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Abstract
We generalise Pollack’s construction of plus/minus L-functions to certain cuspidal automor-
phic representations of GL2n using the p-adic L-functions constructed in work of Barrera
Salazar et al. (On p-adic l-functions for GL2n in finite slope shalika families, 2021). We use
these to prove that the complex L-functions of such representations vanish at at most finitely
many twists by characters of p-power conductor.

Keywords P-adic L-functions · Automorphic forms · Iwasawa theory
Résumé
Nous généralisons la construction des fonctions L plus/moins de Pollack à certaines représen-
tations automorphes cuspidales de GL2n en utilisant les fonctions L p-adiques construites
dans les travaux de Barrera Salazar et al. [2]. Nous les utilisons pour démontrer que les
fonctions L complexes de telles représentations disparaissent pour au plus un nombre fini de
torsions par des caractères de conducteur une puissance de p.

Mathematics Subject Classification 11G40 · 11F67 · 11R23

1 Introduction

Let f = ∑∞
n=0 anq

n be a normalized cuspidal newform of weight k and level N with
character ε, and let p be a prime such that p � N . Let α be a root of the Hecke polynomial
X2 −apX + pk−1ε(p)which, after fixing an isomorphism Q̄p ∼= C, satisfies r := vp(ap) <

k − 1, where vp is the p-adic valuation on Cp normalized so that vp(p) = 1. From this data

we can construct an order r locally analytic distribution L(α)
p on Z×

p whose values at special
characters interpolate the critical values of the complex L-function of f and its twists. The
arithmetic of L(α)

p is well understood in the case that f is ordinary at p i.e. when r = 0, but

is more mysterious in the non-ordinary case, since the unbounded growth of L(α)
p means that

it does not lie in the Iwasawa algebra, and hence cannot be the characteristic element of an
Iwasawa module.
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In [16] Pollack provides a solution to this problem in the case that ap = 0 by constructing
bounded distributions L+

p , L−
p each of which interpolate half the values of the complex L-

function of f and its twists. Kobayashi [11] and Lei [13] have formulated Iwasawa main
conjectures using these ‘plus/minus p-adic L-functions’, shown them to be equivalent to
Kato’s main conjecture and proved one inclusion in these conjectures using Kato’s Euler
system. The converse inclusion has been proved in many cases by Wan [19].

Now let Π be a cuspidal automorphic representation of GL2n(AQ). Suppose that Π is
cohomological with respect to some pure dominant integral weight μ, and that it is the
transfer of a globally generic cuspidal automorphic representation of GSpin2n+1(AQ). Let p
be a prime at which Π is unramified, and let α1, . . . , α2n be the Satake parameters at p. We
call a choice of α = ∏n

i=1 α ji for { j1, . . . , jn} ⊂ {1, . . . , 2n} a p-stabilisation of Π . When
a p-stabilisation α is non-critical and under some further auxiliary technical assumptions
Dimitrov, Januszewski andRaghuram [7] (ordinary case) andBarrera, Dimitrov andWilliams
[2] construct a locally analytic distribution L(α)

p on Z×
p interpolating the L-values of Π . If

we assume α satisfies a non-critical slope condition then this p-stabilisation is non-critical,
although this is a stronger condition. We show that that there are at most two choices of α

satisfying the non-critical slope condition and thus at most two non-critical slope L(α)
p can

be constructed from a given Π .
There is an increasing filtration Dr (Z×

p , Cp) on the space D(Z×
p , Cp) of Cp-valued dis-

tributions onZ×
p which measures the ‘growth’ of the distribution in a precise way (Definition

4). The 0th part of this filtration is the space of measures on Z×
p . The construction of [2]

shows that

L(α)
p ∈ Dvp(α)(Z×

p , Cp).

Suppose we have two non-critical slope p-adic L-functions for a given Π and suppose the
following condition, which we dub the ‘Pollack condition’, holds:

Pollack condition: αn + αn+1 = 0. (1)

We prove the following theorem, stated for an odd prime p:

Theorem 1 Let α be a p-stabilisation satisfying the non-critical slope condition and let
Crit(Π) be the set of critical integers for Π defined in Definition 7. There exist a pair of
distributions L±

p ∈ Dvp(α)−#Crit(Π)/2(Z×
p , Cp) satisfying

L(α)
p = log+

Π L+
p + log−

Π L−
p ,

where log±
Π ∈ D#Crit(Π)/2(Z×

p , Cp) are distributions depending only on Crit(Π) of order

#Crit(Π)/2. If the valuation of
∏n−1

i=1 αi is minimal (see Proposition 1) the distributions L±
p

are contained inD0(Z×
p , Cp). These distributions satisfy the following interpolation property

for j ∈ Crit(Π):
∫

Z×
p

x jθ(x)L+
p (x) = (∗)

L(Π ⊗ θ, j + 1/2)

log+
Π(x jθ)

for θ a Dirichlet character of conductor an even power of p, and
∫

Z×
p

x jθ(x)L−
p (x) = (∗)

L(Π ⊗ θ, j + 1/2)

log−
Π(x jθ)

for θ a Dirichlet character of conductor an odd power of p, where the (∗) are non-zero
constants.
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When p = 2 the result holds with the signs of the distributions log±
Π swapped.

Remark 1 Sincewe assume thatμ is pure, the condition that
∏n−1

i=1 αi beminimal is equivalent
to the statement that this p-stabilisation isP-ordinary (See [9, Sect. 6.2]) whereP ⊂ GL2n

is the parabolic subgroup given by the partition 2n = (n − 1) + 2 + (n − 1).

As an application we prove the following extension of the main result of [7]:

Theorem 2 In the case that L±
p are bounded distributions, the purity weight w is even, and

Crit(Π) �= {w/2}, we have
L(Π ⊗ θ, (w + 1)/2) �= 0

for all but finitely many characters θ of p-power conductor.

Remark 2 The assumption on the purity weight is to ensure that the central L-value is critical.

Relation to other work: Since this paper first appeared in preprint form, Lei and Ray [14]
have used the results of this paper to formulate an Iwasawa main conjecture for Π , relating
the signed p-adic L-functions of Theorem 1.0.1 to signed Selmer groups. They have also
generalised the construction of the signed p-adic L-functions to allow certain cases with
αn + αn+1 �= 0, using the theory of Wach modules.

2 Preliminaries

2.1 p-adic Fourier theory

We lay out the relevant theory of continuous functions on Z×
p . The main reference for this

section is [5, Sect. I.5].
Let L be a complete extension ofQp , denote byC (Zp, L) the Banach space of continuous

functions on Zp taking values in L . Write LA(Zp, L) for the subspace of L-valued locally
analytic functions and L Ah(Zp, L) for the locally h-analytic functions. We give these spaces
a valuation vLAh in the following way: Let uh = (ph(1 − p))−1 and let vB̄(a,uh)

be the

valuation on power series which converge on B̄(a, uh) = {z ∈ Cp : v(z − a) ≥ uh} given
by

vB̄(a,uh)
( f ) = infm{vp(am) + nuh : f (X) =

∞∑

i=0

ai (X − a)i }.

An element f ∈ L Ah(Zp, L) locally extends to such a power series and we define

vLAh ( f ) = infa∈ZpvB(a,uh)( f ).

This gives L A(Zp, L) the structure of a Fréchet space.

Definition 1 Let r ∈ R≥0. Let f : Zp → L ∈ C (Zp, L). We say that f is of order r if
there are functions f (i) : Zp → L such that if we define

εh( f ) = inf x∈Zp

y∈phZp

vp

⎛

⎝ f (x + y) −
�r�∑

i=0

f (i)(x)yi/i !
⎞

⎠ ,
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then

εh( f ) − rh → ∞ as h → ∞.

We denote the set of such functions by C r (Zp, L).

The space C r (Zp, L) is a Banach space with valuation given by

vC r ( f ) = inf

(

inf0≤ j≤�r�,x∈Zp (
f (i)(x)

i ! ), inf x,y∈Zp

(
εn( f ) − rvp(y)

)
)

.

Definition 2 • Define the space of locally analytic distributions onZp to be the continuous
dual of LA(Zp, L), denoted D(Zp, L). This space has the structure of a Fréchet space
via the family of valuations given by restricting to L Ah(Zp, L) and taking the dual of
vLAh .

• For r ∈ R≥0 define the subspace Dr (Zp, L) of D(Zp, L) of order r distributions to
be the continuous dual of C r (Zp, L). The space D0(Zp, L) of bounded distributions is
often referred to as the space of measures on Zp . We equip each Dr (Zp, L) with the
valuation

vD r (μ) = inf f ∈C r (Zp,L)\{0}
(
vp(μ( f )) − vC r ( f )

)
.

For μ ∈ Dr (Zp, L), f ∈ C r (Zp, L) we write

μ( f ) =:
∫

Zp

f (x)μ(x).

The space D(Zp, L) is given the structure of an L-algebra via convolution of distributions:

∫

Zp

f (x)(μ ∗ λ)(x) :=
∫

Zp

(∫

Zp

f (x + y)μ(x)

)

λ(y).

These distribution spaces will be our main object of our study. Though rather inscrutable
by themselves, they become more amenable to study by identifying them with spaces of
power series.

For x ∈ Cp, a ∈ R, let B(x, a) = {y ∈ Cp : vp(y − x) > a}. We define

R+ =
{

f =
∞∑

n=0

an( f )X
n ∈ L[[X ]] : f converges on B(0, 0)

}

and we give this space the structure of a Fréchet space via the family of valuations vB̄(0,uh)
.

Let �(n) = inf{m : n < pm}, and for r ∈ R≥0 define

R+
r = { f =

∞∑

n=0

an X
n ∈ L[[X ]] : vp(an) + r�(n) is bounded below as n → ∞}.

We can put a valuation on these spaces

vr ( f ) = infhbh + r�(h),

where �(h) is the smallest integer satisfying p�(h) > h. However, a different valuation will
be useful for our purposes.

123
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Lemma 1 A power series f ∈ L[[X ]] is in R+
r if and only if infh∈Z≥0(vB̄(0,uh)

( f ) + rh) �=
−∞. Furthermore, the spaces R+

r are Banach spaces when equipped with the valuation

vr ( f ) = infh∈Z≥0(vB̄(0,uh)
( f ) + rh).

Moreover, vr ( f ) is equivalent to v′
r ( f ).

Proof [5, Lemme II.1.1]. ��
Lemma 2 If f ∈ R+

r , g ∈ R+
s , then f g ∈ R+

r+s .

Proof [5, Corollaire II.1.2]. ��
Theorem 3 Define the Amice transform:

A : D (Zp, L) ∼= R+

μ �→
∫

Zp

(1 + X)xμ(x).

The Amice transform is an isomorphism of L-algebras under which the spaces Dr (Zp, L)

and R+
r are identified isometrically with respect to the valuations vD r and v′

r .

Proof [5, Théorème II.2.2] and [5, Proposition II.3.1]. ��
We now consider the multiplicative topological group Z×

p . Let

q =
{
p if p odd

4 otherwise.

We have the well-known isomorphism

Z×
p

∼= (Z/qZ)× × 1 + qZp,

the second factor ofwhich is topologically cyclic. Let γ be a topological generator of 1+qZp .
Such a choice allows us to write any x ∈ 1 + qZp in the form x = γ s for a unique s ∈ Zp ,
giving us an isomorphism of topological groups

1 + pZp ∼= Zp

γ s �→ s.

Thus Z×
p is homeomorphic to p − 1 (resp. 2 when p = 2) copies of Zp , and we can use the

above theory of Zp in this context, defining LA(Z×
p , L),D(Z×

p , L) in the obvious way; each
space decomposes as a direct sum over their restrictions to each Zp component and we take
the infimum of the valuations on each summand.

Definition 3 Define weight space to be the rigid analytic space W over Qp representing

L �→ Homcont(Z
×
p , L×).

Integrating characters gives a canonical identification

D(Z×
p , Qp) = H0(W,OW ),

where OW is the structure sheaf of W . This is isomorphism commutes with base change in
the sense that for a finite extension L/Qp we have

D(Z×
p , L) = D(Z×

p , Qp)⊗̂Qp L = H0(WL ,OWL ),
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where WL = W ×Qp Sp(L) and Sp(L) is the affinoid space associated to L . We identify
W(Cp) with the set �ψBψ , where Bψ = B(0, 0) and the disjoint union runs over characters
of Z×

p which factor through (Z/qZ)×, for details see [4, Remark B1.1]. We can thus identify
D(Z×

p , L) with functions on �ψBψ which are described by elements of R+ on each Bψ .
Given a distribution μ ∈ D(Z×

p , L) we write the corresponding rigid function on W as
M (μ).

On each Bψ the global sections OW (Bψ) are given (after choosing a coordinate X ) by
preciselyR+. As these are quasi-Stein spaces, the topology onOW (Bψ) is that of a Fréchet
space induced by an increasing chain of affinoids

Y1 ⊂ Y2 ⊂ · · · ,

which we can choose to be the closed discs of radius uh , whence the topology as global
sections over a rigid space coincideswith the topologyonR+ givenby the family of valuations
vB̄(0,uh)

(see [17, 1C]).

Definition 4 For r ∈ R≥0 we define a subspace Dr (Z×
p , L) ⊂ D(Z×

p , L) by

Dr (Z×
p , L) = {μ ∈ D(Z×

p , L) : M (μ)|Bψ
∈ R+

r for all ψ}.
These spaces decompose as a direct sum

Dr (Z×
p , L) = ⊕ψDr (Zp, L)

and we equip it with the valuation given by

vDr (μ) := infψvD r (μψ)

where μψ is the projection of μ to the ψ component.

2.2 Automorphic representations

Fix n ≥ 1 and set G = GL2n . Let Π be a cuspidal automorphic representation of G(AQ).
Let T ⊂ G be the maximal diagonal torus and let

μ = (μ1, . . . , μ2n) ∈ Z2g

be an integral weight. We say μ is dominant if μ1 ≥ · · · ≥ μ2n , and we say μ is pure if there
is ω ∈ Z, the purity weight of μ, such that

μi + μ2n+1−i = ω

for all i = 1, . . . , n.

Definition 5 We say that Π is cohomological with respect to a dominant integral weight μ

if the (g∞, K∞)-cohomology

Hq(g∞, K∞,Π ⊗ Vμ

C
)

is non-vanishing for some q . Here g∞ is the Lie algebra ofG(R), K ◦∞ ⊂ G(R) is the identity
component of the maximal open compact subgroup and Vμ

C
is the irreducible C-linear G-

representation of highest weight μ.

Purity of μ is a necessary condition for Π to be cohomological.
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Definition 6 We say that Π is the transfer of a globally generic cuspidal automorphic repre-
sentation π of GSpin2n+1(AQ) if

Π�
∼= π�.

for all primes � at which π is unramified.

Remark 3 • For a given globally generic automorphic representation π of GSpin2n+1(A)

the existence of such a transfer was proved by Asgari-Shahidi [1, Theorem 1.1].
• Anecessary and sufficient condition forΠ to be the transfer of a globally generic cuspidal

automorphic representation of GSpin2n+1 is that it admits a Shalika model which realises
Π in a certain space of functions W : G(AQ) → C, see [2, Sect. 2.6] for details.

2.3 p-stabilisations

Let Π be a cuspidal automorphic representation of G(AQ) which is cohomological with
respect to a pure dominant integral weight μ and suppose that Π is the transfer of a globally
generic cuspidal automorphic representation of GSpin2n+1(AQ). Let B denote the upper
triangular Borel subgroup of G.

Given a prime p at which Π is unramified, define the Hodge-Tate weights of Π at p to
be the integers

hi = μi + 2n − i, i = 1, . . . , 2n. (2)

Remark 4 These weights coincide with the Hodge-Tate weights of the Galois representation
associated to Π when the Hodge-Tate weight of the cyclotomic character is taken to be 1.

Definition 7 Define a set

Crit(Π) = { j ∈ Z : μn ≥ j ≥ μn+1}.

Remark 5 It is shown in [8, Proposition 6.1.1] that the half integers j + 1/2 for j ∈ Crit(Π)

are precisely the critical points of the L-function L(s,Π) in the sense ofDeligne [6,Definition
1.3].

Let p be a prime at which Π is unramified. There is an unramified character

λp : T (Qp) → C×

such that Πp is isomorphic to the normalised parabolic induction module

Ind
G(Qp)

B(Qp)
(| · | 2n−1

2 λp). We define the Satake parameters at p to be the values αi = λp,i (p),
where λp,i denotes the projection to the i th diagonal entry. After choosing an isomorphism
Q̄p ∼= C, we reorder the αi so that they are ordered with respect to decreasing p-adic valua-
tion and such that αiα2n+1−i = λ for a fixed λ with p-adic valuation 2n − 1 + w. That we
can do this is a result of the transfer from GSpin2n+1, see [1, (64)].

We define the Hodge polygon of Π to be the piecewise linear curve joining the following
points in Rn :

⎧
⎨

⎩
(0, 0),

⎛

⎝ j,
j∑

i=1

h2n+1−i

⎞

⎠ : j = 1, . . . , 2n

⎫
⎬

⎭
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and define the Newton polygon on Π at p to be the piecewise linear curve joining the points
⎧
⎨

⎩
(0, 0),

⎛

⎝ j,
j∑

i=1

vp(α2n+1−i )

⎞

⎠ : j = 1, . . . , 2n

⎫
⎬

⎭
.

The following result is due in this form to Hida [9, Theorem 8.1].

Proposition 1 The Newton polygon lies on or above the Hodge polygon and the end points
coincide.

Definition 8 Let I = (i1, . . . , in) ⊂ Zn satisfy 1 ≤ i1 < · · · < in ≤ 2n, and set

αI := αi1 · · · αin .

We call αI p-stabilisation data for Π .

Let Q ⊂ GL2n be the parabolic subgroup given by the partition 2n = n+n. The following
conditions are translations of the conditions of the same name given in [2, Sect. 2.7].

Definition 9 Let I be as above.

• We say that the product αI is of Shalika type if I contains precisely one element of each
pair {i, 2n + 1 − i} for i = 1, . . . , n, see [7, Definition 3.5(ii)].

• We say that αI is Q-regular if it is of Shalika type and if for any other choice of J ⊂ Zn

satisfying the above properties aJ �= aI . This amounts to choosing a simple Hecke
eigenvalue for the Up-operator associated to Q acting on the Q-parahoric invariants of
Πp , see [7, Definition 3.5(i)] and [2, Sect. 2.7].

• Set rI = vp(αI ) − ∑2n
i=n+1 hi . We say that αI is non-critical slope if it satisfies

rI < #Crit(Π).

• We say that αI is minimal slope if

rI = #Crit(Π)/2.

Remark 6 The conditions in Definition 9 are used to control a certain local twisted integral at
p, attached to a choice of parahoric-invariant vectorW in the Shalikamodel. In [7, Proposition
3.4], the authors show that this local zeta integral is an explicit multiple ofW (1). In [7, Lem.
3.6], they use the Shalika-type and Q-regular conditions to exhibit an explicit vectorW in the
Shalika model attached to αI with W (1) = 1, and hence deduce non-vanishing of the local
zeta integral.Wenote thatΠp always admits p-stabilisations of Shalika type.The terminology
is justified by [2, Remark 2.5], which explains that the refinements of Shalika type are exactly
those that arise from refinements of GSpin2n+1. Finally, if the Satake parameter of Πp is
regular semisimple, then all stabilisations of Πp are Q-regular.

In [2] the authors construct 1 a locally analytic distribution L(αI )
p ∈ D(Z×

p , C×
p ) with

respect to a choice of non-critical slope Q-regular p-stabilisation data αI . The distribution
L(αI )
p is of order rI and by [18, Lemma2.10] is uniquely defined by the following interpolation

property: Let θ : Z×
p → Q̄p be a finite-order character of conductor pm , then for m ≥ 1 we

have ∫

Z×
p

x jθ(x)L(αI )
p (x) = ξ∞, j

cx j θ

αm
I

L(Π ⊗ θ, j + 1/2), j ∈ Crit(Π), (3)

1 The authors actually construct p-adic L-functions for the wider class of non-critical p-stabilisations, but
we only work with non-critical slope p-stabilisations in this paper.
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where cx j θ is a constant depending only on x jθ and the infinite factor ξ∞, j is the product

of a choice of period and a zeta integral at infinity. We call such a L(αI )
p a ‘non-critical slope

p-adic L-function’.

3 Plus/Minus p-adic L-functions

We construct the titular plus/minus L-functions.We first note that the condition of non-critial
slope imposes strong restrictions on the number of p-adic L-functions we can construct.

Theorem 4 There are at most two choices of p-stabilisation αI for which L
(αI )
p is non-critical

slope.

Proof Without loss of generality we may assume that μ2n = 0, forcing w = μ1. The end
points of the Newton and Hodge polygons coinciding implies that

vp(λ) = hi + h2n+1−i , i = 1, . . . , n. (†)

The ‘non-critical slope’ condition for I = (i1, . . . , in) is equivalent to

vp(αI ) −
2n∑

i=n+1

hi < hn − hn+1.

We observe that any I that includes a a 2-tuple of integers the form (i, 2n + 1 − i) is
not non-critical slope. Indeed, we can find an explicit I containing some (i, 2n + 1 − i)
with minimal valuation, namely (n, n + 1, n + 3, . . . , 2n), amongst all I containing some
(i, 2n + 1 − i). For such an I we have

vp(αI ) − (hn+1 + hn+2 · · · + h2n)

≥ hn + hn+1 + hn+3 + · · · + h2n − (hn+1 + · · · + h2n)

= hn − hn+2

> hn − hn+1,

where the first inequality is a consequence of the Newton polygon lying above the Hodge
polygon and (†), and the strict inequality is due to dominance. Thus any I containing a pair
of integers (i, j) with i < j and j ≤ 2n + 1− i cannot be non-critical slope, since any such
I has greater valuation than (n, n + 1, n + 3, . . . , 2n). This leaves us with two choices of
potential non-critical slope n-tuples:

In+1 = (n + 1, n + 2, . . . , 2n),

and

In = (n, n + 2, . . . , 2n).

��
In light of Theorem 4 it is clear that the only two choices of p-stabilisation data which

can give a non-critical slope distribution are

α = αn+1αn+2 . . . α2n, β = αnαn+2 . . . α2n .
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Definition 10 We say that Π satisfies the ‘Pollack condition’ if

αn + αn+1 = 0.

Corollary 1 For a non-critical slope p-stabilisation αI we have the following:

• The p-stabilisation αI is of Shalika type.
• If we assume the Pollack condition, then αI is Q-regular.

Proof The first part is immediate from Theorem 4.
For the second claim recall that a p-stabilisation αI is Q-regular if

αI �= αJ

for all I �= J . Suppose αI is a non-critical slope p-stabilisation. Then by Theorem 4

αI = αnαn+2 · · · α2n or αn+1αn+2 · · · αn+1,

and by the Pollack condition these are clearly not equal since they are non-vanishing by non-
critical slope. Finally, for a critical slope p-stabilisation αJ we must have vp(αJ ) > vp(αI )

so αJ �= αI . ��

3.1 Pollack±-L-functions

Let Π be as in the previous section.
As in the previous section, set

α = αn+1αn+2 . . . α2n, β = αnαn+2 . . . α2n,

and let r = vp(α) − ∑2n
i=n+1 hi = vp(β) − ∑2n

i=n+1 hi . The Pollack condition forces

r ≥ #Crit(Π)/2

since

r = vp(α) −
2n∑

i=n+1

hi ≥ vp(αn+1) − hn+1

= hn + hn+1

2
− hn+1

= hn − hn+1

2
= #Crit(Π)/2,

where the first inequality comes from Newton-above-Hodge, and the lower bound given
is tight, with the bound being achieved when the end point of the segment of the Newton
polygon corresponding to αn+2 · · · α2n touches the Hodge polygon. This justifies the use of
the term ‘minimal slope’ in Definition 9.

We assume that

r < #Crit(Π)

so that we can construct precisely two non-critical slope p-adic L-functions L(α)
p , L(β)

p ∈
Dr (Z×

p , Cp).
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Remark 7 Unlike in the case of GL2, for n > 1 the non-critical slope condition for α, β

is not necessarily implied by the Pollack condition. Indeed, suppose one has a cuspidal
automorphic representationΠ of GL2n(AQ) satisfying the Pollack condition at a prime p for
which vp(αi ) = vp(α j ) for 1 ≤ i, j ≤ 2n. The value r is then the same for any choice of p-
stabilisation, so there are either

(2n
n

)
non-critical slope p-adic L-functions or there are none.

But Theorem 4 says there can be at most two choices of non-critical slope p-stabilisation.

Following Pollack, we define

G± = L(α)
p ± L(β)

p

2
,

so that

L(α)
p = G+ + G−

L(β)
p = G+ − G−.

We note that in the case of L(β)
p , the interpolation formula is given by

∫

Z×
p

x jθ(x)L(β)
p (x) = (−1)mξ∞, j

cx j θ

αm
L(Π ⊗ θ, j + 1/2), j ∈ Crit(Π),

from which it follows that
∫

Z×
p

x jθ(x)G+(x) = 0, if the conductor of θ is pm,m odd

∫

Z×
p

x jθ(x)G−(x) = 0, if the conductor of θ is pm,m even.

Equivalently (noting that characters of conductor m correspond to (m − 1)th roots of unity),
if ζpm is any pm th root of unity and p is odd,

M (G+)(γ jζpm − 1) = 0 for m even

M (G−)(γ jζpm − 1) = 0 for m odd

on each of the connected components2 of W(Cp) (which we recall we are identifying with
p− 1 copies of B(0, 0)). When p = 2 the sign flips and the above vanishing is equivalent to.

M (G+)(γ jζpm − 1) = 0 for m odd

M (G−)(γ jζpm − 1) = 0 for m even

For any j ∈ Z, Pollack defines the following power series

log+
p, j (X) := 1

p

∞∏

m=1

�2m(γ − j (1 + X))

p

log−
p, j (X) := 1

p

∞∏

m=1

�2m−1(γ
− j (1 + X))

p
,

in Qp[[X ]], where �m is the pm th cyclotomic polynomial.

2 We are referring to the connected components as a rigid space as opposed to those of the topology on Cp
induced by vp .
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Lemma 3 The power series log+
p, j (X) (resp. log−

p, j (X)) is contained in R+
1/2 and vanishes

at precisely the points γ jζpm − 1 for every pmth root of unity ζpm with m even (resp. odd).

Proof The statements in the lemma are proved in [16, Lemma 4.1] and [16, Lemma 4.5]. We
reprove that log+

p, j is contained inR+
1/2 using the setup of Sect. 2, the result for log

−
p, j being

similar.
An analysis of the Newton copolygon of the Eisenstein polynomial �n gives us that

vB̄(0,uh)
(�n((γ

− j (1 + X))/p) =
{
0 if h ≤ n − 1

pn−h−1 − 1 otherwise,

and thus

vB̄(0,uh)
(log+

p, j ) =
h+1
2∑

m=1

(
p2m−h−1 − 1

)

= p−(h+1) − 1

1 − p2
− 1

2
− h

2
,

whence

infh

(

vB̄(0,uh)
(log+

p, j ) + h

2

)

= 1

p2 − 1
− 1

2
< ∞,

so log+
p, j (X) ∈ R+

1/2 by Lemma 1. ��
We define

log±
Π(X) =

∏

j∈#Crit(Π)

log±
p, j (X) ∈ R+

Crit(Π)/2.

By abuse of notation we will write log±
Π(X) for the element of OW (W) given by log±

Π(X)

on each connected component of W .

Lemma 4 We have

lim sup
h

(

vB̄(0,uh)
(log±

Π) + #Crit(Π)

2
h

)

< ∞.

Proof It follows from the proof of Lemma 3 and the multiplicativity of vB̄(0,uh)
that

vB̄(0,uh)
(log+

Π) + #Crit(Π)

2
h = #Crit(Π)

(
p−(h+1) − 1

1 − p2
− 1

2

)

.

The right side converges as h → ∞ so the lim sup is finite. A similar argument works for
log−

Π . ��
It follows from the above discussion and [12, 4.7] that for odd p the rigid function log±

Π(X)

divides M (G±) in OW (W), and for p = 2 we have that log∓
Π(X) divides M (G±) in

OW (W). Define plus/minus p-adic L-functions L±
p (X) to be the elements of OW (W) sat-

isfying

M (G±) = log±
Π(X) · L±

p (X)
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for p odd, and

M (G±) = log∓
Π(X) · L±

p (X)

for p = 2. We write L±
p for the distribution M−1(L±

p (X)).

Proposition 2 We have

L±
p ∈ Dr−#Crit(Π)/2(Z×

p , Cp).

Proof We note that

lim inf
h

(
−vB̄(0,uh)

(log±
Π) − #Crit(Π)

2 h
)

= − lim sup
h

(
vB̄(0,uh)

(log±
Π) + #Crit(Π)

2 h
)

> −∞.

By the additivity of vB̄(0,uh)
([5, Proposition I.4.2]) we have

vB̄(0,uh)
(L±

p ) + (r − #Crit(Π)
2 )h = vB̄(0,uh)

(G±) + rh − vB̄(0,uh)
(log±

Π) − #Crit(Π)
2 h,

and so since G± ∈ Dr (Z×
p , Cp) (and thus lim inf

(
vB̄(0,uh)

(G±) + rh
)

> −∞) we have

lim inf
h

(
vB̄(0,uh)

(L±
p ) + (r − #Crit(Π)

2 )h
)

> −∞
and so by Lemma 1 we are done. ��
In particular, in the minimal slope case r = #Crit(Π)

2 we get two bounded distributions.

Remark 8 • One might ask if there is an analogue of the plus/minus theory for p-adic
L-functions for GL2n+1. Beyond the exact methods used in the present paper, there is
an immediate stumbling block: in general, for n ≥ 3 odd even the usual theory of p-
adic L-functions is very poorly developed. For non-ordinary Π on GL2n+1, the only
constructions of p-adic L-functions are for n = 1 and Π a symmetric square lift from
GL2; in this case, a study of signed Iwasawa theory has been considered in [3].

• The proofs above show that if we relax the minimal slope hypothesis we still obtain a
pair of plus/minus L-functions which are unfortunately not bounded. Since the subsets
of weight space on which these functions interpolate L-values are disjoint it seems that
there is no hope in attempting a similar construction for these functions.

• In the case that we have a GL2n(AQ) representation admitting p-stabilisations which
are critical but not non-critical slope Theorem 4 no longer holds. As a result, for each
such p-stabilisation we can construct a p-adic L-function, giving us at most

(2n
n

)
p-adic

L-functions. It’s possible that one could generalise the methods of this paper and utilise
all of these p-adic L-functions to construct bounded functions analogous to L±

p , but this
is not something we have explored.

3.2 An example of a GL4(AQ) representation satisfying the Pollack condition

We give an example of a cuspidal automorphic representation of GL4(AQ) satsifying the
Pollack condition and having minimal slope using the theory of twisted Yoshida lifts (see
[15, Sect. 6] for an overview).

Let F = Q(
√
5) and let σi : F → R, i = 1, 2 be the embeddings of F into R. The

prime 41 splits in F and we write M for one of its prime factors. Using Magma we see that
there is a weight (4, 2) cuspidal Hilbert newform f over F of level N = M2 and of trivial
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character and with complex multiplication by the unique extension E/F such that E/Q is
not Galois and in which M ramifies. Thus there is a Hecke character ψ over E with infinity
type z �→ ε1(z)3ε2(z)2ε̄2(z), where εi , ε̄i : E → C, i = 1, 2, are the pairs of conjugate
embeddings of E and such that the Hecke eigenvalue of f at a prime ℘ of F is given by

a℘ =

⎧
⎪⎨

⎪⎩

ψ(q1) + ψ(q2) if ℘ = q1q2 in E

ψ(q) if ℘ = q2 in E

0 otherwise.

Let L be the number field generated by the Hecke eigenvalues of f . Since the weight is not
parallel we have F ⊂ L . Fix a rational prime p � N and let Lv be the completion of L at a
prime v over p. Suppose now that p splits in F and write p = ℘1 · ℘2, labelled such that
σi (℘i ) is below v.

Let ψGal,v : GE → Lv be the v-adic character of GF = Gal(F̄/F) associated to ψ by
class field theory, so that V f ,v := IndGF

GE
ψGal,v is the GF -representation associated to f .

This representation is crystalline at primes not dividing N . The Hodge-Tate weights of V f ,v

are given by (0, 3) at σ1 and (1, 2) at σ2.
The restriction of V f ,v to GE splits as a direct sum of characters:

V f ,v|GE = ψGal,v ⊕ ψc
Gal,v,

where c ∈ Gal(E/F) is the non-trivial element. If a prime ℘ of F above p splits in E
then a decomposition group D℘ ⊂ GF at a prime over ℘ is contained in GE and we have
Dcris(V f ,v|D℘ ) = Dcris(ψGal,v|D℘ ) ⊕ Dcris(ψ

c
Gal,v|D℘ ) whence f is ordinary at ℘ as the

image of the functor Dcris is weakly admissible. Taking v to be above σ1(℘) and writing the
prime decomposition of ℘ in E as ℘ = q1q2 we have

vv(ψ(q1)) = 0

vv(ψ(q2)) = 3

up to reordering of the qi .

Theorem 5 Supposeπ is a cuspidal automorphic representation generated by a holomorphic
Hilbert modular form of weight (k1, k2) over a totally real field F. Suppose that:

• For 1 �= θ ∈ Gal(F/Q) we have πθ �≈ π ,
• There is a Hecke character ε over Q such that the central character ωπ of π satisfies

ωπ = ε ◦ NormF/Q.

Then there is a unique globally generic cuspidal automorphic representation �(π,ωπ) of
GSp4(AQ) (a twisted Yoshida lift) of weight ( k1+k2

2 ,
|k1−k2|

2 − 2) with central character ε

satisfying

L(Π, s) = L

(

π, s + max{k1, k2} − 1

2

)

.

Proof See [15, Theorem 6.1.1 and Proposition 6.1.4]. ��
Let π be the cuspidal automorphic representation of GL2(AE ) generated by f . Since f has
non-parallel weight we see that π �≈ πθ for non-trivial θ ∈ Gal(F/Q).

SetΠ = �(π, 1). ThenΠ a cuspidal automorphic representation of GSp4(AQ) of weight
(3, 3) with trivial central character. This weight lies in the cohomological range and thus Π

is cohomological. The Hodge-Tate weights of Π are (0, 1, 2, 3).
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Recall that we have a rational prime p such that p splits in F :

pOF = ℘1℘2.

We assume further that ℘2 is inert in E and ℘1 splits, and we write the factorisation of ℘1 as

℘1 = P1P2.

Primes satisfying the above conditions are not uncommon, for example, the primes 11 and 19
admit this splitting phenomena in the tower E/F/Q. We remark that a necessary condition
for such a splitting is that E is non-Galois over Q. The local L-factor of Π at such a p is
given by

L p(Π, s)−1 = (1 − ψ(P1)p
−s)(1 − ψ(P2)p

−s)(1 − ψ(℘2)p
−2s).

Choosing a prime v of L lying above p such that v lies above σi (℘i ), we deduce that Π

satisfies the Pollack condition and has two minimal slope p-stabilisations. By Corollary
1 these p-stabilisations are Q-regular and Shalika. There is an exceptional isomorphism
GSp4 ∼= GSpin5 and so we are done by applying the functorial lift from GSpin5 to GL4.

4 Non-vanishing of twists

We use L±
p to show non-vanishing of the complex L-function of Π at the central value,

extending work of Dimitrov, Januszewski, Raghuram [7] to a non-ordinary setting.

Proposition 3 In the case that Crit(Π) �= {w/2}, we have
L±
p �= 0.

Proof We consider L+
p , the case of L

−
p being essentially identical and we further assume p

is odd for brevity of notation (although the same argument works in this case). Note that a
character θ : Z×

p → C×
p of conductor pm+1 corresponds to a choice of primitive pm th root

of unity ζθ in a discW determined by the restriction ψθ of θ to (Z/qZ)×, which gives us the
identification

∫

Z×
p

x jθ(x)log+
Π(x) = log+

Π(ψθ , γ
jζθ − 1),

where on the left hand side we use the description of log+
Π as a distribution and on the right

hand side log+
Π(ψθ ,−) is the restriction of log+

Π to the disc in W corresponding to ψθ . We
adopt the analogous notation for L p . It follows from Lemma 3 that log+

Π(ψθ , γ
jζθ − 1) �= 0

if m is odd (resp. even for p = 2). Thus for characters θ of odd p-power conductor we have
the interpolation property

L p(ψθ , γ
jζθ − 1) ∼ L(Π ⊗ θ, j + 1/2)

log+
Π(ψθ , γ jζθ − 1)

, j ∈ Crit(Π),

where ∼ is used here to mean ‘up to non-zero constant’. By Jacquet-Shalika [10, 1.3] we
have

L(Π ⊗ θ, s) �= 0 for Re(s) ≥ w/2 + 1

123



R. Rockwood

for finite order characters θ , and by applying the functional equation we get non-vanishing
forRe(s) ≤ w/2. Since Crit(Π) contains an integer k not equal tow/2, the above discussion
gives us

L(Π, k + 1/2) �= 0,

and thus L+
p �= 0. ��

Remark 9 Proposition 3 actually proves the stronger result that the power seriesM (L±
p )|Bψ

is non-zero for each choice of ψ .

We can turn this back on itself and use L±
p to say something about nonvanishing of L(Π ⊗

θ, (ω + 1)/2) in the case when L±
p ∈ D0(Z×

p , Cp).

Theorem 6 In the case that L±
p are bounded distributions, w is even, and Crit(Π) �= {w/2},

we have

L(Π ⊗ θ, (w + 1)/2) �= 0

for all but finitely many characters θ of p-power conductor.

Proof Assume p odd for brevity, again noting that the argument works fine in this case. For
any character ψ of (Z/pZ)× we can write M (L±

p )|Bψ
= L±

p (ψ, T ) ∈ OL [[T ]] ⊗OL L for
some finite extension L/Qp . We note that M (L±

p ) = ∑
ψ 1Bψ

L±
p where 1Bψ

denotes the
indicator function on Bψ . This power series is non-zero by Proposition 3 and Remark 9, and
so Weierstrass preparation tells us that each L±

p (ψ, T ), and thus L±
p , has only finitely many

zeroes. Given any character θ of p-power conductor, we have
∫

Z×
p

xw/2θ(x)L?
p(x) ∼ L(Π ⊗ θ, (w + 1)/2),

where

? =
{

+ if the conductor of θ is odd p -power

− otherwise
.

Thus, for all but finitely many θ , we have

L(Π ⊗ θ, (w + 1)/2) �= 0.

��
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