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Abstract

We develop an arbitrage pricing theory framework extension to study the pricing of
squared returns/volatilities. We analyze the interplay between factors at the return
level and those in idiosyncratic variances. We confirm the presence of a common
idiosyncratic variance factor, but do not find evidence that this represents a missing
risk factor at the (linear) return level. Thereby, we consistently identify idiosyncratic
returns. The price of the idiosyncratic variance factor identified by squared returns is
small relative to the price of market variance risk. The quadratic pricing kernels
induced by our model are in line with standard economic intuition.
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syncratic volatilities or variances from a linear return factor model, for example, Connor,

* We thank conference participants at the Econometrics of High-Dimensional Risk Networks at the

Stefanovich Center, the Sofie 2016 conference, the Vienna–Copenhagen 2017 conference, the

Australian Finance and Banking Conference 2018, seminar participants at Tilburg University and

the University of Lugano, and Jonathan Dark, Rob Engle, Dacheng Xiu, and Chu Zhang for helpful

comments and suggestions. Two referees and the editor provided valuable comments to improve

the paper as well.

VC The Author(s) 2022. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecom-

mons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the origin-

al work is properly cited.

Journal of Financial Econometrics, 2022, 1–40

https://doi.org/10.1093/jjfinec/nbac008

Article

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbac008/6574644 by guest on 17 M

ay 2022

https://orcid.org/0000-0001-9007-0755
https://academic.oup.com/


Korajczyk, and Linton (2006); Duarte et al. (2014); and Herskovic et al. (2016).1 We revisit

this result within the Ross (1976) arbitrage pricing theory (APT) framework. Specifically,

we extend the APT to squared returns, which provide a natural setting to study (idiosyn-

cratic) variance factors. Using industry portfolios, individual stocks, implied volatility

(IVOL) portfolios, and size-B/M portfolios as test assets, we find evidence of the idiosyn-

cratic variance factor being priced for portfolios of squared returns. However, in contrast

to the existing literature on the idiosyncratic volatility (IV) puzzle, we do not find evidence

that the idiosyncratic variance factor is priced for excess returns themselves. Hence, like

van der Heijden, Zeng, and Zhu (2019), we conclude that the effects of the commonality of

idiosyncratic volatilities appear limited to volatility-sensitive claims.2

Our theoretical contribution is a reformulation and extension of the APT that not only

prices excess returns, but also squares of excess returns. Our reformulation of the APT

starts from a continuum of assets and the returns on portfolios of sets of assets. Therefore,

our work is related to other extensions of the APT using a continuum of assets, in particular

Al-Najjar (1998) and Gagliardini, Ossola, and Scaillet (2016). Using a continuum of assets

has the advantage that we can replace the traditional conclusion of APT “most assets have

small pricing errors” by the more testable statement that “outside a set of Lebesgue meas-

ure zero, every asset is exactly factor-priced.” Our framework encompasses the concept of

an approximate factor structure recently put forward by Gagliardini et al. (2016). We for-

mulate our approach in terms of continuous stochastic processes, which may be more famil-

iar to the dynamic asset pricing literature. Note, however, that in our static setting the

continuous index does not represent “time,” but rather a specific portfolio. Our new for-

mulation of an approximate factor structure easily extends the APT for linear returns to

squared returns and, thereby, to (idiosyncratic) variances.3

The notion of “idiosyncratic” return depends on which factors have been included in

the model in the first place. Different factor choices at the linear return level lead to differ-

ent “idiosyncratic” returns and, hence, different notions of “idiosyncratic” variance fac-

tors. More precisely, an omitted factor at the linear return level will generally show up as a

common factor in the “idiosyncratic” variances. This distinguishes our paper from, for in-

stance, Connor, Korajczyk, and Linton (2006); Ang et al. (2006b); Duarte et al. (2014);

and Herskovic et al. (2016). In those studies, starting from a set of factors at the linear re-

turn level, the authors identify a common factor in the induced idiosyncratic variances.

Duarte et al. (2014) and Herskovic et al. (2016) then add, in a second step, this idiosyncrat-

ic variance factor to the initial set of factors and show it to be priced. It cannot be ruled out

that the common idiosyncratic variance factor simply picks up an omitted factor at the lin-

ear return level from the first step.

Our main theoretical result (Corollary 1) identifies the effect of possible omitted factors

at the linear return level on the idiosyncratic variances. This allows us to disentangle the

1 See also Ang et al. (2006b) and the literature that sprung from that paper focusing on the

“idiosyncratic volatility puzzle” in which stocks with a high current idiosyncratic volatility earn low

average returns in the future.

2 van der Heijden, Zeng, and Zhu (2019) argue that the commonality is driven by time-varying finan-

cial leverage. In this paper, we are agnostic about the economic drivers of the commonality.

3 To make the distinction clear, we will refer explicitly to “linear” and “squared” returns in the

remainder.
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effect of possibly omitted factors at the linear return level from factors in idiosyncratic var-

iances. Quadratic functions of the original risk factors show up as implied risk factors in

the APT equation for the squared returns, in addition to any idiosyncratic variance factors.

We show that each of those risk factors is associated with their own price of risk, separate

from the prices of risk of the original factors. In our empirical analysis, we use this to direct-

ly examine the price of market variance risk.4

The motivation to study squared excess returns is the direct link to idiosyncratic vari-

ance factors as well as their connection to returns on variance swaps, which have gained

popularity in portfolio choice problems recently.5 The realized variance of a variance swap

is usually computed from daily squared returns on the underlying asset. This setting gives

rise to a pricing kernel that is quadratic in the factors of the excess return process, and lin-

ear in any idiosyncratic variance factors.

In addition to the link with variance swaps, the framework we develop to study the pric-

ing of squared returns also has close links to the literature on skewness in asset pricing

through the quadratic pricing kernel we obtain. This literature is formalized in Kraus and

Litzenberger (1976) and Harvey and Siddique (2000) who write down a model in which

the pricing kernel is linear in the market return and its square. Chabi-Yo, Leisen, and

Renault (2014) study the aggregation of preferences in the presence of skewness risk and

show how the risk premium for skewness is linked to the portfolio that optimally hedges

the squared market return. However, since this hedge is not perfect, an additional factor

may appear in case of heterogeneous preferences for skewness. Therefore, the results of

Chabi-Yo, Leisen, and Renault (2014) provide some structural underpinnings to our work-

ing hypothesis that, in case of a linear factor model, investors’ preferences may lead to not

only the squared market return as a factor, but also an additional factor due to the tracking

error on the squared market return. Using the market factor as the sole factor for linear

returns, the pricing kernel in our model reduces to that in Harvey and Siddique (2000) al-

beit allowing for a non-zero price of risk on the squared market return, like in Chabi-Yo,

Leisen, and Renault (2014).

More generally, our extension of the APT to squared excess returns may be seen in line

with the literature on the APT with (possible) misspecification in the underlying factor

models. As shown by Uppal, Zaffaroni, and Zviadadze (2018), the APT may be misspeci-

fied not only due to omission of pervasive factors, but also through non-zero asset-specific

pricing errors. While they put forward an extension of the APT where at least one of the

eigenvalues of the idiosyncratic variance matrix is unbounded (which allows for asset-

specific pricing errors), we restore the standard APT pricing formulas by introducing a

second-order approximate factor structure in the squared excess returns. However, we ac-

knowledge that this strategy would lead to a rather ad hoc hierarchy of factor structures if

we had to price any nonlinear payoff. An alternative is to acknowledge the impossibility of

perfect hedging of any nonlinear payoff and to rather look for APT-consistent minimum

4 Technically we consider squared excess market return risk.

5 See, for example, Carr and Lee (2009) for an overview and Daigler and Rossi (2006); Dash and

Moran (2005); and Signori, Briere, and Burgues (2010) for portfolio problems adding volatility expos-

ure as a separate asset class. Trading in (derivatives on) the VIX index has grown exponentially

over the past 10 years.
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dispersion smart stochastic discount factors following Korsaye, Quaini, and Trojani

(2020).

Compared with the existing literature which relies on multi-step estimation procedures

for prices of risk, our framework allows us to adopt a single-step GMM procedure to esti-

mate all prices of risk and factor loadings jointly. We use the Bakshi and Madan (2000)

methodology, motivated by results in Breeden and Litzenberger (1978), to compute the

price of squared excess returns from option prices. The requirement that option prices be

available limits our sample to the set of optionable stocks over the period 1996–2013. As

test assets we use both Fama–French industry portfolios and individual optionable stocks.

We find evidence for a common factor in idiosyncratic volatilities when using either Fama–

French factors or principal components as risk factors. Despite our relative short sample

period, we find that this idiosyncratic variance factor is priced for squared returns, in add-

ition to the market variance risk factor. Both carry a negative unconditional price of risk,

but for the average portfolio in our sample, the magnitude of the price of market variance

risk (45 bps/month) is an order of magnitude larger than that of the idiosyncratic variance

factor (5 bps/month).

This result should not be confused with extant literature on the so-called IV puzzle. As

stressed by Lehmann (1990), in any beta pricing model, “residual variances should in part

reflect squared loadings on omitted risk factors, and, hence, should be associated with a sig-

nificant risk premium in large samples.” However, while Lehman (1990) predicts that

stocks with higher residual variation should earn higher expected returns, a first puzzle has

been pointed out by Ang, Chen, and Xing (2006a) that documents underperformance of

stocks with high IV. Chen and Petkova (2012) attribute the low return of high IV stocks to

the fact that they serve as a hedge to increases in market variance. In a thorough empirical

analysis, Duarte et al. (2014) confirms the Chen and Petkova’s (2012) interpretation while,

in accordance with Avramov et al. (2013), they also note that it is related to default spreads

and, thus, to financial distress. The new incomplete markets interpretation recently pro-

posed by Herskovic et al. (2016), where the IV factor related to income risk faced by house-

holds is arguably similar in spirit.

We do not pretend to bring added value to the above IV puzzle, namely the occurrence

of the IV factor priced in the return themselves. Confirming Lehman’s (1990) observation

that there is a long history of “the inability to obtain statistically reliable estimates of a lin-

ear residual risk effect,” we actually do not find evidence of the IV factor being a missing

priced factor in the linear return model. The risk premium for this factor, which we denote

by kG below, is not found to be significantly different from zero for any of the sets of test

assets we analyze. Again following Lehman’s (1990), another possible explanation is “the

information loss typically incurred by grouping securities into a smaller number of

portfolios.” As far as sample size is concerned, we are limited by the set of options available

in the OptionMetrics Volatility Surface data which are used to compute the price of the

squared excess return.

The pricing kernel induced by the model, evaluated as a function of the market factor/

first principal component while fixing the other factors at their conditional means, takes a

conventional convex shape when principal components are used as factors. On the other

hand, when using Fama and French (1993) factors one obtains a concavely shaped pricing

kernel which is inconsistent with risk aversion. We identify this pricing kernel without

assumptions on the agent’s preferences.
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Our paper is related to the literature on the factor structure in option prices, for ex-

ample, Kadan, Liu, and Tang (2017) and Christoffersen, Fournier, and Jacobs (2018).

These papers study a direct factor structure in option prices/returns, while we follow a dif-

ferent route. We study a factor structure in squared excess returns and use options to price

these squared returns. The advantage of this approach is that it is more strongly founded in

APT, using our main result Corollary 1.

1 First and Second-Order Approximate Factor Structures

1.1 General Framework

Let ðX;F ;PÞ be the probability space on which all random variables and processes below

are defined. The financial market is modeled in terms of a collection of random variables

indexed by U ¼ ½0; 1�: In particular, like Al-Najjar (1998) and Gagliardini, Ossola, and

Scaillet (2016), we consider sequences of stochastic processes of excess returns6

RðnÞ ¼ fRðnÞðuÞ; u 2 Ug. Formally, for each n ¼ 1; 2; . . . ; RðnÞ is a stochastic process in

C0ðUÞ, the space of continuous functions on U vanishing at zero, that is, RðnÞð0Þ � 0. The

continuity assumption on the paths of RðnÞ does not imply any level of dependence between

individual returns. We just see RðnÞðuÞ as the excess return on a portfolio of the first u-frac-

tion of assets in the economy. In particular, RðnÞð1Þ represents the (equally weighted) mar-

ket portfolio. The simplest setting of a market with (cross-sectional) i.i.d. excess returns

RðnÞ can be thought of as a linearly interpolated random walk (converging to a Brownian

motion as n!1). To formalize this, we first discuss the notion of convergence we use in

more detail.

We consider a weak form of convergence for stochastic processes on C0ðUÞ. More pre-

cisely, we say that a sequence ZðnÞ of stochastic processes on C0ðUÞ converges to zero if, for

all finite-variation functions h on U, we have

ð1

0

ZðnÞðuÞdhðuÞ!p 0: (1)

We denote this convergence as ZðnÞ !w
�
0. Note that, precisely because ZðnÞ is continuous

and h of finite-variation, the above integral can be defined path-by-path as a Riemann–

Stieltjes integral. By partial integration, we may also write, for any RðnÞ 2 C0ðUÞ,ð1

0

hðuÞdRðnÞðuÞ ¼ hð1ÞRðnÞð1Þ �
ð1

0

RðnÞðuÞdhðuÞ: (2)

Integrals of the form
Ð 1
0 hðuÞdRðnÞðuÞ will be considered below since they can be interpreted

as the return on portfolio h. For example, the equally weighted market portfolio corresponds

to h � 1. Finally, observe that RðnÞ !w
�
0 implies RðnÞðu0Þ!

p
0 for all u0 2 U (take

hðuÞ ¼ 1fu < u0g). This shows that the convergence!w
�

we adopt is stronger than point-wise

convergence in probability. At the same time, it is weaker than uniform (over U) convergence

in probability.

With the above, our notion of a (first-order) approximate factor structure for RðnÞ is

formalized in the following definition.

6 We use the term excess return for any asset that has zero price.
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Definition 1: The sequence of excess return processes RðnÞ 2 C0ðUÞ satisfies a first-order

approximate factor structure if there exists a K-dimensional random factor F and determin-

istic finite-variation function aR and bR such that we may write, for all u 2 U,

RðnÞðuÞ ¼
ðu

0

aRðvÞdvþ
ðu

0

bRðvÞ>Fdvþ Z
ðnÞ
R ðuÞ; (3)

with Z
ðnÞ
R !

w�
0 as n!1.

Comparing our mathematical setup to Gagliardini, Ossola, and Scaillet (2016), there are

three differences. Firstly, we interpret each RðnÞðuÞ as the excess return on a portfolio of the

first u fraction in the collection of primitive assets. Thus, when Gagliardini, Ossola, and

Scaillet (2016) write a linear factor model (see their definition APR1), this should be seen as an

assumption on the infinitesimal increment dRðnÞðuÞ in our setup. In other words, the bounds

maintained on the cross-sectional dependence in an approximate factor structure (condition

APR3 in Gagliardini, Ossola, and Scaillet 2016) must be defined between properly scaled incre-

ments RðnÞðkDnÞ � RðnÞððk� 1ÞDnÞ, with Dn ! 0 and for k ¼ 1; 2; . . .. We will see below why

our formulation in terms of cumulative returns RðnÞðuÞ ¼
Ð u
0 dRðnÞðvÞ is well-suited for the def-

inition of second-order factor structures. Also note that the measurability condition APR.2 in

Gagliardini, Ossola, and Scaillet (2016) on dRðnÞ implies that RðnÞ 2 C0ðUÞ as integrals of

Lebesgue measurable functions are continuous (actually, it even implies RðnÞ 2 C1ðUÞ intro-

duced below). Secondly, our setup does not require any moment conditions on the excess

returns as our formalization merely builds on convergence in probability. As such, Equation

(3) does not necessarily specify a regression equation and there is no moment-based notion of

orthogonality between F and Z
ðnÞ
R .7 Thirdly, to be equipped with an approximate decompos-

ition of risk in terms of a finite number of factors, we will adopt a logic germane to Al-Najjar

(1995) to see all asset returns as well-approximated by a “finitely generated process,” that is, a

process linearly spanned by a finite number of factors; see also Section 1.2.

The classical arbitrage pricing result now follows directly.

Theorem 1: Assume that the excess return process RðnÞ satisfies an approximate factor

structure as in Definition 1. Furthermore, assume that there are no arbitrage opportunities

in the sense that it is not possible to construct a portfolio h whose excess return (2) con-

verges, in probability and as n!1, to a non-zero constant. Then, there exists a K-dimen-

sional vector with prices of risk p such that

aRðuÞ ¼ �bRðuÞ>p; (4)

for almost every u 2 U.

Proof of Theorem 1: Let h denote any portfolio without exposure to the factors, that is, h

is a finite-variation function with
Ð 1
0 hðuÞbðuÞdu ¼ 0. Then, from Equation (3), the induced

portfolio returns areð1

0

hðuÞdRðnÞðuÞ ¼
ð1

0

hðuÞaRðuÞduþ
ð1

0

hðuÞdZ
ðnÞ
R ðuÞ: (5)

7 While Definition 1 is sufficient to derive the APT, an empirical analysis will rely on a regression in-

terpretation of Equation (3) in order to identify aR and bR statistically; see Section 3.
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In view of Equation (2), we thus find

ð1

0

hðuÞdRðnÞðuÞ!p
ð1

0

hðuÞaRðuÞdu: (6)

In the absence of arbitrage, we must have
Ð 1
0 hðuÞaRðuÞdu ¼ 0. As this must hold for any

finite-variation function h orthogonal to all components of bR (and aR and bR are of finite

variation themselves), we have (up to a set of Lebesgue measure zero) aRðuÞ ¼ �bRðuÞ>p

for some vector p. h

In order to analyze squared (excess) returns, we denote by C1ðUÞ the linear subspace of

C0ðUÞ of those functions that are absolutely continuous, that is, for RðnÞ 2 C1ðUÞ its deriva-

tive rRðnÞðuÞ exists a.e. For excess returns processes in C1ðUÞ, we define the so-called ex-

cess squared excess return8 process SðnÞ by

S nð Þ uð Þ ¼
ðu

0

rR nð Þ vð Þ
h i2

� p nð Þ vð Þ
� �

dv; (7)

where p nð Þ denotes the price of squared returns, that is, SðnÞ 2 C1ðUÞ is indeed an excess re-

turn and has itself zero price. In our empirical analysis, we will use plain vanilla options

traded on individual assets to reconstruct the no-arbitrage price pðnÞ of squared excess

returns using a well-known technique going back to Breeden and Litzenberger (1978) and

Bakshi and Madan (2000), see Section 3.1.1 for details.

We impose throughout ðu

0

pðnÞðvÞdv!w
�
ðu

0

pðvÞdv; (8)

as n!1, for some integrable function p. A sufficient condition for Equation (8) is that the

pðnÞ are uniformly bounded in n together with the point-wise convergence of pðnÞ to p.

Indeed, in that case, we have for any finite-variation function h (using the dominated con-

vergence theorem)

Ð 1
0 h uð Þd

Ð u
0 p nð Þ vð Þdv ¼

Ð 1
0 h uð Þp nð Þ uð Þdu

!
Ð 1
0 h uð Þp uð Þdu:

(9)

This brings us to our definition of a second-order factor structure.

Definition 2: The sequence of excess return processes RðnÞ 2 C1ðUÞ satisfies a second-order

approximate factor structure if, in addition to the conditions in Definition 1, we have, as

n!1,

ðu

0

rZ
nð Þ

R vð Þ
h i2

dv!w
�
ðu

0

xS vð Þdvþ
ðu

0

uS vð Þ>Gdv; (10)

for deterministic finite-variation functions xS and uS and a KS-dimensional random

factor G.

8 The precise term for S ðnÞ is indeed “excess squared excess return.” When there is no risk of con-

fusion, we also simply refer to it as “squared return.”
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A key insight of this paper is that a second-order approximate factor structure for excess

returns RðnÞ gives rise to a first-order factor structure for the excess squared excess returns

SðnÞ. The factors appearing in this excess squared excess return process intuitively include

all the quadratic functions of the initial factors F. At the same time, they contain the new

factors G induced by Equation (10). This is formalized in the following proposition. All

proofs are provided in Appendix A.

Proposition 1: If the sequence of excess return processes RðnÞ satisfies a second-order ap-

proximate factor structure, then the squared excess return process SðnÞ defined in Equation

(7) satisfies the first-order approximate factor structure

SðnÞðuÞ ¼
Ð u
0 ½aRðvÞ þ b>RðvÞF�

2dv

þ
Ð u
0 ½xSðvÞ � pðvÞ�dvþ

Ð u
0 u>S ðvÞGdvþ Z

ðnÞ
S ðuÞ;

(11)

with Z
ðnÞ
S !

w�
0 as n!1.

The key message of Proposition 1 is that the initial second-order approximate factor struc-

ture for the excess returns RðnÞ induces a first-order approximate factor structure for squared

returns. Combined with Theorem 1, we immediately find our pricing result for squared returns.

Corollary 1: Under the conditions of Proposition 1 and the no-arbitrage assumption in

Theorem 1, there exists a K-dimensional vector with prices of risk p for F, a K�K-dimen-

sional (symmetric) matrix with prices of risk d forFF>, and a KS-dimensional vector with

prices of risk g for G such that, for almost every u 2 U,

aRðuÞ ¼ �bRðuÞ>p; (12)

xSðuÞ � pðuÞ ¼ �bRðuÞ>dbRðuÞ � uSðuÞ>g: (13)

The above result precisely identifies the consequence of the no-arbitrage condition for

the prices of squared returns and, thereby, for the prices of common factors in (idiosyncrat-

ic) variances. The first term in Equation (13) gives the effect of the linear return factors F

on the prices of squared returns. It’s intuitively clear that this effect exists, but the present

paper seems to be the first to make this precise. Alternatively stated, the first term in

Equation (13) also gives the consequences for pricing “idiosyncratic” variances in case

some factors have been omitted in the linear return factor model. In case of omitted linear

return factors, the term “idiosyncratic” is a misnomer. This means that existing results in

the literature on common volatility factors must always be discussed relative to the linear

return factors they take into account (be it PCA or Fama–French type factors). Also observe

that the price of risk for squared (excess) returns related to the squares of the factor load-

ings bRðuÞ are given by a parameter d that is unrelated to the prices of risk at the linear re-

turn factor model p. In Section 3, we will relate d to the price of variance risk, in particular

the price of market variance risk for the first element of d.

Assuming that no factors for the linear returns have been omitted, the second term

in Equation (13), uSðuÞ>g, gives the pricing effect of common factors G in idiosyncratic

variances. Quadratic returns command a risk premium from exposure to the common

idiosyncratic variance factor G. This risk premium is, as in the standard APT, linear in the
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exposure of the individual squared return to the common idiosyncratic variance factor, that

is, linear in uS. Note that the idiosyncratic variance factor G may be correlated with the re-

turn factors F or their squares FF>. The no-arbitrage condition does neither impose nor ex-

clude this.9

The analysis so far considered a continuum of assets indexed by u 2 U. Historically,

however, the APT literature emerged from considering (large) countable sets of individual

asset returns. Therefore, we discuss in Section 1.2 how countable sets of (linear) returns ap-

proximate a continuum of assets. Section 1.3 studies the same question for squared excess

returns. Together with Corollary 1 and the b-pricing formulation to be discussed in Section

2.5, these results pave the way to study the price of idiosyncratic variance risk in Section 3.

1.2 Approximation by Countable Sets of (Linear) Returns

Ross (1976)’s initial formalization of the APT was based on a countable set of asset returns.

Even though Al-Najjar (1998) has put forward compelling arguments to work with a con-

tinuum of assets (as we do), some justification through a characterization by “finitely gen-

erated processes” (Al-Najjar 1995) is worth considering for both a better understanding

and also for the purpose of econometric inference. We describe such a characterization, first

for linear portfolios based on the excess return process RðnÞ and, second, in Section 1.3, for

the (excess) squared (excess) return process SðnÞ. It must be kept in mind that this finite-

dimensional characterization, albeit useful for interpretation and econometric inference, is

not necessary for our development of the APT above.

A sequence of excess returns R
ðnÞ
i ; i ¼ 1; . . . ;n, can be embedded in a piecewise linear

excess return process RðnÞ. The following definition introduces the notion of a simple excess

return process.

Definition 3: The excess return process RðnÞ 2 C1ðUÞ is called simple if there exists

intervals

U
ðnÞ
i ¼ ðD

ðnÞ
i�1;D

ðnÞ
i �; i ¼ 1; . . . ;n (14)

that form a finite partition of U, such that RðnÞ is piecewise linear on each

U
ðnÞ
i ; i ¼ 1; . . . ; n.

Definition 3 is our equivalent of the notion of a “simple process” as defined in Section 1.6

in Al-Najjar (1995). A simple excess return process RðnÞ has sample paths in C1ðUÞ and

rRðnÞ is constant on each interval U
ðnÞ
i . Therefore, we can embed the sequence of excess

returns R
ðnÞ
i ; i ¼ 1; . . . ; n, in a sequence of simple excess return processes RðnÞ via

rRðnÞðuÞ � R
ðnÞ
i for u 2 U

ðnÞ
i : (15)

9 In empirical work, the factors F, FF>, and G should be linearly independent to uniquely identify all

prices of risk. Moreover, identification of the factors requires the factor loadings bR, bR b>R , and uS

to be linearly independent; see Section 2.3 for details.
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We introduce DðnÞi in Equation (14) for ease of exposition. The notation suggests a pre-

scribed ordering of assets, however, this is not required for the remainder of our results.

Ordering of assets will be discussed in more detail in Section 2.2.10

In the spirit of Al-Najjar (1995), we see simple excess return processes as an approxima-

tion of the financial market with a continuum of assets as discussed in Section 1. Such ap-

proximation is precisely what will be employed in empirical analyses, that is, also in our

Section 3. Thus, for a sequence of excess returns R
ðnÞ
i ; i ¼ 1; . . . ; n, and a partition

U
ðnÞ
1 ; . . . ;U

ðnÞ
n of U as in Equation (14), we define the simple excess return process R

ðnÞ
D by

integrating Equation (15), that is,

R
nð Þ

D uð Þ ¼
ðu

0

Xn

i¼1

R
nð Þ

i 1
v2U

nð Þ
i

� �dv: (16)

Standard APT theory usually starts from more primitive (and testable) assumptions with

respect to (first-order) factor structures imposed on the sequence of excess returns

R
ðnÞ
i ; i ¼ 1; . . . ;n. Generally, a factor decomposition is considered, that is,

R
ðnÞ
i ¼ aðnÞi þ bðnÞ>i F þ eðnÞi ; i ¼ 1; . . . ; n; (17)

with ðaðnÞi Þ1� i�n and ðbðnÞi Þ1� i�n deterministic sequences and EfeðnÞi g ¼ 0. Note that, for in-

stance, Gagliardini et al. (2016) assumes that Equation (17) is a regression equation, that is,

eðnÞi is uncorrelated with F. While this is needed for statistical identification, it is immaterial

to derive the APT and we did not use this assumption in Theorem 1. This is similar to

Gagliardini et al. (2016), who do not use that assumption either in proving their

Proposition 1.

By plugging Equation (17) into Equation (16), we obtain

R
ðnÞ
D ðuÞ ¼

Xn

i¼1

ðaðnÞi þ bðnÞ>i FÞ
ðu

0

1fv2U
ðnÞ
i
gdvþ

Xn

i¼1

eðnÞi

ðu

0

1fv2U
ðnÞ
i
gdv; (18)

where
Ð u
0 1fv2U

ðnÞ
i
gdv is linear on U

ðnÞ
i .

The following proposition gives sufficient conditions on the regression coefficients and

residuals in Equation (17) such that the simple excess return process R
ðnÞ
D satisfies a first-

order approximate factor structure in the sense of Definition 1.

Proposition 2: The simple excess return process R
ðnÞ
D based on Equation (17) satisfies a

first-order approximate factor structure in case there exist finite-variation functions aR and

bR such that

Xn

i¼1

aðnÞi

ðu

0

1fv2U
ðnÞ
i
gdv!w

�
ðu

0

aRðvÞdv; (19)

Xn

i¼1

bðnÞi

ðu

0

1fv2U
ðnÞ
i
gdv!w

�
ðu

0

bRðvÞdv; (20)

10 Al-Najjar (1995) only requires simple processes to be constant on a partition of measurable sets,

not necessarily intervals. We do not consider that level of generality for ease of interpretation.
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and the idiosyncratic excess returns eðnÞi satisfy a functional law of large numbers such that

Z
ðnÞ
D defined by

Z
ðnÞ
D ðuÞ ¼

Xn

i¼1

eðnÞi

ðu

0

1fv2U
ðnÞ
i
gdv; (21)

converges to zero in !w
�
.

For the commonly analyzed case of equally weighted returns, that is,

U
ðnÞ
i ¼ ðði� 1Þ=n; i=n�, we find the conditions

1

n

Xbunc

i¼1

aðnÞi !
w�
ðu

0

aRðvÞdv; (22)

1

n

Xbunc

i¼1

bðnÞi !
w�
ðu

0

bRðvÞdv; (23)

as n!1. Note that these convergences are deterministic and point-wise convergence is

again sufficient provided that aðnÞi and bðnÞi are bounded.

For the idiosyncratic errors Z
ðnÞ
D defined in Equation (21), the equally weighted portfolio

condition implies that, for any finite-variation function h, we have

ð1

0

hðuÞdZ
ðnÞ
D ðuÞ ¼

Xn

i¼1

eðnÞi

ð
U
ðnÞ
i

hðuÞdu: (24)

While we use convergence in probability, seminal papers as Al-Najjar (1995), Al-Najjar

(1998), and Gagliardini, Ossola, and Scaillet (2016) consider convergence in L2, the space

of square-integrable random variables.

In this setup, sufficient conditions for Z
ðnÞ
D in Equation (21) to converge weakly to zero

are that eðnÞi has mean zero and finite variance, and, as n!1,

q Var eðnÞi

n o� �
n

! 0; (25)

n

ð
U

nð Þ
i

h uð Þdu

 !> ð
U

nð Þ
i

h uð Þdu

 !
¼ O 1ð Þ; (26)

where q denotes the spectral radius of a symmetric matrix, that is, its largest absolute eigen-

value, implying that Equation (25) is essentially Assumption APR.3 in Gagliardini, Ossola,

and Scaillet (2016).

If we consider, without loss of generality, a portfolio bounded by 1, that is, jhðuÞj � 1,

Condition (26) can be rewritten as

n
Ð
U

nð Þ
i

h uð Þdu
� �> Ð

U
nð Þ

i

h uð Þdu
� �

¼ n
Xn

i¼1

ð
U

nð Þ
i

h uð Þdu

 !2

� n
Xn

i¼1

D nð Þ
i � D nð Þ

i�1

� �2

¼ O 1ð Þ:

(27)

Note that, in another context, Mykland and Zhang (2006) dubbed the limit of the latter

sum the “Asymptotic Quadratic Variation in Time,” illustrating an analogy between the

mathematics of a continuum of assets and continuous time finance.
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In view of the above, as far as a (linear) excess returns RðnÞ are considered, our main-

tained assumptions regarding the approximate factor structure, in particular the strength of

correlations allowed between idiosyncratic errors eðnÞi , are implied by assumption APR.3 in

Gagliardini, Ossola, and Scaillet (2016). Analogously to Equation (25), a sufficient condi-

tion would be that the covariance matrix of the idiosyncratic errors eðnÞi has eigenvalues that

are uniformly bounded (and not only o(n)). This assumption of uniformly bounded eigen-

values actually coincides with the definition of an approximate factor structure as main-

tained in Chamberlain and Rothschild (1983); see their Definition 2.

1.3 Portfolios of Squared Returns

In Section 3, we use the theory developed in this paper to calculate the market-consistent price of

idiosyncratic variances based on (observed) prices of squared excess returns. To that extent, we

consider in the present section the pricing of squared returns for simple excess return process.

Consider the simple excess return process R
ðnÞ
D in Equation (16). The induced excess

squared excess return process

S
ðnÞ
D ðuÞ ¼

Ð u
0 ½rRðnÞðvÞ�2 � pðnÞðvÞdv

¼
Ð u
0

Xn

i¼1

½ðRðnÞi Þ
2 � p

ðnÞ
i �1fv2U

ðnÞ
i
gdv:

(28)

is a simple excess return process as well where p
ðnÞ
i is the arbitrage-free price of ðRðnÞi Þ

2.

Note that we do need to assume the existence of an explicit liquid market for squared ex-

cess returns. In the empirical section, we restrict attention to optionable stocks. Then, using

static portfolios of these options, we compute an arbitrage-free market price p
ðnÞ
i for the

squared excess return ðRðnÞi Þ
2, so we use the (excess) squared (excess) return

S
ðnÞ
i ¼ ðR

ðnÞ
i Þ

2 � p
ðnÞ
i : (29)

Just as we motivated the first-order approximate factor structure (3) for a continuum of

assets by the factor structure (17) for the sequence of returns R
ðnÞ
i ; n ¼ 1;2; . . ., we justify

the second-order factor structure in Definition 2 by a factor structure for the sequence of

squared idiosyncratic returns ½eðnÞi �
2; n ¼ 1;2; . . .. More precisely, we define the errors �

ðnÞ
i

relative to a common factor G by

½eðnÞi �
2 ¼ xðnÞi þ uðnÞ>i Gþ �ðnÞi : (30)

Similar to the discussion below Equation (17), we do not need, for pricing, the condition

Ef�ðnÞi jF;Gg ¼ 0; (31)

which, under EfeðnÞi jF;Gg ¼ 0, is equivalent to

VarfeðnÞi jF;Gg ¼ xðnÞi þ uðnÞ>i G: (32)

In empirical work, the regression condition (31) is usually imposed. In that case, the

price of squared excess returns ½eðnÞi �
2 can also be identified with the price of the idiosyncrat-

ic variances VarfeðnÞi jF;Gg, that is, the price of the variance factor G.

Now, parallel to Proposition 2, we have the following result.
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Proposition 3: In addition to the assumptions of Proposition 2, assume

Xn

i¼1

xðnÞi

ðu

0

1fv2U
ðnÞ
i
gdv!w

�
ðu

0

xSðvÞdv; (33)

Xn

i¼1

uðnÞi

ðu

0

1fv2U
ðnÞ
i
gdv!w

�
ðu

0

uSðvÞdv; (34)

and that the errors �
ðnÞ
i satisfy the functional law of large numbers

Xn

i¼1

�
ðnÞ
i

ðu

0

1fv2U
ðnÞ
i
gdv!w

�
0: (35)

Then the simple excess return process R
ðnÞ
D based on Equation (17) satisfies a second-order

approximate factor structure.

While we state our main theory in this section in terms of a continuum of assets, indexed by

u 2 U, Propositions 2 and 3 give sufficient conditions in terms of sequences of assets. Such

conditions are more common in the APT literature and used in empirical applications. We

will study the price of idiosyncratic variance risk in Section 3 after providing some com-

ments on APT in general.

2 Some Comments on APT

The literature on APT is huge. In this section, we reconsider some often-discussed issues.

The reader may, when desired, jump immediately to Section 3 where we study the empirical

question of interest in this paper: are idiosyncratic variances priced?

2.1 Factor-Mimicking Portfolios

If the excess returns process RðnÞ satisfies a first-order approximate factor structure according

to Definition 1, we can define a K-dimensional finite-variation function H on U such that

ð1

0

HðuÞbRðuÞ>du ¼ IK; (36)

the K�K identity matrix. This is possible as long as the components of b are linearly inde-

pendent.11,12 Then the K portfolios (excess returns) induced by H, that is,

~F ¼
ð1

0

HðuÞdRðnÞðuÞ; (37)

can also be used as factors. To see this, note that Equation (3) implies

~F ¼
ð1

0

HðuÞaRðuÞduþ F þ
ð1

0

HðuÞdZ
ðnÞ
R ðuÞ:

Hence, we may write, again using Equation (3),

11 Formally, the K components of the function H are obtained by Gramm–Schmidt orthogonalization

(and normalization) of the linearly independent components of the function b using the scalar

product hf ; gi ¼
Ð 1

0 f ðuÞgðuÞdu.

12 Section 2.3 shows that this assumption is not restrictive in general.
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RðnÞðuÞ ¼
Ð u
0 aRðvÞdv

þ
Ð u
0 bRðvÞ>½~F �

Ð 1
0 aRðwÞHðwÞdw�

Ð 1
0 HðwÞdZðnÞðwÞ�dvþ Z

ðnÞ
R ðuÞ

¼
Ð u
0 ½aRðvÞ � bRðvÞ>

Ð 1
0 aRðwÞHðwÞdw�dvþ

Ð u
0 bRðvÞ> ~Fdv

þ½ZðnÞðuÞ �
Ð u
0 bRðvÞ>dv

Ð 1
0 HðwÞdZðnÞðwÞ�;

where the last term again converges to zero. Observe that switching to factor mimicking

portfolios in this way does not affect the factor loadings bR, but the intercept aR and the no-

tion of idiosyncratic return are affected.

2.2 Repackaging

An important point in theoretical foundations of the APT is that its assumptions should be

invariant under so-called “repackaging,” see, for example, Al-Najjar (1999). Loosely

speaking this means that the assumptions should be invariant with respect to reordering the

assets and with respect to forming portfolios. Our Definition 1 indeed obeys to this invari-

ance which can be seen as follows.

Firstly, consider a reordering of the assets. Note that Equation (3) implies, for given w 2 U,

RðnÞðuÞ � RðnÞðwÞ ¼
ðu

w

aðvÞdvþ
ðu

w

b>ðvÞdvþ ZðnÞðuÞ � ZðnÞðwÞ: (38)

Now consider pþ1 fixed constants 0 ¼ u0 < u1 < � � � < up ¼ 1. A reordering of

assets can be obtained by permuting the p intervals ½uj�1; uj�; j ¼ 1; . . . ;p. Reordering the

assets by pasting together the increments of the excess return processes RðnÞ over each of the

permuted intervals satisfies the conditions of Definition 1 in case the original excess return

processes RðnÞ do. Alternatively said, as discussed below Definition 3, we have never

assumed any ordering of the intervals U
ðnÞ
i in the first place.

Secondly, consider forming portfolios of the available assets. This is formalized by a

fixed finite-variation function h� and by considering the excess return processÐ u
0 h�ðvÞdRðnÞðvÞ. Such a process again satisfies Definition 1 as soon as RðnÞ does. Indeed, we

have, in view of Equation (3),ðu

0

h�ðvÞdRðnÞðvÞ ¼
ðu

0

h�ðvÞaRðvÞdvþ
ðu

0

h�ðvÞbRðvÞ>dvþ
ðu

0

h�ðvÞdZðnÞðvÞ; (39)

where the last term converges to zero. Moreover, h�aR and h�br are both of finite variation

(as the product of finite variation functions). Consequently,
Ð u
0 h�ðvÞdRðnÞðvÞ satisfies an ap-

proximate factor structure as well.

2.3 Factor Space Dimension and Omitted Factors

An important empirical question relates to the appropriate number of factors. We address

this question here from a theoretical point of view. First note that, as usual, the relevant no-

tion in Definition 1 is the space spanned by the (random) components of F and the constant.

Thus, we can always specify a vector F of factors such that no linear combination of the

components of F is deterministic, that is, such that, if it exists, the variance matrix of F is

non-singular. However, it may be the case that a strictly smaller factor space is also valid.

Indeed, assume that one of the components of the factor loadings bR is a linear combination

of the other components; for instance suppose that, for almost every u 2 U, we have
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bR1ðuÞ ¼
XK

k¼2

fkbRkðuÞ:

In that case, we can also write down a K�1-dimensional factor structure using the factor
~F defined by

~F ¼ ½Fk þ fkF1�k¼K
k¼2 :

Therefore, one usually maintains the assumption that no linear combination of the K

components of F is deterministic and that no linear combination of the K components of bR

is zero. Under this maintained assumption, it is not possible to write an approximate factor

structure with less than K factors as we now show.

Consider the situation of possibly omitted factors. Suppose that the excess return pro-

cess satisfies an approximate factor structure with factors ðF;FoÞ, that is,

RðnÞðuÞ ¼
ðu

0

aRðvÞdvþ
ðu

0

bRðvÞ>Fdvþ
ðu

0

bRoðvÞ>Fodvþ Z
ðnÞ
R ðuÞ; (40)

where Z
ðnÞ
r !w

�
0. Assume now that the researcher omits the factors Fo from the analysis.

This researcher effectively considers the “idiosyncratic” errors
Ð u
0 bRoðvÞ>Fodvþ Z

ðnÞ
R ðuÞ.

This will only converge to zero if bRo ¼ 0. Consequently, Definition 1 precisely identifies

the correct number of factors. The identification of these factors is the content of the next

section.

2.4 Factor Identification

A subtle and sometimes overlooked point refers to the regression interpretation of a factor

model as assumed in Definition 1. Note that this definition does not impose orthogonality

(in L2 sense) of F and ZðnÞ, but merely that the process ZðnÞ vanishes asymptotically.

Nowhere in laying out the framework do we assume the existence of any moments for RðnÞ,

F, or Z
ðnÞ
R . Similarly to the discussion following Proposition 2, one may formulate sufficient

conditions in terms of L2 convergence for our results to hold.

However, it is a standard practice in the empirical literature to assume the idiosyn-

cratic errors eðnÞi to be uncorrelated with the factors for each individual asset in Equation

(17). We also impose this identifying condition in Section 3. This orthogonality, in it-

self, does not imply that errors have zero price. In general, this empirical approach has

been criticized, going as far as questioning the testability of Ross (1976)’s APT. This

criticism motivated the approach of characterizing the APT in an economy with a con-

tinuum of assets, as in Al-Najjar (1998) and Gagliardini, Ossola, and Scaillet (2016).

Our paper addresses the issue by conveniently considering cumulative portfolios of

assets.

Besides its conceptual relevance, the above remarks also concern estimation of fac-

tor models using time-series regressions. In this paper, we focus on a single-period for-

mulation, but the APT framework developed here can readily be extended to multiple

periods, assuming that each period the no-arbitrage assumption holds and that trading

is possible. Once the factor loadings bR have been identified, Theorem 1 can be applied

period-by-period, where a “non-zero constant payoff” is to be understood as a
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deterministic function of past conditioning information. Both factor loadings bR and

prices of risk p may become stochastically, but predictably, time-varying in that case.

This is in contrast with multi-period equilibrium models which generally feature hedge

demands as well.

2.5 Beta Pricing

The result in Corollary 1 can also be written in the form of a beta-pricing relation for

squared excess returns, much akin to the standard beta-pricing relation for (linear) returns.

Using Equation (17) and the pricing result (12), we find the beta pricing relation

R
ðnÞ
i ¼ bðnÞ>i ðF � pÞ þ eðnÞi : (41)

Combining with Equations (29), (30), and (13), the result (41) in turn implies

ðRðnÞi Þ
2 � p

ðnÞ
i ¼ ðb

ðnÞ>
i ðF � pÞÞ2 þ ðeðnÞi Þ

2 þ 2bðnÞ>i ðF � pÞeðnÞi � p
ðnÞ
i

¼ ðbðnÞ>i ðF � pÞÞ2 þ xðnÞi þ uðnÞ>i Gþ �ðnÞi þ 2bðnÞ>i ðF � pÞeðnÞi � p
ðnÞ
i

¼ bðnÞ>i ½ðF � pÞðF � pÞ> � d�bðnÞi þ uðnÞ>i ðG� gÞ þ �ðnÞi þ 2bðnÞ>i ðF � pÞeðnÞi

¼ bðnÞ>i ½ðF � pÞðF � pÞ> � d�bðnÞi þ uðnÞ>i ðG� gÞ þ fðnÞi ;

(42)

where EffðnÞi jF;Gg ¼ 0 has zero expectation conditionally on F and G precisely under the

regression conditions EfeðnÞi jF;Gg ¼ 0 and Ef�ðnÞi jF;Gg ¼ 0. Thus, while our APT does not

need any moment conditions, they are inherently needed when considering beta pricing

relations. Also note that the above derivation assumes that the pricing relations in

Corollary 1 are valid for each asset individually.

Equation (42) is a pricing equation for squared (excess) returns that identifies both the

prices of risk of the squared factors ðF � pÞðF � pÞ> and the price of risk of the common

idiosyncratic variance factors G. Observe that the prices of risk d of the squared factors

ðF � pÞðF � pÞ> are allowed to vary freely, separate of the prices of risk p of F. In particu-

lar, a factor F that is not priced at the linear return level (i.e., its corresponding price of risk

p equals zero) may very well feature a non-zero price for its square (i.e., for its correspond-

ing components in d). The prices of risk p, d, and g are thus, ultimately, to be determined

empirically. This will be studied in Section 3, using the GMM approach detailed in

Appendix B.

Note that Equation (42) provides a pricing equation for a non-linear transformation of

returns (in this case their squares). Conceptually the same machinery may be used to find

the (non-linear) factor structure implied by other transformations, for example, it may be

applied to option prices leading to an induced (again, non-linear) factor model for the cross

section of option prices. Both Kadan, Liu, and Tang (2017) and Christoffersen, Fournier,

and Jacobs (2018) analyze this factor structure of option prices using alternative frame-

works. We follow a route based on our APT for squared returns and use option prices to

identify empirically the price of these squared returns.

2.6 Induced Pricing Kernel

A natural question at this point is what pricing kernels are compatible with the pricing

Equations (12) and (13). As the market is incomplete, there exist infinitely many pricing
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kernels. In view of the analysis above, we consider pricing kernels that are quadratic in the

factors F, and linear in G. More precisely, consider a candidate pricing kernel

M ¼ aþ ðF � pÞ>bþ ðF � pÞ>cðF � pÞ þ ðG� gÞ>d; (43)

with a 2 R; b 2 RK, c a symmetric matrix in RK�K, and d 2 RKS .

We now have the following result.

Proposition 4: Under the additional assumptions

CovfeðnÞi ; ðF � pÞðF � pÞ>g ¼ 0; (44)

CovfeðnÞi ;G� gg ¼ 0; (45)

CovffðnÞi ; F � pg ¼ 0; (46)

CovfðF � pÞðF � pÞ>;G� gg ¼ 0; (47)

a valid pricing kernel that prices both linear and squared returns is obtained in Equation

(43) for b, c, and d that solve the linear equations

0 ¼ EF � p
Rf

þ Var F � pf gb

þCov F � p; F � pð Þ>c F � pð Þ
n o

þ Cov F � p; G� gð Þ>
n o

d
(48)

0 ¼ E G� gf g
Rf

þ Cov G� gð Þ; F � pð Þ>
n o

bþ Cov G� gð Þ; G� gð Þ>
n o

d; (49)

0 ¼
E F � pð Þ F � pð Þ> � d
h i

Rf
þ Cov F � pð Þ F � pð Þ> � d

h i
; F � pð Þ>b

n o
þCov F � pð Þ F � pð Þ> � d

h i
; F � pð Þ>c F � pð Þ

n o
:

(50)

The constant a in Equation (43) is furthermore identified by the relationEM ¼ 1=Rf , where

Rf denotes the risk-free rate.

Assumptions (44) and (45) essentially state that no factors have been omitted at the linear

return level. Assumption (46) states that the residual squared returns and linear return fac-

tors are uncorrelated. Assumption (47) states that G is orthogonal to the induced common

variance factors ðF � pÞðF � pÞ>. These assumptions are also consistent with the empirical

analysis below. Proposition 4 provides a linear system of equations in the unknowns b, c,

and d that describe the quadratic pricing kernel (43). The number of unknowns is Kþ
KðKþ 1Þ=2þ KS for, respectively, b, c, and d. The number of equations also equals Kþ
KS þ KðKþ 1Þ=2 and, thus, the system is exactly identified.

Proposition 4 has two important implications.

Corollary 2: Let M� denote the pricing kernel defined in Proposition 4. Then,

1. the coefficients a, b, c, and d in Equation (43) are uniquely determined by correctly pric-

ing the risk-free rate and the factors, that is, by EM ¼ 1=Rf ; EMðF � pÞ ¼
EM�ðF � pÞ; EMðF � pÞðF � pÞ> ¼ EM�ðF � pÞðF � pÞ>, and EMðG� gÞ ¼ EM�

ðG� gÞ;

Renault et al. j APT for Idiosyncratic Variance Factors 17

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbac008/6574644 by guest on 17 M

ay 2022



2. if N denotes a valid pricing kernel that is affine in the excess returns R
ðnÞ
i and the

squared excess returns ðRðnÞi Þ
2 � p

ðnÞ
i , then

2a. N assigns zero price to the idiosyncratic excess returns eðnÞi and fðnÞi ;

2b. the projection of N on (the components of) F � p; ðF � pÞðF � pÞ>; G� g, and a

constant equals M�.

Proof: The first statement follows from the imposed orthogonality of idiosyncratic ex-

cess returns and the factors. For the second statement, observe that N is an affine combin-

ation of (the components of) the factors and the idiosyncratic excess returns eðnÞi and fðnÞi . As

N and M� give the same price to the factors, N �M� assigns price zero to eðnÞi and fðnÞi . As

M� assign price zero to eðnÞi and fðnÞi , so does N. Statement 2b follows from 2a by observing

that N �M� assigns price zero to all factors. h

The pricing kernel (43) is not necessarily positive. Like the pricing kernels that are affine

in the excess returns in linear factor models, M can be interpreted as the projection of any

affine pricing kernel on the space spanned by the constant and, for all i, Ri, and R2
i . The

APT pricing Equations (41) and (42) imply that such projection is spanned by the constant

and the factors F, FF>, and G. We will see later (Figures 5 and 4) that the empirical pricing

kernel (43) takes a plausible form.

We note that a quadratic pricing kernel is tightly related to pricing skewness and in par-

ticular the so-called three-moment CAPM of Kraus and Litzenberger (1976). The key in-

sight of the three-moment CAPM is that investors’ preferences are not fully characterized

by a trade-off between mean and variances, but that they also care about skewness in

returns. As a result, they may optimally pick a portfolio that is not on the mean–variance

frontier. One then resorts to a three-fund separation theorem that, besides the risk-free in-

vestment and the market portfolio, contains what Chabi-Yo, Leisen, and Renault (2014)

have dubbed the skewness portfolio. This skewness portfolio is the projection of the

squared market return on the space of linear payoffs. Since the squared market return can-

not be perfectly hedged by linear instruments, it forms a source of incompleteness that

leads, depending on the point of view, either to APT pricing errors controlled by smart

SDFs or to additional common factors for squared returns. The latter are then not only

squared values of common factors for linear pricing but also possibly contain common fac-

tors for idiosyncratic risk.

3 The Pricing of Idiosyncratic Variance

In this section, we examine the idiosyncratic variance factor within the APT model devel-

oped in Section 1. We use Fama–French industry portfolios and individual S&P500 stocks

as test assets. Our focus is on squared excess returns which are not directly traded, but for

which we can compute their prices using traded options. This restriction limits our sample

to the set of optionable stocks. We present evidence in support of a priced idiosyncratic

variance factor in addition to a priced market variance factor in squared returns. These

results confirm recent results about the price of (market) variance risk in, for example, Carr

and Wu (2009) and Bollerslev, Tauchen, and Zhou (2009). Our results contrast with recent

research on the price of idiosyncratic variance risk in Chen and Petkova (2012), Duarte

et al. (2014), and Herskovic et al. (2016): while they argue that idiosyncratic variance fac-

tor is priced in linear returns, potentially reflecting a missing risk factor in the model for lin-

ear returns, we find that idiosyncratic variance risk is only priced for squared returns. In
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economic terms, the risk premium for idiosyncratic variance risk is low at about 5 bps/

month for the average test portfolio of squared returns in our sample, compared with about

45 bps/month for market variance risk.13

3.1 Sample Description

Our sample spans the period from January 1996 to December 2013, for all optionable

stocks (5,064 unique firms), obtained by merging CRSP with OptionMetrics.14 From this

set of stocks, we construct test assets by sorting stocks according to the Fama–French 49 in-

dustry classifications at the end of each month. Requiring that the portfolio has a complete

time series of monthly returns and at least five stocks in the portfolio at any point in time,

we end up with 34 industry portfolios as test assets (henceforth, referred to as FF34). Later,

we will also use the 100 individual S&P500 stocks with a full return history over the sam-

ple period as test assets. On the last trading day of each month, we measure value-weighted

holding period returns in excess of the risk-free rate over the next 30 calendar days. This

period matches the maturity of the options in the OptionMetrics Volatility Surface data

which we use to compute the price of the squared excess return. The risk-free rate is taken

from the OptionMetrics Zero Coupon Yield Curve data set and linearly interpolated to

match the 30-day maturity.

We extract principal components from the subset of 291 firms in the intersection of the

CRSP and OptionMetrics data sets with a full return history over the 216 months between

1996 and 2013.15 The first principal component is closely aligned with the Fama–French

market factor; the correlation between the two factors equals 0.972. The proportion of the

variance of the matrix of returns explained by the first four principal components equals

29.6%, 10.6%, 5.2%, and 4.2%, respectively. For the models using the Fama–French fac-

tors, we construct 30-day factor returns by aggregating the daily factor returns available on

Ken French’s website. Throughout this section, an excess return should be read as any pay-

off with zero price: the return minus the risk-free rate for linear returns or minus its option-

implied price for squared excess returns.

To motivate a model with an idiosyncratic/residual variance factor, we analyze the cor-

relation structure of the residual returns of the 291 stocks with a full return history over the

sample period.16 Figure 1(a) displays the density of pairwise correlations of residual

returns. Figure 1(b) does the same for the squared residual returns. In both plots, the density

is almost identical for the three different factor models. This is quite surprising given the

differences in methodology and objective.17 On average, residual returns are uncorrelated

13 The average excess squared excess return on the test asset portfolios is �34 bps/month.

14 A common objection in the literature on (the pricing of) idiosyncratic variance risk is that it is

driven by small firms, see for example, Bali and Cakici (2008). Since optionable stocks tend to be

larger on average, our sample biases against this criticism.

15 The principal components are extracted using a singular value decomposition directly on the

panel of 30-day returns in excess of the risk free rate and each component is scaled to have unit

variance. We use the uncentered principal components, which can be interpreted as (scaled) ex-

cess returns.

16 Residual returns are specific to each factor specification.

17 The PCA factors can be viewed as fixed portfolios of the set of 291 stocks used to extract them,

while the Fama–French factors are annually rebalanced portfolios. The objective of PCA is to
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although there is a small tail of substantial pairwise correlations. Compared with the corre-

lations of the residuals, substantially positive pairwise correlations are considerably more

prevalent for the squared residuals and motivates the construction of the residual/idiosyn-

cratic variance factor G to examine whether these pairwise correlations have a common

driver that may be priced. We will analyze the pricing of G by studying squared returns fol-

lowing the results in Section 1. To do so, we need to construct the panel of prices of squared

returns as well.

3.1.1 The price of squared excess returns

The OptionMetrics Volatility Surface data contain smoothed implied volatilities for a

standardized set of deltas ranging from �0.8 to �0.2 for puts and 0.2–0.8 for calls, as

well as an implied option premium and implied strike price for each standardized option

contract. We retain only those observations for which the implied option premium and

the implied strike price are larger than zero, and for which the smoothed implied volatil-

ity is finite. We compute a stock’s forward price using realized dividends over the life of

the option from the OptionMetrics dividend file, discounted using the interpolated risk-

free rates.

Call and put implied volatility smiles are not always identical and the standardized call

and put deltas yield slightly different implied strike prices, so we compute an average

implied volatility smile.18,19

Following Bakshi and Madan (2000), any twice differentiable payoff function of the

stock, H(S), can be spanned as a static portfolio of plain vanilla (European) put ðPðKÞÞ and

call ðCðKÞÞ options with the same maturity as the payoff, a bond, and a forward contract.

HðSÞ ¼ HðK0Þ þ ðS� K0ÞHSðK0Þ þ ers
ÐK0

0 HSSðKÞPðKÞdK

þ ers
Ð1
K0

HSSðKÞCðKÞdK;
(51)

with K0 a predetermined cut-off level separating the strike space into put and call

options, r the continuously compounded risk-free rate, s the relevant maturity, and

HS ðHSSÞ the (second) partial derivative of the payoff function with respect to the strike

minimize the residual variance, while the Fama–French factors are constructed to explain average

returns.

18 Goncalves-Pinto et al. (2020) show how call and put Black–Scholes implied volatilities can differ if

there is price pressure in the stock market.

19 We obtain one implied volatility smile per stock-date as follows. First, we interpolate the smoothed

call implied volatilities at the put option implied strike prices and vice versa to obtain call and put

smoothed implied volatilities for all observed implied strike prices. Then we average the put and

call implied volatility for each strike price. We linearly interpolate those implied volatilities to a

fine grid of moneyness levels, defined as the ratio of the strike price over the forward price.

Outside the observed range of moneyness levels, we assume the implied volatility is constant at

the endpoints in the observed data. This adjustment is common in the literature, see for example,

Rehman and Vilkov (2012) and allows us to specify a function returning implied volatility for any

strike price. As part of the numerical approximation of the integral below, we then use the Black–

Scholes formula to translate the implied volatilities back to dollar option prices as inputs in calcu-

lating the price of the squared excess return using the Bakshi and Madan (2000) methodology.
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price.20 With Xit the forward share price for firm i on the relevant horizon as of time t,

Sit the spot price of firm i’s shares, and HðSi;tþ1Þ ¼ Si;tþ1

Sit
� 1, we seek to compute the price

of the discretely compounded squared excess return pit, given as

(a)

(b)

Figure 1 Density of residual return correlations. These figures plot the density of the distribution of

pairwise correlations between residual returns (a) and squared residual returns (b). Returns are taken

from the panel of 291 stocks with a full return history over the sample period covering January 1996 to

December 2013. Returns are measured over 30 calendar days from the last trading day of each month.

Residual returns are defined as the residuals from stock-level time-series regressions of 30-day

returns on either the first three principal components of the full panel of 30-day returns (PCA3), the

first four principal components (PCA4), or the three Fama–French factors as factors. The maximum

pairwise correlation is 25.9% with an average of 0.2% and standard deviation 0.5%.

20 Individual equity options are American rather than European, however, the early exercise pre-

mium is likely to be small. Ofek, Richardson, and Whitelaw (2004) report a median early exercise

premium equal to 70 bps of the option’s value for at-the-money put options. The bid–ask spread of

those options is an order of magnitude larger than that.
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pit ¼ 1� ersð Þ2 þ 2

Sit
Xit � Sitð Þ 1� ersð Þ þ 2

S2
it

ðSit

0

PðKÞdKþ 2

S2
it

ð1
Sit

CðKÞdK; (52)

which shows that the price of a squared excess return can be replicated using an equal-

weighted portfolio of options with varying strike prices, a short forward position, and a

position in bonds.21 We numerically approximate the integrals in Equation (52) by a stand-

ard adaptive quadrature routine.

Figure 2 plots the time series of monthly observations of the annualized, equal-weighted

cross-sectional average price of squared excess returns and the CBOE VIX index squared,

which proxies for the price of market variance. That the average price of the squared return

exceeds the price of the average squared return or market variance follows from Jensen’s in-

equality and is consistent with results reported in Driessen, Maenhout, and Vilkov (2009).

The time-series correlation between the two series is 0.72, confirming the link between mar-

ket variance and average idiosyncratic variance reported in Herskovic et al. (2016).

However, this high correlation should not be interpreted as co-movement in the cross-

section of idiosyncratic variances being subsumed by the market variance, as we will show

below and as also demonstrated in Chen and Petkova (2012), Duarte et al. (2014), and

Herskovic et al. (2016).

3.1.2 The variance factor G

We analyze several sets of factors F for the linear returns. In addition to the first three or

four principal components as described in Section 3.1, we also use the three Fama–French

factors as factors. Once the factors F for the linear returns have been determined, we con-

struct the variance factor G as follows. As before, we use the sample of 291 optionable

stocks with a full return history and options traded throughout our sample period. First, we

estimate constant beta loadings on each stock by regressing the time series of 30-day returns

on the factor realizations F, and retain the panel of residual returns from this regression,

ð�i;tÞi¼1;...;291;t¼1;...;216.22

Before constructing portfolios of squared returns, we winsorize the panel of squared

returns at the 99.95-th percentile to reduce the influence of outliers.23 Then we extract the

first principal component from the panel of squared residual returns using singular value de-

composition, fit an AR(1) model to the principal component time series, and retain the inno-

vations after scaling them to have unit variance. In the remainder, G refers to these scaled

innovations. The magnitude of the correlation between G and the Herskovic et al. (2016)

CIV factor is 0.55 in the different factor models we consider below. Figure 3 plots the time

series of the G factor for the different factor models. If our model is correctly specified, the

21 The integrals in Equation (52) are defined properly. The put price is integrable as a function of the

strike price over any interval of the form ½a; bÞ for a 	 0; b < 1 and in particular up to the cur-

rent spot price that we use as a cut-off. The call price is integrable as a function of the strike

price over any interval on the positive real axis.

22 We only perform this procedure once for each model we estimate. Formally, this should be

repeated with each iteration, but empirically the GMM estimates are indistinguishable from the

initial beta estimates.

23 Following the model in Section 1, we stress our analysis is on portfolios of squared returns, not

squared returns of portfolios.
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risk premium for G should be zero for linear returns.24 Using the standard delta method, this

test amounts to testing the hypothesis H0 : bGkG ¼ 0, where kG is the price-of-risk of G. The

hypothesis H0 is not rejected for any of the 34 test assets at the 5% level for any model.

However, this test may be conservative due to the singularity of the Jacobian under the null.

Sorting portfolios by their bG, the 80th percentile portfolio earns on average 6–7 bps less per

month than the 20th percentile portfolio in any of the models we estimate below. In contrast,

for portfolios sorted by the loading on the Herskovic et al.’s (2016) CIV factor, they report an

average return spread of�45 bps per month between the top and bottom quintile portfolios.

3.2 Variance Factors and Industry Portfolios

The pricing restrictions of Corollary 1 present a set of moment conditions, which we esti-

mate using GMM (details are in Appendix B). The parameter vector H to be estimated con-

tains the components H ¼ ðb;p; d; gÞ. The b parameters represent the factor loadings of the

test assets for the different factors. Since all our factors are (scaled) excess returns, they

have a zero price p, which is confirmed by our point estimates for p. The d parameters rep-

resent the prices of risk of the implied factors at the squared return level and finally the g

parameters represent the price of risk of the variance factor G.

For the 34 industry test portfolios, we estimate five different models, varying in the

number and composition of factors for linear returns: (1) the first three principal compo-

nents (henceforth PCA3), (2) the first four principal components (PCA4), (3) the first four

principal components and a volatility factor (PCA4þG), (4) three Fama–French factors

Figure 2 Time series of cross-sectional average price of squared excess return and VIX2 index. This fig-

ure plots the time series of the annualized equal-weighted cross-sectional average price of the squared

excess return of all optionable stocks in the OptionMetrics database satisfying the filters of Section

3.1. The price is constructed each last trading day of the month using Equation (52) for a standardized

maturity of 30 calendar days. The sample period covers January 1996 to December 2013. Also plotted

is the VIX2 from the CBOE over the same period. The correlation between the two series is 0.72.

24 As observed in Section 2.3, this does not mean that G should not have any explanatory power for

linear returns. The factors F and G may be correlated so the R2 of a regression of linear returns

on just G does not have to be zero.
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(a)

(b)

(c)

Figure 3 Time series of variance factor G: (a) FF3, (b) PCA3, and (c) PCA4. Time series of variance factor

realizations. The variance factor is computed using residual returns of three different factor models for

linear returns. The Fama and French (1993) three-factor model and PCA using the first three or four

principal components. Returns are measured over a period of 30 calendar days from the last trading

day of each month. The sample from which the principal components are extracted contains all 291

optionable stocks with a complete return history over the sample period 1996–2013.
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(FF3), and (5) three Fama–French factors and a volatility factor following Herskovic et al.

(2016) (FF3þG).25,26

The main parameter of interest is the price of risk associated with G in the squared re-

turn equation, g. Table 1 reports the point estimate for g and its GMM heteroskedasticity

and autocorrelation-adjusted standard error. For all models, the point estimate and associ-

ated standard error for g support the conclusion that idiosyncratic variance is a priced risk

factor when considering squared returns. The average monthly excess squared excess return

is �21 bps. The spread in the u loadings between the 20th and 80th percentile of our test

assets varies between 18 and 21 bps for the different models. Combining that with the g

point estimates leads to an average squared return that is 5 (for the FF3 and FF3þG mod-

els) to 7 bps (for the PCA3 and PCA4 models) per month higher for the 20th percentile

portfolio than for the 80th percentile u portfolio.

The results in Table 1, together with the lack of evidence for the risk premium on G in

linear returns being non-zero as reported in Section 3.1.2, suggest that idiosyncratic vari-

ance risk is priced for squared returns only and is not a missing risk factor in the linear re-

turn model. Our integrated approach to pricing both linear and squared returns allows us

to pin down the way in which idiosyncratic variance risk is priced in the cross-section. Our

methodology differs substantially from existing papers, who generally take the following

approach to study the price of the variance factor G in linear returns. First, they compute a

panel of idiosyncratic returns using stock-level Fama–French regressions or PCA analysis.

Second, they extract a principal component from the panel of squared residual returns

(Duarte et al., 2014) or use the (change in the) average idiosyncratic variance directly as a

factor (Herskovic et al., 2016). Third, they form quintile portfolios by sorting stocks on the

loading with respect to the volatility factor and examine the return differences between the

extreme quintiles as a proxy for the price of risk of idiosyncratic variance. We address the

pricing of the idiosyncratic variance factor G in an asset pricing model that directly explains

squared, rather than linear, returns, and in which all parameters are estimated jointly in a

single step.

3.2.1 Prices of risk of implied variance factors

As part of the GMM estimation of the squared returns model, we obtain estimates for d,

the prices of risk of the factors ðF � pÞðF � pÞ> implied by the linear returns model.

Tables 2–7 contain the point estimates and standard errors of the d parameters for the FF3,

FF3þG, PCA3, PCA3þG, PCA4, and PCA4þG models.

The first principal component in the PCA3/PCA4 model can be viewed as a scaled (with

unit variance) proxy of the market return, having a correlation of 0.972 with the Fama–

French market factor. The estimated price of risk of this component, d11, equals 1.9 for

both PCA3 and PCA4 (2.0 for PCA4þG). When scaling the principal component such that

its variance is equal to the variance of the market return in the Fama–French model, the d

estimate corresponds to 0.0045 per month, or 5.4% per year. In the FF3 model, the price of

risk of the squared market return is estimated at 0.0038 per month or 4.6% per year. These

25 Using the first five principal components yields similar results as the PCA4 model, but makes iden-

tification in the squared returns model harder due to the increased dimensionality of the implied

factors. The same is true when using the five Fama–French factors.

26 The Hansen (1982) J-test does not reject any of the specifications.

Renault et al. j APT for Idiosyncratic Variance Factors 25

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbac008/6574644 by guest on 17 M

ay 2022



estimates are of the same order of magnitude as other estimates of the market variance risk

premium in the literature, using quite different methodologies.27 It is also important to

stress that since our model estimates risk premia for all factors jointly, the point estimates

of g and d suggest that market variance risk and idiosyncratic variance risk are both priced

risk factors.

Estimates of d for the squared SMB and HML factors and any cross-products in the FF3

model are not significantly different from zero. For the PCA3/PCA4 models, there is some

evidence of the squared second principal component being priced, just like the cross-

product between the first and second component. The sign of the coefficients points to off-

setting exposures between the second PC squared and the cross-product of the first and se-

cond PC. The second and further PCs do not have as clear an interpretation as the first PC,

so the economic interpretation of the d estimates for the second PC and the cross-product

of the first and second PC is not clear. We note that the second PC has a correlation of 0.74

with the HML factor and †0.25 with the SMB factor but zero correlation with the MKT

factor.

3.2.2 The shape of the pricing kernel

We now turn to the shape of the pricing kernel implied by GMM parameter estimates.

Recent literature argues that, as a function of the market return, the empirical pricing

Table 1 FF34 industry portfolios—g estimates

Model g point estimate g Std error kG point estimate kG Std error

FF3 0.269 (0.128)

FF3þG 0.262 (0.297) 0.088 (0.164)

PCA3 0.378 (0.136)

PCA3þG 0.407 (0.139) 0.122 (0.163)

PCA4 0.320 (0.135)

PCA4þG 0.298 (0.136) 0.094 (0.158)

Notes: For the 34 Fama–French industry portfolios with a full history of data, this table reports g point esti-

mates and standard errors. The price-of-risk of the variance risk factor G for squared returns, g, is estimated

using GMM on the moment conditions outlined in Equations (60) and (61). The different models use either the

first three (PCA3) or four (PCA4) principal components or the three Fama–French factors (FF3) as the linear

factors F. For each model, we also estimate a version in which the set of linear return factors F is augmented

with the idiosyncratic variance factor G (FF3þG, PCA3þG, and PCA4þG). In these “þ G” model variants,

the price-of-risk of G for linear returns, kG, is defined as kG ¼ EðGÞ � pG. In the “þ G” models, G shows up

in two different places in the squared return equation: once as itself and also as G2 and F>G in the set of

implied factors. Irrespective of whether G is added to F or not, residual returns used to compute G are only

based on the original F factors. The principal components are extracted from the panel of 291 firms with a

complete history of both return and option data over the sample period. All returns are measured over 30 cal-

endar days from the last trading day of a month.

27 Bollerslev, Tauchen, and Zhou (2009) and Drechsler and Yaron (2011), for example, find an annual-

ized variance risk premium of 2.2%. The authors confirmed to us that the numbers reported in

Bollerslev, Tauchen, and Zhou (2009) are monthly variance premiums in basis points, rather than

annualized percentages as suggested in the caption of their Table 1. Londono (2015) reports a

variance risk premium of around 2% in his sample of country indices.
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kernel implied by S&P500 index option prices is non-monotonic. In particular, the pricing

kernel is generally found to display an upward sloping region as a function of the market re-

turn for moderately positive market returns.28

Chabi-Yo, Garcia, and Renault (2008) provide a unifying explanation in terms of state

dependence in case states are observed by the investors but not by the researcher. They

show that models with regime shifts in fundamentals, preferences, or beliefs can rationalize

Table 2 FF3/d estimates

F1 F2 F3

F1 0.004���

(0.000)

F2 –0.001 0.010

(0.001) (0.006)

F3 0.000 0.005 0.003

(0.001) (0.004) (0.003)

Notes: For the Fama–French three-factor model, this table reports the estimated prices-of-risk, d, correspond-

ing to the implied variance factors FF>. Each number indicates the d corresponding to the product of the fac-

tors in the corresponding row and column. F1 equals the Fama–French market factor, F2 the SMB factor, and

F3 the HML factor. The model is estimated using GMM on the moment conditions outlined in Equations (60)

and (61) with the 34 of the 49 Fama–French industry portfolios with a full return history over the sample

period as test assets. The sample period covers January 1996 to December 2013. ***, **, and * denote point

estimates statistically different from zero at the 1%, 5%, and 10% level, respectively.

Table 3 FF3þG/d estimates

F1 F2 F3 F4

F1 0.003���

(0.001)

F2 0.000 0.015

(0.002) (0.018)

F3 0.001 0.003 0.001

(0.002) (0.011) (0.008)

F4 –0.010 0.707� 0.403 –6.052

(0.089) (0.428) (0.320) (20.909)

Notes: For the Fama–French three-factor model augmented with the variance factor G in the linear return

equation, this table reports the estimated prices-of-risk, d, corresponding to the implied variance factors FF>.

Each number indicates the d corresponding to the product of the factors in the corresponding row and column.

F1 equals the Fama–French market factor, F2 the SMB factor, F3 the HML factor, and F4 the variance factor

G which is now included in the set of linear factors again. The model is estimated using GMM on the moment

conditions outlined in Equations (60) and (61) with the 34 of the 49 Fama–French industry portfolios with a

full return history over the sample period as test assets. The sample period covers January 1996 to December

2013. ***, **, and * denote point estimates statistically different from zero at the 1%, 5%, and 10% level,

respectively.

28 See, for example, Aı̈t-Sahalia and Lo (2000); Jackwerth (2000); Bakshi, Madan, and Panayotov

(2010); and Christoffersen, Heston, and Jacobs (2013).
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the puzzles put forward in Aı€t-Sahalia and Lo (2000) and Jackwerth (2000). The absolute

risk aversion and pricing kernel extracted from calibrated prices in these economies exhibit

the same puzzling features as in the original papers and are inconsistent with the usual

assumptions of decreasing marginal utility and positive risk aversion. However, investor

utility is well-behaved and her risk aversion remains positive. The bottom line is that, inso-

far as investors’ behavior depends on factors the statistician does not observe, the pricing

kernel puzzle can be steeply U-shaped while individual behaviors are not at odds with eco-

nomic theory. This argument is arguably model specific but able to unify many popular

models. When one wants to use a model-free approach, for instance as in Schneider and

Table 4 PCA3/d estimates

F1 F2 F3

F1 1.916���

(0.159)

F2 �0.632 0.876***

(0.097) (0.338)

F3 –0.304 0.360 0.479

(0.210) (0.428) (1.206)

Notes: For the three-principal component factor model, this table reports the estimated prices-of-risk, d, corre-

sponding to the implied variance factors FF>. Each number indicates the d corresponding to the product of the

factors in the corresponding row and column. The model is estimated using GMM on the moment conditions

outlined in Equations (60) and (61) with the 34 of the 49 Fama–French industry portfolios with a full return

history over the sample period as test assets. The sample period covers January 1996 to December 2013. ***,

**, and * denote point estimates statistically different from zero at the 1%, 5%, and 10% level, respectively.

Table 5 PCA3þG/d estimates

F1 F2 F3 F4

F1 1.880���

(0.221)

F2 �0.477*** 0.907**

(0.134) (0.394)

F3 –0.223 –0.338 0.011

(0.254) (0.877) (1.341)

F4 –1.077 –0.440 6.003 8.773

(0.920) (1.280) (5.454) (13.555)

Notes: For the three-principal component factor model augmented with the variance factor G in the linear re-

turn equation, this table reports the estimated prices-of-risk, d, corresponding to the implied variance factors

FF>. Each number indicates the d corresponding to the product of the factors in the corresponding row and

column. F4 refers to the variance factor G which is now included in the set of linear factors again. The model

is estimated using GMM on the moment conditions outlined in Equations (60) and (61) with the 34 of the 49

Fama–French industry portfolios with a full return history over the sample period as test assets. The sample

period covers January 1996 to December 2013. ***, **, and * denote point estimates statistically different

from zero at the 1%, 5%, and 10% level, respectively.
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Trojani (2019), it may not allow for such extreme U-shaped SDFs, while confirming the

puzzle.

As discussed in Section 2.6, our model gives rise to a quadratic pricing kernel, which ob-

viously tightly constrains and possibly overly magnifies the departure from monotonicity of

implied pricing kernels. The system (48)–(50) allows us to pin down the shape of the pricing

Table 6 PCA4/d estimates

F1 F2 F3 F4

F1 1.987���

(0.192)

F2 �0:629��� 0.781�

(0.142) (0.461)

F3 –0.296 0.840 –0.413

(0.222) (0.548) (1.203)

F4 0.410 �1:227� –2.193 2.459

(0.445) (0.642) (1.909) (1.529)

Notes: For the four-principal component factor model, this table reports the estimated prices-of-risk, d, corre-

sponding to the implied variance factors FF>. Each number indicates the d corresponding to the product of the

factors in the corresponding row and column. The model is estimated using GMM on the moment conditions

outlined in Equations (60) and (61) with the 34 of the 49 Fama–French industry portfolios with a full return

history over the sample period as test assets. The sample period covers January 1996 to December 2013. ***,

**, and * denote point estimates statistically different from zero at the 1%, 5%, and 10% level, respectively.

Table 7 PCA4þG/d estimates

F1 F2 F3 F4 F5

F1 2.005���

(0.242)

F2 �0:580�� 0.741

(0.242) (0.570)

F3 –0.390 0.785 –0.544

(0.331) (0.663) (1.074)

F4 0.376 �2:057� –0.735 2.247

(0.568) (1.127) (2.250) (2.792)

F5 1.054 0.035 –1.822 –6.345 10.324

(1.235) (1.708) (5.978) (4.661) (15.647)

Notes: For the four-principal component factor model augmented with the variance factor G in the linear re-

turn equation, this table reports the estimated prices-of-risk, d, corresponding to the implied variance factors

FF>. Each number indicates the d corresponding to the product of the factors in the corresponding row and

column. F5 refers to the variance factor G which is now included in the set of linear factors again. The model

is estimated using GMM on the moment conditions outlined in Equations (60) and (61) with the 34 of the 49

Fama–French industry portfolios with a full return history over the sample period as test assets. The sample

period covers January 1996 to December 2013. ***, **, and * denote point estimates statistically different

from zero at the 1%, 5%, and 10% level, respectively.
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kernel as a function of the factors.29 To compare the behavior of the pricing kernel as a

function of the market return in our model, with the well-documented evidence described

above, we proceed as follows. We assume that the market return and the factors F are joint-

ly normally distributed over our sample period. So that also the conditional distribution of

the Fs given the market return is normal. We compute the conditional average of the Fs as

we vary the 30-day market return between its 5th and 95th percentile in the sample. These

conditional averages are then used as inputs to compute the pricing kernel as a function of

the market return only from Equation (43). Figures 4–6 contain the results. The PCA3 and

PCA4 pricing kernels align with the recent results in the literature about non-monotonic or

U-shaped pricing kernels. Compared with a log-normal pricing kernel with a Sharpe ratio

of 0.5,30 the pricing kernels we estimate here put a substantially higher price on low

returns. For a market return of –8% on a 30-day horizon, the log-normal pricing kernel

takes a value of 1.28 versus 1.8 (1.6) for the quadratic pricing kernel using the PCA3

(PCA4) model.31

The pricing kernel of the FF3 model shows an (economically counterintuitive) inverted

U-shape. It predicts investors are willing to pay to take on both extreme downside and ex-

treme upside risk, which is particularly problematic for the downside risk case. It is import-

ant to note that in the GMM estimation we do not force the pricing kernel to have a U-

shape, but our model does imply a quadratic pricing kernel. We do not include the pricing

kernel plot for the FF3þG model as there was no convergence for the system (48)–(50) in

that case.

3.3 Individual Stocks as Test Assets

In this section, we repeat the empirical analysis of Section 3 using individual stocks rather

than portfolios as test assets. Specifically, we use all 100 stocks that were part of the

S&P500 index, had options traded on them, and had a complete time series of monthly

returns for the full sample period. This test is motivated by results in Ang, Liu, and Schwarz

(2017) who argue that using individual stocks as test assets improves the identification of

risk premiums, even though the factor loadings are estimated with more noise than for

portfolios.

Table 8 confirms the results in Table 1. The point estimates of g are all significantly dif-

ferent from zero irrespective of the specific factor model used and the standard errors of g

are about 40–60% lower for the individual stocks which is to be expected given the

increased number of test assets by a factor 3.

3.4 Size-B/M Portfolios as Test Assets

Our third set of test assets (see Table 9) are 25 Fama–French size-B/M-sorted portfolios.32

With the exception of the Fama–French three-factor model, we find no evidence of the

29 We numerically solve the system of equations and note that the optimization routine did not con-

verge for the model that includes both the three Fama–French factors and the variance factor in

the linear returns model.

30 The Sharpe ratio of the CRSP total market index over the period 2007–2016 was 0.53.

31 The other parameters we used are r ¼ 0.05, r ¼ 0:16, and T ¼ 30/365.

32 The portfolios are constructed as an independent sort each year in June by market cap and the

ratio of book equity to market equity at the end of the prior financial year.
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Figure 5 Pricing kernel as function of market return—PCA3. This figure plots the quadratic pricing ker-

nel of Section 2.6 as a function of the rescaled first principal component only. The parameter estimates

of the PCA3 model estimated on 34 of the Fama–French 49 industry portfolios with a complete return

history over the period 1996–2013 are used. In generating this figure, we first regress each of the fac-

tors (the set of linear return factors F and the variance factor G) on the Fama–French market return fac-

tor. The 30-day return on the Fama–French market factor is plotted on the horizontal axis. The values

of the F and G factors are fixed at their conditional mean given the Fama–French market return

realization.

Figure 4 Pricing kernel as function of market return—FF3. This figure plots the quadratic pricing kernel

of Section 2.6 as a function of the market excess return only. The parameter estimates of the FF3

model estimated on 34 of the Fama–French 49 industry portfolios with a complete return history over

the period 1996–2013 are used. In generating this figure, the factors are assumed to be distributed

jointly normal, and the HML and SMB factors as well as the variance factor G are fixed at their condi-

tional expected value given the return of the market factor indicated on the horizontal axis. To do this,

we first run a regression of each of the Fama–French factors and G on the market factor. The return on

the horizontal axis corresponds to a maturity of 30 calendar days.
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Figure 6 Pricing kernel as function of market return—PCA4. This figure plots the quadratic pricing kernel

of Section 2.6 as a function of the rescaled first principal component only. The parameter estimates of

the PCA4 model estimated on 34 of the Fama–French 49 industry portfolios with a complete return his-

tory over the period 1996–2013 are used. In generating this figure, we first regress each of the factors

(the set of linear return factors F and the variance factor G) on the Fama–French market return factor. The

30-day return on the Fama–French market factor is plotted on the horizontal axis. The values of the F and

G factors are fixed at their conditional mean given the Fama–French market return realization.

Table 8 S&P500 stocks as test assets—g estimates

Model g point estimate g Std error kG Point estimate kG Std error

FF3 0.428 (0.089)

FF3þG 0.490 (0.119) 0.011 (0.104)

PCA3 0.335 (0.072)

PCA3þG 0.438 (0.139) 0.026 (0.104)

PCA4 0.343 (0.081)

PCA4þG 0.407 (0.102) �0.007 (0.101)

Notes: For the test assets comprised of individual S&P500 stocks, this table reports g point estimates and

standard errors. The price-of-risk of the variance risk factor G for squared returns, g, is estimated using GMM

on the moment conditions outlined in Equations (60) and (61). The different models use either the first three

(PCA3) or four (PCA4) principal components or the three Fama–French factors (FF3) as the linear factors F.

For each model, we also estimate a version in which the set of linear return factors F is augmented with the

idiosyncratic variance factor G (FF3þG, PCA3þG, and PCA4þG). In these “þ G” model variants, the

price-of-risk of G for linear returns, kG, is defined as kG ¼ EðGÞ � pG. In the “þ G” models, G shows up in

two different places in the squared return equation: once as itself and also as G2 and F>G in the set of implied

factors. Irrespective of whether G is added to F or not, residual returns used to compute G are only based on

the original F factors. The principal components are extracted from the panel of 291 firms with a complete his-

tory of both return and option data over the sample period. All returns are measured over 30 calendar days

from the last trading day of a month.
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variance factor to be priced for these test assets. The point estimate of the g parameter is

similar to those of the industry portfolios, but the standard errors are quite large, which

could be caused by the low beta dispersion for the Fama–French size-B/M portfolios.

The delta estimates corresponding to the squared factors for these test assets are all stat-

istically significantly different from zero for the squared FF3 factors. That is, the

squared market excess return, the squared SMB, and squared HML factors are all priced

when considering the size-B/M-sorted portfolios of squared returns as test assets. This

result could be driven by the correlation between the MKT, SMB, and HML factors

themselves. The coefficients on the implied risk factors (b2) are always positive; coupled

with EðF2Þ � d < 0 for all three Fama–French factors, this means that the risk premi-

ums on these factors are negative. A one-standard deviation increase in b2 leads to a de-

crease in annualized expected squared return of 0.28%, 2.97%, and 0.32% for the

market, SMB, and HML factors, respectively.

3.5 Variance-Sorted Portfolios as Test Assets

Our forth and final set of test assets are portfolios sorted by IV. Specifically, at the end

of each month for each firm, the time series of daily stock returns within that month is

regressed on the five Fama and French (2015) factors. The standard deviation of the

residuals from that regression defines the IV for that firm-month. We sort the cross-

section of firms into 25 portfolios by firm-level IV.33 The IVOLs of the stocks in our

sample are highly correlated, similar to the results reported by Herskovic et al. (2016).

Table 9 Twenty-five size-B/M portfolios—g estimates

Model g point estimate g Std error kG point estimate kG Std error

FF3 0.367 (0.135)

FF3þG 0.644 (0.378) –0.239 (0.215)

PCA3 0.240 (0.190)

PCA3þG 0.289 (0.292) –0.261 (0.214)

PCA4 0.273 (0.246)

PCA4þG 0.356 (0.236) –0.387 (0.213)

Notes: For the 25 size-B/M-sorted portfolios, this table reports g point estimates and standard errors. The

price-of-risk of the variance risk factor G for squared returns, g, is estimated using GMM on the moment con-

ditions outlined in Equations (60) and (61). The different models use either the first three (PCA3) or four

(PCA4) principal components or the three Fama–French factors (FF3) as the linear factors F. For each model,

we also estimate a version in which the set of linear return factors F is augmented with the idiosyncratic vari-

ance factor G (FF3þG, PCA3þG, and PCA4þG). In these “þ G” model variants, the price-of-risk of G for

linear returns, kG, is defined as kG ¼ EðGÞ � pG. In the “þ G” models, G shows up in two different places in

the squared return equation: once as itself and also as G2 and F>G in the set of implied factors. Irrespective of

whether G is added to F or not, residual returns used to compute G are only based on the original F factors.

The principal components are extracted from the panel of 291 firms with a complete history of both return and

option data over the sample period. All returns are measured over 30 calendar days from the last trading day

of a month.

33 The Ang et al. (2006b) puzzle is not present in the universe of optionable stocks, with the monthly

Fama–French five-factor alpha of a portfolio long the lowest IVOL stocks and short the highest

IVOL stocks is an insignificant –1.5 bps.
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The first principal component explains 35% of the variation in a panel of monthly

IVOL for the 291 stocks with a complete time series in our data set. However, this co-

movement does not appear priced, as Table 10 reports. With the exception of the

“PCA3þG” model, none of the g coefficient estimates is statistically significant, which

may be caused by the weak identification of the parameter due to the relatively small

cross-sectional variation in the factor loadings u of the IVOL portfolios for the set of

optionable stocks we consider.

Overall we conclude that our analyses confirm the presence of a priced idiosyncratic

variance risk factor affecting average squared returns for industry portfolios and individual

stocks as test assets. Among the sets of test assets we consider, these two sets have got the

highest cross-sectional dispersion in their factor loadings and therefore are expected to pro-

vide the best identification. For the variance-sorted portfolios and size-b/m-sorted port-

folios, we find very limited evidence of a priced risk factor.

In contrast with the existing literature, we find evidence only for the idiosyncratic vari-

ance factor affecting average squared returns. The risk premium on this factor for linear

returns is not different from zero. We also confirm the pricing of market variance as a risk

factor. Across the various sets of test assets, the risk premium on market variance for the

average test asset is substantially higher (45 bps/month) than the risk premium on the idio-

syncratic variance factor (ca. 5 bps/month).

5 Summary and Conclusions

We propose a new formulation of the classic Ross (1976) APT and link this formulation to

work by Al-Najjar (1998) and Gagliardini et al. (2016). Our formulation implies an APT

Table 10 Twenty-five IVOL portfolios—g estimates

Model g point estimate g Std error kG point estimate kG Std error

FF3 0.640 (29.153)

FF3þG 0.325 (19.543) 5.261 (525.343)

PCA3 0.314 (0.228)

PCA3þG 0.303 (0.150) 0.116 (0.192)

PCA4 0.437 (0.499)

PCA4þG 0.448 (0.419) 0.007 (0.200)

Notes: For the 25 IVOL-sorted portfolios, this table reports g point estimates and standard errors. The price-

of-risk of the variance risk factor G for squared returns, g, is estimated using GMM on the moment conditions

outlined in Equations (60) and (61). The different models use either the first three (PCA3) or four (PCA4) prin-

cipal components or the three Fama–French factors (FF3) as the linear factors F. For each model, we also esti-

mate a version in which the set of linear return factors F is augmented with the idiosyncratic variance factor G

(FF3þG, PCA3þG, and PCA4þG). In these “þ G” model variants, the price-of-risk of G for linear returns,

kG, is defined as kG ¼ EðGÞ � pG. In the “þ G” models, G shows up in two different places in the squared re-

turn equation: once as itself and also as G2 and F>G in the set of implied factors. Irrespective of whether G is

added to F or not, residual returns used to compute G are only based on the original F factors. The principal

components are extracted from the panel of 291 firms with a complete history of both return and option data

over the sample period. All returns are measured over 30 calendar days from the last trading day of a month.
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for squared excess returns. We show how a factor structure for linear returns gives rise to

implied risk factors for the squared returns as well as allowing for (a) separate idiosyncratic

variance factor(s). The implied factors carry their own prices of risk which are distinct from

the prices of risk of the original factors at the linear return level. Possibly, also the idiosyn-

cratic variance factor is priced.

In our empirical analysis using Fama–French industry portfolios as test assets, we

confirm the presence of a priced risk factor in idiosyncratic volatilities. However, in

contrast to recent papers such as Duarte et al. (2014) and Herskovic et al. (2016), we

find no evidence of this factor being priced for linear returns, but only for squared

returns. This suggests that the IV factor does not represent a missing risk factor in the

linear returns model.

Our conclusions are the same whether we consider a model for linear returns with

the Fama–French factors or with principal components as factors. Using the 100 stocks

that were part of the S&P500 during our sample period (1996–2013) and have a full

history of returns over that period as test assets again leads us to conclude that there is a

factor in idiosyncratic volatilities but that it is only priced for squared returns.

Comparing the point estimates of the IV factor’s price of risk for the four sets of test

assets, we see that the estimate for the price of risk from the squared returns increases in

magnitude, while the estimate for the linear returns decreases in magnitude, providing

further support for our conclusion.

The risk premium estimates for the implied risk factors in the squared returns

model confirm that idiosyncratic variance and market variance are priced separately.

For the average test asset, the magnitude of the risk premium for market variance risk

is considerably larger (45 bps/month) than that of idiosyncratic variance risk (5 bps/

month).

We also estimate the induced pricing kernel of the model as a function of the market ex-

cess return only (using the conditional joint distribution of the factors to evaluate the other

factors at their conditional mean). Other than the functional form of the pricing kernel

being quadratic in the factors, we do not impose any restrictions on its shape. The induced

pricing kernel takes a plausible convex form with positive values throughout when using

principal components as factors, but displays a concave shape when using Fama–French

factors.

A natural question is how our APT for squared returns extends of other nonlinear trans-

formations of excess returns. One important example would be the factor pricing of put

and call options, as an alternative to the analyses in Kadan, Liu, and Tang (2017) and

Christoffersen, Fournier, and Jacobs (2018). For these securities, our framework would

link the factor structure in option returns to non-linear transformations of the factors that

explain the cross section of returns of the underlying assets. We leave this for future

research.
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Appendix A: Proofs

Proof of Proposition 1: Combining Equations (3) and (7) we find

SðnÞðuÞ ¼
Ð u
0 ð½rRðnÞðvÞ�2 � pðnÞðvÞÞdv

¼
Ð u
0 ð½aRðvÞ þ bRðvÞ>F þrZðnÞðvÞ�2 � pðnÞðvÞÞdv

¼
Ð u
0 ½aRðvÞ þ bRðvÞ>F�2dvþ

Ð u
0 ð½rZðnÞðvÞ�2 � pðnÞðvÞÞdv

þ2
Ð u
0 ½aRðvÞ þ bRðvÞ>F�½rZðnÞðvÞ�dv

¼
Ð u
0 ½aRðvÞ þ bRðvÞ>F�2dvþ

Ð u
0 ½rZðnÞðvÞ�2 � pðnÞðvÞdv

þ2
Ð u
0 ½aRðvÞ þ bRðvÞ>F�dZðnÞðvÞ

w�
!

ðu

0

½aRðvÞ þ bRðvÞ>F�2dvþ
ðu

0

½xSðvÞ � pðvÞ�dvþ
ðu

0

u>S ðvÞGdv;

(53)

where the last equality follows in view of Equations (10), (1), and (2). h

Proof of Proposition 2: The conditions imposed immediately imply that R
ðnÞ
D satisfies

Equation (3). h

Proof of Proposition 3: In order to verify Equation (10), observe

Ð u
0 ½rZ

ðnÞ
D ðvÞ�

2dv ¼
Xn

i¼1

½eðnÞi �
2
ðu

0

1fv2U
ðnÞ
i
gdv

¼
Xn

i¼1

ðxðnÞi þ uðnÞ>i Gþ �ðnÞi Þ
ðu

0

1fv2U
ðnÞ
i
gdv

!w
�
ðu

0

xSðvÞdvþ
ðu

0

uSðvÞ>Gdv;

(54)

as n!1. h

Proof of Proposition 4: The unknown coefficients a, b, c, and d in the candidate pricing ker-

nel M in Equation (43) are determined by the pricing relations

0 ¼ ER
ðnÞ
i M ¼ ER

ðnÞ
i

Rf
þ Cov R

ðnÞ
i ;M

n o
; (55)

0 ¼ E R
ðnÞ
i

� �2

� p
ðnÞ
i

� �
M ¼

E R
ðnÞ
i

� �2

� p
ðnÞ
i

Rf
þ Cov R

ðnÞ
i

� �2

;M

� 	
: (56)
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Under the Conditions (44)–(47), we obtain a valid pricing kernel if, for all bi and all ui, we

have

0 ¼ bðnÞ>i

EF � p
Rf

þ bðnÞ>i Var F � pf gb

þbðnÞ>i Cov F � p; F � pð Þ>c F � pð Þ
n o

þbðnÞ>i Cov F � p; G� gð Þ>
n o

d

(57)

0 ¼
bðnÞ>i E F � pð Þ F � pð Þ> � d

h i
bðnÞi þ uðnÞ>i E G� gf g

Rf

þCov bðnÞ>i F � pð Þ F � pð Þ> � d
h i

bðnÞi ; F � pð Þ>
n o

b

þuðnÞ>i Cov G� gð Þ; F � pð Þ>
n o

b

þCov bðnÞ>i F � pð Þ F � pð Þ> � d
h i

bðnÞi ; F � pð Þ>c F � pð Þ
n o

þuðnÞ>i Cov G� gð Þ; G� gð Þ>
n o

d:

(58)

As these relations have to hold for all bðnÞi and uðnÞi , we obtain Equations (48)–(50). h

Appendix B: GMM Estimation

We estimate our APT model, including the idiosyncratic variance factors, by GMM. We de-

tail the exact moment conditions we use in this Appendix.

At the linear return level, we use the moment condition implied by Equation (41), that is,

Rit ¼ b>i ðFt � pÞ þ ei; (59)

where we omit the number of available assets n from the notation and add time indexes. In

line with Section 2.5, we interpret this as an unconditional regression, that is, the return

process is assumed to be stationary and induced moment conditions are

E
1

Ft

0
@

1
A
 Rit � b>i Ft � pð Þ


 �
1� i� n

2
4

3
5 ¼ 0; (60)

so there are ðKþ 1Þn moment conditions for Kn þ K parameters.

The moment conditions for the squared returns are based on Equation (42). This leads

to the following moment conditions34

34 For a symmetric K � K matrix A, vechðAÞ equals the K ðK þ 1Þ=2 column vector obtained by vec-

torizing the lower triangular part of A. We introduce it here to avoid using multi-collinear instru-

ments in ðFt � pÞðFt � pÞ>.
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E

1

vech Ft � pð Þ Ft � pð Þ>
� �

Gt

0
BBBB@

1
CCCCA


R2
it � pit � b>i Ft � pð Þ Ft � pð Þ> � d

h i
bi � u>i Gt � gð Þ

� �
1� i� n

2
666666664

3
777777775
¼ 0: (61)

The linear return parameters ðbiÞ1� i�n and p are present in both Equations (60) and

(61). The moment conditions for squared returns (61) feature the additional parameters

ðuiÞ1� i� n, d, and g. We estimate the parameters by a single-step GMM procedure based on

Equations (60) and (61).

Putting everything together, we see that the GMM system is over-identified with a total

number of ðKþ 1Þnþ 1þ KðKþ1Þ
2 þ KG

� �
n equations, while Knþ Kþ KðKþ1Þ

2 þ KGnþ KG

parameters need to be estimated. A standard test for the over-identified moments equations

would thus feature, under the null of correct specification, n� Kþ n� KG þ ðn� 1ÞKðKþ
1Þ=2 degrees of freedom. The HAC estimator uses a Bartlett kernal with Newey–West opti-

mal bandwidth values.

B.1 Initial Values

We initialize the GMM estimation as follows. Starting values for the b parameters follow

from time-series regressions of test asset returns on the F factors. The p parameters are set

to zero, reflecting the fact that the F factors are (scaled) excess returns. The k parameters

(from k ¼ EðFÞ � p) are set equal to the unconditional average of the factors. The u param-

eters follow from time-series regressions of the excess squared excess returns on the G vari-

ance factor. The d and g parameters are initialized by first running cross-sectional

regressions of the average excess squared excess returns on vechbb> and u, and then com-

puting the difference between the average of vechðF � pÞðF � pÞ> and the coefficients on

vechbb> (for the d parameters) or the difference between G and the coefficient on u (for

the g parameter).
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