
https://doi.org/10.1007/s11280-021-00925-z

RoleSim*: Scaling axiomatic role-based similarity
ranking on large graphs

Weiren Yu1,2 · Sima Iranmanesh2 ·Aparajita Haldar2 ·Maoyin Zhang1 ·
Hakan Ferhatosmanoglu2

Received: 4 February 2021 / Revised: 28 May 2021 / Accepted: 7 July 2021 /

© The Author(s) 2021

Abstract
RoleSim and SimRank are among the popular graph-theoretic similarity measures with
many applications in, e.g., web search, collaborative filtering, and sociometry. While
RoleSim addresses the automorphic (role) equivalence of pairwise similarity which Sim-
Rank lacks, it ignores the neighboring similarity information out of the automorphically
equivalent set. Consequently, two pairs of nodes, which are not automorphically equivalent
by nature, cannot be well distinguished by RoleSim if the averages of their neighboring sim-
ilarities over the automorphically equivalent set are the same. To alleviate this problem: 1)
We propose a novel similarity model, namely RoleSim*, which accurately evaluates pair-
wise role similarities in a more comprehensive manner. RoleSim* not only guarantees the
automorphic equivalence that SimRank lacks, but also takes into account the neighboring
similarity information outside the automorphically equivalent sets that are overlooked by
RoleSim. 2) We prove the existence and uniqueness of the RoleSim* solution, and show its
three axiomatic properties (i.e., symmetry, boundedness, and non-increasing monotonicity).
3) We provide a concise bound for iteratively computing RoleSim* formula, and estimate
the number of iterations required to attain a desired accuracy. 4) We induce a distance
metric based on RoleSim* similarity, and show that the RoleSim* metric fulfills the trian-
gular inequality, which implies the sum-transitivity of its similarity scores. 5) We present a
threshold-based RoleSim* model that reduces the computational time further with provable
accuracy guarantee. 6) We propose a single-source RoleSim* model, which scales well for
sizable graphs. 7) We also devise methods to scale RoleSim* based search by incorporat-
ing its triangular inequality property with partitioning techniques. Our experimental results
on real datasets demonstrate that RoleSim* achieves higher accuracy than its competitors
while scaling well on sizable graphs with billions of edges.

Keywords Role-based similarity · Retrieval models and ranking · Web search · Link
analysis

This article belongs to the Topical Collection: Special Issue on Large Scale Graph Data Analytics
Guest Editors: Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang

� Weiren Yu
weiren.yu@warwick.ac.uk

Extended author information available on the last page of the article.

Published online: 11 August 2021

World Wide Web (2022) 25:785–829

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-021-00925-z&domain=pdf
http://orcid.org/0000-0002-1082-9475
mailto: weiren.yu@warwick.ac.uk

1 Introduction

RoleSim, conceived by Jin et al. [9], is a promising role-oriented graph-theoretic measure
that quantifies the similarity between two objects based on graph automorphism, with a
proliferation of real-life applications [9, 10, 25], such as link prediction (social network),
co-citation analysis (bibliometrics), motif discovery (bioinformatics), and collaborative fil-
tering (information retrieval). It recursively follows a SimRank-like reasoning that “two
nodes are assessed as role similar if they interact with automorphically equivalent sets of
in-neighbors”. Intuitively, automorphically equivalent nodes in a graph are objects having
similar roles that can be exchanged with minimum effect on the graph structure. Similar
to the well-known SimRank measure [7], the recursive nature of RoleSim allows to cap-
ture the multi-hop neighboring structures that are automorphically equivalent in a network.
Unlike SimRank that measures the similarity of two nodes from the paths connecting them,
RoleSim quantifies similarities through the paths connecting their different roles. As a
result, two nodes that are disconnected from each other will not be considered as dissimilar
by RoleSim if they have similar roles. For evaluating similarity score s(a, b) between nodes
a and b, as opposed to SimRank whose similarity s(a, b) takes the average similarity of all
the neighboring pairs of (a, b), RoleSim computes s(a, b) by averaging only the similarities
over the maximum bipartite matching of all the neighboring pairs of (a, b). This subtle dif-
ference enables RoleSim to guarantee the automorphic equivalence, which SimRank lacks,
in final scoring results. Therefore, RoleSim has been demonstrated as an effective similar-
ity measure in a wide range of real applications. We summarize two of these applications
below.

Application 1 (Similarity Search on the Web) Discovering web pages similar to a query
page is an important task in information retrieval. In a Web graph, each node represents
a web page, and an edge denotes a hyperlink from one page to another. RoleSim can be
applied to measure the similarity of two web pages, based on the intuition that “two web
pages are role-similar if they are pointed to by the automorphically equivalent sets of their
in-neighboring pages”. This similarity measure produces more reliable similarity results
than the SimRank model [10].

Application 2 (Social Network De-anonymization) Social network de-anonymization is
a method to validate the strength of anonymization algorithms that protect a user’s pri-
vacy. RoleSim has been applied to de-anonymise node mappings based on the similarity
information between a crawled network and an anonymised one. Based on the observation
that “correct mappings tend to have higher similarity scores”, RoleSim iteratively evaluates
pairwise node similarities between two networks, and captures the reasoning that “a pair
of nodes between two networks is more likely to be a correct mapping if their neighbors
are correct mappings”. RoleSim has demonstrated superior performance as compared with
other existing de-anonymization algorithms [25].

Despite its popularity in real-world applications, RoleSim has a major limitation: with
the aim to achieve automorphic equivalence, its similarity score s(a, b) only considers the
limited information of the average similarity scores over the automorphically equivalent set
(i.e., the maximum bipartite matching) of a’s and b’s in-neighboring pairs, but neglects
the rest of the pairwise in-neighboring similarity information that is outside the automor-
phically equivalent set. Consequently, RoleSim does not always produce comprehensive
similarity results because two pairs of nodes, which are not automorphically equivalent by
nature, should be distinguishable from each other even though the average values of their

786 World Wide Web (2022) 25:785–829

in-neighboring similarities over the set of the maximum bipartite matching are the same, as
illustrated in Example 1.

Example 1 (Limitation of RoleSim) Consider the web graph G in Figure 1, where each
node denotes a web page, and each edge depicts a hyperlink from one page to another.
Using RoleSim, we evaluate pairs of similarities between nodes, as partially illustrated in
the ‘RS’ column of the right table. It is discerned that node-pairs (1, 2) and (1, 3) have the
same RoleSim similarity values, which is not reasonable. Because node 2 and node 3 are
not strictly automorphically equivalent by nature, their similarities with respect to the same
query node 1, i.e., s(1, 2) and s(1, 3), should not be the same.

We notice that the main reason why s(1, 2) and s(1, 3) are assessed to be the same
by the RoleSim model is that its similarity s(a, b) considers only the average similarity
scores over the maximum bipartite matching, denoted as Ma,b, of (a, b)’s in-neighboring
pairs Ia × Ib, where Ia denotes the in-neighbor set of node a, and × is the Cartesian
product of two sets. Thus, the similarity information in the remaining in-neighboring pairs
of (a, b), i.e., Ia × Ib − Ma,b, are totally ignored. For example, if unfolding the in-
neighboring pairs of (1, 2) and (1, 3) respectively, we see that, in the gray cells, M1,2 =
{(4, 6), (5, 7)} (resp. M1,3 = {(4, 9), (5, 10)}) is the maximum bipartite matching of
(1, 2)’s (resp. (1, 3)’s) in-neighboring pairs I1 × I2 (resp. I1 × I3). The sum of the similar-
ity values over M1,2 is 0.488 + 0.360 = 0.848, which is the same as that over M1,3. Thus,
RoleSim cannot distinguish s(1, 2) from s(1, 3).

Example 1 illustrates that, to effectively evaluate s(a, b), relying only on the in-
neighboring-pairs similarities in the maximum bipartite matching Ma,b (e.g., RoleSim)
is not enough. Although RoleSim has the advantage of using intuitively the most influ-
ential pairs Ma,b among all the in-neighboring pairs Ia × Ib for achieving automorphic
equivalence, it completely ignores the similarity information outside Ma,b. For instance in
Example 1, there are opportunities to take good advantage of the similarity values in the
regions I1 × I2 − M1,2 and I1 × I3 − M1,3 which would be helpful to distinguish s(1, 2)
from s(1, 3) further when the average similarities over M1,2 and M1,3 are the same.

Contributions Motivated by this, our main contributions are as follows:

Figure 1 Limitation of RoleSim (RS) on a web graph, where node-pairs (1, 2) and (1, 3) have the same
RoleSim score (0.426) since RS aggregates only the in-neighboring pairs that are automorphically equivalent
(colored in green) whose sums are the same (0.488 + 0.360 = 0.848), while ignoring the remaining pairs

787World Wide Web (2022) 25:785–829

1) We first propose a novel similarity model, RoleSim*, which accurately evaluates
pairwise role similarities in a more comprehensive fashion. Compared with the exist-
ing well-known similarity models (e.g., SimRank and RoleSim), RoleSim* not only
guarantees the automorphic equivalence that SimRank lacks, but also takes into con-
sideration the pairwise similarities outside the automorphically equivalent sets that are
overlooked by RoleSim. (Section 3.1)

2) We show three key properties of RoleSim*, i.e., symmetry, boundedness, and non-
increasing monotonicity of its iterative similarity scores. On the top of that, we prove
the existence and uniqueness of the RoleSim* solution. (Section 3.2)

3) We derive an iterative formula for computing RoleSim* similarities. A concise upper
bound for RoleSim* iterations is also established, which can estimate the total number
of iterations required for attaining a desired accuracy. (Section 3.3)

4) To substantially accelerate the computation of RoleSim*, we also devise a threshold-
based RoleSim* model based on two pruning strategies, and provide provable guaran-
tees on accuracy which is controlled by a user-specified threshold parameter δ trading
between speed and accuracy. (Section 4)

5) To scale RoleSim* similarity search well on large graphs with billions of edges, we pro-
pose a scalable algorithm for single-source RoleSim* retrieval, which avoids spending
unnecessary time on repeated RoleSim* computations while caching important pairs
through an unordered hash map. (Section 5)

6) We induce a distance metric based on our RoleSim* measure, and rigorously show that
the RoleSim* distance metric fulfills the triangular inequality which other measures
(e.g., cosine distance) lack. This implies the sum-transitivity of the RoleSim* measure.
(Section 6)

7) We discuss approaches to scale RoleSim* based search using the triangle inequality
property and partitioning techniques (Section 7).

8) We conduct an experimental study to validate the effectiveness of our RoleSim* model.
Our empirical results show that RoleSim* achieves higher accuracy than the existing
competitors (e.g., RoleSim and SimRank) while entailing comparable computational
complexity bounds of RoleSim. We also devise an unsupervised experimental setting
that quantifies the effectiveness of similarity measures, where RoleSim* outperforms
the alternatives. (Section 8)

2 Related work

Graph-based similarity models have been popular since SimRank measure was proposed by
Jeh and Widom [7]. SimRank is a node-pair similarity measure, which follows the recursive
idea that “two nodes are considered as similar if they are pointed to by similar nodes”. Since
then, there have been surges of studies focusing on optimization problems to accelerate
SimRank computation as the naive SimRank computing method entails quadratic time in the
number of nodes. According to assumptions on data updates, recent results can be divided
into static algorithms [1, 4, 5, 12, 16, 22, 26, 32, 34, 37, 42], and dynamic algorithms on
evolving graphs [8, 13, 19, 24, 28, 36, 40]. According to types of queries, these results
are classified into single-source SimRank [8, 12, 19, 26, 40], single-pair SimRank [6, 15],
all-pairs SimRank [1, 20, 34, 35], and partial-pairs SimRank [22, 39].

Recent years have witnessed an upsurge of interest in the semantic problems of pair-
wise similarity measures. Various SimRank and SimRank-like models have come into play.

788 World Wide Web (2022) 25:785–829

Representative examples include C-Rank [31], SimFusion [38], Penetrating-Rank [41],
RoleSim++ [25], RoleSim [9], MatchSim [18], SimRank* [37], ASCOS [3], CoSim-
Rank [23], and SemSim [32]. In what follows, we will elaborate the pros and cons of these
similarity measures and discuss their relations to this work.

C-Rank [31] C-Rank is a contribution-based ranking algorithm that integrates both content
and link information of web pages through the concept of contribution, indicating that a
page may contribute to enhancing the content quality of adjacent pages pointing to it via
linkages. A C-Rank score of each page on a term is defined to be a linear combination of (i)
its relevance score to the term and (ii) its contribution score that quantifies the degree of its
overall contributions to other pages on the term. However, unlike similarity scores from the
RoleSim family, C-Rank does not take into account the automorphic equivalence property
for each pair of nodes. Our experimental evaluation demonstrates the accuracy of RoleSim*
is superior to C-Rank with a little compromise in the computational time.

Penetrating-Rank [41] Zhao et al. [41] proposed Penetrating-Rank, which is a SimRank-
based similarity measure that comprehensively considers both incoming and outgoing
neighbouring information for similarity assessment. However, Penetrating-Rank is not an
automorphic equivalence-based measure as role discovery is not the primary task of this
model. Recently, the idea of Penetrating-Rank applied to SimRank shows some degree
of resemblance to the idea of RoleSim++, which is a generalisation of RoleSim through
exploitation of both in- and out-links of the graph structure.

RoleSim [10] RoleSim has been accepted as a promising role-based similarity model, due
to its elegant intuition that “if two nodes are automorphically equivalent, they should share
the same role and their role similarity should be maximal”. To speed up the RoleSim com-
putation, an approximate heuristic, named Iceberg RoleSim, was devised to prune small
similarity values below a threshold. Unlike SimRank that takes the average similarity of all
the neighboring pairs of (a, b), RoleSim computes s(a, b) by averaging only the similar-
ities over the maximum bipartite matching Ma,b. However, all the similarity information
not included in the matching Ma,b is completely ignored by RoleSim. In contrast, our
RoleSim* model can effectively capture these information while guaranteeing automorphic
equivalence.

RoleSim++ [25] RoleSim++, proposed by Shao et al. [25], takes good advantage of the
direction information of both in- and out-links to model pairwise similarities. which is suc-
cessfully used in the real-world de-anonymization application. It employs a novel matching
algorithm, NeighborMatch, to find matchings for inner and outer neighbors, respectively.
Moreover, a threshold-based model, α-RoleSim++, is proposed to eliminate tiny scores
for speedup further. Our techniques of RoleSim* can also be slightly modified to tailor
RoleSim++ to accommodate similarity contributions from non-automorphically equivalent
pairs of in- and out-neighbours for semantic enhancement.

SimFusion [30] SimFusion exploits a unified relationship matrix (URM) to capture the
inter- and intra-relationships among a set of heterogeneous data objects. A unified simi-
larity matrix (USM), which is evaluated iteratively from the URM, characterises the latent
relationships among heterogeneous data objects. However, as opposed to RoleSim*, Sim-
Fusion fails to capture automorphically equivalent relationships among the heterogeneous
data objects.

789World Wide Web (2022) 25:785–829

MatchSim [18] Lin et al. [18] introduced MatchSim similarity model, which computes the
similarity values between two objects based on the average similarity of their maximum
matched neighbours. The key difference between MatchSim and RoleSim lies in the initial-
isation step – MatchSim starts with an identity matrix as its initial similarity and defines
s0(a, b) = 1 if a = b, and 0 otherwise, whereas RoleSim utilises a matrix of all ones to
be starting similarity matrix which initialises all s0(∗, ∗) = 1. As a result, RoleSim exhibits
the automorphism property that MatchSim lacks. However, similar to RoleSim, MatchSim
totally neglects the neighboring similarity values outside the automorphically equivalent
sets. The idea of RoleSim* can be applied to MatchSim in a similar way to resolve this
problem.

SimRank* [37] & ASCOS [3] SimRank* and ASCOS are two variations of the SimRank
model that addresses the zero-similarity problem of the SimRank measure. Nevertheless,
these methods do not take into account the automorphically equivalent structure of nodes.
The key idea of RoleSim* can be applied in a similar manner to SimRank* and ASCOS
models to enrich the meaningful semantics of similarity assessment while effectively
circumventing the zero SimRank problem.

CentSim [14] Li et al. [14] proposed CentSim, a centrality-based role similarity measure,
which compares the centrality values of two nodes to evaluate their similarity. This measure
employs several types of centrality including PageRank, Degree and Closeness for each
node, and considers the weighted average of them for evaluating CentSim scores.

SemSim [32] Milo et al. [32] proposed a semantic-aware random walk-based model
namely, SemSim, which is an extension of SimRank applied to heterogeneous information
networks. SemSim aims to boost the quality of SimRank similarity scores by exploiting its
node semantics and edge weights. Nonetheless, SemSim inherits the limitation of SimRank
whose similarity values ignore the role-equivalent relationship between nodes.

Co-SimRank [23] Rothe and Schütze [23] presented Co-SimRank, a SimRank-like mea-
sure of pairwise similarity based on graph structure. A Co-SimRank score s(a, b) of each
pair (a, b) is computed from the inner product of two Personalised PageRank vectors corre-
sponding to the seed node a and b, respectively. Co-SimRank distinguishes from SimRank
in that the SimRank value s(a, b) counts only the first hitting time of two random surfers
starting at nodes a and b, whereas CoSimRank values tallies all the hitting times of the two
random surfers. As a result, CoSimRank produces more complete similarity scores than
SimRank. In comparison to RoleSim*, the values of CoSimRank do not look at the auto-
morphically equivalent patterns of the graph. However, the intuition of RoleSim* can be
extended to Co-SimRank for semantic enhancement.

SimRank There have also been a variety of studies on SimRank algorithms recently
(e.g., [8, 21, 24, 27, 29]). Wang et al. [27] presents a fast probabilistic Monte-Carlo algo-
rithm, ExactSim, to evaluate single-source and top-k SimRank results on large-scale graphs
with over 106 nodes effectively. ExactSim provides high-probability guarantees to yield
ground truths with provable accuracy. Lu et al. [21] proposed a matrix sampling approach
in combination with the steepest descent technique, which not only guarantees the sparsity
of the involved matrix, but also speeds up the rate of convergence for a single-pair SimRank
retrieval. Wei et al. [29] proposes PRSim, which resorts to the distribution of the reverse
PageRank to accelerate single-source SimRank queries, achieving sublinear query time on

790 World Wide Web (2022) 25:785–829

power-law graphs with small index size. READS [8] precalculates
√

c-walks and squeezes
random walks into compact trees. In the query processing, READS searches the walks com-
mencing at the query node u, and retrieves all the

√
c-random walks which hit the

√
c-walks

of u. TSF [24] constructs one-way graphs for indexing through sampling an in-neighbour
from the in-links of each node. In the query processing, the one-way graphs are utilised to
retrieve random walks for SimRank evaluation.

3 RoleSim*

3.1 RoleSim* formulation

The central intuition underpinning RoleSim* follows a recursive concept that two distinct
nodes are assessed to be similar if they

1. interact with the automorphically equivalent sets of in-neighbors, and
2. are in-linked by similar nodes out of automorphically equivalent sets.

The starting point for this recursion is to assign each pair of nodes a similarity score 1,
meaning that initially no pairs of nodes are thought of to be more (or less) similar than
others.

Notations Before illustrating the mathematical definition to reify the RoleSim* intuition,
we introduce the following notations.

Let G = (V ,E) be a directed graph with a set of nodes V and a set of edges E. Let Ia be
all in-neighbors of node a, and |Ia | the cardinality of the set Ia . For a pair of nodes (a, b) in
G, we denote by Ia × Ib = {(x, y) | x ∈ Ia and y ∈ Ib} all in-neighboring pairs of (a, b),
and s(a, b) the RoleSim* similarity score between nodes a and b. Using Ia ×Ib and s(a, b),
we define a weighted complete bipartite graph, denoted by K|Ia |,|Ib| = (Ia ∪ Ib, Ia × Ib),
with each edge (x, y) ∈ Ia × Ib carrying the weight s(a, b). We denote by Ma,b (⊆ Ia × Ib)

the maximum weighted matching in bipartite graph K|Ia |,|Ib|.

Example 2 Recall graph G in Figure 1. For nodes 1 and 2, their in-neighbors are sets I1 =
{4, 5} and I2 = {6, 7, 8}, respectively. The set of all in-neighboring pairs of (1, 2) is I1 ×
I2 = {(4, 6), (4, 7), (4, 8), (5, 6), (5, 7), (5, 8)}. The maximum matching of bipartite graph
(I1 ∪ I2, I1 × I2) is M1,2 = {(4, 6), (5, 7)} (see the pairs in bold font in I1 × I2).

Other notations frequently used throughout this paper are listed in Table 1.

RoleSim* Formula. Based on our aforementioned intuition, we formally formulate the
RoleSim* model as follows:

s(a, b) = β

(
λ ×

Part 1: average similarity over maximum matching Ma,b︷ ︸︸ ︷
1

|Ia | + |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈Ma,b

s(x, y)

+(1 − λ) × 1

|Ia | × |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈(Ia×Ib)−Ma,b

s(x, y)

︸ ︷︷ ︸
Part 2: average similarity over (Ia × Ib) − Ma,b

)
+ (1 − β) (1)

791World Wide Web (2022) 25:785–829

Table 1 Description of main symbols

Symbol Description

G directed graph G = (V ,E) with a set nodes V and a set of edges E

Ia all in-neighbors of node a in G

Oa all out-neighbors of node a in G

Ma,b maximum weighted matching in bipartite graph K|Ia |,|Ib | = (Ia ∪ Ib, Ia × Ib)

β damping factor (0 < β < 1)

λ relative weight balancing similarities inside and outside Ma,b (0 < λ < 1)

K total number of iterations

δ user-specified threshold parameter (δ > 0)

ε error bound between sk(∗, ∗) and sδ
k (∗, ∗)

θ user-specified threshold parameter (θ ≥ 0)

dmax maximum degree in a graph

s(a, b) RoleSim* similarity score between nodes a and b

sk(a, b) k-th iterative RoleSim* similarity score between nodes a and b

sδ
k (a, b) δ-threshold based RoleSim* similarity sk(a, b)

ρ(a, b) Importance value of two nodes a and b

In (1), for every pair of nodes (a, b), the set of their in-neighboring pairs, Ia × Ib, is split
into two subsets: Ia × Ib = Ma,b ∪ (Ia × Ib −Ma,b). As a result, the definition of RoleSim*
consists of two parts: Part 1 is the average similarity over maximummatching Ma,b, indicat-
ing the contribution from (a, b) interacting with the automorphically equivalent set, Ma,b,
of (a, b)’s in-neighbors pairs. Part 2 is the average similarity over (Ia × Ib) − Ma,b, corre-
sponding to the contribution from (a, b) being pointed to by the rest of (a, b)’s in-neighbors
pairs out of automorphically equivalent set Ma,b.

It is worth highlighting that the reason why we use the denominator |Ia | + |Ib| −
∣∣Ma,b

∣∣
instead of

∣∣Ma,b

∣∣ in (1) is to guarantee that RoleSim* covers the traditional RoleSim model
as a special case when λ = 1. More specifically, since

∣∣Ma,b

∣∣ = min{|Ia | , |Ib|}, it follows
that |Ia | + |Ib| −

∣∣Ma,b

∣∣ = max{|Ia | , |Ib|}. When we apply this to (1) and set λ = 1, Part 2
of (1) becomes zero, and (1) reduces to the following traditional RoleSim equation:

s(a, b) = β

max{|Ia | , |Ib|}
∑

(x,y)∈Ma,b

s(x, y) + (1 − β) (2)

The reason why RoleSim in (2) uses max{|Ia | , |Ib|}
(= |Ia | + |Ib| − ∣∣Ma,b

∣∣) as the denom-
inator instead of

∣∣Ma,b

∣∣ (= min{|Ia | , |Ib|}) is to differentiate similarity values of the pairs
s(a, b) and s(a, c) when |Ib| �= |Ic|. The larger the difference between |Ib| and |Ic|, the
more dissimilar the similarity values of s(a, b) and s(a, c) should be. For example, recall
the similarities of s(8, 3) and s(8, 1) in Figure 1, their in-neighbouring grids are shown
in Figure 2. Note that |I3| = 3 and |I1| = 2, which implies that the similarity values of
s(8, 3) and s(8, 1) should be different. However,

∣∣M8,3
∣∣ = ∣∣M8,1

∣∣ = 2. Therefore, if we

792 World Wide Web (2022) 25:785–829

Figure 2 A demonstration on the affect of maximum matching denominator on similarity values

replace
∣∣Ma,b

∣∣ with |Ia | + |Ib| − ∣∣Ma,b

∣∣ in (1), the similarity values of s(8, 3) and s(8, 1)
are considered as the same because

s(8, 3) = β
|M8,3|

(
s(13, 9) + s(12, 10)

) + (1 − β) = β
2 (0.2 + 0.28) + (1 − β)

s(8, 1) = β
|M8,1|

(
s(13, 4) + s(12, 5)

) + (1 − β) = β
2 (0.2 + 0.28) + (1 − β)

which is counter-intuitive to our common sense due to |I1| �= |I3|. However, if we use (2),
then the similarity values of s(8, 3) and s(8, 1) become

s(8, 3) = β
|I8|+|I3|−|M8,3|

(
s(13, 9) + s(12, 10)

) + (1 − β) = β
3 (0.2 + 0.28) + (1 − β)

s(8, 1) = β
|I8|+|I1|−|M8,1|

(
s(13, 9) + s(12, 10)

) + (1 − β) = β
2 (0.2 + 0.28) + (1 − β)

The larger the difference between |I3| and |I1|, the more dissimilar the similarity scores of
s(8, 3) and s(8, 1), which follows our intuition.

The relative weight of Part 1 and 2 is balanced by a user-controlled parameter λ ∈ [0, 1].
β is a damping factor between 0 and 1, which is often set to 0.6 or 0.8, implying that
similarity propagation made with distant in-neighbors is penalised by an attenuation factor
β across edges. When Ia (or Ib) = ∅, which implies the maximum matching Ma,b = ∅, we
define Part 1 and Part 2 to be 0 in order to avoid the denominators of the fraction in Part 1
and 2 being zeros.

Fixed-Point Iteration To solve RoleSim* similarity s(a, b) in (1), we adopt the following
fixed-point iterative scheme:

s0(a, b) = 1 (∀a, b) (3)

sk+1(a, b) = β ×
(

λ

|Ia | + |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈Ma,b

sk(x, y)

+ 1 − λ

|Ia | × |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈(Ia×Ib)−Ma,b

sk(x, y)

)
+ (1 − β) (4)

where sk(a, b) denotes the RoleSim* score between nodes a and b at iteration k. Based on
(3) and (4), we can iteratively compute all pairs of similarity scores sk+1(∗, ∗) from those
at the last iteration sk(∗, ∗).

793World Wide Web (2022) 25:785–829

3.2 Axiomatic properties for RoleSim*

Symmetry, Boundedness, & Monotonicity Based on the definition of iterative simi-
larity sk(a, b) in (3) and (4), we next show three axiomatic properties of RoleSim*,
i.e., symmetry, boundedness, and non-increasing monotonicity, based on the following
theorem.

Theorem 1 The iterative RoleSim* {sk(a, b)} in (3) and (4) have the following key
properties: for any node-pair (a, b) and each iteration k = 0, 1, · · · ,
1. (Symmetry) sk(a, b) = sk(b, a)

2. (Boundedness) 1 − β ≤ sk(a, b) ≤ 1
3. (Monotonicity) sk+1(a, b) ≤ sk(a, b)

Proof 1. (Symmetry) By virtue of (3) and (4), sk(a, b) = sk(b, a) follows immediately.
2. (Boundedness) We will prove this by induction on k. For k = 0, it is apparent that

s0(a, b) = 1 ∈ [1−β, 1]. For k > 0, we assume that sk(x, y) ≤ 1 holds, and will prove
that sk+1(x, y) ≤ 1 holds as follows. Since

P1 := 1

|Ia | + |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈Ma,b

sk(x, y)︸ ︷︷ ︸
≤1

≤ |Ma,b|
|Ia | + |Ib| − ∣∣Ma,b

∣∣

= min{|Ia |, |Ib|}
max{|Ia |, |Ib|} ≤ 1

P2 := 1

|Ia | × |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈(Ia×Ib)−Ma,b

sk(x, y)︸ ︷︷ ︸
≤1

≤
∣∣Ia × Ib − Ma,b

∣∣
|Ia | × |Ib| − ∣∣Ma,b

∣∣ = 1

Thus, (4) can be rewritten as

sk+1(a, b) = β × (
λ × P1︸︷︷︸

≤1

+(1 − λ) × P2︸︷︷︸
≤1

) + (1 − β) ≤ 1

On the other hand,

sk+1(a, b) = β × (
λ × P1 + (1 − λ) × P2

)
︸ ︷︷ ︸

≥0

+(1 − β) ≥ 1 − β

3. (Monotonicity) We will prove by induction on k. For k = 0, s0(a, b) = 1. According
to (4), it follows that

s1(a, b) = β ×
(

λ × min{|Ia | , |Ib|}
max{|Ia | , |Ib|}︸ ︷︷ ︸

≤1

+(1 − λ) × (|Ia | × |Ib|) − ∣∣Ma,b

∣∣
(|Ia | × |Ib|) − ∣∣Ma,b

∣∣︸ ︷︷ ︸
=1

)
+ (1 − β)

≤ β(λ + (1 − λ)) + (1 − β) = 1 = s0(a, b)

794 World Wide Web (2022) 25:785–829

For k > 0, we assume that sk+1(a, b) ≤ sk(a, b) holds, and will prove that sk+2(a, b) ≤
sk+1(a, b) holds. According to (4), it follows that

sk+2(a, b) = β ×
(

λ

|Ia | + |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈Ma,b

{using hypothesis} ≤sk(x,y)︷ ︸︸ ︷
sk+1(x, y)

+ 1 − λ

|Ia | × |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈(Ia×Ib)−Ma,b

sk+1(x, y)︸ ︷︷ ︸
≤sk(x,y)

)
+ (1 − β)

≤ β ×
(

λ

|Ia | + |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈Ma,b

sk(x, y)

+ 1 − λ

|Ia | × |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈(Ia×Ib)−Ma,b

sk(x, y)

)
+ (1 − β)

= sk+1(a, b)

Theorem 1 indicates that, for every iteration k = 0, 1, 2, · · · , {sk(a, b)} is a bounded
symmetric scoring function. Moreover, as k → ∞, it can be readily verified that the exact
solution s(a, b) also is a bounded symmetric measure, which is similar to SimRank and
RoleSim measures. In contrast, other measures (e.g., Hitting Time and Random Walk with
Restart) are asymmetric.

It is worth noticing that, unlike SimRank iterative similarity values {sk(a, b)} that exhibit
a non-decreasing trend (starting from 0 for any two distinct nodes a and b) w.r.t. the num-
ber of iterations k, RoleSim iterative similarity scores {sk(a, b)} show a non-increasing
tendency (starting from 1 for any two distinct nodes a and b) w.r.t. k. This subtle differ-
ence makes many existing optimization techniques on SimRank not directly applicable to
RoleSim*.

Existence & Uniqueness The bounded property and non-increasing property of RoleSim*
iterative similarity values {sk(a, b)} w.r.t. k guarantee the existence and uniqueness of the
exact RoleSim* solution s(a, b) to (3) and (4), as indicated below:

Theorem 2 (Existence and Uniqueness) There exists a unique solution s(a, b) (i.e., the
exact RoleSim score) to (3) and (4) such that the iterative RoleSim similarity {sk(a, b)}
non-increasingly converges to it as the number of iterations k increases, i.e.,

lim
k→∞ sk(a, b) = s(a, b).

Proof (Existence) For each pair of nodes (a, b), since the sequence {sk(a, b)}k is lower-
bounded by (1−β) (Property 2) and non-increasing (Property 3), byMonotone Convergence
Theorem, {sk(a, b)} will converge to its infimum, denoted as s(a, b), which is the exact
RoleSim* solution, i.e., limk→∞ sk(a, b) = s(a, b).

(Uniqueness) For each pair of nodes (a, b), suppose there exist two solutions, s(a, b) and
s̃(a, b), that satisfy (4). We will prove that s(a, b) = s̃(a, b). Let δ(a, b) := s(a, b)−s̃(a, b)

795World Wide Web (2022) 25:785–829

and Δ := max(a,b){|δ(a, b)|}. Then,

δ(a, b) = s(a, b) − s̃(a, b)

= β ×
(

λ

|Ia | + |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈Ma,b

=δ(x,y)︷ ︸︸ ︷
s(x, y) − s̃(x, y)

+ 1 − λ

|Ia | × |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈(Ia×Ib)−Ma,b

s(x, y) − s̃(x, y)︸ ︷︷ ︸
=δ(x,y)

)

Therefore, taking the absolute value of both sides and applying triangle inequality |x +y| ≤
|x| + |y| produces

|δ(a, b)| ≤ β ×
(

λ

|Ia | + |Ib| − ∣∣Ma,b

∣∣ ×
∣∣∣∣

∑
(x,y)∈Ma,b

δ(x, y)

∣∣∣∣

+ 1 − λ

|Ia | × |Ib| − ∣∣Ma,b

∣∣ ×
∣∣∣∣

∑
(x,y)∈(Ia×Ib)−Ma,b

δ(x, y)

∣∣∣∣
)

≤ β ×
(

λ

|Ia | + |Ib| − ∣∣Ma,b

∣∣ ×
∑

(x,y)∈Ma,b

∣∣δ(x, y)
∣∣︸ ︷︷ ︸

≤Δ

+ 1 − λ

|Ia | × |Ib| − ∣∣Ma,b

∣∣ ×
∑

(x,y)∈(Ia×Ib)−Ma,b

∣∣δ(x, y)
∣∣︸ ︷︷ ︸

≤Δ

)

≤ β(λ × Δ + (1 − λ) × Δ) = β × Δ (∀a, b)

Thus, Δ = max
(a,b)

{|δ(a, b)|} ≤ β × Δ, implying Δ = 0, i.e., s(a, b) = s̃(a, b).

3.3 Iterative RoleSim* algorithmwith guaranteed accuracy

In this section, we provide an iterative algorithm for retrieving RoleSim* similarity val-
ues, and give a concise error bound for the difference between iterative similarity scores as
provided by our algorithm and actual (exact) scores.

Iterative Algorithm The fixed-point scheme in (3) and (4) implies an iterative algorithm
for RoleSim* computation, as illustrated in Algorithm 1. It starts initialising all pairs of
similarities to 1 (line 1), and carries out iterative computations of similarities for each pair of
nodes (lines 3–15). If there are no in-neighbors for node a or b, s(a, b) is set to 1−β (lines 4–
6). Otherwise, it finds maximum weighed matching Ma,b in bipartite graph (Ia ∪Ib, Ia ×Ib)

(line 8), and averages the (k −1)-th iterative similarities over Ma,b (resp. (Ia × Ib)−Ma,b)
to get w1 (resp. w2) (lines 9–14). Then, the weighted average of w1 and w2 is returned
as score sk(a, b) at k-th iteration. This process continues till all pairs of similarities are
computed for each iteration.

796 World Wide Web (2022) 25:785–829

Complexity The computational cost of Algorithm 1 is shown in Theorem 3.

Theorem 3 It requires O(K|E|2) time and O(|V |2) memory for Algorithm 1 to retrieve
RoleSim* similarity scores for |V |2 node-pairs on graph G = (V ,E) with |V | nodes and
|E| edges for K iterations.

Proof For each iteration k and each pair of nodes (a, b), the computational time and
memory required in each loop iteration of Algorithm 1 (lines 4–15) are described as follows:

Line Time Memory Description

4 O(|Ia | + |Ib|) O(|Ia | + |Ib|) get in-neighborings for node a and b

6 O(1) O(1) initialise sk(a, b) if a and b

have no in-neighbors
8 O(|Ia | + |Ib|) O(|Ia | × |Ib|) finding the maximum match-

ing in a weighted bipartite
graph using Jonker-Volgenant
algorithm [2]

9 O(1) O(1) initialise t1 and t2
10–11 O(|Ma,b|) O(1) iteratively compute t1
12–13 O(|Ia | × |Ib| − |Ma,b|) O(1) iteratively compute t2
14–15 O(1) O(1) iteratively compute sk(a, b)

797World Wide Web (2022) 25:785–829

Thus, for K iterations and |V |2 node-pairs, the total time of Algorithm 1 is bounded by

O

(∑
(a,b)∈V 2

(
K(2(|Ia | + |Ib|) + (|Ia | × |Ib| − |Ma,b|) + |Ma,b|

))

= O
(
K

∑
(a,b)∈V 2

(|Ia | × |Ib|
)) = O

⎛
⎜⎜⎜⎝K

∑
a∈V

|Ia |
︸ ︷︷ ︸

=|E|

× ∑
b∈V

|Ib|
︸ ︷︷ ︸

=|E|

⎞
⎟⎟⎟⎠ = O(K|E|2)

Therefore, it entails O(K|E|2) time to retrieve |V |2 pairs of RoleSim* scores.
Since |V |2 pairs of similarities sk−1(∗, ∗) at iteration (k − 1) need to be prepared for

retrieving sk(a, b) at next iteration k, the memory consumption of Algorithm 1 is bounded
by O(|V |2).

It is important to note that the O(|V |2) memory of Algorithm 1 hinders the scalability
of RoleSim* computation on large graphs with millions of nodes. Therefore, in Section 5,
on the top of Algorithm 1, we will propose a scalable algorithm for efficient RoleSim*
similarity search on sizable graphs without loss of accuracy.

Error Bound We are now ready to investigate the error bound of the difference between the
k-th iterative similarity sk(a, b) and exact one s(a, b).

By virtue of the non-increasing monotonicity of {sk(a, b)}, one can readily show that the
exact s(a, b) is the lower bound of all the iterative similarities {sk(a, b)}, i.e., sk(a, b) ≥
s(a, b) (∀k). The following theorem further provides a concise upper bound to measure the
closeness between sk(a, b) and s(a, b).

Theorem 4 (Error Bound for Iterative RoleSim*) For every iteration k = 0, 1, 2, · · · , the
difference between sk(a, b) and s(a, b) is bounded by

sk(a, b) − s(a, b) ≤ βk+1 (∀a, b) (5)

Proof We prove this by induction on k. For k = 0, s0(a, b) = 1. According to Property 2
of Theorem 1, 1 − β ≤ sk(a, b) ≤ 1, implying that 1 − β ≤ s(a, b) ≤ 1. Thus, s0(a, b) −
s(a, b) ≤ β holds.

For k > 0, we assume that sk(a, b) − s(a, b) ≤ βk+1 holds, and will prove that
sk+1(a, b) − s(a, b) ≤ βk+2 holds. Subtracting (4) from (1) produces

sk+1(a, b) − s(a, b) = β ×
(

λ

|Ia | + |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈Ma,b

≤βk+1︷ ︸︸ ︷
sk(x, y) − s(x, y)

+ 1 − λ

|Ia | × |Ib| − ∣∣Ma,b

∣∣
∑

(x,y)∈(Ia×Ib)−Ma,b

sk(x, y) − s(x, y)︸ ︷︷ ︸
≤βk+1

)

≤ β(λ × βk+1 + (1 − λ) × βk+1) = βk+2 (∀a, b)

Theorem 4 derives a concise exponential upper bound for the difference between the k-th
iterative similarity sk(a, b) and exact s(a, b). Combining this bound with the non-increasing

798 World Wide Web (2022) 25:785–829

monotonicity sk(a, b) ≥ s(a, b), we can obtain that the k-th iterative error sk(a, b)−s(a, b)

is between 0 and βk+1. Moreover, Theorem 4 also implies that, given desired accuracy ε >

0, the total number of iterations required for computing RoleSim* similarity is k = �logβ ε�.
It is worth noticing that the equality sign in our error estimation (5) is reachable,

highlighting the tightness of the bound, as illustrated in Example 3.

Example 3 Consider the graph G in Figure 3. Given β = 0.8 and λ = 0.7, let us evaluate
the RoleSim* similarity s(c, d) iteratively via (3) and (4). For iteration k = 0, it is apparent
that s0(∗, ∗) = 1. When k = 1, it follows from |Ic| = |Id | = |Mc,d | = 2 and (4) that

s1(c, d) = 0.8 × (0.7
2+2−2 × (1 + 1) + 1−0.7

2×2−2 × (1 + 1)
) + (1 − 0.8) = 1

Since the exact solution is s(c, d) = 0.36, when k = 1, we have

s1(c, d) − s(c, d) = 1 − 0.36 = 0.64 = 0.81+1 = βk+1

Therefore, the equality in (5) is attainable on G when (k, β) = (1, 0.8).

4 Threshold-based RoleSim*

In this section, we propose our threshold-based RoleSim* model that substantially speeds
up the computation of RoleSim* similarities with only a little sacrifice in accuracy. We will
establish provable error bounds on our threshold-based RoleSim* model with respect to a
user-specified threshold parameter δ, which is a speed-accuracy tradeoff.

Through the iterative computation of RoleSim* via (3) and (4), we notice that there are
a significant number of node-pairs whose iterative similarity scores sk(∗, ∗) are very close
to their convergent values s(∗, ∗) and thus will not change much in subsequent iterations
as k grows. To accelerate RoleSim* computation, we have the following two observations
for eliminating such pairs from the unnecessary RoleSim* computations, with guaranteed
accuracy.

Observation 1 If the RoleSim* similarity scores of two adjacent iterations, sk−1(∗, ∗) and
sk(∗, ∗), become quite close to each other after some iterations, then the RoleSim* iterative
sequence {sk(∗, ∗)} from some iteration k0 onwards are very close to the exact solution
s(∗, ∗) as well.

Figure 3 The equality sign in our estimate bound (5) for iterative RoleSim* computation is attainable, e.g., it
can be verified from graph G that there exist (k, β) = (1, 0.8) such that s1(c, d) − s(c, d) = 1 − 0.36 =
0.81+1 = βk+1 holds

799World Wide Web (2022) 25:785–829

This observation is based on Cauchy Convergence Criterion to test whether a sequence
has a limit. Precisely, for any small user-specified threshold δ > 0, this criterion implies that

lim
k→+∞ sk(∗, ∗) = s(∗, ∗) ⇔ ∃k0 s.t. |sk(∗, ∗) − sk+1(∗, ∗)| < δ (∀k > k0)

We apply this criterion to skip unnecessary iterative computations for node-pairs whose
RoleSim* scores of two consecutive iterations are very small. More specifically, after some
iterations, once the gap between sk−1(∗, ∗) and sk(∗, ∗) is below the threshold δ, instead
of employing (4) to iteratively compute sk+1(∗, ∗) from sk(∗, ∗), we simply supersede
sk+1(∗, ∗) by the value of sk(∗, ∗). Therefore, we define the following threshold-based
RoleSim* similarity sδ

k(∗, ∗) based on Observation 1:
sδ
0(a, b) = 1

To quantify the difference between the threshold-based RoleSim* similarity sδ
k(∗, ∗) in

(6) and the conventional one sk(∗, ∗) in (4) at each iteration k, we show the following
theorem.

Theorem 5 Given a threshold δ, for any number of iterations k = 0, 1, 2, · · · , there exists
a positive integer k0 such that for any k > k0 and two nodes (a, b),

sδ
k(a, b) − sk(a, b) ≤ ε0 with ε0 = β(1−βk−k0)

1−β
δ (7)

where k0 is the minimum integer that guarantees sδ
k0−1(a, b) − sδ

k0
(a, b) < δ.

Proof When k = 0, it is apparent that s0(a, b) = sδ
0(a, b) = 1.

Let k0 be the minimum integer that guarantees sδ
k0−1(a, b) − sδ

k0
(a, b) < δ for any two

nodes a and b. When 0 < k < k0, in the case of sδ
k−1(a, b) − sδ

k(a, b) ≥ δ, sδ
k(a, b) is

iteratively computed from (6a). Hence,

sδ
k(a, b) = sk(a, b) (∀k = 0, 1, · · · , k0, ∀a, b).

When k ≥ k0, in the case of sδ
k−1(a, b) − sδ

k(a, b) < δ for any nodes a and b, sδ
k+1(a, b)

is directly obtained by (6b), thereby leading to its deviation from sk+1(a, b) since the k0-th

800 World Wide Web (2022) 25:785–829

iteration. In this case, to quantify the gap between sδ
k+1(a, b) and sk+1(a, b), we notice that

sk0(a, b) − sk0+1(a, b)

= β ×
(

λ

|Ia | + |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

(sk0−1(x, y) − sk0(x, y))︸ ︷︷ ︸
≤δ

+ 1 − λ

|Ia | × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

(sk0−1(x, y) − sk0(x, y))︸ ︷︷ ︸
≤δ

)

≤ β ×
(

λ × (|Ma,b| × δ
)

|Ia | + |Ib| − |Ma,b| + (1 − λ) × (|Ia | × |Ib| − |Ma,b|
) × δ

|Ia | × |Ib| − |Ma,b|
)

≤ β × (λ × δ + (1 − λ) × δ) = β × δ

Similarly,

sk0+1(a, b) − sk0+2(a, b)

= β ×
(

λ

|Ia | + |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

(sk0(x, y) − sk0+1(x, y))︸ ︷︷ ︸
≤β×δ

+ 1 − λ

|Ia | × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

(sk0(x, y) − sk0+1(x, y))︸ ︷︷ ︸
≤β×δ

)

≤ β2 × δ

Iteratively, we can obtain that

sk0+i−1(a, b) − sk0+i (a, b) ≤ βi × δ (∀i = 0, 1, 2, · · ·)
Since sδ

k(a, b) = sδ
k0

(a, b) = sk0(a, b) (∀k ≥ k0), it follows that

sδ
k(a, b) − sk(a, b) = sk0(a, b) − sk(a, b)

= (
sk0(a, b) − sk0+1(a, b)

)
︸ ︷︷ ︸

≤β×δ

+ (
sk0+1(a, b) − sk0+2(a, b)

)
︸ ︷︷ ︸

≤β2×δ

+ · · · + (sk−1(a, b) − sk(a, b))︸ ︷︷ ︸
≤βk−k0×δ

≤ δ ×
k−k0∑
i=1

βi = δ × β(1 − βk−k0)

1 − β
(∀k ≥ k0)

Theorem 5 indicates that the threshold δ is a user-controlled parameter, which is a speed-
accuracy trade-off. A small setting of δ ensures a high accuracy of sδ

k(∗, ∗), but at the cost of
more time for iterations, since only a small number of node-pairs can be pruned. In contrast,
larger δ can discard more pairs of nodes from iterative computations, but would produce a
larger error bound ε1 between sδ

k(∗, ∗) and sk(∗, ∗).

Example 4 Consider the graph G in Figure 4a. Given threshold δ = 0.01, decay factor
β = 0.6, and relative weight λ = 0.8, for pair (a, b) = (2, 3), in Figure 4b, we see that

s̄0.013 (2, 3) − s̄0.014 (2, 3) = 0.7139 − 0.7077 = 0.0062 < δ = 0.01.

801World Wide Web (2022) 25:785–829

Figure 4 Error bound on the gap sδ
k(2, 3) − sδ

k (2, 3) based on Observation

Thus, there exists an integer k0 = 4, such that the error bound in (7) holds for all k > k0, as
depicted in Figure 4c. For example, when k = 10, we have

s̄0.0110 (2, 3) − s10(2, 3) = 0.7077 − 0.7 = 0.0077 ≤ ε0

with ε0 = β(1−β(k−k0))
1−β

δ = 0.6×(1−0.610−4)
1−0.6 × 0.01 = 0.0143.

On the top of Observation 1, to enable a further speedup in the computation of RoleSim*,
our second observation for discarding unnecessary RoleSim* iterations is the following:

Observation 2 For a given threshold δ, after some iterations, if the RoleSim* similarity
score sk(∗, ∗) is within a small δ-neighbourhood of (1 − β), then the RoleSim* iterative
sequence {sk(∗, ∗)} from some iteration k1 onwards is also within the δ-neighbourhood of
(1 − β).

This observation comes from the non-increasing property and lower bound of the
RoleSim* iterative sequence {sk(∗, ∗)}∞k=1 that we derived in Theorem 1. We notice that
there are a number of pairs whose iterative RoleSim* similarity scores are very close to the
lower bound (1−β), but have not converged to the exact value of (1−β) yet. Iteratively com-
puting such pairs via (4) till convergence is cost-inhibitive. We observe that, when sk(∗, ∗)

becomes close to (1 − β), the value of sk+1(∗, ∗) in the subsequent iteration is even closer
to (1− β) than sk(∗, ∗). As a result, there are opportunities to terminate earlier the iterative
computations of sk+i (∗, ∗) by simply replacing the value of sk+i (∗, ∗) with (1 − β) for all
i = 1, 2, · · · , once sk(∗, ∗) falls into the δ-neighborhood of (1 − β), as illustrated below:

sδ
0(a, b) = 1

To distinguish sδ
k(∗, ∗) in (6), we denote by sδ

k(∗, ∗) in (8) the threshold-based RoleSim*
similarity based on Observation 2. By definition, it is discerned that sδ

k(∗, ∗) ≤ sk(∗, ∗) ≤
sδ
k(∗, ∗). The following theorem provides the bound for the difference between sk(∗, ∗) in
(4) and sδ

k(∗, ∗) in (8).

802 World Wide Web (2022) 25:785–829

Theorem 6 Given a threshold δ, for any number of iterations k = 0, 1, 2, · · · , there exists
a positive integer k1 such that for any k ≥ k1 and two nodes (a, b), it follows that

sk(a, b) − sδ
k(a, b) ≤ ε1 (∀k ≥ k1) (9)

with ε1 = δ − ρk1−ρk

1−ρ
× ξ, ρ = β(1 − λ), ξ = 1 − max

(a,b)
{s1(a, b)}

where k1 is the minimum integer that guarantees sδ
k1

(a, b) < 1 − β + δ.

Proof We first find the lower bound on the gap between sk(a, b) and sk+i (a, b). By
definition of (4), when k = 0, it follows from s0(∗, ∗) = 1 that

s0(a, b) − s1(a, b) = 1 − β ×
(

λ

|Ia | + |Ib| − |Ma,b| × |Ma,b| + (1 − λ)

)
− (1 − β)

Plugging |Ma,b| = min(|Ia |, |Ib|) and |Ia |+ |Ib|− |Ma,b| = max(|Ia |, |Ib|) to the above
equation yields

s0(a, b) − s1(a, b) = ξa,b with ξa,b = λβ ×
(
1 − min(|Ia |, |Ib|)

max(|Ia |, |Ib|)
)

Let ξ = min
a,b

{ξa,b} = 1 − max
a,b

{s1(a, b)}, we have

s0(a, b) − s1(a, b) ≥ ξ

When k = 1, it follows that

s1(a, b) − s2(a, b) = β ×
(

λ

|Ia | + |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

(s0(x, y) − s1(x, y))︸ ︷︷ ︸
≥ξ

+ 1 − λ

|Ia | × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

(s0(x, y) − s1(x, y))︸ ︷︷ ︸
≥ξ

)

≥ βξ ×
(

λ|Ma,b|
|Ia | + |Ib| − |Ma,b|︸ ︷︷ ︸

≥0

+ (1 − λ) × (|Ia | × |Ib| − |Ma,b|)
|Ia | × |Ib| − |Ma,b|︸ ︷︷ ︸

=1−λ

)

≥ ρ × ξ with ρ = β(1 − λ)

Similarly, when k = 2, we have

s2(a, b) − s3(a, b) = β ×
(

λ

|Ia | + |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

(s1(x, y) − s2(x, y))︸ ︷︷ ︸
≥ρ×ξ

+ 1 − λ

|Ia | × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

(s1(x, y) − s2(x, y))︸ ︷︷ ︸
≥ρ×ξ

)

≥ β(1 − λ)ρ × ξ = ρ2 × ξ

Iteratively, we have

sk(a, b) − sk+1(a, b) ≥ ρk × ξ (∀k = 0, 1, · · ·)

803World Wide Web (2022) 25:785–829

Therefore,

sk(a, b) − sk+i (a, b)

= (sk(a, b) − sk+1(a, b))︸ ︷︷ ︸
≥ρk×ξ

+(sk+1(a, b) − sk+2(a, b))︸ ︷︷ ︸
≥ρk+1×ξ

+· · ·+(sk+i−1(a, b) − sk+i (a, b))︸ ︷︷ ︸
≥ρk+i−1×ξ

≥
k+i−1∑
j=k

ρj × ξ = ρk(1 − ρi)

1 − ρ
× ξ (10)

Next, capitalising on the lower bound for sk(a, b) − sk+i (a, b), we are going to find the
upper bound for sk1+i (a, b) − sδ

k1+i (a, b). Let k1 be the minimum integer that guarantees

sδ
k1

(a, b) ≤ (1 − β) + δ for any two nodes a and b. Then, when k = k1, we have

sk1(a, b) = sδ
k1

(a, b) ≤ (1 − β) + δ ⇒ 1 − β ≥ sk1(a, b) − δ

Iteratively, when k = k1 + i (i ≥ 1), it follows from sδ
k1+i (a, b) = 1 − β that

sk1+i (a, b) − sδ
k1+i (a, b)

= sk1+i (a, b) − (1 − β)︸ ︷︷ ︸
≥sk1 (a,b)−δ

≤ δ − (sk1(a, b) − sk1+i (a, b))︸ ︷︷ ︸
≥ ρk1 (1−ρi)

1−ρ
×ξ by (10)

≤ δ − ρk1 (1−ρi)
1−ρ

× ξ

Thus,

sk(a, b) − sδ
k(a, b) ≤ ε1 with ε1 = δ − ρk1−ρk

1−ρ
× ξ (∀k ≥ k1)

Example 5 Consider the digraph G in Figure 5a. Given a threshold δ = 0.1, decay fac-
tor β = 0.2, and relative weight λ = 0.55, for node-pair (a, b) = (2, 3), it is discerned
that, when k grows to 3, the value of s̄δ

k (2, 3) will fall into the δ-neighborhood of (1 − β),
i.e., s̄0.13 (2, 3) = 0.899 < 1 − β + δ = 1 − 0.2 + 0.1 = 0.9. Thus, there exists an integer
k1 = 3, such that the error bound in (9) holds for all k > k1, as shown in Figure 5c. Then,
e.g., when k = 4 (> k1), we have

s4(2, 3) − sδ
4(2, 3) = 0.89889 − 0.8000 = 0.09889 ≤ ε1

where ρ = β(1 − λ) = 0.2 × (1 − 0.55) = 0.09, ξ = 1 − max
(a,b)

{s1(a, b)} = 0.09,

and ε1 = δ − ρk1−ρk

1−ρ
ξ = 0.1 − 0.093−0.094

1−0.09 × 0.09 = 0.09993.

Figure 5 Error bound on the gap sδ
k (2, 3) − sδ

k(2, 3) based on Observation 2

804 World Wide Web (2022) 25:785–829

Putting ThemAll Together Combining Observations 1 and 2, we next propose the following
complete scheme for threshold-based RoleSim* retrieval. To differentiate the notation from
sδ
k(∗, ∗) in (6) and sδ

k(∗, ∗) in (8), we denote by sδ
k (∗, ∗) the threshold-based RoleSim* simila-

rity for our complete scheme combining both Observations 1 and 2, which is defined as follows:
sδ
0(a, b) = 1

By virtue of Theorems 5 and 6, the following upper bound on the difference between
sδ
k (∗, ∗) and sk(∗, ∗) is immediate.

Corollary 1 (Error Bound for Threshold-Based RoleSim* Iteration) Given a threshold δ,
for any number of iterations k = 0, 1, 2, · · · , there exist two positive integers k0 and k1 such
that for any two nodes (a, b),

|sk(a, b) − sδ
k (a, b)| ≤ ε with ε =

⎧⎪⎪⎨
⎪⎪⎩

min {ε0, ε1} if k ≥ max {k0, k1}
ε0 if k0 ≤ k ≤ k1
ε1 if k1 ≤ k ≤ k0
0 if 0 ≤ k ≤ min {k0, k1}

where ε0 = β(1−βk−k0)
1−β

δ, and ε1 = δ − ρk1−ρk

1−ρ
ξ with ρ = β(1 − λ) and ξ = 1 −

max
a,b

{s1(a, b)}; k0 (resp. k1) is the minimum positive integer that ensures sδ
k0−1(a, b) −

sδ
k0

(a, b) < δ (resp. sδ
k1

(a, b) < 1 − β + δ) holds.

5 Scaling RoleSim* search on large graphs

In this section, we propose efficient techniques that enable RoleSim* similarity search to
scale well on sizable graphs with billions of edges. It is noticed that our iterative method for
RoleSim* search by Algorithm 1 needs to memoise all |V |2 pairs of similarities {sk(∗, ∗)}
at iteration k for computing any similarity at iteration (k + 1). On small graphs, this algo-
rithm runs very fast for all-pairs search. However, real graphs are often large with millions
of nodes. The O(|V |2) memory required by Algorithm 1 would jeopardise its scalability
over massive graphs. Moreover, in many real-world applications, users are often interested
in partial-pairs similarity search. For instance, in a DBLP collaboration network, one would
like to find who are Prof. Jennifer Widom’s close collaborators. In a social graph, one wants
to know who are Thomas’s close friends on Instagram. In a web graph, one wishes to iden-
tify which web pages are relevant to a given query page. These applications call for a need
to devise a scalable method that retrieves partial-pairs RoleSim* similarities within a small
amount of memory. Formally, we are ready to solve the following RoleSim* search problem:

PROBLEM (Single-source RoleSim* Similarity Search).
Given: a graph G = (V ,E), a query node q ∈ V , and a desired depth K1

1The desired depth K is equivalent to the total number of iterations in Algorithm 1.

805World Wide Web (2022) 25:785–829

Figure 6 Single-source RoleSim* method that caches the similarities of important pairs eliminates many
unnecessary recomputations in DFS backtracking

Retrieve: |V | pairs of RoleSim* similarities {sK(∗, q)} between all nodes inG and query
q in a scalable manner.

To avoid using O(|V |2) memory, the central idea underpinning our method is judiciously
implementing caching techniques on only a small portion of node-pairs that involve heavily
repetitive similarity computations. More specifically, to evaluate each pair (u, q)’s similarity
for single-source {s(∗, q)} retrieval, we start at each root pair (u, q), and employ a depth-
first search (DFS) to traverse all the in-neighboring pairs within k hops from the root (u, q),
recursively, against the in-coming edges of the graph in a depthward movement before back-
tracking when a desired depth k is reached or a “dead end” (i.e., a pair (x, y) with either
node x or y having no in-neighbours) occurs in any iteration. The iterative recurrence for
retrieving each root pair (u, q) can be diagrammed by a recursion tree. For example, given
graph G in Figure 6a with query node q = 7 and desired depth K = 4, the recursion tree
for the recurrence to retrieve each s(x, 7) (∀x ∈ V) through DFS is depicted in Figure 6c,
respectively. We have the following two observations:

(1) There are a number of repeated computations among these recursion trees. For
instance, s(4, 7) is repetitively evaluated three times (circled in red). If the result
of s(4, 7) is cached and reused in subsequent recurrence, a number of unnecessary
RoleSim* computations can be avoided.

(2) When breaking down the traversal of s(3, 7) and s(4, 7), we notice that their unfolded
recurrence structures (circled in blue) are exactly the same, which is due to the same
in-neighboring structures of nodes 3 and 4, i.e., I (3) = I (4). If the previously cached
results of s(4, 7) can be used again for evaluating any other {s(x, 7)} (for all x ∈ V −
{4} with the same in-neighboring structure of node 7), many duplicate computations
can be skipped further.

It is worth mentioning that the parameter K here is the desired depth of search to control
the height of the traversed recursion tree, which provides a user-controlled effect of the

806 World Wide Web (2022) 25:785–829

speed and accuracy for computing RoleSim* similarity. For example, when K is small, the
computation of sK(v, q) is fast, but this would increase the error between sK(v, q) and the
exact solution s(v, q). When K is large, sK(v, q) approaches s(v, q), which achieves high
accuracy, but will take more time, as it requires more steps to traverse the recursion tree.
Moreover, the user-specified K also effectively avoid ending up an infinite loop of a circle
while traversing the graph for RoleSim* retrieval.

Based on these observations, we devise a caching approach in backtracking of DFS
to minimise duplicate RoleSim* similarity computations. Different from Algorithm 1
that requires O(|V |2) memory space to cache all-pairs similarities, we select only the
“important” pairs for memoization. We first define the “importance” of a node-pair as
follows.

Definition 1 Let (x, y) be a pair of nodes, and |Ox | be the out-degree of node x, then the
importance of the pair (x, y), denoted as ρ(x, y), is defined as

ρ(x, y) := |Ox | × |Oy |

Intuitively, Definition 1 uses degree centrality to evaluate the “importance” of a pair since
a pair (x, y) is likely to be “important” if nodes x and y are linked to a large number of nodes.

According to Definition 1, during DFS backtracking, when each pair (x, y) is visited, we
first check if ρ(x, y) ≥ θ to determine whether this pair is worthy of being cached, where θ

is user-specified threshold between 0 and d2
max

2, which is a space-speed tradeoff. When θ is
set to 0, all pairs in the recursion tree are memoised, which in the worst case will reduce to
the case of Algorithm 1. When θ > d2

max, no caching techniques apply, which degrades to
the naive recursive retrieval of RoleSim* similarities, being rather cost-inhibitive. In other
words, the selection of θ value is a trade-off problem between memory and execution time,
the smaller the θ , the larger the number of memoised pairs in memory and consequently the
lower the execution time. Therefore, an appropriate selection of θ plays an important role
in providing a good balance between the computational time and memory space (i.e., the
number of memoised pairs to be retrieved).

To avoid caching insignificant pairs, we often set θ to the first quartile of the pairwise
out-degree set {ρ(x, y)}(x,y)∈V 2 of the graph, which guarantees more than slightly impor-
tant pairs to be cached using a moderate amount of memory. This is because there are close
relationships between θ and the number of retrieved pairs N . As demonstrated by our exten-
sive experiments in Figure 7, when θ is less than the first quartile of the pairwise out-degree
set {ρ(x, y)}(x,y)∈V 2 on each dataset3 (e.g., DBLP, Bitcoin-α and P2P), there are a large
number of memoised pairs with huge space requirement, but the computation is very fast.
When θ is larger than the first quartile of {ρ(x, y)}(x,y)∈V 2 , the execution time increases sig-
nificantly whereas the number of retrieved pairs decreases sharply. Only when θ is around
the first quartile of {ρ(x, y)}(x,y)∈V 2 (e.g., θ ≈ 10 on DBLP, 5 on Bitcoin-α, 60 on P2P),
there is a good balance between the computational time and memory space (with the bal-
ancing point circled in red). Thus, we empirically set θ to the first quartile of the pairwise
out-degree set {ρ(x, y)}(x,y)∈V 2 of a graph.

Once we decide that a visited pair (x, y) deserves to be cached, we next employ an
unordered hash table T for memoising. Precisely, we first check whether the key (i.e., node-
pair (x, y)) exists in the hash table. If not, we compute the RoleSim* similarity s(x, y)

2dmax := maxx∈V {|Ox |} is the maximum out-degree of the graph.
3https://snap.stanford.edu/data/index.html

807World Wide Web (2022) 25:785–829

https://snap.stanford.edu/data/index.html

Figure 7 An appropriate choice of θ provides a good balance between computational time and memory space
(i.e., # of memorised pairs)

once, and add < key, value >:=< (x, y), s(x, y) > to the hash table. Otherwise, we just
retrieve the cached similarity value s(x, y) corresponding to the key (x, y) from the hash
table instead of computing the similarity s(x, y) again, thus significantly boosting the per-
formance for single-source RoleSim* search. Note that, due to the symmetry of RoleSim*
similarity s(x, y) = s(y, x), when hashing the pair (x, y), we will swap x and y beforehand
if x > y, to avoid both (x, y) and (y, x) being hashed.

808 World Wide Web (2022) 25:785–829

Single-Source Algorithm The single-source RoleSim* algorithm, referred to as SSRS*,
is shown in Algorithm 2. It works as follows. First, it starts by building a hash table T
(line 1). Next, it invokes a Single-Pair function to evaluate the RoleSim* similarity
between each node u ∈ G and query q according to whether the similarity value of pair
(u, q) is memoised in hash table T (lines 2-6). If pair (u, q) is at the last level or has no
in-neighbours, the similarity is set to (1 − β) (line 8). Otherwise, it enumerates all the in-
neighboring pairs (a, b) in Iu × Iq (line 11). If (a, b) exists in hash table T , it retrieves the
similarity of (a, b) from T directly with no need for recomputation (line 13); otherwise, it
recursively computes the similarity of (a, b) (line 15). Using all the similarities of the in-
neighboring pairs of (u, q), it then computes similarity s(u, q) according to (4) (line 16-18),
and memoises the resulting score if (u, q) is an important pair (line 19). Finally, it returns
s(u, q) to the main function (line 20).

Computational Complexity Analysing the computational time for retrieving single-source
RoleSim* query, we show the following theorem:

Theorem 7 Let N be the number of pairs whose RoleSim* similarity scores are retrieved
from the hash table in the traversal of the recursion tree with K levels. Assume that the
network G is scale-free and follows power-law degree distribution. We denote by pin(d)

and pout(d) the fraction of nodes in G having in-degree and out-degree d, respectively,
which satisfy pin(d) ∝ d−γin and pout(d) ∝ d−γout , where γin and γout are the power-
law exponents whose values are typically 2 ∼ 3. Let din and dout be the maximum
in-degree and out-degree of G, respectively. Then, the average computational time for
retrieving RoleSim* similarities between all nodes and a query for K levels is bounded by

O
(
ρ
2(K−1)
out

(|V |ρ2
out − N

K

))
with ρout := O

(
(dout)

2−γout−1
2−γout

)
.

Proof We first analyse the computational cost for a single-pair RoleSim* query without
using any memoisation optimisation. Since the graph G follows power-law degree dis-
tribution, the expected value of the number of in-neighbours of each node is bounded
by

din∑
d=1

d · pin(d) =
din∑

d=1

d · Cin · d−γin = Cin ·
din∑

d=1

d1−γin ≤ Cin

∫ din

1
x1−γindx

= Cin
2−γin

· x2−γin
∣∣din
1 = ρin with ρin := Cin

2−γin

(
d
2−γin
in − 1

)
where Cin is a constant. Similarly, the expected value of the number of out-neighbouring
pairs of any pair is bounded by ρout := Cout

2−γout

(
(dout)

2−γout − 1
)
, where Cout is a constant.

We notice that, to compute each pair of similarity at any level i, the expected value of the
number of in-neighbouring pairs that we need to retrieve at level (i − 1) is O(ρin

2). Since
the expected value of the number of node-pairs at level i is bounded by O(ρout

2(i−1)) in the
average case, the total computational time for evaluating any single-pair similarity at the top
level in the average case is bounded by

O

(
K∑

i=1
ρout

2(i−1) · ρin
2
)

= O
(

ρin
2

ρout2−1
· (

ρout
2K − 1

)) = O
(
ρout

2K
)

which implies that O(|V |ρout2K) time is required for single-source retrieval of |V | nodes
w.r.t. a query.

809World Wide Web (2022) 25:785–829

However, after using memoisation, this computational cost is significantly reduced. Gen-
erally, the amount of computational cost reduction depends on the number of memoised
pairs and the position at which the memoised pairs appear. For ease of our analysis, we
denote by C(i) the computational cost that can be saved by a pair at level i whose similarity
value is obtainable directly from the hash table. Since the expected value of the number of
out-neighboring pairs of similarities that need to be retrieved at level (i + 1) is bounded by
O(ρout

2) recursively till level K , the total computational cost of C(i) in the worst case is:

C(i) = 1 + ρout
2 + ρout

4 + · · · + ρout
2(K−i) = ρout

2(K−i+1)−1
ρout2−1

Then, the average computational cost, denoted as C̄, which can be saved by a pair through
retrieving its similarity score from the hash table, is as follows:

C̄ = 1

K

K∑
i=1

i × C(i) = 1

K

(
K∑

i=1

i ×
(

ρout
2(K−i+1) − 1

ρout2 − 1

))

= 1

K

(
1

ρout2 − 1

(
K∑

i=1

i × (ρout
2)

(K−i+1) −
K∑

i=1

i

))

= 1

K

(
1

ρout2 − 1

(
ρout

4(ρout
2K − 1)

(ρout2 − 1)2
− Kρout

2

(ρout2−1)
− (1+K)K

2

))
=O

(
ρout

2(K−1)

K

)
.

It follows that the average computational cost for a single-source query is

O
(
|V |ρout2K

)
− N × C̄ = O

(|V |ρ2K
out − N × ρ

2(K−1)
out

K

)

= O
(
ρ
2(K−1)
out

(
|V |ρ2

out −
N

K

))
with ρout := O

(
(dout)

2−γout − 1

2 − γout

)

6 “Sum-transitivity” of RoleSim* similarity

In this section, we investigate the transitive property of the proposed RoleSim* similar-
ity measure. Intuitively, when a similarity measure s(∗, ∗) fulfils the transitive property, it
means that, for any three nodes a, b, c in the graph, if a is similar to b and b is similar to
c, it implies that a is likely to be similar to c. The transitivity feature is useful in many real
applications, e.g., for predicting and recommending links in a graph.

Before showing the transitive property of RoleSim*, let us induce a distance d(a, b) :=
1 − s(a, b) from the RoleSim* measure. Due to s(∗, ∗) ∈ [1 − β, 1], the distance d(∗, ∗)

is between 0 and β. In what follows, we will show that d(∗, ∗) satisfies the triangular
inequality, which is an indication of s(∗, ∗) transitivity.

810 World Wide Web (2022) 25:785–829

We first provide the following two lemmas, which will lay the foundation for our proof
of the RoleSim* triangular inequality.

Lemma 1 Let sk(∗, ∗) be the k-th iterative RoleSim* similarity via (3) and (4). For any
3 nodes (a, b, c) in a graph, if sk(a, b) + sk(b, c) − sk(a, c) ≤ 1 holds at iteration k, the
following inequality holds:

∑
(x,y)∈Ma,b

sk(x, y)

|Ia | + |Ib| − ∣∣Ma,b

∣∣ +

∑
(y,z)∈Mb,c

sk(y, z)

|Ib| + |Ic| − ∣∣Mb,c

∣∣ −

∑
(x,z)∈Ma,c

sk(x, z)

|Ia | + |Ic| − ∣∣Ma,c

∣∣ ≤ 1 (12)

Proof Without loss of generality, we only consider the case of |Ia | ≤ |Ib| ≤ |Ic|. The proofs
for other cases are similar, and omitted here due to space limitation. In this case, we have

|Ia | + |Ib| − ∣∣Ma,b

∣∣ = max{|Ia | , |Ib|} = |Ib| .

Hence, the left-hand side (LHS) of (12) can be rewritten as

LHS of (12)

= 1

|Ib|
∑

(x,y)∈Ma,b

sk(x, y) + 1

|Ic|
∑

(y,z)∈Mb,c

sk(y, z) − 1

|Ic|
∑

(x,z)∈Ma,c

sk(x, z)

=
Part 1︷ ︸︸ ︷(

1

|Ib| − 1

|Ic|
) ∑

(x,y)∈Ma,b

sk(x, y)

+ 1

|Ic|
(∑

(x,y)∈Ma,b

sk(x, y) +
∑

(y,z)∈Mb,c

sk(y, z) −
∑

(x,z)∈Ma,c

sk(x, z)

︸ ︷︷ ︸
Part 2

)
(13)

We first find an upper bound on Part 1. Since
∑

(x,y)∈Ma,b

sk(x, y) ≤∑
(x,y)∈Ma,b

1 = |Ma,b|, it follows that

Part 1 ≤
(

1

|Ib| − 1

|Ic|
)

× ∣∣Ma,b

∣∣ =
(

1

|Ib| − 1

|Ic|
)

× |Ia | (14)

To get an upper bound for Part 2, let

Ĩb = {y | ∀x ∈ Ia, ∃y ∈ Ib, s.t . (x, y) ∈ Ma,b}
M̃a,c = {(x, z) | ∃y ∈ Ib, s.t . (x, y) ∈ Ma,b ∧ (y, z) ∈ Mb,c}

Then, Mb,c can be partitioned into two parts: Mb,c = M
(1)
b,c ∪ M

(2)
b,c where

M
(1)
b,c = {(y, z) ∈ Mb,c | y ∈ Ĩb, z ∈ Ic}

M
(2)
b,c = {(y, z) ∈ Mb,c | y ∈ Ib − Ĩb, z ∈ Ic}

811World Wide Web (2022) 25:785–829

Therefore,

Part 2 =
∑

(x,y)∈Ma,b

sk(x, y) +
∑

(y,z)∈Mb,c

sk(y, z) −
∑

(x,z)∈Ma,c

sk(x, z)

=
(∑

(x,y)∈Ma,b

sk(x, y) +
∑

(y,z)∈M
(1)
b,c

sk(y, z)

)
+

∑
(y,z)∈M

(2)
b,c

sk(y, z)︸ ︷︷ ︸
≤1

−
∑

(x,z)∈Ma,c

sk(x, z)

≤
(∑

(x,z)∈M̃a,c

sk(x, z)

︸ ︷︷ ︸
≤ ∑

(x,z)∈Ma,c

sk(x,z)

+ |Ia |
)

+
(

|Mb,c|︸ ︷︷ ︸
=|Ib|

− |Ĩb|︸︷︷︸
=|Ia |

)
−

∑
(x,z)∈Ma,c

sk(x, z) ≤ |Ib| (15)

Substituting (14) and (15) into (13) produces

LHS of (12) ≤
(

1

|Ib| − 1

|Ic|
)

|Ia | + |Ib|
|Ic| = |Ia |

|Ib| + |Ib| − |Ia |
|Ic| ≤ 1

Lemma 2 For any 3 nodes (a, b, c) in a graph, if sk(a, b) + sk(b, c) − sk(a, c) ≤ 1 holds
at iteration k, then it follows that∑

(x,y)∈(Ia×Ib)−Ma,b

sk(x, y)

|Ia | × |Ib| − ∣∣Ma,b

∣∣ +

∑
(y,z)∈(Ib×Ic)−Mb,c

sk(y, z)

|Ib| × |Ic| − ∣∣Mb,c

∣∣ −

∑
(x,z)∈(Ia×Ic)−Ma,c

sk(x, z)

|Ia | × |Ic| − ∣∣Ma,c

∣∣ ≤ 1 (16)

Proof For each x ∈ Ia , there exist yx ∈ Ib and zx ∈ Ic such that (x, yx) ∈ Ma,b and
(x, zx) ∈ Ma,c. Then, for each z ∈ Ic − {zx}, there exists y ∈ Ib such that

sk(x, y) + sk(y, z) − sk(x, z) ≤ 1

Summing both sides of the inequality over all z ∈ Ic − {zx} and all y ∈ Ib yields

∑
y∈Ib

∑
z∈Ic−{zx }

sk(x, y)

︸ ︷︷ ︸
Part 1

+
∑
y∈Ib

∑
z∈Ic−{zx }

sk(y, z)

︸ ︷︷ ︸
Part 2

−
∑
y∈Ib

∑
z∈Ic−{zx }

sk(x, z)

︸ ︷︷ ︸
=|Ib|× ∑

z∈Ic−{zx }
sk(x,z)

≤ (|Ic| − 1) × |Ib|

where

Part 1 = (|Ic| − 1) ×
∑
y∈Ib

sk(x, y) ≥ (|Ic| − 1) ×
∑

y∈Ib−{yx }
sk(x, y)

Part 2 =
∑

(y,z)∈(Ib×Ic)

sk(y, z) −
∑
y∈Ib

sk(y, zx)

︸ ︷︷ ︸
≤ ∑

(y,z)∈Mb,c

sk(y,z)

≥
∑

(y,z)∈(Ib×Ic)−Mb,c

sk(y, z)

Therefore, it follows that

(|Ic| − 1) ×
∑

y∈Ib−{yx }
sk(x, y) +

∑
(y,z)∈(Ib×Ic)−Mb,c

sk(y, z) − |Ib| ×
∑

z∈Ic−{zx }
sk(x, z) ≤ (|Ic| − 1) × |Ib|

812 World Wide Web (2022) 25:785–829

Summing both sides of the inequality over all x ∈ Ia produces

(|Ic| − 1)×

= ∑
(x,y)∈(Ia×Ib)−Ma,b

sk(x,y)

︷ ︸︸ ︷∑
x∈Ia

∑
y∈Ib−{yx }

sk(x, y) +|Ia | ×
∑

(y,z)∈(Ib×Ic)−Mb,c

sk(y, z)

−|Ib|×
∑
x∈Ia

∑
z∈Ic−{zx }

sk(x, z)

︸ ︷︷ ︸
= ∑

(x,z)∈(Ia×Ic)−Ma,c

sk(x,z)

≤ |Ia | × (|Ic| − 1) × |Ib|

Since
⋃

x∈Ia

{(x, yx)} = Ma,b and
⋃

x∈Ia

{(x, zx)} = Ma,c, we divide both sides of the

inequality by (|Ia | × (|Ic| − 1) × |Ib|) to get LHS of(16) ≤ 1.

Example 6 Recall the graph G in Figure 1, and three node-pairs (1, 2), (2, 3), (3, 1) in
G. For each pair (e.g., (1, 2)), all the RoleSim* similarities of its in-neighboring pairs
are tabularised as a grid (e.g., I1 × I2) in Figure 8, respectively. The green cells in each
grid (e.g., I1 × I2) correspond to the similarities over the maximum bipartite matching
(e.g., M1,2); and the remaining cells in orange denote the similarities out of the bipartite
matching (i.e., in I1 × I2 −M1,2). Lemma 1 indicates that the similarity values in the green
cells satisfy

Figure 8 An illustrative example of Lemmas 1 and 2. The similarity grids for the in-neighbouring pairs of
three node-pairs (1, 2), (1, 3), (2, 3) in Figure 1 are visualised, respectively, to picturise RoleSim* triangular
inequality

813World Wide Web (2022) 25:785–829

Similarly, Lemma 2 implies that the similarity values in the orange cells satisfy

Leveraging Lemmas 1 and 2, we are now ready to show the sum-transitivity of the
RoleSim* similarity distance, which is the main result in this subsection:

Theorem 8 (RoleSim* Triangle Inequality) We denote by d(a, b) := 1− s(a, b) the close-
ness between nodes a and b. Then, for any three nodes a, b, c in a graph, the following
triangle inequality holds, i.e.,

d(a, b) + d(b, c) ≥ d(a, c) (17)

Proof By the definition of d(a, b) := 1 − s(a, b), based on the fact that

d(a, b) + d(b, c) ≥ d(a, c) ⇔ 1 − s(a, b) + 1 − s(b, c) ≥ 1 − s(a, c)

⇔ s(a, b) + s(b, c) − s(a, c) ≤ 1 (18)

in what follows we will prove (18) holds by induction on k. For k = 0, by virtue of (3), it is
apparent that

s0(a, b) + s0(b, c) − s0(a, c) = 1 + 1 − 1 = 1 ≤ 1.

For k > 0, we assume that sk(a, b) + sk(b, c) − sk(a, c) ≤ 1 holds, and will prove that
sk+1(a, b) + sk+1(b, c) − sk+1(a, c) ≤ 1 holds.

Let P1 and P2 be left-hand side (LHS) of (12) and (16), respectively. According to
Lemmas 1 and 2, it follows from P1 ≤ 1 and P2 ≤ 1 that

sk+1(a, b) + sk+1(b, c) − sk+1(a, c) = β(λP1 + (1 − λ)P2) + (1 − β)

≤ β(λ + (1 − λ)) + (1 − β) ≤ 1

7 Scaling RoleSim* search using triangle inequality and partitioning

RoleSim* based similarity search can be also scaled via pruning using the triangular
inequality property. With some pre-computation, one can prune the node-pairs that need not
be evaluated and eliminate nodes from the candidate list to produce a top-k similar nodes
rank list with less computation. We first discuss a strategy for retrieving approximate node-
pair results based on graph partitioning. We then discuss exact single-source computation
to obtain the most similar nodes to a query q, by indexing based on the distance to some
chosen keys.

814 World Wide Web (2022) 25:785–829

First, we consider a simple graph partitioning-based strategy, where graph G is parti-
tioned using a vertex separator method to produce parts of roughly equal sizes. We refer
to the set of vertex separators (also called vertex cut or separating set) as VS . Nodes in VS

are the nodes that, when removed from G, separate it into its partitions. For our purposes,
we include the set of nodes VS with their corresponding edge connections into each of the
partitions. That is, nodes in the VS are the only nodes that are present in every subgraph
constructed via this partitioning approach.

Example 7 Consider the digraph G in Figure 9a, where a 2-way partitioning has been per-
formed resulting in vertex separators VS = {3, 7}. Subgraphs G1 and G2 are constructed
such that VG1 = {1, 2, 3, 7} and VG2 = {3, 4, 5, 6, 7}. Using our single-source approach,
all pairs of similarities from nodes in VS to nodes in G can be pre-computed. Given a decay
factor β = 0.8, and relative weight λ = 0.7, the exact RoleSim* similarities are computed
(after k iterations) and cached for all s(v, ∗) where v ∈ VS . Now, for node-pair (2, 1), the
exact similarity score of s(2, 1) from G1 may be approximately computed as sP (2, 1) where
the pre-computed value of s(3, 7) is used in every iteration and only the pruned graph G1
is considered. The similarity score sPA(2, 1) also uses the pre-computed s(3, 7), but also
allows access to neighboring nodes if they are present in G2. As seen from Figure 9b and c,
sPA(2, 1) is more accurate but less efficient due to accessing a larger graph.

Consider a query node q. To compute its similarity to any node n in G, there are three
different cases:

1. One or both nodes are vertex separators, i.e., q ∈ VS or n ∈ VS : this means an exact
value for s(q, n) is already pre-computed

2. Both nodes are in the same partition, say q, n ∈ G1: this means an approximate value
for s(q, n) can be computed considering G1 as the input graph and discarding all
nodes/edges from G2

3. Both nodes are in different partitions, say q ∈ G1 and n ∈ G2: this means an approxi-
mate (lower bound) value for s(q, n) can be directly computed from the pre-computed
exact values of s(v, ∗) by making use of the triangle inequality property of RoleSim*

While case 1 returns the exact value, case 2 and case 3 lead to approximate results. This
is depicted in Figure 9d, where numerous additional similarity computations (Figure 9e)
are avoided by retrieving the values stored for nodes in VS and using these to compute
approximate results. In case 2 when G is pruned into G1, the nodes/edges connections
that are discarded no longer contribute to the similarity computation during the RoleSim*
traversals, leading to inexact results. The case 3, considering q ∈ G1 and n ∈ G2 and
pre-computed exact values of s(v, ∗), is explained in further detail:

Using triangle inequality (18), we know that ∀v ∈ VS :

s(q, n) ≥ s(q, v) + s(v, n) − 1

Hence, using the pre-computed values s(v, ∗), we know that s(q, n) must have its lower
bound as the largest of these values, or:

s(q, n) ≥ max∀v∈VS

(s(q, v) + s(v, n) − 1)

This can be extended to k-way partitioning. The vertex separator set is taken as one end
node of each of the edge cuts in any k-way partitioning scheme, and included into each of
the subgraphs.

815World Wide Web (2022) 25:785–829

Figure 9 Approximate RoleSim* node-pair similarity retrieval that caches the similarities between vertex
separators to all nodes and uses triangle inequality to compute approximate results for node-pairs (2, 3) (case
1), (2, 1) (case 2), (2, 4) (case 3), where two partitions are encircled in red and blue respectively

Next, we discuss the challenge of returning an exact solution for the most similar nodes
to a query q. The vertex separator set VS is taken as a set of keys whose similarities to all
nodes are pre-computed. From the triangle inequality, we know that:

d(q, n) ≥ |d(v, n) − d(q, v)| (19)

Hence, a lower bound may be obtained on d(q, n), by computing:

d(q, n) ≥ max
v∈VS

|d(v, n) − d(q, v)| (20)

Given a threshold smin, we want to find all nodes ni such that s(q, ni) ≥ smin. That
is, d(q, ni) ≤ ξ where ξ = 1 − smin. The lower bounds d(q, ni) for all nodes ni are
given by (20). Any lower bound greater than ξ allows the node ni to be pruned from the
candidate list. We denote the resulting candidate set as Vk . In large graphs, with careful
partitioning to select a small number of vertex separators (|Vk| � |V |), the number of
distance computations is substantially reduced.

One can use this approach to prune partitions while identifying the top-k similar nodes to
query q. Consider subgraphs Gj obtained by partitioning G, each containing a single vertex
separator v. Using pre-computed values for d(v, ∗), (19) gives the lower bounds of d(q, ni)

816 World Wide Web (2022) 25:785–829

Datasets (Abbr.) |V | |E| |E|/|V | Type

small DBLP (DBLP) 2,372 7,106 2.99 Undirected

Amazon (AMZ) 5,086 8,970 1.76 Directed

HEP-Citation (CIT) 34,546 421,578 12.20 Directed

medium P2P-Gnutella (P2P) 62,586 147,892 2.36 Directed

Email-EuAll (EML) 265,214 420,045 1.58 Directed

Web-Google (WEB) 875,713 5,105,039 5.82 Directed

large YouTube (YOU) 1,134,890 2,987,624 2.63 Undirected

LiveJournal (LJ) 4,847,571 68,993,773 14.23 Directed

for ni ∈ VGj
(j = 1, · · · , NP respectively for each of the NP partitions). The minimum

of all these distances within a partition gives a lower bound value that helps to index the
partitions:

d(q, ni) ≥ min
ni∈VGj

|d(v, ni) − d(q, v)|

Let us denote these lower bounds as ξGj
for each subgraph Gj . Without loss of general-

ity, suppose ξG1 > ξG2 for a 2-way partitioning of G. Thus, every node in G1 is necessarily
at least ξG1 distance away from q. We first compute exact distances for all nodes in G2. If
k such nodes all have a distance to q that is smaller than ξG1 , then nodes of G1 need not be
considered, and the resulting top-k can be directly returned. If not, that is if any nodes of
G2 are at a distance higher than the lower bound of the next partition (here, G1), then nodes
of G1 must be processed. These nodes are then inserted into the top-k ranking based on the
computed distances. A similar process continues through the ordered set of ξGj

values for
multi-way partitioned data.

8 Experimental evaluation

8.1 Experimental settings

Datasets. We use 8 real datasets with different scales, as illustrated below:

– DBLP. A collaboration (undirected) graph taken from DBLP bibliography.4 We extract
a co-authorship subgraph from six top conferences in computer science (SIGMOD,
VLDB, PODS, KDD, SIGIR, ICDE) during 2018–2020. If two authors (nodes) co-
authored a paper, there is an edge between them.

– Amazon. A co-purchasing graph crawled from Customers Who Bought This Item Also
Bought feature of Amazon5. Each node is a product, and edge i → j means that product
j appears in the frequent co-purchasing list of i.

– HEP-Citation. A citation digraph from arXiv scholarly physics articles. In this graph,
nodes represent papers, and there is a directed edge from paper u to paper v if paper u

cites paper v.

4www.informatik.uni-trier.de/∼ley/db/
5www.amazon.co.uk

817World Wide Web (2022) 25:785–829

www.informatik.uni-trier.de/~{}ley/db/
www.amazon.co.uk

Models (Abbr.) Description

RoleSim* (RS*) our proposed RoleSim* model in Algorithm 1.

Single-Src RS* (SSRS*) our proposed single-source RoleSim* model in Algorithm 2.

SimRank (SR) a pairwise similarity model proposed by Jeh and Widom [7].

MatchSim (MS) a model relying on the matched neighbors of node-pairs [17].

RoleSim (RS) a model that ensures the automorphic equivalence of nodes [9].

RoleSim++ (RS++) an enhanced RoleSim that considers in- and out-neighbors [25].

CentSim (CS) a model that compares the centrality of node-pairs [14].

– P2P-Gnutella. A file sharing graph from Gnutella peer-to-peer network. In this graph,
nodes represent hosts, and each edge denotes the connection from one host to another
in the Gnutella network.

– Email-EuAll. A digraph constructed from emails of a research institute. Each node rep-
resents an email address, and there is a link from node u to v if at least one email is sent
from u to v.

– Web-Google. A Google web digraph from SNAP6 network repository. In this digraph,
nodes represent web pages, which are connected by directed edges that represent the
hyperlinks from one web page to another.

– YouTube. A friendship (undirected) graph from YouTube video sharing website, which
is an online social network. In this digraph, nodes denote users, and edges are the
friendship relation between them.

– LiveJournal. A large friendship graph from LiveJournal community. This is an online
social network, in which nodes are users, and each edge i → j is a recommendation of
user j from user i.

All experiments are conducted on a PC with Intel Core i7-10510U 2.30GHz CPU and
16GB RAM, using Windows 10. Each experiment is repeated 5 times and the average is
reported.

Compared Algorithms We implement the following algorithms in VC++:

Parameters We use the following parameters as default: (a) damping factor β = 0.8, (b)
relative weight λ = 0.7, (c) total number of iterations K = 5.

Unsupervised Semantic Evaluation We design an unsupervised evaluation setting to quan-
tify the effectiveness of the similarity measures. We use self-similarity as the ground truth
and study the effect of sampling the immediate neighborhood of a query node on similarity
scores in RoleSim* compared with SimRank and RoleSim.

Our evaluation is inspired by the problem of determining duplicate nodes in a network
simply by examining their neighborhoods for similar patterns. In many applications, the
underlying network contains duplicate entities with noisy, incomplete, and partially overlap-
ping information, such as in a social network that has been scraped from multiple sources.
Similarity of duplicate nodes is expected to be high. We consider duplicate entities as sep-
arate nodes, where each duplicate has some sampling of the total set of neighboring edges

6https://snap.stanford.edu/data/index.html

818 World Wide Web (2022) 25:785–829

https://snap.stanford.edu/data/index.html

available to the node. For example, in a co-purchasing product graph (AMZ), duplicates may
exist when merging multiple e-commerce sources, or when identical products are sold by
different sellers. This indicates that each of these duplicate products were frequently pur-
chased along with certain other products as they share some common neighbors. Similarly,
incorrectly spelled author names or multiple sources for a paper can lead to duplicates in
co-authorship and citation networks (DBLP, CIT).

Consider a single query node q. In our experiments, we create a node q ′ and add it
to the graph. We connect q ′ to some proportion (η) of the total number of neighbors of
q, and hereby refer to q ′ as the “sampled clone”. The similarity scores of q to all other
points in the graph are computed using SimRank, RoleSim, and RoleSim*. We evaluate
how much the relative similarities are preserved when different measures are used. First,
we vary η for q ′ with step size 0.25 (and ensuring no orphaned nodes) while varying λ =
0.0, 0.3, 0.5, 0.7, 1.0 for RoleSim* and compare the resulting similarity scores. In a similar
experiment, we vary both η (for q) as well as η′ (for q ′) each with step size 0.25, resulting
in some overlap of neighborhoods as the values of η and η′ grow towards 1. These results
are aggregated over 20 queries on DBLP and AMZ graphs respectively, where query nodes
are chosen as having high degree of neighbors.

8.2 Experimental results

Semantic Accuracy We first count the number of queries where the sampled clone q ′
appears in the top-k (k = 1, 5, 10) similar nodes to query q for RoleSim*. Intuitively, this
studies how much structural information is gleaned about a query node. Figure 10a presents
the number of such queries out of 20 on the undirected DBLP graph, considering top-5
similarity scores. Other top-k plots are omitted, but show that with increasing k for a given
sampling proportion there are more such queries even at lower λ.

Next, we test the impact of sampling η and λ on ranking quality in RoleSim*. We plot
the average ranking quality (normalized discounted cumulative gain (nDCG)), considering
top-100 similar nodes of the sampled clone and comparing this to the baseline original
query. We observe that the trend (with respect to η) seen in Figures 10b and 11b for λ = 1
resembles that for RoleSim, and the trend for λ = 0.5 is close to that for SimRank.

We further consider a fixed value of λ = 0.7 and confirm that the RoleSim* has higher
ranking quality compared to SimRank and RoleSim, with respect to the average nDCG.
Figure 10c with undirected DBLP graph shows that RoleSim* produces a more consistent
nDCG even with small η. For the directed AMZ graph in Figure 11c too, RoleSim shows

Figure 10 Effect of Sampling Ratio (η) & Weight (λ) on Ranking Quality (DBLP)

819World Wide Web (2022) 25:785–829

Figure 11 Effect of Sampling Ratio (η) & Weight (λ) on Ranking Quality (AMZ)

significant improvement at lower sampling, and the performance of SimRank is negatively
affected throughout, while RoleSim* remains stable.

Finally, we also check the results obtained on varying the sampling of both q and q ′
together (sampling η and η′ neighboring edges respectively). For the resulting top-k sim-
ilarity lists, we count the number of queries (out of 100) for which clone q ′ is present in
top-10 results for q (plots are omitted here). This provides an estimate for the number of
duplicate entities that can be correctly identified. We note that RoleSim and RoleSim* are
both heavily impacted when there is a large mismatch in the sampled neighborhood sizes.
Specifically, the exact nature of the neighboring nodes themselves appears less important
compared to the relative structure of connectivity patterns with the neighborhood. Despite
random samples of neighborhoods, the results peak only when the neighborhood sizes are
close to each other (i.e., η and η′ are equal).

Overall, nDCG scores of RoleSim* are superior to RoleSim, while SimRank performs
poorly when sampling rates are low. These results together indicate that for the challenge
of identifying duplicate entities. RoleSim* is best suited to correctly identify a match when
presented with a noisy sample of edge connections from the duplicate node. In particular,
taking only a small sample of edges from both the duplicate and the original nodes produces
best matching results.

Table 2 Similarity rankings for “Philip S. Yu” on DBLP co-authorships data

820 World Wide Web (2022) 25:785–829

Qualitative Case Study Table 2 compares the similarity ranking results from three algo-
rithms (SR, RS and RS*) for retrieving top-10 most similar authors w.r.t. query “Philip
S. Yu” on DBLP. From the results, we see that the top rankings of RS* are similar to RS,
highlighting its capability to effectively capture automorphic equivalent neighboring infor-
mation. For instance, “Jure Leskovec” is top-ranked in RS* list. This is reasonable because
he and “Philip S. Yu” have similar roles - they are both Professors in Computer Science with
close research expertise (e.g., knowledge discovery, recommender systems, commonsense
reasoning). However, the rankings of RS* are different from those of RS. For example, “Jure
Leskovec” is ranked 350th by SR, but 4th by RS* and RS. This is because SimRank can
only capture connected paths between two authors while ignoring their automorphic equiv-
alent structure. “Jure Leskovec” has rare collaborations with “Philip S. Yu”, both direct and
indirect, thus leading to a low SimRank score.

To evaluate RS* further, we choose two different values for λ ∈ {0.6, 0.8} to show how
RS* ranking results are perturbed w.r.t. λ. From the results, we notice that, when λ is var-
ied from 0.6 to 0.8, nodes with small SR scores (e.g., “Jure Leskovec”) exhibit a stable
position in RS* ranking, whereas nodes having higher SR scores (e.g., “Huan Liu”) have a
substantial change. This conforms with our intuition because “Huan Liu”’s collaboration
with “Philip S. Yu” is closer than “Jure Leskovec”’s, and RS* is able to capture both con-
nectivity and automorphic equivalence of two authors using a balanced weight λ. Thus,
compared with “Jure Leskovec”, “Huan Liu” who has higher SimRank value with “Philip
S. Yu” is more sensitive to λ change, as expected.

Computational Time The second set of experiments is evaluating the computational time
of seven algorithms (SSRS*, RS*, RS, MS, RS++, CS, SR) on various real-life datasets,
including both medium graphs (e.g., CIT, P2P, EML) and large graphs (e.g., WEB, YOU,
LJ).

Figure 12 compares the computational time of SSRS* with other competitors (e.g., RS,
MS, RS++, CS, SR) for single-source queries {s(∗, q)}. On each dataset, we randomly
select 100 nodes as queries, according to their PageRank values, to guarantee the selected
queries cover a possible range of the most important and moderately important nodes. We
take the average time for computing single-source {s(∗, q)} over all the queries. From the
results, we observe that (1) on all datasets, SSRS* is consistently faster than the other algo-
rithms, highlighting the effectiveness of our caching techniques that eliminates a significant
number of unnecessary recomputations in DFS backtracking. In comparison, RS*, RS, MS,
and RS++ must store all-pairs similarity values of the last iteration for iteratively comput-
ing the scores of the next iterations. (2) On large datasets (e.g., WEB, YOU, LJ), SSRS*
and CS scale well, whereas the other algorithms crash due to the explosion of the mem-
ory that is required for storing all-pairs similarity information for iterative computations.

Figure 12 CPU Time Comparison on 8 Real Datasets

821World Wide Web (2022) 25:785–829

In contrast, SSRS* retrieves only a small portion of required pairwise similarity informa-
tion per level on an as-needed basis. CS is also scalable on sizable graphs since it simply
assesses pairwise similarities one by one through aggregating node centrality values, thus
leading to low computation time. However, SSRS* is consistently 5–8 times faster than
CS due to our unordered hashing techniques for minimising unnecessary recomputations.
(3) On small datasets (e.g., DBLP, AMZ, CIT) where all the algorithms survive, RS* has
comparable computational time to RS and MS. This implies that RS* achieves high accu-
racy without sacrificing running speed. In addition, RS*, RS, and MS are faster than RS++.
This is because RS++ needs to find two maximum bipartite matchings for both in- and out-
neighboring pairs, as opposed to RS* that involves the computation of only one matching.
SR is slightly faster than RS*. This is consistent with our analysis as SR simply takes the
average of all similarities of the in-neighboring pairs without the need to find the maximum
bipartite matching.

Figure 13a and b show the effect of iteration number k and threshold δ on the running
time of RS* on DBLP and AMZ, respectively. For each dataset, we vary δ from 0 to 0.05.
When δ = 0, it reduces to RS* algorithm. From the results on both datasets, we discern
that, for each fixed δ, the running time of threshold-based RS* increases as k grows. When
δ becomes larger, the growth rate of RS* time tends to be sublinear. For example, when
δ = 0.05 on DBLP, only after k = 5 iterations, the increasing time of threshold-based RS*
has leveled off. In contrast, when δ = 0.01, the time becomes steady after k = 8 iterations.
The reason is that a higher setting of threshold δ implies a larger number of pairs to be
pruned per iteration, thus leading to the growth rate of the running time decreasing in an
earlier stage during iterations.

Figure 14a and b show the influence of different threshold values (δ) and the number of
iterations (k) on the computational time of SSRS* on EML and YOU, respectively. We vary
δ from 0.01 to 0.1 for each dataset, and k from 3 to 9 and 6, respectively for EML and YOU.
From the results, we notice that (1) for any fixed δ, the running time of threshold-based
SSRS* increases more mildly than that of SSRS* as k grows. For instance, when δ = 0.05
on EML, the threshold-based SSRS* is 2.9 (resp. 3.14) times faster than SSRS* at iteration
k = 7 (resp. k = 9). This is because the similarity values decrease with the growing
number of iterations. Thus, a larger number of node-pairs with smaller similarity values
may appear more often when k is larger, thereby having a higher chance to be pruned, as

Figure 13 CPU Time Comparison for Different Threshold-Based RS*

822 World Wide Web (2022) 25:785–829

Figure 14 CPU Time Comparison for Different Threshold-Based SSRS*

expected. The similar trend holds on YOU. (2) At each iteration k, increasing the threshold
δ will enable a moderate reduction in the running time of the threshold-based SSRS*. For
example, for k = 9 on EML, when δ = 0.05 (resp. δ = 0.1), the threshold-based SSRS* is
3.14 (resp. 3.41) times faster than SSRS*. The reason is that higher settings of δ will result
in a larger number of pairs to be pruned per iteration, which agrees well with our basic
intuition.

Memory Usage We next compare the memory usage of SSRS* with other competitors
on real datasets. The results are reported in Figure 15. It is discerned that SSRS* and CS
are the only algorithms that scale well on all the datasets, including billion-edge graphs
(e.g., YOU and LJ), as opposed to other algorithms that crash on any sizable graphs due to
memory explosion. In addition, even on small graphs, where all the algorithms survive, the
memory required by SSRS* is one order of magnitude smaller than others, except for the
CS on DBLP, AMZ,CIT datasets. This is because RS*, RS, MS, RS++ need to memoise the
entire similarity matrix of an iteration to compute similarities at the next iteration, thereby
leading to quadratic memory. In comparison, SSRS* selects only the “important” pairs for
memoization to eliminate unnecessary recomputations in DFS backtracking.

Effect of Threshold δ onRS* Accuracy Figure 16a and b show the influence of threshold δ

on RS* accuracy over real datasets (DBLP and AMZ). The accuracy is evaluated using three

Figure 15 Memory space comparison on real datasets

823World Wide Web (2022) 25:785–829

Figure 16 Accuracy comparison for different threshold-based RS*

ranking measures (Spearman, Kendall, nDCG). We randomly sample 100 queries from each
dataset, and vary threshold δ from 0.01 to 0.05. For each δ, we compute single-source thresh-
old based RS* similarities {sδ

k (∗, q)} w.r.t. each query q. Choosing non-threshold based RS*
similarities {sk(∗, q)} as the baseline, we evaluate the average value of Spearman, Kendall,
and nDCG, respectively, for each threshold based RS* over 100 queries on each dataset.
We notice that, on each dataset, all the threshold based RS* consistently achieve > 98%
accuracy by each ranking measure. For top-100 results on both datasets, the similarity rank-
ings attain > 99% nDCGs on average. These imply that the accuracy compromised by the
threshold based RS* is negligibly small for fast speed. Moreover, when δ increases from
0.01 to 0.05, the accuracy decreases slightly for each ranking measure because large thresh-
old may prune a large number of node-pairs per iteration. This agrees well with the pruning
table in Figure 16c, where large δ implies more pairs are eliminated at each iteration.

Figure 17a and b illustrate the influence of threshold δ on SSRS* accuracy over EML
and YOU datasets. The accuracy evaluated using Spearman, Kendall and nDCG ranking
measures on 100 randomly selected queries from each dataset. To compare the effect of
threshold value on accuracy we select three δ = 0.01, δ = 0.05 and δ = 0.1 values. For
each δ value, we compute SSRS* similarities {sδ

k (∗, q)} w.r.t. each query q by choosing
non-threshold-based SSRS* similarities {sk(∗, q)} as the baseline. We evaluate the average
value of Spearman, Kendall, and nDCG, respectively, for each threshold-based SSRS* over
100 queries and on each dataset. We notice that, (1) on each dataset, threshold-based SSRS*
with δ = 0.01 and δ = 0.05 achieve > 99% accuracy by Spearman and Kendall ranking
measures, while for δ = 0.1 the ranking accuracy slightly decreases to > 96%, this is
predictable due to the high number of pruned pairs that caused by higher δ value, which is
consistent with the pruning table in Figure 16c. (2) For top-100 results on both datasets, the
similarity ranking results reach> 99% nDCGs on average. These results point out that the

Figure 17 Accuracy comparison for different threshold-based SSRS*

824 World Wide Web (2022) 25:785–829

Figure 18 Accuracy and CPU time comparison for partitioned SSRS* (DBLP)

threshold-based SSRS* provides high computation speed with an insignificant decrease in
accuracy.

Effect of Partitioning on SSRS* We present an illustrative partitioning scheme (using the
triangle inequality property) that may be applied for approximate SSRS* computation. The
accuracy (nDCG) and efficiency over real datasets (DBLP and AMZ) are evaluated by ran-
domly sampling 100 queries from each dataset. With varying number of iterations k, we
compute single-source RS* similarities {sk(∗, q)} w.r.t. each query q. Choosing SSRS* sim-
ilarities {sk(∗, q)} as the baseline, we evaluate the average value of nDCG for both SSRS*-P
and SSRS*-PA over 100 queries on each dataset. For both approaches, METIS [11] is used
to generate 2-way partitioning of the graph using the vertex separator method. Similarity
scores are pre-computed from these vertex separator nodes to all nodes, and these cached
values are retrieved during single-source RS* computations. SSRS*-P denotes an approach
where only the pruned subgraph is considered for similarity computation, while SSRS*-PA
denotes an approach where access to neighboring nodes in other partitions is allowed during
the similarity computation. Figures 18a and 19a indicate that, on these datasets, SSRS*-P
achieves close to 85% accuracy in terms of nDCG for top-100 results. SSRS*-PA is more
accurate, however it incurs much higher computational time due to more edge connections
being taken into consideration. As seen from Figures 18b and 19b, a partitioning approach

Figure 19 Accuracy and CPU time comparison for partitioned SSRS* (AMZ)

825World Wide Web (2022) 25:785–829

Figure 20 Effect of (k, β) on εk

like SSRS*-P may offer a more scalable computation of approximate similarity scores even
for large number of iterations.

Iterative Error. Finally, we evaluate the effects of number of iterations k on the iterative
error of RS*. The error is measured by difference εk between k-th iterative score sk(∗, ∗)

and exact one s(∗, ∗). We only report the results for a pair of nodes on DBLP since the
trends for other pairs and on other datasets are similar. For any pair of nodes on DBLP, we
fix damping factor β, and vary k from 1 to 15.

Figure 20 depicts how k-th iterative error εk changes with k. It is discerned that, for any
given damping factor β, εk exponentially decreases to 0 as k grows. The larger damping
factor β will cause a shift outward in the accuracy curve, thereby exhibiting the slower
convergence rate of RoleSim* iterations. In addition, at each iteration k, it is noticed that
small settings of damping factor β will lead to small iterative error of RoleSim*. These
agree well with our theoretical bound k = �logβ εk� in Theorem 4 for RoleSim* accuracy
analysis.

The actual and the estimated error bound value for β = 0.6 and β = 0.8 per iteration are
illustrated in Table 3, which shows that, for each iteration, the computed actual error bounds
are completely compatible with the theoretical estimated error bounds.

Table 3 Actual & Estimated Error

β = 0.6 β = 0.8

#- Actual Estimated Actual Estimated

Iter. Error Bound Error Bound

(k) (εk) (βk+1) (εk) (βk+1)

1 0.1029 0.3600 0.2717 0.6400

2 0.0509 0.2160 0.1793 0.5120

3 0.0252 0.1296 0.1183 0.4096

4 0.0125 0.0778 0.0780 0.3277

5 0.0062 0.0467 0.0515 0.2621

6 0.0031 0.0280 0.0339 0.2097

7 0.0015 0.0168 0.0224 0.1678

8 0.0008 0.0101 0.0147 0.1342

9 0.0004 0.0060 0.0097 0.1074

10 0.0002 0.0036 0.0064 0.0859

826 World Wide Web (2022) 25:785–829

9 Conclusions

We propose RoleSim*, a novel similarity model that guarantees automorphic equivalence
while considering neighboring similarity information beyond automorphically equivalent
sets, thereby achieving better performance than both SimRank and RoleSim. We prove
the existence and uniqueness of the RoleSim* solution, show that iteratively computing
RoleSim* is bounded, and induce a RoleSim* distance obeying sum-transitivity of simi-
larity scores. We also propose a threshold-based RoleSim* model to prune a number of
pairs with tiny similarity values, which enables a further speedup with guaranteed accuracy.
Moreover, we propose an efficient single-source Rolesim* algorithm that scales well on
large graphs with billions of edges. Taking advantage of the “triangular inequality” property
of RoleSim*, we also introduce a partitioning-based strategy to scale RoleSim* on large
graphs. Finally, we evaluate our model on different real datasets to demonstrate its superior
ranking quality, fast speed, and high scalability against state-of-the-art competitors.

Acknowledgements A preliminary version of this work has been published in [33]. We summarise the
main changes to [33] as follows: 1) For techniques and methods, we add three new sections on top of [33]:
Section 4 (threshold-based RoleSim*), Section 5 (scaling single-source RoleSim* search on large graphs),
and Section 6 (top-K efficient RoleSim* search using triangle inequality and partitioning). 2) Experiments
(Section 8.2). We conduct additional experiments to demonstrate the high efficiency of the threshold-based
RoleSim* and high scalability of single-source RoleSim* search on more sizable datasets). 3) Related Work
(Section 2). We also add new related work that has appeared recently to make the paper more complete.
This work was supported by the National Natural Science Foundation of China (NSFC 61972203), and
Natural Science Foundation of Jiangsu Province (BK20190442). Aparajita Haldar is supported by a Feuer
International Scholarship in Artificial Intelligence.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Antonellis, I., Garcia-Molina, H., Chang, C.-C.: SimRank++: Query rewriting through link analysis of
the click graph. PVLDB, 1(1) (2008)

2. Bijsterbosch, J., Volgenant, A.: Solving the rectangular assignment problem and applications. Ann. Oper.
Res. 181(1), 443–462 (2010)

3. Chen, H., Giles, C.L.: ASCOS++: an asymmetric similarity measure for weighted networks to address
the problem of simrank. ACM Trans. Knowl. Discov. Data 10(2), 15:1–15:26 (2015)

4. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Onizuka, M.: Efficient search algorithm for SimRank. In:
ICDE, pp. 589–600 (2013)

5. He, G., Feng, H., Li, C., Chen, H.: Parallel SimRank computation on large graphs with iterative
aggregation. In: KDD (2010)

6. He, J., Liu, H., Yu, J.X., Li, P., He, W., Du, X.: Assessing single-pair similarity over graphs by
aggregating first-meeting probabilities. Inf. Syst. 42, 107–122 (2014)

7. Jeh, G., Widom, J.: SimRank: A measure of structural-context similarity. In: KDD, pp. 538–543 (2002)
8. Jiang, M., Fu, A.W., Wong, R.C., Wang, K.: READS: A random walk approach for efficient and accurate

dynamic simrank. PVLDB 10(9), 937–948 (2017)

827World Wide Web (2022) 25:785–829

http://creativecommons.org/licenses/by/4.0/

9. Jin, R., Lee, V.E., Hong, H.: Axiomatic ranking of network role similarity. In: Apté, C., Ghosh, J., Smyth,
P. (eds.) Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Diego, CA, USA, August 21-24, 2011, pp. 922–930. ACM (2011)

10. Jin, R., Lee, V.E., Li, L.: Scalable and axiomatic ranking of network role similarity. TKDD 8(1), 3:1–3:37
(2014)

11. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J. Scientif. Comput. 20(1), 359–392 (1998)

12. Kusumoto, M., Maehara, T., Kawarabayashi, K.: Scalable Similarity Search for SimRank. In: SIGMOD,
pp. 325–336 (2014)

13. Li, C., Han, J., He, G., Jin, X., Sun, Y., Yu, Y., Wu, T.: Fast Computation of SimRank for Static and
Dynamic Information Networks. In: EDBT (2010)

14. Li, L., Qian, L., Lee, V.E., Leng, M., Chen, M., Chen, X.: Fast and accurate computation of role similarity
via vertex centrality. In: Li, J., Sun, Y. (eds.) WAI, volume 9098 of Lecture Notes in Computer Science,
pp. 123–134. Springer (2015)

15. Li, P., Liu, H., Yu, J.X., He, J., Du, X.: Fast single-pair simrank computation. In: Proceedings of the
SIAM International Conference on Data Mining, SDM 2010, April 29 - May 1, 2010, Columbus, Ohio,
USA, pp. 571–582. SIAM (2010)

16. Li, Z., Fang, Y., Liu, Q., Cheng, J., Cheng, R., Lui, J.C.S.: Walking in the cloud: Parallel SimRank at
scale. PVLDB 9(1), 24–35 (2015)

17. Lin, Y., Sundaram, H., Chi, Y., Tatemura, J., Tseng, B.L.: Detecting splogs via temporal dynamics using
self-similarity analysis. TWEB 2(1), 4:1–4:35 (2008)

18. Lin, Z., Lyu, M.R., King, I.: Matchsim: a novel similarity measure based on maximum neighborhood
matching. Knowl. Inf. Syst. 32(1), 141–166 (2012)

19. Liu, Y., Zheng, B., He, X., Wei, Z., Xiao, X., Zheng, K., Lu, J.: ProbeSim: Scalable single-source and
top-k simrank computations on dynamic graphs. PVLDB 11(1), 14–26 (2017)

20. Lizorkin, D., Velikhov, P., Grinev, M.N., Turdakov, D.: Accuracy estimate and optimization techniques
for SimRank computation. VLDB J. 19(1) (2010)

21. Lu, J., Gong, Z., Yang, Y.: A matrix sampling approach for efficient SimRank computation. Inf. Sci.
556, 1–26 (2021)

22. Maehara, T., Kusumoto, M., Kawarabayashi, K.: Scalable Simrank Join Algorithm. In: ICDE, pp. 603–
614 (2015)

23. Rothe, S., Schütze, H.: CoSimRank: A Flexible & Efficient Graph-Theoretic Similarity Measure. In:
ACL, pages 1392–1402. The Association for Computer Linguistics (2014)

24. Shao, Y., Cui, B., Chen, L., Liu, M., Xie, X.: An efficient similarity search framework for SimRank over
large dynamic graphs. PVLDB 8(8), 838–849 (2015)

25. Shao, Y., Liu, J., Shi, S., Zhang, Y., Cui, B.: Fast de-anonymization of social networks with structural
information. Data Sci. Eng. 4(1), 76–92 (2019)

26. Tian, B., Xiao, X.: SLING: A Near-Optimal Index Structure for SimRank. In: SIGMOD, pp. 1859–1874
(2016)

27. Wang, H., Wei, Z., Yuan, Y., Du, X., Wen, J.: Exact single-source SimRank computation on large graphs.
In: Maier, D., Pottinger, R., Doan, A., Tan, W., Alawini, A., Ngo, H.Q. (eds.) 653–663. ACM (2020)

28. Wang, Y., Lian, X., Chen, L., 545–556: Efficient Simrank Tracking in Dynamic Graphs. In: ICDE
(2018)

29. Wei, Z., He, X., Xiao, X., Wang, S., Liu, Y., Du, X., Wen, J.: PRSim: Sublinear time simrank computation
on large power-law graphs. In: Boncz, P.A., Manegold, S., Ailamaki, A., Deshpande, A., Kraska, T. (eds.)
SIGMOD, pp. 1042–1059. ACM (2019)

30. Xi, W., Fox, E.A., Fan, W., Zhang, B., Chen, Z., Yan, J., Zhuang, D.: Simfusion: Measuring Similarity
Using Unified Relationship Matrix. In: SIGIR (2005)

31. Yoon, S., Kim, S., Park, S.: C-rank: A link-based similarity measure for scientific literature databases.
Inf. Sci. 326, 25–40 (2016)

32. Youngmann, B., Milo, T., Somech, A.: Boosting SimRank with Semantics. In: EDBT, pp. 37–48 (2019)
33. Yu, W., Iranmanesh, S., Haldar, A., Zhang, M., Ferhatosmanoglu, H.: An Axiomatic Role Similarity

Measure Based on Graph Topology. In: Software Foundations for Data Interoperability and Large Scale
Graph Data Analytics, pp. 33–48. Springer International Publishing (2020)

34. Yu, W., Lin, X., Zhang, W.: Towards Efficient SimRank Computation on Large Networks. In: ICDE,
pp. 601–612 (2013)

35. Yu, W., Lin, X., Zhang, W., McCann. J.A.: Fast all-pairs SimRank assessment on large graphs and
bipartite domains. IEEE Trans. Knowl. Data Eng. 27(7), 1810–1823 (2015)

36. Yu,W., Lin, X., Zhang,W., McCann, J.A.: Dynamical SimRank search on time-varying networks. VLDB
J. 27(1), 79–104 (2018)

828 World Wide Web (2022) 25:785–829

37. Yu, W., Lin, X., Zhang, W., Pei, J., McCann, J.A.: SimRank*: Effective and scalable pairwise similarity
search based on graph topology. VLDB J. 28(3), 401–426 (2019)

38. Yu, W., Lin, X., Zhang, W., Zhang, Y., Le, J.: Simfusion+: Extending SimFusion Towards Efficient
Estimation on Large and Dynamic Networks. In: SIGIR, pp. 365–374 (2012)

39. Yu, W., McCann, J.A.: Efficient partial-pairs SimRank search for large networks. PVLDB 8(5), 569–580
(2015)

40. Yu, W., Wang, F.: Fast Exact CoSimRank Search on Evolving and Static Graphs. In: WWW, pp. 599–608
(2018)

41. Zhao, P., Han, J., Sun, Y.: P-Rank: A Comprehensive Structural Similarity Measure over Information
Networks. In: CIKM (2009)

42. Zhu, R., Zou, Z., Li, J.: Simrank Computation on Uncertain Graphs. In: ICDE, pp. 565–576 (2016)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Weiren Yu1,2 · Sima Iranmanesh2 ·Aparajita Haldar2 ·Maoyin Zhang1 ·
Hakan Ferhatosmanoglu2

Sima Iranmanesh
sima.iranmanesh@warwick.ac.uk

Aparajita Haldar
aparajita.haldar@warwick.ac.uk

Maoyin Zhang
maoyinzhang@hotmail.com

Hakan Ferhatosmanoglu
h.ferhatosmanoglu@warwick.ac.uk

1 Nanjing University of Science and Technology, Jiangsu, China
2 University of Warwick, Coventry, CV4 7AL, UK

829World Wide Web (2022) 25:785–829

http://orcid.org/0000-0002-1082-9475
mailto: sima.iranmanesh@warwick.ac.uk
mailto: aparajita.haldar@warwick.ac.uk
mailto: maoyinzhang@hotmail.com
mailto: h.ferhatosmanoglu@warwick.ac.uk

	RoleSim*: Scaling axiomatic role-based similarity ranking on large graphs
	Abstract
	Introduction
	Application 1 (Similarity Search on the Web)
	Application 2 (Social Network De-anonymization)
	Contributions

	Related work
	C-Rank Yoon2016
	Penetrating-Rank Zhao2009
	RoleSim Jin2014
	RoleSim++ Shao2019
	SimFusion Xi2005
	MatchSim Lin2012a
	SimRank* Yu2019 & ASCOS Chen2015
	CentSim Li2015a
	SemSim Youngmann2019
	Co-SimRank Rothe2014
	SimRank

	RoleSim*
	RoleSim* formulation
	Notations
	RoleSim* Formula.
	Fixed-Point Iteration

	Axiomatic properties for RoleSim*
	Symmetry, Boundedness, & Monotonicity
	Existence & Uniqueness

	Iterative RoleSim* algorithm with guaranteed accuracy
	Iterative Algorithm
	Error Bound

	Threshold-based RoleSim*
	Putting Them All Together

	Scaling RoleSim* search on large graphs
	Single-Source Algorithm
	Computational Complexity

	``Sum-transitivity'' of RoleSim* similarity
	Scaling RoleSim* search using triangle inequality and partitioning
	Experimental evaluation
	Experimental settings
	Datasets.
	Compared Algorithms
	Parameters
	Unsupervised Semantic Evaluation

	Experimental results
	Semantic Accuracy
	Qualitative Case Study
	Computational Time
	Memory Usage
	Effect of Threshold on RS* Accuracy
	Effect of Partitioning on SSRS*
	Iterative Error.

	Conclusions
	References
	Affiliations

