to PPP.

5.2.1 Network Topology

This chapter considers a three-tier time division multiplexing heterogeneous network

with UAVs in tier U, ground SBSs in tier G, and one macro BS for back-haul connectivity.

Specifically, UAVs are deployed as a cache-enabled aerial BSs in tier U in the presence

of the already existing ground SBSs, where UAVs are fixed at an altitude of h meters and

transmit with power PU. In this case, the random deployment of UAVs follow the PPP in

[205] due to three main reasons. First, the projection distribution is similar to the classic

PPP when all UAVs hover at the same altitude. Second, the non-overlapping distribution

points will avoid collision of UAVs. Third, to provide analytical tractability to model the

uncertainty with the cache-enabled UAVs in the worst-case scenario [168, 185–187]. In

tier G, SBSs are on the ground and transmit with power PG. Furthermore, each UAV and

SBS is assumed to be equipped with a single antenna. This chapter consider a density

sharing scheme to determine an appropriate participation of the cache-enabled UAVs

and ground SBSs in a hybrid network. The overall distribution of the cache-enabled

nodes in a hybrid network is modeled by a homogeneous PPP ΦS with density λS. The

124



UAVs and the ground SBSs in tier U and tier G follow two independent homogeneous

PPPsΦU andΦG with densities λU = ηλS and λG = (1−η)λS, respectively. In this case, 0 ≤
η≤ 1 and the factor 1−η defines the percent of the active SBSs in a hybrid network with

the condition that λS ≥ λU and λS ≥ λG. Also, the ground users are spatially distributed

according to an independent homogeneous PPPΦT with density λT. The user density is

assumed to be much larger than the UAVs and SBSs densities (λT À λU and λT À λG).

Based on Slivnyak’s theorem2 of PPP in [205], the typical user is set as a ground reference

point which is served by each UAV and SBS at each time slot.

5.2.2 Channel Model

For the downlink communication, air-to-ground channel is used between UAV and the

typical ground user. In such channel, the path loss is dependent on the propagation en-

vironment and the UAV altitude. In this case, the LOS and NLOS links can be considered

as separate components of the air-to-ground channel. Thus, the path loss for LOS and

NLOS links can be given as [43]

LU,z(X ) =βoXαz ; z ∈ {L,N}, (5.1)

where βo =
(

4π f
c

)2
is the frequency-dependent channel power at the reference distance

of 1 meters, f is the carrier frequency, c is the speed of light, z ∈ {L,N} denotes the condi-

tion of being LOS (z = L) or NLOS (z = N) links, X =
p

d 2 +h2 is the propagation distance,

d is the user distance from the projection of the UAV, αL and αN are the PLEs for the LOS

and NLOS links, respectively. Also, the probability of having a LOS link is given as [19]

pL (X ) = 1

1+a ×exp
(
−b

[
arcsin

(
h
X

)
−a

]) , (5.2)

2Slivnyak’s theorem states that for a PPP Φ, because of the independence between all of the points, con-
ditioning on a point at x does not change the distribution of the rest of the process. Therefore, this theorem
is sufficient to consider the network-performance analysis for a typical user located at the origin, without
changing its statistical properties, which yields the expected experience for all users.
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and the probability of having a NLOS link is given by pN(X ) = 1−pL(X ), where a and b

are constants related to the environment.

In order to have tractable analysis, this work considers that the LOS probabili-

ties for different communication links are independent [168]. As a result, one can break

down the PPPΦU of UAVs into two independent in-homogeneous sub processes. In this

case, PPPs ΦL
U and ΦN

U of UAVs that are in LOS and NLOS conditions with regards to

ground user having non-constant densities λUpL(X ) and λUpN(X ), respectively. Hence,

ΦU =ΦL
U ∪ΦN

U.

In the ground network, the channel between tier G SBS and the typical user has

path loss given by

LG(Y ) =βoY αG (5.3)

where Y is the user distance from the ground SBS to typical user andαG is the PLE of tier

G.

5.2.3 Probabilistic Content Placement Method

This work assumes that the particular contents (such as popular multimedia files) are

placed in the cache at both the UAVs and ground SBSs. A typical user randomly requests

the contents from the finite content database C := { f1, · · · , fk , · · · , fK }, where the database

size is K and the k-th file is requested with a probability of mk . The contents are assumed

to differ in popularity for all k and the files are requested in decreasing popularity, so that

mk > mk+1 > ·· · > mK and
∑K

k=1 mk = 1. All content files are assumed to have the same

normalized size equal to 1 [206]. Furthermore, each SBS can only store up to J contents,

where J É K . Such an assumption is practical because all SBSs may not have enough

capacity to store the entire database contents.

This chapter adopts the probabilistic content placement scheme used in [190,

194, 198] to select contents for caching at UAVs and ground SBSs while considering their
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storage capacity. In this scheme, the caching probability bk needs to meet the following

condition

∑K
k=1 bk ≤ J , 0 ≤ bk ≤ 1,∀k. (5.4)

The condition in (5.4) allows each UAV and SBS to cache the maximum amount

of the total content up to their caching capacity J . Note that, using the probabilistic

content placement strategy, ΦG,k and ΦU,k are independent PPPs with densities λG,k =
bkλG and λU,k = bkλU of the cache-enabled ground SBSs and UAVs, respectively. These

SBSs and UAVs can support the typical user when the k-th content is requested, and

ΦG =∪k∈KΦG,k , andΦU =∪k∈KΦU,k , respectively. All the remaining un-cached contents

having least popularity are served by the macro BS via back-haul.

5.3 Analysis of Signal-to-Interference-plus-Noise Ratio (SINR)

Considering the downlink communication, This work consider the scenario where a UAV

establishes a communication link with the typical user based on the strongest received

signal and consequently provides the highest SINR for the user. Thus, for a typical user

that is associated with the serving UAV, the received SINR at the typical user is given by

SINRU,z =
PUgo{LU,z(Xo)}−1

σ2 +IU + ÎG
; z ∈ {L,N}, (5.5)

where Xo denotes the distance from the typical user to its serving UAV, go ∼ exp(1) is the

Rayleigh fading channel power with the unit mean for the desired link, σ2 is the noise

power, and the aggregate intra-tier interference is given by IU =IU,C +IU,N with

IU,C = ∑
z∈{L,N}

∑
i∈ΦU,k \{o}PUgi {LU,z(Xi )}−1, (5.6)

127



and

IU,N =∑
z∈{L,N}

∑
j∈ΦU\ΦU,k

PUg j {LU,z(X j )}−1, (5.7)

being the co-channel interferences for the UAVs with the propagation distance Xi and

the point process ΦU,k \{o} corresponding to the density bkλU that cache the k-th con-

tent, and for the UAVs with the propagation distance X j and the point process ΦU\ΦU,k

corresponding to the density given by the independent thinning theorem (1−bk )λU [205]

that do not store the k-th content in their caches, respectively. Also, the aggregate inter-

tier interference caused by the ground SBSs in tier G is given by

ÎG = ∑
l∈ΦG

PGgl {LG(Yl )}−1, (5.8)

where Yl is the propagation distance between the typical user and the ground SBS, gi , g j , gl ∼
exp(1) are the interfering Rayleigh channel fading powers that follow the exponential dis-

tribution.

Similarly, the received SINR at the typical user from the ground SBSs in tier G is

given by

SINRG = PGgo{LG(Yo)}−1

σ2 +IG + ÎU
, (5.9)

where the aggregate intra-tier interference is given by IG =IG,C +IG,N with

IG,C =∑
i∈ΦG,k \{o}PGgi {LG(Yi )}−1, (5.10)

and

IG,N =∑
j∈ΦG\ΦG,k

PGg j {LG(Y j )}−1, (5.11)

being the intra-tier interferences related to the ground SBSs with the ground distance
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Yi and the point process ΦG,k \{o} corresponding to the density bkλG that stores the k-

th content, and for the ground SBSs with the ground distance Y j and the point process

ΦG\ΦG,k corresponding to the densities (1−bk )λG that do not store the k-th file. Also,

the aggregate inter-tier interference caused by all UAVs in tier U is given by

ÎU =∑
z∈{L,N}

∑
l∈ΦU

PUgl {LU,z(Xl )}−1. (5.12)

where Xl is the interfering propagation distance from UAVs in tier U.

5.4 Derivation of User Association Probability

User association accounts for both the content availability and the link reliability. There-

fore, a user association method is introduced based on the maximum received signal

power by the user from the UAV (LU,x ) and the ground SBS (LG,y ) with the following cri-

terion

LU,x = PUgo

( ∑
z∈{L,N}

LU,z(rx )−1pz(rx )
)
, (5.13)

and

LG,y = PGgoLG(ry )−1. (5.14)

It is important to note that only the popular parts of all contents, i.e., C U and C G,

are cached at the UAV and ground SBSs due to their limited storage capacity. Hence, it

is possible that a file requested by the user may be unavailable at SBSs, which has to be

requested from a content database via the back-haul network. However, such situations

arises occasionally and are omitted in analysis for mathematical tractability, similar to

[207, 208]. A user is associated with the content-centric SBSs if the user requests file fk

and is served by UAV in tier U and SBS in tier G. Thus, when the user requests the file fk ,
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the serving UAV and SBS denoted by Lk is defined as

Lk =



argmax

{
max

x∈ΦU,k

LU,x , max
y∈ΦG,k

LG,y

}
, fk ∈ {C U,C G}

arg max
x∈ΦU,k

LU,x , fk ∈C U

arg max
y∈ΦG,k

LG,y , fk ∈C G.

(5.15)

Lemma 1: The probability that a typical user is associated with the nearest cache-

enabled UAV with file fk in LOS and NLOS conditions is given by

A k
U =∑

z∈{L,N}A
k

U,z, (5.16)

where, A k
U,L and A k

U,N are association probabilities for LOS and NLOS conditions, re-

spectively, and A k
U,L is calculated as

A k
U,L = 2πbkλU

∫ ∞

h
rx exp

(
−πbkλG

(
PG

PU
rx
αL

)2/αG

−2πbkλU

∫ rx

h
pL(l )l dl

)
pL(rx )drx .

(5.17)

Proof: Assume that rx is the minimum propagation distance between the UAV

with file fk in tier U to the typical user and ry is the distance from the ground SBS in

tier G to the typical user. Thus, the user association probability for the UAV in the LOS

condition A k
U,L is the probability that LU,L(rx ) > LG(ry ). Therefore,

A k
U,L = Erx

[
P[LU,L(rx ) > LG(ry )]

]= ∫ ∞

h
P
[

ry >
( PG

PU
rαL

x

)1/αG]
f L

rx
(rx )drx . (5.18)

To derive A k
U,L, P[ry >

(
PG
PU

rαL
x

)1/αG

] is computed by using the void probability3 of a 2D

3The probability that a typically chosen point (according to the Slivnyak theorem) is farther than r from
its nearest neighbour is given by the void probability of the PPP and is given as exp(−λπr 2), where λ is the
intensity having unit of points/area [209].
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Poisson process and is given as

P
[

ry >
( PG

PU
rαL

x

)1/αG]
= exp

(
−πbkλG

(
PG

PU
rx
αL

)2/αG)
. (5.19)

Furthermore, the PDF of rx denoted by f L
rx

(rx ) corresponds to the serving UAVs

in LOS condition with probability pL(rx ) that provides stronger signal to the typical user

with the shortest distance. In this case, f L
rx

(rx ) is derived by taking the derivative of 1−
P[h < l < rx ] with respect to rx and using the void probability of a 2D Poisson process,

where P[h < l < rx ] is given as

P[h < l < rx ] = exp
(−2πbkλU

∫ rx

h
pL(l )ldl

)
. (5.20)

where l is the minimum propagation distance range. Then, by using Leibniz integral

rule, f L
rx

(rx ) is given by

f L
rx

(rx ) = 2πrx bkλUpL(rx )×exp
(
−2πbkλU

∫ rx

h
pL(l )ldl

)
. (5.21)

By substituting (5.19) and (5.21) in (5.18), the result in (5.17) is obtained. Similarly, the

association probability A k
U,N for the UAV in the NLOS condition can be derived by fol-

lowing the same steps as

A k
U,N =2πbkλU

∫ ∞

h
rx exp

(
−πbkλG

(
PG

PU
rx
αN

)2/αG

−2πbkλU

∫ rx

h
pN(l )ldl

)
pN(rx )drx .

(5.22)

Lemma 2: The probability that a typical user is associated with the nearest cache-
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enabled ground SBS with file fk is given by

AG =2πbkλG
∑

z∈{L,N}

∫ ∞

0
ry exp

(
−πbkλGry

2 −2πbkλU

∫ (
PU
PG

r
αG
y

)2/αz

h
pz(rx )rx drx

)
dry ,

(5.23)

Proof: Assume that the minimum distance between the ground SBS with file fk

in tier G to the typical user is ry , and the propagation distance between the UAV in tier

U to the typical user is rx . Thus, the association probability AG is the probability that

LG(ry ) > LU,z(rx ). Therefore,

AG = Ery

[
P[LG(ry ) > LU,z(rx )]

]= ∫ ∞

0
P
[

h < rx <
(PU

PG
rαG

y

)1/αz]
f G

ry
(ry )dry . (5.24)

Then using void probability of a 2D Poisson process, one has

P
[

h < rx <
(PU

PG
rαG

y

)1/αz]= exp
(
−2πbkλU

∫ (
PU
PG

r
αG
y

)1/αz

h
pz(rx )rx drx

)
. (5.25)

The PDF of the minimum ground distance ry is given by

f G
ry

(ry ) = 2πbkλGry exp
(−πbkλGr 2

y

)
. (5.26)

By substituting (5.25) and (5.27) in (5.24), the result in (5.23) is obtained.

5.5 The Successful Content Delivery Probability

The network performance is measured by the successful content delivery probability,

which represents the probability that the file requested by a typical user is not only

cached at UAV and SBS but also successfully transmitted by them over the wireless chan-

nel. For the density share scheme, the successful content delivery probability of the con-
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sidered hybrid network is given by

PSCD(η,bk ) =P U
SCD(η,bk )+P G

SCD(η,bk ), (5.27)

assuming that the content size of ϕ bits needs to be transmitted in τ seconds, the suc-

cessful content delivery probability in the UAV is computed as

P U
SCD(η,bk ) =

J∑
k=1

mkP[SINRU,z > δU], (5.28)

with δU = 2
ϕ/τ
WU −1 and WU being the UAV bandwidth. Furthermore, the successful content

delivery probability for the ground SBS is calculated as

P G
SCD(η,bk ) =

J∑
k=1

mkP[SINRG > δG], (5.29)

where δG = 2
ϕ/τ
WG −1, and WG is the ground SBS bandwidth. Next subsection will derive

the successful content delivery probability for the UAV in tier U.

5.5.1 Successful Content Delivery Probability for the Cache-Enabled UAV Base

Station

Lemma 3: The successful content delivery probability for the cache-enabled UAV with

file fk in tier U is given by

P U
SCD(η,bk ) =

J∑
k=1

mkP U
Cov(η,bk ), (5.30)

where P U
Cov(η,bk ) = P U,L

Cov(η,bk )+P U,N
Cov (η,bk ) and P U,L

Cov (η,bk ) and P U,N
Cov (η,bk ) are the cov-

erage probabilities to successfully delivered the file fk with caching probability bk to a

typical user connected with the serving UAV in tier U with density λU = ηλS having LOS
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and NLOS conditions, respectively, and are given as

P U,L
Cov (η,bk ) =LIU,C (sL) ·LIU,N (sL) ·LÎG

(sL) ·exp−(sLσ
2) ·A k

U,L, (5.31)

P U,N
Cov (η,bk ) =LIU,C (sN) ·LIU,N (sN) ·LÎG

(sN) ·exp−(sNσ
2) ·A k

U,N, (5.32)

respectively, where sz = δUβo

PU

p
y2+h2

−αz for z ∈ {L,N}, A k
U,L, and A k

U,N are given in (5.17) and

(5.22), respectively. Also, LIU,C (·), LIU,N (·), and LÎG
(·) are the Laplace transforms of the

interference generated by UAVs that cache with file fk , UAVs that do not cache fk , and

ground network, respectively.

Proof: Given that a typical user is associated with the cache-enabled UAV in tier

U in the LOS condition, the connection probability in the presence of the intra-tier in-

terference from UAVs that cache and do not cache fk and inter-tier interference from the

ground network is given as

P U,L
Cov (η,bk ) =P[SINRU,L > δU] =P

[ PUgoLU,z
−1

σ2 +IU + ÎG
> δU

]
=P

[
go > δULU,z

PU

(
σ2 +IU,C +IU,N + ÎG

)]
= exp−(sLσ

2) ·LIU,C (sL) ·LIU,N (sL) ·LÎG
(sL), (5.33)

where sL = δUβo

PU

p
y2+h2

−αL . In this work, the Laplace transforms of interferences can be

determined by using probability generating function of a PPP and moment generating

function. Thus, LIU,C (sL) is given by

LIU,C (sL) = EΦU,k \{o}
[

exp−(sLIU,C)
] (a)=

exp
(
−2πbkλU

∑
z∈{L,N}

∫ ∞

y

(
1−Egi

[
exp

(−sLPUgi

p
x2 +h2−αz

βo

)])
xpz(x ′)d x

)
(b)= exp

(
−2πbkλU

∑
z∈{L,N}

∫ ∞

y

( sLPU

p
x2 +h2−αz

βo + sLPU

p
x2 +h2−αz

)
xpz(x ′)d x

)
, (5.34)
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where x ′ =
p

x2 +h2, (a) comes from the probability generating function of a PPP and (b)

follows the moment generating function of the exponential distribution [194]. Likewise,

LIU,N (sL) is given as

LIU,N (sL) = exp
(
−2π(1−bk )λU

∑
z∈{L,N}

∫ ∞

y

( sLPU

p
x2 +h2−αz

βo + sLPU

p
x2 +h2−αz

)
xpz(x ′)d x

)
. (5.35)

where x ′ =
p

x2 +h2, (a) comes from the probability generating function of a PPP and (b)

follows the moment generating function of the exponential distribution [194]. Likewise,

LIU,N (sL) is given as

LIU,N (sL) = exp
(
−2π(1−bk )λU

∑
z∈{L,N}

∫ ∞

y

( sLPU

p
x2 +h2−αz

βo + sLPU

p
x2 +h2−αz

)
xpz(x ′)d x

)
. (5.36)

The Laplace transform for interference from the ground network is given as

EΦG

[
exp−(sLÎG)

]= exp
(
−2πλG

∫ ∞

0

(
1− 1

1+ sLPGr−αG

βo

)
xd x

)
,

= exp
(
−2πλG

∫ ∞

0

δUPG
√

y2 +h2αL

PUrαG +δUPG
√

y2 +h2αL
xd x

)
,

= exp
(
−2π2λG

δ
2/αG
U (y2 +h2)αL/αG csc

( 2π
αG

)
αG

(PU
PG

)2/αG

)
. (5.37)

where csc(·) is the Cosecant trigonometry function.

Similarly, Laplace transforms of cached and un-cached UAVs in NLOS conditions

can be computed by following the same steps. The next subsection will derive the suc-

cessful content delivery probability for the ground SBS in tier G.
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5.5.2 Successful Content Delivery Probability for the Cache-Enabled Small-

Cell Base Station

Lemma 4: The successful content delivery probability for the cache-enabled ground SBS

with file fk in tier G is given by

P G
SCD(η,bk ) =

J∑
k=1

mkP G
,Cov(η,bk ), (5.38)

where P G
Cov(η,bk ) is the coverage probability to successfully deliver the file fk with caching

probability bk to the ground user connected with the serving ground SBS in tier G with

SBS density λG = (1−η)λS and is given as

P G
Cov(η,bk ) =P[SINRG > δG] =P

[
go > δGLG

PG

(
σ2 +IG,C +IG,N + ÎU

)]
=LIG,C (sG) ·LIG,N (sG) ·LÎU

(sG) ·exp−(sGσ
2) ·AG, (5.39)

where sG = δGβo

PGx−αG , AG is given in (5.23), and LIG,C (·), LIG,N (·) and LÎU
(·) are the Laplace

transforms of the intra-tier interference generated by ground SBSs that store fk , ground

SBSs that do not store fk , and the UAV network, respectively.

Proof: The Laplace transform for the intra-tier interference generated by the

ground SBSs that cache the file fk is given as

LIG,C (sG) = EΦG,k \{o}[exp(−sGIG,C)]

= exp
(
−2πbkλG

∫ ∞

y

(
1−Egi

[
exp

(
− sGPGgi x−αG

βo

)])
xd x

)
= exp

(
−2πbkλG

∫ ∞

y

(
sGPGr−αG

βo + sGPGx−αG

)
xd x

)
= exp

(
−2πbkλG

δG y2

αG −2
2F1(1,1− 2

αG
,2− 2

αG
,−δG)

)
. (5.40)
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where 2F1
(·, ·, ·, ·) is the Gauss hypergeometric function. Likewise, LIG,N (sG) is given as

LIG,N (sG) = exp
(
−2π(1−bk )λG

δG y2

αG −2
2F1

(
1,1− 2

αG
,2− 2

αG
,−δG

))
. (5.41)

Using the proof of Lemma 3, LÎU
(sG) is given as

LÎU
(sG) = exp

(
−2πλU

∑
z∈{L,N}

∫ ∞

y

( sGPU

p
x2 +h2−αz

βo + sGPU

p
x2 +h2−αz

)
xpz(x ′)d x

)
. (5.42)

By substituting (5.40)-(5.42) in (5.39), the result in (5.38) is obtained.

5.6 Energy Efficiency of the Hybrid Network

Energy efficiency is a widely used performance indicator for the heterogeneous network

with dense and random deployment of SBSs. Using (5.30) and (5.38), the successful con-

tent delivery probabilities for the UAV and ground networks is obtained, respectively. In

this case, the throughput attained at a typical user by the UAV and ground SBS are given

by
∑J

k=1 mkP[SINRU,z > δU] log2(1+δU) and
∑J

k=1 mkP[SINRG > δG] log2(1+δG), respec-

tively, and the area spectral efficiency is taken over the UAV-user and ground SBS-user

links in the network. Thus, for the UAV and ground homogeneous network, the area

spectral efficiency is defined as λUP U
SCD(η,bk ) log2(1+ δU) and λGP G

SCD(η,bk ) log2(1+
δG), respectively. Finally, the energy efficiency of the hybrid network is defined as [210]

EE =

[
λUP U

SCD(η,bk )+λGP G
SCD(η,bk )

]
log2(1+δ)

λU
(
PU +Phov

)+λG
(
PG +4GPRF

) , (5.43)

where δ is a prescribed QoS requirement, Phov is the power consumption of multi-rotor

UAV in hovering state and given as [211]

Phov =
√√√√ (

mUg
)3

2πR2Npρ
, (5.44)
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and mU being the mass of UAV in kg, g is referred as acceleration of gravity in m/s2, R

and Np denote the propeller radius and number of propellers, respectively, ρ denotes the

air density in kg/m3. This chapter adapted the power consumption model for small-cell

wireless networks in [212], where 4G is the load-dependent power consumption slope

of the ground SBS and PRF being the RF output power of the ground SBS.

5.7 The Proposed Content Caching Scheme

This section proposes a caching scheme where UAVs and ground SBSs in small-cell net-

works cache the contents according to their popularity. In particular, contents are segre-

gated into three groups according to their popularity measure, corresponding to a place-

ment probability of 1 (bk = 1) for the most popular content files, a placement probability

between 0 and 1 (0 < bk < 1) for the files with moderate popularity, and a placement

probability of 0 (bk = 0) for unpopular files that do not need to be cached in the small-

cell network. Thus, contents have their own popularity. Moreover, it is assumed that

the content request follows the Zipf distribution where the content request probability

is modeled as [213]

mk = k−v∑K
s=1s−v

, v ≥ 0, (5.45)

where v is the Zipf parameter defines the popularity distribution. For instance, v = 0

means that the content popularity is uniform and the larger value of v indicates that the

majority of the content requests accounts for the fewer popular contents.

This chapter seek to improve the overall successful content delivery performance

of the hybrid network by the proposed caching scheme. Firstly, it is assumed that the

content placement is made on the basis of most popular content scheme which stores

the popular content in UAVs and ground SBSs with bk = 1. In this case, the entire caching

capacity is designated to store only the popular content and hence, successful content
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delivery probability of a hybrid network can be given as

P MPC
SCD (η) =

J∑
k=1

mkP U
Cov(η,bk = 1)+

J∑
k=1

mkP G
Cov(η,bk = 1), (5.46)

where P U
Cov and P G

Cov are given in (5.30) and (5.38), respectively.

Secondly, the improved caching scheme is proposed where a fraction of SBS caching

capacity Jo is assigned to cache the most popular content and hence called the most

popular content portion. Thereafter, the contents with moderate popularity are stored

in the remaining portion of the caching capacity which is termed as the content diversity

(CD) portion. In the CD portion, the disparity of the cached content with less popularity

measures represents the content diversity. To this end, the successful content delivery

probability of the hybrid network can be given as

P
Hybrid
SCD (η) =

Jo∑
k=1

mkP U
Cov(η,bk = 1)+

J∑
k=Jo+1

mkP U
Cov(η,b′

k )+

Jo∑
k=1

mkP G
Cov(η,bk = 1)+

J∑
k=Jo+1

mkP G
Cov(η,b′

k ). (5.47)

where Jo is defined as the caching capacity in UAVs and ground SBSs to increase the

content diversity and hence, improve the overall successful content delivery probability

for the hybrid networks. In (5.47), contents {1, · · · , Jo} are in the most popular content

portion of the UAV and ground SBS caches with the placement probability bk = 1 and

contents {Jo +1, · · · , J } are in the CD portion with the placement probability 0 < b′
k < 1.

5.8 Numerical Results and Discussion

This section presents and discusses the numerical results. The user association probabil-

ity in (5.16) and (5.23), respectively, analyze the performance of the typical user associ-

ated with the UAV and SBS that has cached the desired contents. The successful content

delivery probabilities in (5.30) and (5.38), respectively, characterize the downlink trans-

mission performance of the contents cached in the UAV and SBS. The energy efficiency
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in (5.43) evaluates the power consumption performance of a hybrid network while suc-

cessfully transmitting the most popular contents to the typical user. Furthermore, the

successful content delivery performance of the proposed caching scheme in (5.47) is ex-

amined and compared with the popular caching scheme in (5.46) to characterize the

impact of different network parameters as design guidelines.

The simulation and analytical results are plotted by using MATLAB. In this case,

the simulation results are obtained by using a Monte Carlo technique with 105 runs,

where ‘poissrnd’ in MATLAB is used to generate random deployment points according

to the Poisson distribution. Furthermore, ‘quadgk’ in MATLAB is used to compute nu-

merical integration in analytical expressions. The system parameters are given in Table

5.2, unless otherwise specified. In Table 5.2, the values for the PLEs and the environment

specific parameters are adopted from [19] and [168], respectively, while speed of light is

a fundamental constant, and other values are set for illustration purpose only.

Table 5.2: System parameters.

Parameters Values

Transmit power of each UAV (PU) 1 W

Transmit power of each ground SBS (PG) 1 W

noise power (σ2) -170 dBm

frequency ( f ) and speed of light (c) 2 GHz, 3×108 m/s

PLEs (αL, αN, αG) 2.1, 3.7, 3.7 [168]

Environment parameter (a, b) 5.0188, 0.3511
(Suburban) [100]

Density of hybrid network (λS) 10−4 1/m2

Bit rate of each file (ϕ/τ) 100 kbps

Bandwidth (WU, WG) 200 kHz

Database size (K ) 104

Cache capacity of SBS (J ) 100 files
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5.8.1 User Association Probability

Fig. 5.2 investigates the impact of the density control parameter η on the user association

probability for the cache-enabled UAV and ground SBSs in suburban environment. In

the density sharing scheme of the UAV and SBS deployment, as η increases, the density

of UAVs increases due to the factor λU = ηλS. As a result, the user association probability

with tier U UAVs monotonically increases with η. On the other hand, the density of the

ground SBSs decreases, therefore, user association probability monotonically decreases

with increase of η.

In Fig. 5.3, the impact of UAV altitude on the association probability of UAVs is

investigated at different values of η in suburban environment. One can notice that the

maximum association probability is 0.98 for η = 0.7 at the altitude of 25.50 meters and

is 0.93 for η = 0.2 at the altitude of 46 meters. Thus, there exist an optimal UAV altitude

to achieve higher association probability which depends on η and can be computed by

searching (5.16) numerically. Finally, simulation results are plotted with the markers and

agree well with the analytical results of Lemma 1 and Lemma 2 plotted with the solid

lines, which validates the analysis.

5.8.2 Successful Content Delivery Performance

Fig. 5.4 and Fig. 5.5 analyze the impact of the density factor and the UAV altitude, respec-

tively, on the coverage probability. In both cases, the optimal density control factor and

the optimal UAV altitude exists for the UAV network. From Fig. 5.4, it is observed that, an

optimal density control parameter exists for an adequate deployment of UAVs in a sub-

urban, which leads to maximize the coverage probability. Furthermore, it is observed

that an optimal η is a function of the given UAV altitude, for instance, η is 0.2 and 0.1

for the UAV altitude of 30 and 60 meters to achieve the maximum coverage probability

of 0.8 and 0.7, respectively. On the other hand, the coverage performance of the ground

network degrades as η increases. However, no significant improvement in the coverage
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Figure 5.2: The impact of SBS density control parameter (η) on the user association prob-
ability for the UAV and the ground SBS in Suburban environment with bk = 1.
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Figure 5.3: The impact of UAV altitude (h) on the user association probability for the
UAVs with bk = 1 and different η.
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performance is observed for the SBS in the ground network.
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Figure 5.4: The impact of the density factor (η) on the coverage probability of the UAV
and ground network for different altitudes.

For the given density control factor in Fig. 5.5, an optimal UAV altitude exists

for suburban and urban environments. The higher optimal altitude is found in urban

scenario experiencing more blockage. On the other hand, the UAVs should fly as low

as possible in the suburban scenario where there are less blockages. In the suburban

scenario, as η increases from 0.2 to 0.7, the number of UAVs increases, which increases

the amount of co-channel interference generated by cache-enabled UAVs in a network.

Therefore, the maximum coverage performance in the suburban scenario is achieved at

the lower optimal altitudes and at the lesser density factor, for instance, h is 18, 22, and

28 meters for η of 0.2, 0.4, and 0.7 to achieve the coverage probability of 0.84. 0.82, and

0.8, respectively. Furthermore, the optimal altitude in urban environment is 63 meters

for η= 0.2. In Fig. 5.4 and Fig. 5.5, the solid line represent the analytical results of Lemma

3 and Lemma 4 while the markers represent the simulation results.

Fig. 5.6 compares the successful content delivery performance for the networks
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Figure 5.5: The impact of the UAV altitude (h) on the coverage probability of the UAV
network for different density factor (η) in Suburban, and Urban (a = 9.61, b = 0.16) envi-
ronments.

composed solely of UAV, ground SBS and hybrid network with different caching schemes.

One can observe that the hybrid network operated with the proposed caching scheme

outperform the popular caching scheme implemented for the UAV, ground and hybrid

networks. This result is important which shows that the deployment of UAV and ground

SBS alone does not meet the increasing content delivery demand in multi-tier heteroge-

neous network.

5.8.3 Energy Efficiency

Fig. 5.7 shows the comparison of the energy efficiency in the UAV, ground, and hybrid

networks as a function of the density control factor with δU = δG = δ= 0 dB. The param-

eters concerning the power consumption model of hovering UAV are adapted from [211]

with mU = 0.75 Kg, g = 9.8 m/s2, R = 0.2 m and Np = 4 (quadcopter UAV), and ρ = 1.225

kg/m3. Moreover, the parameters for the power consumption model of the ground SBS
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Figure 5.6: The impact of the density factor (η) on the successful content delivery prob-
ability of the UAV, ground and hybrid networks with Jo = 50 files, h = 60 meters, and
v = 0.8 for different caching schemes.

are used for the femto-cell in [212] with PG = 4.8 W, 4G = 8.0, and PRF = 0.05 W. The en-

ergy efficiency of the UAV network is worst due to its higher power expenditure to main-

tain hovering state of UAV, for example, with the given parameters, Phov = 8.97 W for a

single UAV. Thus, as density control factor increases, the overall energy consumption of

the UAV network increases and hence, energy efficiency of the UAV network decreases.

From Fig. 5.7, one can see that the energy efficiency of the ground network is better for

femto-cell BS when compared to the UAV network, the reason for this behavior is that

the RF power of ground SBSs is smaller than the hovering power of UAVs. Finally, it can

be seen that expectedly, energy efficiency of the hybrid network is better than the UAV

and ground networks, but beyond η= 0.5, the energy efficiency of the hybrid network is

comparable with the ground network.
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Figure 5.7: The impact of the density factor (η) on the energy efficiency of the UAV,
ground and hybrid networks with J = 100 files, h = 60 meters, and v = 0.8 .

5.8.4 Performance of the Proposed Caching Scheme

Fig. 5.8 - Fig. 5.11 illustrate the impact of caching size of each SBSs, Zipf parameter, UAVs

altitude, and target data rate of content transmission, respectively, on the successful con-

tent delivery performance of the popular caching scheme [195–198] and the proposed

caching schemes in a hybrid network for different content size in the database. The pro-

posed caching scheme allow the caching of two types of files. First, the most popular files

in the most popular content portion of the UAV and ground SBS with caching probability

bk . Second, the next most popular files with caching probability b′
k in the CD portion4.

This work considers Jo = 50 files for an illustrative purpose only. This design parame-

ter can be controlled by the network designer according to the need to cache the most

popular files and the available caching capacity J in SBSs.

4Mostly, the beginning one minute of a YouTube video is much more popular than the remainder [194].
Therefore, in this work, such most popular contents are cached with bk = 1 and remainder with b′

k = 0.7
(illustrative example to show that the average content popularity is 70 %).

146



In Fig. 5.8, it is observed that the proposed caching scheme performs better with

an improvement of 26.6 % on average in comparison with the popular caching scheme

which ignores the content diversity. When the content popularity is not uniform it is im-

perative to consider the content diversity in the probabilistic caching scheme to improve

the the content delivery performance. In addition, more different file can be cached at

UAVs and SBSs with the higher content diversity. In general, as the content size in the

database decreases, the probability of the successful content delivery increases with the

same performance gap.
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Figure 5.8: The impact of the caching capacity on the successful content delivery proba-
bility with Jo = 50 files, η= 0.7, h = 60 meters, and v = 0.8 for different caching schemes.

In Fig. 5.9, the successful content delivery performance depends on the skew-

ness of the content popularity distribution defined by v . However, for the highly skewed

popular content e.g v > 1.6, the proposed scheme performs as well as popular content

placement scheme. The reason for this behavior is that very few popular contents are

requested by the majority of users and the optimal probabilistic caching scheme tends

to store those contents.
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Figure 5.9: The impact of popularity skewness of contents on the successful content
delivery probability for η = 0.7, h = 60 meters, and Jo = 50 files with different caching
schemes.

In Fig. 5.10, one can see the existence of the optimal UAV altitude due to the

trade-off by the altitude on the successful content delivery performance. When the LOS

probability increases, for example, from 10 to 15 meters, the content delivery perfor-

mance improves due to lesser shadowing. However, beyond 15 meters, the adverse ef-

fect on performance occurs due to the greater link distance between UAV and the ground

user which corresponds to higher path loss. In Fig. 5.11, it is observed that the content

delivery probability increases as the target data rate reduces due to the decrease of the

SINR threshold and thus, decreases the QoS of the typical user.

5.9 Conclusion

This chapter derived the user association probability and the successful content deliv-

ery probability by using tools of stochastic geometry. The successful content delivery

performance of the popular and the proposed caching schemes is compared in the con-
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Figure 5.10: The impact of the UAV altitude on the successful content delivery probability
for η= 0.7, h = 60 meters, v = 0.8, and Jo = 50 files with different caching schemes.
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Figure 5.11: The impact of target data rate of the link on the successful content delivery
probability for η = 0.7, h = 60 meters, v = 0.8, and Jo = 50 files with different caching
schemes.
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sidered hybrid cache-enabled network. Thus, found that the successful content deliv-

ery performance is improved by 26.6 % on average with the proposed hybrid caching

scheme which considers the content diversity. Also, the performance is dependent on

the caching capacity of SBSs, popularity distribution of the content, UAV altitude, and

target data rate of the link. Furthermore, the cache-enabled hybrid network is more

energy efficient as compared to the separate UAV and ground networks while caching

the same contents. Future extension of this work includes the study of the cooperative

caching scheme in a hybrid network where participating UAVs and ground SBSs cache

different contents.
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Chapter 6

Conclusions and Future of UAV

Communications

6.1 Summary

The main body of the work presented in this thesis are summarized as follows:

• Chapter 1 discussed the potential benefits and applications of UAVs for enabling

wireless communication. Moreover, types of UAVs were categorized based on their

operational altitudes, and structural design. This chapter highlighted the basic re-

quirements of UAV communications and categorized the communication types

as payload and non-payload communications. Then, frameworks of UAV-assisted

communication and cellular-controlled UAV networks were presented along with

their applications. Finally, some of the major design challenges of UAV communi-

cation were thoroughly investigated and accordingly presented as research moti-

vation of this thesis.

• Chapter 2 provided an extensive review of the measurement methods proposed

for UAV channel modeling that use LAPs and discussed various channel charac-

terization efforts. Also, this chapter reviewed UAV channel modeling approaches
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from a contemporary perspective, and categorized these as deterministic, stochas-

tic and geometric-stochastic models. Finally, the future research challenges were

outlined for developing accurate and realistic UAV channel models.

• Chapter 3 studied a coordinated deployment strategy of multiple UAVs in two sce-

narios. In the first scenario, symmetric placement of UAVs was assumed at a com-

mon optimal altitude and transmit power. In the second scenario, asymmetric

deployment of UAVs with different altitudes and transmit powers was assumed.

Then, the coverage area performance was investigated as a function of separa-

tion distance between UAVs which were deployed in a certain geographical area

to satisfy a target SINR threshold at the cell boundary. Finally, the system-level

performance of a boundary user was studied in terms of the coverage probability.

Numerical results unveiled that the SINR threshold, the separation distance, and

the number of UAVs and their formations should be carefully selected to achieve

the maximum coverage area inside and to reduce unnecessary expansion outside

the target area. Thus, this chapter provided important design guidelines for the

deployment of multiple UAVs in presence of downlink co-channel interference.

• Chapter 4 analytically characterized the impact of ground user mobility, propa-

gation environment and channel fading on the performance of uplink UAV com-

munications. Closed-form expressions for the outage probability and the average

BER using the RWP model for ground user mobility, UAV channel models for dif-

ferent propagation environments and the Nakagami-m model for fading channel

were derived. Furthermore, the outage analysis took into account both static and

mobile interfering users by employing the Gamma approximation. Numerical re-

sults were presented to demonstrate the interplay between the communication

performance and the system parameters.

• Chapter 5 developed the analytical framework of the hybrid caching network com-

prising UAVs and SBSs, where UAVs were preferred because of their flexible deploy-
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ment and elevated platform which offered better downlink propagation with LOS

conditions. First, the association probability for the ground user affiliated with a

UAV and ground SBS was derived. Then the successful content delivery probabil-

ity is derived by considering both the downlink inter-cell and intra-cell interfer-

ences. Then the energy efficiency was analyzed for the hybrid network and com-

pared with the separate UAV and ground networks. Furthermore, this chapter pro-

posed a caching scheme to improve the successful content delivery performance

by managing the content popularity, where part of the caching capacity in each

UAV and ground SBS is reserved to store the most popular content, while the re-

maining portion stores the less popular contents. Numerical results unveiled that

the proposed caching scheme performs better with an improvement of 26.6 % in

comparison with the most popular content caching scheme which overlooks the

impact of content diversity during caching.

6.2 Future Works and Challenges

During study, interesting problems have been figured out that need to be addressed for

better insight of the integration of UAVs into existing communication networks. Some of

the open problems have been pointed out as follows:

• Channel Modeling: A proper understanding of UAV channel models is impera-

tive for the widespread applicability of UAVs in different propagation scenarios.

Therefore, adequate measurement campaigns are required for the validation of

UAV channel models. In addition to the research papers published on UAV chan-

nel modeling, the 3GPP gathered the key stakeholders from industries to launch

the systematic measurement campaigns for accurate channel modeling. How-

ever, most of these efforts are limited to a single UAV in a very specific environ-

ment. In this regard, broader channel measurement campaigns are needed that

can cut across rural and urban environments, as well as different operational en-
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vironments, such as different weather conditions. In addition, the use of UAVs at

lower altitudes is of high importance when UAV act as BSs, UEs, and relays, thus,

one must have more insight related to both the air-to-ground and air-to-air chan-

nel modeling. Particularly, UAV channel models must capture the time-varying

effects of airframe shadowing and Doppler spread due to the mobility of UAVs.

• Regulations and Standardization: Regulations for aeronautical communications

are explicitly and clearly defined for manned aircraft traveling at thousands of me-

ters above ground level. However, these rules and regulations are not well matured

for UAVs that fly at lower altitudes. Recent efforts related to UAV regulations are

restricted to specifying the UAV operational altitude for hobbyist and commercial

use, and not for providing on-demand wireless communication services. It is also

important to frame regulations to allow UAVs to fly above private properties or no-

fly zones, such as airports and to keep safe distance from people. Furthermore,

regulations should be placed to guarantee safe and reliable flight operation during

the night time. Also, wireless access standard has not yet been introduced for UAV

communications or FANETs as it has been well defined for vehicular communica-

tion systems or vehicular ad hoc networks (VANETs) in the form of IEEE 802.11p.

• UAV Battery Lifetime: Another unique challenge of UAV communications is the

low battery lifetime of UAV nodes. Most of the UAV energy is consumed on its flight

operation and less energy is needed for communication purposes. Thus, limited

battery lifetime is a major hurdle that curtail the UAV endurance (flight time) and

designing the UAV trajectory.

• UAV Deployment: New solutions are needed for the optimal 3D deployment of

UAVs while taking into account their unique attributes. For example, one key re-

search challenge is the optimal 3D deployment of UAVs in the presence of terres-

trial networks in urban areas. In this case, there is a need to study the impact of

co-channel interference from the cellular networks while keeping the safe distance
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from the buildings and other ground obstacles. UAV deployment will be further

aggravated when multiple UAVs are operating in the same area. Other major de-

ployment problem includes, the joint optimization of bandwidth allocation and

3D deployment of UAV for low latency communication, and joint optimization of

3D deployment and cell association for minimizing flight time.

• Performance Analysis: The fundamental analysis is intended to capture the spa-

tial and temporal variations on the received signal, and determine its impact on

various performance metrics. A number of open research problems are related

to the performance analysis of UAV networks that still need to be studied. For

example, one must completely characterize the performance of different digital

modulation schemes in UAV-enabled wireless networks, that comprises of both

aerial and terrestrial UEs and BSs, in terms of capacity, coverage, and error per-

formances. Specifically, there is a need for tractable analysis for coverage proba-

bility and spectral efficiency in hybrid UAV-terrestrial communication networks.

Moreover, fundamental performance analysis needs to be performed to under-

stand the intrinsic trade-offs between the spectral efficiency and energy efficiency

in the UAV-enabled networks. Another important problem is to analyze the per-

formance of UAV networks where both the UAV and ground users are mobile.

• UAV Trajectory Optimization: Optimal trajectory design for mobile UAV is an im-

portant issue in UAV communications. Specifically, optimal path planning is cru-

cial for UAVs operating for data collection from ground-based sensors and caching

scenarios. UAV trajectory planning is mostly dependent on the dimension of the

target area, flight duration of mission, QoS requirement by the ground users, en-

ergy constraints, and resource allocation. Apart from physical parameters, UAV

trajectory optimization is analytically a challenging problem because it involves a

fixed number of optimization variables related to the UAV locations. In addition,

the UAV trajectory optimization requires coupling between different QoS metrics
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in wireless communication with the mobility of UAV. Recently, there has been num-

ber of studies on the joint trajectory optimization of UAV with its wireless com-

munication metrics such as, throughput maximization in [214–216], and energy-

efficient UAV communication in [217, 218].

6.3 Future Applications of UAV Communication

6.3.1 Defending 5G Networks using UAVs

Security encompasses a number of qualities that are necessary for any communications

system to protect user identity, the information and services from being adversely ma-

nipulated, misused, or blocked. In general, wireless communications are more suscep-

tible to security threats because the information is being broadcast over the air and may

not be completely shielded. In particular, the 5G networks are extensive, customizable,

and mostly software-defined. Consequently, their attack surface is much wider than 4G

networks and they could impose larger and severe danger if breached. Also, 5G networks

are more appealing to attack since they support critical applications in healthcare man-

agement, safety, and autonomous driving. Thus, it is important to defend 5G networks

to reduce their threats to the public. Despite dedicated research efforts to safeguard 5G

networks, security deficiencies also evolve as attackers can device new and innovative

strategies to gain illegitimate access to 5G operations. Some of the popular attack types

to cellular networks are eavesdropping, jamming, and spoofing. These attacks can be

more lethal in 5G-enabled UAV communications, because compared to terrestrial radio

channels that mostly experience severe path-loss, shadowing, and multipath fading, air-

to-ground channels generally encounter dominant LOS between high-altitude UAVs and

the ground devices, which can be exploited by eavesdroppers and jammers as shown in

Fig. 6.1. Thus, UAVs can be envisioned to use in the defender role to protect 5G networks.

Most existing approaches nationally and internationally adopt ground-based solutions.

However, aerial platforms, such as UAVs, allow better channel conditions and agile de-
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ployment and thus, they have great advantages over ground-based solutions. Specifi-

cally, this section proposes following solutions:

Figure 6.1: Security threats to the UAV-enabled 5G networks.

• UAV-Assisted 3D Beam-forming: The proposed countermeasure scheme to pre-

vent terrestrial eavesdropping is depicted in Fig. 6.2. In this scheme, UAV-enabled

3D beam-forming technique will be used to adjust the beam pattern in azimuth

and elevation planes to achieve significant improvement in the SINR at the re-

ceiver side. Also, 3D beam-forming will be jointly employed with artificial noise

transmitted from UAV to deliberately impair the channels of terrestrial eavesdrop-

per for 5G security provisioning. In this scheme, the UAV-enabled 3D beam-forming

solution is preferred over the terrestrial 2D beam-forming because the UAVs can

exploit the elevation angle separation to differentiate the legitimate user and eaves-

dropper located apart on the same horizontal plane. For example, as shown in Fig.

6.3, when both the legitimate user and the eavesdropper are located in the same
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direction with different horizontal distances, any attempt to jam the eavesdrop-

per by transmitting artificial noise from the terrestrial BS will also nullify the signal

reception at the legitimate user. Another reason to prefer UAV-enabled 3D beam-

forming solution is to leverage the UAV mobility to get closer to the legitimate user

and then use high-resolution information beams to transmit confidential informa-

tion via joint optimization of UAV positioning, resource allocation, and 3D beam-

forming.

Figure 6.2: UAV-assisted 3D beam-forming to prevent eavesdropping attacks.

• UAV-Assisted Cooperative Multipoint (CoMP) Transmission: The proposed coun-

termeasure scheme to prevent terrestrial jamming is depicted in Fig. 6.4. This

scheme will use cooperative multipoint (CoMP) transmission in the form of 3D

beam-forming with multiple UAVs. In jamming attacks, the terrestrial adversary

nodes send artificial noise to interfere with aerial UE and hence reduce its SINR

for decoding. The proposed scheme will jointly optimize positioning of multiple
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Figure 6.3: Ineffective 2D Beam-forming with terrestrial network.

UAVs, where some UAVs transmit high-resolution beams to significantly improve

SINR of legitimate links while others transmit artificial noise to jam eavesdropper.

• UAV-Assisted Reconfigurable Intelligent Surface (RIS): The proposed alternative

countermeasure scheme to prevent terrestrial eavesdropping is depicted in Fig.

6.5. This scheme will use a reconfigurable intelligent surface (RIS), a recent ad-

vance in wireless communications for ‘smart’ channels, to enhance physical-layer

security. The proposed scheme comprises of UAV-mounted RIS, terrestrial BS, le-

gitimate user, and eavesdropper. A RIS is a meta-surface that contains the low-

power-consuming and electronically-controllable analog processing elements. Us-

ing a RIS, the phase of the reflected signals can be adjusted in real-time to maxi-

mize the effective channel gain. Recently, RISs have received extensive attention

to ameliorate wireless propagation conditions and enhance communication qual-
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Figure 6.4: UAV-assisted CoMP network to prevent jamming and eavesdropping attacks.

ity. For instance, in [219], the authors presented the applications, challenges, and

opportunities of the UAV-mounted RIS. However, this work is limited to concep-

tual framework and no performance analysis was provided. In [220], the authors

jointly designed UAV position and passive beam-forming using RIS. However, the

RIS was not mounted on UAV and instead it was located on buildings. In particu-

lar, the proposed countermeasure technique will examine joint optimization of the

phase-shifter at the UAV-assisted RIS, and the beam-forming and artificial noise

covariance matrix at the terrestrial BS. This strategy will significantly increase the

system sum-rate by constructively adding the reflected in-phase signals.

6.3.2 UAV-Enabled 5G Radio Sensing

The 5G signals have unique merits such as, high carrier frequency with large channel

bandwidth, and unprecedented number of antennas due to massive MIMO technology.
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Figure 6.5: UAV-assisted reconfigurable intelligent surface (RIS) technique to prevent
eavesdropping.

Therefore, many studies [221–225] have shown the ability of using 5G signals to sense the

ambient environment and thereby realize a set of emerging applications, such as object

imaging in [221], post-surgical fall detection in [222], walking speed recognition in [223],

vital sign monitoring in [224], and vehicular tracking in [225]. However, there are not

many studies available nationally and internationally to use UAV-enabled 5G radio sens-

ing technique. Some of the UAV-enabled 5G radio sensing applications include, mon-

itoring and surveillance for real-time traffic management, search for survivors trapped

beneath the collapsed buildings or rubble during natural disasters, and material inspec-

tion of hard-to-reach assets and critical infrastructure.
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