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Abstract

The effects of alloying and twisting on the atomic and electronic structures of
two-dimensional metal chalcogenides which are current interests of scientific commu-
nity have been studied in this thesis. Monte Carlo simulations and statistical anal-
ysis of the atomic configurations of the as-grown crystal of Mo1−xWxS2 monolayers
synthesised by our experimental collaborators both consistently suggest a random
distribution. The results calculated by using the ONETEP linear-scaling density
functional theory package and the angle-resolved photoemission spectroscopy mea-
surements give consistent results for the bandwidth and the band splitting due to
spin-orbit coupling near the topmost valence band at K. The spin-valley locking is
proved to be maintained at x = 0.5 through polarisation-resolved photoluminence
measurements. In contrast, a striking dopant distribution with striped pattern
was observed in the as-grown crystal of W1−xNbxS2 monolayer synthesised by our
experimental collaborators, different from the random distribution of Mo1−xWxS2
monolayer. Through the analysis of the binding energy of various dopant distribu-
tions, the kinetic processes and the energetics both play roles in forming this kind
of dopant distribution. A highly anisotropic conductivity is predicted by our cal-
culations in this alloy. The twistronics in InSe is discussed in the final part of the
thesis. We show that the calculations on the InSe bilayer within the primitive cell
can be used to efficiently obtain the topmost valence band of twisted InSe bilayer.
The effective mass for holes remains approximately a constant as twist angle varies.
It is estimated to be ∼ 441.1 meV and ∼ 183.2 meV for A1s intralayer and inter-
layer exciton binding energies in twisted InSe bilayer regardless of the twist angle.
The encapsulated hBN layer in the twisted InSe bilayer is regarded as a spacer to
weaken the interaction between two InSe layers. The band structure of the hBN-
spaced system can also be well-described by InSe monolayer within the primitive cell
calculation. The A1s intralayer exciton binding energy of this system is calculated
to be 232.9 meV by using the effective mass for holes of InSe monolayer.
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Chapter 1

Introduction

Many novel phenomena emerge when a well-known 3D system is thinned down
to a lower dimension [1, 2, 3, 4, 5]. Graphene [6, 7], as one of the most typical
two-dimensional materials, exhibit several superior properties. For example, the
mobility of charge carriers is very high (2×105 cm2V−1s−1) [8, 9] because there
is no scattering for a propagation distance of charge carrier of micrometres [10],
high thermal conductivity near room temperature [11], no rest mass [12] and quan-
tum Hall effect [12] in graphene. However, it is hard for graphene to be applied
in field effect transistors (FETs) because the ratio between “on” current and “off”
current (Ion/Ioff) is small [13] and optoelectronics because the band gap is zero [14].
Other two-dimensional materials, such as hexagonal boron nitride (hBN) [15, 16],
black phosphorus [17, 18], transition metal dichalcogenides (TMDCs) [1, 4, 19]
and post-transition metal monochalcogenides (PTMCs) [20, 21] have similar hon-
eycomb lattice structures, except that the vertical positions of atoms may be dif-
ferent. These materials are regarded as very promising materials in optoelectronics
[22, 23, 24, 25, 26], electronic devices [26, 27, 28, 29], electrocatalysis [30] and su-
perconductors [31, 32]. This thesis aims to provide inspiration for how the atomic
and electronic properties of the promising TMDCs and PTMCs change by alloying
and twisting. WS2 as one of the most typical TMDCs was adopted as a prototype.
We were interested to know what phenemena will be seen when it is alloyed with
a similar material (MoS2) and a different material (NbS2). Furthermore, InSe as
one of the promising PTMCs was also adopted to study the variation of atomic and
electronic structures when twisting. Generalising from the four prototypical mate-
rials investigated here, the knowledge obtained from these methods (alloying and
twisting) is expected to extend to other similar materials, such as MoSe2, WSe2,
NbSe2, InS and etc.
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CHAPTER 1. INTRODUCTION

Radisavljevic et al. [28] have shown that MoS2 monolayer possesses high
carrier mobility (at least 200 cm2V−1s−1) and high current on/off ratio (1× 108) in
transistors at room temperature, along with negligible standby power dissipation.
In the bulk form, the valence band maximum (VBM) is at Γ, whereas the conduction
band minimum (CBM) is at a position between Γ and K [33, 34]. In contrast, the
VBM and the CBM are at K for MoS2 monolayer [33, 34]. Thus, the resulting
band gaps are direct and indirect for the monolayer and bulk forms, respectively
[33, 34]. An indirect-direct band gap transition occurs when thinning down MoS2

from bulk to monolayer [35]. The band gap of MoS2 is 1.287 eV for bulk and
2.759 eV for monolayer based on a quasiparticle self-consistent GW approximation
(QSGW) [35], whereas the band gap is 1.23 eV for bulk and 1.9 eV for monolayer
from experiments [27, 36]. This large deviation of the band gap between the QSGW
and the experiment in MoS2 monolayer is related to the significant excitonic effect
(2D Wannier-Mott excitons recombination) in the 2D system [33, 35, 37]. The
option of using both GW approximation and Bethe-Salpeter equation (BSE) [38,
39] can produce consistent results with absorption and photoluminescence (PL)
[40]. Furthermore, the band splitting owing to the spin-orbit coupling (SOC) are
pronounced in MoS2 monolayer (especially near the VBM with ∼ 150 meV at K)
owing to the lack of inversion symmetry [33, 41]. A WS2 monolayer has a greater
valence band splitting near the Fermi level at K (∼ 400 meV) than MoS2 monolayer
due to its larger atomic number [41, 42, 43]. The atomic and electronic structures
of WS2 are similar to MoS2, there is also an indirect-direct band gap transition
from WS2 bulk to WS2 monolyers [44, 45]. WS2 based FET gives ∼ 1 × 106 and
∼ 140 cm2 V−1 s−1 of current on/off ratio at high room temperature and mobility
at low temperature, respectively [46]. The mixing of these two materials can be
realised from a few synthetic approaches, for examples, chemical vapor transport
(CVT) [42], chemical vapor deposition (CVD) [47, 48] and co-sputtering technique
[49] with the composition determined by the ratio of the raw materials of MoS2

to WS2. The resulting alloys were shown to be highly homogenous from Raman
spectroscopy with no phase segregation in the samples [50].

NbS2 has been proposed to give an open-circuit voltage as good as gold in
perovskite solar cell and 8.3% for power conversion efficiency as a counter electrode
[51]. It was also calculated to be good in application of lithium-ion batteries at
room temperature, where Li+ adsorption is highly stable and Li diffused with high
speed, thus it is promising to be the negative electrode of lithium-ion batteries [52].
Furthermore, the decrease of the density of mobile holes leads to the superconduct-
ing transition temperature of NbS2 decreases as the thickness decreases [53]. The

2



CHAPTER 1. INTRODUCTION

photoresponse and response time were measured to be 34.7 mA/W and 488 µs in
few-layer InSe, respectively, which is sufficiently promising to be applied in optoelec-
tronics [54]. In addition, the quantum Hall effect can be observed in the hexagonal
boron nitride (hBN) encapsulated InSe, which displays a carrier Hall mobility of
5000 cm2 V−1 s−1 at 1.5 K [55].

Density functional theory (DFT) has been widely adopted as a tool to provide
predictions and explanations of experimental results in investigating various proper-
ties of different materials for decades. However, the computational effort increases
with the cube of the system size [56]. Linear-scaling density functional theory (LS-
DFT) [57, 58, 59] has been proposed to ease the difficulty of studying large-scale
system. In this thesis, both traditional DFT with plane wave basis and LS-DFT
with highly localised basis were adopted for different purposes. Highly accurate tra-
ditional DFT package such as CASTEP [60] and Quantum Espresso [61, 62] were
used to calculate the atomic parameters (e.g. lattice constant and interlayer dis-
tance), total energy of the system and geometry optimisation of smaller system. The
LS-DFT package used in this thesis, ONETEP [59, 63], was adopted to do structural
relaxation and study the effective band structures as well as the electronic properties
of large-scale systems (more than hundred atoms). The results of LS-DFT can be
tuned to approach the accuracy of traditional DFT package (e.g. CASTEP), by im-
proving a parameter similar to the kinetic energy cut-off of the plane waves [56, 64].
The spectral function unfolding method implemented in ONETEP [42, 65, 66] facil-
itates us to efficiently simulate the electronic structure in large-scale system, even it
is an disordered material. Furthermore, a non-empirical Monte Carlo [67] simulation
based on the binding energy calculated via CASTEP was also used to simulate the
dopant distributions of alloys purely from the perspective of energetics. In addition,
a post-processing package based on semi-classical Boltzmann transport equations,
BoltzTrap [68], was used to study the macroscopic electrical conductivity of the
alloy (instead of the microscopic ballistic carrier transport).

In Chapter 4, the alloys composed of MoS2 and WS2 monolayers (denoted as
Mo1−xWxS2 monolayer, where 0 ≤ x ≤ 1) were studied. A plane-wave (CASTEP
[60]) and a linear-scaling (ONETEP [59, 63]) density-functional theory packages
were adopted to study the Mo1−xWxS2 monolayer. It is suggested a random distri-
bution of tungsten dopants in MoS2 monolayer from the Monte Carlo simulations
[67] based on the binding energy calculated via CASTEP. This result is consistent
with the experiments provided by our collaborators as well as the previous studies
on this alloy [69]. Various electronic properties studied such as bandwidth, effective
mass for holes and valence band splitting at K as a function of W composition are
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consistent with the results of angle-resolved photoemission spectroscopy (ARPES).
As expected, the band gaps of Mo1−xWxS2 monolayer significantly deviate from
PL measurement due to the inaccuracy of conduction band in DFT calculation,
absence of excitonic effect and absence of intrinsic carriers of the as-grown crystals
in the DFT calculations. In addition, the polarisation-resolved low-temperature
PL measurement performed by our experimental collaborators showed that there is
spin-valley locking in Mo1−xWxS2 monolayer.

Unlike the situation of alloys formed by MoS2 and WS2 monolayers, a dif-
ferent combination of TMDCs (WS2 and NbS2 monolayers) was studied in Chapter
5, performing with the same simulation packages. WS2 is a kind of semiconductor
type TMDC, whereas NbS2 is a metal [70]. The dopant (Nb atoms) distribution
in the WS2 monolayer is significantly different from Mo1−xWxS2 monolayer. The
scanning transmission electron microscopy (STEM) images provided by our collab-
orators as well as the analysis of our DFT calculations both showed that Nb atoms
prefer to align along a specific direction. A lot of line segments were seen in the
STEM images. Kinetic processes are suggested to be important factors to form
this kind of dopant distributions. After analysing the effective band structure and
the calculated electrical conductivity (through BoltzTrap [68]), it is suggested that
superior and highly anisotropic electrical conductity can be realised.

Inspired by the novel properties of the recently emerging twisted graphene
bilayer, twisted InSe bilayer was discussed in Chapter 6. In the previous literature,
many novel phenomena appear when the relative angle between two graphene layers
was tuned to some “magic angles”. The zero Fermi velocity and the flattening of
moiré Bloch bands at magic angles in twisted graphene bilayer have been analysed
by utilizing a fundamental continuum model [71, 72, 73, 74, 75]. Superconducting
and correlated insulating phases have been demonstrated in graphene bilayer at a
twist angle of ∼ 1.1o owing to the flat bands associated with the strong correlations
[76]. The appearance of flat bands can occur without the need for magic angles if we
switch from graphene to other 2D materials. From the work of Xian et al. [77], n-fold
(n = 2, 4, 6) degenerate flat bands appear at twist angles which are not close to magic
angles in twisted boron nitride bilayer, thus providing a new way to tune their optical
and excitonic properties. Kang et al. [78] showed flat bands, indirect-direct band gap
transition and localisation of charge density in twisted InSe bilayer as the twist angle
decreases. In this thesis, the atomic and electronic properties of InSe monolayer,
InSe bilayers with different stacking configurations, twisted InSe bilayer and hBN-
encapsulated twisted InSe bilayer were studied. The band structures of InSe bilayers
with different stacking configurations can be explained by their orbital contributions
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and the stacking configuration. The effective band structure of twisted InSe bilayer
is strongly related to InSe bilayers with different stacking configurations appeared
within some regions of twisted InSe bilayer from the analysis of both the band
structure and the localisation of charge density. Furthermore, the encapsulation
of hBN layer in twisted InSe bilayer has the effect of weakening the interaction
between two InSe layers. Twistronics is proved to be an efficient method to tune
the electronic properties including the band gap and effective mass for holes of InSe
from this study, thus widening its applications in optoelectronics and semiconductor
devices.

Through these different manipulation techniques, the knowledge of the
atomic structure and electronic properties of these kind of materials were deepened
and thus benefit their future applications.
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Chapter 2

Theory of electronic structure
based on ab initio calculations

Most of the contents in this chapter are based on “Electronic structure : basic theory
and practical methods” written by R. M. Martin [79].

2.1 In a many-particle system

The Schrödinger equations are the fundamental equations of quantum mechanics
and are classified to be used in time-independent and time-dependent situations.
In this thesis, the time-independent form is adopted because time-dependent in-
teractions among atoms were not considered. The time-independent Schrödinger
equation is

ĤΨ = EΨ, (2.1)

where Ĥ is the Hamiltonian operator, Ψ and E are the eigenfunction and energy
eigenvalue of the Hamiltonian operator, respectively. In a material, all information
about the positions of electrons and nuclei are described by a many-body wave
function. Importantly, the Hamiltonian operator needs to include all the pairwise
interactions among electrons and atomic nuclei [79],

Ĥ =− h̄2

2m

n∑
i=1
∇2
i −

n∑
i=1

N∑
I=1

ZIe
2

|ri −RI |
+ 1

2

n∑
i 6=j

e2

|ri − rj |

−
N∑
I

h̄2

2MI
∇2
I + 1

2

N∑
I 6=J

ZIZJe
2

|RI −RJ |
,

(2.2)
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where h̄ = h/2π (h is the Planck constant), e is the elementary charge, ZI is the
charge of atomic nucleus I. Here lowercase letters are used to denote electrons,
whereas uppercase letters are used to denote atomic nuclei. Thus, m and MI are
the masses of electron and atomic nucleus, respectively. Similarly, ri and RI are the
positions of electron and atomic nucleus, respectively. The first and fourth terms
are the sum of kinetic energy of each electron and atomic nucleus, respectively.
The second, third and fifth terms are the sum of the Coulomb interactions between
an electron and an atomic nucleus, an electron and an electron and an atomic
nucleus and an atomic nucleus, respectively. According to the Born-Oppenheimer
or adiabatic approximation [80], the motion of electrons and atomic nuclei can be
treated separately. This is because of the large difference of mass between an atomic
nucleus and an electron, thus the motion of electron is instantaneous compared to
the atomic nucleus. The kinetic term of the atomic nuclei (fourth term) can be
treated separately because its inverse mass is far smaller than electrons. Thus
the Hamiltonian in eq. (2.2) can be simplified to only concern about the motion of
electrons with the terms related to the atomic nuclei are approximated as parameters
in the Hamiltonian [79]. This makes calculation of the many-body system feasible
after adopting this approximation.

The Hamiltonian operator for the electrons after adopting the Born-
Oppenheimer approximation, in which the nuclear coordinates were represented
by a set of parameters R, is written as [79]

Ĥ =
n∑
i=1
−1

2∇
2
i +

n∑
i=1

N∑
I=1

ZI
|ri −RI |

+ 1
2

n∑
i 6=j

1
|ri − rj |

+ 1
2

N∑
I 6=J

ZIZJ
|RI −RJ |

= T̂ + V̂ext + V̂int + EII,

(2.3)

where T̂ is the kinetic term of the electrons, V̂ext and V̂int are the classical Coulomb
potential terms associated with the electron-nucleus interaction and electron-
electron interaction, respectively. More terms will be added into V̂ext if the system
is under an external field such as electric field or magnetic field. Lastly, EII is the
electrostatic nucleus-nucleus interaction which can be regarded as a parametric con-
stant in this Hamiltonian operator. It is noted here that the Hartree atomic units
have been used, so that h̄ = m = e = 4πε0 = 1.

The Hartree potential was introduced by Hartree [81] to approximate the
potential of the self-interaction term of electrons (the third term in eq. (2.3)) for
further reducing the computational effort. This is a Coulomb potential determined
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by the electron charge density n(r′) [79],

VH(r) =
∫ ∫

n(r′)
|r− r′| dr′. (2.4)

The many-body wave function can be expressed by an antisymmetric Slater
determinant (without considering the spin-orbit interaction) [79, 82],

Ψ = 1
(N ! )

1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1, σ1) ψ1(r2, σ2) ψ1(r3, σ3) . . .

ψ2(r1, σ1) ψ2(r2, σ2) ψ2(r3, σ3) . . .

ψ3(r1, σ1) ψ3(r2, σ2) ψ3(r3, σ3) . . .

. . . . . .

. . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.5)

where the ψi(rj , σj) is a single-particle wave function with state i. The ψi(rj , σj)
is linearly independent with any other single-particle wave function in this deter-
minant. This kind of wave function implicitly implies that the electrons satisfy
the Pauli exclusion principle. Each ψi(rj , σj) in eq. (2.5) satisfies the one-electron
Schrödinger equation [83]

− h̄2

2m∇
2ψi(r)−

∑
I

Ze2

|r−RI |
ψi(r) +

∑
k

∫
dr′ |ψk(r

′)|2e2

|r− r′| ψi(r) = εiψi(r) (2.6)

The expectation value of an operator Ô can be expressed as [79]

〈Ô〉 =
σ∑
i

fσi 〈ψσi |Ô|ψσi 〉, (2.7)

where ψσi is a spin-dependent one-electron wave function with state i and spin σ,
whereas fσi is its corresponding occupation number,

fσi = 1
e β(εσi −µ) + 1

. (2.8)

This is the Fermi-Dirac distribution with chemical potential µ. Therefore, the total
energy of the non-interacting electrons can be written as [79]

E = 〈Ĥ〉 =
σ∑
i

fσi ε
σ
i , (2.9)

and the total electron density can be expressed as the sum of each electron density
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in state i
Nσ(r) =

∑
i

nσi =
∑
i

fσi |ψσi (r)|2. (2.10)

In addition, the total electron density can also be obtained when the density matrix
operator acts on the many-body wave function. The density matrix operator is
written as [79]

ρ̂ =
∑
i

|ψσi 〉fσi 〈ψσi |. (2.11)

There is a more accurate approximation referred to as the Hartree-Fock approxima-
tion [84] which includes the exchange interaction among electrons. The expectation
value of the Hamiltonian operator when the basis function of spin is diagonal [79],

〈Ψ|Ĥ|Ψ〉 =
∑
i,σ

∫
dr ψσ∗i (r)

[
−1

2∇
2 + Vext(r)

]
ψσi + EII

+ 1
2

∑
i,j,σi,σj

∫ ∫
drdr′ ψσ

∗
i
i (r)ψ

σ∗j
j (r′) 1

|r− r′|ψ
σi
i (r)ψσji (r′)

− 1
2
∑
i,j,σ

∫ ∫
drdr′ ψσ∗i (r)ψσ∗j (r′) 1

|r− r′|ψ
σ
i (r)ψσi (r′),

(2.12)

where the third term is the direct interaction, whereas the fourth term is the
exchange interactions among the same-spin electrons. The unphysical terms for
i = j in direct and exchange terms are eliminated when adding them up in
the equation. Thus, the effective potential can also be expressed as V̂ i,σ

eff (r) =
Vext(r) + VH(r) + V̂ i,σ

x (r), where VH(r) and V̂ i,σ
x (r) correspond to the third and

fourth terms in eq. (2.12), respectively [79]. It is not an easy task to solve the
Hartree-Fock equations and it is still not accurate for some materials (e.g. solids)
since the correlations among electrons are not considered.

2.2 Hohenberg-Kohn theorems

Density functional theory (DFT) is based on two theorems proposed by Hohenberg
and Kohn [85]. It provides a feasible way different from Hartree-Fock approximation,
to solve the many-body system of interacting particles.

2.2.1 Theorem I

There is a one-to-one correspondence between the external potential Vext defined
to within an unknown constant shift and the ground state particle density n0(r) in
an interacting particle system [79, 85].
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Proof
Suppose V (1)

ext (r) is a unique external potential in a Hamiltonian operator Ĥ(1) with
ground state wave function Ψ(1) and ground state density n0(r). V (2)

ext (r) is another
external potential different from V

(1)
ext (r) (not just by a constant) in a Hamiltonian

operator Ĥ(2) with ground state wave function Ψ(2) and the same ground state
density n0(r). This gives the following inequality:

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉. (2.13)

The last term in eq. (2.13) can be reformulated as

〈Ψ(2)|Ĥ(1)|Ψ(2)〉 =〈Ψ(2)|Ĥ(2)|Ψ(2)〉+ 〈Ψ(2)|Ĥ(1) − Ĥ(2)|Ψ(2)〉

=E(2) +
∫
d3r

[
V

(1)
ext (r)− V (2)

ext (r)
]
n0(r).

(2.14)

From eq. (2.13) and eq. (2.14), the inequality now is written as

E(1) < E(2) +
∫
d3r

[
V

(1)
ext (r)− V (2)

ext (r)
]
n0(r). (2.15)

The inequality for superscript (2) is written in a similar way,

E(2) < E(1) +
∫
d3r

[
V

(2)
ext (r)− V (1)

ext (r)
]
n0(r). (2.16)

Adding up eq. (2.15) and eq. (2.16) gives a contradictory result,

E(1) + E(2) < E(1) + E(2). (2.17)

This contradictory result means that there is a one-to-one correspondence
between the non-degenerate ground state charge density n0(r) and an external po-
tential Vext(r) (another external potential with a constant shift is regarded as the
same external potential).

2.2.2 Theorem II

The global minimum of an energy functional E[n] including an external potential
Vext(r) is the exact ground state energy with the exact ground state density n0(r)
[79, 85].
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Proof
The total energy of the system is uniquely determined by a particular charge density
n(r). The terms inside the total energy which are related to the electrons are all
uniquely determined by this density, for example, the external energy is expressed
as
∫
d3rVext(r)n(r), where Vext(r) is the external potential. Thus, the total energy

eq. (2.3) can be expressed as a functional of the charge density,

EHK[n] =T [n] + Eint[n] +
∫
d3rVext(r)n(r) + EII

≡FHK[n] +
∫
d3rVext(r)n(r) + EII.

(2.18)

FHK[n] is a universal functional because the terms included are both functionals of
the density n(r) only,

FHK[n] = T [n] + Eint[n]. (2.19)

Now, the same assumption as theorem I is applied that there are two ground state
densities n(1)

0 (r) with wave function Ψ(1) and n(2)
0 (r) with wave function Ψ(2) corre-

sponding to external potential V (1)
ext (r) and V (2)

ext (r), respectively. The total energy
is the expectation value of the Hamiltonian operator

E(1) = EHK[n(1)] = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉, (2.20)

and the same inequality as eq. (2.13),

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = E(2). (2.21)

This means that the total energy from the expectation value of the Hamiltonian
operator Ĥ(1) with ground state density n(1)

0 (r) is lower than the total energy from
the same Hamiltonian operator with the other density n(r). The exact ground
state density and energy are obtained by minimising the total energy in eq. (2.18)
with respect to the charge density n(r). It is worth noting that the excited state
properties cannot be determined by this variational method.

2.3 Kohn-Sham density functional theory

According to the Hohenberg-Kohn theorems, the ground state density uniquely de-
termine all of the properties of many-body systems. However, it is very difficult
to solve the problem since the exact universal functionals of the systems are not
known. Kohn and Sham proposed an approach in 1965 [86] to solve the many-
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body interacting particles problems by introducing independent-particle methods
with interacting density. All of the many-body terms are included in the exchange-
correlation functional term [79].

The Hamiltonian operator of an independent-particle system is written as
(in atomic units) [79],

Ĥσ
KS(r) = −1

2∇
2 + V σ

KS(r). (2.22)

The charge density is the sum of each orbital contribution with the spins
explicitly counted,

n(r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1
|ψσi (r)|2. (2.23)

The interaction between two electrons is handled via the Hartree approximation
introduced above, whereas all the exchange and correlation terms are put into an
unknown term, referred to as the exchange-correlation functional. The Kohn-Sham
reformulation of eq. (2.18) is [79, 86]

EKS = Ts[n] +
∫
drVext(r)n(r) + EH[n] + EII + Exc[n], (2.24)

where Ts (=
∫
n(r′)dr′

∫
−1

2∇
2n(r)dr) is the kinetic energy functional for indepen-

dent particles and EH is the Hartree energy (see the Hartree potential in eq. (2.4)).
The Hartree energy is written as

EH[n] = 1
2

∫
d3rd3r′

n(r)n(r′)
|r− r′| . (2.25)

The exchange-correlation functional Exc[n] is obtained by comparing eq. (2.18) and
eq. (2.24),

Exc[n] = (T [n]− (Ts[n]) + (Eint[n]− EH[n]). (2.26)

Eq. (2.26) shows that the exchange-correlation energy functional is the combina-
tion of the differences in the kinetic and internal interaction terms between the
interacting-particle and the independent-particle systems.

The ground state of Kohn-Sham equation can be obtained by using the
method of Lagrange multipliers [79],

δ[〈Ψ|Ĥ|Ψ〉 − E(〈Ψ|Ψ〉 − 1)] = 0, (2.27)

where the Hamiltonian operator is from eq. (2.22) and the minimisation is with
respect to the density n(r, σ) along with the constraint of orthonormality (〈Ψi|Ψj〉 =
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δij). Here the Kohn-Sham effective potential is written as [79]

V σ
KS(r) = Vext(r) + δEH

δn(r, σ) + δExc
δn(r, σ)

= Vext(r) + VH(r) + V σ
xc(r).

(2.28)

where VH is the Hartree potential mentioned in eq. (2.4) which satisfies eq. (2.6).
Because the relationship between charge density and effective potential is a one-
to-one correspondence, the Kohn-Sham equation can be solved self-consistently by
introducing a trial charge density first and then varying the charge density un-
til it satisfies the convergence criterion. The exact ground-state properties of the
interacting many-body system can in principle be obtained from the Kohn-Sham
equations if the exact exchange-correlation functional Exc[n] can be determined,
since all many-body effects are in principle included in Exc[n] [79].

2.4 Exchange-correlation functionals

In practice, the accuracy of the Kohn-Sham DFT depends heavily on the accuracy
of the exchange-correlation functional Exc[n] used. Two kinds of the most widely
used approximations will be introduced below.

2.4.1 Local density approximation (LDA)

In the original seminal paper of Kohn and Sham [86], the local density approximation
(LDA) was proposed. In this approximation, it is assumed that there is no difference
between the exchange-correlation energy density of a real system and that of a
homogeneous electron gas of the same density. If the density n(r) is varying slowly
enough, it is reasonable to express the exchange-correlation functional as [79, 86]

ELDA
xc [n] =

∫
d3r n(r)εhom

xc (n)

=
∫
d3r n(r)[εhom

x (n)) + εhom
c (n)],

(2.29)

where the exchange-correlation energy density is expressed as exchange and correla-
tion terms separately in the second term of eq. (2.29). The exchange energy density
has an analytical form [87],

εhom
x (n(r)) = −3

4

(3n(r)
π

)1/3
. (2.30)
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There is no a simple analytic function can be used to express the density of
correlation energy [79]. Wigner [88, 89] proposed a quantitative form to interpolate
the situation between low- and high-density limits in a homogeneous gas. However,
it was found that this expression was not correct due to the error in the low-density
limit [79]. The correct expression of correlation energy in the high-density limit was
proposed by Gell-mann and Brueckner [90].

2.4.2 Generalised gradient approximation (GGA)

Unlike the LDA which is at its best when used to describe the materials with slowly
varying charge density, the generalised-gradient approximation (GGA) considers
both the charge density and its gradients. Similarly, it has a generalised form for
spin-unpolarised case [79, 91],

EGGA
xc [n] =

∫
d3r n(r)εGGA

xc (n, |∇n|)

≡
∫
d3r n(r)εhom

x (n)Fxc(n, |∇n|),
(2.31)

where the exchange energy density εhom
x is the same as eq. (2.30) and Fxc refers

to the enhancement factor over local exchange. Fxc can naturally be discussed in
terms of the reduced density gradient. For the first dimensionless reduced density
gradients,

s = |∇n|2kFn
, (2.32)

where the local Fermi wave vector kF = (3π2n)1/3. Becke (B88) [92], Perdew and
Wang (PW91) [93] and Perdew, Burke and Enzerhof (PBE) [94] are three kinds
of GGA with different forms of Fx(n, s) which are widely used nowadays [79]. For
example, the Fx of PBE is [79, 94]

Fx(s) = 1 + κ− κ

1 + µs2/κ
, (2.33)

where κ = 0.804 and µ ' 0.21951.

2.4.3 Van der Waals (vdW) density functional

Van der Waals (vdW) interactions are relatively weak but are essential to accurately
describe processes such as biological reactions [95] and interaction in layered systems
[96]. Dion et al. [97] proposed to rewrite the exchange-correlation functional by
adding the nonlocal dispersion correlations into the original exchange-correlation
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energy functional [96, 98],

Exc[n] = EGGA
x [n] + ELDA

c [n] + Enl
c [n]. (2.34)

Here the exchange-correlation energy functional is described by the exchange energy
functional of semilocal GGA (various types of van der Waals density functional
were obtained by considering different types of EGGA

x [n] [99]), the correlation energy
functional of local LDA and a universal nonlocal correlation energy functional, where
Enl

c [n] can be expressed as [98]

Enl
c [n] = 1

2

∫∫
d3r1 d

3r2 n(r1)n(r2)φ(q1, q2, r12), (2.35)

where r12 = |r1 − r2|, q1 = q0[n(r1), |∇n(r1)|)] and q2 = q0[n(r2), |∇n(r2)|)]. There
are two conditions that φ has to obey: (i) In the system with constant density, the
nonlocal exchange energy functional is zero; (ii) A form of r−6 dependence (r is large)
appropriately describes the interaction between two molecules. The computational
cost can be reduced by considering the case of fixed qi (i = 1, 2). Then the kernel φ
can be expanded as [98]

φ(q1, q2, r12) '
∑
αβ

φ(qα, qβ, r12)pα(q1)pβ(q2), (2.36)

where qα are fixed values for each r12 for interpolating well the kernel φ. This
means that a set of interpolating polynomials pα(q) (cubic spline functions) are
used to represent the kernel. Eq. (2.35) can be evaluated now by utilising Fourier
methods owing to the expression of eq. (2.36). The nonlocal energy functional
Enl

c [n] is rewritten as [98]

Enl
c =1

2
∑
αβ

∫∫
d3r1 d

3r2 θα(r1)θβ(r2)φαβ(r12)

=1
2
∑
αβ

∫
d3k θ∗α(k)θβ(k)φαβ(k),

(2.37)

where θα(ri) = n(ri)pα[(q0(n(ri),∇n(ri)] (i = 1, 2) and φαβ(r) ≡ φ(qα, qβ, r). θ(k)
and φαβ(k) (can be precalculated) are the corresponding Fourier transforms of θ(r)
and φαβ(r), respectively. In chapter 6 for the calculations of twisted InSe bilayer,
the optB88-vdW functional [99] was adopted to incorporate the vdW interaction
between layers.
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2.5 Pseudopotentials

Due to the large Coulomb potential near atomic nucleus, the wave functions of the
core electrons vary rapidly (with more nodes) and need many Fourier coefficients
with plane wave basis set to describe it. For implementing the calculations more
efficiently and reducing the computational cost, “pseudopotentials” (an effective
ionic potential) are usually adopted. The valence electrons are acted on by the
pseudopotential. The explicit representation of core electron states is removed, and
the potential has the same functional form as an original full Coulomb potential
outside a given radius Rc [79]. This method is practical because most chemical
reactions only involve the valence electrons. There is a trade-off between cost-
saving and transferability in choosing the pseudopotential. If a pseudopotential is a
“hard” potential with a small Rc, it may describe the wave function more accurately
near the core region and is more transferable to other materials. In contrast, if
the pseudopotential is a “soft" potential with large Rc, it may describe the wave
function less accurately, however, fewer basis functions are needed [79]. In general,
the valence electrons are chosen from the outermost shell of an atom, however, this
is not a strict rule. More electrons may be included from deeper electron shells as
the valence electrons to improve the accuracy of a calculation, but this will also
increase the computational cost [79].

2.5.1 Norm-conserving pseudopotentials (NCPPs)

Norm-conserving pseudopotentials are the most widely used type of pseudopoten-
tial. They are developed to be highly accurate and transferable, however, high
computational costs are often required. It provides the same properties related to
the valence states as the all-electron calculation. The orthonormality condition is
also satisfied for these kind of pseudopotentials [79],

〈ψσ,PS
i |ψσ

′,PS
j 〉 = δi,jδσ,σ′ . (2.38)

Furthermore, the pseudo wave functions and eigenvalues are required to be consis-
tent with the all-electron calculations outside a core radius Rc, their logarithmic
derivatives Dl(ε, r) ≡ r ddr lnψl(ε, r) needs to be equivalent at Rc and the consistency
is also required for dDl(ε,r)

dε all r ≥ Rc. “Norm-conservation” means that the charge
from pseudo wave functions and all-electron wave functions for valence state inside
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a given radius Rc are integrated to be equivalent [79, 100],

Q =
∫ Rc

0
|ψ(r)|2dr =

∫ Rc

0
|ψPS(r)|2dr. (2.39)

The orbital-dependent (l-dependent) ionic pseudopotential Vl can be expressed in
terms of its local and non-local parts separately. When the special relativity in the
calculations is considered, scalar relativistic effects and spin-orbit interactions need
to be included in the potential Vl [79, 101, 102],

Vl = l

2l + 1[(l + 1)Vl+1/2 + lVl−1/2], (2.40)

δV SO
l = 2

2l + 1[Vl+1/2 − Vl−1/2]. (2.41)

Eq. (2.40) and eq. (2.41) are for scalar relativistic and spin-orbit effects, respectively.
The short-range non-local operator with “semilocal (SL)” form (local in the radial
part, non-local in the angular part) is related to δV SO

l as [79]

δV̂ SO
SL =

∑
lm

|Ylm〉δV SO
l (r)L · S〈Ylm|, (2.42)

where Ylm(θ, φ) = Pl(cos(θ))eimφ are the spherical harmonics.
Ultrasoft pseudopotentials [103] are another type of pseudopotential which

are written as a combination of a smooth function and an auxiliary function (for
rapidly varying density near the core region). It is still valid to use the Hartree
potential with ultrasoft pseudopotentials outside of the core because the multipole
moment of the charge density is reproduced. These kinds of pseudopotentials are
smoother (less expensive) than the norm-conserving pseudopotential and achieve
the desired accuracy at the same time [79].

2.6 Projector augmented waves (PAWs)

In real materials, the wave functions consist of a relatively smooth part in the bond-
ing region as well as a rapidly oscillating part near the nucleus. The projector
augmented wave (PAW) method [104, 105, 106] was inspired from the ideas of the
ultrasoft pseudopotential and augmented wave methods, it also includes smooth
functions and auxiliary localised functions (for representing the core states) to ex-
press the wave functions [79]. The PAW sphere is an atom-centred sphere with
the inside and outside consisting of a partial wave expansion and plane waves, re-
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spectively. The full all-electron wave functions are more efficiently maintained and
calculated with the PAW method. Therefore, PAW method provides an accurate,
transferable and efficient way to perform calculations [79, 104].

In PAW method, all-electron wave function |ψ〉 is transformed into a pseudo
wave function |ψ̃〉 by linear transformation T [79, 104],

|ψ〉 = T |ψ̃〉, (2.43)

and
|ψ〉 =

∑
m

cm|ψm〉, |ψ̃〉 =
∑
m

cm|ψ̃m〉, (2.44)

where |ψm〉 (|ψ̃m〉) is the partial wave of the all-electron (pseudo) wave function and
cm = 〈p̃m|ψ̃〉 ({p̃m} are a set of projection operators) is the corresponding expansion
coefficient. The linear transformation T is written as

T = 1 +
∑
R

T̂R, (2.45)

where each T̂R is an atom-centred contribution only from some augmentation regions
(referred to as the core region in the pseudopotential method). Thus, the all-electron
and the pseudo wave functions are the same outside those regions. From eq. (2.43)
and eq. (2.44), we get

|ψ〉 =|ψ̃〉+
∑
m

cm{|ψm〉 − |ψ̃m〉}

=
(

1 +
∑
m

{|ψm〉 − |ψ̃m〉}〈p̃m|
)
|ψ̃〉.

(2.46)

Thus,
T = 1 +

∑
m

{|ψm〉 − |ψ̃m〉}〈p̃m|, (2.47)

In the augmentation region, if
∑
m |ψ̃m〉 〈p̃m| = 1 is satisfied, then

∑
m |ψ̃m〉 〈p̃m|ψ̃〉 =

|ψ̃〉. This means that 〈p̃m|ψ̃m′〉 = δmm′ .

2.7 Basis functions used in DFT

The wave function ψi is usually expressed as

ψi(r) =
∑
λ

cλφλ(r), (2.48)
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where {φλ} is a set of basis functions and {cλ} is a set of corresponding expansion
coefficients. The lattice vector R of a unit cell is defined as [79, 107]

R = n1a1 + n2a2 + n3a3, (2.49)

where ai (i = 1, 2, 3) are the primitive lattice vectors and ni is an integer coefficient
for the corresponding ai. On the other hand, the effective potential in the Kohn-
Sham Hamiltonian also has the same property for the periodic system [79, 107],

Veff(r + R) = Veff(r). (2.50)

Due to the periodicity of the effective potential, by applying Fourier transform,

Veff(r) =
∑
m

Veff(Gm)eiGm·r, (2.51)

where Gm is the reciprocal lattice vector,

Gm = m1b1 +m2b2 +m3b3, (2.52)

where {mi} (i = 1, 2, 3) are integers and {bi} are the primitive reciprocal lattice
vectors which has relations with the primitive lattice vector in real space,

bi · aj = 2πδij . (2.53)

A plane wave basis set is naturally used for periodic systems since it satisfies the
requirement in eq. (2.50) (eiG·(r+R) = eiG·r). The wave function can be rewritten
as a form of Bloch’s theorem: ψik(r) = eik·ruik(r) [79, 107],

ψik =
∑
m

1√
Ω
ci,m(k)ei(k+Gm)·r = 1√

Ncell
ui,k(r)eik·r, (2.54)

where Ω = NcellΩcell and ui,k(r) is a periodic function with periodicity identical to
the crystal (uk(r + Rn) = uk(r)),

ui,k(r) = 1√
Ωcell

∑
m

ci,m(k)eiGm·r. (2.55)

The computational cost can be reduced by limiting the calculation within a cut-off
energy Ecut which satisfies the desired convergence tolerance. The kinetic energy
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(1
2 |k + G|2) cut-off of the plane wave is

Ecut = 1
2 |Gmax|2, (2.56)

where Gmax is chosen as the largest value in eq. (2.52) (corresponding to Ecut)
in the calculation. The accuracy is improved as the magnitude of Ecut increases
(so the basis functions increase) to include short-wavelength behaviour in the wave
function.

2.8 Force theorem

All forces acting on each atom are required to be smaller than some chosen conver-
gence criteria in the calculation of geometry optimisation, otherwise the optimised
structure is not acceptable. Based on the contributions of Hellmann [108] and Feyn-
man [109], a theorem now referred to as the "Hellmann-Feynman theorem" can be
used to calculate the force which acts on an atomic nucleus I with position RI ,

FI = − ∂E

∂RI
. (2.57)

The orthonormality of wave function 〈Ψ|Ψ〉 = 1 is assumed. The expectation value
of the Hamiltonian operator gives the total energy [79, 109],

Etot = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 = 〈Ψ|Ĥ|Ψ〉, (2.58)

− ∂E

∂RI
=− 〈 ∂Ψ

∂RI
|Ĥ|Ψ〉 − 〈Ψ| ∂Ĥ

∂RI
|Ψ〉 − 〈Ψ|Ĥ| ∂Ψ

∂RI
〉

=− E
[
〈 ∂Ψ
∂RI
|Ψ〉+ 〈Ψ| ∂Ψ

∂RI
〉
]
− 〈Ψ| ∂Ĥ

∂RI
|Ψ〉

=− 〈Ψ| ∂Ĥ
∂RI
|Ψ〉.

(2.59)

In eq. (2.59), the terms inside the square bracket add up to zero,

〈 ∂Ψ
∂RI
|Ψ〉+ 〈Ψ| ∂Ψ

∂RI
〉 = d

dRI
〈Ψ|Ψ〉 = 0. (2.60)

From eq. (2.59) and eq. (2.3), only terms which explicitly dependent on the position
of atomic nucleus I will survive, thus

FI = − ∂E

∂RI
= −

∫
d3r n(r)∂Vext

∂RI
− ∂EII
∂RI

. (2.61)
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In fact, the Hellman-Feynman theorem provides a more generalised expression which
is the derivative of the total energy with respect to any parameter λ, so that

∂E

∂λ
= 〈Ψ(λ)|∂Ĥ

∂λ
|Ψ(λ)〉. (2.62)

It is worth mentioning that the Hellmann-Feynman theorem is valid to be used
for getting the information of the ionic forces at the ground state and the wave
functions are required to be expressed in a complete basis set in self-consistent
calculations. Incomplete basis set functions are adopted in some computational
simulation packages, so in that case the Pulay forces [110] need to be included
in the calculations to correct the forces if the incomplete basis set functions have
explicit dependence on the position of nuclei [79].
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Chapter 3

Linear-scaling density functional
theory

3.1 Order-N electronic total energy package
(ONETEP)

In this thesis, a linear-scaling density functional theory (LS-DFT) package called
ONETEP [59, 63] was also adopted to simulate large-scale systems, such as the
transition metal dichalcogenide alloys and twisted bilayer InSe in later chapters.
In the linear-scaling density functional theory, the computational cost increases
linearly as the number of atoms in the simulated cell and the number of processor
increase. This benefits research studies in fields such as biophysics and nanoscience
which involve thousands of atoms [63]. Otherwise, a big difficulty will be faced
when dealing with large scale systems because the computational cost and time are
proportional to the cube of the number of atoms (∝ N3). The Kohn-Sham orbitals
are restricted to satisfy the orthonormality condition [56],∫

d3r ψ∗m(r)ψn(r) = δmn. (3.1)

This imposes a N2-scaling number of constraints. In addition, a Kohn-Sham orbital
spreads over the whole system (∝ N). Thus, the computational cost is proportional
to N3. In contrast, ONETEP utilises a minimal number of highly localised functions
called nonorthogonal generalised Wannier functions (NGWFs) [111] as basis func-
tions which largely reduces the computational cost because NGWFs are confined
around each atom and can be truncated to be non-vanishing only within a fixed
radius [56, 63].
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The spinless single-particle density matrix eq. (2.11) can also be written in terms
of position coordinates [56, 63]

ρ(r, r′) =
∑
n

fnψ
∗
n(r)ψn(r′), (3.2)

where fn is the occupancy of state ψn(r) and its value is within an interval of 0 and 1.
For an insulating system at zero temperature, it has unity and zero occupancy below
and above the Fermi level, respectively. In addition, the property of idempotency
applies

ρ2(r, r′) =
∫
d3r′′ρ(r, r′′)ρ(r′′, r′) = ρ(r, r′). (3.3)

This means that the orthonormality condition eq. (3.1) and the Aufbau principle
(as well as the Pauli exclusion principle) need to be satisfied. The diagonal elements
form the charge density n(r)

n(r) = 2ρ(r, r), (3.4)

where the factor of 2 is based on spin-unpolarised assumption (spin degeneracy).
The total energy can also be written as

E = 2 Tr[ρ̂Ĥ], (3.5)

where Tr refers to the operator trace. From Chapter 2, the Kohn-Sham equation
can be written as

Ĥψn(r) =
[
−1

2∇
2 + Veff [n](r)

]
ψn(r)

= εnψn(r).
(3.6)

The properties of the ground state are obtained by applying ∂E
∂n(r) = 0, along with

the idempotency constraint eq. (3.3) and the integral of eq. (3.4) (or the trace of
the density matrix) is confined to be the total number of electrons in the system
[56, 63],

Ne = 2
∫
d3rρ(r, r) = 2 Tr[ρ̂]. (3.7)

To reduce the computational cost to be just proportional to N , the “nearsighted-
ness" [112, 113] of quantum many-particle systems needs to be considered in the
calculations. “Nearsightedness" means that the local density is increasingly less
affected by the potential at increasing distance. The combination of the “nearsight-
edness” and the matrix truncation reduces the computational cost but at the same
time sacrificing the accuracy of the calculation. For systematically improving the
accuracy until the standard of the plane wave, a basis set which can be adjusted
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through a single parameter is desired. In a system which possesses a band gap, its
density matrix eq. (3.2) behaves as [56, 114, 115, 116, 117]

ρ(r, r′) ∼ exp(−γ|r− r′|)→ 0 as |r− r′|→ ∞, (3.8)

where γ is the decay rate determined by the band gap of the system. The density
matrix preserves values only if the distance between r and r′ remains finite. Now
the density matrix can be truncated to be a sparse matrix whose information scales
as N , instead of N2. In practice, the density matrix is rewritten as [56]

ρ(r, r′) =
∑
αβ

φα(r)Kαβφ∗β(r′), (3.9)

where the {φα(r)} are a set of basis functions which are spatially localised and
nonorthogonal, called support functions [118] or NGWFs [111]. The Kohn-Sham
orbitals {ψi} are now expressed by the NGWFs {φα} [119],

ψi(r) =
Nφ∑
α=1

φα(r)Mα
i =

Nφ∑
α=1

φα(r)Mαi, (3.10)

where Mα
i and Mαi are the transformation matrices between the representation of

Kohn-Sham orbitals {ψi} and NGWFs {φα},

Mα
i =

Nφ∑
β=1

SαβMβi, (3.11)

Mαi =
Nφ∑
β=1

SαβM
β
i . (3.12)

Here Sαβ and Sαβ are the overlap matrices,

Sαβ = 〈φα|φβ〉, (3.13)

Sαβ = 〈φα|φβ〉. (3.14)

Therefore from eq. (3.9) and eq. (3.10), the matrix of density kernel Kαβ [120] is
defined as

Kαβ =
∑
i=1

Mα
i fiM

†β
i . (3.15)

The relation between transformation matrices {Mαi} and overlap matrices {Sαβ}
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are
Sαβ =

∑
i=1

Mα
i M

†β
i , (3.16)

Sαβ =
∑
i=1

MαiM
†
iβ, (3.17)

where (M−1)αi = M †αi was implied. In addition, the biorthonormality condition
applies to a set of duals of the NGWFs {φα(r)} [119],

〈φβ|φα〉 =
∫
d3r φ∗β(r)φα(r) = δαβ . (3.18)

The dual functions {φα} can be transformed to each other via

φα(r) =
Nφ∑
β=1

φβ(r)Sβα, (3.19)

φα(r) =
Nφ∑
β=1

φβ(r)Sβα. (3.20)

From eq. (3.13), eq. (3.14) and eq. (3.18),

Nφ∑
β=1

SαβSβγ =
Nφ∑
β

〈φα|φβ〉〈φβ|φγ〉 = δαγ . (3.21)

Although eq. (3.9) is still proportional to N2, this form of density matrix can use
spatial cut-offs by considering “nearsightedness" mentioned above. The NGWFs
{φα} can be expanded in terms of a basis of periodic sinc [121, 122] or psinsc
functions {Dk(r)} [123],

φα(r) =
∑
k

Dk(r)ck,α, (3.22)

φα(r) =
∑
k

Dk(r)cαk , (3.23)

where {Dk(r)} are a set of orthogonal and highly localised spike-like functions which
centred on each grid point in the simulation cell (zero everywhere except at the
centre grid point and oscillating between grid points [56]), whereas the {ck,α} are
the set of corresponding expansion coefficients. The NGWFs of each atom in the
system with centre points at {Rα} can be truncated owing to their exponentially
localised forms, so that they vanish beyond a spherical region of fixed radii {rα}.
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The fixed radii {rα} are related to the atomic species [56]. One of the advantages
of utilising psinc functions is that it can be transformed to plane waves by Fourier
transform. The accuracy of the psinc functions can be improved by only increasing
its grid spacing, like the kinetic energy cut-off of the plane waves [56, 64]. Therefore,
the accuracy can be adjusted from the standard of minimal atomic-type basis set
(NGWF optimisation is not performed) to a basis set of full plane-waves in ONETEP
calculation [56]. Furthermore, the density kernel can also be truncated to be a sparse
matrix by imposing condition below [63],

Kαβ = 0 as |Rα −Rβ|> rK , (3.24)

where Rα (Rβ) refers to the centre of the localisation region of φα(r) (φβ(r)).
According to eq. (3.11) and eq. (3.15) for the duals of the NGWFs, rK 6= rα + rβ

because the NGWFs are nonorthogonal [56]. The spatial cut-offs {rα} and {rK} are
normally tested and increased until satisfying the desired accuracy criteria for the
system.

The idempotency condition eq. (3.3) can now be reformulated in terms of
the NGWFs and density kernel K [122],

ρ2(r, r′) =
[∑
α,µ

〈r|φα〉Kαµ〈φµ|r′′〉
]∑

ν,β

〈r′′|φν〉Kνβ〈φβ|r′〉


=
∑
α,ν

〈r|φα〉

∑
β,µ

KαµSµνK
νβ

 〈φβ|r′〉,
ρ(r, r′) =

∑
α,β

〈r|φα〉Kαβ〈φβ|r′〉.

(3.25)

The overlap matrix in eq. (3.14) was substituted in the equation. This implies that

KαµSµνK
νβ = Kαβ. (3.26)

In addition, the normalisation condition eq. (3.7) in terms of NGWFs and density
kernel K can also be written as [122]

Ne =2 Tr[ρ̂] = 2
∑
α,β,γ

〈φα|φγ〉Kγβ〈φβ|φα〉

=2
∑
α,β,γ

SαγK
γβδαβ = 2 Tr[KS].

(3.27)

The ground state energy is obtained by minimising the energy calculated
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from eq. (3.6) with respect to NGWFs {φα} and density kernelKαβ self-consistently,
subject to the constraints in eq. (3.26) and eq. (3.27). This is implemented in two
nested loops [124, 125]:

Emin = min
{φα}

L({φα})⇒
δE

δφα
= 0 ∀ k, α, (3.28)

L({φα}) = min
{Kαβ}

E({Kαβ}; {φα}))⇒
δE

δKαβ
= 0 ∀ α, β. (3.29)

Eq. (3.28) and eq. (3.29) are implemented in the outer loop and the inner loop
(with a given set of NGWFs {φα}), respectively.

3.1.1 Density kernel optimisation

In ONETEP, a penalty-functional approach of Haynes and Payne [126] and the
method of Li, Nunes and Vanderbilt (LNV) [127] variational approach based on
McWeeny’s purification transformation [120] are utilised to impose the idempotency
constraint [56].

In LNV approach, an auxiliary kernel L is adopted to define an auxiliary
matrix σ, such that [56, 128]

σ(r, r′) =
∑
αβ

φα(r)Lαβφ∗β(r′), (3.30)

where {Lαβ} represents a set of matrix elements of the auxiliary kernel L. The
density kernel is expressed by the auxiliary kernel as [56, 128]

K = 3LSL− 2LSLSL. (3.31)

The density matrix ρ can be related to an auxiliary matrix σ through the purification
transformation,

ρ(r, r′) = 3σ2(r, r′)− 2σ3(r, r′), (3.32)

where ρ(r, r′) and σ(r, r′) commute with each other. The idempotency of the density
matrix ρ is naturally obtained in the energy minimisation process of δE[ρ]

δσ through
the optimisation of Lαβ. Multiple minima do not appear in this method due to the
nature of the cubic functional of L. However, the same reason causes the instability
of this method if any of the eigenvalues of L is not within the range of convergence
for the purification transformation. The purification transformation is stabilised
by restricting the occupation numbers {fn} within an interval of

[
1−
√

5
2 , 1+

√
5

2

]
.
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The globally convergent penalty-functional method is applied if the calculation is
unstable [56, 128].

Another method for imposing the idempotency of density matrix is through
the minimisation of the positive definite functional P [ρ] by using a steepest descents
method [56, 128],

P [ρ] =
∫ ∫

d3r d3r′ [ρ2(r, r′)− ρ(r, r′)][ρ2(r′, r)− ρ(r′, r)]

=Tr
[
(ρ2 − ρ)2

]
=
∑
n

(f2
n − fn)2.

(3.33)

This quantitatively measures how much ρ(r, r′) deviates from idempotency. P [ρ]
may be regarded as a penalty functional to enforce idempotency. This is realised
by minimising a generalised energy functional Q[ρ] = E[ρ] + αP [ρ], where E[ρ]
is the energy functional (energy calculated from eq. (3.5)) and the strength of
the penalty functional P [ρ] is adjusted by α. One of the weaknesses for using
penalty functionals is that may suffer from multiple local minima. Fortunately, this
is observed empirically not to cause a problem if the density matrix is prepared
properly in the beginning because the normalisation constraint will remove most of
the local minima and the density matrix will be driven towards the global ground
state minimum in the process of energy minimisation [128].

3.1.2 NGWF optimisation

The adoption of NGWFs in ONETEP benefits its transferability because the size
of the orbital set does not need to be increased to satisfy the convergence criterion.
Although extra computational effort is needed in the process of optimisation, the
cost is partly reduced while at the same time maintaining the accuracy owing to the
minimal size of the orbital set used [56]. From the previous section, the NGWFs
are expanded in terms of psinc functions in eq. (3.22) and eq. (3.23) where Dk(r)
is written as [123]

Dk(r) = 1
N

∑
p

eikp·(r−rk), (3.34)

where kp refers to a grid point in reciprocal space and rk refers to a grid point of the
simulation cell and the total number of grid points in a three-dimensional simulation
cell is N = N1N2N3.

Fast Fourier transforms (FFTs) are adopted to calculate the kinetic energy
accurately and efficiently benefiting from the relation between psinc functions and
plane waves. However, the calculation time by adopting FFTs would be O(N2)
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in overall and O(N logN) for the computational cost when calculating the kinetic
energy of a single NGWF [56]. The FFT box technique [129] is then used to solve
this problem. FFT box is centred on each NGWF and all the overlapping neigh-
bours of centred NGWF are also included in the same FFT box. It is designed
to have universal and appropriate shape and size for all FFT boxes with different
NGWFs. In reciprocal space, the sampling can be coarser than the simulation cell
because the localisation of NGWFs in real space broaden its Fourier transforms
[56]. Furthermore, the O(N) effort is maintained because the volume of the FFT
box is only determined by the cut-off radii of the NGWFs. The FFTs are performed
over the whole simulation cell in traditional cubic-scaling methods, however, the
FFT box is only performed in the position of NGWFs (or position of atoms) and
ignore the vacuum. The computation time of performing FFTs are substantial in
both cubic-scaling and linear-scaling methods. The cross-over when the efficiency
of linear-scaling method is higher than the traditional cubic-scaling methods can be
estimated when the volume of the FFT box is comparable to the simulation cell be-
cause both methods perform a comparable number and size of FFTs. The number
of atoms where cross-over occurs is lower in low-dimensional systems than solids
because larger vacuum regions are included in low-dimensional systems [56].

3.1.3 Projector augmented waves (PAWs) in ONETEP

In section 2.6, PAW was introduced as based on a transformation between all-
electron wave function and pseudo wave function. In linear-scaling methods, PAW
needs to be reformulated as a function of the density matrix before it can be used
because the eigenstates cannot be accessed directly. Eq. (2.46) is rewritten below
based on [130],

|ψn〉 = |ψ̃n〉+
∑
ν

(|ϕν〉 − |ϕ̃ν〉) 〈p̃ν |ψ̃n〉 , (3.35)

where |p̃ν〉 is a predefined projector (|p̃m〉 in eq. (2.46)), |ϕ̃ν〉 is the partial wave
function and |ϕν〉 is the all-electron wave function. According to eq. (3.2) and eq.
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(3.35), the density matrix is now reformulated as

ρ =
∑
n

|ψn〉 fn 〈ψn|

=
∑
n

(
|ψ̃n〉+

∑
ν

(|ϕν〉 − |ϕ̃ν〉) 〈p̃ν |ψ̃n〉
)
fn

(
〈ψ̃n|+

∑
µ

(〈ϕµ| − 〈ϕ̃µ|) 〈ψ̃n|p̃µ〉
)

=
∑
n

|ψ̃n〉 fn 〈ψ̃n|+
∑
νµ

(|ϕν〉 − |ϕ̃ν〉) (〈ϕµ| − 〈ϕ̃µ|)
∑
n

〈p̃ν |ψ̃n〉 fn 〈ψ̃n|p̃µ〉

+
∑
ν

(|ϕν〉 − |ϕ̃ν〉) 〈p̃ν |
∑
n

|ψ̃n〉 fn 〈ψ̃n|+
∑
n

|ψ̃n〉 fn 〈ψ̃n|p̃µ〉
∑
µ

(〈ϕµ| − 〈ϕ̃µ|) ,

(3.36)
where the pseudo density matrix ρ̃ =

∑
n |ψ̃n〉 fn 〈ψ̃n| can be substituted into all

terms in eq. (3.36). Assuming the partial waves form a complete set within the
augmentation region, thus

∑
ν |ϕ̃ν〉 〈p̃ν | = 1 and

∑
µ |p̃µ〉 〈ϕ̃µ| = 1, these two expres-

sions can be inserted into third and fourth terms, respectively. Then,

ρ =ρ̃+
∑
νµ

(|ϕν〉 − |ϕ̃ν〉) 〈p̃ν |ρ̃|p̃µ〉 (〈ϕµ| − 〈ϕ̃µ|) +
∑
νµ

(|ϕν〉 − |ϕ̃ν〉) 〈p̃ν |ρ̃|p̃µ〉 〈ψ̃µ|

+
∑
νµ

|ψ̃ν〉 〈p̃ν |ρ̃|p̃µ〉 (〈ϕµ| − 〈ϕ̃µ|)

=ρ̃+
∑
νµ

(
|ϕν〉 〈ϕµ| − |ψ̃ν〉 〈ψ̃µ|

)
〈p̃ν |ρ̃|p̃µ〉 .

(3.37)
It is noted that any nonlocal operators are assumed not to act between the regions of
different PAW spheres. Radial grids and uniform grids are presumed to be treated in
the region inside (“atomic" part) and outside (“soft" part) PAW sphere, respectively,
when calculating energies with PAW method. According to eq. (3.37), the total all-
electron density of valence states is the sum of the pseudo electron density (on
uniform grids) ñ(r) and atomic part of all-electron n1(r), subtracting an atomic
part of pseudo electron ñ1(r) [130],

nv(r) = ρ(r, r) = ñ(r) + n1(r)− ñ1(r). (3.38)

According to the density matrix based on NGWF formalism eq. (3.9),

ñ(r) =
∑
αβ

φα(r)Kαβφ∗β(r), (3.39)

n1(r) =
∑
νµ

ϕν(r)ρνµϕ∗µ(r), (3.40)
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ñ1(r) =
∑
νµ

ϕ̃ν(r)ρνµϕ̃∗µ(r), (3.41)

where ρνµ refers to the projection of the density matrix within the PAW spheres,

ρνµ =
∑
αβ

〈p̃ν |φα〉Kαβ 〈φβ|p̃µ〉 . (3.42)

〈φα|p̃ν〉 is a sparse matrix in large systems due to the localisation of φα and p̃ν .
Therefore, ρνµ can be efficiently obtained with efficient sparse matrix algebra [124,
130, 131] when evaluating Kαβ. Nonzero blocks only exist when ν and µ are on the
same atom, thus forming a “block-diagonal" matrix [130].

3.2 Spectral function unfolding method

The spectral function unfolding method below is based on the paper of Popsecu et
al. [65]. Some of the research presented in this thesis involves the study of electronic
properties of large-scale systems with ordered and disordered structures, thus an effi-
cient method for calculating band structures is necessary. For disordered structures
with no long-range periodicity, the concept of band structure (E versus k dispersion)
and the quantities derived from it, for example, effective mass (m∗ = h̄2

[
∂2E

∂kα∂kβ

]−1
)

and band-velocity (vk = h̄−1 ∂E
∂k) no longer truly exist. Instead, an effective band

structure (EBS) can be generated through the spectral function unfolding method
where the information of band structure is mapped from supercell to primitive cell.
It gives a better result than effective medium approximations with the assumption
of the same potential in all atoms [65]. The local atomic relaxations can be explicitly
considered in the spectral function unfolding method, whereas the structure is arti-
ficially enforced to have a high symmetry in effective medium approximations [65].
The dispersion relation in the primitive cell (PC) is reconstructed from a supercell
(SC) calculation through a band unfolding technique [132, 133, 134, 135, 136]. For
disordered structures, virtual crystal approximation (VCA) [137] or the single-site
coherent potential approximation (CPA) [138, 139] may be used to calculate the
band structure by forcing a PC periodicity. “Broadened bands" are obtained in the
CPA [139]. Therefore, the polymorphic nature of disordered structures leads to an
EBS with “broadened band complex" [65].

The derivation of the spectral function is according to the following proce-
dure. A given SC wave vector K can be obtained by folding a given PC wave vector
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k into a wave vector K through a reciprocal lattice vector G0 [65],

K = k−G0. (3.43)

In contrast, a set of PC wave vectors {ki} can be obtained by unfolding a given SC
wave vector K through a reciprocal lattice vector set {Gi},

ki = K + Gi, i = 1, ..., NK, (3.44)

where Nk = det(M) = vpbz/VSBZ (pbz and SBZ are the Brillouin zones of primitive
cell and supercell, respectively). In periodic solids, k ∈ pbz and K ∈ SBZ are both
good quantum numbers to obtain the dispersion relation.

A linear combination of PC eigenvectors |kin〉 (i = 1, ..., NK) can be used to
represent any SC eigenvector |Km〉 through the zone folding and unfolding relations
mentioned above [65, 133, 140],

|Km〉 =
NK∑
i=1

∑
n

F (ki, n; K,m) |kin〉 . (3.45)

{F (ki, n; K,m)} is a set of parameters to recover a SC eigenvector from a set of PC
eigenvectors. It is expressed as the spectral weight [132, 133] shown below,

PKm(ki) =
∑
n

|〈Km|kin〉 |2. (3.46)

A spectral function (SF) with continuous variable is defined as [65]

A(ki, E) =
∑
m

PKm(ki)δ(Em − E). (3.47)

The symmetry of PC is not required to be identical to the SC, so that the eigen-
states |kin〉 may be different in the SC representation when considering different
symmetries. In that case, the spectral weights in eq. (3.46) may not have integer
values even in ordered compounds. The spectral weights are not δ functions in dis-
ordered alloys due to the different local environments and the inelastic scattering in
the alloy, thus forming a spectral function, A(k, E) with finite width [65].

It is worth noting that the final expression of PKm(kj) is not written in
terms of |kn〉, thus these do not need to be explicitly calculated. However, the
orthonormality condition needs to be satisfied [65],

〈kn|kn′〉 = δnn′ . (3.48)
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The polymorphic nature of a disordered structure is implicitly included in the disper-
sion relation. Furthermore, the cumulative sum of A(ki, E) [134] can help estimating
the positions and widths of bands [65],

Ski(εn) =
∫ εn

A(ki, E)dE. (3.49)

The spectral function unfolding method implemented in ONETEP below is
based on the paper of Constantinescu et al. [66]. They adapted the work of Lee
et al. [141] with the basis of local orbitals to PAW and NGWF formalism. The
spectral function operator is defined as

Â(ω) = − 1
π

Im
∑
K,J

|ΨKJ〉 〈ΨKJ |
ω + iη − εKJ

= η

π

∑
K,J

|ΨKJ〉 〈ΨKJ |
(ω − εKJ)2 + η2 , (3.50)

where |ΨKJ〉 is the all-electron Bloch state in a SC calculation with corresponding
eigenvalue εKJ . K is the wave vector in SBZ, J is the band index and η is an
infinitesimal positive broadening factor for keeping away from the singularity at
ω = εKJ . A broadening factor of 0.02 eV was used for all effective band structures
shown in this thesis. This is different from the disordered broadening which is related
to the polymorphic nature of disordered structures mentioned above. The effect of
disordered broadening can be seen from the difference of width for any given band
along the kpoint path in the effective band structure.

The desired spectral function is represented by a wave function in the PC.
It is written as the trace of the spectral function operator,

A =
∑
kj
Akj,kj =

∑
kj
〈Ψkj |Â|Ψkj〉 =

∑
k,α

Akα,kα =
∑
k,α
〈ψk,α|Â|ψαk〉. (3.51)

The spectral function in terms of the PC wave functions is expressed as

AIkj,kj(ω) = L

l

∑
K
δk−G,K ·AKJ,KJ(ω)

∑
µ,ν,r

eik·(r−r′(µ))Mµ
KJM

ν∗
KJS0ν,rγ(µ), (3.52)

with rγ(µ) ∈ I, so that µ ∈ I. The l and L refer to the number of PC and SC
duplicates, respectively. Mµ

KJ is the molecular orbital coefficient and µ refers to the
index of the NGWF in the SC with its range between 1 and the total number of
NGWFs in the simulation cell. The augmented overlap matrix element S0ν,rγ(µ) is
denoted as 〈φ0ν |φrγ(µ)〉, where {|φ〉} is the NGWF basis set. 0 refers to the original
SC lattice vector because only its influence is concerned. γ = µ%NPC (NPC is the
total number of NGWFs in the unit cell) is an index of the considered NGWF in
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the SC from the perspective of the PC. AKJ,KJ is a broadened Lorentzian function
according to eq. (3.50). The sum of each AIkj,kj in subsystem I gives the total
spectral function in the representation of PC eigenstates. The calculated spectral
function Akj,kj is often compared with the experimental results from ARPES.
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Chapter 4

Two-dimensional transition
metal dichalcogenide
alloy-Mo1−xWxS2 monolayer

This chapter is mainly related to the theoretical and computational simulations
of Mo1−xWxS2 monolayers. All the experimental results shown in this chapter
were provided by our collaborators led by Dr. Neil R. Wilson, from the University
of Warwick. This work has been published in the Journal of Physics: Materials
in 2021 [142], licenced under CC BY 4.0: X. Xia, S. M. Loh, J. Viner, N. C.
Teutsch, A. J. Graham, V. Kandyba, A. Barinov, A. M. Sanchez, D. C. Smith, N.
D. M. Hine and N. R. Wilson. Atomic and electronic structure of two-dimensional
Mo(1−x)WxS2 alloys. J. Phys. Mater., 4:025004, 2021. URL:https://doi.org/10.

1088/2515-7639/abdc6e.

4.1 Introduction

The atomic and electronic structures of an alloy composed of 2H-MoS2 and 2H-
WS2 monolayers were studied in this chapter. Through studying this alloy and
comparing our theoretical results with the experimental results, the conclusions
obtained here can be expanded to similar materials (e.g. Mo1−xWxSe2) prior to
an actual experiment. Furthermore, some properties which cannot be performed or
measured in the experiment can even be predicted through theoretical studies.

MoS2 and WS2 are two typical transition metal dichalcogenides with
wide range of applications in optoelectronic [22, 143] and semiconductor devices
[27, 34, 46]. The alloy Mo1−xWxS2 has been synthesised by several methods, such
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as CVD and CVT [42, 47]. The quality of the crystal was then confirmed by mul-
tiple forms of experimental measurements such as atomic force microscopy (AFM)
imaging, STEM, X-ray photoelectron spectroscopy (XPS) analysis, PL and Raman
spectroscopies. The similarity in the atomic and electronic structures (see figure
4.1) of MoS2 and WS2 monolayers suggests that homogeneous alloys are expected
to be formed. Zhang et al. [50] have proved this by showing highly homogeneous
and non-phase-segregated crystals in their studies. Dumcenco et al. [69] have also
displayed Mo1−xWxS2 (x = 0, ..., 1) monolayers with random distribution. How-
ever, the kinetic driven process also needs to be considered. Dopant distribution
with stripe patterns was formed in the work of Azizi et al. [144]. Their calculations
showed that there is no difference in binding energy between striped and random
distribution. The formation of stripes in the alloys is due to the fluctuations of the
local chemical potentials of molybdenum, tungsten and sulphur atoms at the growth
edge. Thus, they find the alloy is isotropic in the electronic property and anisotropic
in the vibrational property due to the similarity of their electronic structure and the
difference of their atomic masses, respectively. Furthermore, entropy was suggested
to play a role in generating disordered distributions in this alloy by Tan et al. [145].
They showed that the ordered phase is less stable than the disordered phase as the
temperature increases.

(a) MoS2 monolayer (b) WS2 monolayer

Figure 4.1: Electronic structures of MoS2 and WS2 monolayers calculated with a
plane wave basis set and the GGA-PBE pseudopotential through Quantum Espresso
[61, 62].

Physical properties of an alloy AxB1−xC composed of semiconductors AC
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and BC (where A and B are required to be isovalent atoms) can normally be
expressed by a simple equation according to the composition stoichiometry [146,
147],

Fx = xFAC + (1− x)FBC + kx(1− x), (4.1)

where Fx, FAC and FBC are physical properties of the alloy, AC and BC, respec-
tively. k is a general bowing parameter independent of the composition x of the alloy.
For example, k ' 0 if F refers to the lattice constant for a system with negligible
lattice mismatch between AC and BC (Vegard’s law [148]). In contrast, the bowing
effect is significant for electronic properties such as band gaps and band edges, The
bowing parameters are 0.25 ± 0.04 eV and 0.28 ± 0.04 eV for the experimental and
the theoretical band gaps, respectively [42].

Chen et al. [42] explained that the bowing of the band gap originated from
the CBM. Orbitals dxy and dx2−y2 from MoS2 and WS2 contribute equally to the
VBM of the alloy, while there are different orbitals contributed from MoS2 and
WS2 for the CBM: orbitals dz2 from MoS2 and {dxy, dx2−y2 , dz2} from WS2. Thus,
the bowing for the VBM is not obvious due to the same orbital contributions from
both MoS2 and WS2 monolayers. The contribution from WS2 monolayer for the
CBM with higher energy level increases as W composition x increases leading to the
bowing in the CBM [42]. Furthermore, Tan et al. [145] suggested that the atomic
distribution of the alloy also needs to be considered. Ordered atomic distributions
generate a smaller band gap than disordered phases, due to the difference of the con-
duction band splitting around the Fermi level at K between ordered and disordered
phases. For example, the conduction band splitting around the Fermi level at K
are 20 meV and 220 meV for disordered and ordered phase at x = 1/3, respectively
[145].

In this work, the atomic and electronic structures of Mo1−xWxS2 monolay-
ers were studied. The atomic distribution of W dopants in MoS2 monolayer was
analysed via Monte Carlo simulations. The electronic properties of Mo1−xWxS2

monolayers including the band gap, band splitting due to SOC, bandwidth of the
VBM and effective mass for holes were compared with the VCA [149] and exper-
imental results provided by our collaborators led by Dr. Neil R. Wilson from the
University of Warwick. The Mo1−xWxS2 monolayers were synthesised via CVT [150]
and determined by optical contrast, Raman spectra, PL emission, XPS and energy
dispersive X-ray analysis (EDX). The experimental data were measured through PL
spectroscopy and ARPES. A polarisation-resolved low-temperature PL spectroscopy
was also performed by Dr. David C. Smith from the University of Southampton for
determining the maintenance of the spin-valley locking in Mo1−xWxS2 monolayer.
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4.2 Computational methods

The lattice constant of MoS2 and WS2 monolayers and the binding energy of
Mo1−xWxS2 monolayers were calculated using CASTEP [60] (a plane-wave density
functional theory package). The GGA-PBE [94] with ultrasoft pseudopotentials
generated from on-the-fly [103] in CASTEP was used. The cut-off energy was set
to 424.5 eV. The lattice constants of MoS2 and WS2 monolayers were calculated
within primitive cells with a 10×10×1 of kpoint grids, whereas the binding energy
was calculated within 4×4×1 supercells with a kpoint grid of 3×3×1. Furthermore,
twenty Mo0.8W0.2S2 monolayers within 12×12×1 supercells with a kpoint grid of
1×1×1 were also calculated to verify the validation of binding energy. The spurious
interaction between two isolated cells is eliminated by increasing the vacuum spacing
to 10 Å.

The distribution of W atoms within MoS2 monolayers was analysed through
Monte Carlo simulations [67] on a hexagonal lattice. The observation of the short-
ranged W-W pairs inspires us to apply a model based on the Ising model [151] with
only nearest-neighbour pairs of transition metal atoms (Mo and W atoms) being
considered. The Hamiltonian is expressed as

H = −
∑
ij

Jijσiσj , (4.2)

where Jij is the interaction energy between the nearest-neighbour pairs. It is zero
except for the nearest neighbours (in that case Jij = J). In the simulation, proposed
site swaps between Mo and W atoms were randomly generated. Whether a site swap
is accepted depends on whether another random number generated in each site
swap is smaller than e−kBT (Enew−Eold), where kB is the Boltzmann constant, T is the
temperature considered, Enew and Eold are the total energies after and before the site
swap, respectively. Initially, a number of atoms of 14400 were randomly distributed
within a 120×120 2D layer. The ratio of Mo and W atoms were determined by the W
composition x considered. It was verified that equilibrium was achieved after 2×104

cycles at T = 800 K. The pairwise interaction energy J was based on the binding
energy calculated via CASTEP (see later). Furthermore, the atomic configuration
of a STEM with annular dark-field (ADF) image was also compared with the results
of Monte Carlo simulations.

Lastly, the electronic properties of Mo1−xWxS2 monolayers were calculated
by ONETEP [59, 63] (a linear-scaling density functional theory (LS-DFT) package).
Benefiting from the O(N) computational effort of this LS-DFT package, large-scale
systems can be more effectively simulated. Here, Mo1−xWxS2 monolayers with
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a random distribution within an 8×8×1 supercell (figure 4.2) were used in the
calculations. The cut-off energy and NGWF cut-off radius were set to 1200 eV
and 10 a0, respectively. Projector-augmented wave (PAW) [104, 105, 130] from
the JTH library [152] with the PBE pseudopotential functional was adopted. Only
Gamma point was considered in the Brillouin zone sampling for all calculations in
ONETEP, owing to the relatively large supercells. The spurious interaction between
two isolated cells is eliminated by increasing the vacuum spacing to 15 Å. The force
and enthalpy were converged within 0.1 eV/Å and 3×10−5 eV/atom, respectively, in
geometry optimisation calculations. The effective band structures projected on the
primitive cell for Mo1−xWxS2 monolayers within 8×8×1 supercells were calculated
through the spectral function unfolding method implemented in ONETEP [66] with
the SOC included as a perturbation. A Lorentzian broadening of 0.02 eV was tested
and employed for getting clear bands in the effective band structure. The bands in
the effective band structure become more discontinuous or vague if the broadening
factor is smaller or larger than 0.02 eV, respectively. The band gap, bandwidth, and
band splitting due to SOC near the VBM and the CBM for various W compositions
x were directly obtained from the spectral function unfolding calculations, whereas
the effective masses for holes were obtained through a fitting around K.

The results from VCA [149] calculations via Quantum Espresso code [61,
62] are also shown to compare with the results from LS-DFT and the experiment.
The GGA-PBE of optimised norm-conserving Vanderbilt pseudopotentials (fully-
relativistic) [153] obtained from PseudoDojo [154] with a kpoint grid of 18×18×1
was used in the calculations for various W compositions x were generated via the
“virtual" tool (upftools/virtual_v2.o) within the Quantum Espresso package. SOC
[155, 156, 157] was considered in the calculations. The mixed pseudopotential is
written as [158]

V ps
VCA[x] =xV ps

W + (1− x)V ps
Mo

=
[
xV loc

W + (1− x)V loc
Mo

]
+
∑
lm

∑
q

xV ps
W,l |φW

lm,q〉 〈φW
lm,q|xV

ps
W,l

〈φW
lm,q|xV

ps
W,l|φW

lm,q〉

+
∑
lm

∑
q

(1− x)V ps
Mo,l |φMo

lm,q〉 〈φMo
lm,q| (1− x)V ps

Mo,l
〈φMo
lm,q|(1− x)V ps

Mo,l|φMo
lm,q〉

, (4.3)

where V ps
Mo and V ps

W are the pseudopotentials of molybdenum and tungsten atoms,
respectively. The terms inside the square bracket represent the local contributions,
whereas the second and third terms represent the short-range non-local corrections.
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All atomic structures were generated and displayed via the atomic simula-
tion environment (ASE) [159], NumPy [160] and visualisation for electronic and
structural analysis (VESTA) [161].

4.3 Results and discussions

Figure 4.2 shows the top and side views of Mo1−xWxS2 monolayers. Each Nth-
nearest-neighbour pair is illustrated for later discussions.

(a) Top view

(b) Side view

Figure 4.2: (a) Top view (b) Side view of a Mo1−xWxS2 monolayer. Red, blue and
yellow colours refer to Mo, W and S atoms, respectively. Nth-nearest-neighbour
pair is labelled as NNi, where i = 1, ..., 8.

In this work, the lattice constants of MoS2 and WS2 monolayers calculated by
CASTEP are 3.18 Å and 3.19 Å, respectively, consistent with the lattice constant
in [162] with the same pseudopotential (see figure 4.3). The difference of lattice
constant between MoS2 and WS2 monolayers is only 0.3%. Thus 3.18 Å was used
as the lattice constant for all calculations with different W compositions x, where x
spans a range between 0 and 1.
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Figure 4.3: Total energy versus lattice constant of (a) MoS2 (b) WS2 monolayer.

4.3.1 Binding energy of Mo1−xWxS2 monolayer

The energetics of various atomic configurations including isolated W atoms or W
clusters in MoS2 are considered in this section. The formation energy of substituting
m tungsten atoms for the same number of molybdenum atoms in MoS2 monolayer
can be written as [163]

EF = Ealloy
T − EMoS2

T +mµW −mµMo, (4.4)

where Ealloy
T is the total energy of Mo1−xWxS2 monolayer, EMoS2

T is the total energy
of MoS2 monolayer, µMo and µW refers to the chemical potential of molybdenum
and tungsten atoms, respectively. The binding energy for the atomic configuration
involved m W atoms on adjacent lattice sites is then written as

EB = EmW
F −mE1W

F

=
[
EmW

T − EMoS2
T +mµW −mµMo

]
−m

[
E1W

T − EMoS2
T + µW − µMo

]
= EmW

T −mE1W
T + (m− 1)EMoS2

T ,

(4.5)

where EmW
T and mE1W

T are the total energies of Mo1−xWxS2 monolayers involved
m W atoms in a cluster and m isolated W atoms, respectively.

The binding energy based on eq. (4.5) for various atomic configurations
are shown in figure 4.4 and table 4.1. The binding energy EB ' 7.6 meV when
m = 2 is obtained (EB ' 7.0 meV if Mo atom is the substitutional dopant in WS2

monolayer). The positive binding energy suggests that W and Mo atoms prefer not
to form clusters in MoS2 and WS2 monolayers, respectively. Roughly, the differ-
ence of binding energy (∆) between atomic configurations in figure 4.4 and their
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corresponding predicted values calculated by the product of 7.57 meV and num-
ber of W-W bonds increases as the number of W-W bonds increases (table 4.1).
The relationship between the binding energy and the number of W-W bonds was
further studied in twenty Mo0.8W0.2S2 monolayers with different random configura-
tions within 12×12×1 supercells. In figure 4.5(b), it seems like ∆ does not in fact
simply increase monotonically with the number of W-W bonds. Different ∆ values
corresponding to the same number of W-W bonds can be seen, for example, in the
atomic configuration with the number of W-W bonds = 13, 15, 17 and 20. The
binding energies in figure 4.5(a) are in a range from 5 meV to 6.5 meV. This energy
range slightly deviates from 7.6 meV due to the interactions beyond pairwise terms
in large clusters. In fact, the binding energy is higher than 7.6 meV in larger super-
cell with the same atomic configurations as in figure 4.4. The density of W atoms
is lower in a larger supercell. For example, the binding energies are 7.62 meV and
7.72 meV for 8×8×1 and 12×12×1 supercells, respectively. Because the difference
of binding energy of Mo1−xWxS2 monolayers with different atomic configurations
and supercell sizes is relatively small, 7.6 meV is adopted as the pairwise interaction
energy in Monte Carlo simulation to give a phenomenological description.

Figure 4.4: Atomic structures of Mo1−xWxS2 monolayers involved clusters with m
W atoms (m = 1, ..., 6) within 4×4×1 supercells. Red, blue and yellow colours
represent molybdenum, tungsten and sulphur atoms, respectively.
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(a) (b)

Figure 4.5: (a) Binding energy/bond (b) ∆ versus the number of W-W bonds
from twenty Mo0.8W0.2S2 monolayers with different random configurations within
12×12×1 supercells. ∆ = Binding energy-Predicted binding energy.

Number of
W-W bonds

Binding
energy (meV)

Predicted
binding

energy (meV)

∆ (meV)

0W 0 0.00
1W 0 0.00
2W 1 7.57 7.57 0.00
3W 2 13.37 15.14 -1.78

TRI-3W 3 22.88 22.71 0.17
4W 4 26.60 30.28 -3.68
5W 5 29.41 37.85 -8.44
6W 9 58.17 68.13 -9.97

Table 4.1: Binding energies for the atomic configurations in figure 4.4. The binding
energy (EB) ' 7.57 meV, calculated based on eq. (4.5). The predicted binding
energy is defined to estimate the binding energy of a cluster with m W atoms
considering only the interaction between the first nearest-neighbour W-W pairs.
It is calculated by the binding energy (7.57 meV) including only one W-W bond
(m = 2) multiplying by the number of W-W bonds. ∆ = Binding energy-Predicted
binding energy.

4.3.2 Monte Carlo simulations

Figures 4.6 (a)-(d) show the atomic configurations of Mo0.78W0.22S2 monolayers at
T = 800 K (around the growth temperature of the alloy), calculated from Monte
Carlo simulations based on different W-W pairwise interaction energy. A parameter
is defined for easily comparing the atomic configurations with different interaction
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energies:
Ratio of W−W pairs = number of W−W pairs

x× number of M −M pairs , (4.6)

where M refers to the cations and x refers to the W composition. The atomic
distribution calculated via Monte Carlo simulation is more clearly seen with a large
interaction energy. Clusters are formed for a large negative interaction energy (J =
-50 meV) in figure 4.6(a), whereas W atoms spread over MoS2 monolayer for a
large positive interaction energy (J = 50 meV) in figure 4.6(d). The first nearest-
neighbour W-W pair is higher and lower than other nth-nearest-neighbour W-W
pairs (n 6= 1) in figure 4.7(c) and (f) for J = -50 meV and 50 meV, respectively. This
result is consistent with the implication of positive and negative binding energies
defined in eq. (4.5). Figure 4.6(b) and (c) show the atomic configurations with J = 0
meV (no interaction between W-W pair) and 7.6 meV (the binding energy obtained
from DFT calculations in section 4.3.1), respectively. The atomic distributions with
J = 0 meV and J = 7.6 meV are very similar. The similarity can also be seen in
figure 4.7(d) and (e).

The ratio of W-W pairs for nth-nearest-neighbour pairs (n = 1, ..., 8) are
all close to the W composition x considered, suggesting a random distribution in
the alloy. The annular dark-field scanning transmission electron miscroscopy (ADF-
STEM) image in figure 4.7(a) is visually indistinguishable from figure 4.6(b) for J =
0 meV and figure 4.6(c) for J = 7.6 meV. Furthermore, the first nearest-neighbour
W-W pair is slightly lower than other nth-nearest-neighbour W-W pairs (n 6= 1)
with J = 7.6 meV, corresponding to the feature of positive binding energy.

The variation of ratio with various nth-nearest-neighbour W-W pairs with
J = 7.6 meV is similar to J = 50 meV: the first nearest-neighbour W-W pair
depleted, second nearest-neighbour W-W pair enhanced and third nearest-neighbour
W-W pair depleted, etc. In figure 4.7(b), the real atomic distribution based on the
ADF-STEM images in figure 4.7(a) looks like figure 4.7(e): a slightly lower ratio for
the first nearest-neighbour W-W pair compared to other nth-nearest-neighbour W-
W pairs (n 6= 1). The predicted and observed statistical behaviour are comparable
because all nth-nearest-neighbour W-W pairs from the Monte Carlo simulations are
within the error bars of ADF-STEM images. The small positive interaction energy
(J = 7.6 meV) also suggests Mo1−xWxS2 monolayer can be regarded as a very-
nearly-random distribution. It is worth noting that an almost identical ratio of W-
W pairs are seen from n = 4 to n = 8 for all interaction energies considered in figure
4.7(c)-(f). This indicates that the long-ranged order is absent for all interaction
strengths considered.
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(a) J = -50 meV (b) J = 0 meV

(c) J = 7.6 meV (d) J = 50 meV

Figure 4.6: Monte Carlo simulations for Mo0.78W0.22S2 monolayers with interaction
energy (a) J = -50 meV (b) J = 0 meV (c) J = 7.6 meV (d) J = 50 meV at T =
800 K. Pink and blue dots refer to Mo and W atoms, respectively.
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(a) ADF-STEM image of Mo0.78W0.22S2
monolayer (S atoms cannot be identified)

(b) Ratio of W-W pairs versus
nth-nearest-neighbour pair

(c) J = -50 meV (d) J = 0 meV

(e) J = 7.6 meV (f) J = 50 meV

Figure 4.7: (a) ADF-STEM image of Mo0.78W0.22S2 monolayer (dark dots: Mo
atoms, bright dots: W atoms). Experiments performed by X. Xia, N. C. Teutsch,
A. J. Graham, V. Kandyba, A. Barinov, A. M. Sanchez and N. R. Wilson. Re-
produced from [142]. (b) Ratio of W-W pairs versus nth-nearest-neighbour pair
for ADF-STEM images of Mo0.78W0.22S2 monolayer and the corresponding Monte
Carlo simulations with J = 7.6 meV at T = 800 K. The error bars are based on the
standard deviations calculated from ten regions within 40×40×1 supercells in the
same ADF-STEM image. Ratio of W-W pairs versus nth-nearest-neighbour pair for
Mo0.78W0.22S2 monolayer with interaction energy (c) J = -50 meV (d) J = 0 meV
(e) J = 7.6 meV (f) J = 50 meV at T = 800 K. Ratio of W-W pairs = number of
W-W pairs/ (x× number of M −M pairs), where M refers to Mo or W atom and
x refers to the W composition. Nth-nearest-neighbour pair is labelled in figure 4.2.
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Figure 4.8 shows similar atomic configurations and variation for the ratio of
W-W pairs with J = -50 meV, 0 meV, 7.6 meV and 50 meV in Mo0.37W0.63S2 mono-
layer. This implies that the arguments mentioned above can also be applied to other
W compositions x. In a previous study [69], the distribution of W in Mo1−xWxS2

monolayer has already been suggested to be random. In addition, clusters (or stripes
seen in [144]) are suggested to be formed due to the small binding energy by tech-
nically adjusting the experimental parameters during the growth process. Further-
more, figure 4.9 shows the ratio of W-W pairs versus nth-nearest-neighbour pair for
various temperatures with J = 7.6 meV in Mo0.41W0.59S2 monolayer. The result
at T = 0 K with clearly long-range order significantly deviates from other tem-
peratures and decays very slowly indeed as the index of nearest neighbouring pair
increases. The saturation can be seen when T > 600 K. The strong ordering in T =
0 K is eliminated by temperature, thus no long-ranged ordering can be seen in the
as-grown Mo1−xWxS2 with the growth temperature much higher than 50 K.
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(a) J = -50 meV (b) J = 0 meV

(c) J = 7.6 meV (d) J = 50 meV

(e) J = -50 meV (f) J = 0 meV

(g) J = 7.6 meV (h) J = 50 meV

Figure 4.8: Monte Carlo simulations for Mo0.37W0.63S2 monolayer with interaction
energy (a) J = -50 meV (b) J = 0 meV (c) J = 7.6 meV (d) J = 50 meV at
T = 800 K. Pink and blue dots refer to Mo and W atoms, respectively. Ratio
of W-W pairs versus nth-nearest-neighbour pair for Mo0.37W0.63S2 monolayer with
interaction energy (e) J = -50 meV (f) J = 0 meV (g) J = 7.6 meV (h) J = 50
meV at T = 800 K. Ratio of W-W pairs = number of W-W pairs/ (x× number of
M−M pairs), whereM refers to Mo or W atom and x refers to the W composition.
Nth-nearest-neighbour pair is labelled in figure 4.2.
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Figure 4.9: Ratio of W-W pairs versus nth-nearest-neighbour pair with J = 7.6
meV at T = 0 K to T = 8000 K for Mo0.41W0.59S2 monolayer. Ratio of W-W pairs
= number of W-W pairs/ (x× number of M −M pairs), where M refers to Mo or
W atom and x refers to the W composition. Nth-nearest-neighbour pair is labelled
in figure 4.2.

4.3.3 Electronic properties of Mo1−xWxS2 monolayer

Figure 4.10 shows the effective band structure of Mo1−xWxS2 monolayers at x =
0.250, 0.375, 0.500, 0.625, 0.750 and 0.875. SOC was included in all effective band
structures at different W compositions x. The character of the band structure does
not change significantly as W composition x increases. The band gap changes with
W composition x due to the variation of valence band splitting around the Fermi
level at K. The E − k dispersion relation of Mo1−xWxS2 monolayers at x = 0.37,
0.50 and 0.71 measured by ARPES are shown in figure 4.11. Direct comparison of
the band structure can be made between figure 4.11 and 4.10(b), (c) and (e) when
ignoring the energy offset.
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(a) Mo0.750W0.250S2 (b) Mo0.625W0.375S2

(c) Mo0.500W0.500S2 (d) Mo0.375W0.625S2

(e) Mo0.250W0.750S2 (f) Mo0.125W0.875S2

Figure 4.10: The effective band structure of (a) Mo0.750W0.250S2 (b) Mo0.625W0.375S2
(c) Mo0.500W0.500S2 (d) Mo0.375W0.625S2 (e) Mo0.250W0.750S2 (f) Mo0.125W0.875S2
monolayer. A Lorentzian broadening of 0.02 eV was employed in the effective band
structures. Note that SOC was included in all effective band structures.
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Figure 4.11: ARPES measurement along Γ to K for Mo1−xWxS2 monolayers (x =
0.37, 0.50, 0.71). Experiments performed by X. Xia, N. C. Teutsch, A. J. Graham,
V. Kandyba, A. Barinov, A. M. Sanchez and N. R. Wilson. Reproduced from [142]

.

Definitions of the band parameters are shown schematically in figure 4.12.
Band gap (Eg) is the energy difference between the CBM and the VBM. A direct
band gap can be seen for MoS2, WS2 and Mo1−xWxS2 monolayers where the VBM
and CBM are both located at K. The bandwidth of the VB (Dvb) is the energy
difference between the highest and lowest energy levels of the VB within the Bril-
louin zone. The Γ-K kpath where both the VBM and CBM occur is sufficient to
calculate Dvb. Figure 4.12(b) shows the band splitting caused by the SOC for MoS2,
Mo1−xWxS2 and WS2 monolayers and the corresponding spin states for each band
at K valley. The magnitude of band splitting near the VBM and the CBM are
denoted as SOCVBM and SOCCBM, respectively. Bands in red and black colours
shift up and down as W composition x increases from 0 (MoS2) to 1 (WS2). The
ordering of energy level of the conduction bands in red and black colours at K are in
reverse for MoS2 and WS2 monolayers, resulting in the overlap of conduction bands
at intermediate W composition x.
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Figure 4.12: (a) Definition of the band gap (Eg) and the bandwidth of the VB
(Dvb) are indicated in an effective band structure of Mo1−xWxS2 monolayer with
SOC included. (b) Valence and conduction band splittings around the Fermi level
(SOCVBM and SOCCBM) at K for MoS2, Mo1−xWxS2 and WS2 monolayers. Red
and black colours refer to two different spin states. The ordering of energy level of
the conduction bands in red and black colours in WS2 monolayer around the Fermi
level at K are opposite to MoS2 monolayer, leading to the overlap of these two bands
at intermediate W composition x.

Figure 4.13(a) shows the band gap obtained from the LS-DFT calculations
(black data points), plane-wave DFT calculations with pseudopotential based on
VCA (red data points) and the PL spectra (blue data points) as a function of W
composition x. The PL emission is an electron transition between the VBM and
the conduction band with the same spin state around the Fermi level at K. There-
fore, it corresponds to the energy difference between the CBM or the band above
CBM and VBM in figure 4.12(b) for MoS2 or WS2 monolayers, respectively. Band
gap calculated by LS-DFT calculations and the PL emissions both possess bowing
features, however, the variation of band gap with W composition x is completely
different: the PL emission increases monotonically as W composition x increases,
while the band gap calculated by LS-DFT decreases to around x = 0.625 and then
increases as W composition x increases. This leads to different magnitudes of bow-
ing parameters b: they are 0.12 ± 0.01 eV for LS-DFT calculations and 0.17 ± 0.01
eV for the PL emissions, neither being consistent with 0.28 ± 0.04 eV and 0.25 ±
0.04 eV for the theoretical and experimental bowing parameters in [42].

The band gaps are 1.63 eV and 1.85 eV for MoS2, whereas the band gaps are
1.62 eV and 1.98 eV for WS2 monolayers, obtained from LS-DFT calculations and
the PL emissions, respectively. The band gap calculated by DFT with semilocal
functionals give a smaller band gap than the quasiparticle band gap because ∂Exc

∂N is
not a continuous derivative [164, 165, 166, 167]. In addition, the PL emissions show
the optical band gap relating to the excitonic effects [168, 169]. Defects and the
intrinsic carriers in the as-grown crystals may also lead to unknown degree of band
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gap renormalisation. The small difference of the band gap between MoS2 (2.07 ±
0.05 eV) and WS2 (2.03 ± 0.05 eV) monolayers from prior ARPES measurements
[170] indicates a similar trend to LS-DFT calculations. Although the band gaps
calculated with VCA at intermediate W compositions are close to LS-DFT calcula-
tions, the variation of the band gap with W composition x for VCA is linear (b =
-0.02, no obvious bowing observed).

The experimental band parameters of the conduction band in figure 4.13(c)-
(e) are not available because only the occupied states in valence bands can be probed
in the ARPES measurements. Figure 4.13(b) shows the spin-orbit splitting of the
VBM (SOCVBM) versus W composition x. Both LS-DFT calculations (black data
points) and the experimental results (blue data points) increase linearly as W com-
position x increases, but the SOCVBM of LS-DFT calculations are smaller than the
experiments. The valence band splittings around the Fermi level in MoS2 and WS2

monolayers calculated by LS-DFT calculations are approximately 145 meV and 426
meV, respectively (consistent with the results of [171] with LDA functional). The
experimental SOCVBM in WS2 monolayer (458 ± 10 meV) is also consistent with a
prior study [170]. The SOCVBM calculated by VCA (red data points) calculation
at x = 0 and x = 1 have similar values to LS-DFT, however, it does not increase
linearly as W composition x increases.

The bandwidths (Dvb) calculated by LS-DFT (black data points) and the
experimental results (blue data points) are very similar: the bandwidth increases
linearly as the W composition x increases to around x = 0.90, followed by a slight
decrease from around x = 0.90 to x = 1.00. There is a 0.1 eV systematic difference
between LS-DFT calculations and the experiments. This deviation may be due
to the slight difference of the lattice constant between theory and experiment (the
experimental lattice constant of MoS2 is 3.16 Å [172] and WS2 is 3.15 Å [173]), since
the magnitude of the bandwidth related to the interatomic distance. The largest
difference between LS-DFT and VCA (red data points) is about 0.05 eV at x = 0.00
and they are very consistent in a range between x = 0.40 and x = 0.60.

The effective mass for holes (mh) around K (figure 4.13(d)) has an opposite
trend with respect to the SOCVBM and the bandwidth of the VBM: it decreases
monotonically as W composition x increases. This means that the curvature of
the VBM around K increases as W composition x increases (meff ∝ [∂2E

∂k2 ]−1). The
largest difference of the effective mass for holes between LS-DFT (black data points)
and VCA calculations (red data points) is about 0.05 m0 (m0: electron mass) at
intermediate W composition x and decreases as x approaches 0 and 1. The error
bars are large and no obvious trend is seen for the experimental effective mass for
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holes (blue data points) due to the difficulty in extracting data from the ARPES
spectra. Therefore, the effective masses for holes based on LS-DFT calculations and
the experiments at various W compositions x cannot be compared. The effective
masses for holes based on LS-DFT calculations are consistent with a previous study
with LDA pseudopotential [171]. It is a 0.05 m0 of systematic deviation between
this work and [171].

It is worth mentioning that the green data points in figure 4.13(a)-(e) rep-
resent the results of LS-DFT calculations based on the atomic configuration from a
ADF-STEM image within a 8×8×1 supercell. They are all consistent with the re-
sults of LS-DFT based on random distribution for different band parameters. This
further confirms the random alloying in Mo1−xWxS2 monolayers. The results of
VCA calculations within primitive cells are less consistent with experiment than
LS-DFT calculations within large supercells. It is reasonable to assume this is be-
cause the pseudopotential generated based on VCA is a stoichiometric mixture of
two pseudopotentials, which implies that local atomic interaction is not considered.

Figure 4.13(e) displays the conduction band splitting around the Fermi level
(SOCCBM) as a function of W composition x. No experimental results can be
shown due to the limitation of ARPES measurement to probe the unoccupied states.
Bowing features can be observed for both LS-DFT and VCA calculations. Unlike
the full SOC treatment in VCA calculation, SOC is a perturbation in the LS-DFT
calculation. This leads to small differences of SOCCBM between LS-DFT and VCA
calculations at x = 0 and x = 1. The magnitude of the SOCCBM is very small
compared to the SOCVBM. SOCCBM are 48 and 15 times smaller than the SOCVBM

at x = 0 (MoS2) and x = 1 (WS2), respectively. The overlap of the conduction
bands around the Fermi level at K at intermediate W composition x in figure 4.12(b)
corresponds to zero SOCCBM. This happens around x ' 0.250 and x ' 0.063 for
LS-DFT and VCA calculations, respectively. The difference of the SOCCBM between
LS-DFT and VCA calculations is more apparent than the SOCVBM due to the small
magnitude of SOCCBM.
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Figure 4.13: (a) Band gap and PL emission peak energy (b) Valence band splitting
around the Fermi level (SOCVBM) at K (c) Bandwidth of the VBM (Dvb) (d)
Effective mass for holes (mh) around K (e) Conduction band splitting around the
Fermi level (SOCCBM) at K as a function of W composition x. Black, red and
blue data points refer to the results of LS-DFT calculations, VCA calculations and
experiments. Green data points are the results of LS-DFT calculations based on the
atomic configuration derived from an ADF-STEM image within a 8×8×1 supercell.
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The change of the CBM position in Mo1−xWxS2 monolayers with different
random configurations within the length scale of exciton radius can be used to
roughly estimate the disorder potential. Mo1−xWxS2 monolayers with three different
random configurations for various W compositions x were considered in LS-DFT
calculations. The conduction band splitting around the Fermi level at K is smaller
than the disorder potential around 0.125 < x < 0.428 (figure 4.14). A previous
study [145] showed that the band parameters related to the CBM are not only
susceptible to W composition x but also ordering of the atomic configuration. It is
therefore unclear whether spin-valley locking is retained in Mo1−xWxS2 monolayer
from LS-DFT calculations.

Figure 4.14: Energy versus W composition x for conduction band splitting around
the Fermi level at K and disorder potential.
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For studying the spin-valley locking in Mo1−xWxS2 monolayer, optical mi-
croscopy measurements of the hBN-encapsulated Mo0.5W0.5S2 monolayer flake are
shown in figure 4.15(a). Figure 4.15(b) shows the fractional intensity as a function of
energy. A right-handed (σ+) and left-handed (σ−) circularly polarised light emission
are mainly generated through the excitation of the same polarised light. Fractional
intensity for each polarisation was obtained through its intensity divided by the sum
of the intensities for each polarisation at 1.92 eV. The sharp peaks within an energy
range of 1.92 eV and 1.975 eV originated from Raman scattering. The spin-valley
locking is suggested to be maintained because the valley polarisation η > 0.4 (ob-
vious circular polarisation) (η = PL(σ+)−PL(σ−)

PL(σ+)+PL(σ−) , where PL(σ+) and PL(σ−) refer to
the intensity of the right-handed and left-handed circularly polarised light emission,
respectively) in figure 4.15(c) for most of the polarised lights within an energy range
between 1.87 eV and 1.97 eV. In figure 4.15(d), the differential reflectivity shows a
peak at 1.954 ± 0.001 eV (corresponding to the free A1s exciton). This energy is
within the energy range of free A1s exciton from reflectivity for encapsulated MoS2

(' 1.94 eV [174]) and WS2 (' 2.09 eV [175]) monolayers. Spin-valley locking is
shown to be maintained in Mo1−xWxS2 monolayer by both PL and reflectivity mea-
surements. This phenomenon satisfies the optical selection rules and consistent with
previous studies for transition metal dichalcogenide monolayers [176, 177, 178, 179].
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(a)
(b)

(c) (d)

Figure 4.15: (a) Optical microscopy image (top) and schematic cross section (bot-
tom) of the hBN-encapsulated Mo0.5W0.5S2 monolayer flake. (b) Fractional intensity
of polarisation-resolved PL spectra versus energy for the heterostructure in (a) at
T = 4 K. σ+ and σ− refer to the right-handed and left-handed circularly polarised
light, respectively. V refers to a vertical and linear polarised light with a spin state
of (σ+ + σ−)/

√
2. Fractional intensity for each incident polarisation was obtained

through its intensity divided by the sum of the intensities for each incident polarisa-
tion at 1.92 eV. The sharp peaks within an energy range between 1.92 eV and 1.975
eV originated from Raman scattering. (c) Circularity of the PL versus energy. The
circularity is defined as σ+σ+−σ+σ−

σ+σ++σ+σ− under σ+ excitation. (d) Differential reflectivity
versus energy for the heterostructure in (a) at T = 4 K. The fitting (red curve) is
based on a T-matrix model with layer thickness included. A Lorentzian oscillator is
used to model the A1s exciton, where its centre energy was fitted to 1.954 ± 0.001
eV and the width is 41 ± 1 meV. Experiments performed by J. Viner and D. C.
Smith. Reproduced from [142].
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4.4 Conclusions

Mo1−xWxS2 monolayers are suggested to exhibit essentially random alloying for
various W composition x through the comparison between Monte Carlo simulations
with W-W pairwise interaction energy obtained via plane-wave DFT calculations
and STEM image. The results of LS-DFT calculations are more consistent with the
experiments when comparing with VCA calculations because the local atomic in-
teractions among Mo and W atoms are eliminated in VCA calculations. Therefore,
there are significant differences between LS-DFT calculations and VCA calculations
for properties which are affected by local interactions. Although bowing features
can be seen for the band gap in both LS-DFT calculations and the experiments,
their results cannot be compared due to the underestimation of the band gap ob-
tained from DFT calculations with semilocal potential, not including excitonic effect
and intrinsic carriers in the DFT calculations. Thus, the bowing parameters of the
band gap are different for LS-DFT calculations and the experiments. The valence
band splitting around the Fermi level at K and the bandwidth of the VBM increase
linearly, whereas the effective mass for holes decreases linearly as W composition
x increases for both LS-DFT calculations and the experiments. The valence band
splitting and the bandwidth of the VBM obtained from LS-DFT calculations are
systematically 50 meV and 100 meV smaller than the experimental results, respec-
tively. The conduction band splitting around the Fermi level at K is smaller than
the disorder potential at 0.125 < x < 0.428 obtained from LS-DFT calculations.
Spin-valley locking was observed in the hBN encapsulated Mo0.5W0.5S2 monolayer
through the polarisation-resolved PL and reflectivity measurements. These findings
prove that alloying is a promising means by which to tune the electronic proper-
ties of transition metal dichalcogenides, thus widening their applications in future
semiconductor devices, optoelectronics, valleytronics and spintronics.
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Chapter 5

Two-dimensional transition
metal dichalcogenide
alloy-W1−xNbxS2 monolayer

This chapter mainly relates to the theoretical and computational simulations of
W1−xNbxS2 monolayers. Only the ADF-STEM image shown in figure 5.1(a) was
provided by our experimental collaborators led by Dr. Neil R. Wilson, from the
University of Warwick. This work has been published in the Physical Review B
in 2021 [180]: S. M. Loh, X. Xia, N. R. Wilson and N. D. M. Hine. Strong in-
plane anisotropy in the electronic properties of doped transition metal dichalco-
genides exhibited in W1−xNbxS2. Phys. Rev. B, 103:245410, 2021. URL:https:

//doi.org/10.1103/PhysRevB.103.245410. Copyright c© 2021 American Physi-
cal Society.

5.1 Introduction

In chapter 4, the atomic and electronic structures of alloy composed of 2H-MoS2 and
2H-WS2 monolayers has been discussed. A similar topic is discussed in this chapter:
the alloy composed of 2H-NbS2 and 2H-WS2 was studied. The alloy is expected to
be quite different from the Mo1−xWxS2 monolayer in chapter 4 because NbS2 is a
metal, whereas WS2 is a semiconductor.

NbS2 is a material belonging to group VB TMDCs which possesses supercon-
ductivity but no charge density wave (CDW) order because of anharmonic effects
[181]. It has significant spin fluctuations and magnetic susceptibility [182]. The spin
density wave (SDW) can be realised by adopting approaches such as doping, defects,
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impurities or ribbon edges [182]. In addition, NbS2 monolayer provides good p-type
Ohmic contacts with two-dimensional materials such as WSe2 and BP due to its
large work function, which compensates the reduction of work function owing to the
asymmetric interface dipole. The VBM is then fixed above the Fermi level leading
to a good Ohmic contact even in a very large electric field [183].

CVD growth of W1−xNbxS2 monolayer has been proposed in [184, 185]. From
the work of Feng et al. [186], the doping of Nb atoms in WS2 leads to the shift of
the Fermi level towards the valence bands. Thus, the band gap decreases from 1.82
eV to 1.64 eV as x increases from 0.03 to 0.15. From the projected density of states
(PDOS), the valence bands near the Fermi level are dominated by the d orbitals of
Nb atoms instead of W atoms, whereas the conduction bands are still dominated
by the d orbitals of W atoms (similar to WS2 monolayer) at x = 0.15 [186]. The
electrode based on this alloy has a higher performance than WS2-based electrodes
since the Schottky barriers are reduced owing to the hybridisation among 5d orbitals
of W atom, 4d orbitals of Nb atom and 3p orbitals of S atom near the Fermi level
[186]. The effective hole mobility and the Ion/Ioff are high and up to about 146
cm2V−1s−1 and 107, respectively [186]. In a range of x between 0 and 0.25, 15%
doping of Nb atoms gives the highest electrical conductivity [186]. The ambipolarity
can also be eliminated in the W1−xNbxS2 monolayer-based FET [186].

Jin et al. [184] showed that the substitution of Nb atom at the position of
W atom is the most stable when compared with other types of doping such as the
substitution of Nb atom at the position of S atom and the absorption of Nb adatom
above the positions of W or S atoms. Atomic configuration with Nb clustering
in WS2 monolayer has the lowest formation energy, compared to the isolated Nb
or Nb in a row [184]. Furthermore, kinetic processes can significantly affect the
dopant distribution. Azizi et al. [144] displayed a dopant distribution with stripe
pattern in Mo1−xWxS2 monolayer, different from the random alloying in chapter 4.
The fluctuations of the chemical potential of Mo, W and S atoms at each atomic
site determine jointly this atomic configuration. In fact, it was suggested from
previous literature [187, 188, 189] that the growth of TMDC flakes is influenced by
the competition among several non-equilibrium dynamic processes, for example, the
adsorption and desorption of the constituent atoms of the TMDC, several different
diffusions including flake edge, vacancy defects (metals and chalcogens) and surface
diffusions. There are extrinsic and intrinsic parameters that influence the growth of
the TMDC flake. The extrinsic parameters such as temperature, adsorption rate of
adatom, chalcogen to metal (C/M) ratio of the precursors, can be controlled in the
experiment. The intrinsic parameters cannot be altered as the synthesised materials
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and substrate are determined initially.
In this work, W1−xNbxS2 monolayers were synthesised via CVT [142, 190]

method, performed by our experimental collaborators led by Dr. Neil R. Wilson from
the University of Warwick and analysed via ab initio calculations. An anisotropic
atomic configuration in the as-grown sample was seen in the ADF-STEM image.
This can be explained partly from the perspective of energetics. Kinetic processes
need to be taken into account in forming this symmetry-breaking dopant distribu-
tion. The effective band structures and electrical conductivity of several designed
atomic configurations were compared with the real atomic configuration in ADF-
STEM image. It is found that the electrical conductivity is also strongly anisotropic
for this dopant distribution. The conductivity can be improved by forming stripes
with longer length, increasing the spacing between line segments and increasing the
Nb composition.

5.2 Computational methods

CASTEP [60] was used as the simulation package in calculations to find the lattice
constant of NbS2 monolayer, the binding energies for various dopant distributions
and the geometry optimisations of the atomic structures. On-the-fly generated ul-
trasoft pseudopotentials [103] with the GGA-PBE [94] was adopted along with a
cut-off energy of 500 eV. A lattice constant of 3.345 Å was obtained for NbS2 mono-
layer within a primitive cell with a kpoint grid of 21×21×1. The lattice constant
of NbS2 monolayer is consistent with the theoretical lattice constant (3.332 Å) in
[191] and the experimental lattice constant (3.310 Å) in [192]. Several different sizes
of supercells with the kpoint spacings not exceeding 0.11 Å−1 were used in this
work. The spurious interaction between two isolated cells is eliminated by setting
the vacuum spacing to 20 Å. The convergence criteria were 1×10−5 eV/atom for
total energy in an electronic minimisation task and 2×10−5 eV/atom for the free
energy in a geometry optimisation task.

ONETEP [59, 63] was used for the effective band structure calculations. A
cut-off energy of 1600 eV and a NGWF radius of 13 a0 were set. GGA-PBE pseu-
dopotentials with PAW datasets [104, 105, 130] from the GBRV library [193] were
used. The spurious interaction between two isolated cells is eliminated by setting
the vacuum spacing to 20 Å. The effective band structures within the Brillouin zone
of primitive cell were projected from a 12×12×1 supercell by using spectral function
unfolding method implemented in ONETEP (section 3.2). SOC was included as a
perturbation in ONETEP in all effective band structure calculations. A Lorentzian
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broadening of 0.02 eV was employed in the effective band structure.
The electrical conductivity of W1−xNbxS2 monolayer was further investi-

gated through a post-processing package, BoltzTrap [68], with the initial input of
atomic and electronic structures calculated from CASTEP. The j-dependent pseu-
dopotentials obtained from CCPForge based on [156] were used in the calculations
in CASTEP for including SOC. Semiclassical transport coefficients are generated
by the smooth Fourier interpolation of the bands calculated from CASTEP. The
conductivity tensor is written as [68]

σαβ(i,k) = e2τi,kvα(i,k)vβ(i,k), (5.1)

where e is the electron charge, τ is the relaxation time and vβ(i,k) is the group
velocity

vβ(i,k) = 1
h̄

∂εi,k
∂kβ

. (5.2)

FFTs are useful in efficiently calculating the group velocity in eq. (5.2). If the
conductivity is written in terms of density of states by applying a delta function,
eq. (5.1) can be rewritten as

σαβ(ε) = 1
N

∑
i,k
σαβ(i,k)δ(ε− εi,k), (5.3)

where N represents the number of kpoints. In terms of the Fermi-Dirac distribution
f , the conductivity tensor is

σαβ(T ;µ) = 1
Ω

∫
σαβ(ε)

[
−∂fµ(T ; ε)

∂ε

]
dε. (5.4)

where Ω is the cell volume and µ is the chemical potential. In 2D systems, the cal-
culated conductivity through BoltzTrap needs to be multiplied by the magnitude of
the simulation cell along the z direction. This is because the calculated conductivity
through BoltzTrap is divided by the volume of the simulation cell (eq. (5.4)) which
includes sufficiently large vacuum spacing in the z direction for 2D systems. An
energy grid (dε) of 0.0068 eV (0.0005 Ry) for the integration was set. The ratio of
number of lattice points to kpoints is 5. A spectral kpoint sampling mesh of 6×6×1
within 8×8×1 supercells was used in CASTEP. A scheme of histogram sampling
was used for obtaining the density of states (DOS). Note that a constant relaxation
time τ was assumed in all calculations in this code.

All the atomic structures and the isosurfaces of charge densities were gen-
erated and exhibited via the atomic simulation environment (ASE) [159], NumPy
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[160] and the visualisation for electronic and structural analysis (VESTA) [161].

5.3 Results and discussions

Figure 5.1(a) shows an ADF-STEM image of W0.9Nb0.1S2 monolayer. Some stripes
(lines), clusters and isolated Nb atoms are seen in the image (similar to Re0.5Nb0.5S2

monolayer [194]). This kind of anisotropic dopant distribution is not commonly
seen in the TMDC alloys. The spacing includes about 4-5 W atoms between two
stripes. Clear schematic top and side views from a region of figure 5.1(a) are shown
in figure 5.1(b) and (c), where the lines are parallel to the lattice vector b. The
first Brillouin zone of the atomic structure is also shown in figure 5.1(d), where
some specified kpoints and the directions parallel and perpendicular to the line are
indicated. This anisotropic dopant distribution raises the question of which kind of
dopant distribution is the most energetically favourable in W1−xNbxS2 monolayer.

Figure 5.1: (a) ADF-STEM image of W0.9Nb0.1S2 monolayer, where bright and dark
colours refer to W and Nb atoms, repectively. Experiments performed by X. Xia
and N. R. Wilson. Reproduced from [180]. (b) Top view (c) side view of a region
in (a). Red, blue and yellow colours refer to Nb, W and S atoms, respectively. (d)
First Brillouin zone of the atomic structure within a hexagonal lattice in (b). Some
specified kpoints: three equivalent K and one M, are indicated. The directions of
parallel and perpendicular to the line in (a) are also indicated for later discussions.
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5.3.1 Binding energy of W1−xNbxS2 monolayer

Similar to eq. (4.5) in chapter 4, the binding energy for forming atomic configuration
with m Nb atoms on neighbouring sites is written as

EB = EmNb
T −mE1Nb

T + (m− 1)EWS2
T , (5.5)

where EmNb
T refers to the total energy of atomic configuration with m Nb atoms

at adjacent sites and mE1Nb
T refers to the total energy of atomic configuration with

m isolated Nb atoms. Similar to the atomic configurations shown in figure 4.4,
the binding energies for various dopant distributions are discussed in table 5.1. A
binding energy of about -125.8 meV was obtained, this means that Nb atoms prefer
to form clusters in WS2 monolayer. However, it is still unknown what kind of
cluster is inclined to be formed. It is worth noting that a binding energy of about
20.76 meV was obtained for NbS2 monolayer doped with W atoms. This positive
binding energy suggests W atoms do not tend to form clusters, similar to MoS2

monolayer doped with W atoms (' 7.6 meV) and WS2 doped with Mo atoms ('
7.0 meV). The absolute value of the difference between the calculated and predicted
binding energies (∆) for different sizes of dopant clusters increases to ' 270 meV
as the number of Nb-Nb bonds increases to 9. The absolute value of ∆ are also
significantly larger than Mo1−xWxS2 monolayer with the same dopant distributions
when the number of Nb-Nb bonds larger than 2 in table 4.1. Interestingly, if sulphur
is replaced by selenium, the binding energies are about -53.56 meV and 35.82 meV
for WSe2 monolayer doped with Nb atoms and NbSe2 monolayer doped with W
atoms, respectively. The sign of binding energies for W1−xNbxS2 and W1−xNbxSe2

monolayers are the same, but it is lower in sulphur cases. For example, binding
energies in the WS2 monolayer doped with Nb atoms are more than 2× lower than
WSe2 monolayer doped with Nb atoms.

Various dopant distributions are compared to investigate the most stable
atomic configuration from the point of view of energetics. In figure 5.2(a) and (b)
with m = 3, the dopant distribution with a triangular cluster has lower binding
energy than the line. For m = 4 in figure 5.2(c)-(f), the “L” cluster has the lowest
binding energy among the “line”, “parallelogram” and “isolated” patterns. The
ordering of binding energy is “L” < “parallelogram” < “line” < “isolated” (same
as reference [184]). The “isolated” pattern with the highest binding energy seems
to be the energetically least favourable pattern, consistent with the implication of
negative binding energy mentioned above. Two types of “L” with different lengths
along lattice vector b (figure 5.1) are compared in figure 5.2(g)-(h). It is seen that
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Number of
Nb-Nb bonds

Binding
energy (meV)

Predicted
binding

energy (meV)

∆ (meV)

0Nb 0 0.00
1Nb 0 0.00
2Nb 1 -125.79 -125.79 0.00
3Nb 2 -253.79 -251.59 -2.20

TRI-3Nb 3 -373.69 -377.38 3.69
4Nb 4 -480.02 -503.18 23.16
5Nb 5 -594.95 -628.97 34.02
6Nb 9 -862.03 -1132.15 270.12

Table 5.1: Binding energies for the atomic configurations in figure 4.4. A binding
energy of -125.79 meV/bond is obtained based on eq. (5.5). The predicted binding
energy is defined to estimate the binding energy of a cluster with m Nb atoms
considering only the interaction between the first nearest-neighbour Nb-Nb pairs. It
is calculated by the binding energy (-125.79 meV) including only one Nb-Nb bond
(m = 2) multiplying by the number of Nb-Nb bonds. ∆ = Binding energy-Predicted
binding energy.

the “L” with longer length (figure 5.2(g)) is more inclined to be formed in the
W1−xNb2S2 monolayer. The conclusions obtained here can be extended to larger
supercells. In figure 5.3, the ordering of binding energy with different combinations
of prototypes is the same as figure 5.2: “L-L” < “L-parallelogram” < “parallelogram-
parallelogram” < “L-line” < “parallelogram-line” < “line-line” < “line-isolated”.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.2: W1−xNbxS2 monolayers with different dopant distributions within
4×4×1 supercells. The corresponding binding energies are indicated. Red, blue
and yellow colours refer to Nb, W and S atoms, respectively.
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Figure 5.3: W1−xNbxS2 monolayers with different dopant distributions based on
the combinations of prototypes in figure 5.2 within 4×12×1 supercells. The corre-
ponding binding energies are indicated. Red, blue and yellow colours refer to Nb,
W and S atoms, respectively.

The “line” instead of “L” pattern is considered as the initial configuration
for simplicity in discussing the formation of dopant distribution seen in the ADF-
STEM image in figure 5.1(a) and (b). An additional Nb atom is attracted to occupy
the atomic site near the line (m = 5) to form a perfect line without a gap in the
whole simulation cell (figure 5.4(a)), rather than becoming an isolated Nb at other
atomic sites (figure 5.4(b)). However, an additional Nb atom is attracted to occupy
the atomic site near the isolated Nb (figure 5.4(d)) rather than the atomic site near
the line (m = 4) in figure 5.4(c). This is also true for a longer line (m = 5) in
figure 5.4(f), even it has a chance to form a perfect line (figure 5.4(e)). This result
is consistent with the dopant distribution seen in the ADF-STEM image in figure
5.1(a): there are many self-limited line segments (rather than the perfect lines) and
isolated Nb atoms. Note that the binding energy is not only related to the number
of Nb-Nb bonds, but also the dopant distribution. For example, the binding energy
in figure 5.4(b) is different from figure 5.4(c) although they have the same number
of Nb atoms and Nb-Nb bonds.

68



CHAPTER 5. TWO-DIMENSIONAL TRANSITION METAL
DICHALCOGENIDE ALLOY-W1−XNBXS2 MONOLAYER

Figure 5.4: W1−xNbxS2 monolayers with different dopant distributions within
6×6×1 supercells. (a)(b) An additional Nb atom is inclined to occupy the atomic
site near the line. (c)(d) An additional Nb atom is inclined to occupy the atomic
site near the isolated Nb. (e)(f) An additional Nb atom is inclined to occupy the
atomic site near the isolated Nb although occupying the atomic site near the line
will form a perfect line in the whole simulation cell. Red, blue and yellow colours
refer to Nb, W and S atoms, respectively.
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It is interesting to know whether large Nb clusters tend to be formed in the
WS2 monolayer. In figure 5.5(a)-(d) with m = 6, the distributions comprising two
small triangular clusters and two types of bigger clusters are shown. Figure 5.5(b)
has the lowest binding energy among other three dopant distributions. It seems like
the dopant distributions in figure 5.5(a) and (b) are the same, however, the number
of Nb-Nb bonds is different. There are 6 for figure 5.5(a) and 8 for figure 5.5(b).
The number of Nb-Nb bonds are 9 for both figure 5.5(c) and (d). It is suggested
that Nb dopants are likely to be formed according to the following rules, in which
the difference of number of Nb-Nb bonds is denoted as ∆NNb−Nb below:

(i) Investigate whether larger number of clusters is more favourable:
if ∆NNb−Nb ≤ 3 between two dopant distributions, the dopant distribution with
a higher number of Nb clusters is favourable (compare figure 5.5(b) with (c) and
(d) or compare figure 5.5(a) with (d)). This can also be seen when comparing
figure 5.4(c) with (d) or figure 5.4(e) with (f). This is consistent with the atomic
configuration in the ADF-STEM image in figure 5.1(a), where many line segments
are seen; If ∆NNb−Nb > 3 between two dopant distributions, the dopant distribution
with higher number of Nb-Nb bonds is favourable. This can be seen when comparing
figure 5.5(a) with (c). This implies that the inclination of one more Nb cluster is
higher than three more Nb-Nb bonds but lower than four or more Nb-Nb bonds in
a dopant distribution.

(ii) Investigate the favourable pattern in only one cluster: if ∆NNb−Nb ≤ 1
between two dopant distributions, the dopant distribution with Nb cluster extends
along both directions of lattice vectors (a and b in figure 5.1(b)) with longer Nb
atoms is favourable. For example, the binding energy of 2a−2b < 2a−1b (compare
figure 5.5(c) with (d)), 1a−1b < 0a−2b (compare figure 5.2(b) with (a)), 1a−2b <

0a − 3b (figure 5.2(d) with (c)), 1a − 1b < 0a − 3b (figure 5.2(e) with (c)) and
1a−2b < 1a−1b (figure 5.2(d) with (e)). In the situation of two dopant distributions
with ma−nb and pa− qb (m+n = p+ q, where m,n, p, s 6= 0), the less symmetric
dopant distribution is favourable. This can be seen when comparing figure 5.2(g)
with (h) (where 1a− 3b < 2a− 2b). If ∆NNb−Nb > 1, the dopant distribution with
higher number of Nb-Nb bonds is favourable (compare figure 5.4 (a) with figure
5.4(b)).

These arguments also apply to dopant distributions with different Nb com-
positions, for example, figure 5.6 and figure 5.9 (binding energies are not shown).
In figure 5.5(e) and (f), the atomic configuration with two adjacent lines has lower
binding energy than two isolated lines, because two adjacent lines has larger number
of Nb-Nb bonds (see argument (i) mentioned above). However, this is not seen in
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the as-grown crystal in figure 5.1(a). In addition, the “L” is also not seen in the
ADF-STEM image in figure 5.1(a). This suggests that the kinetic effects tend to
prevent the diffused Nb atoms from occupying the adjacent positions of the existing
line segments on any direction other than along the lines (although it has a chance
to absorb and diffuse at these positions in the intermediate states [187, 188, 189]).
This may be caused by the joint effect of the local availability of transition metal and
chalcogenide atoms determined by the kinetic process [144] and the activation energy
determined by the binding energy that influences the diffusion rate [187, 188, 189].
This implies that both the kinetic effects and the energetics needs to be considered
to describe the dopant distribution seen in the as-grown W1−xNbxS2 monolayer.

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: W1−xNbxS2 monolayers with different dopant distributions within
4×4×1 supercells. The corresponding binding energies are indicated. Red, blue
and yellow colours refer to Nb, W and S atoms, respectively.
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5.3.2 Electronic structure of W1−xNbxS2 monolayer

The anisotropic dopant distribution in the W1−xNbxS2 monolayer seen in figure
5.1(a) motivates us to investigate how the electronic structure is influenced by the
dopant distribution. Some specially designed dopant distributions are also shown
for comparison with a real dopant distribution taken from the as-grown crystal. For
the effective band structure along Γ to M, there is a flat band appears above the
Fermi level for the “perfect line” and the “real” in figure 5.6. Although there is
also a flat band that appears above the Fermi level for the “half line”, it is not as
pronounced as the other two cases mentioned above. For the “random”, two flat
bands can be seen in the effective band structure. It seems like a more obvious flat
band is generated in dopant distribution with longer “line” such as the “perfect line”
and the “real” or larger Nb composition such as the “random”. This is consistent
with the argument in [195]: the flat band does not appear in W1−xNbxS2 with
dopant distribution of isolated Nb. The effective band structures with the dopant
distributions considered here do not change significantly except the appearance of
the flat band.

Figure 5.6: Atomic structures of W1−xNbxS2 monolayers with dopant distributions
named as (a) “random” (b) “half line” (c) “real” (d) “perfect line” within 12×12×1
supercells and their corresponding effective band structures along Γ to M. The
“real” distribution is based on a region of ADF-STEM image in figure 5.1(a). A
Lorentzian broadening of 0.02 eV was employed in the effective band structures.
Dashed line represents the Fermi level. Red, blue and yellow colours refer to Nb, W
and S atoms, respectively.

The arguments mentioned above are also true for the effective band structures
along Γ to K1, K2 and K3 in figure 5.7. W1−xNbxS2 monolayers with different
dopant distributions display metallic behaviour because the VBM crosses the Fermi
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level. The valence band splitting resulting from the spin-orbit coupling is obvious
in these four cases. At first sight, the metallic behaviour contrasts with the band
structure of W0.9375Nb0.0625S2 monolayer in [195] in which a direct band gap of 1.95
eV is reported. Although the Nb composition for the “half line” (x ' 0.04) is lower
than 0.0625, the separation between Nb dopant atoms in their case is much larger
than the “half line” because WS2 monolayer only doped with one Nb atom within a
4×4×1 supercell in [195]. The dopant distribution of the line facilitates the flowing
of charge carriers, thus leading to the metallic behaviour in our cases. This means
the relative position of each Nb dopant atom plays a more important role than the
Nb composition. The obvious flat band can be obtained by simply increasing the
Nb composition. The relative position of Nb atoms and the Nb composition are the
major and minor factors in affecting the appearance of the flat band.

Interestingly, a normal band can be seen for the “perfect line” along Γ to
K1 instead of a flat band for other directions. The direction of Γ to K1 is parallel
to the line in our models of the W1−xNbxS2 monolayer. The band structure of the
“real” distribution is a result of the combination of the isolated Nb atoms, lines
and clusters, thus it has features between the “random” and the “perfect line”. The
transport properties are then expected to be superior in this dopant distribution.
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Figure 5.7: Effective band structures of W1−xNbxS2 monolayers with different
dopant distributions are the same as figure 5.6 along Γ to K1, K2 and K3. The
“real” is based on a region of ADF-STEM image in figure 5.1(a). A Lorentzian
broadening of 0.02 eV was employed in the effective band structures. Dashed line
represents the Fermi level. Red, blue and yellow colours refer to Nb, W and S atoms,
respectively.

Furthermore, the charge density shown in figure 5.8 is mainly contributed
by the d orbitals of Nb and W atoms for the VBM and CBM, respectively, similar
with the description in [186]. The flat band appears in the effective band structure
in figure 5.6 and figure 5.7 is mainly contributed by the d orbitals of Nb atoms
(the localisation of charge density around Nb atoms). Furthermore, the two eigen-
states associated with the flat bands shown in figure 5.8 show well-separated charge
densities both in space and energy.
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Figure 5.8: Charge density distributions of chosen eigenstates for the “real” dis-
tribution in figure 5.6. The d orbital contribution of Nb atom predominated the
VBM and flat bands, whereas the d orbital contribution of W atom predominated
the CBM. The two eigenstates associated with the flat bands have well-separated
charge densities both in space and energy. The isosurfaces of charge densities for
VBM, CBM and flat bands are around energy ranges of [-0.15, 0.03] eV, [2.06,
2.10] eV and [0.26, 0.28] eV, respectively. The charge densities were calculated via
ONETEP by setting the parameters “homo_plot” and “lumo_plot” to the numbers
of bands below and above the Fermi level desired to plot, respectively. Red, blue
and yellow colours refer to Nb, W and S atoms, respectively.

5.3.3 Electrical conductivity of W1−xNbxS2 monolayer

The normalised conductivities (σ/τ) along the direction of parallel to the line and
perpendicular to the line for various dopant distributions are displayed in figure 5.9,
for systems which we have named as “random (x = 0.219)”, “real (isolated Nb)”
(x = 0.125), “half line” (x = 0.063), “real (line Nb)” (x = 0.141) and “perfect line”
(x = 0.125). The purpose of considering various dopant distributions is to compare
the electrical conductivity and the degree of anisotropy in the actual (“real”) dopant
distribution with other modelled dopant distributions for investigating the relation
between the conductivity and dopant distribution. The “real (isolated Nb)” and
the “real (line Nb)” are both copied from the regions of ADF-STEM image. The
conductivities in units of the relaxation time (σ/τ) for all atomic configurations
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considered here are all around 1018 Ω−1m−1s−1 and the doping level are around
1014 cm−2 at T = 300 K. The anisotropic conductivity can be easily seen in the
“real (isolated Nb)”, “half line”, “real (line Nb)” and the “perfect line” with a range
of ratio between around 1.6 (“real (isolated Nb)”) to 17.2 (“perfect line”) at zero
extrinsic doping.

The conductivity for the “perfect line” along the direction of parallel to the
line (black curve) has the highest value at zero extrinsic doping although its Nb
composition is not the highest among the atomic configurations considered here. It
also has the highest ratio of the conductivity (' 17.2) at the zero extrinsic dop-
ing. This is about 3.4× and 25.1× larger than the second highest in the “real (line
Nb)” (' 5.0) and the lowest in the “random” (' 0.7). Although the lengths of
the line segments in the “real (line Nb)” are shorter than the “half line” distribu-
tion, the conductivity along the direction of parallel to the line of “real (line Nb)”
(1.89×1018 Ω−1 m−1 s−1) is about 10× higher than the “half line” (0.17×1018 Ω−1

m−1 s−1) at zero extrinsic doping, due to the tunneling of holes between line seg-
ments in the “real (line Nb)”. It is about 4× higher conductivity in the “real (line)”
(0.38×1018 Ω−1 m−1 s−1) than the “half line” (0.09×1018 Ω−1 m−1 s−1) along the
direction of perpendicular to the line. It is worth noting that the conductivity of
the “perfect line” (3.72×1018 Ω−1 m−1 s−1) along the direction of parallel to the
line is about twice as large as the “real (line Nb)” at zero extrinsic doping. This
means that the hopping effect is still weaker than the bonding of Nb atoms although
the “real (line)” (x = 0.141) has slightly larger Nb composition than the “perfect
line” (x = 0.125). Thus, the conductivity along the direction of parallel to the line
and the degree of anisotropy in conductivity can be improved by forming a longer
length of the line segment and increasing the number of the lines. However, the
conductivity of “half line” (0.17×1018 Ω−1 m−1 s−1) is lower than the “real (isolated
Nb)” (0.66×1018 Ω−1 m−1 s−1) along the direction of parallel to the line at zero
extrinsic doping (the Nb composition of “real (isolated Nb)” (x = 0.125) is twice as
large as the “half line” (x = 0.063)). This means the Nb composition also needs to
be considered.

The conductivity of the “half line” along the direction perpendicular to the
line (red curve) is the lowest and the “perfect line” is the second lowest, whereas
“random” is the highest (13.1× higher than the “half line”). It is worth noting that
the relative position of each Nb dopant atom and the Nb composition are the major
and minor factors in influencing the conductivity along the direction of parallel to
the line, respectively. This is consistent with the discussion in the previous section
about the electronic structures for various atomic configurations.
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Figure 5.9: Normalised electrical conductivity (σ/τ) as a function of extrinsic doping
for W1−xNbxS2 monolayers with dopant distributions named as “random” (x =
0.219), “real (isolated Nb)” (x = 0.125), “half line” (x = 0.063), “real (line Nb)”
(x = 0.141) and “perfect line” (x = 0.125) along the direction parallel to the line
and perpendicular to the line at T = 300 K. The “real (isolated Nb)” and “real
(line Nb)” are based on two representative regions of the ADF-STEM image in
figure 5.1(a). The ratio is the conductivity along the direction of parallel to the
line divided by the conductivity along the direction perpendicular to the line. For
the atomic structures: red, blue and yellow colours refer to Nb, W and S atoms,
respectively.

5.4 Conclusions

A highly anisotropic dopant distribution was seen in the as-grown W1−xNbxS2

monolayer. It is suggested that energetics and kinetic processes both play impor-
tant roles in forming this kind of symmetry-breaking dopant distribution. From
the analysis of the binding energies from some particular dopant distributions (e.g.
line, “L”, triangle cluster, etc.) and the STEM image of the as-grown crystals, it
is sufficient to express that the local availability of W, Nb and S atoms cause the
inclination of Nb atoms to align in a specific direction in WS2 monolayer. The
formation of line segments in other places is due to the following Nb atom prefers
to combine with the isolated Nb which is initially formed by chance and this 2-Nb
cluster further combines with other following Nb atoms until forming a new line seg-
ment. The self-limitation of the length of the line segment is a mutual competition
between energetics and kinetic processes, where the Nb atoms prefer to form Nb-Nb
pairs (according to the negative binding energy) from the perspective of energetics.
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From this analysis, it can be expected that dopant clusters which do not line along
a specific direction (e.g. 5.5(c) and (d)) can possibly be seen if the binding energy
of dopant pair is much larger than the kinetic effects. In contrast, we can expect
to see a similar dopant distribution as the as-grown crystal in this work (even if
the binding energy is positive) by tuning the kinetic processes (e.g. fluctuation of
local availability of metals and chalcogenides [144]) to exceed the effect of energetics.
This can be seen from the comparison between our previous work about Mo1−xWxS2

monolayer [142] with a small positive binding energy (∼7.6 meV) showed a random
dopant distribution, and the work of Azizi et al. [144] showed striped pattern in the
Mo1−xWxS2 monolayer. From this work we have obtained an inspiration of growing
different kinds of dopant distributions, we expect to observe a similar dopant distri-
bution in other similar alloys, such as W1−xNbxSe2 with a binding energy of -53.56
meV, in appropriate growth conditions. In contrast, we can also intentionally grow
striped pattern (or other clusters) in other kinds of alloys with a positive binding
energy for the dopant pair, or forming a random distribution with a negative binding
energy for the dopant pair, by controlling the experimental process.

The flat band appearing above the Fermi level in the effective band structure
is related to the line seen in the dopant distribution. Although it can be surmised
that an extended “perfect line” is not likely to be be realised in the growth process
from energetic considerations, the real atomic configuration displays a high con-
ductivity along the direction of parallel to the line and a high level of anisotropy
in conductivity at zero extrinsic doping (even including realistic impurities in the
samples). The conductivity along the direction parallel to the line can be improved
by increasing the number and the lengths of the lines or the Nb composition. The
degree of anisotropy in conductivity can also be improved by the factors mentioned
above and increasing the spacing between two line segments. W1−xNbxS2 monolayer
with anisotropic dopant distribution shown in this work is an exemplar of aliova-
lent TMDC alloys for realising superior anisotropic conductivity in the electronic
devices.
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Chapter 6

Twistronics in two-dimensional
InSe bilayer

6.1 Introduction

The emerging research field focussing on the properties of materials composed of two
or more 2D layers with relative rotation angles has attracted a great deal of scientific
attention. Recent studies on twisted 2D materials have widened and deepened our
knowledge about this novel topic in condensed matter physics. Twisted graphene
bilayer must inevitably to be mentioned when introducing twistronics. Flat bands
associated with Mott insulating and superconducting behaviours have been observed
at the “magic angle” (∼ 1.1o) in twisted graphene bilayer [71, 72, 76]. Tarnopolsky
et al. [71] has proposed a periodicity of ∆α ' 3/2 (α ∼ 1/θ) for the occurence
of magic angles, at which the band gap becomes maximum and the bandwidth
becomes zero within each period by setting the interlayer coupling parameter for
AA stacking equals to zero (chiral symmentry) in the continuum model. The moiré
pattern resulting from the relative rotation between two graphene layers leads to the
localisation of Dirac electrons in the AA stacking, especially at small twist angles
[196]. The wave functions associated with the flat bands localised in the same regions
has also been shown in the twisted MoS2 bilayer [197].

“Magic angles” are not always necessary in forming flat bands in twisted 2D
materials. Zhao et al. [198] has proposed that flat bands can occur at any small twist
angles (not “magic angles”) for two-dimensional polar semiconductors with broken
sublattice symmetry, concluded from the study of twisted hBN bilayer. For the
band structure of twisted TMDC bilayers in a tight-binding model, the apperances
of ultraflat bands have been predicted at any small twist angles [199]. Furthermore,
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the long period moiré pattern resulted by the relative rotation between two TMDC
layers changes the optical absorption spectrum with satellite excitonic peaks [200].

Liu et al. [201] showed that there is a sinusoidal relationship between the
twist angle and the cohesive energy in twisted black phosphorene bilayer. It is
suggested that the cohesive energy is related to the interlayer coupling strength be-
cause the periodicities of their sine relationships are very similar. In their studies,
anisotropic transport of holes and electrons in twisted black phosphorene bilayer
can be realised by arranging the two layers to specific stacking types or twist an-
gles. They also showed that for some twist angles associated with weak interlayer
coupling, a spontaneous electric polarisation may be induced by the symmetry-
breaking in the atomic structure. This leads to a linear Stark effect, which means
the band gap becomes linearly dependent on the external electric field. In addition,
a rigid-lattice moiré pattern has been observed at large twist angles via transmission
electron miscroscopy, whereas atomic reconstruction happens at small twist angles
in the small lattice-mismatched twisted MoSe2/WSe2 heterobilayer [202].

InSe is a 2D material which possesses carrier mobility of more than 103 cm2

V−1 s−1 in the few-layer form at room temperature and the effective mass of electrons
in the conduction bands is small [203]. Furthermore, the Ion/Ioff (1 × 108) is high
and the dissipation of standby power is low in InSe based FET [204]. It was shown
in previous studies [78, 205] that five different stacking arrangements can be formed
when two InSe monolayers are put together. If the lattice vectors are a = [a 0 0] and
b = [−a

2

√
3a
2 0] as in this work, they can be categorised into two types according

to whether one layer is mirrored (A type) or rotated (B type) with respect to the
other layer: the A-2 is formed by translating the A-1 with a vector T= 1

3a − 1
3b ,

whereas the B-2 and B-3 are formed by translating the B-1 with a vector T and 2T,
respectively (figure 6.1). Kang et al. [78] showed that these stacking arrangments
still can be seen in limited regions of the atomic structure when one of the layers is
twisted. For example, the A-1 and A-2 are seen in figure 6.2(a), whereas the B-1,
B-2 and B-3 are seen in figure 6.2(b). The out-of-plane corrugation was considered
in their work owing to the different high-symmetry stacking configurations with
different interlayer distances in the entire structure. They showed that although the
B-3 stacking exhibits the lowest formation energy, the difference of the formation
energy between the A-type and the B-type is very small (' 7.14 meV/atom) within
a range of twist angle from 1.48o to 3.00o. The fluctuation of the formation energy
as a function of twist angle is negligible. In addition, the VBM moves to Γ as the
twist angle decreases from 3.00o to 1.48o, thus the indirect band gap changes to the
direct band gap, where the band gap increases at the same time. From the analysis
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of the spatial charge distribution, they showed that the degree of localisation for the
VBM increases and the VBM becomes flatter as the twist angle decreases, whereas
the CBM is delocalised for all twist angles between 1.48o and 3.00o [78].

(a) A-1 (b) A-2 (c) B-1 (d) B-2 (e) B-3

Figure 6.1: Schematic diagrams of InSe bilayers with different stacking arrange-
ments, denoted as (a) A-1 (b) A-2 (c) B-1 (d) B-2 (e) B-3. Grey: In, yellow: Se.
All In and Se atoms (Inij and Seij) in (a) are labelled for later discussions, where
i refers to the vertical position of In or Se atom (t: top atom, b: bottom atom) in
the top or bottom layers, whereas j refers to the top or bottom layer (t: top layer,
b: bottom layer).

In this chapter, we aim to get a deeper knowledge about InSe in original
forms (monolayer and bilayer) and when considering twist angle for the bilayer.
We are interested to know the variation of the atomic and electronic structures of
InSe bilayer with different interlayer distances and twist angles. Understanding the
relations among InSe monolayer, bilayer and twisted bilayer can give us a deeper
knowledge about this material and help us choose different methods to tune its
properties. The orbital contributions of the bands and the aligned InSe bilayer are
expected to have effects on the electronic properties of twisted InSe bilayer. Fur-
thermore, the purpose of separating InSe bilayer by the hBN layer is to modify the
electronic properties of twisted InSe bilayer. From our studies, the stacking con-
figuration plays an important role to influence the band structure of InSe bilayer
and twisted InSe bilayer. The mapping of the bands of InSe bilayer with different
stacking configurations within the primitive cell into the effective band structure of
twisted InSe bilayer within the supercell is proposed. The hBN layer is shown to
act effectively as a spacer to separate the InSe layers in twisted InSe/hBN/InSe het-
erostructure from the analysis of both the effective band structure and the projected
density of states. The resulting effective band structure also matches the bands of
InSe monolayer within the primitive cell. The exciton binding energy of twisted
InSe bilayer and twisted InSe/hBN/InSe heterostructure were also calculated to
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give an estimation of the length scale of the exciton binding energy to experiments.
The computational effort required to study the electronic properties such as band
gap and effective mass for holes of twisted InSe bilayer can thus be eased because
only calculation within the primitive cell is needed. This is useful because different
tests can be done before the implementation of the actual experiments and it also
provides theoretical bases to explain the experimental results.

6.2 Computational methods

The calculations required to optimise geometric parameters such as lattice constant
and interlayer distance of InSe bilayer with these five types of stacking configura-
tions within the primitive cells were performed in Quantum Espresso simulation
package [61, 62]. The GGA-PBE versions of the ultrasoft Vanderbilt pseudopo-
tentials (scalar-relativistic) obtained from the GBRV library [193] were used. The
optB88-vdW functional [99] was included to incorporate the van der Waals (vdW)
interaction between two layers. A kinetic cut-off energy of 1632.7 eV (120 Ry) was
employed. A Monkhorst-Pack [206] kpoint grids of 10×10×1 was set. The spuri-
ous interaction between two isolated cells is eliminated by increasing the vacuum
spacing to 20 Å. The force and total energy in the ionic minimisation task were
converged to within 5×10−5 eV/Å and 3×10−7 eV for all atoms, respectively. The
GGA-PBE versions of the optimised norm-conserving Vanderbilt pseudopotentials
(fully-relativistic) [153] obtained from PseudoDojo [154] (without vdW correction)
was used in the calculations with considering SOC. Other parameter settings were
the same as mentioned above.

ONETEP [59, 63] was used to simulate the twisted InSe bilayer within the
large-scale supercell. The GGA-PBE versions of PAW [104, 105, 130] potentials
from the GBRV library [193] were used. The optB88-vdW exchange-correlation
functional [99] was included to correct the van der Waals (vdW) interaction between
two layers. The cut-off energy and NGWF radius are 1200 eV and 12 a0, respectively.
For geometry optimisation of the atomic structure, the force and enthalpy tolerance
are 0.12 eV/Å and 3×10−5 eV/atom, respectively. The spurious interaction between
two isolated cells is eliminated by setting the vacuum spacing to 20 Å. A Lorentzian
broadening of 0.02 eV was employed in the effective band structure. The lattice
constant of InSe monolayer (4.059 Å) is adopted as the lattice constant for all
twisted InSe bilayer.

The construction of the twisted InSe bilayer followed the work of Stradi et al.
[207] and implemented with the atomic simulation environment (ASE) [159]. The
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scripts used were developed by N. D. M. Hine with input from S. Coppola and C.
Damour [208]. The twisted bilayer is normally constructed within a large supercell,
especially when the twist angle is small (∝ 1/θ) [78]. The supercell lattice vector of
the layer A is obtained via a transformation matrix S applied on the primitive cell
lattice vector a [207], [

A1

A2

]
= S

[
a1

a2

]
, (6.1)

where Ai and ai (i = 1, 2) represent the matrix elements of A and a, respectively.
The transformation matrix S is written as

S =
[
S11 S12

S21 S22

]
, (6.2)

where Sij (i, j = 1, 2) are integers. Similarly, the supercell of the twisted layer B
with a lattice vector BR is written as[

BR1

BR2

]
= PR

[
b1

b2

]
, (6.3)

where P is the transformation matrix for the layer B. The rotation matrix R is
written as

R =
[
cos θ −sin θ
sin θ cos θ

]
, (6.4)

where θ refers to the twist angle. To form a twisted bilayer, we require that[
A1

A2

]
=
[
BR1

BR2

]
. (6.5)

According to this requirement, the matrix elements of P may not be integers. In
order to ensure the matrix elements of P are integers, the closest integer values
are considered. Thus, the twisted layer B is under strain. The expression is then
written as [

A1

A2

]
=
[
σ1 λ1

λ2 σ2

] [
p q

r s

] [
cos θ −sin θ
sin θ cos θ

] [
b1

b2

]
, (6.6)

where p, q, r and s are integers. σi and λi (i = 1, 2) are around 1 and 0, respectively.
Searching for a given range of twist angle and supercell size, the integers (p, q, r, s)
were chosen to most-closely satisfy the requirement in eq. (6.5) at a given twist angle,
where σi and λi are required to below the chosen thresholds. If the match cannot be
obtained, the search for the next twist angle within the given range of twist angle will
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begin. For the twisted InSe/hBN/InSe heterostructure, the atomic structure was
generated by implementing the procedure above again with the coincident supercell
of twisted InSe bilayer and the hBN layer as inputs. Even if there is strain on the
hBN layer, it will not affect the result significantly because the separation between
the band edges of twisted InSe bilayer and the hBN layer is large. The bottom InSe
layer is unstrained, whereas the strain (σ) in the top InSe layer and the hBN layer
were smaller than 0.8%.

Furthermore, the exciton binding energy Eb can be estimated according to
methods presented in recent works by the group of V. I. Fal’ko [209, 210, 211] if
we know the required input parameters. The results of calculated exciton binding
energies for the twisted InSe bilayers and the twisted InSe/hBN/InSe heterostruc-
ture are shown in section 6.3.4 with the interlayer distances and effective masses
for holes for various twist angles obtained in this chapter as inputs. The details for
calculating the exciton binding energy can be referred back to their original work
[209, 210, 211].

All the atomic structures, isosurfaces of charge densities and the analysis of
the residual force distribution were generated and exhibited via the atomic simula-
tion environment (ASE) [159], NumPy [160], SciPy [212], Matplotlib [213] and the
visualisation for electronic and structural analysis (VESTA) [161].

6.3 Results and discussions

6.3.1 Electronic structures of InSe monolayer and InSe bilayer with
different stacking configurations

The atomic structures of the A-type and the B-type twisted InSe bilayers studied
in this work are shown in figure 6.2.
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(a) A-type (b) B-type

Figure 6.2: Top view of the (a) A-type (b) B-type twisted InSe bilayer with a twist
angle of 4.4o. Grey: In, yellow: Se.

Table 6.1 shows the calculated parameters of InSe monolayer and InSe bi-
layers with different stacking configurations. The lattice constant, band gap and
effective mass for holes of InSe monolayer are consistent with previous studies
[214, 215, 216]. For InSe bilayer with these five stacking configurations, their rel-
ative magnitudes of the lattice constant are similar to the previous studies with
different pseudopotentials [78, 205]. The difference of the lattice constant among
these five stacking configurations is smaller than 0.32% in this work. Furthermore,
the interlayer distances are also similar to the previous studies with different pseu-
dopotentials [78, 205] (except [205] with GGA-PBE pseudopotential).

The binding energy EB is defined as the difference of the total energy between
InSe bilayer and two InSe monolayers [205]: EB = Ebilayer - 2Emonolayer. The indirect
band gap and the binding energy are consistent with the results in [205] with optB88-
vdW pseudopotential. The deviation between this work and [205] is smaller than
0.04 eV for the band gap and 9 meV for the binding energy. It seems like the stacking
configuration with the smallest interlayer distance corresponds to the lowest binding
energy, thus the B-3 are the most stable stacking configurations among all InSe
bilayers. This may because the repulsion is the smallest when two In atoms in two
different InSe layers aligned. In contrast, the binding energy is the largest for the
A-1 with two Se atoms in two diferent InSe layers aligned.

In addition, Yang et al. have explained that the interlayer vdW bonding
for the stacking configuration with a smaller interlayer distance is stronger than
the stacking configuration with a larger interlayer distance [205]. Yang et al. [205]
and Shang et al. [217] have also shown that a larger interlayer distance gives a
larger band gap, this is consistent with the results in this work for both indirect
and direct (at Γ) band gap. The effective masses for holes at both the highest
energy point and Γ of the VBM for the B-3 (the most stable stacking configuration
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among these five types of stacking configurations) are consistent with [216]. From
table 6.1, it is suggested that the band gaps and the binding energy increase as the
interlayer distance increases when comparing InSe bilayers with different stacking
configurations. Furthermore, the effective masses for holes also generally increases
as the interlayer distance increases. The ordering of interlayer distance is B-3→A-
2→B-1→B-2→A-1. The InSe monolayer possesses a larger band gap and effective
mass for holes than the InSe bilayer due to the absence of interlayer hybridisation.

monolayer A-1 A-2 B-1 B-2 B-3
a (Å) 4.059 4.058 4.067 4.059 4.058 4.071
d (Å) 9.180 8.449 8.514 9.178 8.389
EB

(meV)
-179.52 -269.74 -264.23 -179.84 -274.22

Eg (eV) 1.42 1.02 0.87 0.92 1.02 0.82
Eg (eV)
(at Γ)

1.50 1.08 0.94 0.99 1.08 0.90

mh (m0) 2.22 1.99 1.03 1.10 1.93 1.05
mh (m0)
(at Γ)

-0.83 -0.96 -0.70 -0.74 -0.94 -0.66

Table 6.1: Lattice constant (a), interlayer distance (d) between two InSe layers (Intt-
Intb), binding energy (EB), band gap (Eg) and effective mass for holes (mh) of InSe
monolayer and InSe bilayers with different stacking configurations.

The band structures of InSe monolayer and InSe bilayers with different stack-
ing configurations are shown in figure 6.3. The number of bands is doubled when
two InSe monolayers are put together. For example, the VBM and the band below
the VBM (denoted as VBM-1) of InSe bilayer originate from the two VBMs of the
two different InSe monolayers. This also applies to the CBM and the band above
the CBM. Basically, the band structures for different stacking configurations look
similar without considering the detailed features. Because we are only interested in
the bands near the Fermi level, only the differences related to these bands among
different stacking configurations will be discussed. There are band intersections for
the two valence and conduction bands near the Fermi level for the A-2 and B-1.
This corresponds to a stacking type with the alignment between In and Se atoms
in the two different layers. In contrast, the A-1 and B-2 do not show the band
intersections in their band structures. This corresponds to a stacking type with the
alignment between two Se atoms in the two different layers. The B-3 stacking type
has intermediate features compared to these two extreme cases. For example, the
two valence bands near the Fermi level almost intersects after half of the Γ-K path.
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This corresponds to a stacking type with the alignment between two In atoms in the
two different layers. The distance is the smallest when two atoms in two different
layers are aligned, thus the larger repulsion between two Se atoms leads to there
being no band intersection in band structures for the A-1 and B-2.

Figure 6.3: Band structures of InSe monolayer and InSe bilayers with different
stacking configurations.

Figure 6.4 shows the projected band structures, while table 6.2 and table 6.3
show the PDOS of VBM and CBM at different kpoints for InSe monolayer. The
orbital contributions are the same for the same type of atom in InSe monolayer due
to the symmetry of the structure. The pz orbitals (blue) of Se atoms predominate
the VBM from Γ to 0.74 Γ-K. The pz orbitals of In atoms predominate for the
rest of the kpoint path. In addition, the s orbitals (black) of In atoms predominate
the CBM. Previous studies have also shown similar projected band structures along
Γ to K, however, without discussing the details along the path [205, 218]. The
contributions from the pz orbitals of Se atoms for the VBM and CBM decrease on
approaching K. This leads to the separations between the two valence bands and
between the two conduction bands near the Fermi level decrease as approaching
toward K (figure 6.3). The contributions from pz orbitals of Se atoms are zero at
K in table 6.2. It is worth noting that the orbital contributions from px and py are
equivalent due to the symmetry of the structure. The projected band structure of
InSe bilayers with different stacking configurations are also displayed in figure 6.5.
It looks similar to the projected band structure of InSe monolayer.
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Figure 6.4: Projected band structures for InSe monolayer. Int and Set refer to In
and Se atoms in the top layer, respectively. Inb and Seb refer to In and Se atoms in
the bottom layer, respectively.

Figure 6.5: Projected band structures for InSe bilayers with different stacking con-
figurations. Black, red and magenta refer to the s, pz and py (or px) orbitals of In
atoms, whereas blue and green refer to the pz, py (or px) orbitals of Se atoms.
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K-length In Se
Γ s: 0.048, pz: 0.062, dz2 :

0.003
pz: 0.375

0.1 s: 0.040, pz: 0.077, dz2 :
0.003

pz:0.344, px: 0.012, py:
0.012

0.2 s: 0.035, pz: 0.097, dz2 :
0.003

s: 0.001, pz: 0.329, px:
0.013, py: 0.013

0.3 s: 0.035, pz: 0.110, dz2 :
0.003

s: 0.002, pz: 0.317, px:
0.013, py: 0.013

0.4 s: 0.036, pz: 0.121, dz2 :
0.002

s: 0.003, pz: 0.298, px:
0.016, py: 0.016

0.5 s: 0.039, pz: 0.131, px:
0.003, py: 0.003, dz2 :

0.002

s: 0.004, pz: 0.268, px:
0.022, py: 0.022

0.6 s: 0.042, pz: 0.143, px:
0.006, py: 0.006, dz2 :

0.002

s: 0.005, pz: 0.230, px:
0.031, py: 0.031

0.7 s: 0.045, pz: 0.160, px:
0.009, py: 0.009, dz2 :

0.001

s: 0.006, pz: 0.186, px:
0.040, py: 0.040

0.8 s: 0.049, pz: 0.188, px:
0.010, py: 0.010, dz2 :

0.001

s: 0.005, pz: 0.131, px:
0.052, py: 0.052

0.9 s: 0.057, pz: 0.236, px:
0.005, py: 0.005, dz2 :

0.001

s: 0.002, pz: 0.053, px:
0.069, py: 0.069

K s: 0.064, pz: 0.271, dz2 :
0.001

px: 0.081, py: 0.081

Table 6.2: Projected density of states (PDOS) for the VBM in InSe monolayer at
different kpoints along Γ to K.

The contributions from pz orbitals of each Se atom for the VBM in InSe
bilayers with different stacking configurations are shown in figure 6.6, where each Se
atom is shown according to its vertical position (from Sett to Sebb). This can also
be classified into two groups: these are group I for the A-1 and B-2 and group II for
the A-2 and B-1. The B-3 is similar to both groups if not considering the fluctuation
around the band-crossing kpoint in the A-2 and B-1 as well as the rapid rise in the
A-1 and B-2. This classification is consistent with the classification according to
the band intersection discussed above. The curve of Sett (black) is the same as Sebb

(blue), whereas the curve of Sebt (red) is the same as Setb (green) for the A-1, B-2
and B-3. The changes of pz orbitals along Γ to K are different for the outermost
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K-length In Se
Γ s: 0.196, pz: 0.049 s: 0.043, pz: 0.193
0.1 s: 0.191, pz: 0.038, px:

0.002, py: 0.002
s: 0.037, pz: 0.172, px:

0.019, py: 0.019
0.2 s: 0.194, pz: 0.022, px:

0.005, py: 0.005
s: 0.029, pz: 0.147, px:

0.040, py: 0.040
0.3 s: 0.208, pz: 0.009, px:

0.006, py: 0.006
s: 0.021, pz: 0.129, px:

0.052, py: 0.052
0.4 s: 0.229, pz: 0.002, px:

0.004, py: 0.004
s: 0.014, pz: 0.110, px:

0.062, py: 0.062
0.5 s: 0.249, px: 0.001, py:

0.001
s: 0.007, pz: 0.086, px:

0.072, py: 0.072
0.6 s: 0.262, pz: 0.002 s: 0.003, pz: 0.059, px:

0.080, py: 0.080
0.7 s: 0.271, pz: 0.006 s: 0.001, pz: 0.034, px:

0.086, py: 0.086
0.8 s: 0.278, pz: 0.011 pz: 0.015, px: 0.089, py:

0.089
0.9 s: 0.283, pz: 0.015 pz: 0.003, px: 0.091, py:

0.091
K s: 0.285, pz: 0.016 px: 0.091, py: 0.091

Table 6.3: Projected density of states (PDOS) for the CBM in InSe monolayer at
different kpoints along Γ to K.

(Sett (black) and Sebb (blue)) and the innermost (Sebt (red) and Setb (green)) Se
atoms. The contributions from pz orbitals of the innermost Se atoms are larger than
the outermost Se atoms except near the Γ and K points. The contributions from pz

orbitals of one of the innermost Se atoms are also smaller than one of the outermost
Se atoms around the band intersection for the VBM in the group II. Basically, the
contributions from pz orbitals of the outermost Se atoms decrease as approaching
toward K, similar to InSe monolayer. However, they are significantly different from
InSe monolayer around K in the group I. The contributions from pz orbitals are
zero for the VBM at K for InSe monolayer, however, they rise rapidly for the cases
in the group I. This is due to the interband coupling between the two bands just
below the VBM (denoted as VBM-1 and VBM-2) around K as we can see these two
bands have close energies around K in figure 6.3. Thus, the contributions from pz

orbitals for the VBM are then affected due to its interlayer coupling with the VBM-
1. It is seen that the contributions from pz orbitals for the VBM-1 and VBM-2 are
approaching zero as approaching toward K for the cases in the group I (not shown),
whereas they are about 0.4 for InSe monolayer at K. This is also true for the B-1
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but only related to the interband coupling between the VBM and VBM-1 (figure
6.3), which are contributed by Se atoms in the bottom InSe layer (Setb and Sebb)
(figure 6.6).

Furthermore, the contributions from pz orbitals of the innermost Se atoms
increase to around 0.3 Γ-K and 0.4 Γ-K, then further decrease as approaching K
in the group I and (the group II and B-3), respectively. There are abrupt increase
and decrease in the orbital contributions from pz of Se atoms in the bottom and
the top InSe layers around the band intersection of the two valence bands near the
Fermi level in the A-2, respectively. This phenomenon can also be seen in the B-1,
however, the abrupt increase and decrease in the contributions from pz orbitals in
the bottom and the top InSe layers are opposite to the A-2. The B-3 has a similar
curve to the group I and group II without the abrupt increase and decrease in the
contributions from pz orbitals around K and band intersection. It is worth noting
that the abrupt increase and decrease in the contributions from pz orbitals of Se
atoms for the VBM are opposite to the contributions from pz orbitals of In atoms
for the VBM and the contributions from pz orbitals of Se atoms for the VBM-1.
This is as expected, the two valence bands which originate from the two VBMs of
the two InSe monolayers couple to each other around the band intersection. It is
suggested that the ordering of interaction between the atoms in the two different
layers is Se-Se (group I) > Se-In (group II) > In-In (B-3). It is worth noting that
the contribution from pz orbitals of each Se atom changes more rapidly for InSe
bilayers with a smaller interlayer distance due to the larger interaction.
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Figure 6.6: The contribution from pz orbitals of each Se atom for the VBM in InSe
bilayers with different stacking configurations.

Furthermore, figure 6.7 shows the band structure of InSe monolayer with the
twist angle changes from 0o to 50o. It seems like the VBM and VBM-1 are not
affected significantly by the twist angle from Γ to the highest energy point of the
VBM although the variations of other bands with the twist angles are larger. Since
we are only interested in the band parameters which are related to the bands near
the Fermi level, it is suggested that the band gap (the energy difference between the
CBM at Γ and the highest energy point of the VBM) and effective mass for holes
(inversely proportional to the curvature of the VBM at the highest energy point)
approximately remain at a constant with the twist angle.
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Figure 6.7: Band structures of InSe monolayer with different twist angles (0o, 4.4o,
10o, 20o, 30o, 40o and 50o) along Γ to K of an untwisted (0o) InSe monolayer.

6.3.2 Residual force in twisted InSe bilayer

After the discussion of InSe monolayer and bilayers within primitive cell through tra-
ditional DFT, we focus on the twisted InSe bilayers within large supercell calculated
by using LS-DFT in this section.

The out-of-plane corrugation originates from the different regions of twisted
InSe bilayer corresponding to the different stacking configurations (figure 6.2) with
different interlayer distances (table 6.1). The following equation defines the averaged
corrugation based on the previous literature [78],

Averaged corrugation = 1
4

4∑
n=1
|dn − d|, (6.7)

where dn is the averaged interlayer distance calculated from each sublayer (two
In and two Se sublayers) in the top layer to the same sublayer in the bottom layer
when considering out-of-plane corrugation and d is the optimised interlayer distance
without considering out-of-plane corrugation. Figure 6.8 shows the total energy as
a function of interlayer distance (without considering the out-of-plane corrugation)
and the total energy as a function of the averaged corrugation for the A-type twisted
InSe bilayer (twist angle = 4.4o). Without the out-of-plane corrugation, the opti-
mised interlayer distance is 8.89 Å. For corrugation of ∼ 0.1 Å, the lowest total
energy is at d = 8.88 Å and d = 8.89 Å, whereas a corrugation of ∼ 0.3 Å corre-
sponds to the lowest total energy at d = 9.05 Å and d = 9.25 Å. It is suggested
that the out-of-plane corrugation is small (' 0.1 Å) around the optimised interlayer
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distance, whereas the corrugation is larger not at the optimised interlayer distance.

(a) (b)

Figure 6.8: Total energy as a function of (a) interlayer distance without considering
the out-of-plane corrugation (b) averaged corrugation for the A-type twisted InSe
bilayer (θ = 4.4o).

To reduce the computational cost and time in the calculations of the struc-
tural relaxation for the large-scale twisted InSe bilayer system, an initial z position
of each atom was approximately set for smaller twist angles according to the inter-
layer distances of the InSe bilayers with different stacking configurations (see table
6.1) and considering a corrugation ∼ 0.1 Å (figure 6.8(b)). The generation of the
relevant atomic structure is based on the FFT and the resulting z positions of atoms
are then shifted by the negative and positive corrugation values for the top and bot-
tom InSe layers, respectively. The distribution of the corrugation of each atom with
considering the interlayer distance in each region is shown in figure 6.9. The inter-
layer distances with considering the corrugation are larger around the corners of the
supercell where correspond to the A-1 and smaller around the central region of the
supercell where correspond to the A-2 (figure 6.2(a)).
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(a) In atoms in the top InSe layer (b) Se atoms in the top InSe layer

(c) In atoms in the bottom InSe layer (d) Se atoms in the bottom InSe layer

Figure 6.9: Distribution of the corrugation of each atom with considering the inter-
layer distance in each region for the A-type twisted InSe bilayer (θ = 4.4o). The x
and y axes refer to the atomic position in x and y direction.

Due to the high computational effort of doing geometry optimisation in this
large-scale system, there are residual forces (within the convergence tolerance) after
the geometry optimisation. The study of residual force can tell us the direction
of the genuine movements of atoms if the atomic structure is fully relaxed. The
distribution of the residual total force for the atomic structure when considering the
averaged corrugation (' 0.1 Å) (see figure 6.8(b)) is shown in figure 6.10. Before
the structural relaxation, the bottom Se atoms in the top layer (Sebt) and the
top Se atoms in the bottom layer (Setb) show distributions of the residual total
force similar to the distribution of the corrugation of each atom (figure 6.9) in
figure 6.10(b) and (d). After the structural relaxation, similar distributions of the
residual total force can be seen in figure 6.10(f) and (h), however, the magnitudes of
residual total forces become smaller. In addition, In atoms (Inbt and Intb) also show
distributions of the residual total force similar to the adjacent Se atoms (Sebt and
Setb) in figure 6.10(e) and (g). This is not seen in the distribution of the residual
total force of In atoms before the structural relaxation in figure 6.10(a) and (c). This
phenomenon is also not seen for the outermost In (Intt and Inbb) and Se atoms (Sett

and Sebb). The outermost atoms have smaller residual forces than the innermost
atoms because the interactions between the innermost atoms are larger owing to the
smaller distances of innermost atoms between two InSe layers. This may also be the
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reason why innermost Se atoms have larger residual force than innermost In atoms.
It is suggested this is an intrinsic phenomenon in twisted bilayer system.

(a) Bottom In atoms in the top InSe layer:
Inbt (before structural relaxation)

(b) Bottom Se atoms in the top InSe layer:
Sebt (before structural relaxation)

(c) Top In atoms in the bottom InSe layer:
Intb (before structural relaxation)

(d) Top Se atoms in the bottom InSe layer:
Setb (before structural relaxation)

(e) Bottom In atoms in the top InSe layer:
Inbt (after structural relaxation)

(f) Bottom Se atoms in the top InSe layer:
Sebt (after structural relaxation)

(g) Top In atoms in the bottom InSe layer:
Intb (after structural relaxation)

(h) Top Se atoms in the bottom InSe layer:
Setb (after structural relaxation)

Figure 6.10: Distribution of the residual total force for the A-type twisted InSe
bilayer (θ = 4.4o, d = 8.89 Å , corrugation ' 0.1 Å). (a)-(d) Before the structural
relaxation (e)-(h) After the structural relaxation. The x and y axes refer to the
atomic position in x and y direction.
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The distribution of the residual force along the z direction is similar to the
residual total force. The z directions of the residual forces are opposite in the top
and the bottom layers (comparing figure 6.11(a) with (c) or figure 6.11(b) with
(d)). The residual forces for In atoms (figure 6.11(a) and (c)) are smaller than the
adjacent Se atoms (figure 6.11(b) and (d)). The distribution of the residual force in
xy plane (figure 6.11(e)-(h)) is also similar to the residual total force. By comparing
the magnitudes of residual forces in figure 6.11(a)-(d) with figure 6.11(e)-(h), it
shows that the residual total forces are predominated by the residual forces along
the z direction, which means the atoms mainly rearrange their vertical position when
forming a twisted bilayer with (at least) the similar length scale of the moiré pattern.
The atoms in the top and bottom InSe layers also display opposite directions of
the residual forces along x and y directions. Although the distributions of the
residual forces along x and y directions are not obvious for In atoms because the
residual forces are small, the distributions are still approximately consistent with
the distribution of the residual force for the adjacent Se atoms. Overall, this tells
us that the residual forces in the top and the bottom InSe layers for all directions
are just in reverse.
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(a) Bottom In atoms in the top InSe layer:
Inbt (z direction)

(b) Bottom Se atoms in the top InSe layer:
Sebt (z direction)

(c) Top In atoms in the bottom InSe layer:
Intb (z direction)

(d) Top Se atoms in the bottom InSe layer:
Setb (z direction)

(e) Bottom In atoms in the top InSe layer:
Inbt (xy plane)

(f) Bottom Se atoms in the top InSe layer:
Sebt (xy plane)

(g) Top In atoms in the bottom InSe layer:
Intb (xy plane)

(h) Top Se atoms in the bottom InSe layer:
Setb (xy plane)

Figure 6.11: Distribution of the residual force for the A-type twisted InSe bilayer
(θ = 4.4o, d = 8.89 Å , corrugation ' 0.1 Å) after the structural relaxation. (a)-(d)
Residual forces along z direction (e)-(h) Residual forces in xy plane. The x and y
axes refer to the atomic position in x and y direction.
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6.3.3 Electronic structure of twisted InSe bilayer

The effective band structure of InSe monolayer, the A-type twisted InSe bilayer
and the A-type InSe/hBN/InSe heterostructure are shown in figure 6.12. In figure
6.12(a), InSe monolayer possesses an indirect band gap, where the VBM is at a
kpoint between Γ and K, whereas the CBM is located at Γ. The spin-orbit cou-
pling (SOC) does not alter significantly the VBM and CBM: the VBM splits near
K and the CBM splits from intermediate kpoint path to K (compare figure 6.12(a)
with (b)). This can also be seen in the A-type twisted InSe bilayer (compare figure
6.12(c) with (d)). Thus, the band gap and effective mass for holes are not affected
significantly by the spin-orbit coupling. It is worth noting that the SOC leads to the
crossing of bands around 4 eV for all structures, whereas it is an avoided crossing
of bands for the structures without considering SOC. From the comparison of the
effective band structures between considering and without considering SOC, this
convinces us that the effective band structure without considering SOC (with less
computational effort) is sufficient to provide the information of the electronic prop-
erties such as band gap and effective mass for holes of InSe bilayers with different
twist angles. It is still an indirect band gap in the A-type twisted InSe bilayer
and twisted InSe/hBN/InSe heterostructure. The number of bands in twisted InSe
bilayer is as twice as in InSe monolayer. The VBM and VBM-1 merges after inter-
mediate kpoint path (figure 6.12(c)), different from the band structures of the A-1
and A-2 (figure 6.3). The similar effective band structure of the B-type twisted InSe
bilayers with different twist angles can be seen in figure 6.13.

The purpose of putting the hBN layer into the twisted InSe bilayer is to
flatten the VBM for getting larger effective mass for holes. When the hBN layer is
used as a spacer layer between the layers of the A-type twisted InSe bilayer, many
neighbouring bands approach each other. For example, the separation between
the VBM and VBM-1 becomes smaller (figure 6.12(e)). The twist angle between
InSe and hBN has no significant effect on the effective band structure, backing up
a previous study which has shown that the band structure is not affected by the
stacking arrangement between InSe and hBN layers [219]. The curvature of the
VBM in twisted InSe bilayer changes when the hBN layer is encapsulated, thus
leading to the changes in the effective mass for holes. Furthermore, there are band
anti-crossings near K for the valence bands in an energy range between -2.0 eV and
-1.0 eV.
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(a) InSe monolayer (without SOC) (b) InSe monolayer (with SOC)

(c) Twisted InSe bilayer (without SOC) (d) Twisted InSe bilayer (with SOC)

(e) Twisted InSe/hBN/InSe (without SOC) (f) Twisted InSe/hBN/InSe (with SOC)

Figure 6.12: Effective band structure along Γ to K of (a) InSe monolayer (without
SOC) (b) InSe monolayer (with SOC) (c) A-type twisted InSe bilayer (without
SOC) (d) A-type twisted InSe bilayer (with SOC) (e) A-type twisted InSe/hBN/InSe
heterostructure (without SOC) (f) A-type twisted InSe/hBN/InSe heterostructure
(with SOC). A Lorentzian broadening of 0.02 eV was employed in the effective band
structures.
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(a) θ = 4.4o (without SOC) (b) θ = 4.4o (with SOC)

(c) θ = 17.9o (without SOC) (d) θ = 17.9o (with SOC)

(e) θ = 27.8o (without SOC) (f) θ = 27.8o (with SOC)

Figure 6.13: Effective band structure along Γ to K of the B-type twisted InSe
bilayer with a twist angle of (a) 4.4o (without SOC) (b) 4.4o (with SOC) (c) 17.9o

(without SOC) (d) 17.9o (with SOC) (e) 27.8o (without SOC) (f) 27.8o (with SOC).
A Lorentzian broadening of 0.02 eV was employed in the effective band structures.
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(a) A-type

(b) B-type

Figure 6.14: Top view of the (a) A-type (b) B-type twisted InSe/hBN/InSe het-
erostructure with a twist angle of θ = 4.4o. φ = 32.2o is the twist angle between
InSe and hBN layers. Grey: In, yellow: Se, blue: B and green: N. The moiré pattern
can be clearly seen when repeating the unit cell.

In the hBN-encapsulated twisted InSe bilayer (figure 6.14), the valence bands
contributed by the hBN layer are more than 1.5 eV below the Fermi level (shifted to
be the highest energy of the VBM) (see figure 6.15(a)). This can also be seen in figure
6.15(b), where the largest orbital contributions (pz) for the valence bands are from
nitrogen at about 1.5 eV below the Fermi level. Thus, the hBN layer is regarded as
a spacer to decrease the interlayer coupling between two InSe layers (separate these
two InSe layers). This is similar to the BP/hBN/BP heterostructure in a previous
study [220]. Therefore, the effective band structure of this heterostructure is roughly
regarded as the superposition of the effective band structure of two InSe monolayers.
Although the avoided band-crossings within an energy range between -2.0 eV and
-1.0 eV are induced by the hBN, the near-band-edge states are not affected because
these anti-crossing bands are far away from these states.
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(a) (b)

Figure 6.15: (a) Effective band structure along Γ to K of the A-type twisted
InSe/hBN/InSe heterostructure with a twist angle of 4.4o projected on the hBN
layer. A Lorentzian broadening of 0.02 eV was employed in the effective band
structures. (b) Projected density of states of the A-type twisted InSe/hBN/InSe
heterostructure. InBottom and InTop refer to In atoms in the bottom and the top
InSe layers, respectively. SeBottom and SeTop refer to Se atoms in the bottom and
the top InSe layers, respectively. SOC was not included in the calculations.

In figure 6.16, the corrugation only enlarges slightly the separation between
two adjacent bands, such as the VBM and VBM-1. Therefore, the band structure
does not change obviously when considering the corrugation (similar to MoTe2/MoS2

heterostructure in [221]). Previous studies about twisted hBN bilayer [198] has also
shown that the appearance of flat bands are not affected by structural relaxation.
The band structure of the twisted InSe bilayer is mainly influenced by the interlayer
distance (or the stacking configuration). The comparison of the band structure
between two different interlayer distances can also be seen in [217]. In this work,
the interlayer distance of twisted InSe bilayer varies as the twist angle varies. Its
value is expected to be between the largest and the smallest interlayer distance of
the same type of stacking configuration (A or B types). For example, the interlayer
distance of the B-type twisted InSe bilayer is between 8.389 (B-3) and 9.178 (B-2)
in this work (table 6.1).
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(a) Without considering the corrugation (b) With considering the corrugation

Figure 6.16: Effective band structure of the A-type twisted InSe bilayer (θ = 4.4o)
(a) without (b) with considering the corrugation. A Lorentzian broadening of 0.02
eV was employed in the effective band structures. Some increases of the separations
between neighbouring bands are indicated by the double-headed arrows. SOC was
not included in the band structure calculations.

In addition, the projection of the effective band structure on the top and the
bottom InSe layers for the A-type twisted InSe bilayer (θ = 4.4o) without spin-orbit
coupling are shown in figure 6.17(a) and (b). Similar effective band structures for
the A-type twisted InSe/hBN/InSe heterostructure (θ = 4.4o) without spin-orbit
coupling are also shown in figure 6.17(e) and (f). The effective band structures
projected on the bottom layer look very similar to the projection on the top layer
for both structures. However, the difference becomes larger at a larger twist angle,
such as in figure 6.17(c) and (d) for θ = 17.9o. Similar arguments apply to the
B-type twisted InSe bilayers in figure 6.18.
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(a) Projected on the bottom InSe layer of
twisted InSe bilayer (θ = 4.4o)

(b) Projected on the top InSe layer of
twisted InSe bilayer (θ = 4.4o)

(c) Projected on the bottom InSe layer of
twisted InSe bilayer (θ = 17.9o)

(d) Projected on the top InSe layer of
twisted InSe bilayer (θ = 17.9o)

(e) Projected on the bottom InSe layer of
twisted InSe/hBN/InSe heterostructure

(θ = 4.4o)

(f) Projected on the top InSe layer of
twisted InSe/hBN/InSe heterostructure

(θ = 4.4o)

Figure 6.17: Effective band structure along Γ to K of the A-type twisted InSe
bilayer projected on the (a)(c) bottom (b)(d) top InSe layer with a twist angle of
(a)(b) θ = 4.4o (c)(d) θ = 17.9o. Effective band structure of the A-type twisted
InSe/hBN/InSe heterostructure projected on the (e) bottom (f) top InSe layer with
a twist angle of θ = 4.4o. A Lorentzian broadening of 0.02 eV was employed in the
effective band structures. SOC was not included in the band structure calculations.
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(a) Projected on the bottom InSe layer of
twisted InSe bilayer (θ = 4.4o)

(b) Projected on the top InSe layer of
twisted InSe bilayer (θ = 4.4o)

(c) Projected on the bottom InSe layer of
twisted InSe bilayer (θ = 17.9o)

(d) Projected on the top InSe layer of
twisted InSe bilayer (θ = 17.9o)

(e) Projected on the bottom InSe layer of
twisted InSe bilayer (θ = 27.8o)

(f) Projected on the top InSe layer of
twisted InSe bilayer (θ = 27.8o)

Figure 6.18: Effective band structure along Γ to K of the B-type twisted InSe
bilayer projected on the (a)(c)(e) bottom (b)(d)(f) top InSe layer with a twist angle
of (a)(b) θ = 4.4o (c)(d) θ = 17.9o (e)(f) θ = 27.8o. A Lorentzian broadening of
0.02 eV was employed in the effective band structures. SOC was not included in the
band structure calculations.
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The observation of the appearances of different stacking configurations in
some regions of twisted InSe bilayer motivates us to study the effects of these stacking
configurations on the electronic structure of twisted InSe bilayer. In figure 6.19(a),
the effective band structure of twisted InSe bilayer with a twist angle of 4.4o is
shown, superimposed by the bands of the A-1 (green curves) and A-2 (blue curves)
calculated by Quantum Espresso within the primitive cell with the same interlayer
distance as twisted InSe bilayer. The two superimposed curves match well with the
bands in the effective band structure. A similarly close mapping can be seen when
including SOC in the band structure calculation in figure 6.19(b). Figure 6.19(c)
and (d) show the localisations of the charge densities corresponding to the A-1 and
A-2 in some regions of twisted InSe bilayer without including SOC. The combination
of A-1 and A-2 also contribute the VBM, based on the analysis of the isosurfaces of
the charge densities. Similar results can be seen in figure 6.20 for the A-type and
B-type twisted InSe bilayers with different twist angles. The localisation of charge
density obtained here is slightly different from twisted hBN bilayer in [198] (with
similar stacking configurations to InSe bilayer) and twisted InSe bilayer in the work
of Kang et al [78] with smaller twist angles, where the charge density was seen to be
localised in the A-1 and A-2 regions for the VBM, respectively. The unfolded VBM
in the effective band structure within primitive cell in this work has finite width
and the contribution originate from both the A-1 and A-2. The localisation of the
charge density for the VBM is possibly contributed by the A-2 as in [78] if further
decreasing the twist angles.

The bands from both layers along the same kpoint path within the prim-
itive cell calculated by Quantum Espresso need to be considered to describe well
the effective band structure of twisted InSe bilayer (figure 6.20(c)-(f)) because the
difference of the effective band structure between the bottom and top InSe layers
becomes obvious at larger twist angles. It is seen that the length from Γ to the
lowest energy point of the VBM in figure 6.20(d) is 0.886× for θ = 17.9o (0.867×
for θ = 27.8o in figure 6.20(f)) of the whole kpoint path, consistent with the ratio of
the kpoint path of the top InSe layer to the bottom InSe layer in the first Brillouin
zone. Similar ratio can also be seen in the band structure of the InSe monolayer
with different twist angles in figure 6.7. In addition, the effective band structure of
the A-type twisted system looks similar to the B-type twisted system at the same
twist angle in figure 6.20, indicating the insensitivity of the band structure to the
system considered. This may be due to the similarity of band structure between A-1
and B-2, as well as the band structure between A-2 and B-1 (figure 6.3). Similar
phenomenon can be seen in [222].
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(a) Without SOC (b) With SOC

(c) A-1 (d) A-2

Figure 6.19: (a) Effective band structure along Γ to K of the A-type twisted InSe
bilayer with a twist angle of 4.4o. (a) Without SOC (b) With SOC. The green
and yellow curves refer to the two different spin states for the same band in the
A-1, whereas the blue and pink curves refer to the two different spin states for
the same band in the A-2. These bands were all calculated by Quantum Espresso
in the primitive cells with the same interlayer distance as twisted InSe bilayer. A
Lorentzian broadening of 0.02 eV was employed in the effective band structures.
Isosurface of the charge density corresponds to the (c) A-1 around an energy range
of [-0.03, 0.00] eV (d) A-2 around an energy range of [-0.20, -0.17] eV without
considering SOC. The charge densities were calculated via ONETEP by setting the
parameter “homo_plot” to the number of bands below the Fermi level desired to
plot.
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(a) A type (θ= 4.4o) (b) B type (θ= 4.4o)

(c) A type (θ= 17.9o) (d) B type (θ= 17.9o)

(e) A type (θ= 27.8o) (f) B type (θ= 27.8o)

Figure 6.20: Effective band structure along Γ to K of the A-type and B-type twisted
InSe bilayers with different twist angles. (a) A type with θ= 4.4o (b) B type with θ=
4.4o (c) A type with θ= 17.9o (d) B type with θ= 17.9o (e) A type with θ= 27.8o (f)
B type with θ=27.8o. Green (A-1 or B-1), blue (A-2 or B-2) and purple (B-3) curves
are the bands corresponding to the bottom InSe layer, whereas yellow (A-1 or B-1),
pink (A-2 or B-2) and cyan (B-3) are the bands corresponding to the top InSe layer.
All these colour curves were calculated by Quantum Espresso in the primitive cells
with the same interlayer distance as twisted InSe bilayers. A Lorentzian broadening
of 0.02 eV was employed in the effective band structures. SOC was not included in
the band structure calculations.
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Although the lattice constant of InSe monolayer (a = 4.059 Å) was used as
the lattice constant of twisted InSe bilayer, it does not affect significantly the bands
of InSe bilayer if a stacking configuration deviates from this lattice constant (figure
6.21(a)). Figure 6.21(b) shows that the effective mass for holes becomes larger
(the VBM becomes flatter) with a larger interlayer distance (red curves) for InSe
bilayer with different stacking configurations. It is worth noting that the separation
between the VBM and VBM-1 with a larger interlayer distance is smaller due to the
repulsion between these two bands being weaker for a larger interlayer distance.

(a)

(b)

Figure 6.21: (a) Topmost valence band and the band below it along Γ to K for
the A-2 at two different lattice constants. Black: 4.059 Å (lattice constant of InSe
monolayer and twisted InSe bilayer), red: 4.067 Å (lattice constant of the A-2).
(b) Topmost valence band and the band below it for InSe bilayers with different
stacking configurations at two different interlayer distances. 8.89 Å and 8.82 Å
are the optimised interlayer distances (without considering the corrugation) for the
A-type and B-type twisted InSe bilayers with a twist angle of 4.4o, respectively.
Another interlayer distance in each stacking configuration is the optimised interlayer
distance of InSe bilayer with each stacking configuration (see table 6.1).

The bands of InSe monolayer calculated by Quantum Espresso within the
primitive cell can also be used to describe the effective band structure of both the
A-type and B-type twisted InSe/hBN/InSe heterostructures (figure 6.22).
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(a) A type (θ = 4.4o) (b) B type (θ = 4.4o)

Figure 6.22: Effective band structure along Γ to K of the (a) A-type (b) B-type
InSe/hBN/InSe heterostructure with a twist angle of 4.4o. Bands of InSe monolayer
calculated by Quantum Espresso in the primitive cells was shown in purple colours.
A Lorentzian broadening of 0.02 eV was employed in the effective band structures.

Figure 6.23 shows the relation between the interlayer distance and twist angle
for the A-type (black) and B-type (red) twisted InSe bilayer. Except for the twist
angle of 4.4o with relatively large difference compared to other twist angles (but it
is still small), the interlayer distances for the A-type twisted InSe bilayer with twist
angles of 3.4o, 6o, 17.9o and 27.8o are similar (difference among these twist angles is
not larger than 0.02 Å). The interlayer distance of the B-type twisted InSe bilayer
with twist angles of 4.4o, 17.9o and 27.8o are also similar (difference among these
twist angles is not larger than 0.02 Å). Overall, the interlayer distance is about 8.85
± 0.04 Å when considering both types of twisted InSe bilayers with the twist angles
considered in this work (a similar small difference of interlayer distance (≤ 0.12 Å)
among twist angles of 13.2o, 21.8o and 32.2o can be seen in [222]). It seems like the
proportions of different stacking configurations corresponding to the regions in both
the A-type and B-type twisted InSe bilayers roughly remain at a constant because
the difference of interlayer distance among different twist angles is very small.
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Figure 6.23: Interlayer distance as a function of twist angle for the A-type (black)
and B-type (red) twisted InSe bilayers. Corrugation was not considered here.

Figure 6.24 shows the VBM and VBM-1 for InSe bilayer with different stack-
ing configurations at different twist angles and interlayer distances. The difference
of bands increases as the twist angle increases. The difference between bands corre-
sponding to the bottom (solid curves) and top (dashed curves) InSe layers increases
as the twist angle increases. There are concave curves near K for the top InSe lay-
ers in each stacking configuration. The flatness of the VBM is expected to increase
as the twist angle decreases in the folding band structure of supercell, as it can
be seen in [78]. This is not because the VBM changes with the twist angle, but
rather because of the different band foldings with the twist angle (the first Brillouin
zone decreases as the twist angle decreases); However, the effective mass for holes
approximately remains at a constant (1.57± 0.18 m0). The band gap also approxi-
mately remains at a constant for both A-type and B-type twisted InSe bilayers with
different twist angles (0.95± 0.03 eV), consistent with the results in [222]. At suffi-
ciently small twist angles (not the magic angles), the defect states within the energy
range of band gap resulting from the localisation of charge densities in a particular
stacking configuration, is suggested leading to the flat bands in a polar 2D semicon-
ductor because their couplings with other electronic states are weak [198]. Naik et
al. [223] have also proposed that the inhomogeneous interlayer hybridisation and
the local strain cause the formation of ultraflat bands, from the study of twisted
MoS2 bilayer. All the origins mentioned above may lead to the appearance of flat
bands in twisted InSe bilayer at sufficiently small twist angles.
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Figure 6.24: Topmost valence band and the band below it along Γ to K for InSe
bilayers with different stacking configurations at different twist angles and interlayer
distances. Solid and dashed curves refer to the bands for the bottom InSe layer and
top InSe layer, respectively. The kpoint path (Γ to K) shown here is according to
the kpoint path of the bottom InSe layer.

6.3.4 Exciton binding energy of twisted InSe bilayer and twisted
InSe/hBN/InSe heterostructure

The exciton binding energy can be calculated by substituting the effective mass for
holes obtained here to equations in [209, 210, 211] because it has been shown in
the previous literature that the effective mass for holes obtained via GGA-PBE is
sufficiently consistent with the GW calculation [224]. The intralayer and interlayer
exciton binding energies are shown in table 6.4, table 6.5 and figure 6.25 for the
environments of vacuum and hBN. The A1s intralayer exciton binding energy is
∼ 2.2-2.4X larger than interlayer exciton binding energy in the vacuum and hBN
environments. The differences between intralayer and interlayer exciton binding
energies decreases rapidly from A2s to A5s. The ratios of intralayer and interlayer
exciton binding energies in the environment of vacuum to hBN for A1s to A5s are
similar. For intralayer exciton binding energy, the ratios are [A1s = 3.7, A2s = 7.3,
A3s = 10.0, A4s = 12.4, A5s = 14.6], whereas for the interlayer exciton binding
energy, the ratios are [A1s = 3.4, A2s = 6.5, A3s = 9.3, A4s = 11.6, A5s = 13.7].
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A1s A2s A3s A4s A5s
Intralayer
exciton
(meV)

441.1±0.9 169.6±0.5 97.5±0.3 66.1±3.2 48.7±5.7

Interlayer
exciton
(meV)

183.2±0.1 110.1±0.2 73.4±0.2 52.8±1.7 40.4±4.1

Table 6.4: Intralayer and interlayer exciton binding energies of twisted InSe bilayer in
the environment of vacuum. The parameter settings are effective mass for electrons
me = 0.16 m0 from InSe bilayer in [224], screening length r∗ = 7.7 ∗ εhBN ' 38.9 Å
(where εhBN = √ε‖ ∗ ε⊥ =

√
6.9 ∗ 3.7 ' 5.1 [225]) [226, 227, 228], effective dielectric

constant ε̃ = εvacuum = 1 . The effective mass for holes and interlayer distances
obtained in this work are used, mh = [1.39, 1.75] m0 and d = [8.81, 8.89] Å.

A1s A2s A3s A4s A5s
Intralayer
exciton
(meV)

119.1±0.4 23.2±0.1 9.7±0.0 5.3±0.0 3.3±0.0

Interlayer
exciton
(meV)

54.5±0.1 16.8±0.1 7.9±0.0 4.6±0.0 3.0±0.0

Table 6.5: Intralayer and interlayer exciton binding energies of twisted InSe bilayer
in the environment of hBN. The parameter settings are effective mass for electrons
me = 0.16 m0 from InSe bilayer in [224], screening length r∗ = 7.7 Å [226, 227, 228],
effective dielectric constant ε̃ = εhBN = √ε‖ ∗ ε⊥ =

√
6.9 ∗ 3.7 ' 5.1 [225]. The

effective mass for holes and interlayer distances obtained in this work are used,
mh = [1.39, 1.75] m0 and d = [8.81, 8.89] Å.

(a) In the environment of vacuum (b) In the environment of hBN

Figure 6.25: Intralayer and interlayer exciton binding energies of twisted InSe bilayer
in the environment of (a) vacuum corresponding to table 6.4 (b) hBN corresponding
to table 6.5.
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Similarly, the exciton binding energy for the twisted InSe/hBN/InSe het-
erostructure in the environments of vacuum and hBN are shown in table 6.6 with
the effective mass for holes of InSe monolayer as input. Note that the Coulomb po-
tential for calculating the intralayer exciton in monolayer form in [209, 210, 211] was
used because the InSe layer can be regarded as monolayer form in this heterostruc-
ture. The ratios of intralayer exciton binding energy between the environments of
vacuum and hBN are [A1s = 1.7, A2s = 2.2, A3s = 2.4, A4s = 2.5, A5s = 2.5].

A1s A2s A3s A4s A5s
Intralayer
exciton
(meV)

(vacuum)

232.9 60.9 27.4 15.5 9.9

Intralayer
exciton
(meV)
(hBN)

138.8 27.8 11.5 6.2 3.9

Table 6.6: Intralayer exciton binding energies of twisted InSe/hBN/InSe heterostruc-
ture. The parameter settings are effective mass for electronsme = 0.18m0 from InSe
monolayer in [224], screening length r∗ = 7.7*εhBN/ε̃ ' 12.86 Å [225, 226, 227, 228],
where εhBN = √

ε‖ ∗ ε⊥ =
√

6.9 ∗ 3.7 ' 5.1 [225], effective dielectric constant
ε̃ = (εvacuum + εhBN)/2 = (1.0 + 5.1)/2 ' 3.0 for the environment of vacuum and
ε̃ = εhBN for the environment of hBN. The effective mass for holes of InSe monolayer
obtained in this work is used: mh = 2.22 m0.

6.4 Conclusions

In this chapter, the atomic and electronic structures of InSe bilayers with different
stacking configurations and twisted InSe bilayer were studied. For InSe bilayer with
different stacking configurations, there is a trend shows that the binding energy and
band gap decreases, whereas the effective mass for holes generally decreases, as the
interlayer distance decreases. The VBM and CBM of InSe monolayer are predom-
inated by the pz orbitals of Se atoms and s orbitals of In atoms, respectively. The
orbital contributions in InSe bilayer are not exactly the same as InSe monolayer.
The classification according to the band intersection near the VBM in the band
structure for different stacking configurations can be explained by their pz orbital
contribution and atomic alignments. Interlayer coupling is stronger for two neigh-
bouring bands. For example, the interlayer coupling is stronger around the band
intersections between the VBM and VBM-1 for the A-2 and B-1.
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The choice of twist angle and inclusion of spin-orbit coupling do not signifi-
cantly change the band structure of InSe monolayer and twisted InSe bilayer from
Γ to the highest energy point of the VBM, thus it is expected not to change signif-
icantly the band gap and effective mass for holes. Furthermore, the corrugation is
small for twisted InSe bilayer at the optimised interlayer distance. The inclusion of
the corrugation only enlarges slightly the separation between two adjacent bands.
The stacking configurations in each type of InSe bilayer can still be seen in some
regions of the same type of twisted InSe bilayer. The innermost In and Se atoms
show a distribution of the residual force similar to the distribution of each region
corresponding to different stacking configurations in twisted InSe bilayer. The resid-
ual forces along z direction are the largest, implying the rearrangement of vertical
positions of innermost atoms are larger than their in-plane positions for at least the
length scale of the moiré pattern considered in this work.

The effective band structure of the A-type twisted InSe bilayer looks similar
to the B-type twisted InSe bilayer, implying the insensitivity of the band structure
to the system considered. The difference of the effective band structure along the
same kpoint path between the bottom and top InSe layers increases as the twist
angle increases. The bands from each stacking configuration calculated within the
primitive cell can be used to describe well the effective band structure of the same
type of twisted InSe bilayer. It is worth noting that twisted InSe bilayer with a
larger interlayer distance gives a larger effective mass for holes, roughly similar to
InSe bilayer. However, the interlayer distances are about 8.85 ± 0.04 Å for both
types of twisted InSe bilayers, thus the effective mass for holes (1.57± 0.18 m0) and
band gap (0.95 ± 0.03 eV) are similar for different twist angles considered in this
work. This leads to the A1s intralayer and interlayer exciton binding energies are
∼ 441.1 meV and ∼ 183.2 meV in the vacuum, respectively. If twisted InSe bilayer
is in the environment of hBN, the A1s intralayer and interlayer exciton binding
energies are ∼ 119.1 meV and ∼ 54.5 meV, respectively.

The hBN layer shown to act appropriately to provide a spacer to separate
two InSe monolayers, because the valence bands of the hBN layer are at least 1.5
eV below the VBM of twisted InSe bilayer. The effective band structure of twisted
InSe/hBN/InSe heterostructure can also be described well by the bands of InSe
monolayer calculated within the primitive cell. The corresponding A1s intralayer
exciton binding energies for this heterostructure were calculated to be 232.9 meV in
the environment of vacuum and 138.8 meV in the environment of hBN by using the
effective mass for holes of InSe monolayer.
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Conclusions

The two transition metal dichalcogenide alloys studied in this thesis exhibit com-
pletely different dopant distributions. The W dopant atoms are shown to be ran-
domly distributed in MoS2 monolayer from the Monte Carlo simulations based on
the interaction energy calculated through the plane wave DFT and the statisti-
cal analysis of the ADF-STEM images of the as-grown crystal synthesised through
CVT.

Furthermore, the electronic properties of Mo1−xWxS2 monolayer such as the
bandwidth, effective mass and band splitting due to spin-orbit coupling near the
VBM at K calculated through the LS-DFT within large supercells were shown to
give more consistent results with the ARPES measurements, compared with the
DFT based on the VCA calculations within the primitive cell. When x increases
from 0 (MoS2) to 1 (WS2), a linear increase of the bandwidth and the band splitting
near the VBM can be seen. In contrast, the effective mass for holes reduces linearly
with the W composition x. In addition, the spatially localised changes are larger
than the band splitting near the CBM in a range between x = 0.125 and x = 0.428.
The calculated band gap suffers from the underestimation of the band gap based on
the DFT, the absence of excitonic effect and the existence of intrinsic charge carriers
and defects (can cause band gap renormalisation) in the as-grown crystal. Therefore,
the theoretical and experimental band gaps cannot be compared. Furthermore, the
significant circular dichroism seen in the Mo0.5W0.5S2 monolayer via polarisation-
resolved PL measurements proves that spin-valley locking is maintained in these
alloys.

Contrastingly, a highly anisotropic dopant distribution with a clear striped
pattern was observed experimentally in the as-grown W0.9Nb0.1S2 monolayer. The
binding energies of various dopant distributions within small supercells were com-
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pared and analysed. It is suggested that the observed dopant distribution in the
as-grown W0.9Nb0.1S2 monolayer is the result of the combination of the kinetic ef-
fects and the energetics. There are flat bands appearing above the Fermi level in
the effective band structure of this alloy. The anisotropy can also be seen in the
calculated conductivity based on the semiclassical Boltzmann equations. It is sug-
gested that the degree of anisotropy of conductivity can be increased by increasing
the lengths of line segments and spacing between line segments. This provides di-
rections for growing these alloys in the future.

The atomic and electronic structures of InSe monolayer, InSe bilayer with
different stacking configurations, twisted InSe bilayer, twisted InSe/hBN/InSe het-
erostructure were discussed. The InSe bilayer with a smaller interlayer distance
(corresponding to a smaller repulsion between atoms in two InSe layers) possesses
a smaller binding energy, band gap and effective mass for holes. The contributions
from pz orbitals of Se atom and s orbitals of In atom predominate the VBM and
CBM in InSe monolayer, respectively. InSe bilayers with different stacking configu-
rations can be classified into two groups according to the band intersection near the
VBM. The interlayer coupling is stronger near the band intersection.

Furthermore, only small corrugation needs to be considered at the optimised
interlayer distance of twisted InSe bilayer. The distribution of residual force is
similar to the atomic distribution corresponding to different stacking configurations
in twisted InSe bilayer. The residual forces applied on the innermost In and Se atoms
are larger than the outermost In and Se atoms, while the force applied on Se atom is
larger than In atom because Se atoms are at the edges in the top and bottom layers.
The force is mainly oriented along the z direction, implying the rearrangement of
atoms in the vertical position is larger than the xy-plane when forming twisted
InSe bilayer with at least the length scale of moiré pattern considered in this work,
though the directions of movement of atoms could change at smaller twist angles
with larger moiré patterns.

As the twist angle increases, the difference between the effective band struc-
tures of twisted InSe bilayer projected on the bottom and top InSe layers increases.
The mapping between the VBM of twisted InSe bilayer from supercell calculation
and InSe bilayer from the primitive cell calculation is good. The effective mass
for holes for twisted InSe bilayer will increase if the interlayer distance increases,
however, the interlayer distances for twisted InSe bilayers with different twist an-
gles (3.4o, 4.4o, 6.0o, 17.9o and 27.8o) considered in this work are generally similar
(8.5 ± 0.4 Å). This implies the proportion of each stacking configuration in the
twisted InSe bilayer remains roughly at a constant within the range of twist angles
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considered in this work. The variation of the VBM with different twist angles mainly
originates from the difference of the interlayer distance (or stacking configuration)
and slightly affected by the twist angle itself (leading to a different kpoint path for
the other InSe layer) and the corrugation. The change of the flatness of the VBM
is due to different band foldings within different sizes of Brillouin zone, and approx-
imately not owing to the variation of the VBM with different twist angles (if the
twist angle is not very small). The effective mass for holes in twisted InSe bilayer
approximately remains at a constant and gives ∼ 441.1 meV and ∼ 183.2 meV in
the environment of vacuum, whereas they are ∼ 119.1 meV and ∼ 54.5 meV in the
enviromnent of hBN, for the A1s intralayer and interlayer exciton binding energies,
respectively. The encapsulated hBN layer in twisted InSe bilayer is regarded as a
spacer to weaken the interaction between two InSe layers. The effective band struc-
ture of twisted InSe/hBN/InSe heterostructure can also be well-described by InSe
monolayer from the primitive cell calculation. The A1s intralayer exciton binding
energy for this heterostructure is ∼ 232.9 meV in the environment of vacuum and
∼ 138.8 meV in the environment of hBN, with the effective mass for holes of InSe
monolayer as input in the theoretical model.

In this thesis, the fundamental properties of these materials have been re-
vealed from the combination of theory and experiment. This helps theorists and
experimentalists expand knowledge of this continuously growing research field of 2D
materials, then further developing appropriate technological tools to study other
similar 2D materials.
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