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Abstract 
Lead exposure remains a significant threat to children’s health despite decades of policies aimed 
at getting the lead out of homes and neighborhoods. Generally, lead hazards are identified 
through inspections triggered by high blood lead levels (BLLs) in children. Yet, it is unclear how 
best to screen children for lead exposure to balance the costs of screening and the potential 
benefits of early detection, treatment, and lead hazard removal. While some states require 
universal screening, others employ a targeted approach, but no regime achieves 100% 
compliance. We estimate the extent and geographic distribution of undetected lead poisoning in 
Illinois. We then compare the estimated detection rate of a universal screening program to the 
current targeted screening policy under different compliance levels. To do so, we link 2010-2016 
Illinois lead test records to 2010-2014 birth records, demographics, and housing data. We train a 
random forest classifier that predicts the likelihood a child has a BLL above 5µg/dL. We 
estimate that 10,613 untested children had a BLL≥5µg/dL in addition to the 18,115 detected 
cases. Due to the unequal spatial distribution of lead hazards, 60% of these undetected cases 
should have been screened under the current policy, suggesting limited benefits from universal 
screening.  
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Introduction 

A recent literature has emphasized the role of place in shaping children’s opportunities growing 

up, however “we know little about the relative importance of the different mechanisms that are 

typically “bundled” together within a neighborhood”, including pollution. (1) Lead is a 

neurotoxic heavy metal that was commonly used, for example in paint, gasoline, and plumbing. 

Because it does not decay, it still plagues neighborhoods throughout the United States, 

contaminating homes, soil, and water, and endangering human health. Childhood lead exposure 

is especially harmful; it is associated with lifelong developmental impacts, including decreased 

IQ and increased impulsivity and delinquency. (2–9) These burdens are disproportionately borne 

by communities of color and families of low socioeconomic status (10) potentially exacerbating 

existing inequalities. (11) 

 

Lead paint was extensively used in the first half of the last century, until its ban for residential 

purposes in 1978 due to its recognized health hazards. The US Department of Housing 

Development estimates that lead paint still lingers in 5.5 million houses inhabited by small 

children nationwide, resulting in hazards in a fifth of homes with small children and constituting 

the major source of lead exposure today (12,13). Recognizing these risks, federal and state 

agencies continue to enact and fund policies to “get the lead out”, including disclosure and 

abatement mandates of known lead hazards in homes. Yet, these policies appear to have failed to 

eliminate lead exposure and 500,000 young children are estimated to be still poisoned by lead 

each year in the US. (3)  
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While the reasons behind this policy failure remain unclear, this paper sheds light on one 

potential mechanism, namely imperfect information on the location of lead hazards. For 

example, a recent study uses the National Health and Nutrition Examination Survey to estimate 

that states detect and report to the CDC only 64% of the actual cases of BLL≥10µg/dL. (14)  To 

analyze the role of hidden hazards and undetected lead poisoning, we implement a machine 

learning algorithm that identifies children who were likely exposed to lead but never tested. Our 

results highlight that the spatial distribution of lead exposure sources can be leveraged to target 

resources to uncover and remediate lead hazards. Until then, hidden lead hazards likely 

contribute to persistent patterns of spatial inequality. 

 

Lead poisoning prevention programs in the United States follow a secondary prevention 

approach: blood lead screening identifies lead-exposed children who are then referred for case 

management including removing exposure sources. Which children are screened is thus crucial 

to identify lead hazards. While federal guidelines mandate that children on Medicaid are 

screened at ages one and two, guidelines for other children vary by state. Fourteen states and the 

District of Columbia currently mandate universal screening, that is testing all children, although 

their screening rates fall well short of 100%. (15) Other states have adopted the targeted 

screening approach recommended by the CDC, wherein testing is required only for children 

deemed at high risk for lead exposure, identified either through to socioeconomic and location 

information or through a self-assessment questionnaire. (16)  

 

While targeted screening might better balance the costs of screening with the potential benefits 

of early detection and treatment, its efficacy hinges on the targeting tools, including self-
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assessment questionnaires (17,18) and existing estimates of the distribution of exposure risks. 

However, these estimates might be biased precisely because targeted screening data cover a non-

representative sample of children. (19) Moreover, the CDC targeting guidelines were last 

updated when the intervention threshold was 10µg/dL, (20) so at today’s 5µg/dL reference level, 

or a proposed threshold of 3.5µg/dL, the benefits of targeted screening may diminish. (21)  

 

We propose a new framework to estimate local childhood lead exposure prevalence in Illinois 

and use these estimates to compare detection rates under different screening policies. We use 

machine learning to predict the number of above-threshold BLLs missed under the current 

targeted screening policy and estimate how many of these additional above-threshold BLLs 

would be detected under different levels of compliance with a targeted vs. a universal screening 

policy. Currently, the Illinois Department of Public Health (IDPH) designates zip codes as high-

risk based on housing age and the percentage of children living below 200% of the federal 

poverty line (Figure 1). Children must receive a BLL test if they reside in one of these high-risk 

zip codes, if they are on Medicaid, or if they screen positive on a risk assessment questionnaire. 

During most of our sample period (2010-2016), the intervention threshold in Illinois was 

10µg/dL, but from 2015 local delegate agencies could lower the threshold based on their 

funding. In 2019, the intervention threshold was lowered to 5µg/dL for the entire state of Illinois. 

 

Our model predicts the probability that each child born in Illinois between 2010 and 2014 had a 

BLL≥5µg/dL and ≥10µg/dL, regardless of whether they were screened for lead exposure. We 

train this model using lead testing records linked to geocoded birth records as well as other 

characteristics that are understood to contribute to lead exposure (housing age, proximity to 



 5 

major roads, and industrial lead emissions). Using these predictions, we estimate the number of 

undetected above-threshold BLLs (both at BLL≥5µg/dL and ≥10µg/dL) under the status quo 

targeted screening strategy, as well as under a universal screening strategy. To account for 

imperfect compliance with universal screening, we repeat this estimation under various 

assumptions about screening compliance. By performing our analysis with two intervention 

thresholds of 10µg/dL and 5µg/dL, we evaluate how the effectiveness of lead screening policies 

changes as the intervention threshold decreases and different exposure sources assume different 

importance in explaining high blood lead levels. While we think that our preferred methodology 

best addresses issues of selection bias and rare outcomes, we also show that a simple logistic 

regression model could achieve reasonable accuracy and be used in a similar fashion. Thus, our 

methodology appears accessible to policy makers and stakeholders nationwide. 

 

We report two main findings. First, we find evidence of significant non-detection: we estimate 

that over a third of cases of BLLs at or above 5µg/dL went undetected during our sample period. 

Second, undetected lead exposure cases appear to be disproportionally located in high-risk zip 

codes, potentially contributing to inequality in human capital and labor market outcomes. As a 

result, increasing screening rates in areas already targeted for screening would uncover more 

cases than extending universal screening at current compliance rates. Second, elevated BLLs at 

lower thresholds appear more geographically dispersed, suggesting that more subtle exposure 

sources driving low-level lead exposure might be less spatially clustered than main exposure 

sources at higher levels.  
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This paper contributes to a literature examining the benefits of universal screening. So far, 

studies have projected undetected cases by multiplying the number of children not tested under a 

targeted model with the rate of elevated test results. (22,23) This approach dramatically 

overestimates the benefits of universal screening because it assumes tested and untested children 

have similar rates of above-threshold BLLs. By contrast, we acknowledge 1) that children tested 

under a targeted screening scheme are, by construction, a higher risk group and 2)  that 

compliance with screening guidelines is imperfect. (24,25) We also contribute to growing 

literature using machine learning tools to estimate the extent of lead exposure and innovate by 

using geocoded individual-level data. (26) 

 

Data 

We obtained birth records for all 807,694 children born in Illinois between 2010 and 2014 from 

IDPH. These birth records include the child’s address, race, ethnicity, parental education level, 

parental age, and other demographic information. We also obtained records of all 1,105,168 lead 

tests performed in Illinois between 2010 and 2016 on children born between 2010 and 2014. 

Each lead test record contains the name of the child, the date of the blood draw, the type of blood 

test used (venous or capillary), the measured BLL, and the laboratory that processed the test. We 

use the highest BLL recorded for each child by age two to measure whether the child ever tested 

above the intervention threshold by that age. We use testing by age two both because the damage 

of lead exposure is thought to be more severe at lower ages, and to align with the federal 

screening guidelines for children on Medicaid, which specifically require two tests by age two. 

Because venous tests are more reliable than capillary tests, we consider each child’s highest 
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venous test result. If a child had not received a venous test, we instead use the highest capillary 

test result. 

 

Certain laboratories had minimum reporting limits, meaning all BLLs below a certain threshold 

were reported as the threshold limit (e.g. reporting BLL≤3µg/dL as 3µg/dL). We determine 

minimum reporting cutoffs for each laboratory/test type/year combination by manually 

reviewing BLL histograms. The BLL distribution is right-skewed, meaning an absence of tests 

below a certain value for a given laboratory likely indicates a minimum reporting limit. We 

estimate that 22,609 tests (2%) were performed by laboratories with a reporting limit ≥5µg/dL. 

We recode these to the mean BLL of children in the same zip and age cohort. 

 

We link the lead testing and birth datasets using a custom fuzzy matching algorithm based on the 

Jaro-Winkler string distance of first name, last name, and date of birth, with manual 

determination of optimal cutoffs. (27) We successfully geocode birth addresses for 734,699 

children. For each census block group, the American Communities Survey provides data on 

socioeconomic status, percent homeowners, and social vulnerability index. (28) We obtained 

data on housing age from the Zillow Transaction and Assessment Dataset, (29) and geocode 

these data for linkage to birth addresses. We also collected the Environmental Protection 

Agency’s Toxic Release Inventory (TRI) data which detail industrial lead emissions by facility, 

(30) and the location of state and interstate highways from the Illinois Department of 

Transportation. (31) We then calculate the distance from lead-emitting facilities and roadways to 

each child’s address. 
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Table 1 shows summary statistics for selected characteristics of children in our sample, stratified 

by whether a child was tested for lead exposure by age two. Tested children are more likely to be 

Black (20.4% vs. 14.1% p<0.001), Hispanic (28% vs. 16.2%, p<0.001), and have mothers 

without college education (43.9% vs. 27.9%, p<0.001). At birth, they are more likely to live in 

low-income census block groups (32.7% vs. 16.0%, p<0.001) and in pre-1930 housing (39.5% 

vs. 22% p<0.001). 

 

Methodology 

We use machine learning tools to predict the number of above-threshold BLLs amongst 

unscreened children based on observable characteristics in our data. Figure 2 summarizes the 

components of our prediction model. To begin, we generate 366 features characterizing 

demographics and exposure sources for each child. Because our goal is to build a model that 

could make accurate predictions on lead exposure among untested children, we train our model 

only on data that is available for both tested and untested children. Next, we use a Least Absolute 

Shrinkage and Selection Operator (LASSO) regression cross-validated at the minimum mean 

squared error to select 260 variables with a non-zero coefficient. We use these variables to train a 

random forest classifier that predicts the likelihood a child has a BLL≥5µg/dL and ≥10µg/dL. 

Weighted random forests avoid overfitting data and are particularly useful for datasets with a 

rare outcome of interest, as is an above-threshold BLL. (32) We train our model on 90% of the 

records of tested children, randomly withholding 10% for validation.  

 



 9 

Our prediction problem presents two main challenges: selective labels and rare events. First, we 

can only train our model on tested children, and these children are observably different from 

untested children (see Table 1). To mitigate selection bias, we re-weight each observation i in the 

training sample by the inverse probability that child i was screened, Pi
screen. To estimate Pi

screen, 

we use a LASSO logistic regression and random forest, using the observable characteristics 

discussed above, as well as additional predictors of screening such as distance from a testing 

provider.  

 

Second, above-threshold BLLs are a comparatively rare event, occurring in less than five percent 

of the study population. This means an algorithm could achieve 95% accuracy by simply 

classifying all samples as below-threshold. To improve prediction accuracy for above-threshold 

BLLs, we oversample above-threshold BLLs in the training data so that the model would 

encounter a roughly equal number of below- and above-threshold BLLs. (32) We re-weight 

above-threshold BLL observations by the inverse probability of above-threshold BLLs, 

PBLL>Threshold. The final weight of each child i in the training data is 1/ Pi
screen if the highest BLL 

was below-threshold and 1/( Pi
screen * PBLL≥Threshold) if the highest BLL was above-threshold.  

 

With these weights, we use the R ranger package to train the random forests and tuneRanger to 

optimize the random forest parameters. (33) We validate the model’s performance using the 10% 

sample of randomly withheld testing data. Among the 1% of children labelled as highest risk, 

39.7% and 25.6% had a BLL≥5µg/dL and ≥10µg/dL respectively, compared to 3.9% and 0.6% 

of all children in the sample (Figure A.1). Thus, amongst the highest risk children the model 

performs ten times and forty-two times better than random chance at predicting BLL≥5µg/dL 
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and BLL≥10µg/dL, respectively. We report variable importance using Gini importance. The ten 

highest Gini importance variables for prediction of BLL≥5µg/dL include the number of above-

threshold BLLs near the child’s birth address and socioeconomic status in the child’s birth block 

group (Table A.1). 

 

Finally, we compare our random forest model to a LASSO penalized linear regression model that 

predicts BLLs, as well as to a logistic regression.1 Both the linear and logistic models are 

estimated on the unweighted training sample. Table A.2 shows estimates from the logistic model 

for selected predictors that appear to significantly correlate with the probability that a child had 

BLL≥5µg/dL. Most relationships have the expected sign: younger and less educated mothers are 

more likely to have children with a BLL≥5µg/dL, although the same is true for married mothers, 

which is unexpected. Children in bigger families, older homes, high risk neighborhoods, and 

homes and neighborhoods with past cases of high BLLs are more likely to have high blood lead 

levels. However, in buildings with more than one instance of previous cases of high BLLs, this 

probability decreases, potentially due to remediations. It is noteworthy that coefficients on 

neighborhood socioeconomic status variables have an unexpected sign, likely due to predictors 

being highly correlated. Proximity to major roads and industrial establishments emitting lead 

does not appear to be significantly correlated with above-threshold BLLs. 

 

We examine the performance of these models using the area under the curve (AUC) on the 

receiver operating characteristic curve (ROC), which plots the true positive rate (sensitivity) vs. 

 
1 The logistic regression excludes the 103 county indicators included in the other models for computational reasons. 
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false positive rate (1-specificity) of a prediction model for all possible cutoff values of the 

predictor (Figure A.2). The random forest outperforms the linear regression model in predicting 

both BLL≥10µg/dL and ≥5µg/dL (Figure A.2).2 The random forest achieves AUCs of 0.774 and 

0.905 for predicting BLLs ≥5µg/dL and 10µg/dL on the testing sample, respectively. 

Interestingly, the simpler logistic model slightly outperforms the random forest model in 

predicting BLL≥5µg/dL, but does worse in predicting BLL≥10µg/dL, achieving AUCs of 0.778 

and 0.896, respectively. 

 

To estimate a child’s actual exposure risk, we divide the sample into 50 risk groups based on the 

value of their random forest predictor, separately for BLL≥10µg/dL and ≥5µg/dL. We compute 

an untested child’s exposure risk as the average risk among tested children within the same risk 

group. 

 

To account for imperfect compliance, we simulate the number of above-threshold BLLs detected 

under each model for four levels of compliance with screening guidelines, that is the 50th, 75th, 

90th, and 100th percentile of screening rates in current high-risk zip codes, corresponding to 

screening rates of 61.1%, 71.4%, 81.3% and 100% (Figure A.3). In each zip code with 

population P and T tested children, we randomly select U of the (P-T) untested children until the 

total screening rate (U+T)/P is equal to the desired screening rate. For each of these U children, 

we simulate whether the child had an above-threshold BLL based on our calibrated probability. 

We calculate the total number of above-threshold BLLs in each zip code by adding the number 

 
2 For this exercise, we use the rank order of predicted BLLs from the linear model. 
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of above-threshold BLLs detected among T tested children to the number of above-threshold 

BLLs simulated among the U untested children. We repeat the sampling process 1,000 times and 

reported mean values and 95% confidence intervals. 

 

Results 

In our sample, 18,115 tested children have a BLL≥5µg/dL and 3,292 tested children have a 

BLL≥10µg/dL. We estimate substantial underdetecton of lead exposure: among children born 

between 2010-2014, current testing practices detected 63% of BLL≥5µg/dL and 70% of 

BLL≥10µg/dL. Indeed, our model predicts an additional 10,613 (95%CI 10,423-10,804) of the 

356,432 untested children had BLL≥5µg/dL (Table 2). We also predict an additional 1,387 

(95%CI 1,319 to 1,455) of the 356,432 untested children had BLL≥10µg/dL.  

 

While the number of predicted above-threshold BLLs decreased significantly over time, the 

detection rate stayed relatively stable. Figure 3 plots the model-predicted number of total above-

threshold BLLs, by year, by screening compliance, and by BLL intervention threshold (5 and 

10µg/dL). In the 2010 birth cohort, there were 7,348 children with a BLL≥5µg/dL, compared to 

4,529 children in the 2014 cohort – a 38.4% decline (Figure 3a). However, the percent of all 

BLLs that were detected rose only from 60.5% in 2010 to 63.9% in 2014. 

 

To investigate where children with undetected BLLs are, Figure 4 plots the rate of detected and 

predicted undetected BLLs≥5µg/dL in each zip code, highlighting a positive correlation between 

detected and undetected cases. Undetected lead poisoning cases appear to be concentrated in 
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areas already identified as high risk and therefore these children should have been tested under 

Illinois’ existing screening policy. Indeed, a comparison with Figure 1 shows a disproportionate 

rate of undetected above-threshold BLLs in high-risk zip codes. Table A.3 further illustrates this 

point by showing the model predictions stratified by zip code risk status. While there are fewer 

untested children in high-risk zip codes (119,077 vs. 237,355), 60% of untested children with 

predicted BLL≥5µg/dL lived in high-risk zip codes (6,375) rather than low-risk ones (4,238). 

Our model predicted that 68% of children with undetected BLL≥10µg/dL were in high-risk zip 

codes (948) rather than low-risk zip codes (440).  

 

This unequal distribution of lead hazards suggests that targeted screening might have its merits. 

Figure 5 plots the geographic dispersion of predicted above-threshold BLL by calculating the 

cumulative number of above-threshold BLL located in each top percentile (x-axis) of zip codes 

based on the probability of above-threshold BLL. Currently, Illinois designates 42% of zip codes 

as high-risk. These zip codes include 66.3% and 71.5% of all predicted cases of BLL≥5µg/dL 

and BLL≥10µg/dL. However, we find evidence of spatial concentration of lead hazards 

translating into unequal likelihood of lead exposure even with neighborhoods already deemed as 

high risk. According to our predictions, the riskiest 42% of zip codes in Illinois were home to 

almost 95% of all children with BLL≥10µg/dL. Thus, by adjusting the definition of high-risk zip 

codes, states may be able to detect a higher number of above-threshold BLLs without increasing 

the number of high-risk zip codes. 

 

Next, we investigate the role of compliance with screening guidelines in leaving cases of above-

threshold BLLs undetected. If a universal screening regime had been in place and all zip codes 
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achieved the same screening compliance as the median high-risk zip code under Illinois’ existing 

regime, an additional 89,761 children would have been tested, which would have resulted in 

detecting only an additional 1,537 BLL≥5µg/dL (95%CI 1,463-1,612) and an additional 168 

BLL≥10µg/dL (95%CI 143-193). Raising compliance to the 75th percentile would have required 

150,237 additional children to be tested and would have found another 3,236 BLL≥5µg/dL 

(95%CI 3,129-3,343) and an additional 389 BLL≥10µg/dL (95%CI 351-426). Compliance with 

universal screening at the 90th percentile of current high risk zip codes would have resulted in an 

additional 219,138 tests and detected another 5,572 BLL≥5µg/dL (95%CI 5,432-5,712) and 704 

BLL≥10µg/dL (95%CI 654-753). We estimate that 76% of children with undetected 

BLLs≥10µg/dL and 61% of children with undetected BLLs≥5µg/dL resided in high-risk zip 

codes.  

 

These estimates suggest that universal screening is not necessarily a panacea to fix under-

detection. Under realistic assumptions about compliance with universal screening, only a fraction 

of these additional above-threshold BLLs would have been detected. It is possible that a 

universal screening policy could increase compliance because it is easier to communicate but 

such gains in compliance are far from assured. All zip codes in Chicago are high-risk, implying a 

de-facto universal screening policy. Yet, average screening rates in Chicago were 62.6%, 

compared to 62.9% in high-risk zip codes outside of Chicago. 

 

Our results highlight one challenge in identifying and addressing lead hazards going forward. 

First, as the exposure threshold decreases, above-threshold BLLs become more dispersed 

throughout the state (Figure 5). As illustrated in Table 2, 50% and 90% of all predicted 
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BLL≥5µg/dL cases resided in 32.2% and 70.8% of all zip codes, while 50% and 90% of all 

BLL≥10µg/dL cases resided in 16.9% and 34.7% of all zip codes. Perhaps as a result, a higher 

share of BLL≥5µg/dL cases than BLL≥10µg/dL cases go undetected. During the study period, 

there were approximately 6.5 times as many cases of BLL≥5µg/dL as BLL≥10µg/dL, but we 

estimate 10 times as many undetected cases of BLL≥5µg/dL as BLL≥10µg/dL. In related work, 

we have also shown that the relative importance of exposure sources shifts with decreasing 

intervention thresholds, which may make it more difficult to identify cases of above-threshold 

BLLs by relying on proxies for lead exposure. (21) The increased dispersion of cases that exceed 

lower intervention thresholds reduces the benefits of targeted screening. 

 

Limitations 

To predict above-threshold BLLs among all children, we are limited to predictors of lead 

exposure at the birth address, because addresses at the time of test are only available for tested 

children. We also do not have access to reliable data indicating whether or not a child was on 

Medicaid, a potentially important determinant of testing. While we validate the predictive 

accuracy of these variables on withheld data, data reflecting current residences could further 

improve predictive power. Our analysis also lacks data on certain pathways for lead exposure, 

such as lead in drinking water, toys, or parental occupational exposure. However, housing 

vintage likely partially accounts for the effects of lead in water because the use of lead pipes and 

service lines follows historical patterns. (34) Additionally, the missing exposure sources are 

understood to represent only a small part of total lead exposure. (10) Finally, while we mitigate 
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selection biases by re-weighting our prediction sample, there are observable differences in risk 

between tested and untested children. 

 

Policy Implications 

Figure 3 shows that the share of non-detected above-threshold BLLs remained constant 

throughout our sample period, although lead exposure in Illinois and nationwide has decreased. 

(20) This finding suggests that under-detection will remain a substantial issue even as the 

absolute number of cases continues to fall. As case management has been found to reduce the 

damages of lead exposure, under-detection could be a significant factor in hindering these 

children’s ability to develop. (35) So, is universal screening warranted? 

 

In this section, we perform a back-of-the-envelope calculation to compare the cost of detecting 

an additional child with above-threshold BLL under a universal and targeted screening program 

focusing on current high-risk zip codes in Illinois. The results crucially hinge on our main 

finding that lead exposure appears concentrated in neighborhoods already deemed as high risk, 

thus suggesting that a targeted approach might be more cost-effective. However, as the 

intervention threshold decreases more children would be eligible for interventions (and thus 

benefit from screening) outside areas currently considered as high-risk, increasing the value of a 

universal screening program. 

 

The costs and benefits of a screening program are hard to quantify. Costs include laboratory and 

material costs, opportunity costs of time for parents, e.g., travel costs to the doctor’s office (36) 



 17 

and health care service providers, and non-monetary costs (e.g., pain if venous blood sample). 

The price tag for private tests ranges up to $43 in Illinois3, while other indirect costs are harder to 

measure. We estimate that under universal screening with perfect compliance, an additional 

1,387 cases of BLL≥10µg/dL would have been detected among the 356,432 untested children 

born in Illinois between 2010 and 2014. Thus, the nominal cost of tests (using $43 as the full 

cost) per case of BLL≥10µg/dL detected is $11,050. A program increasing screening to 100% in 

high-risk zip codes only would have detected 948 additional cases of BLL≥10µg/dL among the 

119,077 unscreened children born in those zip codes, at a cost of $5,401, that is less than a half 

of the cost of a universal screening program. The cost per BLL≥5µg/dL detected would be 

$1,444 under a universal screening program and $803 under a targeted program achieving 100% 

compliance, allowing to detect 10,613 and 6,375 additional cases, respectively.  

 

As a benchmark, we can consider that the main benefits of screening accrue to children with 

above-threshold BLLs who receive beneficial interventions. These interventions have been found 

to improve school performance and reduce antisocial behavior, for a value of $9,666 for each 

child with a BLL≥10µg/dL. (35) 

 

Conclusion 

We estimate the extent and geographic distribution of undetected lead poisoning in Illinois using 

administrative data and machine learning tools. We leverage these estimates to compare how 

 
3 https://www.luc.edu/media/lucedu/hhhci/pdf/leadsafeil/LeadSafeILDirectory061_.pdf, accessed in November 
2021) 
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many above-threshold BLLs are missed under the status quo targeted screening and a simulated 

universal screening regime with different levels of compliance, for intervention thresholds of 

5µg/dL and 10µg/dL. We find that current testing practices failed to detect 37% of BLL≥5µg/dL 

and 30% of BLL≥10µg/dL. Moreover, 60% of children with undetected BLL≥5µg/dL in Illinois 

lived in zip codes where every child should already be tested under current Illinois’ testing 

guidelines. These are neighborhoods with old housing and low socioeconomic status, suggesting 

that undetected lead poisoning might exacerbate existing patterns of inequality. 

 

The spatial distribution of lead hazards implies that states may see the largest gains in above-

threshold BLL detection from improving compliance with existing screening policies, rather than 

expanding to a universal screening regime as currently advocated by many. How to increase 

screening rates remains an open question, however. Travel cost and inconvenient access to health 

care providers appear to be one barrier, together with providers’ idiosyncratic lower propensity 

to refer children for lead screening. (36) We caveat our analysis noting that under a lower 

exposure threshold, the benefits of targeted screening may be reduced because above-threshold 

BLLs become more geographically disperse as the threshold is lowered. 

 

Finally, we demonstrate how machine learning can improve targeted screening by leveraging 

detailed demographic and exposure data and providing a more accurate estimate of each child’s 

risk of an above-threshold BLL. This risk estimate could be used to categorize zip codes as high-

risk in a targeted screening program. While local health departments have used similar 

approaches to target screening and educate providers and patients about their risk, (37) our work 

represents the first such model at a state-level. Statewide models can harness economies of scale, 
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using larger datasets to improve prediction accuracy, while local health departments may lack the 

resources for geospatial modeling. Implementing risk stratification tools into electronic medical 

records could also help healthcare providers ensure that the highest risk children are tested. This 

avenue offers promise; Figure 1 shows that in our model, the highest risk 1% of children have a 

probability of above-threshold BLL≥5µg/dL of 39.7%, more than 10 times that of an average 

Illinois child, opening the door for child-level targeted screening. This approach can be adapted 

for other states based on the available data sources. The resulting predictions can be used to 

inform lead testing policy, evaluate the effects of changing intervention thresholds, and identify 

the children at highest risk for lead exposure. 
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Figures 
 
Figure 1: High-Risk Zip Codes in Illinois (2006-Present Designation) 
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Figure 2: Predictive Model Architecture 
 

2 Screening Model
Random Forest

5 Exposure Model
Random Forest (prediction Model)
Weights: Probability of screening

6 Estimate probability of BLL>5, BLL>10
Group children in risk buckets based on 

RF output

7Simulate State wide numbers of 
BLL>5 and BLL>10 based on true 

measured BLL (tested children) and 
estimated probability(untested 

children)

1 Screening Model
LASSO Logistic Regression for 

feature selection

3 Screening Model
Estimate probability of getting 

tested

4 Exposure Model
LASSO Linear Regression for 

feature selection

 
 
Notes: The figure illustrates the steps that our predictive model entails.   
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Figure 3: Number of Children with Detected BLLs≥5µg/dL (Panel A) and BLLs≥10µg/dL 
(Panel B) under Current and Counterfactual Screening Policies 
 

 
Notes: The figures plot the number of children with detected BLLs≥5µg/dL (Panel A) and 
BLLs≥10µg/dL (Panel B) under the current targeted screening policy and realized compliance 
(solid line) and counterfactual universal screening policies with compliance rates currently 
achieved by the zip code at the 50th, 75th, 90th, and top percentile of the screening rate 
distribution. Grey bands represent 95% confidence intervals. 
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Figure 4: Rates of Detected (Panel A) and Predicted Undetected (Panel B) BLLs≥5µg/dL by 
Zip Code 

Panel A       Panel B 

 
Notes: The figures plot the number of children with detected BLLs≥5µg/dL (Panel A) and 
undetected BLLs≥5µg/dL (Panel B) over total children for birth cohorts 2010-2014. 
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Figure 5: Cumulative Share of Above-Threshold BLLs in Zip Codes Ranked by Number of 
Children with Above-Threshold BLLs 
 

 
Notes: The figures plot the number of children with detected BLLs≥5µg/dL (Panel A) and 
BLLs≥10µg/dL (Panel B) under the current targeted screening policy and realized compliance 
(solid line) and counterfactual universal screening policies with compliance rates currently 
achieved by the zip code at the 50th, 75th, 90th, and top percentile of the screening rate 
distribution. Grey bands represent 95% confidence intervals. 
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Tables 
 
Table 1 
Baseline Characteristics of all children born in Illinois 2010-2014, stratified by whether they 
were born in a high risk zip code and whether they were tested for lead exposure by age 2. 
  

Low Risk High Risk 
Screened No Yes No Yes 
N 237355 178010 119077 200257 
Black (%) 20035 

(8.5) 
22321 
(12.6) 

29813 
(25.2) 

54313 
(27.3) 

Hispanic (%) 30278 
(12.8) 

39893 
(22.5) 

27527 
(23.2) 

66171 
(33.2) 

Mother < 20 years at birth (%) 9322 
(3.9) 

14482 
(8.1) 

9872 
(8.3) 

20994 
(10.5) 

Mother Unmarried at birth (%) 57292 
(24.1) 

75636 
(42.5) 

52315 
(44.0) 

107128 
(53.5) 

Mother with no college education 
(%) 

54050 
(23.0) 

69863 
(39.6) 

45468 
(38.8) 

96205 
(48.7) 

Median Income in Census Block 
(sd) 

70604 
(22215) 

62881 
(20746) 

49657 
(18002) 

46182 
(16351) 

Any TRI release within 250 m (%) 347 (0.1) 321 (0.2) 719 (0.6) 1127 (0.6) 
Birth address built before 1930 (%) 12474 

 (9.4) 
13857 
(14.2) 

49119 
(56.4) 

90691 
(63.4) 

Birth address built before 1980 (%) 73550 
(55.6) 

71078 
(73.0) 

73188 
(84.0) 

126489 
(88.4) 

Birth zip code in Chicago (%) 55 
 (0.0) 

62 
 (0.0) 

73037 
(61.3) 

122059 
(61.0) 

Previous BLL≥5µg/dL at birth 
address (%) 

2164 
 (0.9) 

3321  
(1.9) 

14011 
(11.8) 

29314 
(14.6) 

Previous BLL≥10µg/dL at birth 
address (%)  

801  
(0.3) 

1243  
(0.7) 

6176  
(5.2) 

13520 (6.8) 

Highest BLL ≥ 5µg/dL (%) 
 

5433 (3.1) 
 

12682 (6.3) 
Highest BLL ≥ 10µg/dL (%) 

 
896 (0.5) 

 
2396 (1.2) 

Notes: SD Standard Deviation; BLL Blood Lead Level 
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Table 2 
Caption: Simulated effect of universal screening at different rates of compliance with universal 
screening policy and intervention thresholds of 5µg/dL and 10µg/dL amongst children born in 
Illinois 2010-2014. Target screening rates were chosen to coincide with the 50th, 75th, 90th, and 
100th percentile, of current high-risk zip codes in Illinois where all children should be tested, 
corresponding to screening rates of 61%, 71%,81%, 100%. Mean and 95% confidence interval 
are the results of 1000 simulations of testing additional children based on the probability of 
above-threshold BLLs derived from a calibrated random forest predictor. 
 
 
Target 
screening 
rate 
(percentile) 

Intervention 
Threshold 
(µg/dL) 

Number 
of 
children 

Screened 
Children 

Actual 
above-
threshold 
BLLs 

Additional 
Children 
Screened 

Predicted additional 
above-threshold BLLs 
(Mean (95% CI)) 

61% ( 50th) 5 

734,699 378,267 

18,115 

89,761 1,537 (1,463, 1,612) 
71% ( 75th) 5 150,237 3,236 (3,129, 3,343) 
81% ( 90th) 5 219,138 5,572 (5,432, 5,712) 

100% (100th) 5 356,432 10,613 (10,423, 10,804) 
61% ( 50th) 10 

3,292 

89,761 168 (143, 193) 
71% ( 75th) 10 150,237 389 (351, 426) 
81% ( 90th) 10 219,138 704 (654, 753) 

100% (100th) 10 356,432 1,387 (1,319, 1,455) 
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Supplementary Tables and Figures 
 
Figure A.1: Performance of random forest predicting risk of above-threshold BLL.  
 
Panel A: Performance for BLL≥5µg/dL   Panel B: Performance for BLL≥10µg/dL 
 

 
Notes: Children in our sample were stratified into 50 risk groups. This figure shows the 
percentage of children in each group with an above-threshold BLL as confirmed by the testing 
data that was withheld from training. Panel A plots results for the threshold of 5µg/dL while 
Panel B for 10µg/dL. 
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Figure A.2: Model performance on Receiver Operating Characteristic Curve across Models 
 
Panel A: Model performance for BLL≥5µg/dL Panel B: Model performance for BLL≥10mg 

 

 
Notes: The figure plots the Receiver Operating Characteristic (ROC) Curve across the logistic 
(logit), linear regression (LR), and random forest (RF) models trained to predict BLL≥5µg/dL 
(Panel A) and BLL≥10µg/dL (Panel B). The ROC curve illustrates how the true (y axis) and 
false (x axis) positive rate for each model change with changes in the threshold of predicted 
scores used to classify observations as above-threshold BLLs. The figures also report the area 
under the ROC curve (AUC) for each model, a summary measure of goodness of fit. 
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Figure A.3: Histogram of screening rates in high-risk zip codes in Illinois 2010-2014 
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Figure A.4: Above-threshold BLLs detected and predicted, by Zip Code Risk 
 

 
 

Notes: The figure plots the number of BLL≥10µg/dL actually detected (solid line) and predicted 
(dotted lines) in Illinois 2010-2014 stratified by risk status of zip code. Grey ribbons denote 95% 
confidence intervals. 
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Table A.1: Top ten most important variables used in prediction of BLL≥5µg/dL 
 

Variable LASSO Coefficient 
Importance 

5µg/dL 
Percent of census tract BLL≥10 2.90 2392.67 

Child with BLL≥5  within 15m and 
1 year of child 1.90 512.08 
BLL≥5  within 500m 0.04 413.35 
Median HHD Income, block group 0.00 304.86 
Median Home Value ($) 0.00 205.48 
BLL≥5 within 100m 0.25 184.22 
Percent of census tract BLL≥5 2.70 142.93 

Social Vulnerability Index in block 
group, Housing Competition + 
Disability Theme 0.03 73.69 

Social Vulnerability Index in block 
group, Socioeconomic Theme -0.04 67.69 
1 previous BLL≥5 at birth address 0.79 67.37 

Notes: Importance is estimated by the Gini coefficient for the random forest trained to predict 
BLL≥5µg/dL. All variables are available both for children who were tested and children who 
were never tested. LASSO coefficient refers to the coefficient in the regression used to reduce 
the number of parameters, which was cross validated at the minimum mean squared error. BLL 
denotes Blood Lead level; LASSO: least absolute shrinkage and selection operator. 
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Table A.2: Logistic Regression Model for Likelihood of BLL≥5µg/dL, Selected Variables 
Variable Coeff SE P-val Reference Category 
Mother Age -0.016 0.003 0.000   
Mother's Education: Grade 8 or Less 0.181 0.106 0.088 Education Unknown 
Mother's Education: Grade 9+, No Diploma or 
Less 0.100 0.102 0.323 Education Unknown 
Mother's Education: High School/GED -0.049 0.101 0.629 Education Unknown 
Mother's Education: College <4 Years -0.160 0.102 0.114 Education Unknown 
Mother's Education: College 4 Years -0.283 0.106 0.007 Education Unknown 
Mother's Education: More than College 4 Years -0.291 0.110 0.008 Education Unknown 
Mother Married 0.057 0.022 0.012   
Number of Siblings 0.088 0.007 0.000   
House Built 1900-1909 0.012 0.041 0.768 House Built Before 1900 
House Built 1910-1919 -0.022 0.040 0.588 House Built Before 1900 
House Built 1920-1929 -0.166 0.040 0.000 House Built Before 1900 
House Built 1930-1939 -0.185 0.061 0.002 House Built Before 1900 
House Built 1940-1949 -0.374 0.064 0.000 House Built Before 1900 
House Built 1950-1959 -0.641 0.052 0.000 House Built Before 1900 
House Built 1960-1969 -0.670 0.054 0.000 House Built Before 1900 
House Built 1970-1979 -0.630 0.061 0.000 House Built Before 1900 
House Built 1980-1989 -0.635 0.084 0.000 House Built Before 1900 
House Built 1990-1999 -0.780 0.087 0.000 House Built Before 1900 
House Built after 1999 -0.806 0.069 0.000 House Built Before 1900 
High Risk Zip Code 0.051 0.028 0.072   
Block Group Median Income 0.000 0.000 0.000   
Percent Rentals in Block Group -0.496 0.145 0.001   
Percent on Medicaid in Block Group -0.447 0.125 0.000   
BLL 5+ In Previous Year within 100m 0.325 0.053 0.000   
BLL 5+ In Previous Year within 500m 0.308 0.041 0.000   
BLL 5+ In Previous Year within 1000m 0.123 0.041 0.002   
1 Previous Instance of BLL 5+ at Address  1.215 0.048 0.000   
2 Previous Instances of BLL 5+ at Address  -1.049 0.049 0.000   
1 Previous Instance of BLL 10+ at Address  0.819 0.113 0.000   
2 Previous Instance of BLL 10+ at Address  -1.109 0.116 0.000   
Share of Children with BLL 5+ in Tract 8.154 0.168 0.000   
Share of Children with BLL 10+ in Tract -3.046 0.388 0.000   

Notes: The table reports coefficient, standard error, and p-value for selected groups of variables 
that are largely significant in a logistic regression to predict the likelihood that a child had a 
BLL≥5µg/dL in our training set. The fourth column reports the reference category for categorical 
variables. The model included also birth year FEs, measures of industrial pollution and proximity 
to major road, as well as race and ethnicity. 
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Table A.3: Simulated Effect of Universal Screening by Compliance Rate, Intervention 
Threshold, and zip Code Risk. 

Zip 
Risk 

Status 

Number 
of 

children 

Screened 
Children 

Intervention 
Threshold 

(µg/dL) 

Actual above-
threshold BLLs 

Target screening 
rate (percentile) 

Additional 
Children 
Screened 

Predicted additional above-
threshold BLLs (Mean (95% CI)) 

Low 415,365 178,010 

5 5,433 

50th 79,564 1110 (1174, 1046) 

75th 119,386 1838 (1920, 1756) 

90th 159,620 2622 (2719, 2524) 

100th 237,355 4238 (4361, 4115) 

10 896 

50th 79,564 105 (124, 85) 

75th 119,386 181 (207, 155) 

90th 159,620 267 (298, 236) 

100th 237,355 440 (479, 401) 

High 319,334 200,257 

5 12,682 

50th 10,198 428 (466, 390) 

75th 30,851 1398 (1467, 1328) 

90th 59,518 2950 (3051, 2850) 

100th 119,077 6375 (6520, 6230) 

10 2,396 

50th 10,198 63 (78, 48) 

75th 30,851 208 (235, 181) 

90th 59,518 437 (476, 398) 

100th 119,077 948 (1004, 892) 

 
Notes: The table estimates the number of additional detected cases of above-threshold BLLs at 
different rates of compliance with universal screening policy, for intervention thresholds of 
5µg/dL and 10µg/dL, stratified by zip code risk status amongst children born in Illinois 2010-
2014. Target screening rates were chosen to coincide with the 50th, 75th, 90th, and 100th 
percentile, of current high-risk zip codes in Illinois where all children should be tested, 
corresponding to screening rates of 61%, 71%,81%, 100%. Mean and 95% confidence interval 
are the results of 1000 simulations of testing additional children based on the probability of 
above-threshold BLLs derived from a calibrated random forest predictor. 
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