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Abstract
Uncertainty quantification plays an important role in problems that involve inferring 
a parameter of an initial value problem from observations of the solution. Conrad 
et  al. (Stat Comput 27(4):1065–1082, 2017) proposed randomisation of determin-
istic time integration methods as a strategy for quantifying uncertainty due to the 
unknown time discretisation error. We consider this strategy for systems that are 
described by deterministic, possibly time-dependent operator differential equations 
defined on a Banach space or a Gelfand triple. Our main results are strong error 
bounds on the random trajectories measured in Orlicz norms, proven under a weaker 
assumption on the local truncation error of the underlying deterministic time inte-
gration method. Our analysis establishes the theoretical validity of randomised time 
integration for differential equations in infinite-dimensional settings.
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1 Introduction

The numerical solution of deterministic dynamical systems is an important task in 
many applications where the dynamical system is a spatiotemporal field that satisfies 
a partial differential equation (PDE). In this case, the field can be viewed as a func-
tion u mapping to an infinite-dimensional real separable Banach space (V , |⋅|V ) , and the 
dynamical system is described by a deterministic operator differential equation initial 
value problem on a finite time interval [0, T] for some initial condition �:

Operator differential equations have been applied in peridynamics and elastic mate-
rials, e.g. [13, 25]. The purpose of this paper is to analyse the error of randomised 
time integration methods for solving such initial value problems. The methods are of 
the form

where �(h,Uk) represents the output of a deterministic time integration method with 
time step h corresponding to the input Uk , and �k(h) is a V-valued random variable 
whose distribution depends on h. Our motivation for considering these methods 
comes from Bayesian inverse problems.

In many applications, the initial value problem depends on a parameter �∗—for 
example, the initial condition � , or a parameter appearing in the vector field f—and it is 
of interest to infer the value of �∗ given some observational data y, where y results from 
some fixed measurement process. Let � and Y denote the set of feasible parameter val-
ues and the set of feasible data values respectively. We assume that � is a Banach space 
and Y is a Hilbert space. Let S denote the solution operator that maps every �� ∈ � to 
the solution of the corresponding initial value problem, and let O denote the observa-
tion operator that maps every continuous trajectory in V to the corresponding output 
ỹ ∈ Y of the fixed measurement process. Then the inference problem is to determine 
the value of the unknown true parameter �∗ given noisy data of the form

where � is often assumed to be a centred Gaussian random variable with known, 
positive-definite covariance operator Γ . In general, the inverse problem is ill-posed, 
and one can apply deterministic or statistical approaches to solving the inverse 
problem.

In the Bayesian approach to inverse problems, one assumes that � can be equipped 
with a probability measure �0 , called the ‘prior’. Let G ∶= O◦S ∶ � → Y denote the 
parameter-to-observable map. The Bayesian solution to the inverse problem is given by 
the ‘posterior’ probability measure �y on � , which satisfies

u(0) = �, u�(t) = f (t, u(t)), t ∈ [0, T].

Uk+1 ∶= �(h,Uk) + �k(h), k ∈ {0,… ,N − 1},

y = O◦S(�∗) + �,

�y(d��) =
1

Z(y)
exp

(
−
1

2
‖‖y − G(��)‖‖

2

Γ

)
�0(d�

�)
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where ‖x‖2
Γ
=
�
x,Γ−1x

�
Y

 and Z(y) is a normalisation constant. The posterior is 
important because one can use it to perform uncertainty quantification for the 
unknown parameter �∗ . See [34, Section  2.4] for a presentation of the Bayesian 
approach to inverse problems posed on vector spaces.

For many differential equations arising in applications, one must approximate the 
exact solution operator S using another operator S̃ that results from a discretisation of 
the initial value problem. This leads to an approximation G̃ ∶= O◦S̃ of the parameter-
to-observable map, which in turn leads to an approximation �̃�y of the exact posterior 
�y defined above. For a fixed data vector y and prior �0 , the error in S̃ is propagated 
via Bayes’ theorem to an error in �̃�y . Since the posterior is fundamental for performing 
inference on the unknown parameter �∗ , one seeks a principled way to take into account 
the discretisation error in S̃.

Under some assumptions, a bound on the error G − G̃ with respect to some appro-
priate norm can be used to prove a bound on the error in the posterior, as measured 
by the Hellinger metric, e.g. [34, Corollary 4.9]. Stability bounds of this type ensure 
that the approximate posterior �̃�y converges in the Hellinger metric to the exact pos-
terior �y , in the limit as the discretisation error vanishes. While this property ensures 
that we can ignore the error in the posterior in the limit of increasingly finer dis-
cretisations, it does not indicate how to treat the error in the posterior for a fixed 
discretisation.

One approach is to ignore the discretisation error. This approach is not ideal from 
the point of view of statistical inference, because the approximate posterior �̃�y can 
be tightly concentrated around the wrong parameter values, even in the small-noise 
limit. This phenomenon of ‘overconfidence’ is undesirable for uncertainty quantifi-
cation. See Sect. 1.1 below.

The approach presented in [10] approaches the problem of accounting for the 
discretisation error, by applying the standard procedure of using random variables 
as proxies for unknown quantities. Let �(h, v) denote the output of applying a time 
integration method for time step h to the state v, for a fixed time step h = T∕N > 0 , 
N ∈ ℕ . Consider the error u(h) − �(h, u(0)) between the exact solution and 
the numerical solution, incurred over one time step. Since the one-step error is 
unknown, we model it using a random variable �0(h) . Thus,

If we model the one-step error for subsequent steps in a similar way, then this leads 
to the randomised time integration methods stated at the beginning of this section.

1.1  Illustration of overconfidence phenomenon

Consider the standard heat equation on a bounded domain D ⊂ ℝ
d with homogene-

ous Dirichlet boundary conditions, written as the operator differential equation

where A is the negative Laplacian, H = L2(D) , and h > 0 . In [34, Section  3.5], 
one considers the inverse problem of inferring the initial condition � from a noisy 

u(h) ≈ �(h, u(0)) + �0(h) =∶ U1.

u(0) = � ∈ H, u�(t) + Au(t) = 0, t ∈ [0, h],
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observation of the solution at a later time. We shall use the assumptions and the 
approach stated there. The parameter-to-observable map is G ∶ H → H , v ↦ e−hAv . 
The data y is a realisation of the random variable

where the noise � is a Gaussian random variable with distribution N(0,Γobs ) . The 
noise scaling � is assumed to be known, and the small noise limit corresponds to 
� → 0 . For the unknown parameter � , we use the Gaussian prior �0 = N(m0,Γ0) . 
The positive-definite covariance operators Γobs and Γ0 are chosen so that 1) draws 
from N(0,Γobs) and from �0 are H-valued, almost surely; and 2) Γ0 is an appropriate 
negative fractional power of A. Applying [34, Theorem 6.20] to the jointly Gaussian 
random variable (U,G(U) + �1∕2�) with U ∼ �0 yields the Gaussian posterior meas-
ure �y with mean and covariance

In the � → 0 limit, y → G� . Using this fact and the assumptions on Γ0 , it follows 
that C → 0 and m → � in the � → 0 limit. Since Gaussian measures are completely 
characterised by their mean and covariance, the convergence of C and m implies the 
weak convergence (in the sense of probability measures) of the posterior measure to 
the Dirac measure at the true initial condition � as � → 0 . This convergence captures 
the concentration of the posterior �y around the true unknown � , and validates the 
Bayesian approach to the inverse problem.

Now suppose we approximate G using the map G̃ defined by a single step of 
the implicit Euler method, G̃ ∶ H → H , v ↦ (I + hA)−1v . Applying [34, Theo-
rem 6.20] as we did earlier with G̃ instead of G yields the associated approximate 
posterior �̃�y , which is Gaussian with mean and covariance

In the � → 0 limit, C̃ → 0 , but m̃ → G̃−1G𝜗 ≠ 𝜗 . Thus, the approximate posterior �̃�y 
converges weakly in the small noise limit to a biased Dirac measure. This demon-
strates the overconfidence phenomenon. The bias G̃−1G𝜗 − 𝜗 in the limiting Dirac 
measure is the local truncation error of the implicit Euler method.

To address the overconfidence phenomenon, we use a random variable as a 
proxy for the unknown bias. Consider the randomised implicit Euler method 
given by �G(v) ∶= G̃v + hp+1𝜁 , where � ∼ N(0,Γ1) is independent of the observa-
tion noise � , and Γ1 is chosen so that draws from N(0,Γ1) are H-valued almost 
surely. By rewriting �G(U) + 𝛿1∕2𝜂 = G̃U + (hp+1𝜁 + 𝛿1∕2𝜂) and applying [34, The-
orem 6.20], it follows that the associated deterministic posterior �̂y is Gaussian, 
with mean and covariance

Y = G(�) + �1∕2� = G� + �1∕2�

m = m0 + Γ0G(�Γobs + GΓ0G)
−1(y − Gm0)

C = Γ0 − Γ0G(�Γobs + GΓ0G)
−1GΓ0.

m̃ = m0 + Γ0G̃(𝛿Γobs + G̃Γ0G̃)
−1(y − G̃m0)

C̃ = Γ0 − Γ0G̃(𝛿Γobs + G̃Γ0G̃)
−1G̃Γ0.
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In the � → 0 limit, Ĉ does not converge to zero, because of the additional h2p+2Γ1 
term. However, in the limit as h, � → 0 , the bias G̃−1G𝜗 − 𝜗 associated to G̃ van-
ishes. Hence m̂ → � and Ĉ → 0 . For fixed h > 0 , the additional h2p+2Γ1 term ensures 
that the deterministic approximate posterior �̂y associated to the randomised implicit 
Euler method Ĝ is more ‘spread out’ than the approximate posterior �̃�y associated to 
the non-randomised implicit Euler method G̃ . In this way, the problem of overconfi-
dence is mitigated.

1.2  Main contributions

In this paper, we rigorously prove strong forward error bounds for randomised 
one-step time integration methods applied to operator differential equations. Our 
work builds on the approach for proving the error bounds in L2 of [10, Theo-
rem  2.2] and the error bounds in LR—for user-specified R ∈ ℕ—of [20, Theo-
rem 3.5]. These bounds were stated for initial value problems formulated in ℝd , 
where the associated exact flow maps are globally Lipschitz, and where the ran-
domised time integrators are generated using uniform time grids and numerical 
methods � that satisfy a uniform local truncation error assumption.

The error bounds that we prove in this paper generalise the existing error 
bounds in multiple aspects. Our bounds are valid for time-dependent vector 
fields, non-uniform time grids (i.e. variable time steps), and operator differential 
equations that are formulated on Banach spaces or on Gelfand triples. In Theo-
rem 3.7, we show that one can obtain strong error bounds in LR for R > 1 , with-
out the assumption of uniform local truncation error of the numerical method, 
and without the assumption that the flow map of the initial value problem is 
globally Lipschitz. In fact, we show that one can obtain strong error bounds in 
more general Orlicz norms. The bounds that we prove in this paper demonstrate 
that the paradigm of randomised time integration extends in a natural way to 
the time integration for PDEs with time-dependent coefficients. Moreover, the 
proofs we give for our main results are simpler than the proofs of the corre-
sponding results given in [20].

A related but distinct contribution that we make is to consider the setting 
where the random variables used in the randomisation are independent and cen-
tred. We generalise the L2 uniform error bound [20, Theorem  3.4] for centred 
and independent randomisation—which was proven in the setting of ODEs in 
ℝ

d—to the setting of operator differential equations on Gelfand triples, under 
weaker assumptions on the time integration map � . We address the question 
of whether it is possible to obtain better error bounds under these additional 
assumptions. This question was implicit in the analysis of [20], but was not 
addressed there.

�m = m0 + Γ0G̃(𝛿Γobs + h2p+2Γ1 + G̃Γ0G̃)
−1(y − G̃m0)

�C = Γ0 − Γ0G̃(𝛿Γobs + h2p+2Γ1 + G̃Γ0G̃)
−1G̃Γ0.
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1.3  Related work

Randomised time integration methods for differential equations have been stud-
ied extensively in the context of ‘probabilistic numerics’. For some reviews of 
research in this area, see [9, 17, 27]. In probabilistic numerics, ODEs have been 
considered from many perspectives, including structure- or symmetry-preserving 
methods [1, 40], Bayesian modelling of the unknown solution with Gaussian pro-
cesses [5, 10, 33, 36, 38, 40], data-based statistical estimation of discretisation 
error [24, 35], and filtering [19, 38]. The papers [10, 20] cited earlier also belong 
to this context. For PDEs, methods based on Bayesian inference and Gaussian 
processes [6, 8, 10, 28, 31, 39], multiscale techniques [29], and random meshes 
[2] have been studied. The research area of ‘information field dynamics’ [11, 14] 
also considers probabilistic simulation schemes for PDEs by using Gaussian pro-
cesses and information theoretic ideas.

Random approximate posteriors arising from randomised solution operators 
for differential equations have been studied in [21, Section  5] under a strong 
assumption of exponentially integrable discretisation error S − S̃ , and more 
recently under a weaker square integrability hypothesis in [15].

Two aspects differentiate the problem we consider from the problems consid-
ered in numerical methods for stochastic evolution equations. The most impor-
tant aspect is that the operator differential equation of interest in this paper is 
deterministic. Thus, our context is fundamentally different from the context of 
numerical integration methods for stochastic differential equations and numerical 
integration methods for random differential equations. The second aspect is that 
the random variables used in the randomisation need not be constructed using 
i.i.d. copies of a Wiener process or Lévy process.

1.4  Overview

We introduce notation and some recurring objects in the next section. In Sect. 2, 
we consider the setting where the initial value problem is formulated on a Banach 
space. The main result is the strong error bound in Orlicz norm proven in Theo-
rem 2.8 under the assumption of uniform local truncation error of the time inte-
gration method �.

In Sect.  3, we consider the setting where the initial value problem is formu-
lated on a Gelfand triple, and where � satisfies a weaker local truncation error 
assumption. This setting is considered in the variational approach to PDEs. We 
prove strong L2 error bounds for mutually independent and centred randomisation 
in Sect.  3.1. In Sect.  3.2, we discuss the feasibility of obtaining LR bounds for 
R > 2 that are of the same order in the time step h, under the same assumptions 
of independence and centredness. In Sect. 3.3, we state in Theorem 3.7 a strong 
error bound in Orlicz norm without assuming independence or centredness.
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In Sect. 4, we show that the assumptions we make in Sect. 3 are reasonable for 
a class of operator differential equations that includes the heat equation on a C2 
bounded domain.

We conclude in Sect. 5. In the appendices, we collect material that is useful for 
the main part of the paper.

1.5  Notation and setup

Below, (V , |⋅|V ) and (H, ⟨⋅, ⋅⟩H) denote a real separable Banach space and a 
real separable Hilbert space respectively. We write |⋅|H for the Hilbert space 
norm. All integrals are Bochner integrals unless otherwise stated. We define 
C1([0, T];V) ∶= {u ∈ C([0, T];V) | u� ∈ C([0, T];V)} and equip it with the norm 
‖u‖1,∞ = ‖u‖∞ + ‖u�‖∞ where ‖u‖∞ ∶= supt∈[0,T] �u(t)�V . We define the space 
C1([0, T];H) analogously.

All random variables will be defined on a common probability space (�,F,ℙ) . 
We denote expectation with respect to ℙ by �[⋅] and write X ∼ � to mean that X has 
� as its distribution. For a V-valued random variable X and R ≥ 1 , we shall write 
‖X‖LR(�;V) ∶= �[�X�R

V
]1∕R . Similarly, if X is H-valued, then ‖X‖LR(�;H) ∶= �[�X�R

H
]1∕R . 

For a Young function � ∶ ℝ≥0 → ℝ≥0 , the corresponding Orlicz norm1 ‖⋅‖� of a ℝ
-valued random variable Z is defined by

If Z is a V-valued (respectively, H-valued) random variable, then 
‖Z‖� (�;V) ∶=

���Z�V��� (resp. ‖Z‖� (�;H) ∶=
���Z�H��� ). The ‖⋅‖� (�;V) norm includes 

as a special case the ‖⋅‖LR(�;V) norm when R > 1 , but not when R = 1 . The analogous 
statement holds for the ‖⋅‖� (�;H) norm. An important choice of Young function � 
is given by �2(z) ∶= exp(z2) − 1 , because finiteness of ‖X‖�2

 implies that X is sub-
Gaussian and hence exponentially square integrable.

We write p ∧ q = min{p, q} for p, q ∈ ℝ . For h > 0 , p ≥ 0 , and a = a(h) ∈ ℝ , we 
write a = O(hp) to mean that |a| ≤ Chp for some h-independent term C > 0 . Given 
N ∈ ℕ , [N] ∶= {1,… ,N} and [N]0 ∶= [N] ∪ {0} = {0, 1,… ,N}.

Throughout the paper, we consider the following initial value problem on a deter-
ministic time interval [0, T],

for fixed T > 0 and suitable initial condition � . We specify the domain and codo-
main of f in the following sections. We denote by � the exact flow map associated to 
(1.1) as follows: for suitable h ∈ [0, T] , t ∈ [0, T − h] , and us,

‖Z‖� ∶= inf{k ∈ (0,∞) ∶ �[� (�Z�∕k)] ≤ 1}.

(1.1)u(0) = �, u�(t) = f (t, u(t)), t ∈ [0, T]

(1.2)�(h, t, us) = us + ∫

t+h

t

f (�,�(�, t, us)) d�.

1 See [3, Chapter 8] for a general introduction to Orlicz spaces and norms.
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We equip the time interval [0, T] in (1.1) with a time grid (tk)k∈[N]0 , where

From (1.3) it follows that for any � ≥ 0,

Given (1.2), the exact sequence (u(tk))k∈[N]0 associated with the time grid satisfies

We denote by � the approximate flow map associated to a time integration method, 
and define a deterministic approximating sequence (uk)k∈[N]0 by

Let (�k)k∈ℕ0
 be a sequence of stochastic processes, where each �k is a stochas-

tic process on [0,∞) . In Sect. 2 (respectively, Sect. 3), each �k takes values in the 
Banach space V (resp. the Hilbert space H). Given the time grid in (1.3), we use 
(�k(hk))k∈[N−1]0 as a randomisation sequence in order to define the random approxi-
mating sequence (Uk)k∈[N]0 by

for a given random variable U0 . The sequence of errors (ek)k∈[N]0 of the random 
approximating sequence (1.6) with respect to the exact sequence (1.5) is defined by

By (1.5) and (1.6), we obtain

The equation (1.7) shall be the starting point for our error analysis.

2  Classical setting

In this section, we prove the generalisation of [10, Theorem  2.2] and [20, Theo-
rem 3.5] to the setting of a time-dependent vector field f on an infinite-dimensional, 
real, separable Banach space V. We assume that the vector field f in (1.1) satisfies 
f ∶ [0, T] × V → V  . In addition, we assume that for every initial condition � ∈ V  , 
there exists a unique classical solution u ∈ C1([0, T];V) . For example, if f is continu-
ous and uniformly Lipschitz in the second argument, then this assumption is satis-
fied, and � exists [12, Satz 7.2.6].

We state the assumptions needed to prove the main result of this section. The first 
is a Lipschitz continuity assumption on the exact flow map.

(1.3)0 =∶ t0 < t1 < ⋯ < tN ∶= T , hk ∶= tk+1 − tk, h ∶= max
k∈[N−1]0

hk.

(1.4)
∑

�∈[N−1]0

h�+1
�

≤ h�
∑

�∈[N−1]0

h
�
= h�T .

(1.5)u(tk+1) = �(hk, tk, u(tk)), k ∈ [N − 1]0.

uk+1 ∶= �(hk, tk, uk), u0 = �.

(1.6)Uk+1 ∶= �(hk, tk,Uk) + �k(hk), k ∈ [N − 1]0

e0 = u(0) − U0, ek+1 ∶= u(tk+1) − Uk+1, k ∈ [N − 1]0.

(1.7)ek+1 = �(hk, tk, u(tk)) − �(hk, tk,Uk) − �k(hk), k ∈ [N − 1]0.
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Assumption 2.1 The exact flow map � admits a constant L𝜑 > 0 such that for any 
t ∈ [0, T] , for every h ≥ 0 such that t + h ≤ T  , and for every x, y ∈ V ,

If f is uniformly Lipschitz in the second argument, then Assumption 2.1 is sat-
isfied [12, Satz 7.3.4].

Ideally, the deterministic sequence (uk)k approximates the exact sequence 
(u(tk))k well. We make this precise by introducing the following uniform local 
truncation error assumption.

Assumption 2.2 The approximate flow map � admits constants 0 < h∗ < ∞ , 
0 < C𝜑,𝜓 < ∞ , and q ≥ 0 , such that for all 0 < h ≤ h∗,

The parameter h∗ is included in order to account for implicit time integration 
methods that provide a unique output whenever the time step is small enough. In 
order to achieve an order of q ≥ 1 for the truncation error, one usually requires 
higher regularity of f or equivalently higher regularity for the solution u [16, Sec-
tion III.2, Theorem 2.4]. For classical one-step methods, the corresponding analy-
sis extends to infinite-dimensional Banach spaces; see Appendix B.

The assumptions above are similar to [10, Assumption 2] and [20, Assumption 
3.1, 3.2]. Note that Assumption 2.2 is restrictive, because it requires uniformity 
in t and v. For example, in [10], the analogous assumption is justified under the 
assumption that f ∶ ℝ

d
→ ℝ

d is sufficiently smooth and sufficiently many of its 
derivatives are uniformly bounded. However, Assumption 2.2 is not satisfied in 
general. For example, in the setting where the operator differential equation is 
given by u�(t) = Au(t) ∈ H for a Hilbert space H and the infinitesimal generator 
A of an analytic semigroup with domain Dom(A) , and � is given by the implicit 
Euler method, there exists C > 0 such that for all � ∈ Dom(A) , n ∈ ℕ , and all suf-
ficiently small h > 0,

see [37, Theorem 7.1].
For equations of the form (1.1) derived from PDEs and fixed time argument t, 

the right-hand side f is in many cases not Lipschitz from V to V. Furthermore, one 
cannot in general expect that (1.1) admits a classical solution u ∈ C1([0, T];V) , 
because a classical solution requires regularity assumptions on the problem data 
that need not hold in general. In Sect. 3, we will consider vector fields f that do 
not satisfy the assumptions above. This will lead us to consider variational solu-
tions of (1.1). There are other approaches to generalise the classical setting to 
problems with less regularity, e.g. mild solutions, but they are outside the scope 
of this paper.

|�(h, t, x) − �(h, t, y)|V ≤ (1 + L�h)|x − y|V .

sup

v ∈ V

t ∈ [0, T − h]

|�(h, t, v) − �(h, t, v)|V ≤ C�,�h
q+1 .

|�(nh, 0, �) − �(nh, 0, �)|H ≤ Ch|A�|H ,
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2.1  Randomisation sequence

Recall the random approximating sequence (Uk)k defined in (1.6). In this section, 
we shall assume that each �k is a V-valued stochastic process indexed by [0,∞) , 
and we shall assume U0 is a V-valued random variable. Below, we shall impose 
the following regularity assumption on the (�k)k∈ℕ0

.
For the remainder of Sect. 2, we shall shorten notation and write ‖Z‖� instead 

of ‖Z‖� (�;V) for any V-valued random variable Z.

Assumption 2.3 The collection (�k)k∈ℕ0
 admits an Orlicz norm ‖⋅‖� and constants 

p ≥ 0 and 0 < C𝜉 < ∞ , such that for all k ∈ ℕ0 and t > 0,

The assumption allows the stochastic processes to be non-Gaussian, to be prob-
abilistically dependent, and to have different distributions and nonzero means. 
Furthermore, Assumption 2.3 allows for �k(t) to have different orders of integra-
bility. The rates at which the absolute moments decrease to zero as t decreases to 
zero may differ as well. The function �  quantifies the maximal common order of 
integrability, and the parameter p quantifies the maximal common decay rate with 
respect to ‖⋅‖�.

Assumption 2.3 generalises [20, Assumption 3.3], which in turn generalised 
[10, Assumption 1]. The latter two assumptions considered the ‖⋅‖R norm for 
R ∈ ℕ and the ‖⋅‖2 norm of ℝd-valued random variables respectively.

We recall the motivation given in [10] for the additive random perturbation in 
(1.6) and in particular for Assumption 2.3. Comparing (1.5) and (1.6) yields

Thus, the random variable �0(h0) models the uncertainty in the value of the integral 
term due to the fact that the value of the solution u over the time interval [0, h0] is 
known only at time 0, and not at every time s in the interval [0, h0].

It is desirable that the approximation above is good with high probability. 
Given that any reasonable choice of � must satisfy limh0→0 �(h0, 0, u0) = u0 , a 
necessary condition for the approximation above to be good with high probabil-
ity is that the law of �0(h0) concentrates around 0 as h0 → 0 , because the inte-
gral term ∫ h0

0
f (s, u(s)) ds → 0 as h0 → 0 . Using Assumption 2.3 with Markov’s 

inequality yields that for every 𝜀 > 0,

The inequality above shows that the parameter p quantifies the maximal common 
rate at which all the laws (ℙ◦(||�k(t)||V )−1)k contract around the Dirac measure at 
zero, as t decreases to zero.

‖‖�k(t)‖‖� ≤ C� t
p+1.

u(t1) = u(0) +
∫

h0

0

f (s, u(s)) ds ≈ �(h0, 0, u(0)) + �0(h0) = U1.

ℙ(||�k(t)||V ≥ �) ≤

(
C� t

p+1

�

)r

.
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In [10, 20], the parameter p is chosen in order to ensure that the error of the ran-
dom approximate solution sequence (Uk)k with respect to the exact sequence (u(tk))k 
decreases with h at the same rate as the error of the deterministic approximate solu-
tion sequence (u(tk))k . This choice is motivated by the goal of showing that probabil-
istic integrators can have the same convergence rate as the underlying deterministic 
one-step method.

Recall that if V is a separable Banach space and � is a Gaussian measure whose 
support equals V, then the Cameron–Martin space of � is dense in V, and hence 
there exists a V-valued Wiener process (W(t))t≥0 associated to � such that W(1) ∼ � 
[4, Theorem  3.6.1, Proposition 7.2.3].2 The next lemma shows that there exists a 
large class of Gaussian processes that satisfies Assumption 2.3.

Lemma 2.4 Let � be a Gaussian distribution with support equal to V, and let 
(W(t))t≥0 be a Wiener process associated to � such that W(1) ∼ � . Let � be a sto-
chastic process on [0,∞) defined by t ↦ �(t) ∶= tp+1∕2W(t) , and let (�k)k∈ℕ0

 be i.i.d. 
copies of � . Then

for ‖⋅‖� = ‖⋅‖R , R > 1 , or ‖⋅‖� = ‖⋅‖�2
 , �2(z) ∶= exp(z2) − 1.

Proof For t > 0 , we have ‖�(t)‖� = tp+1∕2‖W(t)‖� = tp+1‖W(1)‖� . The first equa-
tion follows from the definition of �(t) , and the second equation follows from the 
scaling property of the Wiener process, i.e. that W(t) = t1∕2W(1) in distribution for 
every t > 0 . The conclusion follows since W(1) = �(1) as random variables, and 
because Gaussian random variables are exponentially square integrable by Fern-
ique’s theorem.   ◻

Remark 2.5 The preceding discussion shows that a collection of i.i.d. copies of the 
standard Wiener process W satisfies Assumption 2.3 with p = −1∕2 , in which case 
we may set �k(hk) in (1.6) to be a centred Gaussian random variable with variance 
proportional to hk . This choice yields a time integration method that resembles 
methods for stochastic differential equations. However, for the error bound in Theo-
rem  2.8 below to imply convergence in probability of (Un)n to the exact solution 
sequence (u(tk))k , we need p > 0 . This observation highlights an important differ-
ence between the type of time integration methods that we analyse in this paper and 
time integration methods for stochastic differential equations.

2.2  Error bounds

Recall from (1.7) that

(2.1)‖�(t)‖� = ‖�(1)‖� tp+1,

2 The cited results assume centredness of � , but do not require this property.
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The following bound is the generalisation of [10, Theorem 2] to our setting.

Lemma 2.6 Suppose that

– Assumption 2.1 holds with parameters L�,
– Assumption 2.2 holds with parameters h∗ , C�,� and q,
– Assumption 2.3 holds with parameters ‖⋅‖� , p, and C� , and
– the initial state U0 satisfies ‖‖U0

‖‖𝛹 < ∞.

Then for any time grid (tk)k such that 0 < h ≤ h∗ , the corresponding error sequence 
(ek)k satisfies

In particular, if ‖‖e0‖‖� = 0 , then maxk
‖‖ek‖‖� = O(hp∧q).

Proof It suffices to prove the first statement. Let k ∈ [N − 1]0 . From (1.7) we have

where (2.2) follows from Assumptions 2.1 and 2.2. By taking the ‖⋅‖� norm of both 
sides of (2.2), using the triangle inequality, Assumption 2.3, and the bound hk ≤ h 
from (1.3), we obtain

Applying the discrete Gronwall inequality in Lemma C.1 completes the proof.   ◻

Remark 2.7 In addition to bounds on the strong error ‖‖ek‖‖� , one can prove bounds 
on the weak error, i.e. bounds of the form

for all sufficiently smooth ℝ-valued functions � . Such bounds were proven in [10, 
Theorem 2.4] and [1, Section 3], for example. We focus on strong error bounds in 
this paper.

To prove Lemma 2.6, we take expectations via the ‖⋅‖� norm before apply-
ing the discrete Gronwall inequality in Lemma C.1 to conclude. By reversing the 
order of these operations and by using a different discrete Gronwall inequality, we 

ek+1 = �(hk, tk, u(tk)) − �(hk, tk,Uk) − �k(hk), k ∈ [N − 1]0.

max
k

‖‖ek‖‖� ≤ exp(L�T)
‖‖e0‖‖� +

C�,� + C�

L�

(
exp(L�T) − 1

)
hp∧q.

(2.2)

||ek+1||V ≤ ||�(hk, tk, u(tk)) − �(hk, tk,Uk)
||V + ||�k(hk)||V

≤ ||�(hk, tk, u(tk)) − �(hk, tk,Uk)
||V + ||�(hk, tk,Uk) − �(hk, tk,Uk)

||V
+ ||�k(hk)||V

≤ (1 + L�hk)
||ek||V + C�,�h

q+1

k
+ ||�k(hk)||V

‖‖ek+1‖‖� ≤ (1 + L�h)
‖‖ek‖‖� + (C�,� + C�)h

(p∧q)+1.

|�[�(Uh
n
)] −�(un)| ≤ Chw,
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can bound ‖‖maxk |ek|V‖‖� . This yields the result below, which extends [20, Theo-
rem  3.5] to our setting. On one hand, this bound has worse constants than the 
bound in Lemma 2.6. On the other hand, the bound is stronger, because

and because the bound has the same order in h as Lemma 2.6.

Theorem  2.8 Suppose the hypotheses of Lemma 2.6 hold. Then for any time grid 
(tk)k with 0 < h ≤ h∗ , the corresponding error sequence (ek)k satisfies

In particular, if ‖‖e0‖‖� = 0 , then ‖‖maxk
||ek||V‖‖� = O(hp∧q).

Remark 2.9 When � (z) = exp(z2) − 1 , then the strong error bound given in 
Theorem  2.8 implies the exponential square integrability of the pathwise error 
maxk

||ek||
2

V
 . The exponential square integrability of the pathwise error was used in 

[21, Section 5] to establish local Lipschitz continuity of random approximate pos-
teriors—measured in the Hellinger metric—with respect to the expected error of 
the randomised time integrator. In [20], exponential integrability was obtained by 
considering ‖‖maxk

||ek||V‖‖R for all R ∈ ℕ and using the series representation of the 
exponential function. The use of Orlicz norms allows us to exploit the fact that the 
random approximating sequence (Uk)k inherits the integrability properties of the col-
lection (�k)k . This leads to a simpler proof of exponential integrability.

Proof of Theorem 2.8 Using (2.2) and applying the discrete Gronwall inequality in 
Lemma C.3, we obtain for every k ∈ [N − 1]0 that

Since the sum in the exponential increases with k, setting k = N − 1 above and using 
(1.3) to obtain 

∑
j∈[N−1]0

hj = T  yields the ‘pathwise’ bound

By taking the ‖⋅‖� norm of both sides of (2.4), the triangle inequality, Assumption 
2.3, and (1.4), we obtain

(2.3)max
k

‖‖ek‖‖� ≤
‖‖‖‖
max
k

||ek||V
‖‖‖‖�

,

‖‖‖‖
max

k

||ek||V
‖‖‖‖�

≤
(‖‖e0‖‖� + C�,�h

qT + C�h
pT

)
exp

(
L�T

)
,

||ek+1||V ≤

(
||e0||V +

∑

k∈[N−1]0

(
C�,�h

q+1

k
+ ||�k(hk)||V

))
exp

(
∑

0≤j≤k

L�hj

)
.

(2.4)max
k

||ek||V ≤

(
||e0||V + C�,�h

qT +
∑

k∈[N−1]0

||�k(hk)||V

)
exp

(
L�T

)
.
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which completes the proof.   ◻

Remark 2.10 Under the assumption that V = ℝ
d and under the assumption that the 

randomisation sequence (�k(hk))k consists of centred, independent random variables, 
[10, Theorem 2] and [20, Theorem 3.4] consider the special case where ‖⋅‖� = ‖⋅‖2 
in Lemma 2.6 and Theorem  2.8, and establish O(hq∧(p+1∕2)) bounds on the strong 
error respectively. The order in these bounds is better than the bounds we proved 
above. However, both the proofs of these results exploit both the inner product struc-
ture of ℝd and the fact that linear functionals of the �k appear in the expansion of 
|ek+1|2ℝd

 . In the key inequality (2.2), we cannot exploit an inner product even if it 
were available, because we only consider |ek+1|V . In Sect. 3, we shall generalise [10, 
Theorem 2] and [20, Theorem 3.4] from ℝd to general Hilbert spaces.

3  Variational setting

For evolution equations originating from PDEs with possibly non-smooth right-
hand sides or non-smooth initial conditions, the classical solution theory that we 
considered in Sect. 2 might not apply, because the requirement that the operator f 
in (1.1) satisfies f (t, v) ∈ V  for every v ∈ V  and all suitable t might be too strong. 
For example, this requirement does not hold for the heat equation in Sobolev spaces 
Wk,p . There are several settings that extend the classical setting for such problems. 
In this section, we focus on the variational setting, because it is suitable for numeri-
cal time integration methods. In the variational setting, we consider a Gelfand tri-
plet V ↪ H ≃ H�

↪ V � , which is a sequence of continuous embeddings of a Banach 
space V into a Hilbert space H that is identified with its dual space H′ , which is then 
embedded in the dual space V ′ of V [41, Proposition 23.13].

In this section, we further specify the operator differential equation (1.1) to be

for a given operator A ∶ [0, T] × V → V � and b ∈ Lp
�

(0, T;V �) . The equation (3.1) 
is written in the form that is common in PDE theory instead of the form used in 
(1.1), where the right-hand side would be defined by f (t, u(t)) ∶= b(t) − A(t, u(t)) . 
The solution of (3.1) belongs to the space

which is continuously embedded into C([0, T]; H) [12, Satz 8.4.1]. We emphasise 
that a solution of (3.1) must satisfy the equation only for almost every t ∈ [0, T] , and 
not for every t.

‖‖‖‖
max

k

||ek||V
‖‖‖‖�

≤

(
‖‖e0‖‖� + C�,�h

qT +
∑

k∈[N−1]0

‖‖�k(hk)‖‖�

)
exp

(
L�T

)

≤
(‖‖e0‖‖� + C�,�h

qT + C�h
pT

)
exp

(
L�T

)
,

(3.1)u(0) = � ∈ H, u�(t) + A(t, u(t)) = b(t) ∈ V �, t ∈ [0, T]

Wp(0, T) ∶=

{
u ∈ Lp(0, T;V)

||| u
� ∈ Lp

�

(0, T;V �)with
1

p
+

1

p�
= 1

}
,
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There are several conditions—e.g. Lipschitz or one-sided Lipschitz condi-
tions, strong positivity, monotonicity, or coercivity — that one can impose on 
A and b in order to guarantee the existence of a unique variational solution 
u ∈ Wp(0, T) ↪ C([0, T];H) [41, Prop. 23.23]. Under stronger assumptions, 
higher regularity of u can be achieved [12, Satz 8.5.1]. In some cases, the flow 
map is continuous and even Lipschitz; see [41, Theorem 23.A] for linear prob-
lems and [41, Corollary 23.26] for the time-dependent case.

Recall the definition (1.5) of the sequence (u(tk))k∈[N]0 of states of the exact 
solution:

where � is the flow map associated to the differential equation of interest (3.1). In 
the variational setting, the flow map � maps (h, t, us) with h ∈ [0, T] , t ∈ [0, T − h] , 
and us ∈ H to a vector �(h, t, us) ∈ H . Next, recall that � is the approximate flow 
map associated to a time integration method, and that according to (1.6), we con-
struct the random approximating sequence (Uk)k∈[N]0 according to

In this section, we shall assume that the initial condition U0 is a H-valued random 
variable, and that each �k is a H-valued stochastic process indexed by [0,∞).

We shall make the following assumptions on �.

Assumption 3.1 Let h∗ > 0 , and let � ∶ [0, h∗] × [0, T] × H → V  satisfy the follow-
ing conditions: 

1. There exists a scalar q ≥ 0 , a function C�,� ∶ [0, T] × H → (0,∞) that is bounded 
on bounded subsets, and a dense subset D ⊂ H , such that, for every h ∈ [0, h∗] and 
for every (t, x) ∈ [0, T − h] × H with x = �(s, 0, ��) for some s ≥ 0 and �� ∈ D , 

2. There exists a constant L𝜓 > 0 such that for all (h, t) ∈ [0, h∗] × [0, T] such 
that h + t ≤ T  and for any x, y ∈ H , 

The first statement of Assumption 3.1 means that the one-step error bound 
(3.2) holds for any x that lies on some solution u ∈ C([0, T];H) of (3.1), where the 
initial condition �� = u(0) belongs to the dense subset D . We make the hypothesis 
of density in order to account for known results concerning error bounds for time 
integration of PDEs, see e.g. [37, Chapter 7].

The local truncation error (3.2) is a reasonable requirement for any determin-
istic time integration method � and weakens the uniform local truncation error 
bound of Assumption 2.2. Given (3.2), we define

u(tk+1) = �(hk, tk, u(tk)), k ∈ [N − 1]0,

Uk+1 = �(hk, tk,Uk) + �k(hk), k ∈ [N − 1]0.

(3.2)|�(h, t, x) − �(h, t, x)|H ≤ C�,� (t, x)h
q+1;

(3.3)|�(h, t, x) − �(h, t, y)|H ≤ (1 + L�h)|x − y|H .
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for any solution u of (3.1) with initial condition � ∈ D . Since the solution u of (3.1) 
belongs to C([0, T]; H), it is a bounded set. Hence, the first statement of Assumption 
3.1 ensures the finiteness of ‖‖‖C�,�

‖‖‖∞  for any � ∈ D . The second statement of 
Assumption 3.1 describes a global Lipschitz continuity property of the approximate 
flow map � with respect to the third argument of the map �.For the error bounds 
that we prove in this section, the bounds (3.2) and (3.3) shall play the roles of 
Assumptions 2.2 and 2.1 respectively in the error bounds of Sect. 2.2.Next, we for-
mulate the analogue of Assumption 2.3 for the collection (�k)k∈ℕ0

 of stochastic pro-
cesses. For the remainder of Sect.  3, we shall simplify notation and write ‖Z‖� 
instead of ‖Z‖� (�;H) for any H-valued random variable Z.

Assumption 3.2 The collection (�k)k∈ℕ0
 admits an Orlicz norm ‖⋅‖� and constants 

p ≥ 0 and 0 < C𝜉 < ∞ , such that for all k ∈ ℕ0 and t > 0,

The only difference between Assumption 3.2 and Assumption 2.3 is that the stochas-
tic processes are H-valued instead of V-valued.

3.1  L2‑error bounds for independent and centred randomisation

In this section, we assume that the (�k)k are mutually independent and centred sto-
chastic processes. In particular, for any time grid (1.3), the corresponding random 
variables (�k(hk))k∈[N−1]0 are mutually independent and centred. We shall generalise 
the L2-error bounds from [10, Theorem 2] and [20, Theorem 3.4] to the variational 
setting.

For any time grid (tk)k∈[N]0 and k ∈ [N − 1]0 , let Fk ∶= �(�j(hj) ∶ j ∈ [k]0) , i.e. 
(Fk)k∈[N−1]0 is the filtration generated by the randomisation sequence (�j(hj))j∈[N−1]0.

The following lemma only requires mutual independence of the (�
�
)
�
.

Lemma 3.3 Suppose that Assumption 3.1 holds. Let (tk)k∈[N]0 be an arbi-
trary time grid. Then for j ∈ [N − 1]0 , Uj+1 is a measurable function of U0 and 
{�

�
(h

�
) ∶ � ∈ [j]0} . In particular, if the (�

�
)
�
 are mutually independent, then for 

every j ∈ [N − 1] , �j(hj) and Uj are independent, and �j(hj) is independent of Fj.

Proof It follows from (3.3) in Assumption 3.1 that, for arbitrary (h,  t), �(h, t, z) is 
globally Lipschitz continuous with respect to z ∈ H . Hence, Uj+1 is a measurable 
function of Uj and �j(hj) , for every j ∈ [K − 1]0 . This proves the first statement. The 
second statement follows from the first and the definition of Fj .   ◻

The following result is the generalisation of [10, Theorem 2.2], which considered 
the case H = ℝ

d for d ∈ ℕ.

(3.4)
‖‖‖C�,�

‖‖‖∞ ∶=
‖‖‖C�,�

‖‖‖∞(�) ∶= sup
t∈[0,T]

C�,� (t, u(t)),

‖‖�k(t)‖‖� ≤ C� t
p+1.
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Lemma 3.4 Suppose the following statements are true:

– Assumption 3.1 holds with parameters h∗ , q, C�,� , D , and L�,
– Assumption 3.2 holds with parameters ‖⋅‖� ∶= ‖⋅‖2 , p, and C�,
– the (�j)j are mutually independent and centred, and
– the initial condition � of (3.1) belongs to D , and ‖‖U0

‖‖2 < ∞.

Then there exists a L′
𝜓
> 0 depending only on L� , such that for any time grid (tk)k 

satisfying 0 < h ≤ 1 ∧ h∗ , the associated error sequence (ek)k satisfies

In particular, if ‖‖e0‖‖2 = 0 , then maxk∈[N]0
‖‖ek‖‖2 = O(hq∧(p+1∕2)).

We state the proof below, even though it is very similar to the proof of [10, Theo-
rem 2.2]. This is because the proof will be useful later in Sect. 3.2, where we dis-
cuss the feasibility of bounding maxk

‖‖ek‖‖R for R > 2 under similar assumptions as 
Lemma 3.4. An important difference between our proof and the proof of [10, Theo-
rem 2.2] is that the latter assumes uniform truncation error, e.g. as in Assumption 
2.2. Instead, we use Assumption 3.1.

Proof of Lemma 3.4 Let k ∈ [N − 1]0 . By the definition (1.7) of the error sequence 
(ek)k∈[N]0,

Recall the term ‖‖‖C�,�
‖‖‖∞ from (3.4). We obtain

The first inequality follows from the hypothesis that the initial condition � of (3.1) 
belongs to D , since we can then apply the local truncation error bound (3.2) of 
Assumption 3.1 and Young’s inequality. The second inequality follows from the fact 
that hk ≤ h ≤ 1 . By the same fact, there exists L′

𝜓
> 0 that depends only on L� such 

that (1 + 2hk)(1 + L�hk)
2 ≤ 1 + L�

�
hk . Using this inequality in (3.6) yields

Substituting (3.7) into the bound (3.5) on |ek+1|2H yields

max
k

‖‖ek‖‖
2

2
≤

(
‖‖e0‖‖

2

2
+ 3T

‖‖‖C�,�
‖‖‖
2

∞
Th2q + C2

�
Th2p+1

)
exp

(
L�
�
T
)
.

(3.5)
��ek+1��

2

H
= ���(hk, tk, u(tk)) − �(hk, tk,Uk)

��
2

H
+ ���k(hk)��

2

H

+ 2⟨�(hk, tk, u(tk)) − �(hk, tk,Uk), �k(hk)⟩H .

(3.6)

||�(hk, tk, u(tk)) − �(hk, tk,Uk)
||
2

H

= ||�(hk, tk, u(tk)) − �(hk, tk, u(tk)) − �(hk, tk, u(tk)) − �(hk, tk,Uk)
||
2

H

≤

(
1 +

(
2

hk

))
C�,� (tk, u(tk))

2h
2q+2

k
+ (1 + 2hk)(1 + L�hk)

2||ek||
2

H

≤ 3
‖‖‖C�,�

‖‖‖
2

∞
h
2q+1

k
+ (1 + 2hk)(1 + L�hk)

2||ek||
2

H
.

(3.7)||�(hk, tk, u(tk)) − �(hk, tk,Uk)
||
2

H
≤ 3

‖‖‖C�,�
‖‖‖
2

∞
h
2q+1

k
+ (1 + L�

�
hk)

||ek||
2

H
.
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By mutual independence of the (�j(hj))j∈[N−1]0 , it follows from the second statement 
of Lemma 3.3 that the arguments of the inner product are independent. By taking 
expectations of (3.8) and centredness of the (�j(hj))j∈[N−1]0 , the expectation of the 
inner product vanishes. By Assumption 3.2, we have

Using the discrete Gronwall inequality in Lemma C.3 and (1.4) completes the proof.  
 ◻

We shall use the next result, Lemma 3.5, to prove Proposition 3.6 below. A 
similar result to Lemma 3.5 was established in the proof of [20, Theorem 3.4], 
under the assumption that � preserves square integrability of random variables, 
i.e. that �(Z) ∈ L2(�;ℝd) for every Z ∈ L2(�;ℝd) . Lemma 3.5 removes this 
assumption, by using Lemma 3.4.

Lemma 3.5 Suppose the hypotheses of Lemma 3.4 hold. Then for any time grid 
(tj)j∈[N]0 with h > 0 , the stochastic process (Mk)k∈[N−1]0 defined by

is a ℝ-valued, square-integrable martingale with respect to (Fk)k∈[N−1]0 . If in addi-
tion the time grid (tj)j∈[N]0 satisfies h ≤ 1 ∧ h∗ , then there exists a universal constant 
𝜅 > 0 such that for every k ∈ [N − 1]0,

for the same L′
�
 given in Lemma 3.4.

Proof See Sect. D.1 for the proof.   ◻

Next, we use Lemma 3.5 to prove the following error bound, which is stronger 
than the bound given in Lemma 3.4 because of (2.3).

Proposition 3.6 Suppose the hypotheses of Lemma 3.4 hold. Then for any time grid 
(tk)k with 0 < h ≤ 1 ∧ h∗ , the corresponding error sequence (ek)k satisfies

(3.8)
��ek+1��

2

H
≤

�
3
���C�,�

���
2

∞
h
2q+1

k
+ (1 + L�

�
hk)

��ek��
2

H

�
+ ���k(hk)��

2

H

+ 2⟨�(hk, tk, u(tk)) − �(hk, tk,Uk), �k(hk)⟩H .

‖‖ek+1‖‖
2

2
≤ (1 + L�

�
hk)

‖‖ek‖‖
2

2
+ 3

‖‖‖C�,�
‖‖‖
2

∞
h
2q+1

k
+ C2

�
h
2p+2

k
.

(3.9)Mk ∶=

k∑

j=0

⟨
�(hj, tj, u(tj)) − �(hj, tj,Uj), �j(hj)

⟩
H

(3.10)

�

[
max
j∈[k]0

||Mk
||
]
≤
‖‖‖C�,�

‖‖‖
2

∞
h2q+1 +

1

4
�

[
max
j∈[k]0

|||ej
|||
2

H

]
+ �2(1 + L�

�
)TC2

�
h2p+1,
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for the universal constant � in (3.10) and the constant L′
�
 given in Lemma 3.4. In 

particular, if ‖‖e0‖‖2 = 0 , then ‖‖maxk
||ek||H‖‖2 = O(hq∧(p+1∕2)).

Proof See Sect. D.2 for the proof.   ◻

3.2  Error bounds of higher integrability order for independent and centred 
randomisation

It is natural to ask if one can prove the analogues of Lemma 3.4 or Proposition 
3.6 where we use ‖⋅‖R , R > 2 , while keeping the same order in h. Suppose that we 
wish to prove the analogue of Lemma 3.4 for R = 3 . It follows from the triangle 
inequality and the definition (1.7) that

Thus

and substituting (3.5) results in an upper bound on ||ek+1||
3

H
 containing the mixed 

product of an inner product term and a norm term,

In general, this product will not vanish in expectation, because one can no longer 
exploit the commutativity of the inner product with the expectation operator. The 
same assertion is valid for R ≥ 3 . This is the important difference between the R = 2 
case that was proven in Lemma 3.4 and the case R ≥ 3 . This difference implies 
that we must use the Cauchy–Schwarz inequality to bound products. Using the 
Cauchy–Schwarz inequality yields

We can obtain the same bound by applying the binomial theorem to the bound 
||ek+1||H ≤ ||�(hk, tk, u(tk)) − �(hk, tk,Uk)

||H + ||�k(hk)||H.
If the stochastic processes (�k)k are mutually independent, then we may use the 

second statement of Lemma 3.3. Assuming that e0 = 0 almost surely and taking 
expectations of the summand for i = 2 yields

‖‖‖‖
max
k

||ek||H
‖‖‖‖

2

2

≤ 2

(
‖‖e0‖‖

2

2
+ 4

‖‖‖C�,�
‖‖‖
2

∞
h2qT + C2

�
Th2p+1(1 + �2(1 + L�

�
))

)
exp

(
2L�

�
T
)
,

||ek+1||H ≤ ||�(hk, tk, u(tk)) − �(hk, tk,Uk)
||H + ||�k(hk)||H .

||ek+1||
3

H
≤ ||ek+1||

2

H

(||�(hk, tk, u(tk)) − �(hk, tk,Uk)
||H + ||�k(hk)||H

)

⟨�(hk, tk, u(tk)) − �(hk, tk,Uk), �k(hk)⟩H���(hk, tk, u(tk)) − �(hk, tk,Uk)
��H .

||ek+1||
3

H
≤

3∑

i=0

(
3

i

)
||�(hk, tk, u(tk)) − �(hk, tk,Uk)

||
i

H
||�k(hk)||

3−i

H
.
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This yields a bound on ‖‖ek+1‖‖
3

3
 by a term that is O(h(2q)∧(2p+1)+p+1) . Apply-

ing a discrete Gronwall inequality produces a bound on maxk∈[N]
‖‖ek‖‖

3

3
 that is 

O(h(2q)∧(2p+1)+p) . Since this upper bound on the exponent arises from the mixed 
product mentioned above, and since such mixed products will arise in any expan-
sion of |ek+1|RH , we cannot expect to prove that maxk

‖‖ek‖‖R = O(hq∧(p+1∕2)) for R > 2 
using the techniques that we applied earlier, even if the (�k)k are mutually independ-
ent and centred.

For the L3 analogue of Proposition 3.6, the fact that terms involving inner prod-
ucts do not vanish in expectation also poses a problem. This is because the proof 
of the L2 case in Proposition 3.6 relies on the bound (3.10) in Lemma 3.5 on the 
martingale (Mk)k . This bound in turn follows from the Burkholder–Davis–Gundy 
inequality for martingales [32, Chapter IV, §4, Theorem (4.1)]. For the L3 case, the 
expectations of products containing an inner product term do not vanish, because 
one can no longer exploit commutativity of the inner product with the expecta-
tion operator, due to the mixed product. As a result, the martingale (Mk)k does not 
appear, and one cannot apply the Burkholder–Davis–Gundy inequality to prove a 
bound similar to (3.10). Instead, one must apply the Cauchy–Schwarz inequality or 
the binomial theorem, as we did above. This results in a bound on ‖‖maxk

||ek||H‖‖3 that 
is worse than O(hq∧(p+1∕2)).

3.3  Error bounds of higher integrability order without independence 
or centredness assumptions

In this section, we prove a strong error bound for a general Orlicz norm instead of 
for the ‖⋅‖2-norm. We use the same hypotheses as for Lemma 3.4 and Proposition 
3.6, except that we do not assume mutual independence or centredness of the sto-
chastic processes (�k)k∈ℕ0

.

Theorem 3.7 Suppose the following statements are true:

– Assumption 3.1 holds with parameters h∗ , q, C�,� , D , and L�,
– Assumption 3.2 holds with parameters ‖⋅‖� , p, and C� , and
– the initial condition � of (3.1) belongs to D , and ‖‖U0

‖‖𝛹 < ∞.

Then for any time grid (tk)k with 0 < h ≤ h∗ , the corresponding error sequence (ek)k 
satisfies

�

[
||�(hk, tk, u(tk)) − �(hk, tk,Uk)

||
2

H
||�k(hk)||H

]

= �

[
||�(hk, tk, u(tk)) − �(hk, tk,Uk)

||
2

H

]
�
[||�k(hk)||H

]
by independence

≤

(
O(h

2q+1

k
) + (1 + L�

�
hk)�

[
||ek||

2

H

])
C�h

p+1

k
by (3.7), Assumption 3.2

≤

(
O(h

2q+1

k
) +O(h2q) +O(h2p+1)

)
C�h

p+1

k
by Lemma 3.4.
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In the results from Sect. 3.1, we required that the maximal time step h associated to 
the time grid satisfies h ≤ 1 ∧ h∗ . In Theorem 3.7, we only require that h ≤ h∗ . The dis-
cussion of exponential integrability in Remark 2.9 also applies to Theorem 3.7.

Proof of Theorem 3.7 Recall (1.7):

By the triangle inequality, and by (3.2) and (3.3) from Assumption 3.1,

From this it follows that

Applying Lemma C.3 and using the same arguments that yielded (2.4), we obtain 
the analogous pathwise bound

Taking the ‖⋅‖� norm of both sides and applying Assumption 3.2 completes the 
proof.   ◻

Remark 3.8 The inequality (3.11) in the proof of Theorem 3.7 closely resembles the 
inequality (2.2), which we used to prove Theorem 2.8. The key difference results 
from adding 0 = �(hk, tk, u(tk)) − �(hk, tk, u(tk)) before applying the triangle ine-
quality to derive (3.11); for (2.2), we added 0 = �(hk, tk,Uk) − �(hk, tk,Uk) instead. 
The decomposition we use for (3.11) enables us to exploit the weaker local trun-
cation error bound (3.2) in Assumption 3.1 instead of the uniform local truncation 
error bound in Assumption 2.2.

4  Example: heat equation

Consider the heat equation on a C2 bounded domain D ⊂ ℝ
d with homogeneous Dir-

ichlet boundary conditions

‖‖‖‖
max
k

||ek||H
‖‖‖‖�

≤

(
‖‖e0‖‖� +

‖‖‖C�,�
‖‖‖∞h

qT + C�h
pT

)
exp

(
L�T

)
.

ek+1 = �(hk, tk, u(tk)) − �(hk, tk,Uk) − �k(hk), k ∈ [N − 1]0.

||�(hk, tk, u(tk)) − �(hk, tk,Uk)
||H

≤ ||�(hk, tk, u(tk)) − �(hk, tk, u(tk))
||H + ||�(hk, tk, u(tk)) − �(hk, tk,Uk)

||H
≤
‖‖‖C�,�

‖‖‖∞h
q+1

k
+ (1 + L�hk)|ek|H .

(3.11)||ek+1||H ≤
‖‖‖C�,�

‖‖‖∞h
q+1

k
+ (1 + L�hk)

||ek||H + ||�k(hk)||H .

max
k

||ek||H ≤

(
||e0||H +

‖‖‖C�,�
‖‖‖∞h

qT +
∑

k∈[N−1]0

||�k(hk)||H

)
exp

(
L�T

)
.

(4.1)u(0) = u0, �tu − div(E∇u) = b on [0, T] × D,
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where E ∶ [0, T] × D → ℝ
d×d is a sufficiently smooth elliptic diffusion tensor. Upon 

multiplying the PDE by a test function and using integration by parts, the left-hand 
side of the PDE yields a bilinear form a(u(t), v), which allows us to rewrite the prob-
lem above as the operator differential equation

with spaces H = L2(D) , V = H1
0
(D) , and V � = H−1(D) . The bounded, linear oper-

ator A ∶ V → V � is induced by the bilinear form a(⋅, ⋅) on V × V  according to 
a(u, v) = ⟨Au, v⟩V �×V , where ⟨⋅, ⋅⟩V �×V denotes the dual pairing. For the particular 
PDE considered above, the operator A is strongly positive with constant 𝜇 > 0 on 
V × V .

In this section, we will show that the results that we proved for the variational set-
ting in Sect. 3 are valid for parabolic PDEs and the implicit Euler method, by showing 
that the conditions (3.2) and (3.3) from Assumption 3.1 are satisfied. We shall consider 
the more general setting of parabolic PDEs with possibly time-dependent coefficients, 
because this analysis includes the setting of time-independent coefficients — and hence 
the heat equation stated above—as a special case.

Let L(V ,V �) be the set of all linear mappings from V to V ′ . Consider a mapping 
a ∶ [0, T] × V × V → ℝ that is bilinear in the second and third argument. This map-
ping induces a collection (A(t))t ⊂ L(V ,V �) according to

Now we pose the following standard assumptions on a and state their equivalent 
formulation in terms of A.

Assumption 4.1 

1. For fixed t, a(t, ⋅, ⋅) is a bilinear form, and for fixed u, v ∈ V  , a(⋅, u, v) is measur-
able. Equivalently, for every t, A(t) ∈ L(V ,V �) is linear and t ↦ A(t) is measurable.

2. There exists 𝛽 > 0 such that for every (t, u, v), a(t, u, v) ≤ �|u|V |v|V . Equivalently, 
for every t we have ‖A(t)‖L(V ,V �) ≤ �.

3. A Gårding inequality holds, i.e. there exist 𝜇 > 0 , � ≥ 0 such that 

 Equivalently, for every t ∈ [0, T] , A(t) + �I ∈ L(V ,V �) is strongly positive.

For the special case of the heat equation (4.1) where E is the identity matrix, the first 
statement of Assumption 4.1 holds since E is constant. By definition of the bilinear 
form a and the spaces H and V, the second statement holds with � = 1 , and the third 
statement holds with equality for � = 0 and � = 1.

Consider the implicit Euler scheme

(4.2)u(0) = u0 ∈ H, u�(t) + Au(t) = b ∈ V �

⟨A(t)u(t), v⟩V �×V = a(t, u(t), v), ∀v ∈ V .

(4.3)a(t, u, u) ≥ �|u|2
V
− �|u|2

H
, ∀(t, u) ∈ [0, T] × V .

(4.4)𝜓(h, t, v) ∶= (I + hĀh,t)
−1(hb̄h,t + v),
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for 0 < h ≤ h∗ , 0 ≤ t ≤ T − h and v ∈ H . We specify an interval of suitable values 
of h∗ in Sect.  4.2. Above, Āh,t and b̄h,t denote Steklov time averages of the linear 
operators (A(t))t and the right-hand side b respectively,

where the integrals in the definitions of Āh,t and b̄h,t are Bochner–Lebesgue integrals 
in L(V ,V �) and V ′ respectively. The existence of �(h, t, v) ∈ V  for (hb̄h,t + v) ∈ V � is 
guaranteed by the Lax–Milgram theorem; see e.g. [7, Section 6.2]. For every suit-
able (h, t), the operator Āh,t inherits the properties of A stated in Assumption 4.1.

For the heat equation (4.1), t ↦ A(t) and t ↦ b(t) are constant. Therefore, Āh,t = A 
and b̄h,t = b , and (4.4) simplifies to �(h, t, v) ∶= (I + hA)−1(hb + v).

4.1  Local truncation error condition

We verify the local truncation error condition (3.2) in Assumption 3.1, for � 
as given in (4.4). Recall the definition (1.5) of (u(tk))k and that (uk)k is defined 
by u0 = � , uk+1 ∶= �(hk, tk, uk) for k ∈ [N − 1]0 . Under the assumption that 
(b − u�)� ∈ L2(0, T;V �) , the result [12, Satz 8.3.6] yields for any initial condition � ∈ H

where � is the constant from positivity assumption on A (4.3). Thus, (3.2) holds with 
q = 0 and C�,� (t, x) = (3�)−1∕2|(b − u�)�|L2(0,T;V �) for all (t, x).

One can obtain numerical methods of higher order q, by assuming higher regularity 
of the solution. For example, [22, Theorems 4.2, 4.3, 4.4] assume u, u�, u�� ∈ W2(0, T) , 
and show the existence of a numerical method � that satisfies (3.2) with q = 1 . For 
a general result dealing with arbitrary regularity u(k+1) ∈ W2(0, T) and numerical 
method of order q = k , see [23, Theorem 3.2].

4.2  Lipschitz condition on approximate flow map

Next, we verify the Lipschitz condition (3.3) for � given in (4.4), and deter-
mine an interval of suitable values for the upper bound h∗ on the time step of 
the implicit Euler scheme. Fix 0 < h ≤ h∗ , t ∈ [0, T − h] , and u0, v0 ∈ V . Test 
w1 ∶= �(h, t, u0) − �(h, t, v0) ∈ V with w0 ∶= u0 − v0 ∈ H . Then

The first inequality follows from rearranging 0 ≤ |w1 + w0|2H . The second inequal-
ity follows since (4.4) is equivalent to h−1(𝜓(h, t, u0) − u0) = b̄h,t − Āh,t𝜓(h, t, u0) . 
The third inequality holds because Āh,t inherits the positivity property (4.3) from A. 

Āh,t ∶=
1

h ∫

t+h

t

A(s) ds, b̄h,t ∶=
1

h ∫

t+h

t

b(s) ds,

||uk − u(tk)
||
2

H
+ �

k∑

j=1

hj
|||uj − u(tj)

|||
2

V
≤

h2

3�
||(b − u�)�||

2

L2(0,T;V �)
,

1

2h
(||w1

||
2

H
− ||w0

||
2

H
) ≤

⟨w1 − w0

h
,w1

⟩

H
≤ −

⟨
Āh,tw1,w1

⟩
V �×V

≤ −𝜇||w1
||
2

V
+ 𝜅||w1

||
2

H
.
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Using (2h)−1(|w1|2H − |w0|2H) ≤ −�|w1|2V + �|w1|2H and the definitions of w1 and w0 , 
we obtain

If � ≤ 0 , then (1 − 2h�)−1 ≤ (1 + L�h) for any L𝜓 > 0 and h > 0 . Therefore, sup-
pose that 𝜅 > 0 . If the bound above on ||�(h, t, u0) − �(h, t, v0)

||
2

H
 holds for all 

0 < h ≤ h∗ , then we must have h∗ < (2𝜅)−1 . In fact, if h∗ < (2𝜅)−1 , then 
L� ∶= [(2�)−1 − h∗]−1 is equivalent to h∗ = L�−2�

2�L�
 . In this case, 0 < h ≤ h∗ is equiva-

lent to

Hence, the implicit Euler scheme (4.4) satisfies condition (3.3) in Assumption 3.1.

5  Conclusion

In this paper, we proved strong error bounds for general Orlicz norms for randomised 
time integration methods applied to operator differential equations, using possibly non-
uniform time grids. Our work builds on the ideas and approaches of [10, 20]. We show 
that the proof techniques of the key error bounds contained therein can be applied in 
more general settings, where the differential equation is formulated on a possibly infi-
nite-dimensional Banach or Hilbert space, and the numerical time integration method 
is applied to a possibly non-uniform time grid. Our work has two additional novel 
aspects relative to [10, 20].

First, we use a different error decomposition to bound the one-step error. Our error 
decomposition enables us to replace the strong assumption of uniform local truncation 
error with a weaker assumption on the local truncation error. This is important, because 
it is known that the strong assumption of uniform local truncation error is invalid even 
when the linear operator A in the operator differential equation generates an analytic 
semigroup [37, Theorem 7.1]. For the implicit Euler method, and for a large class of 
examples that includes the standard heat equation, we showed that our weaker local 
truncation error assumption is reasonable.

Second, we consider more general Orlicz norms instead of LR-norms. Previous 
results concerning higher-order error bounds — for example, [20, Theorem 3.5]—were 
less direct: they involved finding bounds on the LR error for each R ∈ ℕ and using the 
series expansion of the exponential function. The use of Orlicz norms leads to shorter 
and conceptually simpler proofs of our main results, Theorem 2.8 and Theorem 3.7, by 
exploiting the fact that the random approximating sequence (Uk)k inherits the integra-
bility properties of the collection (�k)k.

||�(h, t, u0) − �(h, t, v0)
||
2

H
≤ (1 − 2h�)−1||u0 − v0

||
2

H
.

h2(2�L� ) ≤ h(L� − 2�) ⇔ 1 ≤ (1 + L�h)(1 − 2h�) ⇔ (1 − 2h�)−1 ≤ 1 + L�h.
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Taylor expansion in Banach Spaces

The following version of Taylor’s theorem in Banach spaces is given in [7, 
Theorem 7.9-1].

Theorem A.1 Let V and W be normed vector spaces, let U be an open subset of V, let 
[a, a + h] be a closed segment contained in U, let f ∶ U → W be a given mapping, 
and let m ∈ ℕ . 

(a) (Taylor-Young) If f is (m − 1) times differentiable on U and m times differentiable 
at a ∈ U , then 

 with limh→0 �(h) = 0.
(b) (Integral remainder) If W is a Banach space and f is m times continuously dif-

ferentiable on U, then 

The noteworthy differences to the standard Taylor theorem in ℝ are: 1) differenti-
ability of f may be slightly more complicated; 2) the k-th derivative of f is a k-linear 
mapping from �k

i=1
U to W, taking k inputs from U, denoted by hk = (h,… , h) ∈ Uk.

In addition, one can derive a Taylor expansion almost everywhere for weakly dif-
ferentiable functions.

Additional material for Section 2

In the setting of time integration for ODEs, one usually requires higher regularity of f 
or equivalently higher regularity for the solution u in order to achieve an order of q ≥ 1 
for the truncation error [16, Section III.2, Theorem 2.4]. The purpose of this section 
is to show that the same ideas apply in the infinite-dimensional Banach space setting. 
Below, the function f refers to the vector field in (1.1).

For the next lemma, we consider for a general explicit Euler one-step method the 
map � ∶ [0, h] ×ℝ × V → V in a Banach space (V , |⋅|V ) , associated to some step 
function � :

f (a + h) = f (a) + f �(a)h +⋯ +
1

m!
f (m)(a)hm + ‖h‖m

V
�(h)

f (a + h) = f (a) + f �(a)h +⋯ +
1

(m − 1)!
f (m−1)(a)hm−1

+
1

(m − 1)! ∫

1

0

(1 − t)m−1
(
f (m)(a + th)hm

)
dt.

(B.1)
uk+1 ∶= �(hk, tk, uk) ∶= uk + hk� (hk, tk, uk)

= uk + hk
(
a1f (tk, uk) + a2f

(
tk + b1hk, tk, uk + b2hkf (tk, uk)

))
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with a1, a2, b1, b2 ≥ 0.

Lemma B.1 (Lipschitz property of the numerical flow map) Let � be as in (B.1). If 
f ∶ [0, T] × V → V  is Lipschitz continuous in the second argument, then the approx-
imate flow map �(hk, tk, ⋅) is Lipschitz continuous, uniformly in k.

Proof We use the Lipschitz property of f multiple times to get

  ◻

The following theorem is taken from [30, Theorem 7.1.5]. The proof there is 
only done in one dimension.

Theorem B.2 Assuming that the right-hand side f belongs to C2([0, T] × V;V) and 
equivalently that the solution u is C3 , it follows that any explicit one-step scheme 
with step function �  as in (B.1) with

satisfies assumption 2.2 with q = 2.

Proof We assume that f ∈ C2([0, T] × V;V) in order to be able to use Taylor expan-
sion. We first expand the step function � :

Above, �f
�u

 refers to the Gateaux derivative of f with respect to u, and �f
�u
f (t, u(t)) 

denotes the linear mapping �f
�u
(t, u(t)) from V to V acting on f (t, u(t)) ∈ V  . Expand-

ing u, we have

The last equality follows from the conditions on the coefficients a1, b1, a2, b2 . This 
gives consistency of order 2:

Convergence follows from the Lipschitz continuity of f with respect to the second 
argument [30, Theorem 7.10].   ◻

(B.2)|�(�, t, u) − �(�, t, v)|V ≤ (1 + L�(a1L + a2L + a2b2L
2�))|u − v|V .

a1 + a2 = 1 , a2b1 =
1

2
, a2b2 =

1

2

� (h, t, u(t)) =

[
(a1 + a2)f (t, u(t)) + h

(
a2b1

�f

�t
(t, u(t)) + a2b2

�f

�u
f (t, u(t))

)]
+O(h2).

u(t + h) = u(t) + u�(t)h + u��(t)
h2

2
+O(h3)

= u(t) +

[
hf (t, u(t)) +

h2

2

(
�f

�t
(t, u(t)) +

�f

�u
(t, u(t))f (t, u(t))

)]
+O(h3)

= u(t) +
[
h� (h, t, u(t)) +O(h3)

]
+O(h3) .

u(t + h) − (u(t) + h� (h, t, u(t))) = �(h, t, u(t)) − �(h, t, u(t)) = O(h3).
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Discrete Gronwall inequalities

The following statement is given in [26, Lemma 1.6].

Lemma C.1 Let T > 0 be fixed. Let N ∈ ℕ and h = T∕N . Suppose (yk)k ∈ [0,∞)ℕ0 is 
such that for some A,B ≥ 0 and p ≥ 1,

Then

where for A = 0 , A−1(eAT − 1) = 0.

We restate the “special Gronwall inequality” of [18].

Proposition C.2 Let (yn)n, (gn)n ∈ [0,∞)ℕ0 , c ≥ 0 , and N ∈ ℕ be arbitrary. If

then

The following lemma is a corollary of Proposition C.2.

Lemma C.3 Let T > 0 and N ∈ ℕ be fixed. Let (hk)k, (yk)k, (bk)k ∈ [0,∞)ℕ0 be such 
that for some A ≥ 0,

Then

Proof Rewriting the upper bound on yk+1 yields

Summing the differences from j = 0 to j = k ∈ [N − 1]0 yields

yk+1 ≤ (1 + Ah)yk + Bhp, k ∈ [N − 1]0.

yk ≤ eATy0 +
B

A
(eAT − 1)hp−1, k ∈ [N − 1]0

yk+1 ≤ c +
∑

0≤j≤k

gjyj, k ∈ [N − 1]0

yk+1 ≤ c exp

(
∑

0≤j≤k

gj

)
, k ∈ [N − 1]0.

yk+1 ≤ (1 + Ahk)yk + bk, k ∈ [N − 1]0.

yk+1 ≤

(
y0 +

∑

�∈[N−1]0

b
�

)
exp

(
∑

0≤j≤k

Ahj

)
, k ∈ [N − 1]0.

yj+1 − yj ≤ Ahjyj + bj, j ∈ [N − 1]0.

yk+1 ≤ y0 +
∑

0≤j≤k

(
Ahjyj + bj

)
≤

(
y0 +

∑

0≤�≤N−1

b
�

)
+

∑

0≤j≤k

Ahjyj, k ∈ [N − 1]0.
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Applying Proposition C.2 completes the proof.   ◻

Proofs for Section 3.1

Proof of Lemma 3.5

Lemma 3.5 states that the stochastic process (Mk)k∈[N−1]0 defined by (3.9),

is a ℝ-valued, square-integrable martingale with respect to the filtration (Fk)k∈[N−1]0 
generated by the (�k(hk))k∈[N−1]0 , and that there exists a universal constant 𝜅 > 0 such 
that for every k ∈ [N − 1]0 , the bound (3.10) holds:

Proof of Lemma 3.5 For (Mk)k to satisfy the definition of a martingale, we must show 
that for every k, Mk ∈ L1(�;ℝ) and is Fk-measurable, and that the martingale prop-
erty �[Mk+1 −Mk|Fk] = 0 holds for k ∈ [N − 2]0 . The measurability of Mk with 
respect to Fk follows from the definition of Fk and Lemma 3.3. By the triangle ine-
quality, the Cauchy–Schwarz inequality, (3.7), and Assumption 3.2,

By Lemma 3.4, ek ∈ L2(�;H) for every k, and thus Mk ∈ L2(𝛺;ℝ) ⊂ L1(𝛺;ℝ) . 
Hence, (Mk)k is a square-integrable martingale.

Next, we prove the martingale property. By Lemma 3.3, �k+1(hk+1) is independ-
ent of Uk+1 and Fk . By the definition (3.9) of Mk , the tower property of conditional 
expectation, and the centredness of the (�k(hk))k,

and thus (Mk)k is a (Fk)k-martingale.
Finally, we prove the second statement. Since (Mk)k is a square integrable mar-

tingale, the Burkholder–Davis–Gundy inequality ensures that for every k ∈ [N − 1]0

Mk ∶=

k∑

j=0

⟨
�(hj, tj, u(tj)) − �(hj, tj,Uj), �j(hj)

⟩
H
,

�

[
max
j∈[k]0

||Mk
||
]
≤
‖‖‖C�,�

‖‖‖
2

∞
h2q+1 +

1

4
�

[
max
j∈[k]0

|ej|2H
]
+ �2(1 + L�

�
)TC2

�
h2p+1.

‖‖Mk
‖‖L2(�;ℝ)

≤

k∑

j=0

‖‖‖�(hj, tj, u(tj)) − �(hj, tj,Uj)
‖‖‖
2

L2(�;H)

‖‖‖�j(hj)
‖‖‖
2

L2(�;H)

≤

k∑

j=0

(
3
‖‖‖C�,�

‖‖‖
2

∞
h
2q+1

k
+ (1 + L�

�
hk)

2‖‖ek‖‖
2

L2(�;H)

)
C2
�
h2p+2.

�[
⟨
�(hk+1, u(tk+1)) − �(hk+1,Uk+1), �k+1(hk+1)

⟩
H
] = 0,

�

�
max
j∈[k]0

���Mj
���

�
≤ ��

�
⟨M⟩1∕2

k

�
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where 𝜅 > 0 is the same universal constant appearing in (3.10). The quadratic vari-
ation process ⟨M⟩ is defined by ⟨M⟩0 ∶= 0 and ⟨M⟩k ∶=

∑
j∈[k] �[(Mj −Mj−1)

2�Fj−1] 
for k ∈ [N − 1] , see e.g. [32, Chapter I, Definition 2.3]. Using (3.9), the measurabil-
ity of Uj with respect to Fj−1 (cf. Lemma 3.3), the Cauchy–Schwarz inequality, and 
(3.7),

The hypothesis that 0 < h ≤ 1 was used to obtain (3.7). Using Young’s inequality 
with s, s′ > 1 such that s−1 + (s�)−1 = 1

with s = 2 and � = 2�(1 + L�
�
h) , and using hk ≤ h ≤ 1,

By taking expectations, the tower property removes the conditioning on Fj−1 in each 
summand. Using (1.4) and the Burkholder–Davis–Gundy inequality completes the 
proof.   ◻

Proof of Proposition 3.6

Proposition 3.6 states the error bound

for the same universal constant � in (3.10).

⟨M⟩k ≤
�

j∈[k]

�

��
�(hj, tj, u(tj)) − �(hj, tj,Uj), �j(hj)

�2

H

���Fj−1

�

≤max
j∈[k]

����(hj, tj, u(tj)) − �(hj, tj,Uj)
���
2

H

�

j∈[k]

�

�
����j(hj)

���
2

H

���Fj−1

�

≤max
j∈[k]

�
3
���C�,�

���
2

∞
h
2q+1

j
+ (1 + L�

�
hj)

���ej
���
2

H

� �

j∈[k]

�

�
����j(hj)

���
2

H

���Fj−1

�
.

ab ≤
�

s
as +

1

�s�∕ss�
bs

�

⟨M⟩1∕2
k

≤
1

�(4 + 4L�
�
h)

max
j∈[k]

�
3
���C�,�

���
2

∞
h
2q+1

j
+ (1 + L�

�
hj)

���ej
���
2

H

�

+ �(1 + L�
�
h)

�

j∈[k]

�

�
����j(hj)

���
2

H

���Fj−1

�

≤

���C�,�
���
2

∞

�
h2q+1 +

1

4�
max
j∈[k]0

�ej�2H + �(1 + L�
�
)

�

j∈[N−1]0

�

�
����j(hj)

���
2

H

���Fj−1

�
.

‖‖‖‖
max
k∈[N]0

||ek||H
‖‖‖‖

2

2

≤ 2

(
‖‖e0‖‖

2

2
+ 4

‖‖‖C�,�
‖‖‖
2

∞
h2qT + C2

�
Th2p+1(1 + �2(1 + L�

�
))

)
exp

(
2L�

�
T
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Proof of Proposition 3.6 Since 0 < h ≤ 1 , we may use (3.8) to obtain

Using that 
∑

j∈[k+1]0
(�ek+1�2H − �ek�2H) = �ek+1�2H − �e0�2H , and using the definition 

(3.9) of the martingale (Mk)k , we obtain

Since only Mk can attain negative values, the above bound implies

Take expectations, apply Assumption 3.2, apply the bound (3.10) from Lemma 3.5, 
and use that �[maxj∈[k]0 |ej|

2
H
] ≤ �[maxj∈[k+1]0 |ej|

2
H
] to obtain

Subtracting 1
2
�[maxj∈[k+1]0 |ej|

2
H
] from both sides and applying the discrete Gronwall 

inequality in Proposition C.2 completes the proof.   ◻
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�ek+1�2H − �ek�2H ≤ L�
�
hk�ek�2H + 3

���C�,�
���
2

∞
h
2q+1

k
+ ���k(hk)��

2

H
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