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Abstract: Consider a nonuniformly hyperbolic map T : M → M modelled by a Young
tower with tails of the form O(n−β), β > 2. We prove optimal moment bounds
for Birkhoff sums

∑n−1
i=0 v ◦ T i and iterated sums

∑
0≤i< j<n v ◦ T i w ◦ T j , where

v,w : M → R are (dynamically) Hölder observables. Previously iterated moment
bounds were only known for β > 5. Our method of proof is as follows; (i) prove that T
satisfies an abstract functional correlation bound, (ii) use a weak dependence argument
to show that the functional correlation bound implies moment estimates. Such iterated
moment bounds arise when using rough path theory to prove deterministic homogeni-
sation results. Indeed, by a recent result of Chevyrev, Friz, Korepanov, Melbourne &
Zhang we have convergence to an Itô diffusion for fast-slow systems of the form

x (n)
k+1 = x (n)

k + n−1a(x (n)
k , yk) + n−1/2b(x (n)

k , yk), yk+1 = T yk

in the optimal range β > 2.

1. Introduction

Let T : M → M be an ergodic,measure-preserving transformation defined on a bounded
metric space (M, d) with Borel probability measure μ. Consider a fast-slow system on
R

d × M of the form

x (n)
k+1 = x (n)

k + n−1a(x (n)
k , yk) + n−1/2b(x (n)

k , yk), yk+1 = T yk (1.1)

where the initial condition x (n)
0 ≡ ξ is fixed and y0 is picked randomly from (M, μ).

When the fast dynamics T : M → M is chaotic enough, it is expected that the stochastic
process Xn defined by Xn(t) = x (n)

[nt] will weakly converge to the solution of a stochastic
differential equation driven by Brownian motion. This is referred to as deterministic
homogenisation and has been of great interest recently [8–10,12,13,18,21,27]. See [7]
for a survey of the topic.
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In [18], Kelly and Melbourne considered the special case where a(x, y) ≡ a(x)

and b(x, y) = h(x)v(y). By using rough path theory, they showed that deterministic
homogenisation reduces to proving two statistical properties for T : M → M . In [8] this
result was extended to general a, b satisfying mild regularity assumptions.

One of the assumed statistical properties is an “iterated weak invariance principle”. In
[18,29] itwas shown that this property is satisfiedbynonuniformly expanding/hyperbolic
maps modelled by Young towers, provided that the tails of the return time decay at rate
O(n−β) for some β > 2 (which is the optimal range for such results).

The second assumed statistical property is control of “iterated moments”, which
gives tightness in the rough path topology used for proving convergence. This condition
has proved much more problematic. Advances in rough path theory [7,8] significantly
weakened the moment requirements from [18] and these weakened moment require-
ments were eventually proved for nonuniformly expanding maps in the optimal range
(i.e. β > 2) in [21].

However, for nonuniformly hyperbolic maps modelled by Young towers previously
it was only possible to show iterated moment bounds for β > 5 [11]. In this article, we
extend iterated moment bounds to the optimal range β > 2.

1.1. Illustrative examples. Many examples of invertible dynamical systems are mod-
elled by Young towers [33,34]. For example, Axiom A (uniformly hyperbolic) diffeo-
morphisms, Henon attractors and the finite-horizon Sinai billiard are modelled by Young
towers with exponential tails, so for such systems deterministic homogenisation results
follow from [18,19].Wenowgive some examples of slowly-mixing nonuniformly hyper-
bolic dynamical systems for which it was not previously possible to show deterministic
homogenisation, due to a lack of control of iterated moments. We start with an example
which is easy to write down:

– Intermittent Baker’s maps Let α ∈ (0, 1). Define g : [0, 1/2] → [0, 1] by g(x) =
x(1 + 2αxα). The Liverani-Saussol-Vaienti map T̄ : [0, 1] → [0, 1],

T̄ x =
{

g(x), x ≤ 1/2,
2x − 1, x > 1/2

is a prototypical example of a slowly-mixing nonuniformly expanding map [25]. As
in [29, Exa. 4.1], consider an intermittent Baker’s map T : M → M , M = [0, 1]2
defined by

T (x1, x2) =
{

(T̄ x1, g−1(x2)), x1 ∈ [0, 1
2 ], x2 ∈ [0, 1],

(T̄ x1, (x2 + 1)/2), x1 ∈ ( 12 , 1], x2 ∈ [0, 1].
There is a unique absolutely continuous invariant probability measure μ. The map
T is nonuniformly hyperbolic and has a neutral fixed point at (0, 0) whose influence
increases with α. In particular, T is modelled by a two-sided Young tower with tails
of the form ∼ n−β where β = 1/α.

For β > 2 the central limit theorem (CLT) holds for all Hölder observables. For β ≤ 2
the CLT fails for typical Hölder observables [14], so it is natural to restrict to β > 2when
considering deterministic homogenisation. By [11] it is possible to show iteratedmoment
bounds for β > 5. Our results yield iterated moment bounds and hence deterministic
homogenisation in the full range β > 2.
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Dispersing billiards provide many examples of slowly-mixing nonuniformly hyperbolic
maps. Markarian [26], Chernov and Zhang [5] showed how to model many examples of
dispersing billiards by Young towers with polynomial tails.

We give two classes of dispersing billiards for which it is now possible to show
deterministic homogenisation:

• Bunimovich flowers [2]. By [5] the billiard map is modelled by a Young tower with
tails of the form O(n−3(log n)3).

• Dispersing billiards with vanishing curvature In [6] Chernov and Zhang introduced
a class of billiards modelled by Young towers with tails of the form O((log n)βn−β)

to any prescribed value of β ∈ (2,∞).

Notation We endow R
k with the norm |y| = ∑k

i=1 |yi |.
Let η ∈ (0, 1]. We say that an observable v : M → R on a metric space (M, d) is

η-Hölder, and write v ∈ C η(M), if ‖v‖η = |v|∞ + [v]η < ∞, where |v|∞ = supM |v|
and [v]η = supx 
=y |v(x) − v(y)|/d(x, y)η. If η = 1 we call v Lipschitz and write
Lip(v) = [v]1. For 1 ≤ p ≤ ∞ we use | · |p to denote the L p norm.

The rest of this article is structured as follows. In Sect. 2we state ourmain results. Our
firstmain result, Theorem2.3, is thatmixing nonuniformly hyperbolicmapsmodelled by
Young towers with polynomial tails satisfy a functional correlation bound. Our second
main result, Theorem 2.4, is that this functional correlation bound implies control of
iterated moments.

In Sect. 3 we recall background material on Young towers and prove Theorem 2.3.
In Sect. 4 we prove that our functional correlation bound implies an elementary weak
dependence condition. Finally in Sect. 5 we use this condition to prove Theorem 2.4.

2. Main Results

Let T : M → M be a nonuniformly hyperbolic map modelled by a Young tower. We
state our results for the class of dynamically Hölder observables, noting that this includes
Hölder observables. We delay the definitions of Young tower and dynamically Hölder
until Sect. 3.1. Let H (M) denote the class of dynamically Hölder observables on M
and let [·]H denote the dynamically Hölder seminorm.

Definition 2.1. Fix an integer q ≥ 1. Given a function G : Mq → R and 0 ≤ i < q we
denote

[G]H ,i = sup
x0,...,xq−1∈M

[G(x0, . . . , xi−1, ·, xi+1, . . . , xq−1)]H .

We call G separately dynamically Hölder, and write G ∈ SH q(M), if |G|∞ +
∑q−1

i=0 [G]H ,i < ∞.

Fix γ > 0. We consider dynamical systems which satisfy the following property:

Definition 2.2. Suppose that there exists a constant C > 0 such that for all integers
0 ≤ p < q, 0 ≤ n0 ≤ · · · ≤ nq−1,

∣
∣
∣
∣

∫

M
G(T n0x, . . . , T nq−1x)dμ(x)

−
∫

M2
G(T n0x0, . . . , T n p−1x0, T n p x1, . . . , T nq−1x1)dμ(x0)dμ(x1)

∣
∣
∣
∣
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≤ C(n p − n p−1)
−γ

(

|G|∞ +
q−1∑

i=0

[G]H ,i

)

(2.1)

for all G ∈ SH q(M). Then we say that T satisfies the Functional Correlation Bound
with rate n−γ .

A similar condition was introduced by Leppänen in [22] and further studied by
Leppänen and Stenlund in [23,24]. In particular, [22] showed that functional correlation
decay implies a multi-dimensional CLT with bounds on the rate of decay. We are now
ready to state the main results which we prove in this paper.

The rate of decay of correlations of a dynamical systemmodelled by a Young tower is
determined by the tails of the return time to the base of the tower. Indeed, let T be amixing
transformation modelled by a two-sided Young tower with tails of the form O(n−β) for
some β > 1. In [28] by using a method due to S. Gouëzel (privately communicated
based on ideas from [3]), it was shown that there exists C > 0 such that

∣
∣
∣
∣

∫

M
v w ◦ T ndμ −

∫

M
vdμ

∫

M
wdμ

∣
∣
∣
∣ ≤ Cn−(β−1) ‖v‖H ‖w‖H

for all n ≥ 1, v, w ∈ H (M). Our first main result is that the Functional Correlation
Bound holds with the same rate:

Theorem 2.3. Let β > 1. Let T be a mixing transformation modelled by a two-sided
Young tower whose return time has tails of the form O(n−β). Then T satisfies the
Functional Correlation Bound with rate n−(β−1).

Given v,w ∈ H (M) mean zero define

Sv(n) =
∑

0≤i<n

v ◦ T i , Sv,w(n) =
∑

0≤i< j<n

v ◦ T i w ◦ T j .

Our second main result is that the Functional Correlation Bound implies moment esti-
mates for Sv(n) and Sv,w(n). Let ‖·‖H = |·|∞ + [·]H denote the dynamically Hölder
norm.

Theorem 2.4. Let γ > 1. Suppose that T satisfies the Functional Correlation Bound
with rate n−γ . Then there exists a constant C > 0 such that for all n ≥ 1, for any mean
zero v,w ∈ H (M),

(a) |Sv(n)|2γ ≤ Cn1/2 ‖v‖H .
(b)

∣
∣Sv,w(n)

∣
∣
γ

≤ Cn ‖v‖H ‖w‖H .

Remark 2.5. As mentioned above, by [8, Theorem 2.10] to obtain deterministic
homogenisation results it suffices to prove the iteratedWIP and iteratedmoment bounds.
Let T be a mixing transformation modelled by a two-sided Young tower with tails of the
form O(n−β) for some β > 2. By [29], the Iterated WIP holds for all Hölder observ-
ables. Together Theorem 2.3 and Theorem 2.4 imply that for all η ∈ (0, 1] there exists
C > 0 such that

(a) |Sv(n)|2(β−1) ≤ Cn1/2 ‖v‖η.
(b)

∣
∣Sv,w(n)

∣
∣
β−1 ≤ Cn ‖v‖η ‖w‖η.

for all mean zero v,w ∈ C η(M), giving the required control of iterated moments.
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3. Young Towers

3.1. Prerequisites. Young towers were first introduced by Young in [33,34], as a broad
framework to prove decay of correlations for nonuniformly hyperbolic maps. Our pre-
sentation follows [1]. In particular, this framework does not assume uniform contraction
along stable manifolds and hence covers examples such as billiards.

Gibbs–Markov mapsLet (Ȳ , μ̄Y ) be a probability space and let F̄ : Ȳ → Ȳ be ergodic
and measure-preserving. Let α be an at most countable, measurable partition of Ȳ . We
assume that there exist constants K > 0, θ ∈ (0, 1) such that for all elements a ∈ α:

– (Full-branch condition) The map F̄ |a : a → Ȳ is a measurable bijection.
– For all distinct y, y′ ∈ Ȳ the separation time

s(y, y′) = inf{n ≥ 0 : F̄n y, F̄n y′ lie in distinct elements of α} < ∞.

– Define ζ : a → R
+ by ζ = dμ̄Y /(d (F |−1

a )∗μ̄Y ). We have | log ζ(y)− log ζ(y′)| ≤
K θ s(y,y′) for all y, y′ ∈ a.

Then we call F̄ : Ȳ → Ȳ a full-branch Gibbs–Markov map.
Two-sided Gibbs–Markov maps Let (Y, d) be a bounded metric space with Borel

probability measure μY and let F : Y → Y be ergodic and measure-preserving. Let
F̄ : Ȳ → Ȳ be a full-branch Gibbs–Markov map with associated measure μ̄Y .

We suppose that there exists a measure-preserving semi-conjugacy π̄ : Y → Ȳ , so
π̄ ◦ F = F̄ ◦π̄ and π̄∗μY = μ̄Y .The separation time s(·, ·) on Ȳ lifts to a separation time
on Y given by s(y, y′) = s(π̄ y, π̄ y′). Suppose that there exist constants K > 0, θ ∈
(0, 1) such that

d(Fn y, Fn y′) ≤ K (θn + θ s(y,y′)−n) for all y, y′ ∈ Y, n ≥ 0. (3.1)

Then we call F : Y → Y a two-sided Gibbs–Markov map.
One-sided Young towers Let φ̄ : Ȳ → Z

+ be integrable and constant on partition
elements of α.We define the one-sidedYoung tower Δ̄ = Ȳ φ̄ and towermap f̄ : Δ̄ → Δ̄

by

Δ̄ = {(ȳ, �) ∈ Ȳ × Z : 0 ≤ � < φ̄(y)}, f̄ (ȳ, �) =
{

(ȳ, � + 1), � < φ̄(y) − 1,

(F̄ ȳ, 0), � = φ̄(y) − 1.
(3.2)

We extend the separation time s(·, ·) to Δ̄ by defining

s((ȳ, �), (ȳ′, �′)) =
{

s(ȳ, ȳ′), � = �′,
0, � 
= �′.

Note that for θ ∈ (0, 1) we can define a metric by dθ ( p̄, q̄) = θ s( p̄,q̄).
Now, μ̄Δ = (μ̄Y ×counting)/

∫
Ȳ φ̄dμ̄Y is an ergodic f̄ -invariant probabilitymeasure

on Δ̄.
Two-sided Young towers Let F : Y → Y be a two-sided Gibbs–Markov map and

let φ : Y → Z
+ be an integrable function that is constant on π̄−1a for each a ∈ α. In

particular, φ projects to a function φ̄ : Ȳ → M that is constant on partition elements of
α.

Define the one-sided Young tower Δ̄ = Ȳ φ̄ as in (3.2). Using φ in place of φ̄ and
F : Y → Y in place of F̄ : Ȳ → Ȳ , we define the two-sided Young tower Δ = Y φ and
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tower map f : Δ → Δ in the same way. Likewise, we define an ergodic f -invariant
probability measure on Δ by μΔ = (μY × counting)/

∫
Y φ dμY .

We extend π̄ : Y → Ȳ to a map π̄ : Δ → Δ̄ by setting π̄(y, �) = (π̄ y, �) for all
(y, �) ∈ Δ. Note that π̄ is a measure-preserving semi-conjugacy; π̄ ◦ f = f̄ ◦ π̄ and
π̄∗μΔ = μ̄Δ. The separation time s on Δ̄ lifts to Δ by defining s(y, y) = s(π̄ y, π̄ y′).

We are now finally ready to say what it means for a map to be modelled by a Young
tower:

Let T : M → M be a measure-preserving transformation on a probability space
(M, μ). Suppose that there exists Y ⊂ M measurable with μ(Y ) > 0 such that:

– F = T φ : Y → Y is a two-sided Gibbs–Markov map with respect to some proba-
bility measure μY .

– φ is constant on partition elements of π̄−1α, so we can defineYoung towersΔ = Y φ

and Δ̄ = Ȳ φ̄ .
– The map πM : Δ → M , πM (y, �) = T �y is a measure-preserving semiconjugacy.

Then we say that T : M → M is modelled by a (two-sided) Young tower.
From now on we fix β > 1 and suppose that T : M → M is a mixing transformation

modelled by a Young tower Δ with tails of the form μY (φ ≥ n) = O(n−β).

Remark 3.1. Here we have not assumed that the tower map f : Δ → Δ is mixing.
However, as in [4, Theorem 2.1, Proposition 10.1] and [1] the a priori knowledge that μ
is mixing ensures that this is irrelevant.

Let ψn(x) = #{ j = 1, . . . , n : f j x ∈ Δ0} denote the number of returns to Δ0 =
{(y, �) ∈ Δ : � = 0} by time n. The following bound is standard, see for example [20,
Lemma 5.5].

Lemma 3.2. Let θ ∈ (0, 1). Then there exists a constant D1 > 0 such that
∫

Δ

θψn dμΔ ≤ D1n−(β−1) for n ≥ 1.

��
The transfer operator L corresponding to f̄ : Δ̄ → Δ̄ and μ̄Δ is given pointwise by

(Lv)(x) =
∑

f̄ z=x

g(z)v(z), where g(y, �) =
{

ζ(y), � = φ(y) − 1,
1, � < φ(y) − 1

.

It follows that for n ≥ 1, the operator Ln is of the form (Lnv)(x) = ∑
f̄ n z=x gn(z)v(z),

where gn = ∏n−1
i=0 g ◦ f̄ i .

We say that z, z′ ∈ Δ̄ are in the same cylinder set of length n if f̄ k z and f̄ k z′ lie in
the same partition element of Δ̄ for 0 ≤ k ≤ n − 1. We use the following distortion
bound (see e.g. [20, Proposition 5.2]):

Proposition 3.3. There exists a constant K1 > 0 such that for all n ≥ 1, for all points
z, z′ ∈ Δ̄ which belong to the same cylinder set of length n,

|gn(z) − gn(z
′)| ≤ Cgn(z)dθ ( f̄ n z, f̄ n z′).

��
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Let θ ∈ (0, 1). We say that v : Δ̄ → R is dθ -Lipschitz if ‖v‖θ = |v|∞ +
supx 
=y |v(x) − v(y)|/dθ (x, y) < ∞. If f : Δ → Δ is mixing then by [34],

∣
∣
∣
∣L

nv −
∫

v dμ̄Δ

∣
∣
∣
∣
1

= O(n−(β−1) ‖v‖θ ).

The same bound holds pointwise on Δ̄0:

Lemma 3.4. Suppose that f : Δ → Δ is mixing. Then there exists D2 > 0 such that for
all dθ -Lipschitz v : Δ̄ → R, for any n ≥ 1,

∣
∣
∣
∣1Δ̄0

Lnv −
∫

Δ̄

v dμ̄Δ

∣
∣
∣
∣∞

≤ D2n−(β−1) ‖v‖θ .

This is a straightforward application of operator renewal theory developed by Sarig
[31] and Gouëzel [15,16]. However, we could not find a reference to this result in the
literature so we provide a proof.

Proof. Define partial transfer operators Tn and Bn as in [17, Section 4]. Then

1Δ̄0
Lnv =

∑

k+b=n

Tk Bbv.

Define an operator Π by Πv = ∫
Δ̄0

v dμ̄Δ. Then as in the proof of [17, Theorem 4.6]

we can write Tk = Π + Ek where ‖Ek‖ = O(k−(β−1)). Moreover, by [17, Theorem
4.6], ‖Bb‖ = O(b−β) and

∞∑

b=0

∫

Δ̄0

Bbv dμ̄Δ =
∫

Δ̄

v dμ̄Δ.

It follows that

1Δ̄0
Lnv =

∑

k+b=n

Π Bbv +
∑

k+b=n

Ek Bbv

=
n∑

b=0

∫

Δ̄0

Bbv dμ̄Δ +
∑

k+b=n

Ek Bbv

=
∫

Δ̄

v dμ̄Δ −
∞∑

b=n+1

∫

Δ̄0

Bbv dμ̄Δ +
∑

k+b=n

Ek Bbv.

The conclusion of the lemma follows by noting that the expressions
∑∞

b=n+1 b−β and

∑

k+b=n

(k + 1)−(β−1)(b + 1)−β

are both O(n−(β−1)). ��
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Finally we recall the class of observables on M that are of interest to us:
Dynamically Hölder observables Fix θ ∈ (0, 1). For v : M → R, define

‖v‖H = |v|∞ + [v]H , [v]H = sup
y,y′∈Y,y 
=y′

sup
0≤�<φ(y)

|v(T �y) − v(T �y′)|
d(y, y′) + θ s(y,y′) .

We say that v is dynamically Hölder if ‖v‖H < ∞ and denote byH (M) the space of
all such observables.

It is standard (see e.g. [1, Proposition 7.3]) that Hölder observables are also dynam-
ically Hölder for the classes of dynamical systems that we are interested in:

Proposition 3.5. Let η ∈ (0, 1] and let d0 be a bounded metric on M. Let C η(M)

be the space of observables that are η-Hölder with respect to d0. Suppose that there

exists K > 0, γ0 ∈ (0, 1) such that d0(T �y, T �y′) ≤ K (d0(y, y′) + γ
s(y,y′)
0 ) for all

y, y′ ∈ Y, 0 ≤ � < φ(y).

Then C η(M) is continuously embedded in H (M) where we may choose any θ ∈
[γ η

0 , 1) and d = dη′
0 for any η′ ∈ (0, η]. ��

3.2. Reduction to the case of a mixing Young tower. In proofs involving Young towers
it is often useful to assume that the Young tower is mixing, i.e. gcd{φ(y) : y ∈ Y } = 1.
Hence in subsequent subsections we focus on proving the Functional Correlation Bound
under this assumption:

Lemma 3.6. Suppose that T is modelled by a mixing two-sided Young tower whose
return time has tails of the form O(n−β). Then T satisfies the Functional Correlation
Bound with rate n−(β−1).

Proof of Theorem 2.3. Let d = gcd{φ(y) : y ∈ Y }. Set T ′ = T d and φ′ = φ/d.

Construct a mixing two-sided Young tower Δ′ = Y φ′
, with tower measure μ′

Δ. Define
π ′

M : Δ′ → M by π ′
M (y, �) = (T ′)�y. Then T ′ is modelled by Δ′ with ergodic, T ′-

invariant measure (π ′
M )∗μ′

Δ. Now by assumption the measure μ is mixing so by the
same argument as in [1, Section 4.1] we must have μ = (π ′

M )∗μ′
Δ.

Let G ∈ SH q(M) and fix integers 0 ≤ n0 ≤ · · · ≤ nq−1. Define n′
i = [ni/d], ri =

ni mod d. We need to bound

∇G =
∫

M
G(T n0x, . . . , T nq−1x)dμ(x)

−
∫

M2
G(T n0x0, . . . , T n p−1x0, T n p x1, . . . , T nq−1x1)dμ(x0)dμ(x1).

Define G ′ : Mq → R by G ′(x0, . . . , xq−1) = G(T r0x0, . . . , T rq−1xq−1). Then

∇G =
∫

M
G ′((T ′)n′

0x, . . . , (T ′)n′
q−1x)dμ(x)

−
∫

M2
G ′((T ′)n′

0x0, . . . , (T
′)n′

p−1x0, (T
′)n′

p x1, . . . , (T ′)n′
q−1x1)dμ(x0)dμ(x1).
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Let [·]H ′ denote the dynamically Hölder seminorm as defined with T ′, φ′ in place of
T, φ. Then by Lemma 3.6,

|∇G| ≤ C(n′
p − n′

p−1)
−γ

(
∣
∣G ′∣∣∞ +

q−1∑

i=0

[G ′]H ′,i

)

≤ Cdγ (n p − n p−1 − d)−γ

(

|G|∞ +
q−1∑

i=0

[G ′]H ′,i

)

Now fix 0 ≤ i < q. Let x0, . . . , xq−1 ∈ M and write

v′(y) = G ′(x0, . . . , xi−1, y, xi+1, . . . , xq−1)

= G(T r0x0, . . . , T ri−1xi−1, T ri y, T ri+1xi+1, . . . , T rq−1xq−1) = v(T ri y).

Let y, y′ ∈ Y and 0 ≤ φ′(y) < �. Then

|v′((T ′)�y) − v′((T ′)�y′)|=|v(T d�+ri y) − v(T d�+ri y′)| ≤ [G]H ,i (d(y, y′) + θ s(y,y′)),

so [G ′]H ′,i ≤ [G]H ,i . ��

3.3. Approximation by one-sided functions. Let 0 ≤ p < q and 0 ≤ n0 ≤ · · · ≤ nq−1
be integers and consider a function G ∈ SH q(M). We wish to bound

∇G =
∫

M
G(T n0x, . . . , T nq−1x)dμ(x)

−
∫

M2
G(T n0x0, . . . , T n p−1x0, T n p x1, . . . , T nq−1x1)dμ2(x0, x1).

Now since πM : Δ → M is a measure-preserving semiconjugacy

∇G =
∫

Δ

H̃(x, f n p x)dμΔ(x) −
∫

Δ2
H̃(x0, x1)dμ2

Δ(x0, x1) = ∇ H̃ (3.3)

where H̃ : Δ2 → R is given by

H̃(x, y) = G̃( f n0x, f n1x, . . . , f n p−1x, f kp y, f kp+2 y, . . . , f kq−1 y),

where G̃ = G ◦ πM and ki = ni − n p.
Let R ≥ 1. We approximate H̃( f R ·, f R ·) by a function H̃R that projects down onto

Δ̄. Our approach is based on ideas from Appendix B of [28].
Recall that ψR(x) = #{ j = 1, . . . , R : f j x ∈ Δ0} denotes the number of returns to

Δ0 = {(y, �) ∈ Δ : � = 0} by time R. LetQR denote the at most countable, measurable
partition of Δ with elements of the form {x ′ ∈ Δ : s(x, x ′) > 2ψR(x)}, x ∈ Δ. Choose
a reference point in each partition element ofQR . For x ∈ Δ let x̂ denote the reference
point of the element that x belongs to. Define H̃R : Δ2 → R by

H̃R(x, y) = G̃( f R f̂ n0x, . . . , f R ̂f n p−1x, f R f̂ kp y, . . . , f R ̂f kq−1 y).

Proposition 3.7. The function H̃R lies in L∞(Δ2) and projects down to a function H̄R ∈
L∞(Δ̄2). Moreover, there exists a constant K2 > 0 depending only on T : M → M
such that,
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(i)
∣
∣H̄R

∣
∣∞ = |H̃ R |∞ ≤ |G|∞ .

(ii) For all x, y ∈ Δ,

|H̃( f R x, f R y) − H̃ R(x, y)| ≤ K2

(p−1∑

i=0

[G]H ,i θψR( f ni x) +
q−1∑

i=p

[G]H ,i θψR( f ki y)

)

.

(iii) For all ȳ ∈ Δ̄,

∥
∥
∥L R+n p−1 H̄R(·, ȳ)

∥
∥
∥

θ
≤ K2

(

|G|∞ +
p−1∑

i=0

[G]H ,i

)

.

Here we recall that ‖·‖θ denotes the dθ -Lipschitz norm, which is given by ‖v‖θ =
|v|∞ + supx 
=y |v(x) − v(y)|/dθ (x, y) for v : Δ̄ → R.

Proof. We follow the proof of Proposition 7.9 in [1].
By definition H̃R is piecewise constant on a measurable partition of Δ2. Moreover,

this partition projects down to a measurable partition on Δ̄, since it is defined in terms
of s and ψR which both project down to Δ̄. It follows that H̄R is well-defined and
measurable. Part (i) is immediate.

Let x, y ∈ Δ. Write H̃( f R x, f R y) − H̃ R(x, y) = I1 + I2 where

I1 = G̃( f R f n0x, . . . , f R f n p−1x, f R f kp y, . . . , f R f kq−1 y)

− G̃( f R f̂ n0x, . . . , f R ̂f n p−1x, f R f kp y, . . . , f R f kq−1 y),

I2 = G̃( f R f̂ n0x, . . . , f R ̂f n p−1x, f R f kp y, . . . , f R f kq−1 y)

− G̃( f R f̂ n0x, . . . , f R ̂f n p−1x, f R f̂ kp y, . . . , f R ̂f kq−1 y).

Let ai = f ni x and bi = f R f ki y. By successively substituting ai by âi ,

I1 = G̃( f Ra0, . . . , f Rap−1, bp, . . . , bq−1) − G̃( f Râ0, . . . , f Râp−1, bp, . . . , bq−1)

=
p−1∑

i=0

(
G̃( f Ra0, . . . , f Rai−1, f Rai , f Râi+1, f Râp−1, bp, . . . , bq−1)

− G̃( f Ra0, . . . , f Rai−1, f Râi , f Râi+1, f Râp−1, bp, . . . , bq−1)
)

=
p−1∑

i=0

(
ṽi ( f Rai ) − ṽi ( f Râi )

)
(3.4)

where ṽi (x) = G̃( f Ra0, . . . , f Rai−1, x, f Râi+1, . . . , f Râp−1, bp, . . . , bq−1).

Fix 0 ≤ i < p. Since ai and âi are in the same partition element, s(ai , âi ) >

2ψR(ai ). Write ai = (y, �), âi = (ŷ, �). Then f Rai = (FψR(ai )y, �1) and similarly
f Râi = (FψR(ai ) ŷ, �1), where �1 = � + R − ΦψR(ai )(y). (Here, Φk = ∑k−1

j=0 φ ◦ Fk .)
Now by the definition of [G]H ,i and (3.1),

|ṽi ( f Rai ) − ṽi ( f Râi )| = |ṽi (FψR(ai )y, �1) − ṽi (FψR(ai ) ŷ, �1)|
≤ [G]H ,i (d(FψR(ai )y, FψR(ai )y′) + θ s(FψR (ai ) y,FψR (ai ) y′))

≤ (K + 1)[G]H ,i (θ
ψR(ai ) + θ s(ai ,a′

i )−ψR(ai ))
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≤ 2(K + 1)[G]H ,iθ
ψR(ai ).

Thus

|I1| ≤ 2(K + 1)
p−1∑

i=0

[G]H ,iθ
ψR( f ni x).

By a similar argument,

|I2| ≤ 2(K + 1)
q−1∑

i=p

[G]H ,iθ
ψR( f ki y),

completing the proof of (ii).
Let x̄, x̄ ′, ȳ ∈ Δ̄. Recall that

L R+n p−1 H̄R(·, ȳ)(x̄) =
∑

f̄ R+n p−1 z̄=x̄

gR+n p−1(z̄)H̄R(z̄, ȳ).

It follows that
∣
∣L R+n p−1 H̄R(·, ȳ)

∣
∣∞ ≤ ∣

∣H̄R
∣
∣∞ ≤ |G|∞ . If dθ (x̄, x̄ ′) = 1, then

|L R+n p−1 H̄R(·, ȳ)(x̄) − L R+n p−1 H̄R(·, ȳ)(x̄ ′)| ≤ 2 |G|∞ = 2 |G|∞ dθ (x̄, x̄ ′).

Otherwise, we can write Ln p−1+R H̄R(·, ȳ)(x̄) − Ln p−1+R H̄R(·, ȳ)(x̄ ′) = J1 + J2 where

J1 =
∑

f̄ n p−1+R z̄=x̄

(
gn p−1+R(z̄) − gn p−1+R(z̄′)

)
H̄R(z̄, ȳ),

J2 =
∑

f̄ n p−1+R z̄′=x̄ ′
gn p−1+R(z̄′)

(
H̄R(z̄, ȳ) − H̄R(z̄′, ȳ)

)
.

Here, as usual we have paired preimages z̄, z̄′ that lie in the same cylinder set of
length n p−1 + R. By bounded distortion (Proposition 3.3), |J1| ≤ C |G|∞ dθ (x̄, x̄ ′).
We claim that |H̄R(z̄, ȳ) − H̄R(z̄′, ȳ)| ≤ K2

∑p−1
i=0 [G]H ,i dθ (x̄, x̄ ′). It follows that

|J2| ≤ K2
∑p−1

i=0 [G]H ,i dθ (x̄, x̄ ′).
It remains to prove the claim. Choose points z, z′, y ∈ Δ that project to z̄, z̄′, ȳ. Let

ai = f ni z, a′
i = f ni z′, bi = f R+ni y. As in part (ii),

H̄R(z̄, ȳ) − H̄R(z̄′, ȳ) = H̃ R(z, y) − H̃ R(z′, y) =
p−1∑

i=0

(w̃i ( f Râi ) − w̃i ( f Râ′
i ))

where w̃i (x) = G̃( f Râ0, . . . , âi−1, x, f Râ′
i+1, . . . , â′

p−1, b̂p, . . . , b̂q−1).

Let 0 ≤ i < p. We bound Ei = w̃i ( f Râi ) − w̃i ( f Râ′
i ). Without loss suppose that

ψR(â′
i ) ≥ s(âi , â′

i ) − ψR(âi ),

for otherwise âi and â′
i are reference points of the same partition element so âi = â′

i and
Ei = 0. Now as in part (ii),

Ei ≤ (K + 1)(θψR(âi ) + θ s(âi ,â′
i )−ψR(âi )).
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Note that

s(âi , â′
i ) − ψR(âi ) ≥ min{s(âi , ai ), s(ai , a′

i ), s(a′
i , â′

i )} − ψR(âi ).

Since z̄, z̄′ lie in the same cylinder set of length R + n p−1, we have ψR(ai ) = ψR(a′
i )

and

s(ai , a′
i ) = s( f̄ ni z̄, f̄ ni z̄′) = s(x̄, x̄ ′) + ψR+n p−1−ni ( f̄ ni z̄)

≥ s(x̄, x̄ ′) + ψR(ai ).

Nowai and âi are contained in the samepartition element so s(âi , ai )−ψR(âi ) ≥ ψR(âi )

and

ψR(âi ) = ψR(ai ) = ψR(a′
i ) = ψR(â′

i ).

Hence s(âi , â′
i ) − ψR(âi ) ≥ min{s(x̄, x̄ ′), ψR(ai )}. It follows that Ei ≤ 2(K +

1)θ s(x̄,x̄ ′), completing the proof of the claim. ��

3.4. Proof of Lemma 3.6. We continue to assume that β > 1 and that μY (φ ≥ n) =
O(n−β). We also assume that gcd{φ(y) : y ∈ Y } = 1 so that f : Δ → Δ is mixing.

Lemma 3.8. Let θ ∈ (0, 1). There exists D3 > 0 such that for any V ∈ L∞(Δ̄2),
∣
∣
∣
∣

∫

Δ̄

V (x, f̄ n x)dμ̄Δ(x) −
∫

Δ̄2
V (x0, x1)dμ̄2

Δ(x0, x1)

∣
∣
∣
∣ ≤ D3n−(β−1) sup

y∈Δ̄

‖V (·, y)‖θ

for all n ≥ 1.

Remark 3.9. Let V (x, y) = v(x)w(y) where v is dθ -Lipschitz and w ∈ L∞(Δ̄). Then
we obtain that

∣
∣
∣
∣

∫

Δ̄

v w ◦ f̄ ndμ̄Δ −
∫

Δ̄

v dμ̄Δ

∫

Δ̄

w dμ̄Δ

∣
∣
∣
∣ ≤ D3n−(β−1) ‖v‖θ |w|∞ ,

so Lemma 3.8 can be seen as a generalisation of the usual upper bound on decay of
correlations for observables on the one-sided tower Δ̄.

Remark 3.10. Our proof of Lemma 3.8 is based on ideas from [3, Section 4]. However,
we have chosen to present the proof in full because (i) our assumptions are weaker,
in particular we only require β > 1 instead of β > 2 and V need not be separately
dθ -Lipschitz and (ii) we avoid introducing Markov chains.

Proof of Lemma 3.8. Write v(x) = V (x, f̄ n x) so
∫

Δ̄

V (x, f n x) dμ̄Δ(x) =
∫

Δ̄

v dμ̄Δ =
∫

Δ̄

Lnv dμ̄Δ

=
∫

Δ̄

∑

f̄ n z=x

gn(z)V (z, f̄ n z)dμ̄(x)

=
∫

Δ̄

∑

f̄ n z=x

gn(z)V (z, x)dμ̄Δ(x) =
∫

Δ̄

(Lnux )(x) dμ̄Δ(x).
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where ux (z) = V (z, x). Let Δ̄� = {(y, j) ∈ Δ̄ : j = �} denote the �-th level of Δ̄. It
follows that we can decompose

∫

Δ̄

V (x, f̄ n x)dμ̄Δ(x) −
∫

Δ̄2
V (x0, x1)dμ̄2

Δ(x0, x1) =
∑

�≥0

A�

where

A� =
∫

Δ̄�

(

(Lnux )(x) −
∫

Δ̄

V (z, x)dμ̄Δ(z)

)

dμ̄Δ(x).

For all � ≥ 0,

|A�| ≤ 2 |V |∞ μ̄Δ(Δ̄�) = 2 |V |∞ μ̄Y (φ > �)
∫

φdμ̄Y
= O(|V |∞ (� + 1)−β).

Hence,
∑

�≥n/2

|A�| = O
(|V |∞ n−(β−1)).

Let x ∈ Δ̄�, � ≤ n. Then (Lnux )(x) = (Ln−�ux )(x0) where x0 ∈ Δ̄0 is the unique
preimage of x under f̄ �. Thus by Lemma 3.4,

|A�| ≤
∫

Δ̄�

D2(n − �)−(β−1) ‖V (·, x)‖θ dμ̄Δ

≤ D2(n − �)−(β−1) sup
y∈Δ̄

‖V (·, y)‖θ μ̄Δ(Δ̄�).

Hence,
∑

�≤n/2

|A�| ≤ D2(n/2)−(β−1) sup
y∈Δ̄

‖V (·, y)‖θ ,

completing the proof. ��
Proof of Lemma 3.6. Recall that we wish to bound

∇ H̃ =
∫

Δ

H̃(x, f n p x)dμΔ(x) −
∫

Δ2
H̃(x0, x1)dμ2

Δ(x0, x1).

Without loss take n p − n p−1 ≥ 2. Let R = [(n p − n p−1)/2]. Write ∇ H̃ = I1 + I2 +
∇ H̄R where

I1 =
∫

Δ

H̃(x, f n p x)dμΔ(x) −
∫

Δ

H̃R(x, f n p x)dμΔ(x),

I2 =
∫

Δ

H̃R(x0, x1)dμ2
Δ(x0, x1) −

∫

Δ2
H̃(x0, x1)dμ2

Δ(x0, x1),

∇ H̄R =
∫

Δ

H̃R(x, f n p x)dμΔ(x) −
∫

Δ2
H̃R(x0, x1)dμ2

Δ(x0, x1)

=
∫

Δ̄

H̄R(x, f̄ n p x)dμ̄Δ(x) −
∫

Δ̄2
H̄R(x0, x1)dμ̄2

Δ(x0, x1).
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Now by Proposition 3.7(ii) and Lemma 3.2,

|I1| =
∣
∣
∣
∣

∫

Δ

H̃( f R x, f R+n p x)dμΔ(x) −
∫

Δ

H̃R(x, f n p x)dμΔ(x)

∣
∣
∣
∣

≤ K2

∫

Δ

(p−1∑

i=0

[G]H ,iθ
ψR( f ni x) +

q−1∑

i=p

[G]H ,iθ
ψR( f n p+ki x)

)

dμΔ(x)

= K2

q−1∑

i=0

[G]H ,i

∫

Δ

θψR dμΔ ≤ K2D1

q−1∑

i=0

[G]H ,i R−(β−1). (3.5)

Similarly,

|I2| ≤ K2D1

q−1∑

i=0

[G]H ,i R−(β−1). (3.6)

Now let uy(z) = H̄R(z, y) and V (x, y) = (Ln p−1+Ruy)(x). Then
∫

Δ̄2
V (x0, x1) dμ̄2

Δ(x0, x1) =
∫

Δ̄2
H̄R(x0, x1) dμ̄2

Δ(x0, x1) (3.7)

and

V (x, f̄ n p−n p−1−R x) =
∑

f̄ n p−1+R z=x

gn p−1+R(z)H̄R(z, f̄ n p−n p−1−R x)

=
∑

f̄ n p−1+R z=x

gn p−1+R(z)H̄R(z, f̄ n p z) = (Ln p−1+Rû)(x)

where û(z) = H̄R(z, f̄ n p z). Hence
∫

Δ̄

V (x, f̄ n p−n p−1−R x)dμ̄Δ(x) =
∫

Δ̄

Ln p−1+Rû dμ̄Δ

=
∫

Δ̄

û dμ̄Δ =
∫

Δ̄

H̄R(x, f̄ n p x) dμ̄Δ(x). (3.8)

Now by Proposition 3.7(iii), supy∈Δ̄ ‖V (·, y)‖θ ≤ K2(|G|∞ +
∑p−1

i=0 [G]H ,i ). By
Lemma 3.8, (3.7) and (3.8) it follows that

|∇ H̄R | =
∣
∣
∣
∣

∫

Δ̄

V (x, f̄ n p−n p−1−R x)dμ̄Δ(x) −
∫

Δ̄2
V (x0, x1)dμ̄2

Δ(x0, x1)

∣
∣
∣
∣

≤ K2D3

(

|G|∞ +
p−1∑

i=0

[G]H ,i

)

(n p − n p−1 − R)−(β−1). (3.9)

Recall that R = [(n p − n p−1)/2]. Hence n p − n p−1 − R ≥ R. By combining (3.5),
(3.6) and (3.9) it follows that

|∇ H̃ | ≤ K2(2D1 + D3)

q−1∑

i=0

[G]H ,i ([(n p − n p−1)/2])−(β−1),

as required. ��
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4. An Abstract Weak Dependence Condition

The Functional Correlation Bound can be seen as a weak dependence condition. Let
k ≥ 1 and consider k disjoint blocks of integers {�i , �i + 1, . . . , ui }, 0 ≤ i < k with
�i ≤ ui < �i+1. Consider random variables Xi on (M, μ) of the form

Xi (x) = Φi (T
�i x, . . . , T ui x)

where Φi ∈ SH ui −�i+1(M), 0 ≤ i < k.

When the gaps �i+1−ui between blocks are large, the randomvariables X0, . . . , Xk−1
are weakly dependent. Let X̂0, . . . , X̂k−1 be independent random variables with
X̂i=d Xi .

Lemma 4.1. Suppose that T satisfies the Functional Correlation Bound with rate n−γ

for some γ > 0. Let R = maxi |Φi |∞. Then for all Lipschitz F : [−R, R]k → R,
∣
∣Eμ

[
F(X0, . . . , Xk−1)

] − E
[
F(X̂0, . . . , X̂ k−1)

] ∣
∣

≤ C
k−2∑

r=0

(�r+1 − ur )
−γ

(

|F |∞ + Lip(F)

k−1∑

i=0

ui −�i∑

j=0

[Φi ]H , j

)

,

where C > 0 only depends on T : M → M.

Proof. We proceed by induction on k. For k = 1 the inequality is trivial. Assume that
this lemma holds for k ≥ 1.

Consider an enriched probability space which contains independent copies of {Xi }
and {X̂ i }. Write

Eμ [F(X0, . . . , Xk)] − E [F(X̂0, . . . , X̂ k)] = I1 + I2

where

I1 = E
[
F(X0, . . . , Xk−1, X̂ k)

] − E [F(X̂0, . . . , X̂ k)] ,

I2 = Eμ [F(X0, . . . , Xk)] − E
[
F(X0, . . . , Xk−1, X̂ k)

]
.

Since X̂ k =d Xk and X̂ k is independent of X0, . . . , Xk−1 and X̂0, . . . , X̂ k−1,

I1 =
∫

M

(
Eμ

[
F

(
X0, . . . , Xk−1, Xk(y)

)] − E
[
F

(
X̂0, . . . , X̂ k−1, Xk(y)

)] )
dμ(y).

Let y ∈ M. The function Fy = F(·, . . . , ·, Xk(y)) : Mk → R satisfies Lip(Fy) ≤
Lip(F). Hence by the inductive hypothesis,

|I1| ≤
∫

∣
∣Eμ

[
Fy(X0, . . . , Xk−1)

] − E
[
Fy(X̂0, . . . , X̂ k−1)

] ∣
∣dμ(y)

≤
∫

C
k−2∑

r=0

(�r+1 − ur )
−γ

(
∣
∣Fy

∣
∣∞ + Lip(Fy)

k−1∑

i=0

ui −�i∑

j=0

[Φi ]H , j

)

dμ(y)

≤ C
k−2∑

r=0

(�r+1 − ur )
−γ

(

|F |∞ + Lip(F)

k−1∑

i=0

ui −�i∑

j=0

[Φi ]H , j

)

.
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Now

I2 = Eμ [F(X0, . . . , Xk)] −
∫

M
Eμ

[
F

(
X0, . . . , Xk−1, Xk(y)

)]
dμ(y)

=
∫

M
F

(
X0(x), . . . , Xk(x)

)
dμ(x) −

∫

M2
F

(
X0(x), . . . , Xk−1(x), Xk(y)

)
dμ2(x, y).

Write

F(X0(x), . . . , Xk(x))

= F(Φ0(T
�0x, . . . , T u0x);Φ1(T

�1x, . . . , T u1x); . . . ;Φk(T
�k x, . . . , T uk x))

= G(T �0x, . . . , T u0x; T �1x, . . . , T u1x; . . . ; T �k x, . . . , T uk x).

and

F(X0(x), . . . , Xk−1(x), Xk(y))

= G(T �0x, . . . , T u0x; T �1x, . . . , T u1x; . . . ; T �k−1x, . . . , T uk−1x; T �k y, . . . , T uk y)

where G : Ms → R, s = ∑k
i=0(ui − �i + 1). By a straightforward calculation, G ∈

SH s(M) and

s−1∑

i=0

[G]H ,i ≤
k∑

i=0

ui −�i∑

j=0

Lip(F)[Φi ]H , j .

Hence by the Functional Correlation Bound,

|I2| =
∣
∣
∣
∣

∫

M
G(T �0 x, . . . , T u0 x; . . . ; T �k x, . . . , T uk x)dμ(x)

−
∫

M2
G(T �0 x, . . . , T u0 x; . . . ; T �k−1 x, . . . , T uk−1 x; T �k y, . . . , T uk y)dμ2(x, y)

∣
∣
∣
∣

≤ C(�k − uk−1)
−γ

(

|F |∞ +
k∑

i=0

ui −�i∑

j=0

Lip(F)[Φi ]H , j

)

.

This completes the proof. ��

5. Moment Bounds

In this section we prove Theorem 2.4. Throughout this section we fix γ > 1 and assume
that T : M → M satisfies the Functional Correlation Bound with rate n−γ .

In both parts of Theorem 2.4 we use the following moment bounds for independent,
mean zero random variables, which are due to von Bahr, Esseen [32] and Rosenthal [30],
respectively:

Lemma 5.1. Fix p ≥ 1. There exists a constant C > 0 such that for all k ≥ 1, for all
independent, mean zero random variables X̂0, . . . , X̂k−1 ∈ L p:

(i) If 1 ≤ p ≤ 2, then

E

[∣
∣
∣
∣

k−1∑

i=0

X̂i

∣
∣
∣
∣

p
]

≤ C
k−1∑

i=0

E
[|X̂i |p] .
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(ii) If p > 2, then

E

[∣
∣
∣
∣

k−1∑

i=0

X̂i

∣
∣
∣
∣

p
]

≤ C

((k−1∑

i=0

E

[
X̂2

i

])p/2

+
k−1∑

i=0

E
[|X̂i |p]

)

.

��
Let v,w ∈ H (M) be mean zero. For b ≥ a ≥ 0 we denote

Sv(a, b) =
∑

a≤i<b

v ◦ T i , Sv,w(a, b) =
∑

a≤i< j<b

v ◦ T iw ◦ T j .

Note that Sv(n) = Sv(0, n) and Sv,w(n) = Sv,w(0, n). Some straightforward algebra
yields the following proposition.

Proposition 5.2. Fix � ≥ 1 and 0 = a0 ≤ a1 ≤ · · · ≤ a�. Then,

(i) Sv(a�) =
�−1∑

i=0

Sv(ai , ai+1).

(ii) Sv,w(a�) =
�−1∑

i=0

Sv,w(ai , ai+1) +
∑

0≤i< j<�

Sv(ai , ai+1)Sw(a j , a j+1).

��
We also need the following elementary proposition:

Proposition 5.3. Fix R > 0, p ≥ 1 and an integer k ≥ 1. Define F : [−R, R]k → R by
F(y0, . . . , yk−1) = |y0 + · · · + yk−1|p. Then |F |∞ ≤ (k R)p and Lip(F) ≤ p(k R)p−1.

Proof. Note that |F |∞ ≤ (k R)p. Fix y = (y0, . . . , yk−1), y′ = (y′
0, . . . , y′

k−1) ∈
[−R, R]k and set a = |y0 + · · · + yk−1|, b = |y′

0 + · · · + y′
k−1|. By the Mean Value

Theorem,

|F(y0, . . . , yk−1) − F(y′
0, . . . , y′

k−1)| = |a p − bp|
≤ p max{a p−1, bp−1}|a − b|

≤ p(k R)p−1
k−1∑

i=0

|yi − y′
i | = p(k R)p−1|y − y′|,

so Lip(F) ≤ p(k R)p−1. ��
Let k ≥ 1, n ≥ 2k and define ai = [ in

2k ] for 0 ≤ i ≤ 2k. Note that

n
2k − 1 ≤ ai+1 − ai ≤ n

2k + 1 ≤ n
k . (5.1)

For 0 ≤ i < k let Xi = Sv(a2i , a2i+1). Let X̂0, . . . , X̂k−1 be independent random
variables with X̂i =d Xi .

Lemma 5.4. There exists a constant C > 0 such that

Eμ

[∣
∣
∣
∣

k−1∑

i=0

Xi

∣
∣
∣
∣

2γ
]

≤ Ck1+γ nγ ‖v‖2γH + E

[∣
∣
∣
∣

k−1∑

i=0

X̂i

∣
∣
∣
∣

2γ
]

,

for all n ≥ 2k, k ≥ 1, for any v ∈ H (M).
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Proof. Note that

Xi (x) =
a2i+1−1∑

q=a2i

v(T q x) = Φi (T
�i x, . . . , T ui x),

where �i = a2i , ui = a2i+1 − 1 and

Φi (x0, . . . , xui −�i ) =
ui −�i∑

j=0

v(x j ).

Let R = maxi |Φi |∞ . Then

Eμ

[∣
∣
∣
∣

k−1∑

i=0

Xi

∣
∣
∣
∣

2γ
]

= Eμ

[
F(X0, . . . , Xk−1)

]

where F : [−R, R]k → R is given by F(y0, . . . , yk−1) = |y0 + · · ·+ yk−1|2γ . Hence by
Lemma 4.1,

Eμ

[∣
∣
∣
∣

k−1∑

i=0

Xi

∣
∣
∣
∣

2γ
]

≤ A + E

[∣
∣
∣
∣

k−1∑

i=0

X̂ i

∣
∣
∣
∣

2γ
]

where

|A| ≤ C
k−2∑

r=0

(�r+1 − ur )
−γ

(

|F |∞ + Lip(F)

k−1∑

i=0

ui −�i∑

j=0

[Φi ]H , j

)

. (5.2)

It remains to bound A. First we bound the expressions [Φi ]H , j . Fix 0 ≤ i < k and
0 ≤ j ≤ ui − �i . For x0, . . . , xk−1, x ′

j ∈ M ,

|Φi (x0, . . . , xui −�i ) − Φi (x0, . . . , x j−1, x ′
j , x j+1 . . . , xui −�i )| = |v(x j ) − v(x ′

j )|
so [Φi ]H , j ≤ [v]H . Note that by (5.1), |Φi |∞ ≤ (a2i+1 − a2i ) |v|∞ ≤ n

k |v|∞ . Hence
by Proposition 5.3,

|F |∞ ≤ 2γ (n |v|∞)2γ (5.3)

and Lip(F) ≤ 2γ (n |v|∞)2γ−1.

Thus

Lip(F)

k−1∑

i=0

ui −�i∑

j=0

[Φi ]H , j ≤ 2γ (n |v|∞)2γ−1
k−1∑

i=0

ui −�i∑

j=0

[Φi ]H , j

≤ 2γ (n |v|∞)2γ−1
k−1∑

i=0

(ui − �i + 1)[v]H

≤ 2γ (n |v|∞)2γ−1n[v]H . (5.4)
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Now by (5.1), �r+1 − ur = a2r+2 − (a2r+1 − 1) ≥ n
2k for each 0 ≤ r ≤ k − 2. Hence

k−2∑

r=0

(�r+1 − ur )
−γ ≤ k( n

2k )−γ = 2γ k1+γ n−γ . (5.5)

Substituting (5.3), (5.4) and (5.5) into (5.2) gives

|A| ≤ 2γ k1+γ n−γ (2γ (n |v|∞)2γ + 2γ (n |v|∞)2γ−1n[v]H )

≤ 21+γ γ Ck1+γ n−γ (n ‖v‖H )2γ = 21+γ γ Ck1+γ nγ ‖v‖2γH ,

as required. ��
We are now ready to prove the moment bound for Sv(n) (Theorem 2.4(a)).

Proof of Theorem 2.4(a). We prove by induction that there exists D > 0 such that

|Sv(m)|2γ ≤ Dm1/2 ‖v‖H (5.6)

for all m ≥ 1, for any mean zero v ∈ H (M).

Claim There exists C > 0 such that for all mean zero v ∈ H (M), for any D > 0,
for any k ≥ 1 and any n ≥ 2k such that (5.6) holds for all m < n, we have

|Sv(n)|2γ2γ ≤ C(k1+γ + k1−γ D2γ )nγ ‖v‖2γH .

Now fix k ≥ 1 such that Ck1−γ ≤ 1
2 . Fix D > 0 such that Ck1+γ ≤ 1

2 D2γ and (5.6)
holds for all m < 2k and any mean zero v ∈ H (M). Then the claim shows that for any
n ≥ 2k such that (5.6) holds for all m < n, we have |Sv(n)|2γ2γ ≤ D2γ nγ ‖v‖2γH . Hence
by induction, (5.6) holds for all m ≥ 1.

It remains to prove the claim. Note that in the following the constant C > 0 may vary
from line to line.

Fix n ≥ 2k and assume that (5.6) holds for all m < n. By Proposition 5.2(i),

Sv(n) =
2k−1∑

i=0

Sv(ai , ai+1) = I1 + I2,

where

I1 =
k−1∑

i=0

Sv(a2i , a2i+1), I2 =
k−1∑

i=0

Sv(a2i+1, a2i+2).

We first bound |I1|2γ . Write Xi = Sv(a2i , a2i+1) so that I1 = ∑k−1
i=0 Xi . By

Lemma 5.4,

|I1|2γ2γ = Eμ

[∣
∣
∣
∣

k−1∑

i=0

Xi

∣
∣
∣
∣

2γ
]

≤ Ck1+γ nγ ‖v‖2γH + E

[∣
∣
∣
∣

k−1∑

i=0

X̂i

∣
∣
∣
∣

2γ
]

. (5.7)

We now bound E

[
| ∑k−1

i=0 X̂ i |2γ
]
by using Lemma 5.1 and the inductive hypothesis.
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Fix 0 ≤ i < k. By stationarity, Xi = Sv(a2i , a2i+1) =d Sv(a2i+1 − a2i ). Thus by the
inductive hypothesis (5.6), Eμ

[|Xi |2γ
] ≤ D2γ (a2i+1 − a2i )

γ ‖v‖2γH . Hence by (5.1),

k−1∑

i=0

E

[
|X̂ i |2γ

]
≤

k−1∑

i=0

D2γ (a2i+1 − a2i )
γ ‖v‖2γH

≤
k−1∑

i=0

D2γ (n/k)γ ‖v‖2γH = D2γ k1−γ nγ ‖v‖2γH .

Now by the Functional Correlation Bound, |Eμ

[
v v ◦ T n

] | ≤ Cn−γ ‖v‖2H . By a stan-
dard calculation, it follows that Eμ

[
Sv(n)2

] ≤ Cn ‖v‖2H . Thus

k−1∑

i=0

E

[
X̂2

i

]
=

k−1∑

i=0

Eμ

[
Sv(a2i+1 − a2i )

2
]

≤
k−1∑

i=0

C(a2i+1 − a2i ) ‖v‖2H ≤ C(a2k−1 − a0) ‖v‖2H

≤ Cn ‖v‖2H .

By Lemma 5.1(ii), it follows that

E

[∣
∣
∣
∣

k−1∑

i=0

X̂i

∣
∣
∣
∣

2γ
]

≤ C
(
(Cn ‖v‖2H )γ + D2γ k1−γ nγ ‖v‖2γH

)

≤ C(1 + D2γ k1−γ )nγ ‖v‖2γH .

Hence by (5.7), overall

|I1|2γ2γ ≤ C(k1+γ + D2γ k1−γ )nγ ‖v‖2γH .

Exactly the same argument applies to |I2|2γ2γ . The conclusion of the claim follows by
noting that

|Sv(n)|2γ2γ = |I1 + I2|2γ2γ ≤ 22γ (|I1|2γ + |I2|2γ ).

��
We now prove Theorem 2.4(b). Our proof follows the same lines as that of part (a).
Let n, k ≥ 1. Recall that ai = [ in

2k

]
. For 0 ≤ i < k define mean zero random

variables Xi on (M, μ) by

Xi = Sv,w(a2i , a2i+1) − Eμ

[
Sv,w(a2i , a2i+1)

]
.

Let X̂0, . . . , X̂k−1 be independent random variables with X̂i =d Xi .
The following lemma plays the same role that Lemma 5.4 played in the proof of

Theorem 2.4(a).
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Lemma 5.5. There exists a constant C > 0 such that for any v,w ∈ H (M),

Eμ

[∣
∣
∣
∣

k−1∑

i=0

Xi

∣
∣
∣
∣

γ
]

≤ Cknγ ‖v‖γ

H ‖w‖γ

H + E

[∣
∣
∣
∣

k−1∑

i=0

X̂i

∣
∣
∣
∣

γ
]

for all n ≥ 2k, k ≥ 1.

Proof. Note that

Xi (x) =
∑

a2i ≤q<r≤a2i+1−1

v(T q x)w(T r x) − Eμ

[
Sv,w(a2i , a2i+1)

]

= Φi (T
�i x, . . . , T ui x),

where �i = a2i , ui = a2i+1 − 1 and

Φi (x0, . . . , xui −�i ) =
∑

0≤q<r≤ui −�i

v(xq)w(xr ) − Eμ

[
Sv,w(a2i , a2i+1)

]
.

Let R = maxi |Φi |∞. Observe that

Eμ

[∣
∣
∣
∣

k−1∑

i=0

Xi

∣
∣
∣
∣

γ
]

= Eμ

[
F(X0, . . . , Xk−1)

]
,

where F : [−R, R]k → R is given by F(y0, . . . , yk−1) = |y0 + · · · + yk−1|γ . Hence by
Lemma 4.1,

Eμ

[∣
∣
∣
∣

k−1∑

i=0

Xi

∣
∣
∣
∣

γ
]

≤ A + E

[∣
∣
∣
∣

k−1∑

i=0

X̂i

∣
∣
∣
∣

2γ
]

where

|A| ≤ C
k−2∑

r=0

(�r+1 − ur )
−γ

(

|F |∞ + Lip(F)

k−1∑

i=0

ui −�i∑

j=0

[Φi ]H , j

)

. (5.8)

It remains to bound A. The first step is to bound the expressions [Φi ]H , j . Fix 0 ≤ i <

k, 0 ≤ j ≤ ui − �i . Let x0, . . . , xk−1, x ′
j ∈ M. Note that

Φi (x0, . . . , xui −�i ) − Φi (x0, . . . , x j−1, x ′
j , x j+1 . . . , xui −�i ) = J1 + J2,

where

J1 =
∑

j<r≤ui −�i

(v(x j )w(xr ) − v(x ′
j )w(xr )),

J2 =
∑

0≤q< j

(v(xq)w(x j ) − v(xq)w(x ′
j )).

Now,

|J1| ≤
∑

j<r≤ui −�i

|v(x j ) − v(x ′
j )||w(xr )| ≤ |w|∞

∑

j<r≤ui −�i

|v(x j ) − v(x ′
j )|
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and similarly |J2| ≤ |v|∞
∑

0≤q< j |w(x j ) − w(x ′
j )|, so

[Φi ]H , j ≤ (ui − �i ) ‖v‖H ‖w‖H .

Now recall from (5.1) that ui − �i + 1 = a2i+1 − a2i ≤ n/k so

k−1∑

i=0

ui −�i∑

j=0

[Φi ]H , j ≤
k−1∑

i=0

(ui − �i + 1)2 ‖v‖H ‖w‖H ≤ n2
k ‖v‖H ‖w‖H . (5.9)

Next note that

|Φi |∞ ≤
∑

0≤q<r≤ui −�i

|v|∞ |w|∞ +
∣
∣Sv,w(a2i , a2i+1)

∣
∣∞

≤ 2(n/k)2 |v|∞ |w|∞

so by Proposition 5.3, |F |∞ ≤ ( 2n2
k |v|∞ |w|∞

)γ and Lip(F) ≤ γ
( 2n2

k |v|∞ |w|∞
)γ−1

.

Combining these bounds with (5.5), (5.8) and (5.9) yields that

|A| ≤ C2γ k1+γ n−γ
(
( 2n2

k |v|∞ |w|∞)γ + γ ( 2n2
k |v|∞ |w|∞

)γ−1 n2
k ‖v‖H ‖w‖H

)

≤ 22γ (1 + γ /2)Cknγ ‖v‖γ

H ‖w‖γ

H ,

as required. ��
We are now ready to prove Theorem 2.4(b).

Proof of Theorem 2.4(b). We prove by induction that there exists D > 0 such that
∣
∣Sv,w(m)

∣
∣
γ

≤ Dm ‖v‖H ‖w‖H (5.10)

for all m ≥ 1, for any v,w ∈ H (M) mean zero.

Claim There exists C > 0 such that for all v,w ∈ H (M)mean zero, for any D > 0,
any k ≥ 1 and any n ≥ 2k such that (5.10) holds for all m < n, we have

∣
∣Sv,w(n)

∣
∣γ
γ

≤ C(kγ + (k1−γ + k−γ /2)Dγ )(n ‖v‖H ‖w‖H )γ .

Now fix k ≥ 1 such that C(k1−γ + k−γ /2) ≤ 1
2 . Fix D > 0 such that Ckγ ≤ 1

2 Dγ

and (5.10) holds for allm < 2k and anymean zero v,w ∈ H (M). Then the claim shows
that if n ≥ 2k and (5.10) holds for all m < n, then

∣
∣Sv,w(n)

∣
∣γ
γ

≤ Dγ (n ‖v‖H ‖w‖H )γ .
Hence by induction, (5.10) holds for all m ≥ 1.

It remains to prove the claim. Note that in the following the constant C > 0 may vary
from line to line.

Fix n ≥ 2k and assume that (5.10) holds for all m < n. Recall that ai = [ in
2k

]
for

0 ≤ i ≤ 2k. By Proposition 5.2(ii),

Sv,w(n) =
∑

0≤i< j<2k

Sv(ai , ai+1)Sw(a j , a j+1) +
2k−1∑

i=0

Sv,w(ai , ai+1) = I1 + I2 + I3 + I4,
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where

I1 =
∑

0≤i< j<2k

Sv(ai , ai+1)Sw(a j , a j+1), I2 =
2k−1∑

i=0

Eμ

[
Sv,w(ai , ai+1)

]
,

I3 =
k−1∑

i=0

(
Sv,w(a2i , a2i+1) − Eμ

[
Sv,w(a2i , a2i+1)

] )
,

I4 =
k−1∑

i=0

(
Sv,w(a2i+1, a2i+2) − Eμ

[
Sv,w(a2i+1, a2i+2)

] )
.

Recall from (5.1) that ai+1 − ai ≤ n/k. Hence by Theorem 2.4(a),

|I1|γ ≤
∑

0≤i< j<2k

∣
∣Sv(ai , ai+1)Sw(a j , a j+1)

∣
∣
γ

≤
∑

0≤i< j<2k

|Sv(ai , ai+1)|2γ
∣
∣Sw(a j , a j+1)

∣
∣
2γ

≤
∑

0≤i< j<2k

C2(ai+1 − ai )
1/2 ‖v‖H (a j+1 − a j )

1/2 ‖w‖H

≤
∑

0≤i< j<2k

C2(n/k)1/2 ‖v‖H (n/k)1/2 ‖w‖H ≤ Ckn ‖v‖H ‖w‖ .

Now by the Functional Correlation Bound, |Eμ

[
v w ◦ T n

] | ≤ Cn−γ ‖v‖H ‖w‖H . By
a standard calculation, it follows that |Eμ

[
Sv,w(n)

]| ≤ Cn ‖v‖H ‖w‖H . Thus

|I2| ≤
2k−1∑

i=0

|Eμ

[
Sv,w(ai , ai+1)

] |

≤
2k−1∑

i=0

C(ai+1 − ai ) ‖v‖H ‖w‖H = C(a2k − a0) ‖v‖H ‖w‖H

= Cn ‖v‖H ‖w‖H .

We now bound |I3|γγ . Note that I3 = ∑k−1
i=0 Xi , where Xi = Sv,w(a2i , a2i+1) −

Eμ

[
Sv,w(a2i , a2i+1)

]
. Hence by Lemma 5.5,

|I3|γγ = Eμ

[∣
∣
∣
∣

k−1∑

i=0

Xi

∣
∣
∣
∣

γ
]

≤ Cknγ ‖v‖γ

H ‖w‖γ

H + E

[∣
∣
∣
∣

k−1∑

i=0

X̂i

∣
∣
∣
∣

γ
]

. (5.11)

Fix 0 ≤ i < k.By stationarity, Xi =d Sv,w(a2i+1−a2i )−Eμ

[
Sv,w(a2i+1 − a2i )

]
.Now

by the inductive hypothesis (5.10),
∣
∣Sv,w(a2i+1 − a2i )

∣
∣
γ

≤ D(a2i+1−a2i ) ‖v‖H ‖w‖H ,

so

|Xi |γ ≤ ∣
∣Sv,w(a2i+1 − a2i )

∣
∣
γ
+ |Eμ

[
Sv,w(a2i+1 − a2i )

] |
≤ 2D(a2i+1 − a2i ) ‖v‖H ‖w‖H .



N. Fleming-Vázquez

It follows that

k−1∑

i=0

E
[|X̂i |γ

] ≤
k−1∑

i=0

2γ Dγ (a2i+1 − a2i )
γ (‖v‖H ‖w‖H )γ

≤
k−1∑

i=0

2γ Dγ (n/k)γ (‖v‖H ‖w‖H )γ = 2γ Dγ k1−γ (n ‖v‖H ‖w‖H )γ .

If 1 < γ ≤ 2, then by Lemma 5.1(i),

E

[∣
∣
∣
∣

k−1∑

i=0

X̂i

∣
∣
∣
∣

γ
]

≤ 2γ C Dγ k1−γ (n ‖v‖H ‖w‖H )γ .

Suppose on the other hand that γ > 2. Note that

|X̂ i |2 ≤ |X̂ i |γ ≤ 2D(a2i+1 − a2i ) ‖v‖H ‖w‖H
so

k−1∑

i=0

E

[
X̂2

i

]
≤

k−1∑

i=0

4D2(a2i+1 − a2i )
2(‖v‖H ‖w‖H )2

≤
k−1∑

i=0

4D2(n/k)2(‖v‖H ‖w‖H )2 = 4D2k−1(n ‖v‖H ‖w‖H )2.

Hence by Lemma 5.1(ii),

E

[∣
∣
∣
∣

k−1∑

i=0

X̂i

∣
∣
∣
∣

γ
]

≤ C

(
(
4D2k−1(n ‖v‖H ‖w‖H )2

)γ /2 + 2γ Dγ k1−γ
(
n ‖v‖H ‖w‖H

)γ
)

= 2γ C Dγ (k−γ /2 + k1−γ )(n ‖v‖H ‖w‖H )γ .

Hence for any γ > 1,

E

[∣
∣
∣
∣

k−1∑

i=0

X̂i

∣
∣
∣
∣

γ
]

≤ C Dγ (k−γ /2 + k1−γ )(n ‖v‖H ‖w‖H )γ .

By (5.11), it follows that

|I3|γγ ≤ C
(
k + Dγ (k−γ /2 + k1−γ )

)
(n ‖v‖H ‖w‖H )γ .

Exactly the same argument applies to |I4|γγ . The conclusion of the claim follows by
noting that

∣
∣Sv,w(n)

∣
∣γ
γ

= |I1 + I2 + I3 + I4|γγ ≤ 4γ (|I1|γγ + |I2|γγ + |I3|γγ + |I4|γγ )

≤ C
(
kγ + 1 + 2(k + Dγ (k−γ /2 + k1−γ )

)
(n ‖v‖H ‖w‖H )γ

≤ C
(
kγ + Dγ (k−γ /2 + k1−γ )

)
(n ‖v‖H ‖w‖H )γ ,

as required. ��
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